

Canada releases soldiers for coal mining as result of U. S. mine stoppages. Page 60

EDITORIAL STAFF

E. L. Sinneit

Editor-in-Chief
E. C. Kbrumbeic

Editor
Mrus Editor Enginecring Editor
J. K vox

Sied Plant Eifitor Guy llunramb

Anthun F . Macconochas Contributing Editor

D. S. Canot

 Art Editor
Assoclate Editors

G. II. Manloye W. J. Camphell

Iuwin II. Sucir, Easiern Editor
Nele York, 13. K. Price, L. E. Ibrowne
Pillshargh, IR. I. Mahtyond Chicago, E. F. Rass Detroit. A. II. Alle:n JFashinglor, I. M. Lams London, Vincent Delport

Assistant Editors

J. C. Sullivan, Jay DeEulis, F. R. Bugge D. B. Wilkin J. M. Kuhtz

BUSINESS STAFF

G: O. IIAY
I3usiness Manuger
R. C. Jamene thecrising Manager
C. 11. Dahiey

Adertising Service
New Jorfi. L. W'. Krisutzheitg, K. A. Zulaneit Jiftsfurbh, S. 11, Jasper, 13. C. Snehi Chicage, L. C. Pelott, V, W. Volk Clemiand, D. C. Kiefert, C. H. Choss fos Angeles, F. J. Fulaisa
J. W. Zubsis

Circulation Manager
Main Office
I'enton Jhuiding, Clevelami, Ohio

Branch Offices

Newe Yorl:
0 Fun 12ad Sirce Chicasa: 520 North Michiban Avenue Pitrsturgh. Koppuers Buildirg Betroit . 4560 Cifk Avenite I'rishingron. IJ23 Naliunal I'reas Bnilding Cimethnati. 2030 Carew Tower Los Angeles, 130 North Nes H ampshire Avenue Iomdun.... 2 Cixiton Strect, Wentminster, S.Wi. 1

Publifhed lyy Tur l'exron Pumensung Co. Penton Buidding. Cleveland, Ohio. E. L. Suasieh, Preadent; l'. G: Steminizasin, Secrelary.
Member, Audit Jurean of Circulations; Associated Businera Papera; Inc., atud National Publiwhers" Ascociation
Puthinded every Monday. Subseription in the United States and posacsmions, Canadia, Nexico, Cula, Central and south smeritat, one year sfo two ycars $\$ 10$, atl olher caimaticd one year $\$ 12$. Single copien (curcent issucs) 250.
Entered as. recond clas matter at the postoffice at Clevelanil, under the Act of Mareh $3,1879$. Copyright 1943 by the Peston Publishing Co.

The Magazine of Metalworking and Metalpraducing

21

NEWS
Machine Tool Industry Faces Adjustment55
War Expenditures To Total \$106 Billion; 80\% Increase Over 1942 58
Unionists Win High WPB Posts; Congress Passes Antistrike Bill 60
Slowest Producer Sets War Goods Pace, Management Men Told 62
"To Each Other"-New United States Steel" Film Previetwed 62
War Production Board Revises Official CMP Class B Product List 63
Views on Flood Control Works Change as Pensacola Dam Fails 66
Exhibit Provides Preview of Postwar Paper Competition for Metals 67
Priorities-Allocations-Prices 68
PD and UF Forms Renumbered in WPB Data Standardization 69
Postwar Planning-"We're Doing It Right Now" 78
Men of Industry 80
Obituaries. 81
Eastern Iron Ore Mines Push Production 82
Fog Bedevils Lake Shippers 82
First Steel Poured at New Homestead Works Expansion 83
Cest la Guerre!-Western Railroads Feel Pressure of War Demands 84
Dominion Ranks High in Metal Output 87
FEATURES
Behind the Scenes with Steel 4
As the Editor Views the News 51
Windows of Washington 64
Mirrors of Motordom 71
Wing Tips 74
The Business Trend 88
Industrial Equipment 116
New Business 150
Construction and Enterprise 152
TECHNICAL
Heat Treatment of Solid Armor Piercing Shot
90
90
User Report No. 14 on Experience with NE Alloy Steels 92
Flame Cutting of Parts for Arc Welding 96
Sintering-Plant Design
103
103
Approved "Clipping" in Fastening Wire Rope 106
Wide Motor Speed Range Now Possible with Electronic Controls 106
Painting Speed Increased 400 Per Cent
111
111
"Super" Grinding Prolongs Tool Life 112
Control Analysis Simplified in Determining Molybdenum 115
PRODUCTIONSteelworks Operations for Week61

MARKETS

Steel Demand Grows as War Production Shifts Market Prices and Composites 135
Index to Advertisers
Where-to-Buy Products Index carried quarterly 161

.when we switched to a new line of work

Another example of the time-saving gains of the Graybar MM* Plan

A new contract for war equip ment put a Midwestern manufacturer on the spot. Although the firm was well equipped to build the new item, certain of the parts it required were of a type completely new to their purchasing staff.

Contact with Graybar, however, filled the gaps in their procurement "know-how". A Graybar Representative was quick to supply the facts and figures they lacked on priorities, deliveries, specifications, prices. "Your Company," they later wrote, "has been unusually helpful in enabling us to obtain critical items used in our product, which were com-
pletely new to us in our new field of work."

Other companies switching

 from one product to another as a result of changing war demands are finding Graybar unusually helpful in this respect. If the new product involves any type of electric circuit, or uses electricalparts or subassemblies, contact with Graybar can tie you in with over 200 leading suppliers. You get prompt, authentic information on their standard items, and their facilities for special jobs. Often, too, you get favorable delivery from Graybar's local warehouse stocks right in your own community.

* Serving as your Materials Moblilzer By this GRAYBAR service, your electrical needs are linked to the available output of 200 manufacturers, mlan "dovetails" at more than 80 warehouses. with your own purchasing GRAYBAR'S procuremave time in getting locating "hard-to-get" requirements. You expediting delivery, locating hepresentative how this specifications. your local GRAYBA
items. Ask
specifica Ask your local help you.
items. As" service can he-call"
"one

June 21, 1943

WHO WORKS FOR WHOM? A few days ago our county observed its first full dress daylight air raid alert. In most downtown buildings, including our own, people left their desks, went to designated "safe" areas and otherwise co-operated wholeheartedly in the test.

Across the street hundreds of employes in a federal government agency stopped work and hung out the windows during the alert. Apparently they hat no organization for air raids. Several weeks ago one of the worst offenders in a night air raid alert was a local office of another federal agency.

Not long ago we had occasion to visit the palatial offices of still another federal agency. Hundreds of government employes were milling about in confusion. It reminded one more of a crowd at a football game or a race track than of a group of office workers performing their duties.

The net result of these experiences is this question: Are these federal employes working for us taxpayers, or are we working for them?

WAR PROGRAM CLICKS: No one can read Donald M. Nelson's progress report on war production (p. 58), addressed to President Roosevelt, without feeling a sense of pride in the record already achieved and a determination to meet successfully the challenge of the big job which lies ahead.

War expenditures in 1943 will approach $\$ 106$,$000,000,000$, of which $\$ 84,000,000,000$ will go for the munitions and construction program. Of this amount, $\$ 11,000,000,000$ represents the cost of con-struction-plant and equipment-while the remainder, about $\$ 73,000,000,000$ is for munitions.

This expenditure for munitions alone represents an increase of nearly 125 per cent over the outlay for munitions in 1942. However, this increase is exceeded in the case of certain important items of munitions. For instance, the 1943 output of combat planes will be three and a half times that of 1942.

The progress report indicates clearly that the day of smooth-running mass production of munitions is here and that the peak of preparation-of plant construction and of initial tooling up-has been passed.

Major problems still lie ahead, but on the basis of what has been done to date, industry can look forward to the new tasks with confidence. A good pattern for production has been developed.

PERVERSE ACTS OF GOD: We have an idea that the weather is becoming involved in a greater degree than expected in the ups and downs of this war. Already such "acts of God" as extreme cold, excessive heat, fog, wind, rain, drought, mud, sand, snow, floods, monsoons and even earthquakes have interfered with military plans on the fighting fronts. Recently, perverse demonstrations of the elements have been playing havoc with aetivities on the home fronts.

First it was the late winter, which handicapped the railroads and seriously delayed the opening of navigation on the Great Lakes. Next it was the abnormal rains of May, which probably have reduced food production more than has been admitted officially. Now it is a combination of freak weather conditions, causing fog, which has contributed to an almost unbelievable series of mishaps to iron ore, coal and grain carriers on the lakes.

During the past two weeks, 13 vessels of the lake Heets have been damaged seriously. Three have been sunk. Shipping men say the accidents have reduced the iron ore movement for June (p .82) by more than 700,000 tons.

Collisions were responsible for most of the damage. Perhaps the war's effective detector-radarwill find useful applications on the lakes after the war.

POSTWAR COMPETITION: In Washington, WPB has assembled an interesting exhibit (p. 67) of paper and paper products now in use as successful substitutes for metals and metal products. Anyone viewing this exhibit is likely to wonder as to how much these paper substitutes will encroach upon the markets for ferrous and nonferrous metals after the war.

Articles in the newspapers tell us that in the near
future our window screens will be made of nylon instead of metal wirc. In the iron, steel and metalworking industries one hears much speculation (p. 71) as to whether or not the light metals-aluminum and magnesium-will replace steel to an appreciable extent in postwar construction.

Producers and manufacturers are advised not to jump to unwarranted conclusions in regard to postwar competition. One official, when asked what his company has learned from its postwar planning activities, replied that it had found out that it could quit worrying about postwar competition from certain materials and should concentrate on a few which offer real threats.

This is progress.

ARE PARTS OF ONE JOB: Some high officials in Washington are quietly counseling their friends in industry not to make the mistake of allowing their enthusiasm for postwar planning to deflect them from doing the best possible job of producing for victory.

This advice is sound. It would be unfortunate, indeed, if the emphasis now being placed upon "winning the peace" were to interfere in any way with the No. 1 job of winning the war. We believe most industrialists understand this.

We suspect that such qualms as exist in regard to the alleged over-emphasis on postwar planning arise from the publicity attending the subject rather than from the time and attention actually being devoted to it. As a matter of fact, for every individual in industry engaged entirely in postwar planning there are thousands or tens of thousands who are devoting their undivided attention to production.

War is an extreme emergency. It hits a nation just as a devastating fire hits the owner of a home or a business. When fire sweeps the premises, the owner first is concerned with the preservation of life and property. He does what he can to see that all persons are evacuated safely, that valuables are carried out and that adequate fire fighting facilities are on the scene. As soon as he is satisfied that the rescue and fire fighting jobs are in competent hands and under control, his thoughts turn to rehabilitation. What can he do to speed the resumption of normal activities?
first that we are doing everything possible to win. Satisfied on that score, we turn to thoughts of rehabilitation.

Perhaps our thinking will be clarified if we will consider that winning the war and winning the peace are integral parts of one gigantic task. The emergency of a fire is not over when the fire is out. It is over only when normal activities have been restored. In war, the emergency is not over when the armistice is signed. It is over only when stable economic conditions have been restored.

Viewed in this light, production for war and postwar planning go hand in hand.

EMPHASIS ON SINTER: Although the sintering of iron ore concentrates dates back almost to the turn of the century, it is doubtful whether the process ever has attracted as much attention as at the present time. Many blast furnace experts believe that their industry is on the threshold of a new era in which there will be a marked increase in the use of beneficiated iron-bearing materials. Sintering will play an important part in this development.

Until now, the use of sinter as a major part of the blast furnace burden has been confined to a few stacks in the East. Recently, however, operators in other districts have manifested keen interest in increasing the use of sinter. This, coupled with the certain knowledge that the industry cannot go on using rich ores at the present rate, has turned the spotlight of attention upon the roll of sintering in blast furnace operation in the future.

This new emphasis makes pertinent a re-evaluation of the thermal problems of the sintering process and of the details of sintering plant design. The series of articles on this subject by Charles E. Agnew, which is concluded in this issue (p. 103), merits close reading by every person interested in blast furnace operations. Sintering seems destined to play an exceedingly important role in the next decade.

The same rule applies to war. We make sure

Better Steels are Comingfrom the Tests of War

Hour after hour, month after month, Inland metallurgists study not only the needs for this war of steel, but also the requirements of a victorious America the America that will turn again to peacetime developments in the crafts, and in the sciences-new developments that will prove again that free peoples set the pace for others to follow. Coming out of the tests of war are finer steels-steels that will set new standards of safety and
speed in transportation. Steels that will help bring the newest advancements in swift communications into most homes in the land. Steels that will bring new conceptions of beauty, convenience, comfort, and utility-all at prices that can be afforded by the average American. Yes, you can look forward to the day when steel from Inland,
 now flowing 100 per cent into war products, will help build a greater America.

INLAND STEEL COMPANY

> Facilities assured continued active operation in War Program despite declining order backlogs . . . Subcontracting planned to take up slack

DESPITE a cut of more than 50 per cent in the order backlog of machine tool builders since last year and prospects of further reduction, the industry need have no fear it will be eliminated from participation in the war effortif plans now being formulated by the War Production Board materialize.
The inclustry will continue to get a substantial volume of business although materially reduced as compared with the record total of $\$ 1,600,000,000$ in orders placed during 1942. Furthermore, a new facilities group now being set up by WPB will aid the industry in obtaining subcontract work. Closely associated with this group will be George HI. Johnson, president, the Gisholt Machine Co., Madison, Wis., and until recently director of the Trol Division, War Production Board.

Top WPB officials find it impossible to estimate accurately likely volume of new machine tool business but figures released to Steel show that the total for the first four months this year was in excess of $\$ 250,000,000$. If this rate is maintained for the remainder of 1943 -which is unlikely-the total for the year will be in the neighborhood of $\$ 750,000,000$. This figure is given some credence by the private "guess" of a WPB vice chairman that some $\$ 600$,000,000 worth of machine tools will be placed in 1944.
A factor not to be overlooked in considering future business is the marked increase during the past six months in

By IRWIN H. SUCH Eastern Edifor, STEEL
demand for special purpose tools and a swing away from general purpose tools, attributed to the rapidly tightening labor situation.

War Program Not Static

Even the best informed government experts find it difficult to estimate future machine tool requirements precisely for the reason that the war production program cannot be made static. Experience in Africa has taught the Army and Navy that they can figure on 30 per cent error in type of equipment when actual landings are made on continental Europe. In other words, it probably will be found that equipment now being made in quantity may prove unsuited when the actual land fighting begins on the continent. In Africa, mobile artillery filled. requirements not met by tanks and the latter program consequently was cut back. In fact, one huge Detroit tank

> Alass mroduction of machine tools for war has intensified use of high production precision equipment within the industry itself, broadening conversion possibilities of machine tool plants to other war and postwar purposes. Photo courtesy Pratt \& Whitney
arsenal shortly will be retooled to make parts for heavy planes.

At the end of May, it is estimated by WPB that the unfilled machine tool order backlog totaled about $\$ 600,000,000$ which translates into around 100,000 tools, a large number of which are scheduled for delivery to builders of engines for heavy bombers. The May 31 backlog was the lowest since December 31, 1941, when it totaled \$576,568,000 and less than half the record $\$ 1,389,363,000$ total recorded June 30, 1942.

May shipment and new order figures are not yet available but the trend may be noted by referring to the accompanying talble, April shipments being twice the rate of new business for the same montl. May cancellations were about 20 per cent of new orders. Expressed in terms of numbers, these cancellations have been running at the rate of about 10,000 to 12,000 per month and WPB expects a further cut in the 100,000 total by the end of the current month.
This expectation is borne out by the issuance of a new order making it inpossible for either the Army or Navy to make purchases of new tools without specific WPB authority. Both services also have been asked to make a list of tools on order for use by their contractors and those which cannot be conclusively proved essential will be canceled.
Although the outlook for machine tools is less promising, WPB officials

Is this an armory, an aircraft engine plant, a shop making parts for naval equipment? It might be any of these but actually it is part of a machine tool plant. Conversion of such a plant to a wide variety of exacting war work other than machine tools would not be difficult. Photo courtesy Warner \& Swasey Co.
emphasize there will be plenty of business for everybody as long as the war lasts and that the peak in production of war goods has not been passed, rather is still ahead. Production is being stepped up month by month and it will be necessary to turn out 61 per cent of the huge $\$ 83,000,000,000$ goal for 1943 in the second half. Further, programs already known indicate that 1944 volume will be considerably ahead of 1943 . Cutbacks in individual items, while disturbing to the plants involved, are considered unimportant in relation to the entire job.
Approximately 75 companies ${ }^{-}$in the machine tool field now are reported by WPB as being in position to take subcontracts. Some already have taken considerable work, including production of valves, Navy turbines, gears, aircraft parts, hydraulic controls, diesel engine parts and the like. A spokesman for WPB said those who have tried have found no difficulty in getting outside work. "Some are aggressive in seeking
work", he saicl. "Others are inclined to sit back"

Precision Equipment Needed

Manufacturing improvisations will be necessary in many cases since the industry predominately uses heavy-type tools, it is pointed out. In these cases, it will be necessary to buy additional precision equipment and small production-type machines needed for special jobs such as involved in making parts in connection with the huge impending heavy bomber program.

Right now, WPB records show that about 5000 machine tools are idle due to changes in production schedules. And as a means of getting these tools back more quickly into use, the war agency proposes to establish central warehouses where prospective users may actually see them, thus, making it unnecessary to visit individual plants where the tools now stand idle. Similar plans are working well in Canada and England. Prin-

cipal difficulty involves financial trans fers since tools often are owned by one of seven or cight agencies.

The entire machine tool situation is regarded in Washington as being relatively "easy" although a tight situation continues in holding fixtures and attachments for special purpose tools. Excess inventories of cutting tools in the hands of many producers occasioned by cutbacks in individual programs are being studied and it is expected a redistribution plan will be worked out such as has been done within the Ordnance department's own organization.

MACHINE TOOL STATISTICS

1943	War Production Board (000 omitted)		
	Unfilled Orders	New Orders	Shipments
April	\$ 643,643	\$ 57,359	\$118,031
March	704,922	84,980	125,445
Fel.	893,247	63,865	114,593
Jan.	970,616	48,829	117,384
1942			
Dec.	1,069,672	56,083	131,960
Nov.	1,129,610	76,116	120,871
Oct.	1,168,768	66,474	130,008
Sept.	1,248,965	74,343	119,883
Aug.	1,315,254	96,979	117,342
July	1,374,735	121,156	113,596
June	1,389,363	139,397	111,090
May	1,386,435	166,945	107,297
April	1,367,281	254,274	103,364
March	1,302,803	338,348	98,358
Feb.	1,000,838	127,356	84,432
Jan.	728,708	107,500	83,547
1941 (10			
Dec.	576,568		81,435
Nov.	629,926		81,320
Oct.	616,542		84,178
Sept.	617,677		74,906
Aug.	595,000		70,069
July	572,000		63.019
June	525,000		69,070

Changes in design of Army and Navy equipment involve extensive retooling. Many complex special purpose tools such as the station-to-station machine shown here are required. Photo courtesy of Studebaker Corp.

Pinch to Continue

WPB vice chairman tells auto group steel supply easement not in early prospect

SPIKING rumors that substantial quantities of critical materials may soon be released for manufacture of civilian peacetime articles, J. A. Krug, program vice chairman, War Production Board,
said in an address June 17 before the annual meeting of the Automotive Council for War Production in Detroit that. such reports were without foundation.

Total requests for carbon steel under CMP for the third quarter were in excess of 20 million tons, while total supply available was slightly under 15 million tons, compelling an overall reduction of 25 per cent in the requests of claimant agencies, he said.
Army was allotted 500,000 tons less

Present, Past and Pending

- WAR PRISONERS MAY WORK AT U. S. COPPER MINES

Wasirincton-Prisoners of war may be used in surface operations at this country's copper mines to case an acute manpower shortage. It is unlikely they will be employed in underground operations due to danger of sabotage.

- OFFICE MACHINES WEARING OUT; DIFFICULT TO REPAIR

Washington-Office machines are wearing out rapidly, breakdowns are on the increase, and repair parts are difficult to obtain. The clraft has taken many service and repair men. Some metalworking companies have been forced to shift machines among branch offices.

- ROLLING STOCK SHORTAGE IMPERILS WHEAT MARKETING

Chricaco-Atchison, Topeka \& Santa Fe railroad officials express fears that much of the 1943 half-billion bushel wheat crop may have to be piled on the ground-at least temporarily-due to shortage of rolling stock.

- MAY USE IRON FOR PRINTING PLATES

Columaus, O.-Electrolytic iron may become a metal of major importance in making printing plates, according to Battelle Memorial Institute.

BARIUM STAINLESS ACQUIRES MINING CLAIMS

Canton, O.-Barium Stainless Steel Corp. has acquired 24 mining claims in Pennington county, South Dakota, containing tin, tungsten, mica and beryllium ores and is proceeding to engage in the mining of these strategic materials.

- SETS UP SUbCOMMITTEE ON RENEGOTIATION

Washngron-House Ways and Means Committee has voted to establish a subcommittee to study renegotiation of war contracts. Chairman Doughton said the subject probably will be taken up in connection with general revenue legislation later in the year, but that the subcommittee would do considerable groundwork in the meantime.

E AUTO INDUSTRY WAR OUTPUT DOUBLE PEAK PEACETIME RATE

Detnorr-Production of war products in automotive plants now is running at double the industry's highest level of civilian output and will continue to increase. This prediction was made by Alvan Macauley, president, Automotive Council for War Production, and C. E. Wilson, president, General Motors, at the council's annual meeting.

FINAL DOW MAGNESIUM UNIT STARTS OPERATIONS

Ludington, Mich.-Ludington plant of the Dow Magnesium Corp., which will supply magnesium chloride to Dow's Marysville, Mich., plant, was opened last week. The Ludington unit is the final link in the Dow-Defense Plant Corp. $\$ 40,000,000$ project to increase Dow's output of magnesium to 35 times the company's 1939 output.

W WAREHOUSES TO GET HEAT-TREATED STEEL BARS

Wasfington-Restrictions on delivery of heat-treated steel bars to warehouses will be relaxed by War Production Board, effective Oct. 1
carbon steel than asked for, the Nay 100,000 tons less, Maritime Commission 400,000 tons less.

Office of Defense Transportation will receive only $1,200,000$ tons to meet tramsportation needs against an original request for $2,200,000$ tons.
Statistically 70 per cent of carbon steel production for third quarter was allotted to direct military uses, with 18 per cent for such essential needs as farm equipment, railroad utilities, new building construction, oil wells, aviation gasoline plants and synthetic rubber plants. Something more than 5 per cent was for warchousing and maintenance, repair, and operating supplies for industry.
Baby carriages, some pots and pans, cans for food and a limited number of other articles constituted about the only civilian uses of steel permitted.
Krug said his staff has projected steel requirements and supply figures through 1944 and on the basis of those figures foresaw some lessening of shortages by the end of next year, but he predicted that the situation is merely one of cistance Jending enchantment-that when the time is reached materials will be just as critical as they are today. He added that the United States started out to be the arsenal of democracy but today is the common carrier, the food basket and the corner store for our allies around the world as well.

Wean Enaineering, Case School Offer Courses

The Wcan Engineering Co. Inc., Warren, O., is co-operating with Case School of Applied Science, Cleveland, in offering courses in machine detailing and fundamentals of machine design to Warren and Trumbull county, O., residents: R. J. Wean, president of the company, announced recently.

Facilities will be provided by the company at 347 North Park, Warren. The courses are designed to aid in the development and upgrading of employes in engineering departments, shops and drafting rooms as an aid to the war effort, Mr. Wean says. Selected applicants of the industrial area will undergo the training. Tuition will be free but students will provide their own texts and drawing instruments.

Case School is conducting an engineering, science and management war training program and has applied to the United States Office of Education for authority to operate in the area. Applications for admission to the training program can be obtained from Case School or from N. J. Ranney, Wean Engineering Co. Inc., who is directing the program. Classes began June 20.

Expenditures To Total \$106 Billion, 80 Per Cent Increase Over 1942

Abstract

Combat plane production to be three and one-half times last year's output. Construction de-emphasized as preparatory phases reach substantial completion. Exports of most materials scheduled to advance

OVERALL war expenditures by the United States in 1943 are scheduled to total $\$ 106,000,000,000$, or an 80 per cent increase over the $\$ 59,000,000,000$ spent in 1942.

These figures cover the total program, including munitions, construction, and non-munitions such as pay, subsistence and other items. The figures are included in a report to President Roosevelt by Donald M. Nelson, War Production Board chairman.

Commenting on the report, Mr. Nelson said: "In the main, the productive achievement of the American war economy in 1942 met the requirements of our war strategy; and the prospects for 1943 are for a quantity and quality of production that will realize to the full the tremendous potential of American industry.
"We have met with some disappointments and have made some errors in achieving the results. The important point, in my judgment, is that an unprecedented and, on the whole, a balanced output was achieved."

Mr. Nelson pointed out that the 1942 expenditures represented three and onehalf times the 1941 figure of $\$ 16,500$,000,000 and almost 20 times the sec-ond-half 1940 total of $\$ 3,000,000,000$.
Of the $\$ 106,000,000,000$ total, the munitions and construction portion of the 1943 program amounts to $\$ 84,000$,000,000 , an 80 per cent increase over comparable 1942 output.

Projects Substantially Completed

Of this, in turn, the volume of construction projected, while still fairly large-more than $\$ 11,000,000,000-$ forms a much smaller proportion of the total than in 1942; 13 per cent as compared with 30 per cent-an obvious reflection of the fact that the preparatory phases of the war production programthe tooling up for munitions output and the construction of bases, barracks, hospitals, etc., for the training and maintenance of the armed forces-are already substantially completed.

The situation for munitions alone is nuite different. Their programmed value for 1943, $\$ 72.300,000.000$, represents an increase of nearly 125 per cent over output in 1942. And for significant and
large categories of munitions the relative rise called for in 1943 over 1942 is much larger.
Thus, in combat planes the programmed value of 1943 output is 3.5 times that of actual output during the last year; in spare propellers, engines and parts, 2.7 times; in other plane equipment and maintenance, almost 4 times; in ground signal and related equipment, over 3 times; and in minor combat vessels, nearly 4 times.

NE STEELS GAIN

Increased use of the "lean" national emergency steels is clearly demonstrated by the production figures.

Output in May was 270,000 tons. In June last year, output was only 40,000 tons. In January, 1943, production was about 195,000 tons.

Reports from the ficld indicate consumers are well satisfied with these steels for many purposes and may stick with them after the "peace" is won.

On the basis of programs envisaged in December, 1942, the needs of military production during 1943 call for substantially greater quantities of almost all critical materials than in 1942. Direct military requirements for steel are up 31 per cent. Aluminum, mainly for airplane manufacture, and nitrogen, for explosive production, are up over 100 per cent. Phenol and toluene, also essential for production of explosives, are likewise up more than 100 per cent. Magnesium is up considerably more than 200 per cent.

An even larger increase, 450 per cent, is expected in the direct military use of ethyl alcohol, principally, for the synthetic rubber program and for making smokeless powder. Copper, almost alone among the leading industrial materials, shows less than a 10 per cent increase from 1942 to 1943, reflecting the great difficulty of increasing supplies of that metal.
Exports also are scheduled to advance substantially for most materials, copper
again constituting an important exception. Outstanding is a seven-fold expansion in magnesium shipments, principally for the United Kingdom's airplane and incendiary bomb programs.

With few exceptions, these increased requirements for materials for military use and for export during 1943 must be met through corresponding increases in new supply during the year, that is, from added domestic production and higher imports.

Unlike the situation which prevailed at the start of 1942, only limited quantities of most scarce materials can be rendered available by further reduction in the civilian economy. Nor is it possible, for most materials, to deplete stocks further without endangering war production.

Restrictions on use of most metals in effect at the beginning of 1943 were severe. Allotments for such uses as railroad equipment and maintenance, agriculture tools and machincry, and industrial repairs and maintenance are being increased above December estimates.

On the hasis of programs and expectations as formulated in December, 1942 , the balance between supply and requirements for most critical materials should apparently immove during 1943 as increased supplies become available.
Scarcity of vital materials will remain a critical limiting factor on war production during 1943. The tightness of steel, copper and aluminum, especially, necessitates promut and decisive shifts if we are to avoid cut-backs in projected programs, attain balanced output, keep stocks at a level adequate to insure continued production.
Our war plants are, for the most part, well on the way to completion. The neak was reached in the fall of 1942 and by the end of 1943 construction will be down to almost the 1941 level. A relatively small part-about $\$ 500,000,000$ worth-of the projects now planned will not be finished until 1944.

Construction Behind Schedule

Past experience, however, leads to doubt that the war industrial facilities, now under construction, will progress in exact accordance with present schedules. Incleed, it may be assumed that their completion will be delayed from two to three months, on the average. The main reason for probable delays and for the relatively late scheduled completion dates for a number of projects is the inability of the machinery industries, as now organized, to produce certain critical types of machinery and equipment as rapidly as the plants are completed. Bottlenecks exist among some machine tools (particularly the larger and more specialized types) and among certain criti-
cal types of production equipment. Additional demands for machinery, particularly certain machine tools, may also be expected if radical changes are made in models of armaments, since such changes often require extensive retooling. Both British and German experience indicate that this demand for equipment is considerable and it would appear that there has not yet been sufficient allowance for it in our programs.

Any failure to reach 1943 objectives will be due to shortages of material and labor and to shortcomings in scheduling and organization of production, rather than to insufficiency of plant and equipment.

Concerning possible retarding effects on immediate war production caused by
economy. But if the situation changes so that more attention may be devoted to the postwar future, reliable information should be available to reduce any controversial issues to conformity with firm data rather than with guesses and conjectures that necessarily permit bias and prejudice.

Secondly, such information would be needed immediately, if, as it seems reasonable to suggest, greater attention were to be paid henceforth in the procurement and other aspects of war production to the impact of war orders and war output upon the structure of the econony. The recent pressure for the awarding of a larger share of war contracts to smaller firms is a clear indication of the greater attention that should be paid to

POISON GAS: Steel cylinders filled with chemicals for making poison gas, ready for shipment at an eastern arsenal, back up the President's warning that this country is well prepared to retaliate in kind if the Axis resort to this type of warfare. NEA photo
concern over the postwar economic future, the report suggested three lines of positive action to counteract such effects.

First and most obvious step is to obtain adequate data on the effect of war production developments upon the structure of the economy. Needed is reliable information on the distribution of new capacity and resources among various industries, reg:ons, and firms of different sizes; this information should serve to reveal the extent to which additions to resources are of the type that constitute economic power in the immediate postwar future. So long as maximizing war production was the only overwhelming concem, we were naturally not greatly interested in costs in terms of effects upon the enduring structure of
what might be called the "structural" aspects of war production costs. While the military production task ahead is still huge, there seems, nevertheless, to be more room in the immediate future than there was during 1942, for a more careful weighing of alternatives in placing contracts; and in seeing to it that the distortion of the peacetime structure of the economy be as small as feasible.

Finally, it is time to consider plans for the eventual postwar future, not so much in the sense of discussing sweeping alternatives that may never confront us, but in the sense of specific planning as to how the transition from the war to the peacetime economy is to be made.

Numerous questions arise when such specific plaming is considered: How to
proceed with the necessary reductions in the output of mumitions; what disposition to make of the government inverutories of peace-type products; what arrangements should be made for gradual cancellation of outstandiug contracts: what policy is to be adopted for gos-erument-owned industrial facilities erected during war time; and a host of similar important policy decisions. The price of umprepareduess for war has been rather high; the costs of umpreparedness for orderly transition from war to pence may not be dramatic, but can be extremely high nevertheless.

First Quarter Output 19\% of Year's Goal

Only 10 per cent of scheduled munitions production for 19.43 was completed in the first three months of the year, leaving 81 per cent to be concentrated in the remaning three quarters, according to C. E. Wilson, vice chaiman, WPB, who addressed 830 members and guests of the Eemmonic Club of Detroit, June 11.

He added that sehedules for 1904 call for a 24 per cent incratse over 19.13, and a monthly average woll nbove the peak month of the eurrent year, which will be in the last chamber.

He cautioned against interpreting reduction in certain ordazmee soledules as indicating that the war production demand was tapering, poointing out that this cuthack was mainly due to diminished demands from hussia for timks. He said production of high-explosive and armor-piereing shot was scheduled to increase, the airplane tomage this year will be three times the figure of 1042 and next year will be twice the weight produced this year.

In numbers, output this year is expected to reach 100,000 , but the trite measure of production is weight, mot munbers, because of the steadily rising proportion of heavy bombers and cargo transports, and the declining percentage of light training planes, now down to about 25 per cent of the total.

Cargo ship production likewise is scheduled for tremendous boosts-from 1,000,000 deadweight tons in 1941 anel $8,000,000$ tons in 1942 to $9,000,000$ tons in only six monthes of 1913, and 20,000 ,000 tons planned for the full year.

Mr. Wilson confirmed the fact to STEEL. that E. C. Kanzler is now serving with a small staff as special assistint to Donald Nelson in Washington, concentrating on the problems of reconverting industry to peacetime production. He also indicated the steel sumply picture now is much more favorable, particularly in respect to alloy types.

Unionists Win High WPB Posts; Congress Passes Antistrike Bill

Compromise Smith-Connally measure lacks balance. Wording of some sections ambiguous. Prohibits political campaign contributions by organized labor groups

ORGANIZED labor last week won a long fight for more representation in the policy making of the War Production Board and the War Manpower Commission when two of its representatives were appointed vice chairmen of the WPB and one a vice chairman of the WMC.

Clinton S. Golden, assistant to Philip Murray, president of the CIO and of the United Steelworkers of America, was made WPB vice chairman for manpower liaison; simultaneously, WMC Chairman Paul V. McNutt appointed Mr. Golden WMC vice chairman to serve as adviser on all labor relations aspects of the commission's program.

Joseph B. Keenan, former secretary of the Chicago Federation of Labor-AFL, was named WPB vice chairman for labor production.

Both Mr. Golden and Mr. Keenan will report directly to Charles E. Wilson, WPB executive vice chairman.

Elevation of the labor leaders climaxed a year-long campaign by the unions to obtain a louder voice in the direction of the war program.

It also followed closely the passage by Congress of the Smith-Comally antistrike bill, designed to prevent stoppages in war industries. Prompted largely by the open defiance of the government by John L. Lewis, president of the United Mine Workers, in permitting the coal miners to strike causing a loss of 11,000 ,000 tons of vitally needed fuel, the antistrike bill is a hastily assembled hodgepodge. It contains some good and some doubtful features.
The bill formally endows the President with the power to seize any war plant in which a strike occurs whether or not the employer shares any responsibility for the stoppage. A strike does not become illegal until the plant has been seized. Thus a strike cannot be made illegal merely on the ground that a mion has struck against an order of the government; a government agency must be operating the plant.

Effect of this may be to punish an employer for conditions beyond his control. Actually, workers may strike to force the government to take over a plant.

Heart of the bill is contained in Section 6 (a). This makes it unlawful, when a plant has been scized, for a person "to
coerce, instigate, induce, conspire with or encourage" any other person to strike. It also prohibits directing or guiding such ann interruption and payment of strike, unemployment or other benefits to those participating in the stoppage.
However, the section continues: "No individual shall be deemed to have violated the provisions of this section by reason of his having ceased work or having refused to continue to work or to accept employment."

Under the ambiguous wording of the section, it would be possible to jail and fine, for example, a minister for approving a strike while the strikers themselves could go unpunished because they only "ceased to work."
Penalty for violators of the section is
a fine of not more than $\$ 5000$, a year's imprisomment, or both.

The final bill also contains a modified version of the 30 -day cooling off period and a secret ballot under government auspices. Many observers consider this provision confusing in a bill which is designed to make all wartime strikes illegal.

One of the provisions most generally approved is that prohibiting labor unions from making contributions to political campaign funds. This stemmed from the half-million dollar "Ioan" by John L. Lewis' union to the party in power during the 1936 campaign.

Permit Pay Raises To Comply with State Law

Wage or salary increases made in compliance with a state minimum wage law or order may be made effective when issued by the War Labor Board or one of its agencies, even though prices or rates may be affected. The WLB said it had been informed by Fred M. Vinson, director of economic stabilization, that he would permit such increases when they had been approved by WLB.

SOLDIERS MINE COAL: Threatened with an acute power shortage through uncertainty of the United States coal supply, the Canadian government granted three month furloughs to soldiers who formerly were miners that they might return to their old jobs. Above, Private McDonald works in a Nova Scotia mine. NEA photo

STEEL INGOT PRODUCTION BY MONTHS

	Jan.	Feb.	March
1943	7,424	6,826	7,670
1942	7,112	6,512	7,392
1941	6,922	6,230	7,124
1943.	5,194		
1942	4,983	4,500	5,055
1941.	4,666	4,206	4,702

May production gains slightly

 over preceding month. Operations average 96.2 per centPIG iron production in May increased slightly, according to the American Iron and Steel Institute's monthly report.

Although bettering the showing of the preceding month, May production did not equal the record-breaking total reported for March when $5,314,201$ tons were turned out.

Total output is reported at $5,177,728$ tons, made up of $5,123,703$ tons of pig iron and 54,025 tons of ferromanganese and spiegeleisen.

In April output totaled 5,035,178 net tons. May operations averaged 96.2 per cent. Operations for the year average 97.3 per cent.

For the first five months of this year output aggregates $25,503,858$ tons.

Small Ore Producers
 Seek Price Relief

Prices on file with the Office of Price Administration, Basic Materials Division, show the larger ore producers such as Pickands Mather \& Co., Cleveland-Cliffs Iron Co., and Butler Bros., are obtaining $\$ 4.45$ as a base rate.

United States Steel Corp.'s Oliver Mining Co. gets $\$ 3.35$ for ore from new mines and $\$ 4.12$ from its older workings. Smaller companies have had prices on file as low as $\$ 4$ but are submitting petitions for increases based on higher costs. Some relief has been granted.

Net Tons, 000 omitted

April 7,374	May 7,545	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
7,122	7,382	7,022	7,148	7,233	7.067			
6,754	7,044	6,792	6,812	6,997	6,811	7,584	7,184 6,860	7,303 7150
5,035 PIG IRON PRODUCTION 5,178								
4.896	5,073	4,935	5,051	5,009	4,937			
4,340	4,596	4,551	4,766	4,784	4,721	4,236	5,083	5,201

DISTRICT STEEL RATES

Percentage of Ingot Capacity Engaged in Leading Districts

Week Ended		Same Week	
June 19	Change	1942	19.41
97.5	$+7.5$	95.5	99
97	None	103.5	102
94	-1	96	97
97	None	95	98
90	+4	81.5	88
94.5	-0.5	92	95
90.5	None	90.5	90.5
100	+5	95	95
95	None	100	94
93	+5	95	95
95	+2	95.5	98
87	+4	95	94
98.5	+2	-99	-99

- Computed on bases of steelmaking capacity as of these dates.

Great Lakes Stack Sets

 New World Record in MayA new world's record for monthly production of pig iron by a single stack was set in May when " B " stack of Great Lakes Steel Corp., Detroit, made 49,705 net tons, a daily average of 1603 tons. This was 30 per cent above the stack's officially rated capacity and 1200 tons greater than the prior record of 48,505 tons set in March.

May tonnage of the Great Lakes stack was more than 6000 tons over its best previous output, 43,478 tons, in March, 1942.

This is the seventh record set since January, 1942, when the long-standing mark of 41,701 tons set by Gary No. 10 stack of Carnegic-Illinois Steel Corp. in July, 1931, was broken by Carrie No. 3 stack of Carnegie-Illinois Steel Corp. at Rankin, Pa.

Ingot Rate 981 $\frac{1}{2} \%$

Renewed coke supply restores high production. Increases in many districts

PRODUCTION of open-hearth, bessemer and clectric furnace ingots last week advanced 2 points to $981 / 2$ per cent of capacity, regaining the recession of the prior week as coke supply was renewed. The Pittsburgh district regained $71 / 2$ points of the $81 / 2$ points lost the week before and small increases at other points balanced the former decline. Six districts advanced, two declined and four were unchanged. A year ago and two years ago operations were at 99 per cent, based on capacity as of those dates.

Youngstown Sheet \& Tube Co. has blown out a stack at Hubbard, O., for relining, serving its customers from its Campbell, O., furnaces.

Five Months Ship Output Nearly Double All 1942

Maritime Commission announces that during May American shipyards delivered into service 175 new ships, totaling approximately $1,782,000 \mathrm{~s}$ dead weight tons. This brings the total to date in 1943 to 711 ships, only 35 units less than total production for all of 1942.

Two large ore carriers were completed in May by Great Lakes Engineering Works, River Rouge, Mich. They are 621 feet long with capacity of 14,500 tons of iron ore. Both have been placed in the ore trade at once.

Management Men Told Slowest Producer Sets War Goods' Pace

Production records show American industry has made excellent use of "know how" but all companies not operating on same level of efficiency. . . Batt re-elected chairman of association

THE WHOLE job of war production is geared to the speed of the slowest producer, Alvin E. Dodd, president, Ameri can Management Association, said at a meeting of the organization in Hotel Pennsylvania, New York, last week.

He declared that while production records show American companies have made excellent use of their "management know how" all concerns were not operating on the same level of efficiency.
"It is this slow producer who needs our help for if he is a maker of one part of a weapon, that weapon only gets to the firing line with the speed he operates.
'On the other hand, from the standpoint of sheer production, slow producers or not, we have reached the highest point of efficiency in our history. At the busi-
ness of producing the materials of war we are no longer tyros. We know now that American industry is equal to supplying the most insatiable customer it has ever known. Without being complacent, we know we can continue to deliver."

Dodd Re-elected President

William L. Batt, vice chairman of the War Production Board and president, SKF Industries Inc., Philadelphia, was re-elected chairman of the association and Mr. Dodd was re-named president.

Other officers include Thomas Roy James, president, American Type Founders Inc., chairman of the executive committee; Harold V. Coes, Ford, Bacon \& Davis Inc., finance committee chairman; James L. Madden, Metropolitan Life In-
surance Co., treasurer, and Henry J. Howlett, secretary.

New vice presidents elected by the association and their divisions are: Henry E. Niles, Baltimore Life Insurance Co., office management; L. A. Appley, Vick Chemical Co., personnel; Erwin H. Schell, Massachusetts Institute of Technology, production; Don G. Mitchell, Sylvania Electric Products Inc., marketing; H. C. Perry, Heywood-Wakefield Co., finance and accounts; William F. Lund, United States Rubber Co., insurance, and Joseph Givner, Real Silk Hosiery Mills Ine., packaging.

New directors are W. E. Tarr, Studebaker Corp., South Bend, Ind.; L. S. Morrow, Factory Management and Maintenance, New York; Leonard J. Raymond, Dickie-Raymond Inc.; J. H. Macleed, Finde \& Dauch Paper Co., Sandusky, O.; Reginald Fleming, Marsh \& McLennan Inc.; Charles R. Hook Jr., Rustless Iron \& Steel Corp., Baltimore; Lee H. Hill, Allis-Chalmers Mfg. Co., Milwaukee; George H. Williamson, Williamson Candy Co., Brooklyn, N. Y.; Charles P. McCormick, McCormick \& Co., and Roscoe Seybold, Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa.

"To Each Other"-New U. S. Steel Film Previewed by Industrialists

NOTABLE group of business and industrial leadors attended, June 16, the New York preview of "To Each Other," a motion picture depicting the wartime expansion program of the United States Steel Corp., as narrated by Walter Brennan, 3 -time winner of the annual award of the Motion Picture Academy of Arts and Sciences for outstanding dramatic performances.

Held at the Waldorf Astoria, following a luncheon in the main ball room, the preview was witnessed by 800 .

Irving S. Olds, chairman, United States Steel Corp., in brief introductory remarks, said the achievements portrayed in the picture were typical of the "swell job of production" being done by American industry under wartime pressure.

The film, in 35 minutes, gives a res-
ume of additions to existing plants of the steel corporation, conversion of old plants to war production and the progress being made in construction of complete new plants in all parts of the country. Mandfacturing scenes illustrate the manufacture of armor plate, ship plate, bomb casings, shell forgings, pipe, tubing, wire rope and other wire products.

War Production Board Revises Official CMP Class B List

REVISED official CMP Class B Product List, including a Class A Civilian Type End Product List, has been issued by the War Production Board. The list supersedes the carlier Class B Product List published Dec. 21, 1942.

In some instances, with respect to spedeific products within each classification, definitions and interpretations have been listed. These are intended to clarify the scope of product groups to aid manufacturers in elassifying their products.
Regional offices of WPB have been provided with definitive lists in order that manufacturers who have questions as to whether or not their product is included in one of the broad categories in the Class B List may refer their problem to the regional office.

Civilian Type End Products are those for the manufacture of which procuring claimant agencies hold contracts with prime consumers, as defined in CMP, and for which the agencies may elect to allot controlled materials directly. In such a case, the claimant agency will notify the prime consumer to submit applications directly to it on form CMP4A for controlled materials required to cover the agency's authorized production schedules. In the absence of such notification from a procuring claimant agency, prime, consumers manufacturing the specified products must apply for controlled materials and authorized production schedules to WPB on form CMP-4B.

Farm Machinery Production Quotas Are Established

Producers of farm machinery and equipment are now permitted by the War Production Board to manufacture any item for domestic sale up to the percentage indicated for that item in schedule A of a new order, L-257. These quota percentages are expressed in terms of total net weight of the item manufactured by him during either 1940 or 1941, whichever was higher.
Effective July l, the new order cuts short the life of its predecessor, L-170, by three months; however, it permits uncompleted quotas under L-170 to be produced in addition to the new quotas.

The percentages for production quotas of specific items named in schedule A attached to L-257 are worked out on the basis of the advance over-all authorization of 900,000 tons of carbon steel made to the industry for the period July 1, 1943,
to June 30,1944 , as recently announced.
The new order brackets a large number of items in schedule A to allow producers maximum flexibility on planning their production. It also provides that production of any item of farm machinery and equipment and repair parts must be in accordance with production schedules approved by WPB. Restrictions have been removed on manufacture of repair parts for domestic sale, except to extent that scheclules for production and delivery of such repair parts have approval of WPB.

A supplementary order, L-257-a, covering export of farm machinery and equipment, also has been issued. The two orders together establish following controls over exports: (1) Set up net weight quotas for each country or group of countries served by Lend-Lease and Board of Economic Varfare. Exports for Canada, except those of repair parts and attachments, continue to be on a unit basis; (2) require producers to schedule production and shipment in accordance with schedules approved by WPB; (3) shipments to two specified groups of comtries are subject to special approval by WPB.

Ruling Aids Warehouses in Replenishing Steel Stocks

Steel warehonses distributing merchant trade products can now replace on an equal basis stocks sold on any type of authorized controlled material order. This is provided in order M-21-b-2 and the action was taken because warehouses selling material on orders bearing claimant agency allotment numbers had an advantage in replacing stocks over warehouses whose trade was largely in MRO and other types of authorized controllecl material orders.

WPB Requires Tentative Booking of Steel Orders

A steel producer who is unable to accept an order for delivery in a particular month because the schedule for that month is full is required to book the order tentatively as early as possible in the succeeding or second month following.
This procedure is outlined in direction No. 18 to CMP regulation No. 1.
Previously, the regulation required a producer to refuse an order for a particular month after his schedule for that
month had been filled, even though there was room on the schedule for the first or second month thereafter. In a number of cases, by the time the order had again been placed for a later month, the producer's schedules were again filled.

Bolt and Nut Price Order Revised by OPA

Types of bolts, muts, screws and rivets covered by maximun price regulation No. 147 have been redefined by the Oflice of Price Administration. The redefining draws a more specific line of demarkation between special machinecl-from-bar items covered by the regulittion from other serew machine products for which maximum prices are established in regulation No. 136.

Additional changes in price regulation No. 147 follow: (I) Provides that ceilings for machined-from-bar special bolts, nuts, screws and rivets may be computed on basis of costs as of March 31, 1942, plus customary mark-up on that date; (2) requires manufacturers to ro compute maximum prices of all special products, filing pricing data with OPA whenever a new higher price for a special product is charged.

Cancellation of Certain Ratings Ordered by WPB

Preference ratings applied to orders for speeified items, which were not filled by June 4 must be cancelled if they are not in conformity with restrictions imposed on that date under priorities regulation No. 3, War Production Board ammounces. The groups of items are specified in lists A, B, and C of the regulation. The lists specify products to which various restrictions are applicable.

Replacement Orders Given Delivery Preference

Replacement orders of copper and steel, rejected because of non-conformity to specifications, take precedence over all other orders, War Production Board rules. Replacement orders of aluminum must be filled in preference to all other orders not in actual production on day replacement order is received.

Secondary Aluminum Ingot Price Reduced One Cent

Maximum base price of secondary aluminum ingot has been reduced one cent per pound by Office of Price Administration to promote a continued normal flow of aluminum scrap to smelters. The reduction brings price to 14.00 c a pound.

Big Joke?

NEWSPAPER gossip to the effect John L. Lewis is going to take over American Federation of Labor control and kick out Bill Green when he returns to AFL with his United Mine Workers in August or September is regarded as a big joke by old-time labor leaders affiliated with the AFL. No labor leaders, of course, will interfere with Mr. Lewis' authority over his UMW. But the control of the AFL is another matter. The AFL is controlled by its executive council, and sitting on this council are a number of labor leaders who are just as tough and smart as Lewis even though they are not so highly publicized. Recalling past experience, one of these oldtimers could remember only three motions made by "John" that were adopted by the council. It further is pointed out that Bill Green has no power of control and that he is merely a "front" man on. a salary basis, and that his AFL organization is a small one. He has no power to drive out "racketeers," as has been demanded by Westbrook Pegler on so many occasions. Incidentally, one of these oldtimers in the AFL estimates that some 85 per cent of the AFL unions are "good" unions and that some 15 per cent are of the "racketcering" type.

Postwar Prediction

One of the country's most highly regarded students of organized labor makes this prediction: When we run into widespread unemployment over a brief period in converting our war industries back to peacetime production the American Federation of Labor unions will prove co-operative. The AFL unions in most cases have had a long history; they understand depressions and have been known to take voluntary cuts in pay. He believes CIO unions will become impatient and complicate an already difficult situation by making all sorts of demands.

Alaska Beckons

Experience during the war is serving to throw Alaska-in fact a vast Northwestern area-into focus for intensive postwar development. The war has indicated that we face grave dangers to our national security if we fail to increase our population in that area to a much larger number than the 80,000 people who lived there prior to the war, and of whom 30,000 are native Indians and Eskimos. Now that Canada has completed a series of airports that link Fairbanks, Alaska, and Edmonton, Alberta, and now that the first Alaskan
highway is in use, other roads are being built in Alaska. Alaska is rich in resources of timber, coal, fur, fish, game, gold, silver, radium, lead, copper, oil. Vegetables grow well and grain is grown as far north as Dawson. There is a vast amount of undeveloped water power.
A group of officials working under the auspices of the permanent CanadianAmerican Economic Committee has un-

PUSH SPONGE IRON

The Bureau of Mines has made some progress in "sponge iron" research but much ground remains to be covered. Most progress has been made at the Boulder City, Nev., pilot plant where several hundred tons of bencficiated product were obtained by removing 97 to 98 per cent of the oxygen content of the iron ore treated. The problem there now is how to control the product so as to provide material for charge into different types of melting units, as blast furnaces, open-hearth furnaces and electric furnaces. The beneficiated product was high in sulphur and phosphorus.

At its Binghamton, N. Y., and Canton, O., pilot plants, where the heating units are abandoned brick kilns, good results were obtained in producing a reduced ore suitable evidently for charging into electric furnaces. At the Longview, Tex., pilot plant results were somewhat less desirable, trouble being encountered in reducing the oxygen content sufficiently. The most important pilot plant, that at Laramie, Wyo., has been practically completed and soon will be placed in operation.
dertaken a study to determine the most desirable postwar use of the Great Northwest, including North British Columbia, the Yukon and Alaska. President Roosevelt has authorized a special study of the Alaskan highway by the National Parks Service. The postwar period will open many opportunities in the Northwest.

"Slick" Paper Problem

A paper difficulty now threatening publishers of books and periodicals also applies to all manufacturers who issue catalogs printed on "slick" paper. This paper cannot be made without using starch-and starch manufacturers are faced with early shutdowns.

"Court of Appeals"

Press Division of the Office of Censorship, Room 500, Apex Building, Sixth and Pennsylvania avenue, N.W., Washington, which has the final voice in ruling on what may be published under the wartime censorship code, has got well past its organizing period and functions rapidly and smoothly in passing on editorial and advertising copy that is submitted for review. It has on call many technical experts in the Office of Scientific Research and Development and elsewhere to whom it refers, when necessary, material that cuts across the code. The Press Division has succeeded in liberalizing censorship to a marked degree and in numerous cases has been able to persuade one or another of the armed services to reverse their positions and approve for publication material to which they previously had objected. Publishers and advertisers to an increasing extent are using the Press Division as a "court of appeals" when they rum into censorship trouble with any of the government agencies-and in most cases the results are favorable.

Hit 'em with Data

Now in formulation is an easement in the censorship ban on figures representing our production of various military items. In the early days when we were mobilizing for all-out war production, and when output was woefully inadequate, this ban had considerable justification. Feeling is growing that production now has reached so huge a volume that definite figures should be revealed, not only to encourage our own people, but to discourage the enemy. The feeling is that our enemies will get more jittery if they are informed about the weight of the ammunition that is to be unloaded upon them. Some key men still believe in a policy of giving out no information whatever since it might be of value to the Axis.

Stagger Vacations

Office of Defense Transportation advocates staggering vacations over the full 12-month period the remainder of the war. It finds that about 25 per cent of present passenger travel comes under the head of "pleasure" traveling. This does not include vacation travel. Incidentally, the growing number of complaints that ODT is receiving from the traveling public scems to indicate that the wave of "understanding" is coming to an end and that the public is getting more cranky over the conditions surrounding railroad passenger travel.

B-28 Bomber Makes Maiden Flight on RailMaster Crane.

MASSIVE loads set up no problem when American MonoRail RailMaster Cranes are on the job. They are not limited to bridging a single span but, with their special interlocking and twin bridge designs, they can cover any area with any type of handling equipment.

American MonoRail Systems, too, are adaptable to many handling problems, offering versatile application without lengthy engineering or costly adjustment. Let an American MonoRail Engineer explain the advantages of overhead handling without any obligation to you.

THEAMERICANMONORAILCO.
 13102 Athens Avenue

Views Change on Construction of Projects as Pensacola Dam Fails

Witness tells House committee "full" reservoirs needed to generate power, "empty" ones to store water. . . Relationship of two activities appears less close than originally thought

AMONG big developments after the war will be the execution over a period of years of a program to develop our rivers and streams. This program includes provisions for flood control, power generation and prevention of soil erosion.
Many millions of dollars already have been appropriated by Congress for this purpose, particularly so that employment may be furnished on a sizable scale on projects in the immediate postwar period.

A good many manufacturers who expect to take a part in the execution of this program will be interested to learn about a change that is taking place in the thinking about flood control and power generation. Hitherto the two activities have been associated. The change in thinking was reflected at last week's hearings by the House Flood Control Committee when one witness pointed out that "full" reservoirs are needed to generate power whereas "empty" reservoirs are needed for storing flood water.

This point was brought out during an attempt to ascertain why the new Pensacola dam in Oklahoma failed to halt the fury of the two disastrous floods which occurred in quick succession in the Grand River valley in May of this year.

Plan Multiple Dam System

The committee originally took the view of the Army Engineer Corps, and pushed it through Congress, that the Pensacola dam, 755 feet above sea level at the top of the gates, should be operated at a water level of 735 feet, thus holding the remaining 20 feet in reserve to absorb flood waters. It was brought out at last week's hearings that the Pensacola dam was intended to be one of a multiple system of three dams, with the others to be located at Markham's Ferry and Ft. Gibson.

Work was started on the Pensacola dam after the War Production Board had approved on its essentiality for the war and it was completed under license of the Federal Power Commission and since has been operated by the Federal Works Agency. The license was granted only after the Army Engineer Corps, on protest, consented to permit it to be operated with a water level of 745 feet.

The Federal Power Commission, in taking its position, considered the project only in the light of its importance as an aclditional source of power for the war effort and it insisted that the dam must be operated at as close to capacity as it considered safe and practical.
The Federal Works Agency pointed out that its gross income from the sale of power now stands at about $\$ 1,700,000$ annually whereas operating at a 735 foot level would bring in no more than $\$ 800,000$, which would mean something less than half as much power.

Simplifications Conserving Metal

Important savings also made in manpower; Major programs to be in effect by yearend

ALL possible simplifications which make a major contribution to the war progran will have been substantially completed by the end of 1943, according to Howard Connley, director,

Simplification Branch, War Production Board.

So far tremendons savings in critical materials have been effected by WPB orders covering simplification and curtailment of consumer and industrial items. The following savings are typical: 600,000 tons of steel, 17,000 tons of copper, 35,000 pounds of solder and 8000 pounds of tungstetn.

Equally significant are the less tangible results in savings of manpower hours, reduction of imentory and increased production. By eliminating 75 per cent of the variety in manufacturers' lines, not only was production increased substantially in bottleneck industries, but also an estimated 15 million man-hours were released for work on more vital war items.

The 1943 simplification program will save thousands of carloads of transportation space, millions of square feet of factory warehouse space, and will add to the country's strockpile of raw materials by reducing inventory requirements some 25 per cent, and will augment the total productive capacity of the nation's machines up to 20 per cent, according to Mr. Coonley.

In the matter of steel alone, it is predicted that the 1943 simplification program will accomplish the equivalent of building new furnaces to produce some five million tons of steel.

The year before the war came to America, the goods which went into the home in the form of clothing, housefurnishings and equipment, food and transportation items consumed very sizable quantities of metal resources of the coun-

POWER AND FLOOD CONTROL: Aerial view of the Grand River dam at Vanita, Okla., constructed by the federal government at a cost of $\$ 22,750,000$. NEA photo
try. Specifically, in proportion to total year's output, they used: Aluminum, 22 per cent; copper, 19 per cent; brass, 19 per cent; zinc, 20 per cent; tin, 23 per cent; steel, 30 per cent; nickel, 16 per cent and chromium, 15 per cent.

Prohibition of manufacture of certain articles, or limiting the amount of critical materials used in producing them, and simplification are conserving domestic supplies for essential purposes.

Simplification of battery manufacture, for instance, has saved almost 16 million pounds of secondary lead, over 17 million pounds of primary lead and over a million and a quarter pounds of secondary antimony. Reduction of types of auto chains from 12 to 3 and of sizes from 22 to 4 has sawed 21,000 tons of carbon steel and small quantities of molybdemum, copper, zine and tin.

Seek More Steel

WPB pressing industry for additional million tons output in third quarter

UNCONFIRMED story is going the rounds in Washington that the anned services and other agencies are not satisfied with the steel allocation made them recently by the War Production Board for third quarter, and they are said to be asking allocation of another million tons of steel.

This million tons is for carbon and alloy steel ingots, and just how WPB will be able to give the services this additional million tons has not yet been worked out.

It is reported, however, that among other things WPB hopes under the steel expansion program to get seven new open-hearth furnaces in operation in time for this third quarter production. It is possible also under the CMP plan that some of the allocations proposed for the third quarter will be changed and it is felt definitely that the services in some way or other will get this million tons additional which they request.

The reported WPB program includes:

1. Getting new projects into production ahead of schedule. Specifically this includes seven new projects confined to open hearths and blast furnaces.
2. Converting some of the former alloy steel facilities to carbon steel production.
3. More efficient distribution of excessive inventories of steel.
4. A drive to induce management to get more production for existing facilities.

Exhibit Provides Metal Industries Postwar Paper Competition Preview

ANYONE whose livelihood depends upon the production and sale of metals and metal products must, despite the heat and humidity that currently pervade the capital city, feel a chill when examining an exhibition to be found at Sixth strect and Independence avenue, S. W.

There, in the Fisheries building, the Pulp and Paper Division of the War Production Board has assembled an impressive collection of paper and paper products now in use as successful substitutes for metals and metal products.

Paper, it becomes apparent in this exhibit, is going to be an active competitor of the metals and it is clear that the metals will have a difficult time in the postwar cra in regaining some of their former uses. The pulp and paper industry has exercised great ingenuity in developing treatments by which paper may be able to satisfy a wide range of requirements. Laminated, and impregmated with various plasties, it becomes waterproof, gas proof and flame proof, and takes on such physical characteristics as high tensile strength-up to 16,000 pounds per square inch, elasticity, corrosion resistance and so on.

One group of products in the exhibit embraces angles, channels, sheets, plates, bars, twine, pipe and other sections. These are present in a wide range of sizes and in a variety of physicals suitable for different types of applications. As an example, one particular laminated impregnated paper board is covered with aluminum foil on both sides. Other items in the exhibit were manufactured from these materials or were produced by molding or pressing. Some of the products shown compare unfavorably in appearance with their metal predecessors. On the other hand the majority look good and should have no difficulty in winning consumer acceptance. Quite a few of the items shown are for military use. Most, however, fall into the category of civilian goods and undoubtedly they will continue to be made and offered on the market after the war.

The story is hest revealed by a list of the products shown, as follows:

[^0]Chick lroooder;
Smitary poultry Ieveder;
Automolite radios speaker housing:
Air tramport foud thess nad food tray cowers:
Textile spools;
Ice cream frevaer sams:
Egy crates;
Desk trays;
Hot air dacts for domestic hemting systoms: pans for baking pies sund cakes;
Automolite engine ail filter cartrialges:
Gasoline, lubriciting oil, tolaceo, lood, drus, paint and many other containers, large and small, and of many different designs:

Kitchen garbuge dispuenser;
Conduit of all sizes;
Theflectors for clectric lighta:
Towed holders;
Bushel busket;
Full-size ash and garbuge cans;
Barrels and drums;
"Stop" and other traffic nigns;
Gaskets and packing;
Prils ame buekets;
Weatherproof hox barcl:
Two types of binx surinus.
Handes for kuives, mothetes athe other tools:
protector for magnet of radio lond spruker:
Flashlight cases;
Clock facings and gear backs:
Filters, replucing brass filters:
File indientors;
"Wire" paper chas, stamped out of stitl jatuer board.

The exhibit is mot intended tos be a complete one. It is sulficiently representative, however, to indicate a sontece of competition that is of considerable courecern from a metals point of view.

Recommends Use of Hot Finished Steel Tubing

Substitution of hot-finished for colkdrawn seamless steel tubing is reconmended by the Seamless Steel Tube Institute as a means of meeting expanding war demands. Recommendation covers the larger sizes with heavier walls.

Uses for which hot-finished cath be substituted for cold-drawn tubing include those in which the tubing is machined or in which appearance may be temporarily sacrificed.

While facilities of tube mills have been substantially increased, output is still short of demand. The substitution plan recommerdation will case this situation through the climination of the time lost in amealing and heat treating.

Order Against Wire Rope Trade Withdrawn by FTC

The Wire Rope and Strand Manufac:turers' Association Inc. received a complete dismissal by the Federal Trade Commission recently of an order to cease and desist previensly entered by the comsmission on Dec. 8, 1942.

PRIORITIES-ALLOCATIONS-PRICES

Weekly summaries of orders and regulations, together with official interpretations and directives, issued by War Production Board and Office of Price Administration

INSTRUCTIONS

INCREASED FLEXIBILITY in priority rating system has been provided by restoration of the AA-2 bracket between the AA-1 and AA-2X hands. AA-1 bracket is reserved for pressing military production and for certain other essential needs. WPB officials say that requests for up-rating of prowrams will be reduced to a minimum and point out that under the Controlled Materials Plan only as much material is allotted as is available at the mills. A manufacturer obtaining an allotment number is assured delivery of copper, steel and aluminum, regardless of preference ratings, provided his orclers are placed with mills within the time limits specified by CMP regulations.
NO DOWN-RATING of maintenance, repair and operating supply orders is required, WPB says, if such orders were placed prior to May 16, where an industry was reclassified to a lower rating by the amendment of CMP regulation No. 5 on May 14. The regulation assigns a blanket preference rating of AA-1 to MRO orders for activities listed on Schedule I; AA-2 to those listed on Scheclule II; and AA-5 rating to any business not listed. A business prevously listed on Schedule I and shifted by the May 14 amendment to Schedule II must use the AA-2 rating, and if elimimated from either schedule, must use the AA-5 rating on orders placed after May 16.

NERATING: A neference rating assigned with an advance allotment of controlled materials used on orders placed prior to May 16 does not have to be changed even though a rating assigned with the third ruarter allotwent may be lower. Down-rationg in such cases is not compulsory, Generally, when a preference rating assigned for the purchase of certain materials has been elranged, uncompleted orders are rerated accorlingly, effective the date the rating was changed.

ALLOTMENT NUMBERS: Manufacturers of Class A and Class B oroducts must continue to identify all rated orders for iroduction materials with allotment mumer assigned to the related production schedule under CMP procedure, even thourh allotment numbers on rated orders placed after June 30 will have no up-rating effect.

STEEL STITCHING WIRE used by printers and publishers for purposes defined in order $\mathrm{L}-291$ is an operating supply which comes under provisions of CMP regulation No. 5. This holds true whether or not the user of the wire has customarily carried it as an operating supply, according to normal accounting procedure.
WATER WELL DRILLERS may apply for allotments of controlled materials on form CMP-4B in anoounts necessary to carry on their business. The provision limits the definition of water-well drilling in this ease to the drilling and casing of water wells, including the laying of pipe underground to bring the water to the surface and the laying of surface pipe for pump connections.
ALLOY STEEL producers have been notified that forms WPB-2933 and WPB-293\& are now to be filed in place of the form previously designated PD-391. The new forms must be used for filing August melting schedules and for supplementary schedules thereafter.
STAINLESS STEEL producers may now set up on their melt schedules items to be melted for inventory. This material would be held by the mill in semi-finished form and processed to fill orders of 2000 lb . or less hawing CMP allotment numbers. Producers should submit to the Alloy Steel Branch, Steel Division, WPB, a list of present finished and semi-finished inventory. The following should be indicated
with respect to each item: (1) AISI tspe numleer; (2) quantity of each size and shape; (3) whether the item is workable, slow-moving or one for which there is no apparent demand; (4) date of melt and heat number; (5) Complete chemistry if the item is off analysis from the intended AISI type number. The last two need not be reported on finished inventory:

STEEL FOUNDHIES which clesire a load directive permitting them to reserve a certain percentage of their monthly productive capacity for emergency MRO supplies under CMP should write the Steel Division, referring to CMPL-286. This action was taken because many foundries are experiencing difficulty in scheduling emergency MRO orders to mect industrial and service requirements.

INDEX OF ORDER REVISIONS
Subject Designation
Aluminum Rivets . . CMP No. 1
Automotive Truck Bodies... L-253
Hills of Materials CMP No. 1
Guards, Mousings on Drives L-193
MRO Supplies CMP No. 5a
Machine Tools E-6
Steel Cases L-250
Steel Order Hookings CMP No. 1
Steel Oser-rollings CMP No. I
Suppliers L-63
Price Regulations
Ferrochromium, Chromium . . No. 407
Ferrosilicon, Silicon No. 405
Forgings No. 351

CMP REGULATIONS

hills of materials: Request for Complete Bills of Materials must, in all cases, originate with a Claimant Agency. WPB rules that a consumer must not request a Complete Bill of Materials from his supplier unless he, in turn, has been requested to furnish his customer with one. Applications for allotments must not include controlled materini requirements for manufacture of Class B components, even though a Complete Bill of Materials has been requested. (CMP Reg. No. 1)
ALUMINUM RIVETS: Inventory restrictions of CMP regulation No. 2 shall not apply during the balance of this year, WPI rules, to the acceptance of deliveries of aluminum rivets acquired for use in the production of aircraft or aircraft components. (CMP Reg. No. 2)

MRO SUPPLIES: Preference ratings assigned to governmental and institutional activities for MRO have been changed to the following: AA-I for activities listed on Schedule I; AA-2 for Schedule II; and AA-5 for activities not listed in either schedule. CMP 5A ratings and certification can not be used without WPB authorization. (CMP Reg. 5A)

STEEL ORDER BOOKINGS: A steel producer who is umable to accept an order for delivery in a particular month because his schedule for that month is full must book the order tentatively as early as possible in succeeding or second month following. Upon notification of month for which the order has been tentatively accepted, the customer furnishes producer with written confimation within seven days. (CMP Reg. No. 1)

STEEL OVER-ROLLINGS: Steel producers are now permitted to replace shipments from
mill stocks of over-rollings within 60 days from date of shipment. Title to the stock must not hitve been transferred to a steel consumer or to an warehouse, and quantity of steel maintained must not exceerl average inventory of the product between Jan. 1 and May 1, 1943. These provisions slo not apply to producerowned strecks of steel products held on consignment by a distributor as these stoeks are subject to CMP regulation No. 4 and general preierence orders M-21-b-1 and M-21-1-2. (CMP Reg. No. 1)

L ORDERS

GUARDS OR HOUSINGS ON DRIVES: Steel may he used now in manufactire of guards or housings on mechanical power transmission drives. (L-193)
STEEL CASES OR CABINETS: Order L-250 prohibits use of steel cases or cabinets for various kinds of electric controllers, except for use in an atmosplere which is corrosive or which contains metal particles, dust or fumes or for usc out of doors without other protection. Cases of the general purpose or semi-dust types do not come within exemptions to the prohibition, regardless of use to which purchaser alleges he wishes to put them. (L-250)
AUTOMOTIVE TRUCK BODIES: Shect or Strip Steel in itle or excess inventories may be used for production of certain parts of automotive truck bodies, provided: the metal was in inventory on June 10, or was reported to Steel Recovery Corp., Pittshurgh. The metal also may be sheet or strip mill rejects, seconds, or wasters. The metal may be used only to cover (not to constitute) doors and frames exclusive of platforms and roofs. Use of iron and steel is limited in repairing or altering bodies of auttomotive trucks and trailers to an amount of new stecl not exceeding 30 per cent of that used in the original botly. (L-253)

E ORDERS

MACHINE TOOLS: Producers of wrenches. pliers, screwdrivers and other mechanics' hand service tools must set aside from 20 to 25 per cent of monthly output for commercial distributors. This allocation is contingent upon the manufacturer having on hand that proportion of orders based upon P1)-1X (VPB-547) applications for priority assistance. If proportion is smaller, the additional production will be delivered to other buyers, predominately military. On the other hand, distributors will receive additional tools if orders other than PD-1X orders are less than 75 per cent of month's output. AA-4 rating is required after June 14 for orders placed on hand tool manufacturers. Orders in excess of specified amounts may be placed only upon WPB authorization. Application for anthorization is made on WPB1319 (formerly PD-556). (E-6)

PRICE REGULATIONS

FERROSILICON AND SILICON: Specific prices have been estahlished, effective July 1, which in general maintain levels prevailing letween Oct. 1 and Oct. 15. 1941. Megulation also incorporates new simplified zone system for pricing ferrosilicon and silicon metal. Details are given on page 142. (No. 405)

FERROCHROMIUM AND CHROMIUM: Specific dollars-and-cents maxinum prices have been established for ferrochromium and chromium, effective July 1. Prices are established for all existing types and grades of the materials sold in the Eastern zone, and premiums are provided which may he added on sales in Central and Western zones. Details of the order are published on page 142. (No. 407)
FERROUS FORGINGS: OPA has ruled that ferrous forgings, whether made from materials supplied by the producer or in part or entirely by his customer, are subject to provisions of price regulation No. 351. Pole line hardware and construction line specialties, which include such articles as anchor rods, guy fittings and steel crossarm pins, are added to items exclucled from coverage of the regulation. Bolts, nuts, screws and rivets as defined in regulation No 147 are also excluded. (No. 351)

PD and UF Forms Renumbered in "WPB" Series

STANDARDIZATION of War Production Board data requests into one series only, "WPB," was started last month as reported in the June 14 issue of Steel. All "PD" and "UF" forms and letters will be canceled as such, and will be reissued in the "WPB" series, as will also some of the "CMP" forms and letters.
"WPBI" will be prefix for all nondata request forms while authorization and allocation forms will bear "GA" prefix.
As forms and letters numbers are changed to the "WPB" series, they will indicate the former series number. Forms will carry both numbers for four months and those with
the old number only may be used until the expiration date
For purposes of control, all War Production Board forms have heretofore been assigned a number in the "WPB" series, even though many were designated by other numbers in the "PD" series or other prefix; and the "control number" was used internally for record purposes only. Under the new plan, the so-called control number becomes the official form number.
The conversion table below lists the present series of forms and letters used widely in the metalworking industries and the numbers they will carry in the "WPII" series.

Olk PD	New WP13	Old PD	New WIP	Old PD	New WP13	Old PD	New WPB	Old PD	New WP13	Ofd PD	New WP13
Number											
1 A .	541	200 B	1548	420 930	612.	. .1385	758 ..	N. 2021	900.10	Nimbrer 3000.10
1 A Suppl	1524	200C	2570	421	894	614	1383	759	2063	900.11	3000.11
1 X	547	205	372	424	967	615	1.175	760	20.40	900.12	3000.12
3A	542	209A ${ }^{\text {. }}$	2912	425A	1034	6151] 174	761	2117	(10).1.4	3000.1 .1
4X	2034	20918	2913	425 B	1035	616	2948	762	1765	900.15	3000.15
4X-1	1739	213	412	426	940	61613	2949	765	2163	900.20	3000.20
$4{ }^{4}$	2029	215	460	428	867	616C	2950	767	2179	900.30	3000.30
42	2167	222A	1039	429	868	620	1414	774	2232	901	. 3001
9 C	478	222 B	1040	430	869	628	1545	776	2278	001.10	3001.10
9 D	1261	222 C	1041	440	949	630	1768	782	2188	901.13	3001.13
9 E	2870	226	2914	441	945	637A	2226	786	2289	001.20	3001.20
26M	309	22613	2915	442	983	6371	1835	787	2290	901.21	3001.21
27	2871	228	1907	443	2032	638	1509	788	2413	902	. 3002
27A	2872	235	482	447	938	638A	1529	789	2272	902.06	3002.010
2713	2873	236	465	450	1010	639	1510	792	2317	902.16	3002.16
29 30	1020 1788	249	202 2919	451	1011	6.41	1565	79.1	2330	502.17	3002.17
30 31	1788 1302	254	2919 2920	452	1012	65.4	1627	303	2401	902.18	3002.18
32	247	272	554	464	1017	658	1628	805	2.1	002.21	3002.21
40A	701	283	620	466	829	682	1490	806	2420	902.22 902.23	3002.22 3002.23
40 M	702	285	576	470	1161	665	1790	807	2421	902.24	3002.24
49	76	293	2921	474	865	667	1646	810	2446	902.25	3002.25
53B	689	293A	2922	480	108.5	668	1612	812	2345	902.26	3002.26
54	225	294	2923	483	1076	669	1313	813	2952	902.27	3002.27
59	2953	294A.	2924	484	1033	670	1313A	814	2472	902.28	$3002,28$
59A	2954	295	604	487	1097	671	1313 H	815	2403	002.29	3002.29
59 B	2955	298	2925	488	1102	672	1709	817	2935	902.31	3002.31
591)	2956 2957	299	2926 646	489	1098	673	1707	822	2477	902.32	3002.32
59F	2957	300 303 A	646	494	1103 1122	674	1682	826	2433	902.33	3002.33
596	2959	303B	623	497	1123	676	1685	828	2474	902.40	02.37
62	410	304	622	499	1066	677	. 1708	829	2277	902.41	3002.41
66 A	95	307	616	500	1477	680	1655	830	2449	903	. .3003
69	900	308	838	50013	2242	681	1593	831	2448	,	,
70	901	310	663	501	977	685	1696	833	2524		
71	. 902	312	599	502	978	688	1688	834	2507	Old UF	New WPI
71 B	1649	314	1714	504	1147	695	906	835	2461	Number	Number
71 C	1648	321	717	512	1110A	697	18859	839	2545	J	1127
711	2885	322	718	513	1110 B	698	1804	84.3	2.578	B	2567
72	1242	325	1276	514	1110 C	700	1722	844	2585	11	2519
76	2888	326	2929	516	1157	701	1767	845	2494	12	1131
76C	2887	326A	2930	519	1182	704	1791	846	2582	13	327
$761)$	1279	333	1436	520	1158	706	1787	847	2861	14	198
83	2888	336	82.5	530	1005	707	1770	848	2583	15	3.31
83 E	2889	338	675	532	1200	708	2060	850	25.91	17	26.56
83F	2890	344	759	537	1132	711	1673	851	2881	18	2652
836	2891	351	707	542	1212	712	1732	852	2191	19	20.53
33I	2892	356	660	543	1305	716	2001	85.3	2639	20	2655
94A:		359	763	543A	1306	717	1887	854	2664	21	28.34
Sched.	2893	360	765	545	1290	718	1937	8.55	2663	22	2641
Sched.	2894	376	749	54.5A	1784	722	1843	85.9	2522	23	26443
Sched.	2895	377	751	$545 B$	2154	72.3	1867	860	2682	24	2642
76	1747	378	750	5.56	1319	725	1751	864	2665	25	2645
79	180	380	2931	5.59	1228	727	2148	86.5	2531	26	2710
99A	971	381	2932	560	1229	728	1906	868	2.532	27	2.330
998	970	38.5	1262	562	1237	729	1905	867	2683	29	1132
105	2896	387	813	566	1263	731	1915	888	2679	30	2774
105A	2897	389	805	567	1293	73.3	1839	869	2680	31	2717
107	167	391	2933	568	2026	734	1837	870	2613		
114	165	391 A	861	571	2941	73.5	1838	871	2650		
123	2898	394	939	572	29.42	738	1801	874	2525	Old CMP	New WPB
123C	2899	395	831	574	1344	740	1808	875	29.36	Number	Number
123 D	2900	399	86.3	575	1383	741	1953	88.5	2782	7	2254
124	1713	400A	2937	578	1679	742	1820	886	2781	8	26.33
138	929	400 B	2938	581	2943	7-1.3	19.93	887	2780	11	2444
139	928	400 C	2939	582	2944	744	1823	888	2759	12	2476
148	1990	40.4	841	58.5	13.59	745	1806	900	3000	13	2365
149	2903	408	837	586	1360	746	1805	900.91	300001	19	2530
150	2904	411	1236	592	1402	747	2002	900.02	30000.02	20	2.49
151	2905	412A	1180	595	1447	748	1888	900.03	3000.013	21	25.38
156 A	1450	413	824	597	2071	749	1889	$900.0-1$	30100.64	22	2881
169	652	414	748	599	1334	750	2006	900.05	3000.05	2.3	2.808
169A	653	415	931	600	2945	751	1894	900.06	3000.08	2.4	28585
174	336	416	975	601	29.48	552	2022	900.07	3000.07	25	2714
192	427	418	924	602	2947	754	1902	900.08	30100.08	26	2787
200	. 817	419	92.3	603	1940	755	2020	900.09	30150.099	27	27957

Information supplied by an Industrial Publication

Tool breakage-even in what was once considered "normal amounts" is something to be avoided by any means today. Replacement supplies are hard to get, and the possibility of tool shortages is too serious to permit temporizing.

In many cases breakage can probably be considerably reduced by educating operators in the proper use of cutting tools. In some instances, redesign of the tool may be the remedy.

Redesign was the solution in the case of countersink drill bits used in an aircraft factory. Bits
having cylindrical pilots often broke when the center line of the bit was at an angle with that of the drilled hole. Run out in the spindle could easily cause such deflection.

The remedy suggested by an employee consisted of equipping bits with a spherical, or ball shaped, pilot. Such a pilot has the effect of making bits self aligning. Deflection through a relatively wide angle cannot concentrate enough stress at the neck of the pilot to cause breakage, because the end of the bit is not rigidly held.

Abstract

General Motors research chief not impressed by some of the claims being made for the future of the light metals. . . Discounts idea steel should come out the loser in the fight for postwar markets. . . Aluminum is a challenge

DETROIT

STEEL airplanes in production before aluminum automobiles-that's the prediction of C. F. Kettering, General Motors Research chief, who took a squint at the future for the benefit of a few hundred Society of Automotive Engineers' members meeting here recently. He says he is not impressed by some of the claims being made for the future of the light metals in the transportation field, and is willing to lay a little bet that there will be a steel airplane ready before anyone has successfully redesigned the present steel automobile into aluminum and magnesium.

When the aluminum adherents point out to "Boss Ket" that their metal is only one-third the specific weight of steel, he comes right back, "But steel is five times stronger than aluminum."
The GM research wizard, however, adds that he is getting a little tired of hearing steel company representatives cry about the danger of losing their postwar markets to the light metals. They say that research is being pushed so actively in the light metals field that steel is bound to come out the loser. When Kettering asked them why there was not a similar amount of research being pushed in the sted industry, they answered with the statement to the effect that "there is unthing much more to be learned about stecl." This, Ket maintains, is utterly ridiculous, and only serves to emphasize a point he continually makes-that research has only begun to scratch the surface in finding answers to things that have baffled men for ages, and that the future of industry lies in a full understanding of what research cem and camot do.

Regards Research as Insurance

Research men, says Kettering, are just "professional amateurs," men who know how to say intelligently that they know very little about a lot. What after all, he asks, is a factor of safety but an admission by the research man that only this percentage of his figures is correct? A factor of safety of 5 to 1 means the research man or designer is betting his figures are only 20 per cent correct!

One of the fundamental values which a mechanized war brings to industry is the acceleration of knowledge and research into various types of new ma-
terials. The war-imposed shifts in material utilization camot help being reHected in a better understanding of material usage in the postwar period.
Kettering likens research to an insurance policy taken out by management to prevent a company from being outdistanced by its competitors by virtue of the latters enhanced technical knowledge. It is impossible to budget research like an operating department, for the smart research natn never knows how much work he is going to have to do in a given period of time. Nevertheless, many managements attempt to budget their research departments, a policy which has the end effect of stultifying progress and leads to such proposals as the Kilgore bill now in Washington which would nationalize and centralize all industrial research. Kettering believes
this is a dangerous plan, but cautions that umless research activity is given more recognition by competitive husiness, federalization may result.

It is difficult to report a Kettering address, even though it is always intensely interesting to hear. He is given to conversational rambling and to the reuse of homely examples (why is the grass green? why can you see through a pane of glass? what makes your hands warm when you rub them together?) often to the point where the GM press relations men say that if you wamt a copy of a Kettering speech they can give it to you in the form of a reprinted talk which he gave umpteen months ago at Siwash University:

"Bats Equipped With Radar"

One of his latest "gags" is the story about Harvard scientists discovering that the reason a bat could fly in the dark was because bats are equipped with a "natural radar" or means to project radio frequency waves from their throats, waves which will rebound from obstructions and resonate on the animals ear

TRUCKS FOR RUSSIA: Military transports for the Red Army are assembled beside railroad tracks in the open desert in Iran while a special plant is constructed for the Army Ordnance Department. The plant is one of three, two in Iran and one in India, constructed by General Motors for assembling several makes of military vehicles, including Chevrolet and GMC trucks

MIRRORS of MOTORDOM

drums, warning them to steer a different course. Kettering salys he can't understand why the patent office would grant a patent on the radar principle when bats used it for centuries!

The two-day S.A.E. meeting was comcerned primarily with discussions of war materiel, as reported briefly in Stew. for June 14. An important contribution was a paper by Lieut. Col. R. J. Icks of the Tank-Automotive Center on various types of tank engines. Col. Icks pointed out that the development of engines for tanks has been almost entirely a matter of adaptation of engines originally built for other uses and that even now the military does not feel it has a satisfactory tank engine. Briefly what is desired is an air-cooled engine with high enough horsenower-to-weight ratio to overcome losses due to accessories and power train, capable of utilizing a wicle range of fuels and equipped with an air cleaner which really cleans.
Losses from rated horsepower to horsepower delivered at drive sprockets in tank engines are astonishing. For example, a 400 -horsepower engine in a medium tank operating at about 16 miles per hour speed in fourth gear will lose 75 horsepower to air cleaners, mufflers, fan and accessories; and another 120 horsepower to the power train, with the result that only about half of the rated horsepower is delivered to the drive sprockets.

Greater Air Flow Required

A major obstacle to the use of liquidcooled engines in combat vehicles is the greater air flow required and the consequent difficulty involved in their cooling. The reason for this, as explained by Col. Icks, is that whereas the fins of aircooled engine cylinders in operation rarely will drop below the perfectly satisfactory temperature of 325 clegrees Fahr., 225 degrees Fahr. is usually considered the practical limit for radiator temperature in the cooling system of a liquid-cooled engine. Assuming operation at an ambient temperature of 125 degrees, the liquid-cooled engine permits only a 100 -degree temperature differential while the air-cooled engine has 225 degree range in which to work. Additional weight involved in lifuid cooling is another argument against its use.

Overall requirements of the ideal tank engine as worked out by a special engine committee of the T-A-C include 650 gross horsepower; horizontal or V-type engine; air cooling; injection system cupable of handling diesel fucl, gasoline or other available fuels; and 1000 hours operation without major overhaul. Discussions finally simmered down to two engines developing 450 and 650 net
brake horsepower and gross brake horsepower, respectively, at governed speed of 2500 r.p.m., the engines to be in-line Vees, one 8 -cylinder and the other 12 cylinder.

Engineers have been speculating about the possibilities of using the diesel. electric drive principle for tanks, perhaps starting with a single cliesel engine. driving a generator which supplies power for two 450 -horsepower motors. This would eliminate some of the difficulties involved in the present power train, although there would still be something like a 15 per cont loss through both the generator and the motors, leaving about

POSTWAR AUTOMOBILE REPRINTS AVAILABLE

The special report to industry on The Postwar Automobile, which appeared as a series of four articles in Mirrors of Motordom, April 12-May 3, 1943, has been reprinted in a 16 -page booklet. Copies now are available free of charge to regular subscribers through STEEL's Readers Service Department, Penton building, Cleveland, Ohio. A charge of 5 cents each will be made for quantities of ten or more.

72 per cent of the diesel power at the sprockets. The smoothness and hightorque features of this type of drive, exemplified on diesel-electric locomotives, suggest interesting possibilities for combat vehicles, but they may have to be held off until the next war, if you can place any credence in the even-money betting that the European war will be over by Dec. 1 .

Concerned over recent cancellations of government contracts totaling up in the millions of dollars, the automotive inclustry has rushed the organization of a committee to study immediately problems involved in termination of military contracts. The committee is headed by I. H. Marks, Packard Mótor Car Co., veteran purchasing department executive. Other members include K. J. Ammerman, Borg-Warner Corp.; I. B. Baboock, Yellow Truck \& Coach; Albert Braclley, General Motors; E. R. Breech, Bendix Aviation; W. P. Brown, Briggs Mfg.; D. J. Buell, Buell Die \& Machine; C. C. Carlton, Motor Wheel; E. A. Clark, Budd Wheel; B. E. Hutchinson, Chrysler; M. L. Peale, Repulblic Aviation, and R. I. Roberge, Ford Motor Co.

What the committee probably will do is to draw up a standard form or pro-
cedural contract and attempt to persuade the armed services to have it incorporated in present contracts for production items, to the end that a suclden cancellation, occasioned by either a shift in military strategy or discovery of oversupply, will have less serious impact on the contractor.
Reports that Nash-Kelvinator will build helicopters under license from United Aircraft Corp, have proved correct, the Sikorsky Aircraft division of UAC announcing that an army design is alrcady being built at its plant in Bridgeport, Conn., which Nash will tool up to build in quantity. The model is a closed-cabin type with landing bags instead of wheels. From pictures it appears to be a steel tubular franework covered with the conventional coated aircraft fabric, not calling for any great amount of manufacturing ingenuity in its construction, although maturally parts and fittings would have to be machined to precise limits in keeping with standard aircraft technique.

Announce Frelicopter Plans

What many felt was just an attempt to capitalize on the news of the Nash contract was the amouncement by Pemnsylvania Greyhound bus lines of application filed with the Civil Aeronautics Board to operate 60,000 miles of helicopter air lines, with a Detroit-Flint route being the first "guinea pig" run. Bus company officials state the helicopter now being built for the Army will carry seven passengers and their luggage, while a design on which Sikorsky is working will carry 14 passengers. The plan is to use the 7 -passenger models on the Flint rum, charging a fare of about 4 cents a mile, or $\$ 2.20$ one way.
This is all just dandy, except that there are no helicopters ready yot, and the one or two models thus far built are in no sense fully tested equipment. Furthermore it is just idle fancy to figure a helicopter could be run between Detroit and Flint on a profitable basis for $\$ 15.20$ per trip.

Ammual meeting of the Automotive Council for War Production was held last Thursday in Detroit and drew attendance of close to 600 at morning, luncheon and afternoon mectings, all of which were of a closed nature. Three of the most urgent problems in industry today-procurement, manpower and materials control-made up the agenda for discussion by industry leaders and Washington officials, headed by Maj.Gen. Lucius D. Clay, director of material, General Stalf Corps, Army Service Forces; J. A. Krug, program vice chairman of WPB, and L. A. Appley, executive director of the WMC.

Deep Drawn Bomber Parts are Turned out Quickly at the FORD Willow Run Plant on

Pioular Mamber	Milise	Bhandity	Dicc 85
Premurs Copacily (tont-nc)	150	300	11
Prening Suffocest (L.R:EBB)	$105^{\prime \prime} \times 388^{\prime \prime}$	$120^{\prime \prime} 160^{\prime \prime}$	$90^{\prime \prime}$
	8114"	\%\%	
Ram Travel (Mos) ${ }^{\text {a }}$	42 L	211	10

The dependablo long lifo H HYDRO:POWER Radial Pump pon every HPM Hydraulic Press.

FASTRAVERSE

 PRESSES with New 6 Point Variable Pressure Blankholder RingEmploying the HPM Closed Circuit system of shockless operalion, these lorse HPM Fastraverse Blankholder Presses with yariable 6 point pressure ram resistance on the periphery of the blankholder ring are especially adaptable to the deep drawing of large aircroff parts. The pressure of each of the six blankholder rams can be adiusted individually and independently. Separare hydroulic die custion fitied into. the press bed coin also be used as an ejector, when destied The two slides locked together give single action service increasing the maximum pres sure capacity to 1000 tons. Investigale thit versatile press for both present and future deep drawing requirements.
THE HYDRHULC PRESS MFE GOMPASIY Mount Cilead, Ohio, U. S. A.
Distict Sales Oilices: Now Yoik, Syrocure, Datroll and Chiegge. Repretarlellives in Primajol Cities:

Ford Willow Run plant beginning to get encouraging results from application of automobile production methods to construction of B-24 bombers. . . Output of center wing section upped 700 per cent in past eight months

APPLICATION of automobile manefacturing methods to construction of B-24 bombers at the Ford Willow Rum plant is beginning to bear fruit. Figures on the center wing section reveal that in the last eight months production has increased 700 per cent. Decrease in man-hours required to build the section is 92.6 per cent, while decrease in cycle time, or actual construction time, is 94 per cent.

Center wing section of the B-24 is the "heart and lungs" of the ship. On it hangs the fuselage, fore and aft, and underneath are supported the bomb racks with their loads. In addition, the 55foot center section carrics the bulk of the plane's gasoline, the two 56 -inch wheels of the retractable landing gear, and four 1250 -horsepower engines.
The Ford idea from the start has been ti) break down the various operations needed to complete assemblies of the center section, separating them into many subassemblies which make it possible to use more workers, who can be employed at different locations. As an example, the skin and stringers are joined together on separate fixtures before they are taken by crane direct to the fixture holding the embryo center wing, where they are attached as complete units to the spars and bulkheads which are the supporting framework.

This operation was termed impractical
when Ford engineers proposed it. It was not believed that large sections of skin could be made to fit accurately unless drilling and riveting took place on the same major fixture.
Ford experience with interchangeable parts gave the engineers confidence that if the preliminary operations were located properly and fitted with relation to those following, the resulting parts should fit wherever they happened to reach their assembly.
Actual figures on the new method of skin and stringer assembly show a 300
per cent increase in production and 62 per cent decrease in man-hours.
Two recent developments in the center wing section subassemblies further illustrate how the production rate is being increased and tremendous man-hour and time savings achieved. An automatic spar riveter is riveting 1300 rivets in 37 minutes with three operations, replacing an operation which occupied the time of five workers and consumed $2 \frac{1}{2}$ hours. In this one subassembly department alone, the man-hour time for a completed spar has been reduced from 116 to 24.
An ingenious multiple head drill now drills 716 holes in a skin splice automatically in eight minutes with one man operating it. This replaces a two-man operation which took 45 minutes.

Value of Plane Output This Year To Total Fourth of War Budget

VALUE of cargo and combat airplane production of the aviation industry this year will reach a total of over twenty billions of dollars, a fourth of the war budget for the year and almost a seventh of the estimated national income. The staggering total contrasts sharply with the $\$ 3,700,000,000$ worth of automobiles and trucks produced by the motor industry in its best year, 1941, representing $51 / 2$ times the auto industry's peak production.

These facts were salient points in a
recently issued Report on American Air Transport, from the Office of War Information.

The report reviews the picture of wartime air transport by the Army's Air Transport Command and the Nary's Air Transport Service, which together are now averaging several hundred transAtlantic flights a week alone, with the number steadily increasing. About the bulkiest objects now being moved by air are airplane engines; these and plane parts of all kinds form frequent air car-

Before and after: Illustration at left showing old method of drilling skin splice, using a jib with drill heads traveling on veerhead :ail. At right is shown the new multiple head drill, making sir holes it a time in the splice which rolls underneath it. The latter rystem drills 716 holes in one splice in 8 minutes, against the former method requiring two operators 45 minutes to do the same work

FOR BEADED EXTRUSIONS

FOR ROLLED SECTIONS

Speed Noat Systers
Rapid changes in aircraft designs are promptly met with new SPEED NUTS engineered to fit the needs of the hour. The Speed Nut principle lends itself to a flexibility of design possessed by no other fastening.

For example: To meet the need for better and faster fastenings on beaded extrusions, up comes SPEED NUT No. 6320. No more holes to drill-no structural weakening. Just snap it on and turn the screw. For attaching conduit, piping, and wire harnesses, it's a record breaker! Again, with the present rapid conversion to rolled sections, SPEED NUT No. 6337 is doing the same record job on "Z" stringers. Hundreds of different Speed Nut designs already have saved millions of man-hours. Calling out SPEED NUTS for MORE of your non-structural attachments will do the same for you. First step is to send us your details today.

TINNERMAN PRODUCTS, INC.
2039 Fulton Road, Cleveland, Ohio
IN CANADA: Wallace Barnes Co., Lid., Hamilion, Ontario IN ENGLAND: Simmonds Aerocessories, Lłd., London

Automatic riveting machine developed by Ford Willow Run engineers for riveting the main spar assembly for the center wing section. Manual riveting formerly took five operators $21 / 2$ hours. The machine requires only three opcrators, two of them rivet loaders, and the job of placing 1300 rivets is accomplished in 37 minutes
goes at present, with speed being the keynote.
Examining American cargo-carrying planes, none of which has been expressly designed for this purpose-all of them converted airliners or bombers-the OWI points out that converted B-24 bombers, for example, in their cargo version, the C-87, are so constructed as to require loads to be carried in a concentrated location. Lack of available space for loading within balance limitations both fore and aft of the center of gravity greatly limit their cargo load capacity, and the weights and balance officers who supervise their loading have to exercise great care in clistributing weight, particularly toward the tail.

Similarly, present models of flying boats are particularly ill-suited to the carrying of bulky cargo due to the small size of their hatches and the division of the plane into compartments by bulkheads which for structural reasons cannot be removed.

Furthermore, says the OWI, engine choice, fuel capacity, landing speed and other specifications of all war cargo planes are aimed at general all-round utility rather designed for the greatest economical efficiency for a particular route.

The 434 airliners being operated commercially within and beyond the continental limits of the United States by the airlines in 1941 have been reduced to 256 as of Jan. 1, with 166 flying do-
mestically only. The rest have been taken over by the armed forces, camouflaged in olive drab or blue, and are being "forced" a little more than when in arline passenger service-not only because they are carrying heavier payloads but because with normal fuel consumption an airplane covered with paint loses up to 12 miles an hour of the speed it flew when its bright aluminum surface was kept waxed and polished.

ATC Operates 90,000 -Mile Line

Air cargo is prepared for ATC transport by the Air Service Command, which repacks manufacturers' goods so as to conserve weight and space, marks each object with a color indicating clestination and holds cargo ready for loading in warchouses on ATC flying fields. The number of such fields scattered all over the globe and the number of planes operated by the ATC cannot be disclosed, but the fleet is operating over more than 90,000 miles of transport routes. To points within the Western Hemisphere, the ATC is flying better than 500 tons of cargo each week, and if the war continues into 1944 its routes will probably be ten times as long as the combined routes of all the world's prewar airlines.

With regard to current production of cargo transport planes, it can be said that more than one-fourth of all twinengine and 4 -engine aircraft manufactured in the year 1943 will be transports.

Looking ahead, the OWI sces planes in the 100,000 -pound and 120,000 -pound class flying in guantity by 1945 . (Consolidated Vultee now has a wood mockup of a 400,000 -pound plane at its Ft. Worth, Tex., plant under study).

Some of the clans being made for the future of air transport fail to take cognizance of the avialability and expense of fuel, both limiting factors as long as airplanes Jly on gasoline. (M. W. Smith of Westinghouse, sees great possibilities for future airplanes powered by gas turbines, as a result of innprovements in high-temperature blading alloys used in turbosuperchargers). Too, original investment costs are still relatively high (a 4-engine bomber costs the service $\$ 450$,000 to $\$ 500,000$) and present planes are not ideally adapted to carry heavy freight long distances. Flights technically possible are often, as a matter of actual performance, still out of the question because of want of navigation facilities along the way or lack of adequate airports and repair shops, as well as refueling depots. Gasoline is heavy. On long-range flights, the weight of a plane's fucl may well surpass the weight of its engines. And if a plane flies to an area which is without oil resources, fuel for its return Aight must be sent there somehow.

Twenty Types Under Test

The OWI concludes its 29-page report with a catalog of American transport aircraft, describing in essential detail over 20 types of planes now being built, flight tested or in the development stage for transport service. Those being flight tested include the Curtiss Caravan, C-76, a short-route cargo carricr with plywood (50,000 square feet) skin and two engines; the Lockheed Constellation, C-69, with four 2200-horsepower engines and pressurized cabin for flight over 20,000 feet at cruising speed of 255 miles per hour (now reported grounded by the Army at Burbank because of motor trouble); and the Martin Mars, Nary JRM-1, a four-engine 140,000 pound flying boat with wing span of 200 feet.

Not yet ready for flight test are the Waco C-62, a two engine all-wood plane of 33,500 pounds gross weight; the Fairchild C-82 part-metal 50,000-pound plane with a rear door that can be lowered as a ramp; and the fabulous Kaiser-Hughes HK-1 flying boat, with eight engines and 400,000 -pound gross weight, all plywood construction. The latter is claimed to have 320 -foot wing spread and 218 foot length, and some sections are reported now under static testing.

The OWI report mentions nothing, of course, about new military plane models nearing production, but there are literally dozens of these in various stages of. clevelopment in a number of plants.

PROBLEM: There's a lot of oil going over those gears above, yet when it gets between the gear teeth shock loads will squeeze it to microscopic thinness. The result is boundary lubrication. That means a special oil is needed to prevent film rupture and resulting excessive wear of the gear teeth.

ANSWER: Gargoyle Compounds were develANWHIlli oped to lubricate circulation and bathoiled high-duty gears. Their tenacious film bonds with the metal to resist the rubbing and squeezing action of extremely heavy loads. As a result friction and wear are minimized.
NOTE: With this lubricant no special products are needed for "run in."

"WE'RE DOING IT RIGHT NOW"

Abstract

Buffalo tool company lays solid foundations for peacetime activities without diminishing all-out war production. Advertising and selling program based on "delivery when war ends"

By JOSEPH J. CHENEY President
Spriesch Tool \& Mfg. Co. Inc. Buffalo

THE HISTORY of American industry includes at least four previous chapters wherein war crises have forced us to forge our plowshares into swords. In each case, however, following relatively bricf use (four years was the longest) of the swords to bring victory, we quickly have converted these swords back again into ligger and better plowshares which have made peacetime America the most envied country in the world.

As a practical American manufacturer who for the duration has gone all out for war production as the one and only way to hasten victory and a lasting peace, I predict that when-after this war-we convert from mass production of weapons to mass production of civilian goods, we will launch an industrial era which will dwarl in scope and in social implications anything that ever before existed anywhere. If I dich't have that faith, I certainly would not be hopeful for the future of America and for the troubled world which is going to depend upon America for its physical and spiritual reconstruction after the rule of the diseredited dictators comes to an end.

Victory Is Primary Job

While iudustry's primary job still is to win this global war, and while it still is altogether too early to divert one iota of its productive effort or equipment from that job, it definitely is not too early at this stage of the struggle to divert some of the power of many of the most capable minds of this mation to the laying of practical plans (and I don't mean dreams) for the postwar era. That is why I now take a little of my time and of your time to say a good word for the project now actively being pushed by the Committee for Economic Development under the chairmanship of Panl G. Holfinam, president of the Studebaker Corp.

This committee predicates its activities on the belief that ". . in the prriod following this war, the American people will expect these able and willing to work to have jols with ample opportunities for advancement, and that business therefore should set as its goal maxi-
mum productivity and employment." To me that seems to be just another way of saying, "God helps those who help themselves," which certainly sounds sensible after a number of years of dreams and promises of "effortless prosperity." I never had any of that kind of prosperity.

When I find that men like Paul Hoffman, William Benton, W. L. Clayton, Chester C. Davis, Ralph E. Flanders, M. B. Folsom, Clarence Francis, Lou Holland, Charles R. Hook, Jay C. Hormel, Rengan Houston, Eric A. Jolmston, Harrison Jones, Charles F. Kettering, Thomas B. McCabe, Reuben B. Robertson, Harry Scherman, John Stuart ancl Carroll L. Wilson, share my humble belief in the efficacy of hard work based on careful planning, I no longer feel alone as a rugged iuclividualist.
now appears to be wimning the war.
I for one am doing something about this right now-as a matter of fact I have been doing something about it for quite a while. What I am doing I believe ties right in with what Paul Hoffman's committee wants all of us to do.

The organization of which I share the managerial, engineering and manufacturing responsibilities came into being 20 years ago as a tool shop. Following some tough going in the early 1930s, we got it firmly on its feet as a company which could perfect and tool up metal products for clients and manufacture them in small or large quantities as desired. We got into war work before the actual crisis, through development of a successful bomb release shackle. This in turn led to the taking on of big orders for nutomatic bomb release racks, aircraft hardware, an aircraft camnon feed device and other and various materiel which cannot be discussed in detail until the war is over.

In converting 100 per cent to war work, we added greatly to our space and equipment and have trained numerous
> "Everybody talks about it but nobody does anything about it," said Mark Twain of the weather. Now that postwar planning rivals weather as a topic of conjecture, what actually is being done about it?

> Through widespread interviews, STEEL is seeking practical ideas on this subject, which we hope will serve to stimulate and guide our readers in their own planning.

> One of the first of these interviews inspired this article by a man who always takes his coat off and gets right down to fundamentals of any prob-lem-whether it be of design, tool engineering, production, manpower, or economics. We present Joseph J. Cheney of Buffalo on postwar planning.

-THE EDITORS

My own understanding of the primary object of the Committee for Economic Development is simply this. It is to get as many responsible industrialists and industrial organizations as possible lined up as soon as possible in the clirection of constructive independent postwar plaming so that hasty and unsound schemes will not be rushed through at the eleventh or twelfth hour. To my way of thinking, the response to this call will cletermine right here and now whether the ending of the war will bring private enterprise to a predicament comparable to "Custer's last stand," or whether private enterprise then goes on t1) win the peace as successfully as it
new workers-inclucling many womenwho are good and loyal members of our closely knit industrial family. These facilities and this organization represent assets which deserve postwar preservation and which can-I am convinced-be preserved more or less intact if we make good use of our concentrated wartime engincering, tooling and manufacturing experience when we reconvert from wartime to peacetime activities. In other words, we are not going to let down our associates (including those in the service) or sell Americ: short by ducking out when the war ends.

We are going to stay in business and withont in any way interfering with our

JOSEPH J. CHENEY
"I predict that when-after this war-we comeen from mass monhethon of weapons to mass production of civilian gnools, we will launch m" huluserlul ers which will dwarf in scope and in social implicutsons anylhing thas elecs before exlsted amymitiere"
all-out war efforts, we already have laid solid foundations for our peacetime activities. We have done that through an active and successful campaign designed to line up a substantial list of companies which car make good use-immediately after the war-of our then freed desigriing and engincering talent, our broad tool engineering and manufacturing experience, our vision of postwar developments which surely will come ont of the war, and our facilities, either is build pilot models of new proxlucts or to go into mass production on them.
Bear in mind that we are not advertising and selling any of these outright services "for delivery" as of the present time. We are advertising and selling them only as and when the war erids and we are released from our first line obligations to Cncle Sam and his allies. However, we do stand ready right now to do anything within oner porwer to frrether the general canse of prostwar planning if it will help Panl ffoffman and fis committee.
Those wion dos sot take protwar planning serinusly-and they are tow manyseem to have the idea that recrnversiom in peacetime production will simply
metn starting up again righ where thoy left off wher the war begetn. They seem to think of the war as at mere in-terruption-following which their olel lives and old activities will be: resmoned as they were, just as wast the case folllowing the awakening in H. G. Wells' book, The Days of the Comet.

Wise Plaming Rerfuired

Any marnifacturer who delindes himself with the jeler that all he: will have to do after the war is to dust off his jige and fiatures and get going again om that moxer of whatever if was hee was making in $1939,1340,1951$ or even ir: 1942, is destined tis find himself in juse abrous the same predicament as fin Vars Winkle when he wariders into the posewar market placen of the world with his pradruct-regardiass of whether if bee a machine tool, agricaltural machine, at ancomobile os whatront. Not only will he find that his revived produc:t is downright ansicgutied, bust he further will find that his mannfacturing inethorls are in, far hehind the time that he is completeIy oust of the picture. That will be irue of angone who attempts to orwert back.

Take, for example itgriculturat ma-
dhimens. Whon the war is mot sometal millioms of gomes men will sume back
 lemsixe calneathon lit the uptration, semfoing and advombages of medithisma of the highest tyme incholfage motomalion whiches despged to meguththe romgh lermith, as well iss atrente. Will these been

 frame anel cast irom homiong ilesignis

They are gotige to demmene simbethlos! "Sot better than lhat. cumbencent with

 destelvelighs. with combermble seals, cin:

 bright real *ind smean patal. Finthormore, Hay ary somes lo know how for lake care of sulels eympermen med will
 Lo be dene will the "Angle fros" varlety

The phace of the teot engimeer to this
 importate ins it bow is cimel has bect but the whrtinus shluthon, ant the experiente Which mulfits sutu has ours hase gutheel in this war is ilestlomel to phas "lise pient men only in bualing un for pistwir

 product desiguer, umbaloges savings cann

 monieal prectuction bote ulses theromghi llo dimination uf moneceessary parts.

Fous instatsece; if we catt shew yout how subere parts caen be miele for do beet. for work thatir 12 peirts in a movires meetarnism, yeris sate the enst of therse menecessary, extra five parts atid the posulting product will rest tress the mairibairs. That is exacetly the sort if thines which tereling atel develorgment enge recers bave beess doringe or all serts of wier materie! and achevernent; sureh as fhis have had a lot for dor with mesiong pes sible the sto-alled "rriratefe mesticetioni" of war producis.

1 will nort attember aroy forther perisomat prophtiesies as to the postwat ofa, but wili close isy rnoting the follenwinge ionin Wrarkets Alper tho War by S. Marfis Livingstom of the Depurtment of Comonerces "This will antl tre at cornpettive werlet, wherem sorve businesces. will presper, while others will dective. Comrage, irnagirations and ingenvilyplos practical, bardfeaded, Jong-rango planninz-may creates a voiumo of inssiness far in excess of thai serggestent byy any reasenable market analysis. Where those emalities are laching, the most ace envate appraisal of powtwar marketa bea comes a futile gesture."

JOHN D. LEITCH
G. E. MERKLE
H. I. BARNSLEY

John D. Leitch has been named chief engineer, Electric Controller \& Mfg. Co., Cleveland. Dr. Leitch has been with the company since 1937 and previously was associated with the mechanical engineering and electrical engineering departments of Steel Co. of Canada Ltd., Hamilton, Ont.
\qquad
V. E. Blue, formerly employment supervisor, Dodge division, Chrysler Corp., Detroit, has been appointed to the staff of C. T. Winegar, director of personnel of the corporation. Mr. Blue has been with Dodge since January, 1916. He is succeeded as employment supervisor by Carl E. Hustedt, assistant in that office for a number of ycars.
R. M. Cherry has been appointed assistant manager, industrial heating division, General Electric Co., Schenectady, N. Y. Mr. Cherry has been associated with the company since 1919.

John R. Bangs, formerly head of the department of administrative engineering at Cornell University, has been named general manager of industrial and personnel relations, Edward G. Budd Mfg. Co., Philadelphia, with Robert W. Desing as his assistant at Budd's Hunting Park plants, Philadelphia, and J. B. Jones as his assistant at Budd field. Dr. Edwin H. Mellvain has assumed direction of an expanded industrial health and rehabilitation department for the company.

Herbert G. Dillon has been made manager of the newly-formed mining section of the industrial department, Westinghouse Electric \& Mfg. Co., East Pittsburgh, Pa.

George W. Person, formerly abrasive engineer, St. Louis territory, for Norton Co., Worcester, Mass., has been appoint-
ed manager, abrasive division, Screw Machine Supply Co., Chicago.
G. E. Merkle has been appointed sales manager, Perfex Gage \& Tool Co., Detroit.

$-0-$

Harry G. Sparks, formerly vice president, has been elected president and general manager, Sparks-Withington Co., Jackson, Mich., and Charles J. Kayko, head of the radio division, has been elected a director.
R. Elliott Maxwell, vice president and director, Whiting Corp., Harvey, III., has been appointed export manager, with headquarters at 136 Liberty street, New York. Prior to joining Whiting Corp., Mr. Maxwell for many years was connected with the Carnegie-Illinois Steel Corp., Pittsburgh.

- 0 -

Paul R. Mattix, formerly chief, automotive division, Bureau of Foreign and Domestic Commerce, Department of Commerce, Washington, has joined the staff of the Automobile Manufacturers' Association, Detroit, as manager of the export department and secretary of the export committee.
F. W. Conant, vice president in charge of manufacturing and Arthur E. Raymond, vice president in charge of engineering, have become members of the executive committee, Douglas Aircraft Co., Santa Monica, Calif. Major Carl A. Cover, executive vice president, has resigned to join the Army Air Corps.
H. L. Bills, director of industrial relations, Acme Steel Co., Chicago, has been elected president of the Industrial Relations Association of Chicago.

Melvin G. Willigman, member of the American Institute of Mining and Metal-
lurgical Engineers, has been named to the staff of Battelle Memorial Institute, division of mineral dressing research, Columbus, Ohio. Clarence E. Levoc, a member of the American Society for Metals, has also been appointed to the staff of Battelle Memorial Institute, and assigned to research on the high-temperature properties of metals.
H. I. Barnsley, vice president. Jenkins Bros., New York, has been elected to the governing board of Jenkins Bros. Ltd., Montreal, Can. He is a member of the American Society of Mechanical Engineers, and the National Association of Power Engineers.

Frank Perry Nemec has been named manager, purchasing division, lamp department of the General Electric Co. at Nela Park, Cleveland, succeeding the late Fred P. Harris. Mr. Nemec joined the company in 1922.

Nelson E. Grace, vice president and factory manager, Doak Aircraft Co., Hermosa Beach, Calif., and Leonard Comegys, attorney, have been elected members of the board of directors. Stephen F. Hinchliffe and Eldore E. Rosier have been named vice presidents.

$$
-0-
$$

R. A. Devlieg, since 1937 vice president in charge of manufacturing operations in Wisconsin plants, Nasl-Kelvinator Corp., has been named vice president in charge of all plant operations with headquarters at Detroit. Before joining Nash-Kelvinator in 1935, Mr. Devlieg was vice president in charge of production for Reo Motor Car Co., Lansing, Mich.

Ralph H. Norton, board chairman, Acme Steel Co., Chicago, has been reelected president of the Associated Em-

A. M. WIBEL

Who has been appointed vice presidenf of Nash-Kelvinator Corp., Detrait, as announced in STEEL, June 14, p. 87
ployers of Illinois for the next two years. Chas S. Craigmile, Belden Mfg. Co., Chicago, has been appointed vice president and W. H. Hallsteen, Ilg Electric Ventilating Co., Chicago, treasurer.
\qquad
Carl H. Vaupel has been appointed assistant general manager and W. A. Luli, factory production representative of Cooper-Bessemer Corp.'s plants at Mt. Vemon, O., and Grove City, Pal.. Prior to joining Cooper-Bessemer in 1941, Mr. Vaupel had been associated with the diesel engine division, Fairbanks, Morse \& Co., Beloit, Wis., in various capacitics; Northern Pump Co., Minneapolis, as Eastern sales representative and Aireraft \& Diesel Equipment Corp., Chicago, as sales manager. Mr. Luli has been with the corporation for the past eight years.

$$
-0-
$$

C. K. Swafford, works manager and member of the board of directors, Gisholt Machine Co., Madison, Wis., has been appointed vice president. Mr. Swafford will continue also as works manager, which post he has held since 1930 .
R. C. Freitag of Briggs \& Stratton Corp., Milwaukee, has been elected president of Milwaukee Industrial Advertisers' Association to succeed F. J. Nelson of Macwhyte Co., Kenosha, Wis.

$$
-\mathrm{o}-
$$

Hans Lasker has been named works manager, Republic Aviation Corp., Farmingdale, N. Y. Irving Keough succeeds him as factory manager, Donald Gutch has been appointed general su-

A. G. HERRESHOFF

W. K. COOPER
perintendent, and Chester Kucyn has been made production manager. Henry MacDonald has become works manager at Evansville, Ind.
W. K. Cooper has been named vice president in charge of sales, Aviation Corp., with headquarters at 1155 Sixteenth street, Washington.
-0-
Norman O. Aeby, purchasing agent, Johns-Manville Corp., New York, has been elected president of the Purchasing Agents Association of New York, while Millard ${ }^{W}$.. Merrill, United States Mctals Refining Co., New York, and David M. Mecker, Celanese Corp. of America, New York, have been made wice presidents, and E. B. Fielis, treasurer. James
H. Ewing, Calco chemical division, American Cyanamide Co., has been elected a board member.

$$
-\mathrm{O}-
$$

A. G. Herreshoff, chief engineer of research for Chrysler Corp., Detroit, has been elected chairman of the Detroit section, Society of Automotive Engineers.

- 0

E. T. Parks has been named general agent, Chicago, Burlington \& Quincy Railroad Co., with headquarters in Chicago. W. F. Radell, assistant general freight agent, will succeed Mr. Parks.

Edmond du Pont has been named vice president, Wilmington Chemical Corp., New York.

OBITUARIES

Charles E. Lindell, 61, president and general manager, Lindell Drop Forge Co., Detroit, died in that city June 10 .

- 0 -

Luke U. Milward, 55, founder and president, Electro Refractories \& Alloys Corp., Buffalo, died June 10.

$$
0-
$$

M. Joseph Diebolt, 65, vice president and treasurer, Buffalo Electric Co. Inc., Buffalo, died June 8 in that city.

George L. Grimes, founder and owner, Grimes Molding Machine Co., Detroit, and special foundry representative for Baker-Perkins Inc., Saginaw, Mich., died in Detroit, May 28.

Joseph Kouns Pollock, 80, veteran iron and steel executive, died June 14 in Cincinnati. Shortly before 1900, Mr. Pollock was treasurer, Indiana Car \& Foundry Co., Indianapolis. Later he became
president, Union Furnace Co., Ironton, O.; and vice president, Hanging Rock Iron Co., Ironton, O .

-

Raiford Gaffney, general manager, Steel Heddle Mfg. Co., Atlanta, Ga., died Junc 10 in that city.

Henry T. Paist, 78, former president, H. T. Paist Co. Inc., Philaclelphia, died June 10 in that city.

- 0 -

Edmond J. Caspari, 36, superintenclent, construction machinery plant, West Milwaukee works, Chain Belt Co., Milwaukee, died May 31 in that city.

$$
-0-
$$

Elmer T. Anderson, 55, president, Sisalkraft Co., Chicago, died June 10 at Elgin, Ill.

Henry Kay Smith, 67, chairman of the board and of the exccutive conmit-
tee of the Art Metals Construction Co, Jamestown, N. Y., and chairman of the Marlin-Rockwell Corp., Jamestown, N. Y., died recently in that city.

$$
-0-
$$

Joseph Ujlaky Sr., 56, factory superintendent, Werner G. Smith Co., Cleveland, died June 13 in that city.

Robert Emerson Brown, 46, Pacific Coast division manager, Electro Metallurgical Sales Corp., New York, died May 26 at Belmont, Calif.

$$
-0-
$$

Madison F. McCarty, 55, for the past two years supervisor of the laboratories, Howard Foundry Co., Chicago, died June 13 in that cily.

- $0-$

Thomas S. Denny, 56, manager electrical and wire rope department and assistant manager, direct sales division, United States Steel Export Co., New York, died June 16.

Eastern Mines Push Production

Abstract

Unprecedented war demand spurs development of new and old workings. r. Production in New York state to set all-time mark of $8,000,000$ tons this year

UNPRECEDENTED war demand has spurred iron ore mining operations in the East to record levels. Large sums have been or are to be spent in development of sites and expansion of operations at long operated mines.

One of the chief problems confronted is the scarcity of men to operate the mines.

Iron ore mining in New York state is expected to reach an all-time record of between six and eight million gross tons this year, in sharp contrast with less than half a million in 1939.

A new central shaft is being developed by Republic Steel Corp. at Fisher Hill, N. Y., as a DPC project. The corporation leased mines from Witherbee-Sherman Co. in 1937. At its own expense Republic erected a wet process magnetic concentration plant at Mineville, N. Y., with annual cipacity of about one million tons of concentrates. In 1938 the company took over the mineral properties at Lyon mountain and Standish. The corporation's mining capacity and ore concentrating facilities have been greatly expanded.
In 1941 Jones \& Laughlin Steel Corp. leased 3200 acres of mineral lauds from the Benson Iron Co. They have, in comjunction with DPC, carried through a $\$ 5,000,000$ construction program at Star Lake. The program included establishment of mining and transportation facilities and erection of a concentration mill with ammal capacity of 800,000 tons of concentrated and sintered ore.
National Lead Co. also took title to 11,000 acres of mineralized lands in the Lake Sanford area. The ore is a mechanically combined ilmenite-magnetite, carrying from 16 to 20 per cent titanium oxide. Through 11,000 feet of drilling, some $15,000,000$ tons of ore have been blocked out. Mining is by open pit methods and present capacity allows treatment of some 6000 tons of ore daily; producing about 750,000 tons of magnetite concentrates ammally, in addition to about half that amount of imenite concentrates.
M. A. Hanna Co. acquired large magnetite deposits at Clifton, N. Y., in 1941. Company has substantially stepped-up operations in recent months with still further improvement anticipated over the remainder of this year.

In addition to the above mining interests there are several small enterprises
mining hematite on the Clinton formation. Further prospecting is being carried out in New York state at present, with promising possibilities of additional companies being actively engaged in mining before the year's end.
Other mining developments in the east include: Bethlehem Steel Co.'s properties at Mount Hope, N. J., and Cornwall, Pa.; Alan Wood Steel Co., at Scrub Oak, Wharton and Washington, N. J.; E. \& G. Brooke Iron Co. and Warren Foundry \& Pipe Co. near Scrub Oak, N. J.

Production Declined Steadily

First comprehensive survey of the mining industry in the United States credited New York with $1,126,897$ long tons of ore produced, or 15.8 per cent of national output. However, in succeeding years production steadily declined in relation to the national total, until in recent decades output ranged between 1 and 2 per cent.

The large Adirondack magnetite deposits are characteristically low in iron, averaging in most instances between 40 45 per cent. They lend themselves easily to cheap magnetic concentration, which
in most instances raises the iron content above 60 per cent. Ore deposits lie underground and are irregular in size and shape, frequently extending to great depths. One qumbitative estimate of the nontitaniferous magnetites in New York places the reserves at $900,000,000$ tons, rumning 40 to 65 per cent iron content.
In acldition to the Aclirondack magnetites there are known reserves of this ore in the Hudson Highland area. Hematites of better than 50 per cent grade occur both in the Clinton formation and St. Lawrence county. The non-titaniferous magnetites of the Adirondack region constitute one of the commercially most important reserves in the state and occur in several more or less localized areas within the region.

Supplementing iron ore in the present upsurge in mining activity in the state are several additional materials. Northern New York Mining Corp. is putting down a shaft on the zinc deposits south of Sylvia lake. The St. Joseph and Universal mines in the area are also producing expanded amoments of zinc ores. American Metal Co. has erected a new Pidgeon process magnesium plant, utili\%ing local dolomite, in southeastern New York. Production of abrasive garnet has been considerably stepped up at the 13arton Mining Co.'s Gore Mountain workings, the largest mine of this type in the country. Increased output of graphite, mica and beryl is expected to take place in the immediate future.

Fog Bedevils Lake Shippers

> Accidents cause loss of 700,000 tons in ore movement. Three vessels lost after collisions. Weather conditions cause congestion at Sault Ste. Marie

OLD MAN WEATHER, who delayed opening of lake navigation a full month, continues to bedevil iron ore shippers. More than $8,000,000$ tons behind 1942 shipments as of May 1 last, lleet operators have since been hard pressed to equal last year's shipping rate because of the dense fogs frequently on the lakes.

It is estimated that about 700,000 tons of iron ore have to date been lost by accidents which damaged more than 20 vessels and resulted in sinking three. These were caused primarily by mavorable weather conditions. If it were possible to take into consideration tomnage lost due to trip delays resulting from fog conditions forcing complete stoppage of passage through the Soo camal for as long as 24 hours at a time, and necessity of proceeding frequently at checked speed, the overall tomage lost so far this
season would be substantially greater. Last week witnessed a serics of vessel accidents. The George M, Humphaey of the Kinsman Transit Co. sank in the Straits of Mackinac after colliding with the D. M. Cleaison of the Pittsburgh Steamship Co. The W. D. Calvemix Jr. of Hutchiason \& Co. suffered slight damages in a collision with the steamship Brewster, which samk in the St. Clair river. The Buewster, British uwned, was on her maideu voyage loaded with 83,000 bushels of grain. The United States Maritime vessel, Abanstiong, of the Interlake Steamship Co.'s Heet and Stifel of Columbia Tramsit Con's line were damaged while in transit through the Soo canal. In addition to the above there is estimated to have been more than 15 other accidents to
(Please turn to Page 148)

First Steel Poured at New Homestead Works Expansion

STEEL for war weapons started flowing last week from the first of eleven 225ton open hearths at Carnegie-Illinois Steel Corn.'s Homestead Works expansion project.
The project, completely integrated from blast furnace to finished products, has been hampered by priorities difliculties, lack of materials and manpower, but is expected to be completed by year's end. It will add $1,500,000$ toms of ingot capacity and will strengthen Pittshurgh's position as a steel producing center.

The expansion is being financed by the Defense Plant Corp.

Changing Homestead's river-front skyline into a continuous panorama, the new facilities will include mills and shops for the production of slabs, plates, machined forgings, and rough-finished armor plate.

The site occupies 123 acres on which are located 80 buildings whose floor area alone covers 48 acres, all being scrved by 30 miles of railroad track.

It is estimated that 3000 men and women will be required to operate the new plant when completed, and to provide for competent persomel to operate these new facilities, intensive training programs have been under way for many months. Of course, mider conditions of the war emergency, many women will be included in the working force.

An interesting feature in making room for the expansion project was the moving of Howard Axle Shop, a division of Homestead, to a new location 16 miles down the river to McKees Rocks area, all of which was accomplished without loss in production. Under normal operating practice at the Howard plant, that period on the week ends required for maintenance and repairs was utilized in moving, piece by piece, buildings, machines and furnaces to the new plant site where installation was completed in time for production to be resumed each Monday morning, with the axle plant operating at two locations simultaneously, Homestead and McKees Rocks.

Upon its completion, 25 ingot trains will move out of this modern open hearth shop every day.

Magnesium Production Starts in Lovisiana

Production of magnesium metal at the newly erected magnesium-chlorine plant in Louisiana has been started by the Mathieson Alkali Works Inc., the oper-
ating company. The plant is owned by the Defense Plant Corp. and has a future capacity of more than $50,000,000$ pounds of magnesium metal a year. Design and enginecring of this project are said to be unique, and it is tire only plint of its type in operation.
Principal raw material is dolomitic stone, a rock resembling limestone and consisting of calcium and magnesium carbonates which is shipped from nearby quarries. This ore is calcined, locally produced natural gas being used for the purpose. The resulting oxides of calcium and magnesium are treated with calcium chloride, a product of the process by which soda ash is made at the parent Mathieson plant in Louisiana. The mass is then treated with carbon dioxicle obtained from the calcination of the dolomite, which converts the calcium into insoluble carbonate, leaving magnesium chloride. This product, after being concentrated, is electrolyzed, forming magnesium and chlorine.

Magnesium metal in this plant is manufactured by a new process developed by Mathieson engineers which produces not only pure magnesium metal but also licquid chlorine, both of which are highly essential to the war effort. It is estimated, when ruming at full production, that this project will employ approximately 1000 workers.

World War II Soldier Uses More Steel

Fifteen hundred pounds more steel are required ammally by today's soldiers, sailors and marines than were used by their fathers in World War 1. They also are being equipped with steels vastly superior in ruality to those of 1917-18, according to the American Iron and Steel Institute.

For each of the estimated $7,000,000$ men in the United States armed forces at the end of 1942, the American steel industry poured over 24,600 pounds of ingots in the course of its record-breaking production of $86,000,000$ tons.
In World War I, the banner production year yielded only about $50,000,000$ tons of steel. On the basis of the total mobilization of $4,355,000$ men, an output of approximately 23,100 pounds of steel per man is indicated. The output figures for both World War I and 1942 include production of steel for all purposes, including export.

High-quality alloy steel production last year exceeded $11,350,000 \mathrm{tm}$, or
somewhat more than 3240 pounds for every man in service. That is three and a half times as much alloy steel as was produced in 1918 per man under arms. In that year, slightly more than two million tons of alloy steels were made, or about 920 pounds per man.

Largely responsible for the tremendous increase in alloy steel produced per man in service is the present war's emplasis on air power and mechanized military equipment of all kinds.

activities

American Propeller Corp., Toledo, O., produced almost three times as many hollow steel propeller blades for combat airplanes dusing the past six months as in the previons like period, the company announces.
J. H. Williams \& Co., mannfacturer of drop forgings and drop-forged tools, has moved its general sales office of the tools division from New York city to Buffalo. A district sales office will be maintaned in New York.

MeKenna Metals Co., Latrobe, Pa, has taken over the direct sales, engincering, and service of Grayson-Kemmametal milling eutters. The cutters will be distributed and serviced by the national and foreign sales organization of the company.

-0-

Inland Steel Co., Chicago, through purchase of all the capital stock of the Hillside Fluor Spar Mines, Rosiclare, Ill., will operate the new accuisition as a separate unit. Clarence B. Randall, vice president of the Inland Steel Co., is the new president of the Hillside firm.

Ilg Electrie Ventilating Co., Clicago, announces plans for a research Iaboratory to be constructed west of the present plant.

Westinghouse Electric \& Mfg. Co., until recently at 2211 West Pershing road, Chicago, will occupy the former Waterway Paper Products Co. plant on South Kedzie avenue. Westinghouse abandoned its former premises to make room for Army occupancy.

Morton Mfg. Co., 5105 West Lake street, Chicago, is operating an auxiliary plant in Libertyville, Ill., where material for portable air field runways is being fabricated.
$\longrightarrow-$
Principal Die \& Stamping Co., 816 West Erie street, Chicago, has constructed and occupied a plant at 3464 North Knox avenue.

C'est la Guerre!

Abstract

War riding the rails, traveler finds on trip through West. . . Stay home if you can, he advises. . . Heavy movement of troops and increased freight shipment put ferrific strain on carriers.

Huge postwar equipment replacement market seen

IT'S TRUE what they say about railroad travel in the West, if you are speaking from the standpoint of a passenger. If you can avoid it, stay at home! War is riding the rails in no uncertain fashion, and the principal western roads are bearing the brunt of an almost impossible freight and passenger load-not uncomplainingly and not politely-but they are bearing it.
We have ridden in recent weeks the Santa Fe Kansas Cityan from Chicago to Oklahoma City; the Illinois Central Panama Limited from the Windy City to New Orleans; the Southern Pacific Sumset Limited from New Orleans to Los Angeles; the Santa Fe San Diegan from Los Angeles to San Diego; the Southern Pacific Morning Daylight from Los Angeles up the coast to San Francisco; the SP's slow and lumbering Oregonian from Oakland to Portland and on to Seattle over the line operated jointly by the SP , the Union Pacific and the Northern Pacific; and the Northern Pacific's North Coast Limited from Seattle to Chicago.

All of these trains were once crack limiteds, none of them extra-fare trains, but at least with accommodations better than average and service a little above ordinary. Today, with the exception of the Panama Limited, the Kansas Cityan, the San Diegan, and the Morning Daylight, the first three dieselelectric streamliners, they are just trains which get you to and from where you are going-occasionally on time-and that is about all.

War, of course, is responsible.
Heavy movement of troops to and from the West Coast began almost with Pearl Harbor. In fact the railroads say they moved 600,000 fully equipped troops to West Coast points between Pearl Har-
bor and Christmas of 1941, just 18 days, and this without discontinuing passenger service. The army has taken over 50 per cent of the 6000 Pullman cars of the nation's railroads, perhaps 30 per cent of their coaches for troop trains alone. In addition there are thousands of service men constantly on the move, either on leave or special orders.
In addition to troops, there are thousands of others following them as they are shifted around the country-wives, families, parents, girl friends. Altogether, this huge moving mass of humanity literally jams terminals to the doors; swarms down on waiting coaches to grab available seats like droves of cattle; makes conductors, brakemen and train crews at times despair of their jobs, and easily succeeds in making the normal civilian business traveler feel himself a nuisance and interloper.

Move Masses of Servicemen

Just why this enormous movement of soldiers, sailors and marines is essential has never been fully explained, either by the railroads or by the armed forces. Even the servicemen themselves on the trains camot explain it. Take the case of a navy photograplier, stationed in Seattle who was sent clear across the country to attend school in Boston-and for only six days! Or the paratrooper who was moved from San Diego to Fort Bemning, Ca., by way of Seattle, Chicago, Evansville, Knoxville and New Orleans.

The idea seems to keep the boys on the move. Possibly this is to avoid their getting in a rut at one camp, or to improve their morale by letting them see the country as they learn the various military arts.

One result of this mass movement of servicemen is that Western roads have taken off passenger trains all normal deluxe equipment, such as observation cars, club cars, lounge cars, etc. Official explanation is that this equipment has been converted to coaches, but if you get a brakeman or a conductor off in a quiet corner he will usually confess that the principal reason for dispensing with this equipment was to counteract the destructive exuberance which servicemen seem
to display or to acquire when aboard trains. It was simply a matter of salving the equipment from the blitzkrieg.

Further result of passengers being predominantly servicemen has been the suspension of serving akcoholic refreshments of any kind on virtually all the Western roads. However, in spite of MPs and SPs on every train, the boys seem to manage their refreshments somehow. It is an amusing sight to watch a train stop for five minutes at a small city on a transcontincutal rum, and see the rush to the drug store around the corner from the station and the race to get back before the conductor shouts, "All aboard!"
Dining car service likewise has had a rude jolt because of heary travel and the impact of rationing. Menus are skimpy and in general the food is a long way in taste from what it was two years ago. Railroads all complain about how difficult it is to handle the food situation in the face of rationing, but they do not explain whether, because of the fact they are feeding so many servicemen, they do not receive extra allowances of rationed items. Certainly if the supply of food to army camps is unlimited, assistance should be given railroad dining car services. There does not appear to be any unusual shortage of butter or sugar on the diners-but the entrees (as
of April) are generally confined to fish, turkey or eggs.

They used to call it the Friendly Southern Pacific, but this has now been changed to the Frenzied Southern Pacific. The Sunset Limited, from New Orleans to Los Angeles, has deteriorated the past two years. When this traveler arrived in Los Angeles only 15 minutes late after the three-day ride, the weary porter on the car said it was the first time since Pearl Harbor that the Sunset had been that close to making its schedule.

Postwar Opportunities Excellent

Postwar opportunities for selling locomotives, cars, and rails to the western roads should be tremendous. While only a few years ago, some of these roads were tottering on the brink of what looked to be bankruptcy, they are all cashing in heavily today and their equipment is wearing away rapidly. Cars and engines which railroad men tell you they are ashamed to look at and which should be in museums if not the junkpile are rolling hack and forth daily. Strange mixtures of freight and passenger steam locomotives are seen on nearly all multi-locomotive trains.

Rails are holding up fairly well, in spite of the fact that the bulk of western trackage is of the single variety, with

Train directors have added responsibilities in routing trains to expedite the movement of soldiers and war materiel

In no sense intended as a complete survey or final judgment on the railroads of the West, the accompanying article prepared by one of STEEL's field editors in the course of a trip from Chiengo to Oklahoma City, and a later jaunt from Chicago to New Orleans and on to Los Angeles, San Diego, San Francisco, Portland, Seattle and back to Chicago, may be of interest, since it reflects impressions of travelers, trainmen, servicemen and many others now traveling the rails to and from those points-The Editors
convenient sidings for passing trains. However, heavier rails wonld appear in order in many sections, since casual inspection does not reveal the use of 130pound rail to anywhere near the extent of eastern railroads. Very few experiments have been made with welded rail sections, but the idea has distinct merit to avoid rail end batter. Some use is made of the Sperry magnetic rail flaw detector cars by western roads. It has proved successful in sounding out flaws in rail sections which might otherwise go unnoticed.
The problem of operating a single-

track system these days, with a contimal stream of freight and passenger trains moving in both directions is one which makes a dispatcher slowly go crazy. The dispatcher on one of the Texas divisions of the $S P$ told this writer that his job is just 8 hours of steady pounding, with never a moment's rest; that when he quits a trick he is literally limp. Biggest trouble a dispatcher encounters is when one train gets behind schedule because of breakdown or other interruption. This throws out the whole division and calls for some skilled manipulating where a dispatcher must figure out his orders and transmit them to passing train crews.

Of course, automatic blocks and automatic switch control could relieve a lot
pulled into Minneapolis, 1075 miles away, right on time.

The "streamliners" are the glamor girls of the western roads' passenger train chorus. Trains like the Sunta Fe's Super Chief and El Capitan and the San Diegan fleet; like the Union Pacific's Porland Rose, and the Southerin Pacifie's Morning Daylight are the talk of all travelers, and have brought to railroad passenger travel an entirely new era which is only interrupted by the war. Moden stainless steel and aluminum construction, roller bearings, superb interior appointments and novelties, positive air conditioning, smooth starting and effortless speed put the stramliners far and away ahead of their old puffing brethren.

Passenger cars await servicing, cleaning and repairs in a terminal before being made up into trains to transport servicemen and civilians on essential business. NEA photo
of this, but such refinements cost plenty of money, especially on long stretches of right-of-way where until recently there has been no particular problem in maneuvering trains safely by the old methods.
Virtually all passenger train schedules west of Chicago have been slowed down by the Office of Defense Transportation in recent months. While this may be construed partly in the interests of safety, it also permits operations closer to schedule, since by opening up the schedule an engineer can often make up two or three hours lateness in several hundred miles of run. For example, the North Coast Limited's second section was 2 hours and 30 minutes late arriving at Spokane, Wash., after leaving Seattle on time, the result of an engine breakdown in the night. Yet by highballing a little here and there, except where grades and mountain curves did not permit it, the North Coast

There is no question that diesel-electric railroad power, where it can handle the load and where oil resources are ample, will take the play away from steam. But they are already talking in southern California of only 10 to 15 years more of oil in the wells there, of starting to import $50,000,000$ barrels a year in five years, so where does this leave the dieselelectrics? The most obvious answer is that it simply knocks out the diesels and leaves the electrics, entailing the considerable investment of electrifying long stretches of roadbed, such as the Clicago, Milwatukee \& St. Paul has already well under way on the northern run across from Seattle.

Coastal rail travel, from Los Angeles north to Sam Francisco, Portland and Seattle, is far more congested than the transcontinental rums, although the latter are bad enough. It is virtually impossible to obtain Pullman reservations
from, say, Las Angeles to Porthand, unless you make them three to four weeks in advance, and even then you run the chance of having your reservations sold a second time, leaving you high and dry.
On top of this the shocking case of "Lower 13 " on the Oregonian has made passengers, especially women, jittery, a feeling which is reflected even in the attitude of porters, waiters and train crews.

If you cam transcend the pushing and pulling of wartime rail travel, there are few rides whicla for sheer beauty cau compare with the 470 -mile coastal run from Los Angeles to San Francisco on the SP's Morning Daylight.

The train itself is the last word in streamliner comfort, even to an announcer who unreels the story of the trip through loudspeakers in each car as the train speeds along. The Morning Daylight (there used to be a San Joaquin Daylight, now taken off) is one of the few trains in the country equipped with elevating baggage racks in each car.

One of the most complicating factors in the freight picture of the West is the appalling amount of cross-hauling. The best example of this is alumina or aluminum oxicle which has to be shipped all the way from the Gulf Coast to reduction plants in Portland, Vancouver, Wash., Longview, Wash., and Los Angeles; then the pig aluminum has to be moved back east for rolling, excopt for a new rolling mill at Spokane, Wash.; then the rolled material shipped back to Southern California and to Seattle for use in airplanes.

Reduction plants in the West have capacity for supplying roughly one-third of the $2,000,000,000$ pounds amnual capacity the aluminum industry will have by the end of this year. Virtually all of this is reduced alumina prepared from bauxite ore. The alumina is a fine powder which is blown into paper-lined box cars for shipment, and for every pound of pig aluminum produced there must be roughly 2 pounds of alumina shipped. With West Coast reduction units scheduled to be producing at a rate of some $50,000,000$ pounds of metal ? month, inferring requirement of $100 .-$ 000,000 pounds, or 50,000 tons, of fluffy: alumina you get an inkling of the transportation problem involved.

But the railroads of the West are doing a job; you cannot take that away from them. The Daylight snakes its way up the mountain back to San Luis Obispo; the freights roar into Oakland with steel for the shipyards; the packed troop trains wait on sidings for limiteds to pass while a thousand khaki arms wave from the windows. Pullmans may be dirty, windows grimy, no towels in the washrooms and only two meals a day, but still they pile through, day in and day out.

Dominion High In Metal Output

> Former imports now exports. War production changes met by flexible planning

TORONTO, ONT.

ALL RECORDS in production of nomferrous metals will be broken this year by Camada, C. D. Howe, minister of munitions and supply, recently told the House of Commons. This will follow the enormous expansion of the aluminum industry; development of a Canadian process for magnesium production; extension of recovery operations at large base metal mines; revival of old mincs and expansion of existing properties; development and exploitation of marginal and sub-marginal deposits.

He revealed that during second half the country will be well on its way to self-sufficiency in tungsten, production of molybdenum will provide the major part of requirements, mercury is being exported where before the war imports furnished the only source and the gov-ernment-owned magnesium plant supplies all needs and leaves a margin for export where the country formerly was entirely dependent on imports.

The aluminum industry, he said, now
provicles more than six times the output of 1935), is greater than totil world production in 1939 and equads 40 per cent of the war requirements of the United Nations. In copper, nickel, lead and zine aggregate refined production for 1943 is estimated at 827,800 tons, against 662,100 tons in 1939. Canada now is producing 95 per cent of the combined nickel output of the United Nations, 20 per cent of the zinc ontput, $121 / 2 \mathrm{per}$ cent of the copper, 15 per cent of the lead, 75 per cent of the asbestos and 20 per cent of the mercury. While not yet self sustaining in flumspar, output has been incrased materially and further expansion is under way, Detomac Mines Ltd, now installing erpuipment for large production.

Changes Affecting War Program

A number of radical changes are being made in the war production program, Mr. Howe told the Commons. He satid offensive power measured in guns, ammumition, aircraft, vehicles, ships and scientific equipment has placed Camada fourth among the United Nations. Major oljectives have been reached in supply of ground equipment for the Army. This does not portend slackening in effort but a change in emphasis, due to greatly increased demand for haval vessels, guns and equipment, combat aireraft and radar equipment.

Mr. Howe stated that "late in 1942 we were delivering in substantial quan-

LEAD FOR UNITED NATIONS: Canada with the largest nonferrous smelter in the British Empire, is turning out 700 tons of lead a day for war uses. Above, molten lead is flowing into a pot where it is oxidized by forcing air through the base of the pot in a purification process to remove final traces of arsenic, tin and antimony. NEA photo
tities every item of war equipment for which we had received orders in the first two and a half years of the war. Every week we are latuching six or more vessels, either escort, cargo or pitrol. Every week we are turning ont 80 planes. Each week our automolife plants produce 4000 motor vehicles and 450 Sighter vehicles. Weekly our ammmation factories make 525,000 rounds of heavy ammunition and $25,000,000$ romeds of small arms ammunition. Chemical plants each week turn out 10,000 tons of explosives and other chemicals.
"We have launched 500 ships and delivered 8000 aircraft, 475,000 motor vehicles and 24,000 fighting vehicles. We have delivered 55,000 heavy gum barrels or momentings and 630,000 small weapons. We have produced 800,000 toms of chemicals and explosives. Total dollar value of deliveries to date is over $\$ 4,500$,000,000. Employment in war industry is estimated at more than 900,000 men and women."
The Dominion's steel industry has been doubled since the war began, the said, and now is fourth largest among the United Nations, exceeded only by the United States, Great Britain and Russia.

Transition in the production program, he said, is inevitable and "we have maintained a high degree of flexibility in plaming production facilities, which now permits necessary changes with a minimum of inconvenience. Never again will there be any doubt that Camada can manufacture anything made elsewhere.

Shortage of mampower has developed, particularly in coal and base metal mining, forest industries and common labor for steel mills and allied industries and for construction work.

War Expenditures Outlined

Canada's war expenditure for the fiscal year ending March 31, 1944, will total $\$ 1,764,000,000$, against estimated expenditures for the year immediately preceding of $\$ 1,060,508,000$ Defense Minister Ralston stated in the House of Commons. Notwithstanding sharp curtailment in production of certain types of guns, ammunition and other war materials, intimated by Munitions Minister C. D. Howe, Mr. Ralston stated that major increases in expenditure for the current fiscal year will come under the categories of pay and allowances totaling $\$ 539,730,211$ against $\$ 383,411,423$; ammunition and bombs, $\$ 273,325,890$ against $\$ 17,327,329$; armament, including rifles, machine guns, mortars and guns of all descriptions, $\$ 123,070,907$ against $\$ 63,8: 32,169$ and motor transport vehicles, including trucks, tractors, trailers, tanks, armored fighting vehicles and repair parts, $\$ 371,853,674$ against, $\$ 272$,206,108.

THE BUSINESS TREND

Strikes Stall Upswing; Industrial Indexes Off

INDEXES of industrial volume are moving toward lower ground. The upward progress of production has been interrupted temporarily by general labor unrest which reached the boiling point in the coal miners' strike and the government's effort to control this and other work stoppages affecting the war program.

Washington's delay and apparent confusion in formulating a tax program capable of checking inflation and uncertainties attending war production changes are factors tending to obscure the outlook.

Wave of strikes in automotive-aircraft and rubber industries, coming concurrently with the coal difficulty, prompted Congressional passage of the Smith-Comnally anti-strike bill.

Although full effects of the coal strike may not be discernible for some time, it is readily seen that irreparable damage was done. Output of bituminous coal declined from $11,800,000$ tons during the week ended May 29 to $3,050,000$ tons for the period ended June 5. Production at this point was down 72.4 per cent from the comparable week last year. Early curtailment of rail freight movement was indicated, while steel output definitely suf-
fered. In the following week a number of open-hearth furnaces went down for lack of coke-oven gas and threatened fuel shortage caused one large producer to bank 11 blast furnaces; in all about 13 stacks suspended.

Completion of the government's simplification program limiting size, style, ornamentation, etc., of hundreds of consumer articles in everyday use is promised before the year's end by WPB. About 500 items in addition to those civilian products already affected by war restrictions will be simplified to save manpower, materials and machines. The program is aimed at a further reduction in steel consumption of nearly $5,000,000$ tons a year.

Throughout April and into the early part of May industrial activity made additional gains over the first three months of the year. Federal Reserve Board's index rose one point to 203 from March, due chiefly to higher levels of production in machinery and transportation equipment inclustries.

War expenditures during May amounted to $\$ 7,373,000$,000 , an increase of 1 per cent over April.

Daily rate of expenditures last month averaged $\$ 283.6$ billions, against $\$ 280.4$ for prior month and $\$ 147.1$ for May, 1942.

Daily rate of spending has mounted steadily from the 1940 average of $\$ 12.5$ billions, to $\$ 45.6$ billions in 1941 , rising to $\$ 169.1$ billions last year.

Total disbursements from the beginning of the war effort to May 31 are $\$ 102,322,000,000$.

FIGURES THIS WEEK

INDUSTRY

Steel Ingot Output (per cent of capacity) Electric Power Distributed (million kilowatts) Bituminous Coal Production (daily av.- 1000 tons) Petroleum Production (daily av.- 1000 bbls.) Construction Volume (ENR-unit $\$ 1,000,000$). Automobile and Truck Output (Ward's, number) ${ }^{-}$Dates on request.

Lates

Latest
Period $^{\circ}$
96.5
$\stackrel{\mathrm{Pr}}{\mathrm{W}}$
Prio
98.5

3,926
1,967
3,933
106.9

17,215

$+15 \%$
852
56
$\$ 17,196$
$+14 \%$
817
77
$\$ 16,741$
$+5 \%$

855
173
$\$ 12,176$
$+24 \% \dagger t$

Sted Imployment

	Employes-Number (000) omitted)		$\begin{aligned} & \text { Total Mayrolls } \\ & \text { (Unit- } \\ & \$ 1,000.0006) \end{aligned}$	
	194:3	15.12	19.43	19.12
Jan,	637	651	129.7	118.8
Ferls.	63.5	0.51	122.K	108.5
Mar.	637	653	1314.8	117.0
Ani.	634	6.5.1	133.8	118.5
May		656		117.1
June		65!		118.0
July		655		120.7
Aug.		647		118.7
Sippt.		1341		124.8
Oct.		635		120.4
Now.		1132		122. H
Dec.		033		129.3

	$\begin{array}{r} \text { Co } \\ \text { Bure } \\ \text { (Daily } \\ -\mathrm{By} \\ \hline 1943 \end{array}$	e Output of Min erage-Net oduct \qquad 1942	$\frac{\text { tons) }}{1943}$	1942
Jan.	174,044	168,508	21,440	20,874
Fels.	175,107	168,414	23,091	21,771
Mar.	175,051	167,733	24,369	21.032
Apr.	175,857	168,960	22,932	21,843
May		170,187		22,571
June		170,593		22,487
July		170,244		22,197
Aug.		171,443		22,333
Sept.		172,110		23,106
Oct.		172,211		23,148
Nov.		173,029		22,106
Dec.		173,163		22,000
Average		170,549		22,122

FINANCE

Bank Clearings (Dun \& Bradstrect, total in billions)
Federal Gross Debt (in billions of dollars)
Bond Volume, NYSE (millions of dollars)
Stock Sales, NYSE (thousands of shares)
Loans and Investments (in millions) \dagger
United States Gov't. Obligations Held (in millions) \dagger iMember banks, Federal Heserve System.

Latest
Period ${ }^{\circ}$
$\$ 8,123$
140.4
53.2
5,263
$\$ 47,182$
32,467
Prior
Weck
$\$ 7,769$
140.0
41.8
5,736
$\$ 47,068$
32,275

Month	Year
Ago	180
$\$ 0,215$	$\$ 6,382$
138.2	74.8
78.9	28.4
9,033	1,068
$\$ 46,108$	$\$ 31,679$
30,496	14,259

PRICES

STEEL's composite finished steel price average.
$\$ 56.73$
$\$ 50.73$
Spot Commodity Index (Moody's, 15 items) $\dagger \dagger$.
245.3

Industrial Raw Materials (Bureau of Labor index)t
Manufactured Products (Bureau of Labor index) \dagger
$\dagger+1931=100 . \quad 1996=100$.
114.1
100.9
246.1
100.9

$\$ 56.73$	$\$ 50.73$
243.7	228.0
112.7	100.4
100.9	98.9

Fig. I-Operator placing shot on conveyor of the hardening furnace. This conveyor is designed to hold the shot vertically and spaced properly for thorough uniform heating

Heat
 Treatment

SOLID A.P. and S.A.P. SHOT

MUCH has been done, but little recorded, on the heat treatment of solid shot, both armor-piercing (A.P.) and semi-armor-piercing (S.A.P.), now holding such an important position in our munitions program. Solid shot have been constructed in two ways-the one-piece type and the three-piece type. The latter is preferred today, as it makes possible a shatter-proof body with stresses relieved by separate treatment, also a softer base resulting from the draw-back, and a hard nose capable of penetrating protective armor plate. Decremental hardening may be employed in the salt bath method of heat treatment, with stresses

[^1]relieved following hardening.
To cite an actual installation, one concern machines 37 -millimeter A.P. shot and then sends them to the heat treat where they are partially immersed in a bath of Houghton's Liquid Heat, This installation is arranged on a production line, with fixtures so rigid that the shot are immersed to within about $5 / 8$-inch of the band seat. This leaves the shot hard
at the nose and soft ahead of the band seat.

The heating furnace, quench tank and draw furnace, manufactured by Johnston Mfg. Co., are operated as a continuous unit system. The pot is 36 -inches in diameter and 24 -inches deep. This unit is shown in Fig. 3.

In the quench tank are 400 gallons of Houghton's quenching oil, circulated for

Fig. 2. (Left, below)-As the shot reach end of the hardening furnace, operators use tongs to remove them from furnace and place them mose down in the cages of the conveyor which carries them through the quench
Fig. 3. (Right)-Continuous salt-bath furnace for 37 -millimeter shot. Note motor and gear drive on top frame for rotating fixtures in which the shot are placed. Cover with opening iust large enough for loading and unloading operations conserves heat, shiclds operators, prevents drafts from striking work

cooling over pipe coils containing 70 degrees Fahr. city water. The draw furnace is 15 -feet long and 2 -feet wide. Both furnaces are gas fired. The shot are quenched in Houghton's oil, being set in fixtures and oil forced around them under pressure of 20 to 30 pounds per square inch.
Next the shot are run through a warm water spray, cleaning the oil and bath solution readily from the metal. It is not necessary to use alkaline cleaning in this instance. The shot are then drawn in air and allowed to cool.

To test them, a "shock" method is used, requiring a continuous system through three tanks. The first contains water maintained at 44 degrees Fahr. After 15 minutes in this tank to chill the work, it goes to the second tank in which water is held at 212 degrees Fahr., then after a 25 -minute immersion, to a third tamk cooled to 44 degrees Fahr. again. After 40 minutes in this third tank the shot are inspected. Rejections are salid to rum less than 4 per eent.
To prove the uniformity and freedom from distortion of this method, it is stated

THE LUNDBYE PROCESS

The second part of the Lundbye article, originally schecluled for this week, does not appear in this issue. It is being scheduled for the issue of June 28.
that shot may be hardened and quenched without subsecquent machining or even grinding.

Machining Shot: The machining of these shot is done with the aid of : Houghton Cut-Max base which is high in saponifables and sulphur, and which contains an E.P. additive. This base is cut 10 to 1 with a 100 degrees blending oil.
Another type of heat treatment of shot is the reducing atmosphere method of dry heating in continuous procluction. Details of this have been provided by Chicago Flexible Shaft Co., buidders of the furnaces useci on the installation described.

Here 75-millimeter A.P. shot after rongh machining are placed in a heatresisting alloy conveyor in recesses holding individual shot, standing on their base as shown in Fig. 1.
The conveyor, conveyor slafts and drive sprockets are made of $35: 15$ nickelchronium alloy for maximum heat resistance. The conseyor is clriven by a standard electric motor, operated through a speed reducer and variable speed transmission for positive control of operating time cycle.
The hardening furnace is fired with either gas or oil fuel. Burmers are placed

Fig. 5-Small basket type draw furnace used for heat treating A. P. shot

Fig. 4-Cluseup of quench conteyor showing rotes of cages in which the shot are placed. First four rows are over jets of oil, last two are still-cooled. Conveyor automaticall!! carries shot up out of suench and feeds them to air draw furmace by gravity
along the side of the furnace, overfiring along the arch, down along the opposite side wall, underneath the conveyor, exhausting through flues placed at floor level. This assures maximum eireulation of hot gases and miform leating of the shoct.

The temperatures are controlled in three zomes. The first consists of about 10 to 14 per sent of the burmer capacity, and is controlled manazlly. The second zonc, comprising about 40 to 45 per cent of the burner capacity, brings the shot up to the correct heating temperature, and is controlled by an indicating controller and proportioning valve. The third, or soaking zone, is controlled by a recording controller operating through the same type of valve and motor as the second zone. Two-position motors are used. Air for combustion is supplied by turbo type blowers.
Shot are muloaded from the furnace manually. The operators take the shot through the doors of the unloading ports with tongs and transfer it to the quench tank as shown in Fig. 2.

The Quench: After hardening, quenching is the next important step in the heat treating of A.P. shot. By the method under discussion each shot groes into an individual guenching cage, point down, directly over a jet of quenching oil at the correct temperature and 30 to 35 pounds pressure per scquare inch.

These cquenching eages are mounted in
(Please turn lo Page 125)

By FREDERICK HORAK

EUGENE CHAMPLIN Metallurgists Allis-Chalmers Mfg. Co. Milwaukee

(Concluded from Last Week)

JOMINY hardenability curves for NE94.20 are shown in Fig. 28. Maximum hardness of the core on reheating is obtained at quenching temperatures of 1560 to 1600 degrees Fahr. Fig. 29 exhibits the probable hardenability band of NE-9420 for seven heats tested. It will be noted that the hardenability of the experimental heat tested cuts the center of this bancl.

Chemical analysis and physical propcrties are given in Table V.

NE-9420 has much better ductility than the higher carbon NE-9422 and NE-9430 grades and thus was considered a better substitute. The strength is somewhat below that for NE-8620 and SAE-462() and, therefore, the practice so far has been to fabricate only smaller, less-stressed gears from this material.

NE-8744: Jominy hardenability curves for NE-8744 are shown in Fig. 30. It will be noted that the test results shown here are from a heat whose hardenabil-

[^2]
Experience with

ALLOY

Concluding details of their experience with 85 heats of NE steels, Allis-Chalmers metallurgists here present results of their work with NE-9420, NE-8744, NE-9445 and NE-9462
ity cuts the center of the band. Chemical analysis and physical properties are in Tilble VI.

This preliminary test (Table VI) of NE-8744 steel showed it to have superior physical properties over SAE-4140 and SAE-3140. Subseruent data published by Republic Steel Corp. upheld this fact and the changeover was made.

NE-9445: The Jominy hardenability curve for the NE-9445 steel tested along with the probable hardenability band for NE-9442 is shown in Fig. 31. Table VII gives chemical analysis and physical property tests.

Referring to Fig. 31, it will be noted that the only apprecialle difference between NE-9442 and NE-9445 is the carbon content. The lower carbon in NE9442 is accompanied by a drop in hardenability for larger sections. This, of course, slould be expected.

As a result of the above tests, substitution of NE-9442 and NE-9445 for NE-8744 was made with little trouble. To date we have made a number of spline shafts of NE-9442 and 9445 which formerly called for SAE-3140, SAE-4140 or NE-8744. No serions machining or heat-treating difficulties have been encountered thus far on these steels at hardnesses of 269 to 321 and 360 to 418 brinell. In gencral, NE-8642, 8645 , 8640, 9445 and 9442 hot-rolled bar stock are common substitutes for SAE-3140 and SAE-4140.

NE-9642: Jominy hardenabilitv curves for one experimental heat of NE-9642 steel are shown in Fig. 32 with chemical analysis and results of physical property tests in Table VIII.

This steel appears to have good possibilities for small sections. However, as yet no NE-9640 or NE-9642 has been received in production lots and our data is limited to the above heat in Table VIII.

Because of the scrap situation, it has been our plan to standardize more on the NE-9400 series in that no virgin alloys must be used, better control of residual alloys is maintained, and they appear to be more readily available.

Figs. 33, 34 and 3.5 illustrate some of

Fig. 28-End-quench hardenability curves from tests of NE-9420
Fig. 29-End-quench hardenability curves from tests of NE-9420 and comparison with standard curves
Fig. 30-Results of testing 22 heats of NE-8744 for end-quench hardenability:

	C	Mn	Ni	Cr	Mo	Grain Size	Quench Temp, ${ }^{6} \mathrm{~F}$
Curve I (A-C. tests, high)	. 48	. 90	. 55	. 55	. 26	7-8	1525
Curve 2 (AISI data, high)	4.4	. 92	. 68	. 58	. 26	B	1550
Curve 3 (Exp. heat)	. 41	. 97	. 54	. 53	. 23	7-8	1525
Curve 1 (AISI data, low)	.40	. 81	. 50	. 50	. 2.3	8	150
Curve 5 (A-C tests, low).	. 44	. 73	. 48	. 46	23	7-8	1525

Fig. 31-Results of testing 18 heats of NE-9442 for end-quench hardenability:

		C	Mn	Si	Ni	Cr	Mo	Grain Size	Guend Temp. ${ }^{\circ} \mathrm{F}$.
Curve 1, NE-9442 high		4.4	1.12	. 44	. 30	. 34	. 13	Fine	1.525
Curve 2, NE-94.42 low		42	. 88	. 45	. 39	. 28	. 17	Fin	1525
Curve 3, NE-9445 (single	heat)	. 48	1.13	. 46	. 35	. 37	. 15	F'ine	1500

Fig. 32-End-quench hardenability tests on NE-9642

Fig. 33-Typical examples of gears and pinions of NE-8720 steel
Fig. 34-The two gears on left are made from NE-9420 while the two at the right are of NE-8620
Fig. 35-Typical applications of NE-9445 and NE-9442 for pinions and shafting
the parts being made of NE steels at the present time.

$\begin{array}{cccccccc}\text { 'TABLE VI-Chemical Annlysis and } & \text { Properties of } & \text { NE-8744, Comparison } \\ \mathrm{C} & \mathrm{Mn} & \mathrm{Cr} & \mathrm{Ni} & \mathrm{Mo} & \text { Grain Size }\end{array}$ Physical Properties
NE-8744
NE-8744-Oil quench $1525^{\circ} \mathrm{F}$, drawn $900^{\circ} \mathrm{F}-1$ hour.
Treatment: $\begin{gathered}\text { NE-874A-Oil guench } 1525^{\circ} \mathrm{F} \text {, drawn } 900^{\circ} \mathrm{F} \text { - } 1 \text { hout } \\ \text { SAE-4140-Data from SAE Handbook- } 900^{\circ} \mathrm{F} \text { Draw. } \\ \text { SAE-3140-Data from SAE Handbook- } 900^{\circ} \mathrm{F} \text { Draw. }\end{gathered}$
Treatment: $\begin{gathered}\text { NE- } 8744-\text { Oil quench } 1525^{\circ} \mathrm{F} \text {, drawn } 900^{\circ} \mathrm{F}-1 \text { hour } \\ \text { SAE-4140-Data from SAE Handbook- } 900^{\circ} \mathrm{F} \text { Draw } \\ \text { SAE-3140-Data from SAE Handbook- } 900^{\circ} \mathrm{F} \text { Draw. }\end{gathered}$

An air-minded world waits for wings

BECAUSE of the airplane, the peace to come can be as global as the war. Trade and transportation will move freely to peoples never before a part of the world's markets. Millions to whom modern life is unknown have already met and understood the airplane. Like all of us, they will welcome its cargoes.
Such an opportunity can help maintain a war-size aircraft industry. The largest warplanes, the speediest bombers, may be inadequate for coming needs of passengers, mail, air express and freight.

The air industry can plan for an era of conversion and netw production with a free-
dom in one way unknown. Matcrials will be available in almost endless quantity and variety. Revere alone will be ready with all forms of copper, as well as with gifted new alloys. But which metal should be used for what: The choice may not be easy.

For impartial answers to questions about metals, industry can turn to Pevere. For just as industry in the future will not be re stricted to the traditional materials, neither will Revere. Since the start of the \%as, in addition to widening still further the uses for copper and its alloys, Revere has developed facilities for manufacture of the light metals, and is pioncering in the prow
duction of wholly new alloys that can cut manufacturing costs for many indestifers,

Today the copper industry nopproducing all-esut for wat. Nio copper is availatefor any other use. But pont-war planecrs with specific problems in metals are fofereen directly to the Ferere Executive Offices it New York.

REVERE

COPPER AND ERASS INCORPORATED

Founded by Haul Prvere in swis

Executive Officet:230 Park Are., Niew York

Fig. 1-Shaded portions of this all-welded earthmover were flame cut. Note how they outline the form of the machine

WITHOUT the process of flame cutting steel on a mass production basis, the use of are welding for large volume fabrication of machinery and equipment as we know it today could hardly have developed. Quality of workmanship and degree of accuracy of the flame cutting play an important part in the final appearance of the unit. They also have a significant bearing on the cost. Let's examine the factors involved.

In the first place, almost all modern are welded machinery receives the general shape of its outline from the flame
cut parts, as is illustrated in Fig. 1 which shows the main body structure of a modern all-welded earthmoving machine. The black parts in this phantom view are those produced by flame cutting. As may be seen, they form the major portion of the unit.

A high degree of accuracy and good workmanship are required to make a smooth appearing outline and a machine which will finish with symmetrical lines,

Fig. 2. (Left, above)-Notice fitup problem caused when corner is left on a gusset that fits up to a weld (solid lines). Compare with ease of fitup when comer is cut off as shown by dotted lines
Fig. 3. (Right) - By leaving long narrow strips "tacked" together, by skipping a fraction of an inch of cut as shown here, and then cutting them apart after the last long cut has been completed, sidewise distortion is held to a negligible quantity
unblemished by defects in the cutting. For this reason it is important to control the mechamics of the flame-cutting process, as well as the overall accuracy of the shaping of the part.

The second important factor, that of cost of the completed unit, is considerably affected by accuracy and workmanship in flame cutting. If the edges do not come together in proper relationship when assembling the structure, there is always a heavy expense in additional work of cutting the parts to fit at the time of set up or the expensive alternative of filling up the gaps with weld metal. A gap equivalent to half the thickness of the thimnest plate in the average welded joint will increase the time required to fill the gap with weld metal to well over 250 per cent of the time required with good fit-up.
In addition to the lost time and the additional welding electrodes consumed, there is almost always additional distortion of the structure caused by the greater concentration of heat in the locality where the gap was filled up by several additional passes of welding metal. Frequently grain growth or burning of the metal in the locality may also seriously weaken the finished structure.

By means of careful control and thor-

KDI

CARBIDE TOOL TRAINING COURSE

To help carbide users in war industries speed the training of new men, apprentices, and those being converted to carbide tool use in the metal working trades, Carboloy Company operates an instruction course at its Detroit plant for the training of carbide users' key men. These men receive one week's training in the fundamentals of design, brazing, application and maintenance of carbide tools, through actual shop practice, discussion periods, and training film showings. 'The men return to their own plants with a basic knowledge of carbide practice-and recommended procedure for training their own men, assisted, when desired, by our field engineers.

During the two years in which this training course has operated, carbide users in 39 states and 3 allied countries have received this training. The course is operated without charge as a service to war industries. A similar service is available to cartridge case die users-to instruct in the fnishing and servicing of carbide dies for drawing cartridge cases.

\star FIELD SERVICE

Since the day cemented carbide was first introduced-as a new, strange, "revolutionary"tool mate. rial-Carboloy has maintained a large, active staff of experienced feld engineers to assist users in all phases of carbide tool practice. As an example of the type of service
these men render, in one year alone these men render, in one year alone
they trained more than 5,000 men they trained more than 5,000 men
in users plants in the correct methods of rapid carbide tool
grinding.

\star SPECIALLY DEVELOPED GRINDING EQUIPMENT

Spectial larbide Esindine equipment developed by Carboloy Company in cooperetion with roachine buildera. plus pecial rapid erindiag technique. conserves carbides. reduces down time on thousends of vital war jobs. (Cat GT-141.)

* NEW CHIP BREAKER GRINDER
New!- Improved tyre of crinder for grindias chip breakers in carbide nteel cutting toals, including roller turner low apeed table travel. Alao adanteble to griading precision boriag tools and fint form taols. (Left.)

* TRAINING FILMS

To help in the gigantic task placed upon
industry and government, of tesining new thousands of workers, a set of sining new training films-as described bix carbide made available by Carboloy to industry was rall-to provide detailed training in all phases of carbide tool use. (Braklet GT-151.)
Film-"WHAT IS CEMENTED CAREIDE?
Film-"DESIGNING CAREOIOY TOOLS
Film-"BRAZING CARBOLOY TOOLS"
Film-"CHIP EREAKERS"
Film-"GRINDING CARBOLOY TOOLS
Film-"PUTTING CARBOLOY TOOLS TO WORK'

These siz
films are
available
approxin
print cos

\& RESEARCH AND DEVELOPMENT

A special committee on reatarch and development functions at Carboloy to con stantly improve preaent thethods find develop new methods, new materials for the future. The wark of the men on this committee-headed by: Dr. Zay Jeffriez meisllurgist end Chairman of the Board of Directors of Carboloy Comp-pany-has reaulted in many ousatanding coveributions now helpirs io further apeed war production through carbide usage. Itiss cornmitiee will corstimue its effota to advance the \&: m tore
dayy of peace as well.

* INSTRUCTIONAL LITERATURE

Each year Carbaicy gubimets cunvmetorc. sive enginecting buletins nuvema ers?a carbide sFactice. Curfent boniciets im-iver D-:13-R-finesimy und orvcine sarmivion case dies-GI-123-Ew-hiche tool matran in

\& ENGINEERING ARTIC IN THE TECHNICALPR
Through frequent farsicies in sech magermes Carbotoy eriginetra dixa

 witrec sicat netarwith worn high o

ougl workmanship, parts may be cut mechanically or by hand with the flamecutting proeess to an extremely high degree of accuracy. One of the most inportant factors in accurate cutting is that of completely laying out and studying each part and its relationship to other parts. Gussets or reinforeements, such as shown in Fig. 2, and bearing blocks set into box structures of welded construction should be studied with speecial care in order to get the corners cut to fit the contours of welds or other slight irregularities in the place where the parts will have to go.

Note how the three-cornered gusset in Fig. 2 sets up to the weld without gan if the corner is properly bevelled. The corner has been removed so the part will fit the contour of a weld (or a matural fillet in the structural shape of the part) against which the gusset or block fits. This saves cutting the corner off to fit as the structure is assembled. These rounded or bevelled comers and other small but highly important details of the shaping of the parts by flame cutting can easily be built into the original templet. It is easy to clesign a part so it can be made to exactly fit its final place
in the assembly without further cutting or fitting at the time of set up for welding.

Control of Equipment, Materials and Process: General observations should be made about the care and use of the mechanical devices used for flame cutting in order to assure good workmanship and efficient operation.
Probably first among these is that the units, whether they be hand-operated cutting torches or mechanical flame-cutting machines, should be clean. The operating parts should be made to work smoothly by cleaning and proper lubrication; all valves, driving mechanisms, and the like should be free of irregularities, dirt or maladjustments which may interfere with the smoothest possible opcration. Any slight irregularity in the operation of the machine, whether it is the opening of a valve, or the uniformity of spreed of travel, will cause a defect in the parts being cut. Careful servicing and regular careful cleaning of the machine by those who operate it will go a long way toward assuring good, high-grade workmanship in the flame cut parts.

Selection of the proper tip for the cut-

ting of any certain part and the correct cleaning and use of the tip, also has an extremely important bearing on the width of the kerf, the contour of the flame-cut surface, and the cutting speed. Almost all major producers of flane-cutting equipment have bulletins with specific directions and diagrams which describe the proper selection, the correct use, and the most effective means of cleaning flame-cutting torch tips. Such bulletins should always be carefully studied and followed.

Another really important matter of control, both from the standpoint of initial costs and materials as well as speed and efficiency is proper regulation of the oxygen and acetylene.
The amount of oxygen used in flame cutting, especially on heary materials, constitutes a major raw material cost. It is not uncommon to find oxygen pressures of 60 or 70 pounds per square inch, or even more, being used. Often the flame-cutting operations would produce a better quality of cut and operate at a higher speed if the pressure were reduced to 30 or 40 pounds per square inch. In addition, it is easier to remove slag from cuts made with lower pressures.
One effective means for controlling the pressure in the large mass-production flame-cutting operations is to have a single manifold from which the oxygen is distributed to the various cutting operations. Then feed this manifold through a single value which will automatically regulate the pressure to the desired number of pounds per square inch. Pressure is then beyond the control of the individual machine operator. Such automatic valves can be set properly by the foreman to meet the requirements of the job, and are then not subject to individual adjustment or the possibility of getting out of adjustment.

If the primary source of oxygen is thens cut to a pressure of 30 or 40 pounds per square inch and automatically maintained at that figure, it will climinate
(Please turn to Page 127)

Fig. 4. (Upper vicu) - Three types of templets for mass produc. tion flame cutting operations. The large one at left is cardboard and is used to "trace" cuts with a multiple flame cutting machine where from 10 to 30 or 40 pieces are wanted. Upper right is for large numbers of pieces, mechanically cut. Lotier right is special metal templet for hand cutting
Fig. 5. (Lower view)-Templets used by machines such as these must be accurate in size and form for consistent production of cut parts on a quantity basis

OVER 10,000 PM PLANS

already requested by industry

REASON: THE PM PLAN HELPS MAINTAIN

CONTINUOUS WARTIME PRODUCTION

Though introduced only recently, Anaconda's Preventive Maintenance Plan is already helping many plants maintain continuous production by keeping their electrical systems operating efficiently-despite shortages in essential wiring equipment.

To date, over 10,000 Plan Manuals have been sent to industrial concerns alone. Plant management is using them to protect the electric wire and cable on hand . . . to see that these vital copper products are being properly used . . . to detect hidden electrical weaknesses that can be corrected.

(1)

WHAT THE PLAN IS

The PM plan is a simple but comprehensive way to safeguard war production by preventing electrical hreakdowns in your plant before they call develop.

HOW IT WORKS

The plan provides a practical means of making a periodic, systematic analysis of circuits and equipment. Uncovers potential weaknesses . . . suggests ways to correct them ... prevents overloading of lines. Your own maintenance staff or electrical contractor can readily put the plan into operation.
Data thus gathered aids local W.P.B. Branches in reaching decisions on your requests for materials to prevent accidents.

HOW THE PLANT BENEFITS

The PM plan helps uncover weak spots in your electrical system before trouble develops. Provides practical "tools" to forestall-as well as foresee-would-be work stoppages. Helps maintain continuous wartime production.
If you aren't already utilizing the Anaconda Preventive Maintenance Plan, mail the coupon for full details.

4:1233A
> "Tomorrow may be too late . . . do it today!" anaconors's PREVENTIVE en Maintenance PLAN

[^3]

THE CLIP fastening shown in Fig. 2 is materially weakened because of the way the clips have been applied to the wire rope. Unfortmately, it is no worse than hundreds of other clip fastenings made by rope handlers who are eithen carcless or just don't know any better. And in these days when replacements of wire rope or other equipment are hard to get and machine shutclowns are more costly than ever before in all history, clips are mighty important.

What's wrong with this application? 1-The clips are staggered instead of all being applied with the base, or saddle, against the pulling rope and the U-bolt against the short encl. 2-The short: end between the two top clips is slack and can't take any of the load; hence, the top clip is useless, and we have the equivalent of only a three-clip fastening. 3-The bolts on the top clip have obviously been drawn too tight, thereby mis-shaping and weakening the rope at this point, and still further reducing the efficiency of the fastening. 4-The two middle clips are too close together. Clips should be evenly spaced at about six times the rope diameter or more.

Clips should not be drawn up too tight acrinst the rope, but neither should they be permitted to become luose. With the clips fastened, all nuts should again be tightened after the rope has been put under tension. Clips should be tightened with every rope inspection.

When inspecting clip fastenings, it is extremely important to examine the rope at the last clip farthest away from the loop or bight, as fatigue breaks often develop at this point due to the Fact that rope vibration or whipping is

Fig. 1. (Left)-This diagrammatically illustrates how efficiency of clip fastenings is reduced by incorrect application of clips or by bad design

Fig. 2. (Right)—WRONG: Just about every possible error that could be made has been afflicted upon the wire rope in this illustration of how not to apply clips.

Save to win
with these four simple rules of battery care :
1 Keep adding approved water at regular intervals. Most local water is safe. Ask us if yours is safe.
2 Keep the top of the battery and bat tery container clean and dry at all times. This will assure maximum protection of the inner parts.
3 Keep the battery fully charged-but avoid excessive over-charge. A storage battery will last longer when charged at its proper voltage.
4 Record water additions, voltage, and gravity readings. Don't Irust your memory. Write down a complete record of your battery's life histary. Compare readings.
If you wish more detailed information, or have a special battery maintenance problem, don't hesitate to write to Exide. We want you to get the long-life built into every Exide Battery. Ask for booklet Form 1982.

... is a vital principle for war-time Industry!

Conservation of materials is no new story to American Industrial men. Conservation has always been an important part of their work.

They've squeezed the last ounce of use out of materials in their care ... and today, that need is intensified.

One helpful principle to follow is that of "Buy to Last - Save to Win." Buy quality products and equipment, then care for them to avoid needless replacement. That conserves raw material, labor, and space in factories. It frees these productive elements for essential war production.

THE ELECTRIC STORAGE BATTERY COMPANY, Philadelphia Exide Batteries of Canada, Limited, Toronto

NATIONAL AND KARBATE
 TRADE-MARK
 TRADE-MARK
 CARBON AND GRAPHITE PRODUCTS

are being used successfully in a wide range of important applications in the mechanical, electrical and process industries because of the many advantages offered by their unique combination of physical and chemical properties.

- Resistance to severe thermal shock.
- No deformation at high temperatures.
- Not wet by molten metals - no sticking.
- Mechanical strength maintained at high temperatures.
- No reaction with most acids, alkalies and solvents.
- Low thermal expansion.
- High rate of heat transfer (Graphite and Graphite Base "Karbate" products).
- Low rate of heat transfer (Carbon and Carbon Base "Karbate" products).
- Good electrical conductivity.
- Self-lubricating.
- Available in impervious grades.
- Available in highly permeable (Porous Carbon and Graphite) grades.
- Easily and accurately machined and fabricated.
- Molded and extruded in special shapes when quantity justifies.

Carbon and graphite materials are available in the form of: Brick, Blocks, Beams, Plates, Flat or Hollow Tile, Slabs, Pipe, Tubes, Rods, Cylinders, Cement, Paste.
A variety of sizes permits fabrication of all types of equipment from small intricate parts to huge all-carbon structures.

Conventional design has been improved and simplified new design made possible by the use of "National" and "Karbate" carbon and graphite products. Following are some of the more important applications:
Heat Exchangers . . .Towers and Tower Equipment . . . Raschig Rings and other Tower Packings . . . Pipe, Valves and Fittings . . . Tanks, Tank Linings and Miscellancous Containers ... Filter and Diffuser Elements ... Packing, Piston and Seal Rings . . . Bearings . . . Molds, Mold Plugs, Inserts and Stools ... Ground Anodes ... Welding Electrodes, Rods, Plates and Paste . . . Brushes and Contacts... Miscellaneous Electrical and Chemical Specialties.

NATIONAL CARBON COMPANY, INC.
Unif of Union Carbide and Carbon Corporalion
IIEE
CARBON SALES DIVISION, CLEVELAND, OHIO
General Offices: 30 Eart 42nd St., Now Yoik, N. Y.
Braneh Soles Officas: New Yoik, Pithburgh, Chiease, St. Lovis, San Francisco

(Concluded from Last Week)
LIKE the blast furnace operation, sintering is first of all a thermal problem. Heat must be generated and transmitted to the materials to be sintered and the degree of efficiency attained in the use of heat is an important factor in sinter quality, productive capacity, and operating and maintenance costs. In the blast furnace operation the combustion of the fuel takes place at the bottom of a mass of iron bearing material and the products of combustion are forced up through the mass, the location of the zone of fusion remaining more or less fixed. In the sintering operation the combustion of the fuel takes place at the top of a mass of iron bearing material and the products of combustion are sucked down through the mass ahead of the downward moving fusion zone. Natural laws governing the passage of the products of combustion through a mass of iron bearing material are the same in both operations. Uniform resistance to gas flow without restriction to flow is just as desirable in the sintering operation as in the blast furnace operation because in both operations the products of combustion act as the agent for the distribution of heat. The measure of that desired resistance is, of course, in proportion to the depth of the material mass; in the blast furnace the measurement is in dynamic pressure

Actual starting point of the sintering operation. Fire from the gas burners is sustained by doun draft created by exhaust fan. Photo, Youngstown Sheet \& Tube Co.
and pounds pressure per square inch, in the sintering operation the measurement is in static pressure and inches of water.

Productive capacity of any given sintering machine is dependent upon the rapidity with which the mix can be sintered and passed over the hearti. After proper preparation of materials the factors to co-ordinate are depth of bed and machine speed. For good practice the sintering fire must be drawn down through the bed of material uniformly, across the horizontal plane and in vertical speed. The factor governing this uniformity is permeability of the bed to air. Here again the importance of raw material preparation is emphasized. The preferred condition is a flow of air through the bed in sufficient volume and at sufficient velocity to sustain the sintering fire at a maximum intensity and moving downward at the maximum

By CHARLES E. AGNEW Consultont

[^4]speed consistent with the time clement necessary for the transmission of heat to the naterials being sintered. Factors governing the attainment of this end are: proper percentage of fuel, proper percentage of moisture, uniform mixture of materials, and proper relation of particle sizes of the materials in the mix.

The fuel (carbon) of the sintering mix is burned to carbon dioxide $\left(\mathrm{CO}_{y}\right)$ and the volume of air used to burn the fuel of any given operation is simply a matter of mathematical calculation. For good practice the possible limit of fuel percentage in the mix has been well proven to be 5.5 to 8.0 per cent carbon by weight. Sulphur in the mix will replace carbon as fuel practically pound for pound. The fuel percentage may at times be slightly less than the range mentioned but if it is more, a slagging action nccurs and the sintering action stops. Using 6 per cent carbon and an assumed production of 1000 tons of sinter in 24 hours, 60 tons, or 120,000 pounds of carbon would be burned. To burn 120,000 pounds of carbon to CO_{3}, with air at average temperature and density, requires approximately 18,000 ,0100 cubic feet of air, or 12,500 cubic feet per minute in 24 hours.

Sometimes it is said excess air is needed. Aside from the usual 50 per cent excess allowance for theoretical combustion needs in an open-hearth fire
there camot be any need for excess air in the sintering fire. Excess fan capacity is needed to take care of the foul air which enters the waste gas system through shrinkage cracks in the sinter cake and through seal leaks and the reduction in the amount of this foul air and/or the use of a greater percentage of the fan capacity for sintering purposes offers the opportunity for increased production and important savings in operating and maintenance costs.

Details of Exhaust System

The sintering fire is sustamed by a down draft of air created by an exhaust fim. The volume flow of air is measured as static pressure in inches of water. The usual capacity specification of the exhaust fan for the continuous machines is 100 per cent to 400 per cent over theoretical combustion needs and is indicative of the amount of foul air expected. The fan will have a low and a high static pressure specification against a high and a low volume of waste gas, at an assumed average temperature. In all operation when the static pressure reading approaches maximum the volume flow of air approaches minimum and when the pressure reading approaches minimum the volume flow of air approaches maximum. The preferred condition is a maximum volume of air against a uniform resistance to flow without restriction to flow. The static pressure reading in relation to the fan characteristics compared to theoretical combustion needs is a positive check against the amount of foul air being handled.

Here again the importance of proper preparation of raw materials and the efficient use of return material is cmphasized. Where there is segregation of particle sizes when the mix is delivered to the hearth most of the fines will remain at the top of the bed and most of the coarse particles will roll to the bottom. The stratum of fines at the top of the bed will carry the greater percentage of moisture and, consequently, will have the greater percentage of shrinkage. The shrinkage cracks in the top stratum will permit foul air to pass to the more open stratal down through the bed and such foul air is iust as objectionable as fonl air through a seal leak.

The hearth of a sintering machine is an open orifice through which the waste gases enter the gas disposal system. The bed of material on the hearth closes the orifice with the exception of the interstices of the mass. The total area of the interstices on the top surface of the bed then constitutes the orifice through which the air is pulled. If the bed has been prepared properly there will be more uniform shrinkage in the

Induced druft fan which causes flow of air through bed of material on grate bars. Photo, Youngstown Sheet \& Tube Co.
top surface and the air will be pulled through the bed in the preferred filtering manner, but if wide shrinkage cracks develop in the top surface foul air is pulled through. A certain amount of such foul air is inevitable but it should be held to a minimum by the proper preparation of materials.

Static pressure serves the purpose of equalizing the suction throughout the hearth area but otherwise it is not important in itself; like the dynamic pressure at the blast furnace it is a measure of resistance to the flow of air. The sintering rate will vary with materials because of the resistance offered to the passage of air by the bed of material and to the ability of the material to absorb the heat generated; conserduently, the preferred measurement of static pressure will vary with materials.

Relation of particle sizes of materials in the mix is of the utmost importance in the transmission of heat and the flow of waste gas. With the sintering fire being sustained by a down draft the heat of the products of combustion serves to preheat the materials ahead of the fire. The possible degree of efficiency in the tramsmission of the heat is entirely dependent upon the intimacy of contact between the waste gas and the material of the mix. With the natural tendency of the fines and coarse particles to segregate when deposited on the sintering hearth the most open part of the bed lies next to the grate bars and offers the least resistance to the passage of the waste gas and the least opportunity for the transmission of heat from the gas
to the material. Here again the importance of proper preparation of ratw materials is emphasized.
With the bed of materials having a stratum of fines at the top and becoming progressively more open downward toward the grates an average permeability throughout a vertical section of the bed can be maintained. Such a bed, however, is most wasteful of heat because as the voids between particles become larger, the waste gases rush through the voids without the opportunity for contact with stock; consecquently, the benefit of the heat is lost to the operation but the detrimental effect of it upon grate bars, pallets, and suction necks, is certain and operating and maintenance charges are adversely affected. With proper preparation of materials with regard to particle size to maintain uniform permeability through a vertical section of bed rather than an average permeability the heat will be absorbed more efficiently, the waste gases will travel at less velocity, and consequently will pull less fines through the grates into the wind box and there will be longer life for grate lars and less abrasive action on the fan blades.

Use of heat in sintering is directly comparable to the use of heat in the blast furnace operation. In both operations heat is transmitted from the gas column to the stock column. High temperature in the sintering plant windbox is comparable to high lop temperature in the blast furnace; both indicate there has not been proper contact between the gas and the stock for the transmission of heat both indicate a waste of fuel.

V—Waste Gas Disposal

This is one of the principal items of construction, operating, and maintenance costs. The volume and weight of the gas determine the size of the fan and the amount of fan power consumption. The abrasive action of the fine solids entrained in the waste gas stream is the cause of an expensive item of maintenance costs. The waste gas is composed of the products of combustion of the fuel, plus the moisture of the mix, all of which is converted to water vapor, plus all other released volatiles of the mix, and plus the infiltration of foul air through shrinkage cracks and seal leaks. The total of these gases is expanded in volume to the volume detcrmined by the temperature of the gas and is subject to the natural laws governing the change of volume of gases with a change in temperature.

Here again the importance of heat transmission to the bed of material on the hearth is emphasized. When constructed the cubical dimensions of the waste gas disposal system are fixed. The
(Please turn to Page 129)

Take a Look at TOMORROW-TOCloy!

> Mr. Postwar: I'll remember that- it's another reason why I shall specify Century Motors.

Century Form I Motor

The Protection of CENTURY INSULATION

Assures Continuous Moior Performance Under the Toughest Conditions

By the use of slow-moving conveyors and automatically-controlled ovens, the completed stator and winding of Century Motors is dehydrated, and then is submerged in and passes through a tank filled with Century "Clingto" insulating varnish, and then baked. This process is repeated as necessary to preserve and seal the winding into a homogeneous mass.

This is followed by a final coat of Century "Protecto" insulation compound which places a heavy exterior protecting armor over the entire winding.

Century slot insulation is built up with fibre board for mechanical strength and varnished cloth for dielectric strength.

The entire Century insulation process produces a winding that

1/6 to 600 horsepower
is highly resistant to moisture, to tropical climatic conditions, to mild acid and alkali fumes, and to the effect of magnetic vibration and the mechanical impact of particles carried by the cooling air.

Such insulation material and treatment is absolutely necessary for motor protection for long operating life.

Your nearest Century Application and Service engineer will gladly give you full details of all the advantages of Century Motors-show you why thousands of plants rely on Century for continuous, all-out production.

CENTURY ELECTRIC CO.
1806 Pine Street
St. Louis, Missouri
Officen and Stock Points in Principal Cities

Fig. 1-Electronic control cabinet

Wide Motor Speed Range
 WITH ALTERHATING-CURREMT SUPPLY

now made available through newly developed electronic controls

THE SEARCH for a satisfactory motor with exceptionally wide adjustable speed range to operate from alternating current has continued ever since alternating current itself was commercially used. Many solutions have been offered with some degree of success; yet, on many modern machine tools and other industrial machinery, a separate source of direct-current power is furnished in order that a direct-current motor with its desirable characteristics might be used even if it means individual motor-generator sets.

None of the special adjustable speed alternating-current drives for general purpose use are without some undesirable feature, whether it be speed range obtainable, speed torgue characteristics, first cost, maintenance, mounting difficulties or others. In many instances where direct-current power is available, the standard direct-current motor does not completely fulfill all requirements; such as extremely wide stable speed range, good speed regulation and smooth
automatic acceleration.
One of the latest systems designed to fulfill as many of the desired requirements of an alternating-current variable speed motor as possible is the electronic Mot-O-Trol. The basic idea is not new, Westinghouse having furnished such motor drives on special applications some years ago. Recent refinements eliminate many of the earlier handicaps and make the new electronic systems comparable or better than other existing solutions.

In general, the system consists of a single or polyphase grid-controlled thyratron tube rectifier, which takes power from an alternating-current line and rectifies it into direct-current output. The rectified direct-current voltage is applied to a regular shunt wound direct-current

By T.R. LAWSON
Electronic Control Engineer
Westinghouse Electric \& Mfg. Co. East Pittsburgh, Pa.
motor and may be varied from zero to motor rated voltage (or above) for directcurrent armature control. Smaller thyratrons are also used in the control to provide rectified direct-current field current for the motor, the field voltage being held constant throughout the range of armature voltage and then being reduced to provide greater speed range by field weakening.
Speeds may be preset to any desired speed within the design range with two speed-control potentiometers and reversing contactors as indicated. Different forward and reverse speeds may be preset so that only the operation of the forward or reverse pushbuttons is necessary to obtain a predetermined speed in either direction.

Speed also may be adjusted at any time while the motor is running. Speed control potentiometers are tandem type to cover the entire range of armature and field adjustment on a single dial. Adjustment of the potentiometer changes the firing point on the alternating-current

SMOOTHER OPERATION, LESS MAINTENANCE with THERMIT WELDED CRANE RUNWAY RAIL

Send for informative 16 -page booklet, "Thermil Welded Crane Runway Rail"-tells how your own maintenance men quickly become proficient Thermit welders, contains detailed instructions, diagrams and illustrations.

Crane wheels, pounding over mechanical joints, not only batter and chip rail ends, damaging them, as shown in the photograph, but the entire crane structure may be affected due to the repeated blows and vibration. This soon results in excessive maintenance of the structure and the rail joints-tightening or replacing bolts and fish plates and eventually replacement of the rail itself due to the battered ends.

Many industries have reduced this undue drain on maintenance man-hours, and the accompanying replacement-use of critical materials, by eliminating mechanical rail joints and transforming crane runway track into smooth stretches of Thermit welded continuous rail. With rails forming one continuous surface there are no ends to become battered or worn. Where the rail is collector rail, 100% conductivity is obtained without the use of rail bonds.
The Thermit welding process is easy, rapid-requires no special skill. Only a small amount of equipment, all portable, is required.

line voltage waive at which the tubes fire and thereby changes the direct-current output voltage as required.
Speed Range and Regulation: The normal speed range by armature control is 20 to 1 (below the base speed of the motor) though a much wider range such as 100 to 1 is obtainable. Above basic speeds field control is used, normally 2 to 1 for standarel motors but limited chiefly by the mechanical limitations of the motor.

The standard Mot-O-Trol is designed to antomatically regulate the motor speed, if adjusted for any one speed, so as to maintain essentially constant speed regardless of load. Through other small, inexpensive control tubes the directcurrent voltage output of the main rectifier tubes is controlled to compensate for speed changes. The degree of compensation can be adjusted from within the control cabinet. In a properly adjusted system, the speed will not vary more than 4 per cent from a presetting (with torque varying from no load to full load value) for a speed range as much as 10 to 1 ; and not more than 8 per cent for any speed within the speed range of 20 to 1 . Normal variations in alternating-current line voltage have only a small effect on the speed regulation.

Motor Rating: Motors furnished with the Mot-O-Trol system are selected to handle constant torque load over the entire armature control speed range (or up to the base speed of the motor) and constant horsepower over the field control range, continuously without exceeding safe temperature limits. The frame size of the motor will depend upon the balse speed rating and other operating characteristics but in most ratings will

From top to bottom-

Fig. 2-How the Mor-O-Trot works: Incoming alternating-current potver is converted to direct current by grid-controlled rectifier tubes, supplying armature and field circuits of the direct-current mofor. Potentiometer controller varies coltage applied to motor by shifting phase of grid-control coltage on rectifier tubes
Fig. 3-Control system holds maximum speed regulation (difference between full load and no load speed) to within 8 per cent at any point in motor speed range of 20 to 1

Fig. 4-Within a motor speed range of 10 to 1 , maximum regulation can be limited to 4 per cent at either low or high speeds Fig. 5-Within the usual operating speed range, speed is constant from zero to maximum torque as shown here
be somewhat larger than the stamelard direct-current motor frame of the same horsepower and basie speed rating. The reason for a larger motor frame in most cases is clue to the high form factor of pulsating current obtained from the rectifier when the firing angle is phased back to obtain low output voltage and consequently low motor speeds.

The control is arranged so that the motor is always started at full field regardless of the setting of the speed potentiometer. If the speed is set above base speed, with weakened field, the speed control does not become effective and the field is not weakened until the motor reaches based speed. Through a special current limiting device built as part of the standard Mot-O-Trol unit, automatic fast but smooth accelcration is oltained. The current limiting device also works from a small ausiliary control tube which in turn controls the firing of the main rectifier tubes so that the voltage output of the rectifier will be such that a preset current limit will not be exceeded. For general application the current limit will be exceeded.
The current limiting device may be set over a wide range up to 200 per cent of rated full load motor current, so that accelerating characteristies may be virried to suit load conditions. If unusually high starting currents are required, the rectifier tubes must be carefully chosen so that their peak ampere rating is not exceeded even though the ruming load conditions do not exceed the average ampere tube rating.
The motor is stopped by means of a dynamic braking resistor which is not in the motor circuit during rumning conditions. The amount of braking resistance is adjustable.
Operating Features: In addition to the current limitation feature, the usual thermal overload, low voltage and fiekd failure protection, its advantages are: -All the clesirable characteristios of a direct-current motor drive from an al-ternating-current supply.
-Only one rotating clement (the motor), consequently no vibration trouble from other auxiliary equipment.
-Ease of mounting; control may be mounted in its own cabinet or built into suitable space in machine.
-Finger tip control; no field rheostats required, speed control in regular push button station.
-Adjustable accelerating torque to meet various load requirements. Smowth automatic acceleration.
-Much wider range than normal with stable operation at extremely low speeds and exceptionally good speed regulation moder varying load conditions.

-Preset speeds.

Four Pieces of Equipment: Diagra(Please 1 urn to Page 132)

BONDS BUILD EOMREES

In all branches of transportation there is an eager desire to keep equipment fully abreast of the times-to take every advantage of developments that economize power and increase speed, efficiency, convenience, comfort. Designers of buses, railroad equipment and all other units of transportation are therefore keenly interested in a material that is supreme among
all practical weight-saving metals. Magnesium, extracted by Dow from sea water and Michigan brine, is the lightest of all structural metals. At present the bulk of this production must go to the makers of our aircraft. But when peace returns magnesium will play a mighty role in the further development of erery medium for the transport of both passengers and freight.

Two new 16 mm sound fims in full color are available on a free loan basis for lathe apprentice training in the war industries.

Professionally filmed in our own factory under the dirsef supervision of competent lathe operators; these pictures clearly show the basic prineiples of engine lathe operation.

Showing time for each film is approximataly 20 minutes. Write roday for complete information.

Time, material and manpower can be saved for vital work if you use the right lathe for every job. The matching of the job and the lathe has never been more important than today - in no other way can maximum production be obtained. There is no place in our war production effort for slow, obsolete machines of questionable accuracy.

This is proved every day in hundreds of war plants where competent engineers have matched jobs with South Bend Lathes. Their speed, accuracy and ease of operation increase
output, hold close tolerances, and conserve manpower for more efficient production.

There is a South Bend Lathe for practically every class of machine work. Toolroom Lathes and Engine Lathes are built in five sizes: $9^{\prime \prime}, 10^{\prime \prime}, 13^{\prime \prime}, 141 / 2^{\prime \prime}$, and $16^{\prime \prime}$ swings. South Bend Turret Lathes are built in two sizes: Series 900 , and Series 1000. A wide selection of attachments, accessories and tools are available for special classes of work. Write for information, specifying size and type of lathe in which you are interested.

Painting Speed Increased

400 Per Cent

INNOVATIONS at the Propeller Division plants of Nash-Kelvinator Corp. have increased output more than 400 per cent in the propeller blade painting department. Many labor-saving steps have been developed, and some 48 hours of drying time saved.

Considering the total time elapsed between the beginning and the end of the painting and drying operation in the blade department, it may be stated for comparative purposes that the average time was 40 minutes under the old method while it is now considerably less than 4 minutes. In addition, the final drying period of 48 hours-the amount of time it took for the blades to dry after work on them was completed in the blade painting department-has been completely eliminated.

Under methods used when Nash-Kelvinator first began the mass production of the intricate and delicately-balanced Hamilton standard hydromatic propellers, blades ready for painting were first carcfully cleaned by hand with a lacquer thinner. They were then carried individually to the spray booth, where the butt end of the blade was masked with tape. The blade was placed tip up on the floor and a thin coat of zine chromate primer was applied.
When this primer coat had flashed off, the tip of the blade was sprayed with yellow lacquer (the tips of the blades are painted yellow as a safety measure for ground crews working at night). After this had dried for 30 minutes, the tip was masked off and the remaining primed portion of the blade given a double coat of black lacquer, which was allowed to dry in the booth for $15 \mathrm{~min}-$ utes.

The blades then were removed from the blade department to undergo 48 hours of drying before final assembly.

Under the present process the blades are cleaned in a trichlorethylene vapor degreaser system, which also heats them as it cleans them. The blades are hung butt end up in a metal mask on a pusher type monorail conveyor and lowered in the degreaser, thus eliminating considerable handling as well as the old masking operation. After this they are transferred to a power conveyor. Both primer

To eliminate the 40 -hour final drying period and to speed up the entire finishing cycle, batteries of infra-red lamps were set up in the propellor plant. These lamps now dry the blades in the 4 minutes that it takes them to traverse this small unit
coat and yellow tip are sprayed on groups of blades at once. Blades then pass through an infra-red drying oven, after which they are ready for the masking of the yellow tip and application of the standard coat of black lacquer.
To eliminate the 48 -hour final drying period and to speed up the process, generally, several batteries of infra-red lamps, such as the company had used in
its antomobile and refrigerator plants, were introduced. These lamps now dry the blades in less than 4 minutes.
The propeller blades are so carefully balanced during their processing that even the thin film of paint must be applied exactly, and each newly-painted blade is checked for perfect balance before it is sent to the final assembly departments.

Metal Statistics in Thirty-Sixth Year

Metal Statistics, 1943; 728 pages, 4×6 inches; published by American Metal Market, New York, for $\$ 2$.

This is the thirty-sixth annual issue of this publication and brings up to date the same assortment of statistical information on ferrous and nonferrous metals and miscellaneous economic subjects as in prior issues.

Due to the war it has been impossible to furnish authentic data on production and consumption of steel, iron and metals in foreign countries and in this country publication of statistics on production, consumption and stocks of the principal nonferrous metals has been interdicted. Iron and steel figures, ex-
cept for exports and imports are almost as complete as in former years.

Analysis of Debt Policy

The New Philosophy of Public Debt, by Harold G. Moulton; cloth, 83 pages, $4^{3 / 4} \times 7$ inches; published by the Brookings Institution, Washington, for $\$ 1$.

A new philosophy of public deht has gained acceptance in influential quarters. The traditional view has been that sound fiscal policy requires holding a nation's debt to as low a level as is possible. According to the new conception, a continuous expansion of the public debt is necessary for prosperity, and the size of an internal public debt is immaterial.

In this volume the new philosophy is analyzed with especial reference to its bearing on inflation

"SUPER" GRINDING Prolongs TOOL LIFE

By REGINALD TRAUTSCHOLD

FEW DEVELOPMENTS in metal cutting-that is, in conventional machining practice- have given so much promise of effecting important mechanical advances as do those discoveries at the Wright Aeronautical Corp. where, by virtue of finc-finish grinding of the cutting faces and the use of correctly proportioned chip breaker grooves, the productive life of lathe tools has actually been prolonged as much as twenty-fold and even more. Over 100,000 alloy stee] forgings were machined (rough turned) by such superfinish tools with service results, compared to those obtained with, conventionally hand-ground tools, as tabulated. A standard tool for rough turning was employed-one with a 13 degree side rake, 5 -degree back rake, 6-degree front and side clearances, and a chip breaker design adapted to the application.
These superfinish tools are ground at Wright's in gang fixtures holding 18 cutting tools against the dressing wheel, thereby attaining a degree of ground surface smoothness and uniformity quite umobtainable in customary hand grinding. The marked difference in resulting tool serviceability (tool life) is thought due to the much more even flow of metal through the creviecs at the edge of the superfinish cutting tool and the fact that the variable cutting edge of handground tools, relatively unavoidable, must create more pronounced concentrations in cutting stress and more tool fouling, with consequent increases in generated heat, abrasive wear and early tool breakdown.

So general, as well as so marked, ari the prolongations in tool life at Wright's -indicative of substantial attatiable increases in production on other war work -that interest centers for the moment upon the great amount of lost effort and inefficiency in common machining operations performed with conventionally hand-dressed tools.

Of especial concern is that properly ground tools of molybdenum steel can be used in place of tools that have heretofore had to be toughened to the task by including such critical alloying ingredi-
ents as tungsten, cobalt, etc.--all of which are alarmingly scarce at the present.

Surface Influence: The uniformity of chip, or of metal removed-hence, the relative smoothness of the work machined -naturally exerts much influence upon the tool life, a fact that is perhaps more clearly evident from the graphic depic-

Chart shotes prolongation of tool life obtained by use of machine superfuish applied to cutting tools. Scale at left is relative life-all show increase in life from "norm" of 1. Note rate of increase runs up to 28 on the adapters, representing 2800 per cent increase in tool life
tion of results at Wright's shown in the chart based upon the compilation of statistical data.

Necessarily, the character and complexity of the machining involved are considerations, as evidenced by the far greater relative prolongation of tool life in such operations as cutting gears, the drop in degree of betterment when turning shafts, and the even more restricted improvement in the case of rings, which latter task commonly involves a minimum of machining. In finishing adapters, on the other hand, in which the weight of metal removed from a multiplicity of surfaces is even less uniform than in gear cutting, the life prolongation of superfinish tools is customarily eonsiderably higher.
Since the cross feed of the cutting tonl is commonly subject to quite sensitive control, it appears evident that the destructive frictional heat generated in the machining process is governed more by the relative smoothness of the work surface than it is by the depth of feed, or thickness of chip removed-likewise, the abrasive wear responsible for the destructive heating more by the textural characteristics of the work surface than by the hardness of the machined surface -and whether the metal removed is of fibrous or crystalline structure. This highly relevant fact is, furthermore, of potent concern in manufacturing bearings, especially those of antifriction type in which proper bearing surface conditioning is an outstanding recuiremeat.

Sound Film Directed To Women War Workers

Addressed specifically to the wom:m war worker and her health problems is a new sound film, "To the Women," recently released by Commercial Films Inc., Cleveland. It covers in dramatic fashion various health problems the woman war worker encounters, and is designed to help cut absenteeism.

The film, according to Commercial Films, was produced with the co-operation of C. O. Sappington, M. D., Dr. P. H., an authority on industrial health and preventive medicine.

Data from Wright Aeronaucical Corg.-based on machining over 100,000 alloy steel forgings.

*Three simple rules for hammer operators to follow -to lengthen the life of the die blocks you buy:
1 Go easy on the lubricant. Too much is as bad as too litcle. It's liable to cause fire-cracking.
2 Be gentle when you break in new dies. Greater initial care will give you more forgings per sinking.
3 Seat them perfectly in the sow block. Precise alignment is good insurance against block breakage.

One more thing. Due to recent expansion of production facilities, Heppenstall Hardtem Die Blocks are now available for quicker delivery. There has been no change in Heppenstall quality standards
and the exclusive Hardrem heat treating process which assures more forgings per sinking. You'll find it pays to specify Heppenstall Hardtem when your blocks need replacement.

To help speed your war work, Heppenstall offers you this free steel-weight calculator. Write now-the supply is limited.

Heppenstall

PITTSBURGH - DETROIT - BRIDGEPORT EDDYSTONE

"Mr. Harker, please! . . Washington calling . . . report at once to plant manager."
"Calling Mr. Thomas . . . please attend meeting at production engineering office immediately."

What a savings in manpower . . . what a savings in valuable time . . . when messages are delivered by Straight-Line Communication!
It does the job QUICKER and BETTER than by any other means . . . and the man-hours it saves more than pay for the installation in an amazingly short period of time.
For 49 years Stromberg-Carlson has been developing the finest type of sound reproducing equipment. Why not let us show you how we can solve your own communication problem?
Get in touch with the Sound Systems Division of the Stromberg-Carlson Company, 100 Carlson Road, Rochester, New York. Write for free Booklet No. 1940.

STROMBERG-CARLSON

Device Improves Welding Of Steel Studs to Hinges

A device reported to make practically fool-proof the projection welding of steel studs on metal hinges and sheet metal surfaces was recently peffected by Andrew Campriello, a foreman and spot welder at General Electric's Schencetady Works.

The device calls for a vertically-milled slot in the tapered collet which is located in the bottom electrode. When the stud is introduced in the collet and the upper electrode is depressed, the jaws of the collet close tightly about the stud.

Resulting pressure causes current to be distributed evenly on all sides, and at the top of the stud near the welding zone rather than through the entire stud and then to the sheet.

Below the collet is a space for air, forced in under pressure by a hose. As soon as the welding is complete and the upper electrode lifted, the air pressure forces the tapered collet upward. The collet expands and releases the stud. "Binding" of the stud on relcase was formerly a problem.

When the collet reaches a height sufficient to release the stud, its movement is stopped by a setscraw which engages the bottom of the collet.

Leaflet Describes Coke

Plant Construction

"Coke Oven Plant Construction and Development in 1942" is the subject of at leaflet just issued by Koppers Co., Eugineering and Construction Division.

Written by W. A. Leech, Jr., of Koplpers, the publication represents a summary of recent developments in the field of coke plant construction. It lists improvements in design, cites certain new processes and reveals last year's construction figures. During that period eleven coke plants were built and put into operation by Koppers.

Simplifies Control Analysis

One step in method of determining molybdenum removes many of the troubles encountered particularly when small quantities of the element are involved

CHEMICAL laboratories over the country are doing their part in the program to turn out a greater tonnage of alloy steel by producing more accurate control-malysis faster than ever before for steelmakers. The scrap that steel manufacturers receive nowadays for the open-hearth charge is becoming more contamimated with impurities and various alloys. A few years ago, interfering elements were not present in more than a few hundredths per cent and, therefore, they did not present a serious problem.

Now, with the shortage of molyblenum, a close check is kept of the scrap and the bath before any additions are made. In making determinations of molybdenum in such small quantities at present, difficulties are encountered in completely reducing the red color of ferric thiocyanate and some trouble from copper precipitating as the sulphocyanide.

No claim is made for the originality of the following method, which no doubt has been in use in laboratories, but with the addition of one step in the procedure, which requires prolsably three minutes of extra time, all difficulties have been eliminated. This step in the procedure consists of the addition of 20 milliliters of a cold perchloric acid solution, 5 milliliters of sodium thiocyanate, 15 milliliters of stannous chloride solution and reextracting the butyl acetate solution after having drawn off all of the first acid and water layer. The addition of the cold perchloric acid solution is an important phase of the procedure.

By C. G. HUMMON Chief Chemist Sheffield Steel Corp. Kansas City, Mo.

Solution

Sodium thiocyanate (NaCNS)-5 per cent, 25 grams to 500 milliliters water
Stamous chloride $\left(\mathrm{SnCl}_{2}\right)-112$ grams of stamous chloride dissolved in 100 milliliters of concentrated hydrochloric acid. Dilute to 1 liter and add granular tin to preserve the solution
Perchloric acid - 40 milliliters of 70 per cent perchloric acid in 100 milliliters of water.

Procedure

Weigh accurately a 0.1 -gram sample and transfer to a 200 -milliliter erlenmeyer flask. Add 20 milliliters of perchloric acid and 10 milliliters of water. Heat until solution is complete. (Note-for cast irons, remove from hot plate just before solution is complete and add a few drops of hydrofluoric acid, then proceed as in steel). Continue heating until dense white fumes clear out and hover over mouth of flask. Let cool and add 50 milliliters of water. The soJution is cooled to below 20 degrees Cent. (68 degrees Fahr.) Cast jron should be filtered before cooling to remove graphite.
To the cold solution, add 10 milliliters of sodium thiocyanate and shake thoroughly. Now add 25 milliliters of stamnous chloride and mix well. Transfer the solution to a 250 -milliliter separatory funnel and add 50 milliliters of butyl acetate. Stopper the funnel and shake hard
for at least 60 seconds. The foregoing procedure must be carried out without stopping, therefore, have fumnels, graduates, and solutions clean, cold and ready. Always rinse the fumnel twice with distilled water just before using.

Allow the layer to separate, remove stopper and drain oft all of the acid layer. Add from 4 to 5 milliliters of sodium thiocyanate and 20 milliliters of cold perchloric acid solution and slake well; now add from 14 to 15 milliliters of stamnous chloride solution and shake hard for 30 seconds, let solution settle and drain off the acid layer. Give the fumnel a few swirls, again let the contained water settle for a few seconds and then drain off the excess water. The orange layer is now drained off into a 50 -milliliter graduate and the solution again is allowed to stand for a few seconds. This will remove practically all of the water. Pour the solution carefully into a 50 -milliliter volumetric flask and make up to the mark. The solution is well mixed and is now ready for the photelometer. The procedure used in taking the reading on a Cenco-type photelometer is:

The blue filter is placed in the filter holder and two cells are thoroughly cleansed. Add distilled water to the middle cell and a portion of the solution containing the molybdenum to the other. Switch on the photelometer light several minutes before a reading is taken to fatigue the photoclectric unit. Place the cell containing the distilled water in the path of the beam of light, and adjust the intensity of the light with the diaphragm until the needle of the galvanometer reads 100 . Now slide the cell containing the colored butyl acetate into the path of light and note the galvanometer reading.

INDUSTRIAL EQUIPMENT

Inspection Instrument

Larrimore Sales Co., St. Louis, announces the Inspector-said to be a highly perfected instrument, combining two tube fluorescent "daylighting" with single or double 5 -inch magnifying lens

to assure accuracy and eliminate eye strain in usual inspection work during and after production, by the tool designer or maker, in first-aid, by the engineering department and others in reading small detail on maps, blue prints, micrometers, etc.

A feature of the unit is the type brackets used. These, it is said, are the most practical ever offered, making the instrument very flexible when in use. Unit is being offered in either bench or floor models.

Welding Machines

Hanson-Van Winkle-Munning Co., Matawan, N. J., announces a new type low-voltage electric current multipleoperator welding machine, for use especially in shipyards to enable a large group of welders to work from one mo-tor-generator set instead of having am individual motor-generator set for each welder. Its primary purpose is to faciliate and quicken welding operations.
The equipment is reported to service a number of operators, since at no time will all of them be using their joint machine simultaneously. It also reduces floor space by keeping the current generating equipment to the most efficient minimum, centralizing the rotating and control equipment and giving the maximum deck and aisle space to the operators.

The motor-generator set features a capacity of 1500 amperes at 70 volts, and is made in two types-stationary and semi-portable. In the stationary type, the drive motor can be either alternating or direct current. If the
drive is the former, the motor can be of either the synchronous or induction type, for 60 or 25 -cycle operation.

Motors can be of any voltage; 220, 440 or 550 for alternating or direct current, or 2300 volts for the alternatingcurrent drive. Motor starter panel and generator control panel are complete, separate units that must be permanently installed. The semi-portable type is a complete drive and control mounted on a single bed plate, completely wired and easily accessible. Units can be picked up and moved by a crane without difficulty.

Coolant Spout

J. N. Fauver Co. Inc., Detroit, is offering a new Bullseye coolant spout which can be readily adjusted by finger-tip pressure to any angle or curve, directing the coolant stream directly on the tool. It is said it can be easily fished under, over, through or around rigid machine parts.
Flexibility of the spout permits its easy re-adjustment as the work progresses and

eliminates the elbows, Ts, Ls, connectors and adaptors that complicate rigid piping.

Unit is being offered in a range of sizes ($1 / 8$ to $3 / 4$ inside diameter), in any length. Furthermore, it is reported, it is rustproof, leakproof and scaleproof -adjustable also for oil, air, water, steam and grease.

Dual-Vane Pumps

Hydra-Motive Division, 723 East Milwaukee avenue, Detroit, is now offering three new constant delivery, hydraulic vane type pumps for high pressure operation. Available in three sizes to give service from $21 / 2$ to 60 gallons per minute, these are of the dual vane design and also incorporate the new "compound pumping" development which increases the capacity of the pump by as much as 30 per cent without in-
crease in the overall size of the housing.
Maximum continuous operating pressure of standard pumps is 1250 pounds per square inch, but they also are available for operation at considerably high pressure. Pressures as high as 2000 pounds per square inch can be handled for prolonged periods without damage or overheating, it is said.

Compound pumping consists essentially of employing the ends of the vanes nearest the shaft to function as a pistontype pump. On the intake cycle, when the vanes move outwardly from the center, they "pick up" oil from an intake port and trap it in the vane slot. On the outlet or pressure portion of the cycle, when the vanes arc forced back toward the shaft by the change in contour of the stator, the oil is forced out of the vane slot into an outlet port which connects with the main outlet. This sequence occurs twice during each revolution of the rotor and at diametrically opposite sides so that the operation is entirely balanced. Thus all forces on the shaft bearings are cancelled out.
The three pumps are available in the following range of volume capacities: $21 / 2$ to 12 gallons per minute, 13 to 30 gallons per minute and 37 to 60 gallons per minute. All three units are offered with foot mounting. The two smaller ones are available with motor adaptor mounting.

Toggle Clamp

Detroit Stamping Co., 359 Midland avenue, Detroit, is offering a new, small, light duty clamp especially suitable for use in aircraft construction, or on other

work where clamping space is limited. It measures only $5 \frac{1}{2}$ inches in height overall.

exs op quickly
 Runs Profitably on

 with UNIVERSAL CAMMING

Just Remember.. "CLEvELANDS CUT COSTS"

THE job shown in work in the photograph at left was processed on a Cleveland Single Spindle Automatic. The savings made, in cost and in production time are typical of savings anyone concerned with production wants to make, so give a moment's consideration to this case history. . .
Stock. . . $61 / 2$ inch bar; 4160 steel, hot finish.
Operations . . . Gauge, rough drill, zough turn O. D. in two stages, form O.D. complete, rough bore, finish bore, ream and cut off. Finish length $91 / 16$ inches. Length of body (formed with one tool) $61 / 2$ inches.
This Job Was Set Up OuickIY . . . because every operation on a Cleveland Automatic is controlled by standard cams, easily reached and quickly set to any position with the aid of an exclusively Cleveland universal adjustment feature. All control settings are simplified by quick-reading calibrations which reduce original set-up time to a remarkable minimum, also make it possible to retool accurately for a re-run.
Ran Profitably . . . because one Cleveland accomplished what two machines and operators had formerly done, resulting in a saving of more than 62 per cent. This is typical of Cleveland Automatic economies.

That is why, with production men, Clevelands have a reputation for two important advantages . . .

- 1. Maximum sustained production on long runs, with minimum down time for adjustments...
- 2. Profitable economy on small-lot, short-run jobs.

THE CLEVELAND AUTOMATIC MACHINE COMPANY

 CLEVELAND, OHIO
 SALES OFFICES

CHICAGO: 20 North Wacker Drive, Civic Opera Bldg., Room 1408 DETROIT: 540 New Center Building
\star

NEWARK: 902 American Insurance Bldg. CINCINNATI: 1315 American Building

Uniform Temperature + High Capacity with RRES Salt Bath Purnaces

R-S pioneered in the development of Salt Bath Furnaces for the heat treatment of aluminum alloy parts. Some of these installations have been in continuous operation for fifteen years or more.

The exceptional results obtained in temperature uniformity with the consequential uniform physical properties, have convinced such customers that these furnaces have no equal for heat treating aluminum.

High capacity with minimum floor space is also an important consideration.

If you need additional facilities for heat treating aluminum aircraft parts or stamp. ings, we shall be glad to submit detailed information on the equipment required.
Small R-S Salt Pot Furnaces are used for tem. pering, the solution heat treatment of aluminum parts, and for hardenins steel.

FURNACE DIVISION
R-S PRODUCTS CORPORATION
122 Berkley Street - Philadelphia, Pa.

ANHEALIMG - PLATE ANO ANGLE HEATING - FORGING ROTARY HEARTH, © METAL MELTIMG © GONVECTION CAR HEARTH - CONTINUOUS CONVEYOR - SALT BATH

Rhs Furnaces of Distinction

The clamp features a base $13 / 8 \times 13 / 4$ inches. Length of bar from handle to tip is $21 / 4$ inches. Two styles are being offered-model 207 S with solid straight bar, and model 207 U with U shape bar.

Honing Machines

Micromatic Hone Corp., Detroit, is offering a new line of vertical honing maclines in two models. These have a capacity of $1 / 4$ to $7 / 8$-ineh diameter work u1 to 12 inches long and $7 / 8$ to 2 -inch diameter to 12 inches long respectively.

Both models feature a maximum working stroke of 15 inches. Spinclle of each unit is driven by a belt-driven spline. It is also arranged with integral, mechanically actuated reciprocation of the tool. The entire spindle head also is reciprocated on honed bars ander hydraulic con-

trol with adjustable speed. Standard manual adjustment is provided for the spindle head, and also, an adjustment of lift-out stroke above the operating stroke.
Additional hydraulic controls, provided in the hydraulic control panel, include:

Automatic timer for cycle of spindle head movement, manual visual control of tool approach to work, dwell control for spindle head stroke, emergency stop for spindle head movement. Electric controls comprise all push-button controls for start-stop-short stroke. The machines are furnished with riser block tables, and ventilated columns.

Combination Push Button

Northern Engineering Works, 2615 Atwater street, Detroit, announces development of a multiple-speed push button

WHEN BUYING WIRE ROPE FOR INCLUSION IN A PRODUCT YOU ARE MAKING,

\qquad Wire rope is a Controlled Material - Y ur orders should bear the abbreviated allotment numbers-such as: W-8-20 • Preference ratings on orders bearing allotment numbers are valueless. Wire rope producers are required to fill authorized controlled materials orders without regard to preference ratings - The allotment number on a wire rope order must show the actual month of delivery and not the quarter in which delivery is required.

WHEN BUYING WIRE ROPE ASSEMBLIES,

 REMEMBER:Assemblies consisting of wire rope and fittings are Class B if they are air-borne, but Class A if they are not - If Class A, you must furnish us with an allotment of the steel required for the wire rope, and for the fittings if they are also class A - If Class B, you must not furnish an allotment of steel for either the fittings or the rope - In either case, your orders must bear allotment numbers or they cannot be considered delivery orders for products containing controlled material.

WHEN BUYING WIRE ROPE FOR MAINTENANCE, REPAIRS, OR OPERATING SUPPLIES,

REMEMBER:

Subject to the limitations imposed upon you by any "P" order under which you may be required to operate, and provided you produce a product or are engaged in any business in Schedules I or II of CMP Reg. 5, the symbol MRO on a wire rope order, followed by any appropriate certification, makes your order an authorized controlled material order, and • A preference rating isnotrequired, because wireropeis a controlled material \bullet Just be
 sure to observe the quantity restrictions stated in Par. (f), CMP Reg. 5.

WHEN BUYING WIRE ROPE IN SMALL QUANTITIES FROM WAREHOUSES,

REMEMBER:
You don't need an allotment number or a preference rating for wire rope if $\bullet 1-$ You order in amounts of $\$ 10$ or less, \bullet or 2 -If you don't buy more than 4,000 pounds per calendar quarter, or - 3-If you are authorized to buy it under Food Production Order 3 - Just be certain that you don't exceed the inventory limitations stated in CMP Reg. 2 - Certify your orders as stated in CMP Reg. 4.

-THIS BROCHURE THAT TELLS ABOUT WOLVERINE'S NEW TUBE-SPINNING PROCESS

If you make anything from tubing -if your product has a completely closed end, is slightly reduced, or assumes any shape in betweenIf you are having difficulty with any of your tube-forming operationsOr even if your product is still in the design stage and has never been manufactured by any process. . . If any of these things are true, you should send for this Brochure, Catalog E-1, (on your own letterhead) to learn about this new development which successfully achieves the forming of the ends of tubing in a fraction of the time possible by older methods-and at a fraction of the cost.

Wrife Delroit for Colalog E-1. It shows with photographs, line drawings and descriptions that there is practically no limit to the variefy of forms that can be made on ends of fubing by the new Wolverine Spinning Pracess.

which provides up to five speeds in a single button. A battery of these buttons mounted in a pendant is shown in the accompanying illustration. Each provides one to five speeds on the device controlled.
As the button is pushed in, it moves a metal cylinder to wipe over a succession of contacts. The contacts are steel balls

mounted on springs, stiff enough so the operator can feel successive clicks, but not stiff enough to make the button difficult to operate.

While designed primarily for crane and hoist operation, the company states, this button is easily adaptable to any machine where pilot or relay circuits are used.

Degreasing Tank

Aeroil Burner Co. Inc., West New York, N. J., is offering a Dipmaster Jr. portable electrically heated metal degreasing and cleaning tank for fast cleaning and degreasing metal parts. Its average heating time from a cold start to boiling point is only $11 / 4$ hours.

The unit holds 12 gallons of solution which is its normal capacity of 15 gal lons maximum. Four casters; 2 swivel type, 2 rigid; provide for easy maneuverability. The tank is ready for instant
operation upon plugging it in on 110 or 220 -volt alternating or direct current.

Heating element of the unit is located inside on the bottom of the tank where it is completely submerged. Standard equipment furnished with the degreaser includes two dipping baskets, in which the parts are placed, each measuring $11^{3 / 4} \times 11^{3 / 4} \times 8$ inches; a bimetal type thermometer registering a temperature range of 100 to 600 degrees Fahr. and a thermostatic control of the rigid, shockproof type, equipped with a dial and knob to shut off the heating element manually and to maintain automatically any desired temperature between 100 to 550 degrees Fahr.; also a draw-off cock for emptying the tank.

To reduce heat loss to a minimum and enable the operator to get a quicker start in the morning, the steel tank is insulated all around the inner shell. The electric heating element can be removed whenever any cold solutions are used or the botton of the tank is to be cleaned. The head of this element as well as those of the thermostat and thermometer are mounted to the rear head of the tank so that they are protected against damage.

Grinding Attachment

Cincinnati Milling Machine Co., Cincinnati, is offering a new radius grinding attachment designed especially for use on its No. 2 cutter and tool grinder. Known as the No. 1 size, it grinds a wide range of cutters facilitating the grinding of ball-end cutters and die sinking cutters.

The attachment has two slides, each having longitudinal and transverse adjustment of the work with respect to the grinding wheel. A large diameter anti-

friction pivot in the base promotes smooth swivel motion, and is arranged so the slides may be swiveled as a unit through 360 degrees.
Incorporated in the base are movable stops having screw adjustments which accurately limit the swivel motion to the desired amount. The index plate at the rear of the work-head spindle of the unit has 24 notches. With this device, the attachment will handle straight flutes,

GPPEN THEFIT STHTL
 A MEDIUM HICH GARBON OPEN HEARTH PRODUCT

ONI

Stree that gires goa...
т. EXCELLENT MACHINABILITY
2. GREATLY EXTENDED TOOL LIFE
3. GOOD FINISHED PARTS ...
4. HIGH PHYSICAL PROPERTIES
5. EXCELLENT IMPACT RESISTANCE
6. GOOD TORSIONAL VALUES ...

ACTUAL RHOTUGRIPH
Speed Treal Steel (6.45
carbon] 1-inch cold
drawn bar yed in a Knol,
cold, withous fracture.
7. MINIMUM DISTORTION...
8. FINE HEAT TREATABILITY

SPEED TREAT STEEL

machines from 30% to 60% foster than oher comparable steels such as 1035 , 1040, 1045 and 10% to 25% faster than such steels as X1335 and X1340 with a very HICH finish and greally increased tool life.

If we are to keep pouring hot lead into the Axis, there must be no letup in the scrap metal salvage drive. The mills must have 45 million tons of scrap this year to produce the steel required in 1943. This means practically continuous peak production. To do it everyone must salvage scrap because regular sources of supply are insufficient. There's still plenty of scrap around the factories, farms, garages, and homes of the country, waiting to be put to work. Dig it up and sell it to a junk dealer who will send it to the mills for processing. Don't wait- the need is urgent the mills must have a continuous flow of extra scrap.

The mills are asked to produce 90 million tons of steel in 1943. Every ton of steel takes 1000 pounds of scrap metal. Are you doing your share in the scrap metal salvage drive?

lengtl between 0.0001 second and 3 seconds can be measured. A standard indicating instrument calibrated in milliseconds gives a direet reading of the time interval measured.

The normal input signals consist of changes of light intensity falling on the plototube or the making of external electrical contacts. In the former case, light values as low as $1 / 100$ lamen, or an intensity of approximately 1.4 foot-candles, can be used on the photo-tube.

Operating from a 115 -volt, 60 -cycle lighting circuit, the meter is stabilized so that normal line-voltage variations do not affect its accuracy, which is 2 per cent of full scale value, it is said.

Improved Indicator

Federal Products Corp., 1144 Eddy street, Providence, R. I., is offering a new Testmaster indicator featuring a new ratchet compact point. The new index point now incorporated locks in place, hut can be removed for replacement at any time, if desired.

Point can be set at any angle and its direction of operation reversed. Ratchet scrrations mesh positively. The point is chromium plated. It is long and small enough to get into hard-to-get-at reeesses.

The unit itself is ruggedly built for production inspection as well as exceptionally adaptable to the multitude of tests required in general machine shop

and tool room operations. Dovetail slides and universal clamp make the Testmaster easy to set and insure rigid support. The dial rotates for quick setting.

Screw Machine

George Gorton Machine Co., Racine, Wis., announces a new $16-\mathrm{A}$ precision automatic screw machine, an American development of the famous Swiss Peterman P-7, modernized and improved. It is capable of turning out pinions, shafts, screws and small slender parts used in clocks, meters, radio equipment, precision instruments, guns and aircraft engines.

Diameters from 0.005 to 7 / 16 -inch and lengths from $1 / 32$ to $23 / 4$-inches dem-

30 OD ONES - To you they are just 3 ordinary

 bolts-to us they are 3 problems solved for 3 products and 3 customers. In fact no other bolt or stud is exactly like any one of these, yet all 3 have something in common with everything made for the war effortthat is the urgency of their need. We, at Erie Bolt \& Nut, are geared to produce bolting to specifications on a 24 -hour a day basis with Uncle Sam determining the urgency.$$
\begin{gathered}
\text { ERIE BOLT \& NUT CO } \\
\text { ERIE, PA., U. S.A. }
\end{gathered}
$$

onstrate the wide range of work which the machine produces. In addition to step and contour turning and chamfering, the machine, with attachments, automatically performs centering, drilling, threading and slotting operations. It produces an extremely high finish, usually eliminating subsequent finishing operations it is said. The 16-A differs from the conventional automatic screw machine in its basic principle of operation. Briefly, the operating method is as follows: The stock is fed to the 5 -station multiple tool head by means of a cam, through a bushing and past the cutting tools which are stationary in the horizontal plane. Thus,
the side thrust of the tools is at the point of work support. The five tools on the tool head are adjustable radially and axially by means of micrometer screws graduated in 0.005 -inch. The tool holders will accommodate tools up to $5 / 16$ inch square.

The nitrided steel spindle is enclosed in the semi-nickel steel headstock mounted in a scraped and gibbed slide on the bed. Tool marks on the work are eliminated by the flat endless woven drive belt. Stock is fed through the guide bushing into the tools, all longitudinal feeds being accomplished by feeding headstock forward as a unit, with bar held in spindle

THE AMERICAN RING TURNINGS CRESMEIR
Utilizing the famous rolling ring principle of crushing, this crusher reduces long curly turnings of low or high carbon steel, alloy steel or brass into "Chips" as the turnings are fed into the feed hopper. Turnings cease to be a bother after you put the proper size American Ring Turnings Crusher on the job; it even pays for itself before you know it. These crushers are not an experiment: they reduce the toughest turnings, and are built to withstand severe requirements. Made in various sizes for various needs. You are invited to take advantage of our free consultation service.

THE RINGS ARE THE WHY
AMERICAN PULVERIZER CO.
1539 MACKLIND AVE., ST. LOUIS, MO.
collet in the usual manner. The Planex cam controls these movements, both forward and back. Synchronizing this longitudinal cam movement with cams which control the lateral movement of the tools permits generating any desired shape with single-point tools.

All cams are mounted on a singla shaft at rear of machine. Being conveniently accessible, adjustments and changes of setup can be made easily and quickly. A hand wheel is provided at front of machine to disengage camshaft drive and provide manual control for setups. Electrical interlocks prevent camshaft motion when spindle is not turning, eliminating the possibility of tool breakage. All controls, dials, adjustments, etc., are conveniently accessible to operator at hip height. Hand hole-covers are provided in base for easy inspection of all internal mechanism, when desired.

Infinite variation in spindle speeds, from 1100 to 10,000 revolutions per minute, is provided by a Reeves variable speed drive. A 2 -speed ball bearing motor (2 and $11 / 3$ horsepower) drives the spindle through the Reeves unit.

The gear-type coolant pump and $1 / 4$ horsepower motor are mounted as a unit in a separate compartment at rear of

machine. The entire unit is conveniently removable for inspection and easy cleaning. The 12 -gallon reservoir has a removable pan, baffles and strainer. A shutoff and relief valve on the pressure line and a filter on the intake also are provided.

The three-spindle attachment mounts on base in front of tool frame. It centers, drills, then threads the piecc, either internally or externally. Threading spindles work on a speed differential system, eliminating necessity of stopping work spindle, or of providing special headstock speeds for threading operations. Threading with open diehead also works on a differential principle. Diehead is actuated toward material under cam action. When diehead arrives at end of threading, a screw stop opens die. Cam permits spring return of spindle. Diehead is closed by a trip lever. A built-in automatic 5 -digit counter registers production quantities. A stock supply signal automatically stops
machine when stock limit is exceeded， and flashes a red light indicating that re－stocking is．necessary．

Frame Bender

Watson－Stillman Co．，Roselle，N．J． announces an improved，portable，ship－ frame bender，particularly adaptable for shipyards．Its distinct feature is the new overhead swivel connection to the power source，eliminating the clumsy and in－ volved hose connection to a central ac－ cumulator．

The machine，mounted on wide， swivel－mounted castors，can easily be moved about on deck or on the ways．It is completely enclosed and self－con－ tained，including a 3－horsepower motor， producing either 41 or 5 gallons per min－ ute，using hydraulic medium oil．The entire unit measures 2 feet 7 inches from handle to handle，with an overall height of the same dimensions．The machine weighs 1,100 pounds．

Heat Treating Shot

（Continued from Page 91）
series of eight each to correspond with the loading of the conveyor of the hard－ ening furnace．See details of these cages in Fig．4．The shot move intermiltently through the quench tank，then discharge onto a slide leading to the draw fumace． The quench tank conveyor is operated in timed，adjustable cycles by an air cylinder pusher mechanism operating through a chain and sprocket drive．
Houghto－Quench is the oil used，pro－ viding a rapid rate of quenching spasd． Both jet and still quenching are pro－ sided．Quenching oil temperature is orri－ trolled by beat exchangers through which the oil is circuiated．The rapind Leat absorption prorided by the quereith iss cil assures proper haderirg．

The Draw Furnack：Tace ty\％es of air duw furnacs：ase in use for the six－ bore stress relies drew that follows the边ton groachloz

The Est is the contimuper peevirulating in tew typ．The thus is cermied atoon 10 a cexnenver bult mede of boory chas tols exrisil on two belts divead ly an
 axd varable woid pully．

To cisulate the botar tuo fay gor teres，firch miti its nap orubution thaubs，ans buth as the top of the Surnacs，aud prowte a couplite change of 关 5i）Eunes yer minute

Thas nu－mace is egncized with aar flow swiflus and foul whet off vabes for
 pilst Furwent for sumbande ligting， Erum this air luar the shost we mikaled

[^5]
ENGINEERING

ON HIGH PRODUCTION OVENS

A limited number cí copies of our engineering manual，
 atile sis excentiven，enkincers and rexearch men，This． publicaskes poncr bavie engurneering foflomathen on all sy：ce of siandaid and apecial induatrial owems fiey process and hoat treatment．Speclial emphuwís 縕 placed on automatic haanding and related attendawt－ maving zecexsory eguipmewt．

Write for yout cony un youk letionfinder，

Offers New Paint Stick Marker for Metals
＂Real paint in stick form＂is the dele－ scription of a new Markal S paint stick recently developed by Markal Co．， 6 East Lake street，Chicago，for use on all cold surfaces，especially steel．It is said to produce permanent，fadeproof，weath－ erproof markings even on rubber，stone， glass，plastics and other surfaces．

The stick can be used for layout pur－ poses on steel plates whether bare or coated with zinc chromate or other pro－ tective coatings used in pickling．The
marks dry sufficiently immediately after application so parts can be handled without smearing．

Choice of six colors is being offered by the compiny－red，white，green，blue， yellow and black．All of these dry thor－ oughly in about 10 minutes，it is said．

Ferry Offers Line of Priority－Free Enamels

A new，improved line of priority－Free porcelain enamels is announced by Ferro Enamel Corp．，Cleveland．Finishes in the Victory line are especially com－

KEMP of BHLTIMORE can
provide，on high priority orders，
industrial immersion heating
（with gas）for soft metal casting
and for lead and salt bath hardening
and annealing．Exclusive Kemp gas－
air premixing guarantees high speed
production，fuel saving，automatic，
accurate temperature control．
For details address The C．M．Kemp
Mfg．Co．， 405 East Oliver Street，
Baltimore，Md．

bine to meet present－day steel condi－ tons，the company states．

Ideal for one－coat applications，ground coats are said to be extremely workable and fuse well with metal，Cover coats feature better workability，greater free－ dom from tearing and hair lining，in－ proved gloss and more uniform color． Brown ground coats also feature good workability and single coats provide a durable finish even when used on lower grades of steel，Faro reports．

Two new inorganic finishes，Chemroe and Hi－Chemroc，for coating cast iron and sheet steel，and coating corrugated roofing，ship partitions and architectural porcelain parts respectively also are be－ ing offered by Ferro．These are being offered along with a new line of victory colors free from priority restrictions．

Offers Cream for Industrial Dermatoses

Various skin disorders are said to be eliminated with the use of Tarbonis cream，a modified tar product based on a formula developed in a famous medical institution，and now being manufac－ toured by Tarbonis Co．， 1220 Huron road， Cleveland．

Released for commercial use only re－ cently，the product is recommended where there is occupational dermatoses whether due to chemical irritation， chronic exposure to abrasives，work with cutting oils，reagents，acids and many other conditions．
The cream itself is greaseless，clinical－ fly non－allergic and non－irritating，may be used safely by the worker at home as well as dispensed in the plant．

Lincoln Foundation Award Studies To Be Published

New information on are welding is soon to be made available by James F ． Lincoln Arc Welding Foundation in the form of a 1200 －page book containing 98 of the outstanding award studies sub－ misted in the foundation＇s 1940－42 In－ clustrial Progress award program，the foundation revealed recently．

The volume，entitled，Studies in Are Welding，will make available accumu－ lated knowledge and experience of more than 100 engineers，designers and others applying themselves individually to a specific design study involving are weld－ ed construction．

While the majority of the studies to be published involve products of plants en－ gaged in war production，the principles and practices reported in the papers will be of inestimable value in post－war uses of arc welding．

Flame Cutting

(Continued from Page 98)
the possibility of using aur excess of pressure on any cutting job.
It is not impossible to reduce the total cubic feet of oxygen used per month in a large cutting establishment to twothirds or even less, by establishing effective control of the axygen pressures being used in the cutting department. Since oxygen is a relatively expensive raw material, the saving of a third, or one-half of the quantity being used, is a definitely important factor of economs:
As in the case of cutting tips and their uses, there are also charts available for the asking from almost all producers of flame cutting equipment which give cutting speeds and the pressures of oxygen required for certain types of johs. These should be consulted by the foreman of the cutting department and kept available for quick reference.

Templets and Their Use in Mechanical Flame Cutting. One of the most important factors in mechanical flame cutting with units such as the ones shown in Fig. 5 is the use of templets to control the outline of the pattern cut by the flame. For the cutting of certain shapes such as a circle, many of the multiple head flame cutting units now on the market can be set to automatically describe the shape desired, thereby eliminating the cost and the care of special templets. Long straight cuts, regardless of whether they are made lengthwise, crosswise or at a diagonal across the machine bed, can be made with a simple long straight edge to automatically guide the torch along the cut.
Wherever it is possible to use either a simple circular cut or a long straight out which can be made with a straight edge, the cutting operation is made much simpler and usually is done more accurately.
In making long cuts on narrow pieces, such as when ripping narrow pieces from a plate, the distortion resulting from application of heat to one side of the piece often causes serious misfits. Experience hats shown that an excellent way to eliminate this trouble is to leave the ends of the piece uncut for the last few inches as shown in Fig. 3, which diagrammatically represents the catting of long slender pieces from a plate. Then after cooling, a hand torch or one of the torches from the multiple flame cutter is used to cut the pieces apart. Most of the distortion will thus be eliminated. The reason this method eliminates distortion is that the strips are not cut completely apart and so are not allowed to spring before the counterbalancing effect of the cut made on the other side of the part has a chance to balance the stress.

Much of the steel which is used in
ordinary manufacturing of equipment or machinery can be cut cold. However, parts from high carbon stecl are cut much easier when preheated to 400 or 000 degrees Fahr. In cutting hot, it is necessary to make careful calculations of the amount of expansion which the heat has caused so that when the parts are cool they will be shorter than the desired dimensions.
A large number of the parts which are being used in modern are welding design are irregular in shape. Such parts require the use of templets of some sort if they are to be cut out on a mass procluction basis and to assure that
each is a faithful reproduction of the originally specified part. There are many forms of templets. Three typical examples are shown in Fig. 4.

Each of these in Fig. 4 lends itself to different applications. The heavy cardboard templet at the left may be used for a relatively small number of parts which may be traced on the multipletorch mechanical flame-cutting machine, or may be used for the marking and laying out of parts to be cut with a hand torch.

The wooden templet with the metal lining, upper right Fig. 4, is used for the production of large numbers of parts

OFFER 2 WARTIME ADVANTAGES

	1 MOTOR OPERATION: Kinnear Motor Op.
2 valuable floor, wall and ceiling	from any convenient locationl The rugged.
space. It keeps the dind or traffic way and sa when open.	
	time

Strong inter-lapping wood slats form a rugged curtain that blocks out wind and weather, yet presents a neat appearance that harmonizes with any building exterior or interior.
Kinnear Wood Rolling Doors also assure highest economy of war-vital metals!
They are built in any size, for use in old or new buildings, and are available with manual control only, if desired. Write for complete data or specifications. The Kinnear Mig. Co., 1780-1800 Fields Ave., Columbus, Ohio.

[^6]which are regular production items not subject to frequent changes. The guide wheel of the mechanical flame-cutting unit rides on the raised metal edge. This is the type of templet used for the production of the largest portion of the flame cuts in the modern factory.

The steel templet, lower right, lends itself best to the laying out by hand of large parts which are cut on a production basis by hand, where the problem of spacing cextain cuts with reference to the other parts on the plate is very important. Such a steel templet greatly reduces the amount of time required for laying out a part prior to flame cutting it by hand. It is a great convenience to the operator who can place the rigid and permanent steel templet on the plate to be cut, locate it from some one starting point, and proceed to make it out with no fear of it becoming bent, moved, shrunken, or otherwise nut of adjustment.
Probably the most important requirement in making templets for flame cutting is that they be sufficiently durable to maintain their shape and form for as long as they are required for that job, or for a reasonable life; and that they be an exact reproduction of the parts which they are to produce, with appropriate allowances made for operation of the machine so as to compensate for its inherent limitations to the end that the templet produces a perfect part.
Templet making is one phase of engineering flame cutting work where any additional effort expended to get perfect accuracy and minute detail may pay exceptionally large dividends. Hurriedly made templets or those made without proper regard for the minute details of the requirements of the job often are tremendously costly in increasing expense of fitting up parts during assembly and in welding up gaps caused by parts that fit badly.

By the same token, templets found to be inaccurate should be carefully corrected whenever an irregularity shows up continually in fitting up the parts. While permanent templets may be relatively expensive, it is much less expensive to make them over or correct than to continually lose money in time and labor required to correct the misfits which the defective templet may cause.

> (Concluded Next Week)

Insulating Cement Has Non-Corrosive Qualities

A new non-corrosive insulating cement which prevents the rusting of metal surfaces which it contacts is reported by Baldwin-Hill Co., Trenton, N. J. It is of high-temperature resisting black rock wool, and is said to be effective up to 1800 degrees Fahr.

EXTREMELY EXCELLENT
OF ITS KIND; SURPAS. SINCLY GOOD . . ."

Sintering-Plant Design

(Continued from Page 104)

volume of waste gas is a variable and an increase in volume increases the velocity of the flow through the fixed dimensions of the gas disposal system; hence, the abrasive action of the entrained solids is increased to the extent of the additional impact imparted to them by the higher velocity.
Both dry and wet methods of handling waste gas through the disposal system are in use. While both are practical within limits, neither can be said to be wholly satisfactory. The opinion is offered that a combination of the two with the wet method fully completed would solve most of the problems in this part of the sintering operation.

The dry method of gas disposal utilizes the principle of the dust catcher which is simply a decrease in the velocity of the gas stream and a settling of a part of the entrained solids. The limit of efficiency is the pull of the velocity of the checked gas flow against the force of gravity in their action upon the entrained solids. There is always a percentage of extreme fines which carry over and exert an abrasive action on the fan blades, causing operating delays and maintenance charges.

Two Methods Are Employed

The wet method attempts to wet the entrained solids in the gas stream as the gas passes through the wind box, by water spray or by impingement on water.

This method is successful to a degree but the amount of water which may be used is limited to the amount which will not cool the gas to the temperature at which there will be condensation of water vapor contained in the gas.

With the condensed water vapor, or any mechanically entrained water in the gas stream, the formation of sludge is inevitable and the deposition of sludge on the fan blades is dangerous to the balance and operation of the fan. Where the wet method is used the usual practice is to hold the temperature of the gas to approximately 250 degrees Fahr.

Construction of a gas washer between the wind box and the fan would permit a combination of the wet and dry methods and the recovery of their full values. With maximum recovery and the circulation of the dry dust from the dust catcher, or wind box, the gas passing to the washer could be thoroughly cleaned and cooled to the temperature of the available water. The governing factor in the use of a gas washer in the sintering plant operation would be the ability to eliminate the entrainment of
sludge in the gas stream after the gas had passed the cleaning elements. The water vapor content of the washed gas would be lowered to that of saturation at the lowered temperature and the weight of the gas would be lessened to the extent of the amount of water vapor condensed. In an operation producing 1000 tons per 24 hours that reduction in weight would be approximately 100 tons. The reduction in the temperature of the gas would change the fan characteristics and the capacity of the fan would be increased.

Abrasive action from solids entrained in waste gas has been a serious operating difficulty with plants sintering flue dust or magnetite concentrates because the fines of both of these materials are hard in structure. The plants which use a major percentage of soft hematite ores will not have nearly as much trouble because with the adhesive characteristic of these ores there will be less fines sucked through the grates and the soft flocculent fines of these ores are not as abrasive as the hard fines of the other materials. In a few cases

JOINTLESS UNING sinvs hat in ANNEALING FURNACES

Refractory Insulating Concrete Speeds Installation, Reduces Maintenance

The first of 12 bell-type annealing furnace covers in a large steel mill was lined with Refractory Insulating Concrete, made with LUMNITE, about two years ago. In addition to low first cost, the linings offer these advantages:
LASE OF INSTALLATION-The furnace cover is inverted. The mixture of LUMNITE, refractoryinsulating grog and water, is cast in place. Arch is placed first; then forms are set and side and end walls are cast.
SAVINGS IN MAINTENANCE-The monolithic lining resists the strain and ahock of lifting and dropping in place. There are no joints to loosen or small units to drop out.

SAVINGS IN OPERATION-Absence of joints increases efficiency of insulation. Low heat-storage and low conductivity save fuel in reaching and maintaining furnace temperature.
Refractory Concrete and Refractory Insulating Concrete, both made with LEMNITE, are meeting the wartime needs of many steel mills. We offer the help of our representatives in making the most efficient use of LUMNITE, which is now available only for service in essential war production. The Atlas Lumnite Cement Company (United States Steel Corporation Subsidiary), Chrysler Building, New York City.

This new 16-page booklet can give you useful information about crane trolleys, end trucks, driving units, gear cases, cabs and lower blocks. "The WHY and HOW of Faster Production At Less Cost" shows Reading Traveling Cranes at work in plants like yours. It shows how they are helping to speed output and reduce maintenance troubles.
Ask for your copy of this booklet. A note on your company letterhead will start your copy on its way, at no obligation, of course.

Reading Chain \& Block Corporation, 2102 Adams St., Reading, Pa.

the fan blades had to be sand blasted from time to time to remove encrusted ore fines.

VI--Sinter Handling

For use in the blast furnace the most important physical characteristic of sinter is the particle size and that size is governed by natural friability or by mechanical preparation. The natural friability of sinter is determined by the percentage and the molecular formation of the iron silicates formed during the sintering operation. Since the sintering machine operator does not have any control over the formation of the silicates and since the proper particle size of sinter is vital to the blast furnace operations, the final step in the production of sinter is sizing. If the product is naturally friable enough to break up to the preferred sizes it is an advantage, but if not, the preferred size can be had by crushing.

Conclusion

With the prospective large tomnage of sinter to be produced it seems reasonable to say that intensive thought should be given to the development of improved equipment to serve the foregoing fundamentals.

Raw material preparation should not be looked upon as a necessary evil but rather as an opportunity to increase tomage and lower overall costs. The proper relation of particle sizes of the components of the mix is the factor which determines the uniform permeability of the mix to air and gas. Resistance to gas flow without restriction to flow determines the efficiency of the transmission of heat from the gas to the raw materials. Uniformity of shrinkage in the sinter cake determines the amount of foul air which can infiltrate through shrinkage cracks and increase the power load on the exhaust fan. With proper preparation of raw materials and return material to prevent segregation of particle sizes when the mixed mass is delivered to the sintering hearth, the bed of material will be more uniformly permeable to air and can be increased in depth in proportion to the increase in that uniform permeability. The depth of bed is most important. Since it is impossible to maintain a perfect vacuum there will always be more or less leakage of foul air through shrinkage cracks and seall leaks, but for any given hearth, the seal joint is no longer with a bed 16 inches deep than it is for one 12 inches deep. If the materials are prepared so that a 16 -inch bed can be carried the ill effect of any leak will be reduced proportionately and production would be increased 33-1/3 per cent. Design and arrangement of equipment for better preparation of raw materials appear to be ar-

HELP AVOID PRODUCTION TROUBLES DUE TO RUST TROUBLES DUE TO RUST

By Using

SPECIALIZED OAKITE MATERIALS

When rusting occurs, trouble begins . . . rejects, production delays, lowered output, loss of critical materials, waste of urgently needed time and manpower

ALL are the result of this saboteur to smooth-flowing production.

Rusting of steel shells, torpedo casings and parts, bombs and other war supplies frequently CAN be avoided by using specially designed Oakite cleaning materials, particularly where surfaces must be rust-free before painting or lacquering. Where rust has caused rejects, work can be reclaimed with Oakite rustremoving materials expressly developed for this purpose.

Personal Service FREE!

Conveniently located nearby, our Technical Service Representative will gladly give you the benefit of his wide experience in successfully helping other plants avoid production troubles due to rust. Write today to have him call! No obligation, of course.

OAKITE PRODUCTS, INC. $34 E$ Thames Sireet, New York, N. Y. Technical Service Rapresenfatives Lacaled in All Principal Cities of the Uniled Stales and Canada
enues for the development of the sintering plant of the future.

Maintaining the seal joint as tight as possible is most important. The beel of material will offer some resistance to the passage of air but a leak in the seal joint will not offer any resistance; consequently, the entrance of foul air is out of proportion to the size of the opening. An improved seal, which can be maintained at maximum efficiency, will contrilate to the effective use of fan capacity.

Feature of New Design

The Agnew sintering machine designed to lower installation, operating, and maintenance costs is a recent development. The design introduces the feature of an endless train of unitary cast pallets sliding in abutting relation over stationary rollers and gaided around the curved end sections by curved surfaces bearing on curved sections of roller trackway and applies to metal the well proven principle of the frictionless, free running, rubber conveving belt. The arrangement permits the installation of any desired permanent pressure lubrication system to all rollers and the water cooling of all roller shafts. With wheels attached to a pallet bottom sealing is obligatory, the seal is not readily accessible and the abutting point of contact between pallets are subject to wear as the pallets pass around the end sections of the machine. The stationary roller permits the seal joint to be located at the side of the pallet above the rollers and remote from the point of contact between pallets as they pass through the end sections of the machine; consequently, the surfices to be scaled are not subject to wear and will remain true for the life of the pallet. The side location of the seal makes it reaclily accessible and easily maintained at maximum efliciency at all times. A single or double seal is optional. The practicality of the design has been demonstrated in model form but a full scale installation has not as yet been made.

Application of a gas washer to a sintering plant seems to be entirely practical. The principle of creating a vacuum by the contraction of hot gases has long been demonstrated by the jet and surface condensers of the steam engine. Application of the principle to the sintering operation would simply be a new place of application for a proven principle. The advantage to be expected would be increased efficiency in exhaust fan performance. Fan maintenance cost is a large item of the general maintenance costs. Clean dry gas would lengthen the life of a fan indefinitely. Since the fan characteristics are based upon volume, temperature, and speed, clean gas reduced in volume by cooling delivered to a small fan would make

Increased facilities in our pattern department enable us to offer prompt delivery on patterns to a limited number of additional companies.

Many years' experience, making all sizes, kinds and designs of patterns (metal or wood) for our own and outside foundries, qualifies us for the most exacting work.
Castings produced in Ampco Bronze, Dowmetal (magnesium), Wellcast Brass, Bronze and heat treated Aluminum Alloys.
Write or wire and we shall arrange
to bave a representative call.
THE WELLMAN BRONZE \& ALUMINUM COMPANY
General Offices: 2539 East 93rd Streel
CLEVELAND 3, OHIO

Off your train, through a covered pas-sage-and you're in Hotel Cleveland.

Gay dance bands in two colorful restaurants.

A maitre d' who is a past master at assuring the success of convention banquets... sales dinners. . . private parties.

For your convenience a miniature city of shops, in the Hotel.
the small fan just as effective as a large fan handling a large volume of hot gas and the small fan would have the longer life. The principle is right, the reasoning seems correct, the application of both appears to be an avenue for development in the sintering plant of the future. The average temperature of the waste gas from a sintering operation will be approximately 350 degrees Fahr., the recovery of this thermal value for thawing frozen ore appears to be another avenue for development.

Importance of Particle Size

The attempt has been made to show the importance of sinter particle size in the recovery of the sinter values in the blast furnace operation. Where it is possible to select a mix which will give the preferred size no other equipment will be necessary but if there is no selection and the mix forms a sinter which is too large it must be prepared to a smaller size or the blast furnace operation using the sinter for a major portion of the burden cannot be conomical. Obviously the amount of preparation will vary with sinters. The location of the sintering plant serving the furnace may determine the hest location for the preparation equipment. The thought it is desired to convey is the importance of the sinter preparation, the need providles an avenue for develop-
ment in the sintering plant of the future.

Wide Motor Speed Range

(Continued from Page 108)
matic sketch, (Fig. 2), represents a Mot-O-Trol system for 1 horsepower and smaller, using single-phase full-wave rectification on both field and armature. For motors of larger horsepower rating a two phase full-wave or three phase half-wave rectifier may be used depending upon the most economical application of tubes. Four pieces of equipment are involved; the small power transformer, for separate mounting on user's machine, the Mot-O-Trol cabinet proper, control station and direct-current motor.
When mercury vapor tubes are used an initial 5 -minute time delay period is required for tube warm-up. However this time delay need occur only once after the line switch is closed since the control is designed to maintain continuous heating of the tubes at all times even when the motor is stopped, unless the line switch is opened or the lowvoltage protection feature operated. The time delay relay contacts are in the field control and armature control circuits so that the "forward" and "reverse" push buttons are not effective until the initial warm-up period is over.

Heat Treating Shot

(Concluled from Page 125)
tainers for a three-day again period prior to hot and cold shock testing.

The second type of air draw furnace being used for this work is the basket type shown in Fig. 4. Here the shot are discharged from the conveyor and manually loaded into heavy welded steel baskets.

These draw furnaces hold a three-section basket approximately 30 inches in diameter by 30 inches deep. Each section of the basket holds approximately 60 shot. Special lugs lock the three sections of the basket together for loading and unloading the furnace, and later storing.

Heater Prevents Cooling

In loading the shot, the basket sections are placed in a special round insulated heater, to prevent the shot from cooling below the required temperature before being placed in the draw furnace. After three sections of the baskets are fully loaded, the entire basket is loaded into the furnace by means of a monorail hoist.

Circulating a large volume of air is necessary for uniform temperature in this type of operation. Thus fan capacity and power are important. Each unit has automatic temperature control, with complete safety equipment. These units are gas fired only, with open type burners.

The basket type air draw requires more head room or a pit and is best suited to main floor operation. Manual handling of shot is eliminated after the drawing operation since the shot are left in the basket sections for the aging period rather than being individually removed by hand.

The three installations cited on the foregoing pages are typical of mass production heat treating units now installed in many plants. Each installation must be worked out in co-operation with builders of furnaces and suppliers of heat treating materials.

Hardening furnace operating temperature can be controlled from 1400 to 1600 degrees Falir., draw furnace temperature from 400 to 450 degrees Falhr. Time cycles vary with the loading of the hardening furnace but usually average approximately 12 to 17 minutes in the quenching oil. Timing cycle is specified in the drawing operation at 6 hours. Approximately one hour is allowed to bring the shot up to heat. These units are made to have a production of from 150 to 250 shot per hour.

The shot are then subjected to the standard water "shock test," then sand blasted and finish-ground.

Solid Steel-all grades
Laid Steel-hi-speed and carbon

Rotary Shears and Slitters

THE OHIO KNIFE CO.

rub your desk...

meet Enemy No. 1

Rub your thumb along your desk-fast, hard! . . . Feel the resist-ance-the heat? When you fight a mechanized war, that's the first enemy you have to lick-friction! . . Everywhere the fight against friction is waged without let-up. It is a fight that must be won before we can even get at our enemies! . . . Perhaps no other single item plays so vital a part in the kind of war we fight today as the ball bearing. Without it, not a wheel would keep rolling-not a ship would keep sailing-not a plane would keep flying. New Departure ball bearings are helping to keep America's war machine rolling, sailing, flying on to victory.

NEW DEPARTURE - DIVISION OF GENERAL MOTORS - BRISTOL, CONNECTICUT

Steel Demand Grows as War Production Shifts

Mills find schedules constantly tightening. . . Ships and planes take largest part. . . Tin plate output increased for third quarter. . . Coke situation threat to pig iron production

DEMAND
 Emphasis changes, tonnage gains.

PRODUCTION

Up 2 points to $98 \frac{1}{2}$ per cent.

PRICES

Ferroalloy schedules adjusted.

WHILE various steel consumers are forced to modify operations, due to reductions in some lines of ordnance, the fact remains that steel mill schedules continue to tighten.
Cancellations and suspensions in some war programs are being offset by increased consumption in others and qualified observers believe the stringency will grow, especially in view of increased needs when the invasion of Europe is under way.

Ships and airplanes continue to furnish the backbone of demand for steel and top all other war requirements, with extension of these programs scheduled to continue. While shipbuilding centers heavily on plates it also takes considerable tonnage of light shapes and is a factor in many other materials, wire rope, pipe and tubing, sheets, strip and bars. The extent to which subcontracting and prefabrication is used in ship work is illustrated by a recent award by an eastern shipyard of 40,000 tons of prefabricated work to subcontractors in its area. This class of work puts heavy burden on welding and flame-cutting departments.

War Production Board is said to be planning allocation of a million tons or more of steel bars for an important purpose not yet amounced. Some new capacity will provide part of this tonnage and the remainder is expected to be oltained by reduction of allotments to claimant agencies for purposes considered less essential. Such an allocation would greatly add to tenseness of the bar market.

Steel production last week snapped back to $98^{1 / 2}$ per cent of capacity, renewed output of coal providing better coke and coke oven gas supply. Pittsburgh, hardest hit by the coal stoppage, regained $7^{1 / 2}$ points of the $8^{1 / 2}$ point loss and small increases at other points made up the difference. Pittsburgh's recovery máde its rate $97^{1 / 2}$ per cent. Wheeling advanced 4 points to 90 , St. Louis 2 points to 95 , Birmingham 5 points to 100 , Cincinnati 5 points to 93 and Detroit 4 points to 87 . Eastern Pennsylvania lost 1 point to 94 and Cleveland $1 / 2$-point to $941 / 2$. Rates were unchanged at Chicago and Youngstown, both at 97 per cent, Buffalo at $901 / 2$ per cent and New England 95.

Tin plate schedules for third quarter are being revised upward and present estimate of production in that period
is 725,000 tons, with fourth quarter output probably about 500,000 tons. Several producers have filed a price of $\$ 4.65$ per base box for plate carrying three-quarter pound of tin per base box, midway between hot dip and the thin-coated electrolytic. The new product is in the experimental stage, awaiting tests in actual use.

Effects of the coal stoppage and threat of a further strike is making the pig iron situation uncertain and although coke production is at capacity many blast furnaces are operating on close margin and further curtailment would cause banking of many units. Some melters in the East plan suspension of delivery for midsummer inventory and vacation periods.

On a showing of increased cost of material and labor Mystic Iron Works, Everett, Mass., has asked upward ycvision of its pig iron price beyond the $\$ 1$ differential now allowed. In the highly competitive New England district any change in price is of much importance to consumers and to suppliers from other districts.

Mampower presents the greatest difficulty in the scrap market and some wage adjustments are under way to make the situation easier. Government agencies have been appealed to in an effort to obtain more workers and apprehension is felt in many quarters that serap supply may suffer later in the year from reduced collections and inability to prepare material for shipment. Recent freezing of usable automotive parts has reduced tonnage from automobile wreckers and estimates from this source have been revised downward. Battlefield scrap from North Africa is arriving at Atlantic ports but the suggestion is that much of this will be shipped to Italy after that country is occupied, to augment output of steel from Italian mills for the United Nations.

Office of Price Administration has set up dollars-andcents prices on ferrosilicon, ferrochromium and silicon and chromium metal. Three zones have been laid out, with differentials for delivery in each. Prices reflect those previously applying, with little change.

Composite average prices of steel and iron products, governed by Office of Price Administration ceilings, are unchanged. Finished steel composite is $\$ 56.73$, semifinished steel $\$ 36$, steelmaking pig iron $\$ 23.05$ and steelmaking scrap $\$ 19.17$.

COMPOSITE MARKET AVERAGES

	June 19	June 12		One Month Ago Apr., 1943	Three Months Ago Feb., 1943	One Year Ago May, 1942	Five Years Ago May 1938
			June 5				
Finished Steel		\$56.73	\$56.73	\$56.73	\$56.73	\$56.73	\$62.00
Semifinished Steel	36.00	36.00	36.00	36.00	36.00	36.00	40.00
Steelmaking Pig Iron	23.05	23.05	23.05	23.05	23.05	23.05	23.05
Steelmaking Scrap.	19.17	19.17	19.17	19.17	19.17	19.17	11.60

Finished Stecl Composite:-Average of industry-wide prices on sheets, strip, bars, plates, shapes, wire, nails, tin plate, standard and line pipe. Semifinished Steel Composite:-Average of industry-wide prices on billets, slabs, sheet bars, skelp and wire rods. Steelmaking Pig Iron Composite:Average of lasic pig iron prices at Bethlehem, Birmingham, Buffalo, Chicago, Cleveland, Neville Island, Granite City and Youngstown. Steelworks Scrap Composite:-Average of No. 1 heavy melting steel prices at Pittsburgh, Chicago and eastern Pennsylvania.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material
Steel bars, Pittsburgh
Steel bars, Chicago
Steel bars, Philadelphin
Shapes, Pittsburgh
Shapes, Philadelphia
Shapes, Chicago
Plates, Pittsburgh
Plates, Philadelphia
Plates, Chicago
Sheets, hot-rolled, Pittsburgh
Sheets, cold-rolled, Pittsburgh
Sheets, No. 24 galv., Pittsburgh
Sheets, hot-rolled, Gary
Sheets, cold-rolled, Gary
Sheets, No. 24 galv., Gary
Bright bess., basic wire, Pitisburgh
Tin plate, per base box, Pittsburgh Wire nails, Pittslurgh

June 19, April,

June 19,	April,	Feb.,	May,
1943	1943	1943	1942
2.15 c	2.15 c	2.15 c	2.15c
2.15	2.15	2.15	2.15
2.47	2.49	2.49	2.49
2.10	2.10	2.10	2.10
2.15	2.22	2.22	2,22
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
2.15	2.15	2.15	2.15
2.10	2.10	2.10	2.10
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.10	2.10	2.10	2.10
3.05	3.05	3.05	3.05
3.50	3.50	3.50	3.50
2.60	2.60	2.60	2.60
\$5.00	\$5.00	\$5.00	\$5.00
2.55	2.55	2.55	2.55

Pig Iron

Coke

Connellsville, furnace, ovens $\ldots \ldots$	$\$ 6.50$	$\$ 6.50$	$\$ 6.40$	$\$ 6.00$	
Connellsville, foundry, ovens	$\ldots .$.	7.75	7.75	7.50	7.25

$\begin{array}{llllll}\text { Chicago, by-product fdry., del. } & \ldots . & 12.25 & 12.25 & 12.25 & 12.25\end{array}$

STEEL, IRON, RAW MATERIAL, FUEL AND METALS PRICES

Following are maximum prices established by OPA Schedule No. 6 issued Aprll 16, 1941, revised June 20,1941 and Feb, 4, 1942. The schedute covers all iron or steel ingots, all semlfnished fron or steel products, all finished hot-rolled, cold rolled Iron or steel products and any fron ur for selected products are named specifically. All seconds and coating, drawing, extruding. etc., although only principal ostablished basing polnts are noted in the table. Federal tax on frelght charges, effective Dec. 1, 1942, not included In following prices applying to individual companies

Semifinished Steel

Gross ton basis except wire rods, shelp. Carbon Stcel Ingots: F.o.b. mill base, rerolling qual., stand. analysis, $\$ 31.00$.
(Empire Sheet \& Tin Plate Co., Mansfleld, O may quote carbon steel ingols at $\$ 33$ gross ton, f.o.b. mill.)
Alloy Steel Jugots: Pittsburgh, uncropped $\$ 45.00$.
Rerolling Billets, Shabs: Pittsburgh, Chlcago, Gary, Cleveland Buffal sparrows Paint Birmingham, Youngstown, $\$ 34.00$: Detrolt, del. $\$ 36.25$; Duluth (bil.) $\$ 36.00$.
(Andrews Steel Co., carbon slabs $\$ 41$; ConInental Steel Corp., billets $\$ 34$, Kokomo, to Acme Steel Co.; Northwestern Steel \& WIre Co. \$41, Sterling, III, L Laclede Steel Co. S34, Alton or Madison, Ill.; Wheeling Steel Corp. $\$ 36$ base, billets for lend-lease, $\$ 34$, Portsmouth O. on slabs on WPB directives.)

Foralmg Quality lillets: Pittsburgh, Chicago Gary, Cleveland, Buffalo, Birmingham, Youngs town, $\$ 40.00$; Detroit, del. $\$ 42.25$; Duluth 42.00
(Andrews Steel Co. may quote carbon forg ing billets $\$ 50$ gross ton at established basing points.)
Own Hearth Shtill Steel: Pittsburgh, Chicago, bise 1000 tons one size and section: $3-12$ in $\$ 52.00 ; 12-18$ in., $\$ 54.00 ; 18$ in, and over \$56.00,
Alloy isillets, Slabs, Blooms: Plttsburgh, Chicago, Buffalo, Bethlehem, Canton. Massillon, $\$ 54.00$.
Sheet 1fars: Pittsburgh. Chlcago, Cleveland Bufcalo, Canton, Sparrows Point, Youngstown S.34. (Wheeling Steel Corp. \$37 on lend-leas sheet bars, $\$ 38$ Portsmouth, O. on wPB di rectives: Empire Sheet \& Tin Plate Co Mans lield, O., carbon sheet bars, $\$ 39$, f.o.b Mill Skelp: Pittsburgh, Chica, \$39, I.o.b. mill.) Youngstown, Coatesville, 1 b ., 1.90 c .
Wire Rods: Pittsburgh, Chleago
Birmingham. Cleveland $100 \mathrm{lbs} . . \$ 2,00$
Do., over 9/32-47/64-in incl 2.15 Wor cester add so.10. G4-in., incl., \$2.15. WorCoast $\$ 0.50$ on water shlpment.

Bars

Hot-Rolled Carbon Hars: Pittsburgh, Chicago. Gary, Cleveland, Buffalo, Birmingham, base 20 tons one size, 2.15 c ; Duluth, base 2.25 c ; Detroit, del. 2.27 c ; New York del. 2.49 c ; Phila. del. 2.47e; Gulf Ports, dock 2.52c, all-rali 2.59 c ; Pac. ports, dock 2.80 c . (Phoenix Iron Co., Phoenixville, Pa., may quote 2.35 c at established basing points. Joslyn Mif. Co. may quote 2.35 c , Chicago base. Calumet Steel Djvision, Borg Warner Corp., may quote 2.35 c . Chicago base, on bars produced in its 8 -inch mill.)
Itail Steel Hars: Same prices as for hot-rolled carbon bars except base is 5 tons.
(Sweet's Steel Co., Williamsport, Pa., may quote rail steel merchant bars 2.33c f.o.b. mill.) Hot-1Rolled Alloy Bars: Pittsburgh, Chicago, Canton, Massillon, Buffalo, Bethlehem, base 20 tons one size, 2.70 c : Detroit, del., 2.82c.
(Texas Sted Co. may use Chicago base prlce as maximum f.o.b. Fort Worth, Tex., price on sales outside Texas, Oklahoma.)

AISI	(*Basic	AISI	(*Basic
Series	O-H)	Series	O-FI)
$1300 \ldots .$.	$\$ 0.10$	$4100(15-.25$	$\mathrm{Ma})$

1300 $\$ 0.10 \quad 4100(.15-.25 \mathrm{Mo}) \quad 0.55$

$\begin{array}{llll}2300 \ldots . . & 1.70 & 4340 \ldots . . . & . . . \\ 2500 \ldots & 2.55 & 4600 \ldots . . & 1.70 \\ 3000 \ldots . . & 0.50 & 4800 & \ldots\end{array}$

$3400 \ldots . .$.	3.35	5130 or $5152 \ldots$	0.45
	6120 or $6152 \ldots$.	0.95	

$4000 \ldots . .$.

[^7]Reinfurchns Hars (Now Hillet): Pittsburgh Chicazo, Gary, Cleveland, Btrmingham, Spar rows Point, Buffalo, Youngstown, base 2.15 c Detroit del. 2.27c; Gulf ports, dock 2.52 c allrall 2.61c; Pacific ports, dock 2.80 c , all-rail 3.25 c

Relnforcing liars (Rail Sieel): Pittsburgh Chicago, Gary, Cleveland, Birmingham, base 2.15 c : Detroit, del. 2.27c: Gulf ports, dock 2.52c, all-rall 2.61c; Pacific ports, dock 2.80 e (Sweet's
(Sweet's Steel Co. Williamsport, Pa., may quote rail steel relnforcing bars 2.33c, f.o.b. mill.)
Iron Rars: Single reflned, Pitts. 4.40 c , double reflned 5.40 c : Pittsburgh, staybolt, 5.75 c : Terre Haute, common, 2.15c.

Sheets, Strip

Hot-Rolled Sheets: Pittsburgh, Chicago, Gury Cleveland, Birminglam, Buffalo. Youngstown, Sparrows Pt., Middletown, base 2.10c; Granite Clty, base 2.20c: Detroit del. 2.22c; Phila, del. 2.27c; New York del., 2.34c; Paclfic ports 2.65 c ,
(Andrews Steel Co, may quote hot-rolled sheets for shipment to Detrolt and the Detroit area on the AIiddletown, O. base.)
Cold-Rolled Sheets: Pittsburgh, Chicago, Cleveland, Gary, Buffalo, Youngstown, Middletown. band, Gary, Bulfalo, Youngstown, Middletown. base, 3.05c: Granite Clty, base $3.15 c$; Detroit del. 3.17c: New York del. 3.39c: Phila. del. G.37c: Pacific ports 3.70 c .

Gadvanlzed Sheets, No. $24:$ Pittshurgh, ChiCago, Gary, Birmingham, Buffalo, Youngstown, Sparrows Point, Middletown, base 3.50c; Granite Clty, base 3.60c; New York del. 3.74c; Phila. del. 3.67c; Paclfe ports 4.05 c .
(Andrews Stee] Co. may quote galvanized sheets 3.75 c at establlshed basing points,) Corragated Galv. Sheets: Pittsburgh, Chicago, Gary. Birmingham, 29 gage, per square 3.31 c . Culvert Sheets: Pittsburgh, Chicago, Gary, Birmingham, 16 gage, not corrugated, copper alloy 3.60 c ; copper Iron 3.90 c , pure iron 3.95 c ; zinc-coated, hot-dipped, heat-treated, No. 24 , Pittsburgh 4.25c.
Enameling Sheets: Pittsburgh, Chicago, Gary, Cleveland, Youngstown, Middletown, 10 gage
base 2.75c; Granite Clty, base 2.85c; Pacilic ports 3.40 c
Pittsburkh, Chicago, Gary, Cleveland, YoungsClty, base 3.45 c ; Paciflc ports 4.00 c
Electrical Sheets, No. 24 :

	Pittsburgh	Pacific Ports	Granite City
Fleld grade	3.20 c	3.95 c	3.30 c
Armature	3.55 c	4.30 c	3.65 c
Electrical	4.05 c	4.80 c	4.15c
Motor	4.95 c	$5.70{ }^{\text {c }}$	5.05 c
Dynamo	5.65 c	6.40 c	5.75 c
Transformer			

7.65 c
8.45 c

Hot-Rolled Strlp: Pittsburgh, Chicago, Gary, Cleveland, Blrmingham, Youngstown, Middletown, base, 1 ton and over, 12 Inches wide and less $2.10 \mathrm{c} ;$ Detrolt del. 2.22 c ; Pacifle ports 2.75 c . (Joslyn Mig. Co. may quote 2.30 c , Chicago base.)
Cold Rolled Strip: Pittsburgh, Cleveland, Youngstown, 0.25 carbon and less 2.80 e; Chlcago, base 2.90 c ; Detroit, del. 2.92c; Worcester base 3.00 c .
Commudity C. R. Sirip: Pittsburgh, Cleveland, Youngstown, base 3 tons and over, 2.95 c ; Worcester base 3.35 c
Cold-Finshed Spring Steel: Pittsburgh, Cleveland bases, add 20 c for Worcester; 26-. 50 Carb., 2.80c; .51-. 75 Carb., 4.30c; .76-1.00 Carb., 6.15c; over 1.00 Carb., 8.35 c .

Tin, Terne Plate

Tin Plate: Pittsburgh, Chlcago, Gary, 100-1b base box. $\$ 5.00$; Granite Clty $\$ 5.10$.
Electrolytic Tin Plate: Pittsburgh, Gary, $100-$ lb. base box $\$ 4,50-4,65$.
Tin $M 111$ Black Plate, Pittsburgh. Chlcago, Gary, base 29 gage and lighter, 3.05c: Gran Ite Clty, 3.15c; Paclific ports, boxed 4.05 c .
Long Ternes: PIttsburgh, Chicago, Gary, No. 24 unassorted 3.80 c .
Manufacturing Temes: (Speclal Coated) Pitts burgh, Chicago, Gary, 100 -base box $\$ 4.30$ Granlte City $\$ 4.40$.
Roofing Ternes: Pittsburgh base per pack age 112 sheets; $20 \times 28 \mathrm{in}$., coating I.C. 8 -1b \$12.00; $15-\mathrm{lb} . ~ \$ 14.00 ; 20-\mathrm{lb}, \$ 15.00 ; \quad 25-\mathrm{lb}$ $\$ 16.00 ; 30-\mathrm{lb} . \$ 17.2 \overline{5} ; 40-\mathrm{lb} . \$ 19.50$

Plates

Carbon Steel Plates: Pittsburgh, Chicago, Gary, Cleveland, Birmingham, Youngstown Sparrows Point, Coatesville, Claymont, 2.10 c New York, del., 2.29e; Phlla., del. 2.15 c St. Louls, 2.34e; Boston, del., 2.42 -67e; Pacitle ports, 2.65 c ; Gulf Ports, 2.45 c .
(Granite City Steel Co. may quote carbon plates 2.35 c , f.o.b. mill. Central Iron \& Stee Co. 2.20 c , f.o.b. basing points.)
Floor Plates: Pittsburgh, Chicago, 3.35 e Gulf ports, 3.72 c : Paclfic ports, 4.00 c
Open-Hearth Alloy Plates: Pittsbursh, Chi argo, Coatesville, 3.50 c
Wrought Iron Plates: Plttsburgh, 3.80 c

Shapes

Structural shapes: Pittsburgh. Chicazo, Gary, Blrmingham, Burfalo, Bethlehem, 2.10c; New York. del., $2.27 \mathrm{c}:$ Phila., del., 2.215c; Gulf orts, 2.47 c ; Pacific ports, 2.75 C
Phoenix Iron Co., Phoenixville, Pa. may quote carbon steel shapes at 2.30 c at established basing points and 2.50 c , Phoenixulle, for ex-
Sort.) Sheet Plling: Pittsburgh, Chicago, Buf

Wire Products. Nails

Wre: Pittsburgh, Chicago, Cleveland, Bir mingham (except spring wire) to manufac furers in carloads (add 82 for Worcester): Bright basic, bessemer wire
Galvanized wire
Wire Products to the Tride:
Standard and Cement-coated wire nalls
polished and staples, $100-\mathrm{lb}$. keg \$2.55
Galvanized fence wire, 100 ib.
Woven rence, 121,2 gage and lighter, per base column
Do. 11 gage and heaver
Barbed wire, 80-rod spool, col
Single loop bale tles, col
Single loop bale tles, col
Cut nalls, Plttsburgh, carloads
$\begin{array}{r}.69 \\ \hline 35\end{array}$

Pipe, Tubes

Welded Mpe: Base price in carloads to consumers about $\$ 200$ per net ton. Base dis. counts on steel pipe Pittsburgh and Loraln, O.: Gary, Ind. 2 points less on lap weld, 1 point less on butt weld. Pittsburgh base only on wrought iron pipe.

Steel				Iron	
In.	Blk.	Galv.	In.	B1k.	Gu
		491/2	114		
$21 / 2-3$	64	$521 / 2$	$11 / 2$	281	
7-8		$541 / 4$		$301 /$	12
9-19	641	$521 / 4$		31	
$11-12$	631\%	51	41/2	32	17
Holler Tubes: Net base prices per 100 feet, f.o.b. Pittshurgh in carload lots, minlmum wall, cut lengths 4 to 24 feet, inclusive. -Lap Weld					
D.		-Seamless-		Steel	Char-
		HotRolled	Cold		coal Iron
size.s.	B.W.G.		Drawn		
	13	\$ 7.82	\$ 9.01		
$11 /{ }^{\prime \prime}$	13	9.26	10.67		
$11 / 2$	13	10.23	11.72	\$9.72	\$23.71
1	13	11.64	13.42	11.06	22.93
	13	13.04	15.03	12.38	19.35
$21 / 4$	13	14.54	16.76	13.79	
24,	12	16.01	18.45	15.16	
-216"	12	17.54	20.21	16.58	26.5
23	12	18.59	21.42	17.54	29.00
	12	19.50	22.48	18.35	31.38
35	11	24.63	28.37	23.15	39.81
	10	30.54	35.20	28.66	49.90
	10	37.35	43.04	35.22	
	9	46.87	54.01	44.25	3.93
	7	71.96	82.93	68.14	

Rails, Supplies

Standard rails, over 60-lb., t.o.b, mill, gross ton, $\$ 40.00$.
Llght ralls (billet), Pittsburgh, Chlcago, Birmingham, gross ton, $\$ 40.00$.
Relaying ralls, 35 lbs. and over, f.o.b. rall road and basing polnts, $\$ 28-\$ 30$
Supplles: Angle bars, 2.70 c ; tie plates, 2.15 c ; truck spikes, 3.00 c ; track bolts, 4.75 c ; do, heat treated, 5.00 c
*Flxed by OPA Schedule No. 46, Dec. 15.

Tool Steels

Tool Steels: Plttsburgh, Bethlehem, Syracuse Dase, cents per lb.: Reg. carbon 14.00 c : extra carbon 18.00 c ; special carbon 22.00c: oll-hart ening 24.00c: high car.-chr. 43.00 c
Huh Sues Tool Steels:

Tung.	Chr.	Van.	Moly.PIts. base. per 1 b.	
18.00	4	1	$\boxed{2}$	67.00 c
1.5	4	1	8.5	54.00 c
	4	2	8	54.00 c
5.50	4	1.50	4	57.50 c
5.50	4.50	4	4.50	70.0 c

Stainless Steels

Base, Cents per lb.-f.o.b

Trpe	Bars			Fr. R.	C. R
302	24.00c	27.00 c	34.000	21.50 c	28.00 c
303.	26.00	29.00	36.00	27.00	33.00
30\%.	25.00	29.00	36.00	23.50	30.00
308.	29.00	34.00	41.00	28.50	35.00
309	36.00	40.00	47.00	37.00	47.00
310	49.00	52.00	53.00	48.75	56.00
312	36.00	40.00	49.00		
* 316	40.00	44.00	48.00	40.00	48.00
+321	29.00	34.00	41.00	29.25	38.00
4.347	33.00	\$8.00	45.00	33.00	42.00
431	19.00	22.00	29.00	17.50	22.50

STRAIGHT CHROMIUM STEEL.

$403 \ldots$	21.50	24.50	29.50	21.25	27.00
+410.	18.50	21.50	26.50	17.00	22.00
416.	19.00	22.00	27.00	18.25	23.50
+420	24.00	28.50	33.50	23.75	36.50
430	19.00	22.00	29.00	17.50	22.50
$+\$ 430 F$	19.50	22.50	29.50	18.75	24.50
$440 A$	24.00	28.50	33.50	23.75	36.50
442	22.50	25.50	32.50	24.00	32.00
443	22.50	25.50	32.50	24.00	32.00
446.	27.50	30.50	36.50	35.00	52.00
501	8.00	12.00	15.75	12.00	17.00
502	9.00	13.00	16.75	13.00	18.00

STANLESS CTAD STEEL (20\%)
304
-With 2-3\% moly. †With istanlum. すWith columbium. *Plus machining agent. t+High carbon. $\ddagger \ddagger$ Free machining. §sIncludes annealing and vickllng.

Basing Point Prices are (1) those announced y U. S. Steel Corp. subsidiaries for firs quarter of 1941 or in effect Aprll 16. 1941 at designated basing points or (2) those prices announced or customarily quoted by other pro ducers at the same designated points. Base orlces under (2) cannot exceed those under 1) except to the extent prevaling in thlrd quarter of 1940 .
Extras mean additions or deductions from ase proces in elrect f urll $16,1941$.
Dellvered prices applying to Detroit, Eastern dichigan, Gulf and Paclifc Coast points are
the latter two areus when water transporta tion is not svallable, in which case nearest basing noint price, plus all-nall freight may be basing charged .

Domestic Ceillng urices are the aggregate of (1) governing basing point price, (2) extras and (3) transportation charges to the polnt of delivery as customarlly en to the point erning basing polnt is basing polnt nearest the consumer providing the lowest delivered price Emergency basing point is the basing polnt at or near the place of production or origin.
Seconds, maximum prices: flat-rolled rejects 75% of prime prices: wasters 75%, waste Masters 65% excen blates, which take waster plate $\$ 2.25$, pate $\$ 2.80$ per 100 lbs. i terne late $\$ 2.25$, semiflnished 85% of primes; other
wes limited to new material cellings.
Export celling prices may be either the ag gregate of (1) governing basing point or emer gency basing point (2) export extras (3) exort transportation charges provided they are he fara. seaboard quotations of the U. S Steel Export Co. on April 16, 1911

Bolts, Nuts

F.o.b. Pittsburgh, Cleveland, Birmingham, Chlcago. Discounts for carloads additlona 5%, full containers, add 10%. Carringe and Machine
$x 6$ and smaller
654, of
Do., ${ }^{9}$ and $x / 4$ 6-in, and shorter
$6.31 / 2$ off
Do., 4 to $1 * x$ 6-in. and shorter. 61 oft 13 and larger, all lengths
All dlameters, over $6-\mathrm{In}$. long
Tire bolts
Step bolts
Plow bolts
59 off
590 off
nackages with nuts separate with nuts attached 71 off. $71-10$ off: 15,000 of 3 -inch and shorter, or 5000 off on $3-\ln$

Virt	
\%. U.S.S.	
1/3-11/n-inch	
15\% and lar	
Hexamon Cup Screws	
Stuare Fead Set screws Upset, 1-In., smaller 71 off	
Headless, $14-\ln$., larger 60 off 70 offNo. 10, smaller	
Piling	
Pittsburgh, Chicago, Bulfalo 2.40c	
Rivets, Washers	
F.o.b. Pittsburgh, Cleveland, Chicago,	
Structural . 3.75 c	
7_{n}-inch and under	
Wrought washers, Pittsburgh, Chicago, Philadelphla, to johbers and large nut, bolt manufacturers l.c.1.\$2.75-3.00 off	
Metallurgical Coke	
Price Per Net Ton Beelilve Ovens	
Connellsville, furnace *6.50	
Connellsville, foundry 7.50-8.00	
Connellsville prem. fdry. 7	7.75-8.10
New River, foundry 8.50-8.75	
Wlse county, foundry 7	7.25-7.75
Wise county, furnace Hy-lroduct Foundry	
Kearny, N. J.. ovens 12.15	
Chicago, outside dellwered	11.50
Chicaro, delivered 12.25	
Terre Haute, clellvered	12.00
Mllwaukee, avens 12.25	
New England, telivered 13.75	
St. Louls, dellsered $\$ 12.25$	
Blrmingham, ovens	8.50
Indianapolis, dellvered 12.00	
Cincinnati, delivered	11.75
Cleveland, delivered 12.30	
Buffalo, delivered.................$~$ 12.50 Detrolt, delivered 12.27 Philadelphla, delivered............. 12.38	

- Operators of hand-drawn ovens using trutked coal may charge $\$ 7.00$, effectlve Feb. 3, 1943.
t $\$ 12.75$ from other than Ala., Mo., Tenn.

Coke By-Products

Spot, gal., frelght allowed elst of Omaha Pure and 90% benzol 15.00 c Toluol, two degree 28.00 c
27.00 c

Solvent naphtha Industrial xylol 27.00 c

Per 1b. 1.o.b. works denol rear lots, returnahe drums Do., less than car lots

Do. tank cars

11.50 c

Naphthalene flakes, balls, bbls., to joh-
Pers - Per ton. bulk. f.a.b. port
8.00 c

Sulphate of ammonia

Pig Iron
Prices (in gross tons) are maximums nxed by OPA Price Schedule No regulations from 10, 1941. Exceptions indicated in lootnotes. Allocation bold race, detlvered IIg Order M-17, expiring Dec. 31, 1942. Base prices Dec. 1, 1942, not Included iace. Federal tax on freight charges, effective Dec. 1, 1942, not Included in following prices

	No. 2 Foundry	Tasie*	13essemer	Malleable
Rethlehem, Pr., base	\$25.00	\$24.50	\$26.00	\$25.50
Newark, N. J., del,	26.53	26.03	27.53	$\begin{array}{r}27.03 \\ \hline 28.00\end{array}$
Brooklyn, N. Y.. del.	27.50	26.03		28.00
Alrdshoro, Pa., base	25.00	24.50	26.00	25.50
Baltimore, del.	$\ddagger 20.38$	+19.00		
Boston, del. .	25.12			
Chicago, del.	24.22			
Clrcinnati, del.	24.06	22.60		
Cleveland, del. ...	24.12	23.24		
Newark, N. J., del.	26.15			
Philadelphla, del.	25.46	24.58		
St. Louis, del. . Hufraln, base	24.12	23.24		
Hufralo, base Boston, del.	24.00	23.00	25.00	24.50
Boston, del.	25.50	25.00	26.50	26.00
Rochester, del.	25.53		26.53	26.03
Chlonracuse, base.	26.08		27.08	26.58
Nillwaukee, del.	24.00 25.10	23.50 24.60	24.50	24.00
Muskegon, Mich., del.	27.10 27.19	24.60	25.60	25.10
Cleveland, base	24.00	23.50	24.50	24.00
Akron, Canton, O., del.	25.39	24.89	25.89	25.39
Detrolt, base ${ }^{\text {Sastraw, }}$. ${ }^{\text {a }}$,	24.00	23.50	24.50	24.00
Saglnaw, Mich., del.	26.31	25.81	26.81	26.31
Duluth, base .	24.50	24.00	25.00	24.50
St. Paul, del.	26.63	26.13	27.13	26.63
Erie, Pa., base	24.00	23.50	25.00	24.50
Everctt, Mass., base	25.00	24.50	26.00	25.50
Boston, del.	25.50	25.00	26.50	26.00
Granlie City, Ill., base	24.00	23.50	24.50	24.00
St. Louis, del. .	24.50	24.00		24.50
Hamilton, O., base	24.00	23.50		24.00
Cincinnati, del.	24.44	24.61		25.11
Neville lsland, Pa, base Pittsburgh, del.	24.00	23.50	24.50	24.00
No. \& So, sides	24.69	24.19	25.19	24.69
Provo, Utah, base	22.00	21.50		
Sharpaville, Ma., base	24.00	23.50	24.50	24.00
Sparrown Polnt, Md., base	25.00	24.50		
Baltimore, del.	25.99			
Steelton, Pa, base		24.50		25.50
Swedelnnd, Pit., base	25.00	24.50	26.00	25.50
Philadelphia, del.	25.84	25.34		26.34
Toledo, O., base	24.00	23.50	24.50	24.00
Mansfleld, O., del.	25.94	25.44	25.44	25.94
Younestown, O., base	24.00	23.50	24.50	24.00

[^8]| High Silicon, Silvery | |
| :---: | :---: |
| 6.50 per cent (base).... $\$ 29.50$ burgh Coke \& Iron Co. (Sharpsville, | |
| 00. $\$ 30.50$ 9,01-9.50.\$3 | furnace only) and Struthers |
| 01-7.50. . 31.50 | n \& Steel Co. may charge |
| 51-8.00. . 32.50 10.01-10.50. 37.50 | cents a ton in excess of basing poin |
| 3.01-8.50. . 33.50 10.51-11.00. 38 | prlces for No. 2 Foundry, Bas |
| $3.51-9.00 . .34 .50$ | Bessemer and Malleable. Myst |
| F.o.b. Jackson county, O., per gross | ass., may |
| ton. Buffalo base prices are $\$ 1.25$ higher. Prices subject to additional | eed basing point prices by \$1 per |
| | effective April 20, 1942. Ches |
| charge of 50 cents a ton for each | |
| 0.50\% | ron Co may excead basing |
| | prices by $\$ 2.25$ per ton, July 27. 1942. |
| Prices same as for high sillcon sllvery Iron, plus $\$ 1$ ner gross ton. | |
| Charconal Plik Iron Northern | Per 1000 f.o.b. Works, Net Prices |
| ake Superlor Furn, $\$ 28.00$ | |
| Chicago, del. ${ }^{\text {co.. }}$ | |
| (For higher silicon Irons a differ- Pa., . . | |
| ential over and above the price of base crades is charged as well as | |
| | |
| for the hard chilling iron, Nos. 5 | |
| | |
| Southern | |
| Seml-cold blast, high phos., f.o.b. furnace, Lyles, Tenn. . $\$ 28.50$ | 10 |
| | |
| Semi-cold blast, low phos., f.o.b. furnace, Lyles, Tenn. . 33.00 | Alabama |
| | New Je |
| Giray Forge | |
| Ille Island, Pa. $\$ 23.50$ | Intlealbe Bung Brick |
| alley, base | All bases $\$ 59.85$ |
| Low Phosphorus | Sillen Hrick |
| Basing points: Birdsboro and Steel- | Pennsylvanla |
| ton, Pa., and Buffalo, N, Y.. $\$ 29.50$ | Jolict, E. Chi |
| base; $\$ 30.74$, delivered, Philadelphla. Swltching Chargen: Basing polnt | |
| | |
| | |
| switching limits of the respective | ress |
| districts. | |
| Sillcon Difterentials: Basing point | |
| prices are subject to an additional | |
| charge not to exceed 50 cents a ton | |
| for each 0.25 sllicon In excess ofbase grade (1.75 to 2.25%). | Wast., net ion |
| | ton, bags 26. |
| Phosphorus Difierential: Basing mater | |
| point prices are subject to a reduc- | |
| tion of 38 cents a ton for phosphor-
 Meeting, Chester, Pa | |
| Manganese Difierentials: Basing | Chrome brick |
| polnt prices subject to an additional | |
| | charge not to exceed 50 cents a ton |
| for each 0.50% manganese content in excess of 1.0%. | |
| Cullng Prices are the asgregate | |
| of (1) governing basing point (2) | |
| charges from governing basing point | |
| to point of delivery as customarlly | |
| computed. Governing basing polnt | |
| | |
| | |

Ferroalloy Prices

Ferromansancse: 78-32\%, carlots, Eross ton, duty pald, Atlantic ports,
$\$ 135$: Del Pletsburgh $\$ 140.33$; fob. \$135: Del. Plttsburgh $\$ 140.33$; f.o.b.
Southern furmaces $\$ 135 ;$ Add $\$ 6$ per Southern furnaces $\$ 135$; Add $\$ 6$ per gruss ton for packed carloads $\$ 10$
for ton, $\$ 13.50$ for less-ton and $\$ 18$ for ton, $\$ 13.50$ for less-ton and $\$ 18$ Splepelelsen: 19-21\%, carlots per gross ion, Palmerton, Pa. \$36
Flectrolytic manganese: 99.9% plus, less ton lols, per lb. 42.00 c . Ton lots 40.00 c . Annual contracts 38.00 c . Chromlum Metal: Per 1 b contalned chromium in gross ton lots, con$80.00 \mathrm{c}, 88 \% 79.00 \mathrm{c}$. Spot prices 5 Ferrocolumblum: $50-60 \%$, per 1 b . contained columblum in gross ton Fillis, coritract basis, i.o.b. Niagara Fillis. N. Ypot prices 10 cents per lb. higher.
Ferrochrome: 66-70\%: per lb. conalned chromlum in carloads, freight lotswed, 13.6% carbon 13.00 c ; ton less than $200-\mathrm{lb}$. lots 14.25 c . 66 12 c. low carbon srades:
Car Ton Less 200
loads lots

$2 \% \quad$ C. . . 19.50 c 20.25 c 20.75 c 21.00 c | $1 . c$ | C. | 20.50 c | $21.25 c$ |
| :--- | :--- | :--- | :--- |
| 0.20% | 21.75c | $22.00 c$ | | 0.20%

0.10%
C. 21.50 c
22.50 c 23.25 c
23.25
23.75 c
$23.00 c$
$24.00 c$ Spot is A C higher
Chrumbum briquets: Contract basis in carloads per lb. frelght allowed 8.25 c ; packed 8.50c; gross ton lots
5.75 c ; less-ton lots 9.00 c ; less 200 b. lots $9.25 c$. Spot prices $1 / 4$-cent higher.
crromolybdenum: 55-75\%, per lb contained molybdenum, f.o.b. Lan geloth and washington, Pa., fur-

Calclum Molybdate (Molyte): 40$3 \%$, per w. contained molybdenum ontract basis, f.o.b. Langeioth an W0.00c. Pa ., any quantlty 80.00c.

Molybile Oxide Iriquets: $48-52 \%$ er lb . contained molybdenum, f.o.b Langeloth, Pa., any quantity 80.00 c .

Molybdenum Oxide: $53-63 \%$, per lb contalned molybdenum in 5 and 20 1b. molybdenum contained cans R.o.b. Langeloth and Washington . any quantity 80.00 c
Molyhdenum Powder: 990 per 1 b . in 200-10. kegs, lo.b. $\$ 2.60 ; 100-200 \mathrm{lb}$. lots $\$ 2.75$; under $100-\mathrm{lb}$. lots $\$ 3.00$.
Ferrophosphorus: $17-19 \%$, based on 18% phosphorus content, with unit age of $\$ 3$ for each 1 \% of phosphorus above or below the base; gross works, with frelght equalized well Rockdale, Tenn. : contract price $\$ 58.50$, spot $\$ 62.25$.
Ferrophosphorus: $23-26 \%$, based on 24\% phosphorus content, with unitage of $\$ 3$ for each 1% ol phosphor tons per or below the base gross with paris l.o.b. sellers works Pleasant Peasant, Tenn. : contract price $\$ 75$

Ferronillcon: Contract basis in gross tons per carload, bulk, freight allowed: unitage applies to each 1% sllicon above or below base.

Spot prices $1 / 4$-cent higher
Silleon Metal: Contract basis per lb., f.o. b. producers plants, freigh ton lots 15.00 c , less-ion lots 15.25 e allowed: 1% iron; carlots 14.50 c
ess 200 lbs. 15.50 c .
Shicon Metal: Contract basis per lh. 2 2 iron: carlots 13.00 c , ton ts 13.50 c , less-ton lots 13.75 c , jes有 libs. 14.00 c . Spot prices $1 / 4$-cen tigher

Sillcon Briqueta: Contract basis; In carloads, bulk frejght allowed, per on $\$ 74.50$; packed $\$ 80.50$: ton lots 84.50: less-ton lots per lb. 4.00 c er on less on lots: $\$ 5$ per ton higher on ton lots and over.
Silicomanganese: Contract basis relght allowed, 11/2 carbon. in carloads per pross ton $\$ 135$: ton ots $\$ 147.50$. Spat $\$ 5$ per ton higher Sllico-manganese Briquets: contract basis in carloads per pound, bulk less $200-1 \mathrm{~b}$. lots 6.80 c . Sacked 6.05 c ton lots 6.30 c ; less-ton lots 6.55 c $1 / 4$-cent higher.
Ferrotungsten: Carlots, per lb. conTunce tungsten, $\$ 1.90$. per lb . any quantity $\$ 2.55-2.65$.
Ferrotitanium: $40-45 \%$, f.o.b. Ni alls. N. Y. per lo. cont
lats $\$ 1.25$. Spot up 5 cents per lb. Ferrotitanlum: $20-25 \%, 0.10$ maxi mum carbon per lk . conialned ti \$1.40. Spot 5 cents per ib higher Hikh-Carbon Ferrotitanium: 15-20 \% contract basis, per gross ton, f.o.b Nowedra Falls, N. Y., freaght al sippl River and North of Baltimor and St Louls, G-8 $\%$ carbon 514950 $3-5 \%$ carbon $\$ 157.50$.
Ferrovanadium: 35-40\%, contract basis, per lo. contained vanadium f.o.b. producers plant with usual freight allowances: open-hearth highly-speclal grade $\$ 2.90$.
Vanadlum Pentoxide: Technlcal tracts, $88-92$ per cent ${ }_{2}^{2} \mathrm{O}_{5}$ con pound $\mathrm{V}_{2} \mathrm{O}_{3}$ contained; spot 5 cents up.
Zirconlum Alloys: 12-15\%, contract basis, carloads bulk, per gross tor $\$ 102.50$; packed $\$ 107.50$; ton lots $\$ 108$; less-ton lots $\$ 112.50$. Spot $\$ 5$ per ton hlgher.
Zirconlum alloy: $35-40 \%$, contract per in cartoas in bulk or package per ih. of alloy 14.00c: gross ton $1 /$-cent higher. Alsifer:
Alsifer: (Approx. 20\% aluminum, sis, sincon. 40% contract ba ib. 7.50 c ; ton lots 8.00 c . Spot $1,6-$ cent higher.
Slmanal: (Approx. 20\% each silicon, manganese, aluminum) Conof alloy: carlots 100001 ton 10 . 10.50 c , less ton lots, 11.00 c .

Roronll: 3 to 4% boron, 40 to 45%

WAREHOUSE STEEL PRICES

Sase Prices in Cents Per Poumd. Delivered Locaily. Subiect to Precailing Differentiats

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& Hot rolled lars \& \& $$
\frac{\text { gix }}{\stackrel{y}{2}}
$$ \& $$
\begin{aligned}
& \frac{\pi}{3} \\
& \frac{1}{3} \\
& \frac{8}{2} \\
& \frac{0}{2}
\end{aligned}
$$ \& \& \& \& \& \& \& \& \&

\hline ${ }_{\text {Noston }}^{\text {Now }}$ \& 4.0441 \& $3.912{ }^{1}$ \& 3.9121 \& 5.5271 \& 3.774^{1} \& 4.106^{1} \& 5.106^{1} \& 5.224^{14} \& 4.7-144 \& 4.144^{11} \& 4.715 \& 7.702. ${ }^{\text {ch }}$ \& 6.062

\hline Jersey City \& 3.853^{1} \& 3.758^{1} \& $3.768{ }^{1}$ \& 5.5741 \& 3.590^{1} \& 3.974^{1} \& 3.974^{1} \& 5.010^{12} \& 4.013^{14} \& 4.103^{21} \& 4.774 \& 7.702 \& 6.062

\hline Philadelphia \& 3.85122^{1}
3 \& ${ }^{3.747^{1}}$ \& $3.768{ }^{1}$
3.6051 \& 5.5741 \& 3.5901 \& $3.974{ }^{1}$ \& $3.974{ }^{1}$ \& 5.010^{12} \& 4.613^{14} \& 4.103^{36} \& 4.774 \& \&

\hline Baltimore \& 3.82021 \& 3.666^{1}
3.759 \& 3.605^{1}
3.5941 \& 5.272^{1} \& 3.518^{1} \& 3.922^{1} \& 4.272^{1} \& 5.01818 \& 4.872^{24} \& 4.072^{21} \& 4.772 \& 7.506^{21} \& 5.866^{12}

\hline Washington \& 3.8021 \& 3.7591 ${ }^{1}$ \& 3.594^{1} \& 5.252^{x} \& 3.394^{1} \& 3.902^{1} \& 4.2591 \& 4.894^{1} \& 4.852^{25} \& 4.059^{-1} \& \& \&

\hline Nortulk, Va. \& 4.063^{2} \& $3.930{ }^{1}$
4.002^{1} \& 3.796^{1}
3.9711 \& 5.3.41 \& 3.5961 \& 4.0418 \& 4.391^{1} \& 5.19617 \& 4.841^{20} \& 4.041^{21} \& \& \&

\hline Bethlehem, Pa. ${ }^{\circ}$ \& \& $3.45{ }^{1}$ \& \& $5.46{ }^{1}$ \& 3.771^{1} \& 4.165^{1} \& 4.515^{1} \& 5.371^{17} \& 4.965^{24} \& 4.165^{21} \& \& \&

\hline Claymont, Del. ${ }^{\circ}$ \& \& \& $3.45{ }^{1}$ \& \& \& \& \& \& \& \& \& \&

\hline Coatesville, Pa. ${ }^{\circ}$ \& \& \& $3.45{ }^{1}$ \& \& \& \& \& \& \& \& \& \&

\hline Buffalo (city) \& $3.35{ }^{1}$ \& 3.40^{1} \& $3.62{ }^{1}$ \& \& \& \& \& \& \& \& \& \&

\hline Buffalo (country) \& 3.251 \& 3.301 \& $3.62{ }^{1}$ \& 5.25^{1} \& 3.251
3.151 \& 8.821 ${ }^{1}$ \& $3.82{ }^{1}$
3.821 \& 4.755^{16} \& 4.30^{10} \& $3.75{ }^{21}$ \& 3.52 \& 7.35^{21} \& 5.65 '

\hline Pittsburgh (eity) - \& 3.351 \& $3.40{ }^{1}$ \& 3.40^{1} \& 5.00^{1} \& 3.151
3.351 \& 3.822^{1}
3.601 \& $3.82{ }^{1}$
3.601 \& 4.655^{18}
$4.75{ }^{18}$ \& 4.20^{10}
4.00^{3} \& $3.65{ }^{21}$
3.6521 \& \& \&

\hline Pittsburgh (country) \& 3.251 \& $3.30{ }^{1}$ \& $3.30{ }^{1}$ \& 4.90

2 \& 3.351 \& $3.60{ }^{1}$
3.501 \& $3.60{ }^{1}$ \& $4.75{ }^{12}$
4.6512 \& 4.00^{24}
4.00^{21} \& $3.65{ }^{26}$
3.6521
3.751 \& \& 7.45^{13} \& 5,75 ${ }^{\text {¹ }}$

\hline Cleveland (city) \& 3.251
3.251 \& 3.581 \& 3.40^{1} \& $5.18{ }^{1}$ \& 3.251
3.35^{1}
3 \& $3.50{ }^{1}$
3.501 \& 3.501
3.501 \& 4.6512
$4.62{ }^{12}$ \& $4.00^{24} 4$ \& $3.65{ }^{21}$
$3.75{ }^{11}$ \& 3.20 \& 7.55^{72} \& $5.85{ }^{\circ}$

\hline Detroit \& 3.251
3.43^{1} \& 3.581 \& 3.301
$3.60{ }^{1}$ \& $5.18{ }^{1}$ \& 3.251 \& $3.50{ }^{1}$ \& $3.50{ }^{1}$ \& 4.62 ${ }^{18}$ \& $3.95{ }^{\text {r }}$ \& $3.65{ }^{31}$ \& \& \&

\hline Omaha (city) \& 4.10^{1} \& $3.65{ }^{1}$ \& 3.60 ${ }^{1}$ \& 5.271 \& 3.431 \& 3.431 \& 3.68 \& 4.84^{11} \& $4.30{ }^{\text {4 }}$ \& $3.80{ }^{21}$ \& 3.40 \& 7.67^{17} \& $5.97^{\prime \prime}$

\hline Omaha (country) \& 4.00^{1} \& 4.05^{1} \& $4.15{ }^{1}$ \& 5.751 \& 3.851 \& 4.201 \& $4.20{ }^{1}$ \& 5.52^{10} \& 4.77^{26} \& 4.42^{21} \& \& \&

\hline Cincinnati \& $3.60{ }^{\text {8 }}$ \& 3.681 \& $3.65{ }^{1}$ \& 5.65 \& 3.751 \& $4.10{ }^{1}$ \& $4.10{ }^{1}$ \& 5.52^{10} \& 4.77^{24} \& 4.42^{71} \& \& \&

\hline Youngstown, 0.0 \& \& 3.68 \& 3.65 \& $5.28{ }^{1}$ \& $3.42{ }^{1}$ \& $3.67{ }^{1}$ \& $3.67{ }^{1}$ \& $4.92{ }^{10}$ \& $4.37{ }^{24}$ \& 4.00^{71} \& 3.45 \& $7.69{ }^{37}$ \& $5.99^{\prime \prime}$

\hline Middletown, O. \& \& \& \& \& \& , 501 \& \& 4.40^{13} \& . \& \& \& \&

\hline Chicago (city) \& $3.50{ }^{\text {\% }}$ \& 3.551 \& 3.55 \& \& $3.25{ }^{\text {a }}$ \& $3.50{ }^{1}$ \& $3.50{ }^{1}$ \& $4.40{ }^{19}$ \& \& \& \& \&

\hline Chicago (country) \& $3.40{ }^{\text {a }}$ \& 3.45 \& $3.45{ }^{1}$ \& 5.15
5.051 \& $3.25{ }^{1}$ \& 3.601 \& $8.60{ }^{1}$ \& $4.85{ }^{16}$ \& 4.10^{24} \& $3.75{ }^{23}$ \& 3.50 \& 7.35^{31} \& 5.05^{11}

\hline Mitwaukee \& $3.63{ }^{\text { }}$ \& $3.68{ }^{1}$ \& 3.48 ${ }^{1}$ \& 5.051
5.281 \& 3.15 ${ }^{1}$ \& $3.50{ }^{1}$ \& $3.50{ }^{1}$ \& $4.75{ }^{16}$ \& 4.00^{24} \& 3.65 ${ }^{12}$ \& \& \&

\hline St. Prul \& $3.75{ }^{3}$ \& $3.80{ }^{2}$ \& $3.88{ }^{1}$ \& $5.28{ }^{1}$ \& 3.38 ${ }^{1}$ \& $3.73{ }^{1}$ \& $3.73{ }^{1}$ \& $4.98{ }^{16}$ \& $4.23{ }^{24}$ \& $3.88{ }^{32}$ \& 3.54 \& 7.33^{38} \& $5.88{ }^{31}$

\hline St. Louis \& $3.84{ }^{1}$ \& $3.69{ }^{1}$ \& 3.80^{1} \& 5.40^{2}
5.29 \& $3.50{ }^{3}$ \& ${ }^{3.855^{3}}$ \& $3.85{ }^{2}$ \& 5.00^{3} \& 4.35^{3} \& $4.34{ }^{21}$ \& 3.83 \& 7.70^{73} \& $0.00{ }^{24}$

\hline Indianapolis (city) \& $3.80{ }^{1}$ \& 3.70^{1} \& 3.690^{1}
3.7 \& 5.2931 \& 3.391
3.451 \& 3.74 ${ }^{1}$ \& $3.74{ }^{1}$ \& 4.99^{10} \& $4.24{ }^{34}$ \& 4.02^{35} \& 3.61 \& 7.72^{24} \& 6.02^{24}

\hline Indianapolis (country) \& $3.35{ }^{1}$ \& $3.45{ }^{1}$ \& $3.40{ }^{1}$ \& $5.05{ }^{1}$ \& 3.451

3.201 \& | 3.751 |
| :--- |
| 3.501 |
| 101 | \& 3.751

3.501 \& $5.01{ }^{10}$ \& $4.25{ }^{24}$ \& $3.97{ }^{21}$ \& \& \&

\hline Memphis, Tenn. \& 3.90° \& $3.95{ }^{\circ}$ \& $3.95{ }^{4}$ \& $5.71{ }^{\text {s }}$ \& $3.85{ }^{\prime}$ \& $3.50{ }^{1}$
4.108 \& $3.50{ }^{1}$
4.10^{01} \& 5.01^{181} \& 4.00^{24}
4.66^{24} \& 3.9712
4.3121 \& \& \&

\hline Birmingham (city) \& $3.50{ }^{\text {² }}$ \& $3.55{ }^{\text {b }}$ \& 3.55 \& $5.88{ }^{\text {b }}$ \& $3.45{ }^{\prime}$ \& $8.70{ }^{\text {a }}$ \& $4.70^{\prime \prime}$ \& $4.75{ }^{10}$ \& $4.78{ }^{48}$ \& 4.31318 \& \& \&

\hline Birmingham (country) \& $3.40{ }^{1}$ \& $3.45{ }^{\circ}$ \& 3.45 \& $5.83{ }^{\text {b }}$ \& $3.35{ }^{\circ}$ \& $8.60{ }^{1}$ \& $3.60{ }^{3}$ \& $4.75{ }^{10}$ \& $4.78{ }^{\text {² }}$ \& 4.43^{31} \& \& \&

\hline New Orleans (city) \& 4.10^{4} \& $3.90{ }^{4}$ \& 3.90^{4} \& 5.85 \& 3.95 \& $4.20{ }^{4}$ \& $4.20{ }^{\text {a }}$ \& $5.25{ }^{21}$ \& $4.95{ }^{10}$ \& $4.80{ }^{11}$ \& 5.00 \& \&

\hline New Orleans (country) \& 4.00^{4} \& $3.80{ }^{4}$ \& $3.80{ }^{4}$ \& $5.75{ }^{4}$ \& 3.85 \& 4.104 \& 4.10^{4} \& $5.15{ }^{2}$ \& 4.95^{10} \& $4.60{ }^{11}$ \& \& \&

\hline Houston, Tex. \& $3.75{ }^{2}$ \& $4.25{ }^{\text {a }}$ \& $4.25{ }^{\text {n }}$ \& $5.50{ }^{\circ}$ \& $3.75{ }^{2}$ \& 4.30^{3} \& $4.30{ }^{3}$ \& $5.25^{\text {a }}$ \& 5.4310 \& $4.50{ }^{3}$ \& \& \&

\hline Los Angeles ${ }_{\text {San }}$ Francisco (city) \& 4.35 ${ }^{1}$ \& $4.60{ }^{4}$ \& $4.90{ }^{4}$ \& $7.15{ }^{4}$ \& $4.95{ }^{4}$ \& $4.90{ }^{1}$ \& 6.70 \& $5.95{ }^{18}$ \& 7.15 \& $5.70{ }^{37}$ \& \& $9.55{ }^{73}$ \& $8.55{ }^{\prime \prime}$

\hline San Francisco (country) \& $3.85{ }^{1}$ \& $4.35{ }^{7}$ \& $4.65{ }^{7}$ \& 6.35
6.251 \& 4.55 ${ }^{4.45}$ \& $4.50{ }^{7}$ \& $4.50{ }^{7}$ \& 6.60^{10} \& $7.55{ }^{18}$ \& $5.55{ }^{21}$ \& \& $9.80{ }^{\prime}$ \& 8.80'

\hline Tacoma \& 4.20° \& $4.45{ }^{\text {8 }}$ \& 4.75 \& 6.50° \& $4.45{ }^{\circ}$ \& $4.40{ }^{\prime}$ \& $4.40{ }^{7}$ \& $6.50{ }^{19}$ \& $7.45{ }^{18}$ \& 5.45 ${ }^{23}$ \& \cdots \& \&

\hline Seattle (city) \& 4.20^{4} \& $4.45{ }^{\circ}$ \& 4.75 \& $6.50{ }^{\text {a }}$ \& 4.65° \& $4.35{ }^{\circ}$ \& 5.45 ${ }^{\circ}$ \& 5.70
5.70 \& 8.83 ${ }^{6.83}$ \& 5.75 5.75^{21} \& \& \& 800

\hline
\end{tabular}

[^9]
BASE QUANTITIES

-400 to 1999 pounds; ${ }^{2}-400$ to 14,999 pounds; ${ }^{4}$-any quantity: - 300 to 1999 pounds; ${ }^{3}-400$ to 3999 pounds; - 300 to 1999 paunds; ${ }^{10}-500$ to 1499 pounds; ${ }^{12}$-one bundle to 39,999 pounds; ${ }^{12}$ - 150 to

Cents per uric, c.i.f. Aslentic ports
$\begin{array}{ll}\text { Manganiferous ore, 45- } & \\ 55 \% \text { Fe., } 6-10 \% \text { Hang. } & \text { Nom. } \\ \text { N. African low phos.... } & \text { Nom. }\end{array}$
Spanlsh, No. African
Spanlsh, No. African
basic, 50 to 60%... Nom,
f.o.b. Rio de Janeíro. $7.50-8.00 \mathrm{c}$

	Tunmsten Ore	
Chinese	wolframite, per	
short	ton unlt, duty	
paid		524.00

Chrome Dre
(Equivalent OPA schedules):
Gross lon f.o.b. cars, New York, Philadelphia, Baltimore, Charleston, S. C., Portland, Ore., of Tacoma, Wash.
(S/S paying for discharging; dry basis; rubject to penalties if guarantees are not met.)
Indian and Atrican
$\begin{array}{ll}48 \% & 2.8: 1 \\ 48 \% & 3: 1\end{array}$
41.00 semifinished steel major basing paints and are io cents fer pound and dollars per gross ton. No proses gunted 43.50 on vanadium alloy.

NATIONAL EMERGENCY STEELS (Hot Rolled)

2249 pounds; ${ }^{15}-150$ to 1499 peunds; ${ }^{14}$-three to 24 bundles; ${ }^{14}-450$ to 1499 pound,; ${ }^{10}$-one bundle to 1499 pounds; ${ }^{17}$ - one to nine bundles; ${ }^{12}$-ane to sir bundles; ${ }^{15}-100$ to 749 pounds; ${ }^{30}-300$ to 1999 pounds; n- 1500 to 39,999 pounds; ${ }^{22}-1500$ to 1999 pounds; zi- 1000 to 39.999 paunds; ${ }^{24} 400$ to 1499 pounds: $20-1000$ to 1 日g9 pounds: 25 -under 25 bundles. Cold-ralled strip, 500 pounds and over, base.

less $\$ 7$ frelght allowance Manganese Ore	Chllean, 48\% Indian, 50\%	$\begin{aligned} & 73.8 \mathrm{c} \\ & 74.8 \mathrm{c} \end{aligned}$
Including uar risk but not duty,	Indian, 48\%	73.8 c
cents per gross-ton unit, dry, f.o.b.	South Airican, 48%	$73.8 c^{+}$ $71.8 c$
cars, New Orleans and Mobile; 5	(Duty Free)	
cents higher at Norfolk, Baltimore,	Cuban, 51%	$89.5 c$
Philadelphia, New York; adiustments	Cuban, 48\%	85.0 c
for analysis cariations. (Based on	Cuban, 45\%	82.05
OPA schedules.)	Phillpplne, 50\%	85.0 c
Brazillan, 48\% 73.8c	Domestic, 48\%, l.o.b. mines	c
Brazllian, 46\% 71.8c	Malybdenimm	
Caucasjan. 51\% 75.3 c	Sulphlde conc., lb., Mo. cont.,	
Caucasian, 50\% 74.8c	misies	30.75

 differenti below the corresponding listed grades as existed from Sept. 1 , 1940 . to Jan. 31 . 1941 . No premium
allowed on grades considered superior, unless approved by OPA. Addition of special preparation charges
 bloom and forge crops and electric furnnce bundles may exced open hearth price, and electric furnace
bundles may exceed blast furnace price, if material is delivered to the consumer direct from the orig-
inal industrial producer. Commissions: No cotmmission is payable except by a consumer to a broker for services rendered,
 ourchased it; the broker does not split the conmission to the consumer the seller of the same price at which he
or sub-broker, or with the consumer. Cormmissions must be shown as separate iter broker
Maximum invoice. Maximum Shipping Point Price: Where shipment to consume as is beparate raitem on invoice. vessel or combination of
both, scrap is at its shipping point when it has been piaced f.o.b. railroad car or fas. vessel. In such cases, maximum shipping point prices are: (1) For shipping points located within a basing point, the minus the lowest established switching charge for scran woint in which the shipping point is located,
points located outside a basing point, the price in the above table for scrap point: and (2) for shipping most favorable bas points located outside a basing polnt, the price in the above table for scrap at the most favorable bas-
ing point. minus the lowest transportation charge by rail, water or combination thereof. When vessel movement is involved, dock charges shall be 50 cents at Memphis, $\$ 1$ at Great Lakes ports, $\$ 1.25$ at
New England ports, 75 cents elsewhere. New England shipping, point prices computed on most favor-
able basing point prices; raaximum transportation charge on scrip from New Englend $\$ 6.65$ per able basing point prices; rnaximum transportation charge on scrap from New England, $\$ 6.65$ per ten.
Scrap shipped by motor vehicle is at its shipping point when loaded. For shiping points within
basing points, maximum is price listed in table minus lowe switching charge when outide basing points, maximum is price listed in table minus lowest switching charge. Whing points within
point, maximum is price at most favorable basing point minus lowest established charge when basing hauled
by common carrier. When hauled by seller charges are based on carload rate for rail shipment. mini-
mum sl.00 per ton. point price, not to exceed by more than $\$ 1$ (plus adreight established transportation charges to shipping
in the table for the nearest basing point. Certain exceptions spectied in 18 , 1942) the prices listed in the table for the nearest basing point. Certain exceptions speclfied in Revised Price Schedule No.
4 (Amendment 1) apply to St. Lous district consumers, to WPB allocations, to water shipmerts from Duluth or Superior, Wis, to shipments of billets, blooms ard forge crops from Pittsburgh sha to shom
ments of electric and foundry grades from Michign: to shipments of turnings to ferroalloy producers and of borings to chemical users. Delivered prices of scrap shipped uncer WPB allocations may ex-
ceed prices at nearest basine point by more than $\$ 1$, if most economical transportation is used. $\$ 3.50$ less; (material from which Nos. 1,2 and 3 bundles made is $\$ 4$ less) than for the corresponding

 conska, Kansas. Delivered price may exceed by not more than $\$ 7$ the price at the basing point nearest
consumer's plant, provided sworn details furnished OPA. Permission reguired to cxceed by more than $\$ 7$
the nearest basing point price. Colorado is remote for Colorado

 $\begin{array}{r}\text { pue } \\ +418 \mathrm{I} \\ \hline\end{array}$ 24 96.88

 운.

 Mixed
Bor., Turn.
Machine
Turnings

\qquad

$\begin{array}{lr}00078 & 00^{\circ} 6 \text { Is } \\ \text { odnox } & \text { g dnox }\end{array}$
Group
$\$ 19.00$
19

```\(00.6 I\)
\(0 \mathrm{~S}^{2} \mathrm{LI}\)
09 LI
\(00.6 I\)
```

 aVOUIFY NVHLL YAHILO dVEES NOUI LSVD

dVyOs avou'iva

空感
\%

$00-81 \$$
V dino

Group A includes the states of Montana, Idaho, Wyoming, Nevada, Utah, Arizona arid New Mexico.
Groun B includes the states of North Dakota, South Dakota, Nebraska, Colorado, Kansas, Oklahoma, 'Open Hearth Grades refer to No. 1 heavy melting steel No. No. 1 hydraulic compressed black sheet
scrap. No. 2 heary melting steel, dealers' No. 1 bundes, dealers' No. 2 bundles and No. 1 busheling.
No. 1 chem. borings, 1 per cent oil, $\$ 1$ under, No. 21.5 per cent oil, $\$ 2$ urder heavy melting steel. No. No, 1 chem. borings, 1 per cent oil, $\$ 1$ under, No, $2,1.5$ per cent oil, $\$ 2$ urder heavy melting steel. No.
3 bundles, $\$ 2$ under No. 1 heavy meltinge cast steel, $\$ 2.50$ over, No. 2 busheling, $\$ 2.50$ under No. 1
heavy melting steel, auto springs, crankshalts, $\$ 1$ over No. 1 heavy melting. †Toledo open-hearth grades A hasing point includes the switchings distriet of the city named. The Pittsburgh basing point in-
cludes the switthing districts of Bessener. Homestead, Duguesne. Munhall and McKeesport. Pa. Cincludes the switching districts of Besserner. Homestead, Duquesse, MMuhall and McKesspont. Pa. Cin-
cinnati includes Newport, Ky. St. Louis basing point includes Granito City, East St. Lovis and Madison,

NONFERROUS METAL PRICES

Copner: Electrolytic or Lake from producers in carlots 12 .rje, Del. Conn., less carlots 12.121\%. reflnery: denlers may add \% \% for 5000 lbs . to carioad; $1000-4999$ lbs. 1c; $500-999$ 11 12 c ; $0-499$ 2c. Castung, 11.75 c . rennery for 20,000 lbs., or more, 12.00 c less than 20,000 lbs.

Brass Incot: Carlot prices, including 25 cents per hundred freight allowance; add $1 / 4 \mathrm{c}$ for less than 20 tons: $85-5-5-5$ (No. 115) 12.25 c 14.25 c ; Navy G (No. 225) 16.75 c ; Navy (No. 245) 14.75c; No. 1 yellow (No. 405) 10.00 c ; manganese bronze (No. 420) 12.75 c .

ZInc: Prime western 8.25 c , select 8.35 c , brass special 8.50 c , intermediate 8.75 c , E. St. Louls, for carlots. For 20,000 lbs. to carlots add 0.15c; $10,000-20,0000.25 \mathrm{c} ; 2000-10,000 \quad 0.40 \mathrm{c}$; under 20000.50 c

Tead: Common 6.35c, corroding or chemical, $6.40 \mathrm{c}, \mathrm{E}$. St. Louls for carloads; add 5 polnts for Chicago, Minneapolls-St. Paul, MilwaukeeKenosha districts; add 15 polnts for Cleveland-Akron-Detroit area, New Jersey, New York State, Texas, Pacifle Coast, Rlchmond, In-
dianapolis-Kokomo: add 20 points for Bir-dianapolis-Kokomo; add 20 points for Bir Springleld, New Hampshire, Fhode Island.

Primary Aluminum: 99\% pllus, ingots 15.00 c del., plgs 14.00 c del.; metallurgical $94 \% \mathrm{~min}$. 13.50 c del. Base $10,000 \mathrm{lbs}$. and over; add 4 s c $2000-9999$ lbs.; 1c less than 2000 lbs.

Secondary Aluminum: All grades 15.00c per lb. except as follows: Low-grade piston alloy (No. 122 type) 14.50 c ; No. 12 foundry alloy (No. 2 grade) 14.50 c ; chemleal warfare service ingot ($991, \%$ plus) 14.50 c ; steel deoxidlizers in notchbars, granulated or shot, including ingot contalning over 2% Iron, Grade 1 (95-
 Grade 3 ($90-92 \%$) 14.00 c , Grade 4 ($85-90 \%$) Grade 3 ($90-92 \%$ 14.00\%, Grade 4 ($85-50 \%$)
13.50 c , Grade 5 (less than 85%) 12.50 c . Above 13.50 c, Grade 5 (less than 85%) 12.50c. Above
prices for 30,000 lbs. or more: add $1 / \mathrm{c} 10,000-$ prices for 30,000 lbs. or more: add $1 / 4 \mathrm{c} 10,000-$
30,000 lbs.: $16 \mathrm{ce} 1000-10,000$ lbs.: 1c less than $30,000 \mathrm{lbs}$.: 1/ac $1000-10,000 \mathrm{lbs}$. ; 1c less than
1000 lbs . Prices include freight at carload rate 1000 lbs. Prices include freight
up to 75 cents per hundred.

Mafnenium: Commercially pure (99.8\%) standard ingots (4 -notch, 17 lbs) 20.50 c lb ; add 1c for special shapes and sizes, including 3-1b. Ingot and 12-lb. round ingot: Incendlary bomb alloy $23.40 \mathrm{c}, 50-50$ mannesium-aluminum 23.75 c , ASTM B80-41T No. 1125.00 c , ASTM B94-40T No. 1325.00 c , all others 23.00 c . Prices for 100 lbs. or more; for $25-100 \mathrm{lbs}$. add 10 c : for less than 25 lbs . 20 c : Incendlary bomb alloy f.o.b. plant any quantity; carload freight rate allowed all others for 500 lbs. or more.

Tin: Prices ex-dock. New York in 5 -ton lots. Add 1 cent for $2240-11,199 \mathrm{lbs} ., 11 / \mathrm{c}$ 1000-2239 $21 / 2 \mathrm{c} 500-999,3 \mathrm{c}$ under 500. Grade A, 99.8% or higher (includes Straits), 52.00 c : Grade B 99.75-99,79, incl. $51.62 \ldots \mathrm{C}$; Grade C, Cornish reflned $51.621 / \mathrm{cc}$; Grade $\mathrm{D}_{\text {, }} 99.0-99.74 \%$ incl.
$51.121 / 2 \mathrm{c}$: Grade E , below 99%. 51.00 c .

Antlmony: American, bulk, carlots, f.o.b. Taredo, Tex., 99.0-99.8\% grade 14.50c, 99.8% and over (arsenic 0.05% max.; no other im purity to exceed $0.1 \% 15.00 \mathrm{c}$. Add $1 / \mathrm{c}$ for less carlots to 10,000 lbs.; $1 / 4 \mathrm{c}$ for $9999-224 \mathrm{lbs}$; 2s for 223 lbs. and less.

Nickel: Electrolytic cathodes, 99.5\%. f.o.b. reflnery $35.00 \mathrm{c} \mathrm{lh} . ;$ pig and shot produced from electrolytic cathodes 36.00 c ; "F"" nickel shot or ingot for additions to cast Iron, 34.00 c : Monel shot 28.00 c .

Mercury: Prices per 76-1b. flask f.o.b. polnt of shlpment or entry. Domestic produced In Çaltf.. Oreg., Wash., Idaho, Nev., Arlz. \$191: produced in Texas, Ark. \$193. Forelgn, produced in Mexico, duty paid. \$193.

Arsenic: Prime, white, 99%, carlots, 4.00 c lb .
Berylliam-Copper: $3.75-4.25 \%$ Be., $\$ 15$ th. comtained Be.

Cadmium: Bars, ingots, pencils, pigs, plates, rods, slabs, sticks and all other "regular" stralght or flat forms 90.00 c lb ., del. : anodes, balls, discs and all other special or patented shapes 95.00 c lb . del.

Cobalt: $97-99 \%, \$ 2.11 \mathrm{lb}$; 100 lbs . or more on contract, $\$ 1.50 \mathrm{lb}$.

Indium: 99.5\%, \$10 per troy ounce.
Gold: U. S. Treasury, \$35 per ounce.

Sitver: Open market, N. Y. 44.75 c per ounce. Platinum: $\$ 36$ per ounce.

IHdium: $\$ 165$ per troy ounce.
Palladium: $\$ 24$ per troy ounce.

Rolled, Drawn, Extruded Products

(Copper and brass product prices based on 12.00 c , Conn., for copper. Frelght prepald on
100 lbs. or more.)

Sheet: Copper 20.87 c ; yellow brass 19.48 c commercial bronze, $90 \% 21.07 \mathrm{c}, 95 \% 21.28 \mathrm{c}$; red brass, $80 \% 20.15 \mathrm{c}, 55 \% 20.36 \mathrm{c}$; phasphor bronze. Grades A, B 5\% 3G.25c; Everdur Herculoy, Duronze or equiv. 26.00 c ; naval brass 24.50 c : manganese bronze 28.00 c ; Muntz metal 22.75 c ; nickel silver $5 \% 26.50 \mathrm{c}$.

Rods: Copper, hot-rolled 17.37c, cold-rolled 18.37 c ; yellow brass 15.01 c ; commenclal bronze $90 \% 21.32 \mathrm{c}$, $95 \% 21.53 \mathrm{c}$; red brass 80% $20.40 \mathrm{c}, 55 \%$ 20.61c; phosphor bronze Grade A. B $5 \% 36.50 \mathrm{c}$: Fverdur, Herculoy Duranze or equiv, 25.50 c : Everdur, Herculay, Duronze nese bronze 22.50c: Muntz metal 18.87c; nickel silver $5 \% 28.75 \mathrm{c}$.

Seamiless Tuhing: Copper 21.37c; yellow bras 2.23 c ; commercial bronze 90% 23.47e; red brass $80 \% 22.80 \mathrm{c}, 85 \% 23.01 \mathrm{c}$.

Extruded Shapes: Copper 20.87c: archltectural bronze 19.12 c ; manganese bronze 24.00 c , Muntz metal 20.12c: Naval brass 20.37c.

Ansies and Channels: Yellow brass 27.98e; commercial bronze $90 \% 29.57 \mathrm{c}, 95 \%$ 29.78c; red brass 80 \% 28.G5e, 85% 28.86c.

Copper Wire: Bare, soft, f.o.b. Eastern mitls, carlots $15.371 / 2 \mathrm{c}$, less-carlots $15.871 / \mathrm{cc}$; weatherproof, f.o.b. Eastern mills, carlots $17,00 \mathrm{c}$, less-carlats 17.50 c ; magnet, dellvered, carlots 17.50 c . $15,0001 \mathrm{bs}$. or more 17.75 c , less carlots 18.25 c .

Aluminum Sheets and Clreles: $2 s$ and $3 s$, fat, mill finlsh, base 30,000 lbs. or more; del.; sheet widths us indicated; circie diameters $9^{\text {ri }}$
and larger:

Gage	Width	Sheets	Circles
$.249^{\prime \prime}-7$	$12^{\prime \prime}-48^{\prime \prime}$	22.70 c	25.20 c
$8-10$	$12^{\prime \prime}-48^{\prime \prime}$	23.20 c	25.70 c
$11-12$	$26^{\prime \prime}-48^{\prime \prime}$	24.20 c	27.00 c
$13-14$	$26^{\prime \prime}-48^{\prime \prime}$	25.20 c	28.50 c
$15-16$	$26^{\prime \prime}-48^{\prime \prime}$	26.40 c	30.40 c
$17-18$	$26^{\prime \prime}-48^{\prime \prime}$	27.90 c	32.90 c
$19-20$	$24^{\prime \prime}-42^{\prime \prime}$	29.80 c	35.30 c
$21-22$	$24^{\prime \prime}-42^{\prime \prime}$	31.70 c	37.20 c
$23-24$	$3^{\prime \prime}-24^{\prime \prime}$	25.60 c	29.20 c

Tefad Products: Prices to jobbers; full sheets 9.50 c ; cut sheets 9.75 c ; pipe 8.15 c , New York: 8.50 c Phlladelphla, Baltimore, Rochester and Buffalo; 8.75e, Chicago, Cleveland, Worcester, Boston.

The Products: Sheet f.o.b, mill, 13.15c: 36,000 lbs. and over deduct 7%. Rlbbon and strip $12.25 c_{1} 3000-\mathrm{lb}$. lots deduct $1 \%, 6000 \mathrm{lbs} .2 \%$ 9000 lbs . $3 \%, 18,000$ lhs. 4%, carloads and over 7%. Boller plate (not over 12") 3 tons and over $11.00 \mathrm{c} ; 1-3$ tons $12.00 \mathrm{c} ; 500-2000 \mathrm{lbs}$ 12.50 c ; $100-500$ lbs. 13.00 c : under 100 lbs 14.00 c . Hull plate (over $12^{\prime \prime}$) add Ic to boller plate prices.

Plating Materials

Chromic Actd: 99.75 fin fake, del., carloads 16.25 c ; 5 tons and over 16.75 c ; $1-5$ tons 17.25 c 400 lbs. to 1 ton 17.75 c : under 400 lbs .18 .25 c .
Copper Anodes: Base 2000-5000 lbs., del. : oval 17.62 c : untrimmed 18.12 c ; electro-deposited 17.37 c .

Copper Carbonate: $52-54 \%$ metallic cu: 250 lb . barrels 20.50 c .

Copper Cranide: 70-71\% cu, 100-1b, kegs or bbls. 34.00c f.o.b. Nlagara Falls.

Sodlum Csanide: 96%, 200-lh. drums 15.00c 10,000-lb. lots 13.00 e f.o.h. Niagara Falls.

Nickel Anoden: 500-2999 lb. lots; cast and rolled carbonized 47.00c; rolled, depolarlzed 48.00 c .

Nhekel Cisloride: 100-1b, kegs or 2ati-lb, blas 18.00 c lb .. del
 Tin Crystale: 400 lb, bbls 29.9 me con.h. Gras selll, N. J.: 100-lb. kegs 39.50c,

Sodium stamute: 100 or $300-1 \mathrm{~b}$. drums 36.40 h del.: ton lots int 50
 f.o.b. Niagaja Folls,

Scrap Metals

Rrass Nill Allowhuces: Frkes for less that

Copre	Cleva Heays	Rod Finds	Cloner Turnings
Copper	10,250	10.250	5
Tinned Cupper	9,625	0.625	.
Yellow Brass	8.625	8.375	7.875
Commercial uronge			
90\%	9.375	0,125	8. 0^{3}
95\%	9.500	ก.250	8.750
Red Brass, 85\%	9, 125	19.87!	8.175
Red Brass, 80%	9.125	8.875	¢.175
Muntz melal	8.001	7,750	7.251)
Nickel Sil., 5\%	0.250	9.000	1.625
Phos. br, A. I3, 5\%\%.	11.00	10.750	9.750
Herculoy, Everdur ir equivalent	10.250	10.000	9.70
Naval brass	8.250	8.000	7.5101
Mane bronze	8.250	$3.000)$	7.500

Other fhat Israms Alt Scrinp: prtas apply on material not meelinu brass mill specelfentoms
 shipment of 60,000 lbs. of one grouj) and tige for 20,000 lths. of second group shlpned in same car. 'l'ypleal prtees follow:
(Group 1) No. 1 henvy. copper and wire, No. 1 tinned copber, copper borings 9.75 c ; No, 2 copper whe and mixal bonvy copper, copper luyeres 8.75c.
(Group 2) soft red brass and borings, alumlnum hronze 9.00e: copperwnekel and berinas 9.25 c ; car boxes, cincos and fulucels $7.75 \mathrm{~F}:$; hell metal 15.50k; bablitt-lined brass hushlnas 13.00 c .
(Group 3) zincy liomze borings, Aclmirally condenser tubes, brasis plpe $8.00 \mathrm{~K}:$: Muntz melai condenser tubes 7.5 the; yellow brass 6.25 c manganese bronze (lead 0.00\%-0.40\%) 7.25 c ,
 borings (lend
1.00%) 5.50 c.

Alumbnim Sirnu: lerices f.o.b. moint of mhinment, respectlvely for lots of less than 1000 lts. : 1000-20,000 lbs. and 20,000 lbs. ar momen plant scrap only. Segreguted $2 s$ soilds 10.0 one. $11.00 \mathrm{c}, 11.50 \mathrm{c}:$ dill other sollds $9.50 \mathrm{c}, 10.50 \mathrm{c}$, 11.00 c ; borlnge rind lurnings $7.50 \mathrm{c}, 8.50 \mathrm{c}$, 9.00e; mixed molleds $8.50 \mathrm{c}, 5.50 \mathrm{k}, 10.00 \mathrm{c}, \mathrm{milxed}$
borings and turninges $6.50 \mathrm{k}, \quad 7.50 \mathrm{c}, 8.00 \mathrm{c}$ borings and turnines $6.50 \mathrm{k}, 7.50 \mathrm{c}, 8.00 \mathrm{c}$
Yead Sicrap: Prices f.n.b. polnt of shipmont. For soft and hard lead, Including cable lead. fleduct 0.55 c from hasing pnint prices for reflned metal.

Zane Scrap: New cllpulnys, old zine 7.25 c f.ob, point of shipmend: add $1 / 2$-cent for 10,000 lbs. or more. New die-cast serap, rarliator grllies 4.95c; ndd $1 / 2 \mathrm{c} 20,000$ or more. Unswented zlne dross, dle cast slab 5.80 c any quantliy.

Nickel, Moned Suran: Prices f.o,b. point of shipment: add $1 \mathrm{hec}_{\mathrm{c}}$ for 2000 ths. or more of nlekel or cupro-nickel shlpped at one lime and (dealers) bllowed 2 premlumel. Converter: (desiers) allowed 2c premlum.

Nickel: 98\% or more nickel and not over $1 / 2 \%$ copper 26.00e: $00-28 \%$ nlekel, 26.00 pe per 11 nlckel contulned.

Cupro-nlekel: 90% or more combined nlekel and copper 26.00 c ver its. contalned nickel, plus 8.00 c per lh. contalned erapper: leas than oom comblned nlekel and copper 2G.one for conlalmed nickel only.

Monsl: No. 1 casilngs, lurninges 15.00 c ; new cllpplng 20.00 o ; soldered sheel 18.06 c .

Dollars, Cents Prices
 Set on Ferrosilicon

Office of Price Administration has announced specific dollars-and-cents prices for ferrosilion and silicon metal, which in general maintain existing ceilings, at levels prevailing Oct. 1 to 15,1941 . A simplified zone system is incorporated in the order, with agreement with the industry and consumers. The order is maximum price regulation No. 405 , effective July 1, when contracts usually are made.

Prices of most grades are quoted on the basis of contained silicon. The three zones consist of the eastern, including all Mississippi river points and points east of that river; central zone including territory west of the Mississippi river and east of a line formed by the western houndaries of New Mexico, Colorado, Wyoming and the latter extended north to the Canadian border; the western zone runs from that line to the Pacific coast.

The new prices include the following: Carloads, unpacked, castern \%one, 25 per cent grade ferrosilicon, 9.75 c to 12.15 c per pound contained silicon, according to crushed size; 50 per cent grade, 6.65 c to 8.10 c ; 60 per cent grade, 7.70 c to $9 \mathrm{c} ; 75$ per cent grade, 8.90 c to $9.85 \mathrm{c} ; 95$ per cent gritcle, 11.05 c to 12.45 c . Silicon metal, 96 per cent silicon and 2 per cent iron maximum, 12.50 c to 14.85 c ; 97 per cent silicon and 1 per cent iron maximum, 12.90 c to 16.25 c .
For central zone delivery premiums of 15 e to .80 e per pound of contained silicon may be added to eastern zone prices for carloads and 0.45 c to 3.35 c for less than carload lots. For western zone delivery premiums of 0.60 c to 2 c may be added to eastern zone prices for carloads and 0.90 c to 11.05 c for less than carloads.

Maximum price regulation No. 10 , on pig iron, still controls the price of 15 per cent grade ferrosilicon not produced in an electric furnace.
Similar action has been taken by OPA on dollars-and-cents prices on ferrochromium and chromium metal, effective July 1 , and the same zones are prescribed, ia maximun price regulation No. 407.
Maximum base contract prices per pound for chromium contained, for delivery in the eastern zone in carlots, f.o.b. shipping point with freight allowed to destination, are: High-carbon standard grade ferrochromium, 13 to $14 \frac{1}{2}$ cents per pound chromium contained, according to crushed size; for high grade S.M. ferrochromium, 14 to $151 / 2$ cents, according to crushed sizes; high-carbon ligh-nitro grade, 18 to $191 / 2$ cents; highcarbon foundry grade, $131 / 2$ to 14 cents; low-carbon standard grade, specific prices for ten grades range from $191 / 2$ to 54 cents; low-carbon S.M. grade, 20 to 49 cents; low-carbon high-nitro grade, add 2 cents to low-carbon standard grade: chromium metal, $781 / 2$ to $991 / 2$ cents of chromium contained.
For delivery in the central zone premium of 0.04 c per pound for carlots and 0.65 c for less than carload lots is added to the eastern zone price. Premium for chromium metal is 1.5 c for carloads and 2.5c for less than carloads above eastern zone prices. For western zone delivery premium over eastern zone is lc
per pound on carlots and 1.85 c on less than carlots; on chromium metal the premium is 2.75 c on carlots and 4.75 e on less than carloads.

Plates

Plate Prices, lage 137

A marked increase in plate buying recently reflects the further broadening in shipbuilding, particularly merchant ships. Two eastern mills are booked solidly through August, and another through entire third quarter. Other plate producers report a heavy portion of third quarter capacity scheduled, with growing backlogs beyond.
Tommage going to warehouses in Au gust will be based on the replacement schedule covering April sales.

By far most plates going to New England fabricators are for ships, punctuated by seattered demand for other war contracts. Requirements for flame-cutting remain heavy; backlogs for flanged and dished work are lower and deliveries are easicr. Jobbers operating gas-cutting departments are alsorbing a substantial part of their quotas in this work.

Although plate needs for boilers have been small, a fair sized order went to a Fitchburg, Mass., slop. Structural fabricators frequently consume more plates than shapes. For a deep drawing operation a Worcester fabricator with an aircraft sub-contract requires 100 tons a month of half-inch plates. Railroads are asking for little stecl, but their requests for plates are frequently pared down. Undersea craft are taking a good part of the wider sheared sizes available.

Pipe

Pipe Prices, Page 137

Demand for steel and wrought pipe has slackened, with some price shading as distributors file orders for third quar ter requirements. Buying for industrial use has eased less than with plunibing and heating sellers. Although deliveries are extending as third quarter capacity is taken up, butt weld can be promised for July; lap weld in August and wrought pipe in three to four weeks. Prefabricating pipe shops are active on ship) work and for oil refinery and rubber plant installations, althongh some easing in demand for the latter two is cxpected during second half.
Tubular products are tight, notably cold-drawn scamless. Mills producing aircraft grades are heavily booked, with demand mounting. No seamless one and one-half inch and under was permitted warehouses in second guarter, but for third quarter some mills are tentatively taking such tonnage, uncertain as to whether the ban on jobber shipments of these sizes covered second quarter only. Little capacity is open for numerous sizes before November delivery. An inquiry for 2000 tons of oneinch pipe for camouflage posts may be switched to welded carbon tubing.
Cast iron pipe buying is at a standstill in the East. Cast pipe foundries can make deliveries in two to four weeks and have fair stocks on some sizes. Limitations on pig iron allocations, however, prevent large inventories. Larger fittings and flanges are more extended than pipe, ranging from two to four months. Despite low demand for pipe, some foundries are heavily engaged in war work, including bombs and heavier equipment.

New England Stack Asks Price Relief

In New England some melters of pig iron are confronted with higher prices, for while the petition of the Mystic Iron Works, Everett, Mass., for an increase in its premium differential has not been acted on at this writing, analysis of costs imposed on that furmace by war-time conditions indicates an increase would be justified.

Ore, limestone and coke, labor and other factors entering into higher costs per ton are substantial, notably ore, and are well over the $\$ 1$ preminm permitted since April 20,1942 . No definite increase was asked in the petition submitted with data as to heavier costs.

Meanwhile melt is down with gray iron shops in New England, notably with jobbing foundries, and with pressure ofl in other directions higher pig iron prices are not welcomed by these consumers, who sell their castings at ceilings. The aggregate volume of iron required monthly is cleclining, but not sharply. Only in a few instances are melters concerned as to supplies and this is generally due to failure to ask for iron in time or in amounts to meet unexpected developments in demand.
A large potential demand is building up for manufacture of textile machinery, paper mill equipment and heating shop recuirements. While some restrictions on these have been lifted slightly, heavier clemand for pig iron has not as yet been forthooming. How-- ever, all these industries are melting less than during peacetime and with postwar markets accumulating, the eventual demand for pig iron will be large. Once relieved of restrictions textile mill equipment builders especially will need iron; this group ordinarily buys heavily in advance and stocks large inventories as a rule.

Kaiser Bids on Navy Iron

Among bids on 1799 tons of foundry pig iron for delivery to various navy yards, the larger tomnages for Brooklyn and Philadelphia, was one from the Kaiser Co., iron and steel division, Oakland, Calif., quoting on west coast deliveries. Low on the inguiry for deliveries at Oakland and Mare Island, however, is Columbia Steel Co. on a delivered basis and f.o.b. Ironton, Utah.

Pig Iron

Pis Iron Prices, Page 138
Pig iron situation remains virtually unchanged in the Pittsburgh district. It now appears this number of furnaces will continue to operate until later this year when it will move up slightly as a result of new construction. Stacks now out for repair will be brought in and others taken out on a fairly stable schedule. Several new stacks are building in the Pittsburgh district, at least two of which should start melting iron within the next few months. Meanwhile, the threat of a coal strike persists and it is possible that another large tonnage will be lost before final settlement is made. Although coke production is at apacity it is impossible to build up stocks and furnaces are operating vir-
tually hand to mouth on coke.
In eastern Pennsylvania melters are exerting little pressure and some foundries have asked for suspensions of a week or more while inventory is taken. It also is believed likely some foundries will close for vacations during the week preceding the July 4 holiday.

Sheets, Strip

Sheet \& Strip Prices, Page 136
Only in spots are sheet producers able to take cold or hot-rolled orders for Angust delivery, with third quarter capacity about filled; mills supplying the drum demand generally are sold beyond, into November in at least one case. Delivery balance as between hot and coldrolled has narrowed, generally due to lower issues and a mild spurt in orders for the latter. Galvanized is available for late July shipment.

In New England warehouse demand is steady, but direct buying fluctuates with the trend in war contracts, with shipyard requirements tending up slightly. Heavier gages are needed for most fabricated work. Some stamping shops ordinarily engaged mainly on steel, are fabricating more aluminum shects under subcontracts for aircraft; this is notably true of a large shop in the Worcester district.

Production for narrow cold-rolled strip for third quarter are filled and in a few instances mills have only limited capacity open for the fourth. October rolling schedules are filling fast. Buyers frecuently find suppliers booked full for the month deliveries are wanted and this results in some shopping to place tonmage. Heat-treating is a bottleneck, with output endangered by labor shortages in some districts.

Sheet mill products are expected to maintain present balance through third quarter, with some possibility that better tomages will be available during fourth quarter. Increased tonnage moving into tin plate has restricted the available supply of cold-rolled sheets and easing of tin plate during fourth quarter will probably release considerable volume of cold mill tomnage for other purposes. If construction in synthetic rubber and gasoline programs is substantially ended by the close of this year, ia large source of plate demand will be eliminated. Any easing in the plate situation will be reflected immediately in sheets because it will release a heavy tonnage of slabs for sheets. The cutback in the aircraft landing mat program has removed a small volume of demand from the market, but pressure continues for drum stock and other miscellaneous sheet uses.

Bars

Bar Prices, Page 136

While peak of war construction has been passed, a number of important units are still to be equipped and placed in operatiom. Peak of machine tool dcmand also has been passed but backlogs of machinery builders are heavy and result in theavy demand for bars,-which. also are moving in large volume to airplane and marine engine builders and to forgers who are under heavy pressure from shipbuilders and manufacturers of marine appliances.

Little bar tonnage is available for third quarter, even in small rounds, most
gaps i: these specifications having filled rapidly. WPB is expected to provicle at least another $1,000,000$ tons of bars for an important purpose. While some of this will come from increased capacity it is believed a substantial portion will be eked out from claimant agencies whose needs are considered less pressing.

Consumption of alloy and carbon bars is holding high in New England and in the case of forging shops buying is heavier, notably by those supplying the aircraft industry. While deliveries are tightening as capacity quotas are filleed, schedules are out of balance and most mills are limited by the amount of semifinished available. This is revealed by one producer offering 2000 tons, small
sizes of hot carbon bars, for late July delivery from one mill while other tuits of the same company are booked into September and heyond on larger sizes. Some users in the aireraft fiedd, motably engine buiders, slow to change to NE steels, finally are taking this gracle in heavier volume. Operation of inereased apacity finds one producer able to do slightly better on electric furmace than open-hearth steels but this is mu exeeption. Some alloy molting schedules for June have been supplemented.
Despite an casing in some lines, sufficient volume appears in others at least to sustain bar demand in the New York elistrict. If mything, a larger quantily of bars is moving into aircraft engine plants and shipboiklers and maritime ac-

cessory manufacturers are taking an increasing amount. Some let-up in machine tool requirements is roported, although consumption remains heavy. The general delivery situation appears tightor, notwithstanding some gaps which appear from time to time as a result of readjustments in the war program. New York sellers report little tonnage available before late September, and an increasing backlog for rolling in fourth quarter and beyond. Pressure is still heary for large rounds and flats.

Tin Plate

Tin Plate lrices, Page 137

As had been expected, tin plate production schedules for third quarter are
being continually revised upwards. Normally the heaviest producing period, third quarter produces plate for the heaviest of the vegetable pack and current estimates indicate approximately 725,000 tons of tin plate will be made during third quarter of this year. Thus far there is little indication of fourth quarter tonnage, but in all probability it will drop to about 500,000 tons. Third quarter operations will probably average about 65 per cent and fourth quarter between 40 and 50 per cent.
Several producers have now filed a new price for medium coated electrolytic tin plate. This carries a tin covering of 0.75 pound of tin per base box, as against the normal electrolytic plate which carries 0.50 -pound coverage and

COKE OVEN EQUIPMENT

COAL CHARGING CARS

Atlas coal charging cars are preferred equipment on most ovens because they are designed to suit operating conditions exactly, and include those design features which insure dependable operation with low maintenance.

ATLAS COKE OVEN EQUIPMENT

Clay Carriers - Charging Cars - Door Machines

Coke Guides: Quenching Cars and Losomotives

The ATLAS CAR \& MPC. CO.

1100 IVANHOE RD.
CLEVELAND, OHIO, U. S. A.
normal dipped plate which runs 1.25 to 1.50 pounds per base box. The price on the new middle weight product will be $\$ 4.65$ per base box, as against $\$ 4.50$ per base box for the regular electrolytic and $\$ 5$ for dipped plate.
In all probability the new product, which is to be ostensibly on an experimental basis, will be used for certain food packs which have not yet been switched over to the electrolytic product.

Wire

Wire Prices, Page 137

Wire mill capacity for third quarter is filled for many products, but schedules are somewhat out of balance as the period approaches. On most active specialties, high carbon rounds and music wire, mills are well filled, but on bright basic and a few other items deliveries can be promised in July. Wire required for war continues heavy, but pressure has subsided in some directions, due in part to somewhat better scheduling under CMP and slight easing for tonnage in others. The overall demand holds up for the most part. Orders for aircraft extend into second quarter next year. With the possible exception of gun and other mechanical springs, as with aircraft, some producers are reducing delivery pressure with indications some relavation in the use of wire in small lots for a few civilian needs may be forthcoming, bobby pin wire, for instance. Sidewalk salesmen are hawking bobby pins in New York, a dozen for a dime. With this is some easing in rods; consumer inventories are heavier and better balanced in more cases. Bullet core steel, barrage cable and camouflage material, while active, has slackened moderately with some mills, although a snapback on the latter two is expected shortly.

Rope mill requirements are as heavy as ever, yet wire requirements are generally met on schedule. Resumption of lend-lease in heavier volume is developing, which is expected to release much tonnage now in warehouses, including considerable music wire for Russia. During the slack in demand for this grade for export, mills have made progress in covering domestic demand. Orders extending into next year are for long-range programs, including aireraft, also for a wide variety of springs required for ordnance. Close to 90 per cent of orders taken by one eastern specialty mill is for use in some form of spring. High carbon rounds and substantial alloy needs are included and heat-treating capacity is heavily taxed, gearing production of numerous products to the limit of furnaces to process material.

Structural Shapes

Structural Shape Prices, Page 137
Slack demand for fabricated structural steel for construction is only partially offset by substantial requirements for ships. Semifinished allocated rolling is geared to restricted current demand and operations for the industry range around 60 per cent of capacity; some semifinished is going to lend-lease. Fabricating shops are frequently consuming more plates than shapes, reversing normal operations. Most welding capacity is employed, but riveted operations are slow. Shops, in some cases, are operating welding departments 24 hours daily

Available for Immediate Delivery

(Subject to prior sale)

NO PRIORITIES REQUIRED

3700 TONS

Slightly used, high tensile strengit

galvanized WIRE

\star
We have available for immediate delivery approximately 3700 tons of slightly used, high tensile strength galvanized wire, gauge No. 6, ultimate strength, according to engineers of the State of Washington, 220,000 pounds per square inch.
t

This wire has been carefully reclaimed from the Tacoma Narrows Bridge and is practically like new. It is assembled in coils of approximately 6,000 feet each, weighing around 500 to 600 pounds per coil.
\star
All, or any part, is offered for sale FOB Seattle, Washington. No priority is required. Inquiries invited.

Wire or write:

ALASKA JUNK COMPANY

2903 Utah Avenue - Seattle, Washington
Telephone ELiot 3293

SAVE ESSENTIAL AND VALUABLE SPACE

War time requirements make the D.O.James Moforized Reducers a very important Must in solving and meeting the power-saving needs of modern industry. Their accessibility and compaciness make them most desirable when floor space is limited. Their soundness of design and manufacture insures maximum efficiency with minimum maintenance.
D.O.JAMES MANUFACTURING CO. Estoblished 1888
1140 W. Monroe Street Chicago, U. S. A.
on miscellaneous subeontracts, mainly in connection with shipbuikliag. Shapes can be shipped in five to seven weeks. An eastern shipyard recently placed 40,000 tons of prefabricated work with fabrication in the eastetrn Pemsylvania area.

Scrap

Scrap Prices, Page 140
Lack of manower in scrap yards is becoming more acute and stupply of material in some areas shows the effect of fewer persons engaged in collection. Yards also find it difficult to prepare even the diminished tonnage available. Scrap interests in the St. Louis district have appealed to WPB for relief but the situ-
ation has not been bettered. Buffalo yards need 60 or more additional workers and have asked the United States employment service to furnish them.

Regional WLB has fixed tested rates for scrap dealers in the Cleveland, Dayton, Columbus, Cincinnati and Louisville areas. The rates are those above which the War Labor Board will not approve increases except in accordance with the Little Steel formula, and were applied in deciding applications for approval of voluntary wage increases from 25 scrap dealers. Common labor rates are: Louisville, 55 cents; Cincinnati, 60 cents; Columbus, 65 cents; Cleveland and Dayton, 70 cents.
So well covered are most New England foundries on cast grades that some
are cancelling scrap contracts. Stove plate is also slack, although some is going to blast furnaces in small sizes. Demand for shipyard scrap exceeds supply and allocations have been made to electric furnaces outside the district.

While some battlefield scrap is being received at eastern seaboard ports from North Africa and more is expected, it is considered possible that much will he retained for use in Italy upon conquest of that country. It is recalled that when Italy was expanding her steel industry in the early 30 's she was a substantial buyer of scrap from the United States, having little such material from her own sources.

Cincinnati dealers and melters find How of industrial scrap unimpeded but other material is below normal. Some estimates place current volume at 25 per cent less than a year ago. Many melters are slow to accumulate reserves. Yards are said to be operating with only. 50 per cent of the labor employed in January, 1941.

Iron and steel scrap is dull in the Pittsburgh area with some interest being shown in additional supplies of blast furnace scrap and all consumers taking delivery on heavy melting steel and special grades. About the only interest in the market here has been caused by the coal strike, which is responsible for heavier demand for blast furmace material. The more serap charged into blast furnaces, the less coke required and sorap consumption went up during the strike, when coke was at a premium. Movement of scrap continues slow in the Chicago area in spite of favorable weather. Industrial material reflects war gools curtailment in numerous plants, and railroad serap offerings have lessened as the carriers have been restricted on the amoment of new steel they can receive. A somewhat better intake of country scrap, particularly from the recently flooded areas, is insufficient to offset these major shrinkages. Mills are receiving ample material, however, and are adding to inventories. Rejections are not appreciable, but brokers experience difficulty in moving turnings and borings.

Nonferrous Metals

Nonferrous Prices, Page 141
New York - Allocations of copper for July delivery are practically complete. Anxiety among sellers as to obtaining enough metal to meet distribution certificates has been facling in recent months, tight control under CMP have effected a better balance between supply and demand. No scramble to certify allotments for July is noted and some consumers were inclined to lag. Total tomage to be delivered has shown little variation in recent months.

Distribution details are affected by scrap supply and the position of comsumers as to war production schedules. Where scrap is available in good volume, new copper allotments are smaller while some fabricators, well ahead of production schedules, will get less metal next month.
Brass mills holding authorized controlled material orders originally scheduled for April delivery are permitted to fill them until June 30 , if production has advanced beyond the point where materials can be diverted to other allthorized orders scheduled for May or

WEBB

PLATE BENDING ROLLS

PYRAMID and INITIAL TYPES

Various Sizes and Capacities
Prompt Delivery on Standard Sizes
Special Machines Built to Order
\star
Write for Bulletin
the WEBB corp.
Mamufacturers
WEBE CITY, MO.

later. Major cable companies have been directed to ship a definite volume of copper cable to regular warehouses each month to forestall any possible shortage for the mining industry.

As of Aug. 1, WPB will end its present practice of paying prices substantially above the current scrap price level for copper stocks, unusable in their present forms, which have been made idle as a result of WPB conservation orders and which are required for remelting for war use. The goverrment will continue to pay the present higher-thamscrap prices, under the copper recovery program, for certain materials reported to the WPB up to and including July 31 and purchased for remelting. Holders of idle inventories of copper and copper-
base alloys which cannot be used in their present forms and which are reported on and after Aug. I will be directed to sell such materials at scrap prices.

The new procedure, effective Aug. 1 , was adopted because of the virtual completion of the change from a peacetime to a wartime economy and because of the general cleaning out of inventories resulting from that change. Idle materials which can be used in their present forms will continue to be redistributed through direct transactions between owners and purchasers at negotiated prices.

Trial runs are under way at the new aluminum rod and merchant mill at Messina, N. Y., which was designed for the production of I-beams up to 21
inches and 10 -inch rods, the first attempt at tomage for larger sections of these sizes. Production under the expansion program for aluminum is rapidly approaching its peak. Capacity for the production of aluminum rivets is now greater than current demand, but this is probably temporary in view of the sharply expanding aircraft program.
WPB finally is taking action in relieving the pinch in aluminum forgings and extrusions for the aircraft program. The extrusion program especially has been neglected, according to one official, but by July 1 capacity will have been doubled. More extrusions have been worked into aircraft clesign. Lack of labor on the West Coast has held up operations of brand new aluminum reductions plants. Part of one plant has lyeen idle since April because scouting parties have been unable to find 125 laborers.

A new development in the aluminum industry is the announcement Phelps Dodge Copper Products Corp. will engage in manufacture of aluminum and magnesium tubes, rods and shaped parts by the extrusion process. A now Defense Plant Corp. unit will be built and operated by the Phelps Dodge organization.
Zinc allocations are appearing late for small lots each month and are filled without difficulty.

Fog Bedevils Lake
 Iron Ore Shipments

(Continued from Page 82)

date this year; including the collision of the Irvine S. Olds, Pittsburgh Steamship Co.'s vessel and the C. O. Jenkins of the Midland Steamship Co.'s line. The Camadian ore vessel Prendoc was lost earlier this year in Lake Superior.

The Irving S. Olds, back in service after its recent collision, hact aboard a new record cargo last week of 17,817 gross tons. Three others of the Pittsburgh Steanship Co.'s newest vessels were in transit with cargoes of more than 17,000 tons each.

Iron ore shippers are confident that the $91,000,000$ tons shipment goal will be reached this year despite the many handicaps to be overcome. Besides the unfavorable weather conditions shippers point out that only 5 of the 16 ore vessels being built for the United States Maritime Commission have been placed in service. Eight are expected to be in the ore trade by Aug. 1 and the remainder before Oct. 1. Original schedule called for eight at opening of the shipping season. In addition, 27 oretype vessels still are in the grain trade, against none at this time last year.

There were 310 Great Lakes ore vessels in commission June 15 last and 292 in the ore trade, according to the monthly report of C. C. Lindeman, statistician for M. A. Hamia Co., Cleveland. This compares with 279 in the ore movement May 15 and 297 on June 15, 1942. Fleet trip capacity for the month ended June 15 was $2,865,090$ gross tons compared

COMPLETELY AUTOMATIC

3 Model "A" Air Cylin. ders in varying strakes ${ }_{\text {and gizes, ara }}^{\text {ased }}$ each $V \& 0$ Trimmer.

3 Model "R" Foot Valves, adapted to cam operation, actuate each cylinder.

NOPAK Air Valves and Cylinders

V \& O Cartridge Case Trimming Machines - built by The V \& 0 Press Co., Hudson, N. Y. - are a fine example of the application of air power to precision machine movements. Three Model " A " Air Cylinders are used on each machine: - One for gauging and trimming, the second for ejecting the trimmed cases, and the third for stripping scrap metal from the trimming chuck.
Each cylinder is controlled by a Model "R" NOPAK Foot-Type Valve actuated by cams accurately synchronized to maintain production at 18 casesperminute.
Inquiries are invited from machine designers, tool engineers and production managers who may be able to use similar applications of air or fluid power to masier specific problems of design or production.

GALLAND-HENNING MFG. CO. 2747 SOUTH 31st Street - Milwaukee, wisconsin
with $2,841,090$ for the month ended May 15 , and $2,725,140$ June $15,1942$.

Propose Deepening Of Buffalo Harbor

Elimination of rock ledges in the Buffalo harbor to permit heavier loading of ore vessels unloading at that port has been proposed by the Buffalo Chamber of Commerce. The chamber has asked the Office of Defense Transportation to approve the project as essential to the war program.

At present, according to chamber offi-
cials, from 1200 to 1500 tons of ore are lightered off ore carriers at Detroit on the way to Buffalo. Not only is time lost during the lightering operation, but cargo space is lost on the run between Detroit and Buffalo.

Canada

Toronto, Ont.-Demand is well sustained, with indications that future buying will show accelerated tempo in heavier steel materials. Announcements by C. D. Howe, minister of munitions and supply, to the effect that there will be a number of changes in Canada's war production program, with no loss in overall output, is interpreted
by steel producing interests to mean that steel consumption, in such materials as heavy ship plate, armor plate, alloy steel and bars, as well as small structural shapes for shipbuilding, will be given preference on production lines and tonnages involved will exceed those of earlier war years. Just how extensive the demand for steel will be under the new war program is a matter of conjecture but one thing definite is that order placing for various lines of steel is gaining momentum and mills have larger tomnages on their books for delivery up to the end of the year. To some extent restrictions have been lifted on forward delivery buying and mills now are taking practically all offerings on an if and when delivery basis.
Scrap iron and steel receipts are increasing as the result of better delivcries from the rural districts and mining fields, but have not yet reached full stride from Northern Ontario and Quebec. It is estimated that salvage drives so far this year have produced about 10,000 tons of steel and iron scrap, with collections limited in the farm areas. War plants are maintaining a steady flow of turnings, borings and other light scrap, and a large part of this material is going direct to mills and electric furnaces. Dealers are maintaining steady shipments to consumers, and some have speeded up deliveries in the past week or ten days.

Steel in Europe

London-(By Radio)-Output of billets and bars is increasing in Great Britain to meet war requirements. Plate demand is rising as shipbuilding activity is more intense. Railroads and collieries are buying more steel for maintenance and extensions.

STRUCTURAL SHAPES

SHAPE CONTRACTS PLACED

000 tons, shon luilding and warehouse, Northem ordnance plant, Fridley, Minn., operated by Northern Pamn Co., to MinmeapalisMolise Power Implement Co., Minneapolis. 828 tons, propeller plant, A. O. Smith Corp., Milwaukere, to Wisconsin Bridge \& Iron Co., Milwaukee.
600 tons. tube reducing shop, Walliugton, N. J., to Bethehem Fabricators. Inc., Bethlehem, Pa.
135 toms, chutes, hoppers, spouts, stacks, etc., new electric funace steel plant, Republic Sted Corp., Chicago, to Mississippi Valley Structural Steel Co., Decatur, Ill.; James Stewart Corp., Chjeago, contractor.

SHAPE CONTRACTS PENDING

6380 tons. Colorado river bridge, Topac, Ariz., for Atchison, Topeka \& Santa Fe railroad; bids Jume 8.
230 tons, dye shon addition for E. I. du Pont de Nemours \& Co., Carney's loint, N. J.

REINFORCING BARS

REINFORCING STEEL PLACED

600 tons, modification center, airplane plant,
Denver, for U. S. Army air corps, to Truscon Steel Co., Youngstown, 0 .
300 tons, air fiek. Ottumwa, Iowa, to Laclede Steel Co., St. Louis.
150 tons, expansion, A. E. Staley Mfg. Co., Decatur, to Josemh T. Hyerson \& Son Inc., Chicago, J. L. Simmons $\mathrm{Co}_{\text {., }}$ Decatur, Ill, coniractor.

REINFOHCING STEEL PENDING

Unstated tomage, 220,200 square feet expancled metal, navy, Norfolk, Consolidated Expanded Metal Co., Wheeling, W. Va., low.

To Speed Victory!

 WE ARE READY TO SERVE YOU foricanII
COLD PIPE, CONDUIT and TUBE BENDING MACHINES
Twelve types to select from. Hand oper ated capacities 1 to 6^{1} inclusive. Motor operated $8 / 4$ to 8^{1} inclusive
A few of our More Than 12,000 Customers: Bureau of Ships, Wash, D.C. Henry J. Kaiser Co., Calif.; Pacific Bridze Co. Beth. lehem-Hingham Shipyards: Hercules Powder Co.: Stone \& Webster Engineering Corp.; E. I. Du Pont de Nenlours \& Co.

 WLES
ROTARY SQUARING KNIVES for Modern Requirements Highest Quality Long Service The Product of Many Years Specialization made br toolmakers
Also Manufacturers of MILLING CUTTERS AND SPECIAL METAL CUTTING TOOLS

COWLES TOOL COMPANY
CLEVELAND, OHIO

June 21, 1943

INDUSTRIAL FURNACES

OVENS and DRYERS BURNER EQUIPMENTT

Pennstlvania Industrial Engineers

ANY QUESTIONS ? ? ?

We have been desizning and manufacturing JICS, DIES, PUNCHES, FIXTURES and SPECIAL MACHINES for 37 years. We will be glad to discuss your problem-without obligation, of course.
THE COLUMBUS DIE, TOOL
AKD MACHIME COMPAKY
COLUMEUS. OHSO

LOCOMOTIVES PLACED
Incliamapolis Union, three 0-8-0 type swited engines, to Baldwin Locomotive Works, Eddystone, P_{Ω} New York, subject to WPB approval

LOCOMOTIVES PENDING

Chesapeake \& Ohio, forty 2-8-4 type loconsotives; bids asked.

CONSTRUCTION AND ENTERPRISE

OHIO

AKRON, O.-B. F. Goodrich Co., 500 South Main street. has been given $\$ 900,000$ contract by Defense Plant Corp. for machiner: and equipment in an Ohio plant.
CIEVELAND-Tnol Die Engincering Co. has
heen incorporated by Leo G. Bayer, 210 National City Bank building, statutory agent, Stanton Addams and Elizabeth S. Butler.
CLIEVELAND-Meters \& lumps Inc., Charles J. Bellar, president, 10700 Broadway, will build a onc-story plant addition, io cost about $\$ 4000$.

Widely used by shipbuilders, and other fabricators of heavy metal, the Beatty 400 -Ton Hydraulic Forming \& Flanging Press has the power, speed and adaptability to break production bottlenecks. Of very latest design, this unit, with its unique type pump and valve design, eliminates the need for cooling coils, with their inherent threat of water entering the oil supply line. If you work in heavy metal, there is a Beatty machine to help smooth out your production wrinkles. Write us.

ELEVELAND-Browning Crane \& Shovel Co Sheldon Cary, president, 16226 Waterloo road, is having plans made for four additional plant buildings.
Cleveland-Marguette Metal Products Co 1145 Galcwood drive, Herbert Gleitz, president, is planning addition 29×120 feet for locker building.
Cleveland-Rex Tool Corp. has been incorporated by 0 . W. Norman Wangen, John T. Dolezal and S. F. Korenz, to manufacture tools. clies, figs, gages and special machinery. William C. Etzel, 816 Hippodrome building, is statutory agent.
CLEVELAND-Industrinl Rayon Corp., Hiram S. Rjvitz, president, West Ninety-eighth street and Walford avenue, has authorized substantial canital expenditures for expansion of manufacturing facilities in worthern Ohio under War Production Board auspices. CLEVELAND-Philhurt Mfg. Co., 9312 Cassius avenue, has been incorporated to mamufacture machine tool products. Production will start as soon as remodeling has been finished at above address formerly occupied by Reel Tool \& Mfg. Co. Incorporators are Philip Purer, Bert F. Jacobson aud Lewis I. Gottlob.

CLEveLAND-Zane Mining Co. has been incorporated by F. I. Walter, C. F. Taplin and associates to mine coal and manufacture byproducts in connection. Earl E. Platell, secretary of the Harris Coal Con., 900 Midland luvilding, is statutory agent.
ElyRia. O.-Duplex Mfg. \& Foundry Co., 398 West River street, has been given buikiing permit for a two-story plant building at West River strect and New York Central tracks, to contain core room, ovens and storage, costing about $\$ 6000$.
ELYRIA, O.-Gilkinson Mfg. Co., G. C. Gilkinson, president, plans replacement of burned war plant at Abbey road near New York Central tracks. Plant consisted of onestory building 150×200 feet with three wings, $26 \times 50,45 \times 70$ and 26×70 feet.

CONNECTICUT

NEW HAVEN, CONN. - New Haven Malleable Iron Co., C. M. Brenan, president, 385 Clinton avenue, will let contract soon for a one-story 70×250-foot foundry addition, 40×70-foot annealing plant, on Clinton avenue, to cost over $\$ 40,000$.

NEW JERSEY

BLOOMFIELD. N. J.-General Electric Co., 5 Lawrence strect, has let contract for onestory boiler house and coal silo to Becker Construction Co., 361 Grove street, Newark N. J., to cost about $\$ 40,000$. E. Gorham, 5 Lawrence strect, is architect.
JERSEY CTTY, N. J.-Air Reduction Sales Corp., 60 East Forty-second street, New York, has let contract to James Mitchell, 575 West Side avenue, for engine room building and cylinder storage building, to cost about $\$ 40,000$.
NEWAIKK, N. J.-Western Electric Co., 100 Central avenue, Kearny, N. I., has let contract to Hugh Montague \& Sons Inc., 880 Bergen avenue, Jorscy City, N. J., for repairs and alterations to manufacturing building, costing about $\$ 40,000$.
PATERSON, N. J.-United States engineer, 120 Wall street. New York, has let contract to Mahieu Construction Co. Inc., 38 Wagaraw boulevard, Paterson, for a sewage disposal plant in Passaic county.
PERTH AMBOY, N. J.-Perth Ambay Dry Dock Co., foot of Broad street, has let contract to Wallace Wilck, 280 Hobart strect, for a boiler shod costing $\$ 47,000$.
PERTH AMBOY, N. J.-American Smelting \& Refining Co., 1160 State street, has let contract to Wallace Wilck, 280 Hobart street, for a one-story research building, to cost about $\$ 40,000$.
WALLINGTON, N. J.-Tube Reducing Corp., 52 Main avenue, has let contract to MahonyTroast Corn., 657 Main avenue, Passaic, N. J., for n one and two-story steel frame manufacturing building 167×440 feet.

THE SIMONDS GEAR \& MFG. CO. 25TH STREET, PITTSBURGH, PA.

Large or Small Pieces

ANNEALING

 NORMALIZING STRAIN RELIEVING CapacityPERIODIC AND CONTINUOUS TYPE FURNACES FOR LONG CYCLE ANNEALING and other heat treating jobs

NATIOHAL FIREPROOFING CORPORATION

General Offices - Pittsburgh, Pa.
MFG. OF NATCO POURING PIT REFRACTORIES and natco fire clay insulating bmick

INDUSTRIAL TRUCKS AND TRAILERS
 Caster and Fifth Wheel
 Types

 THE OHIO GALVANIZING \& MFG. CO. Ponn St., Nilos, ohlo

MADE T YOUR PROBLEMS

Call on Hubbard's long experience and skill in developing and manufacturing parts like these, to accomplish the results you are after in those various design and production problems.

Send in your drawings, or describe your problem. Your inquiry will bring real assistance and the advantages of long experience.

SOLVE

[^10]
MECHANICAL POWER PRESSES

HORN • RECLINABLE • STRAIGHT SIDE
ROLL AND DIAL FEEDS •DOUBLE ACTION DOUBLE CRANK F FUNCHING • TOGGLE Our Specialty: Patent Percussion Power Presben ZEH \& HAHNEMANN CO. 56 Avenue A.

Nowark, M. 」.
E. E. Scelye, 101 Park avenuc, New lork engineer.

ILLINOIS

CHICAGO-Ahberg Bearing Co., 3025 West Forty-second street, has received falditional DPC contracts of about $\$ 1,000,000$ for fat cilities expansion, limited to equipment
CHICAGO-A, H. Equipment Mig. Co., 223 West Erie stred, has hought plant ot Nichols Enginecring Co., 2139 West Erie street. using 28,000 soware feet and leasing remainder to former owner.
CHICAGO-Craft Mfy. Co., 1512 North Fremont street, stainless steel proxlucts, has hought from Mandel Stores Co. a unc-story garage at Pulaski road and Schubert street and will convert it into a manufacturing plant.

CHOCAGO-Electrouic Mechanics Inc Clifton N. J., has established a manufacturing branel in Chicago and has lought a one-story buikling containing 17,000 square feet of floor space, at 1917 North Springfied avento Adelitional 35,000 souare fect is mailable for expansion.
HARVEL, ILL.-Wyman-Gordon Co., mannfacturer of internal combastion engine crankshaft forgings, has recejved DP'C authorization for additional plant facilities.
MOLINE, ILL.-Deere \& Co., mamfacturer of agricultural implements, has received an additional commitment of $\$ 500,000$ from Defense Plant Corp, for additional facilities. HOCKFORD, HL.-Rockford Die \& Tool Works Inc. plans construction of a one-story addition to its machine shop. Gilhert A. Johnson, Swedish-Americim Bank building, is architect.

ROCKFORD, ILL.--llochtord Screw Products Co. will award contract soon for a me-story factory addition 120×120 feet and 24×60 feet. Gilbert A. Johnson, Swedish-American Bank loidding, is architect
SOUTH BELOIT, ML.-Wamer litectric Brake Mfg. Co., Beloit, Wis., has let contract to Cunningham, Bros., Beloit, for a onestory factory addition to its plant at South Beloit, 78×240 feet. W. Fred Dolke, 189 Madison street, Chicago, is enginter.

GEORGIA

ATLANTA, GA.-A. K. Adlams Co., 542 Plum street, N. W., has been given eontract for alterations and additions to Fisher Body Co. plant on McDonough boulevard, Atlimta, for Firestone Tire \& llubleer Co., Akron, O., and Defense Plant Corp, Washington. Cost will be over $\$ 100,000$.

MISSOURI

Si'. LOUIS-John Hamming Machine Car. 4591 Melhee street, hins let contract to Fred Koenig, 3918 Bowen street, for a brick and reinloreed conerete adelition to machine slop.

oklahoma

3A13TLESVILLE. OKLA.-Cities Service Gas Co. plans natural gas line, 240 miles of 26-inch pise, from Guymon to Blackwell, inchading booster stations and pumping plants, to cost about $\$ 2,400,000$.
OKLAHOMA CITY, OKLA.-United States engineer office, 116 Wright building, Tulsat, Okl.u., has let contract to Charles M. Dunning Construction Co., $420 \frac{1 / 2}{}$ North Hudson. Oklahoma City, for construction of buidings at the modification center.
TULSA, OKLA.-United States mgineers, 416 Wright building, Tulsa, has let contract to Corbecta Construction Co. Inc., New York, for construction of buiddings at the modification center.
TULSA, OKLA.-Stanolind Pipeline Co., Philcade hajlding, 'lulsa, has received War Production l3ard approval for 383 -mile conde oil pipelite from Sumdown, Tex., to Drmoright, Okla, with capacity of 54,000 harrels per day, to cost about $\$ 7,000,000$ and requiring approximintely 44,600 toms of steel.

wisconsin

BELOIT, WIS.-Fairbanks-Morse \& Co., has let contract to Cumbingham Bros., 359 Eanst Grand avenuc, for an clectric coil processing building, one story, 40×80 feet, and reeriving building, one story, 72×80 feet. W. Fred Dolke, 189 West Madison street, Chicazo, is architect.
KENOSHA, WIS.-Snap-On-Tonls Corp., manufacturer of tools, wrenches and similar products, has let contract to Austin Co., 510 North Dearborn strect, Chicago, for a onestory building 40×130 feet.
MILWAUKEE-Inter-State Tool \& Mfg. Co. has been incorporated to manufacture tools, by Charles W. Stephen and nssociates.
MILWAUKEE-Hamischfeger Corp., manufacturer of cranes, hoists, power shovels and similar products, has let contract to Endlich Construction Co., 1827 North Thirtieth strect, for a one-story die casting huilding. OSHKOSH, WIS.-Wisconsin Axle Division, Timken-Detroit Axle Co., manufacturer of truck axles, has let contract to ben B. Ganther Ca. for a one-story plant addition 82×100 feet.
RACINE, WIS.-John Oster Mfg. Co., manufacturer of hair clippers, massage machines and similar products, has let contract to Carl Kombloerfer for a one-story factory addition.
SHEBOYGAN, WIS.- Potts Foundry Co. plans a one-story addition to foundry on South Seventeenth street.
WAUSAU, WIS.-Marathon Hattery Co. is having plans made for a plant addition on Henrietta street
WAUSAU, WIS.-Wausali Motor Parts Cu., manufacturer of piston rings and other auto-

Mitering a structural angle iranwith a MARVEL No. 8. The blade is fed info the work. Work is held stationary on the bed in quick action vise.

Shipbuilding calls for Universal tools

There's a lot of sawing-cutting-off, mitering notching and special cuts wherever ships are being built, and work comes in all sizes, too That's why you'll find MARVEL No. 8 Metal Cutting Band Saws in shipyards and Navy yards, as well as in tool rooms and die shops.
The MARVEL No. 8 is the most universal sawing machine built. It will snip off $/ \mathrm{s}^{\prime \prime}$ drill rod or cut off an $18^{\prime \prime} \times 18^{\prime \prime}$ structural shape with equal efficiency, or will save hours of machining by roughing work to size and shape. It will cut at any angle from 45° right to 45° left, has a large " 1 's slotted table (for holding irregular shapes, special fixtures, etc.) and both power and hand feeds. It is a busy machine wherever found, for it does so many different jobs and does each one well.

Immediate Shipments of
 BARS-PLATES SHAPES-SHEETS

From Stock
 Wre Also Offer.

QUICK SHIPMENTS OF FLAME CUT PLATES IN IRREGULAR SHAPES, CIRCLES, DISCS, ETC.

RYERSON STEELS in Srock

Thousands of kinds, shapes and sizes of stool in slock af ten planls, Call Ryarion first for prompl actlon on sleal.

Josaph T, Ryarson \& Son, Inc. Chicago, Milwaukee, SP. Loula, Cincinnati, Detrolf, Clavaland Buffalo, Bosfon, Philadelphia, Jersay City.
Engineers - Contractors - Exporters
STRUCTURAL STEEL-BUILDINGS \& BRIDGES
Rivetel-ARC Weldeis
Belmont Interlocking Ciannel Floor
Man Office-Philn Write for Catalogue
Main Office-Philn., I'a. New York Orficm-44 Whitehall \$t.

W IRE

Iron-Stecl-Alloy
Round-Flat-Shapes
All Sizes and Finishes
Also Wire Screen Cloth
The Seneca Wire \& Mfg. Co.
Fontoria, Ohie

PIPE SHEETS
 TINPPATE
 ano /quenillite
 WORLD'S FOREMOST TIN PLATE

WHEELING STEEL CORPORATION
WHEELING, WEST YIRGIKIA

CALCOS STEEL \& IROH COMPANY
 1332 North 30th Street - Philadelphia, Pa.
 From Stock
 BARS - STRIP - SHEETS • PLATES

Producers of

STAINLESS AND ALLOY STEELS

extensive facilities FOR LARGE FORGINGS

BARIUM STAINLESS STEEL CORPORATION Canton, Obio

motive accessories, has let contract to Paul Wergin for a one-story factory addition 40 x 200 fect.

MINNESOTA

Mankato, MINN.-Kato Engineering Co. C. JI. Jones, president, manufacturer of lighting plants, electric converters, generators, etc., will rebuild burned plant, one story, 66×150 feet.
MINNEAPOLIS-MeQuay Inc., manufacturer of radiators, etc., has let contract to J. W. Crawford Co. for plant improvements and one-story gas generator plant
ST. PAUL, MINN.-Walter Erickson Machine Co., 72 Fillmore avenue West, has been incorporated to conduct a general machine shop and to manufacture tools and machinery, by Walter F. Erickson and associates.

TEXAS

BEAUMONT', 'IEX.-Southeru Acid \& Sulphur Co., Beaumont, has let contract to Tellepsen Construction Co., 3900 Clay avemue, Hous ton, Tex., for chemical plant and equipment, costing ubout $\$ 200,000$.
DALLAS, TEX.-National Geophysical Co. 8806 Lemmon avenue, has let contract to Cowdin Bros., 411 South Haskell street, for a factory building costing about $\$ 50,000$ Walter W. Ahlschlager, 212 South St. Paul street, is architect.

SOUTH DAKOTA

PIERRE, S. DAK.-City plans improvements to municipal light and power plant, including purchases of generating equipment when such equipment is made available, to cost about $\$ 120,000$. N. W. May is city auditor.

BEARITE, a low tin base (less than $11 / 2 \%$ tin) Babbitt Metal-time tested for over 20 years in all types of bearings, has proven its equality and, in many applications, its superiority to high tin babbitt of the genuine type.

BEARITE CAN REALLY TAKE IT

To our many customers who have contributed proof of the above fact, we express our thanks and appreciation for their trust in our ability to produce, and keep on producing, the finest bearing metals that ingenuity and skill can devise, fortunately, from nonstrategic materials. This is particularly significant since the maximum Conservation of Tin has become necessary.

MASTER MAKERS OF FINE BEARING METALS SINCE 1860

BEARITE

WATERTOWN, S. DAK.- City plans improvements to municipal light and power plant and installation of coal-handling and other equipment, to cost about $\$ 75,000$, when anthority is obtained to purchase equipment. F. J. Hubbard is city auditor.

MONTANA

MILES CITY, MONT.-Elmer T. Brink, direc tor of the Tongue \& Yellowstone Bect Growers' Association, plans construction of a beet sugar factory.
POLSON, MONT.-Flathead Pulp \& Paper Co. is having plans made for a plywood manufacturing plant.

CALIFORNIA

ALIAMBRA, CALIF.-Kay Brunner Steel Products Co., 999 Meridian avente, is building an additional storage building costing about $\$ 10,000$.
DEL MAR, CALIF.-Del Mur Turf Club will convert its buildings into a factory for manufacture of airplane parts. Fred Poggi is manager and L. J. Turner chief engineer and superintendent.
SACRAMENTO, CALIF--United States engineer, 1208 Eighth street, has reccived low bid from Central Califomin Construction Co. lnc., 230 California street, San Franciseo, for a sewage disposal plant at Fresno, Calif., under $\$ 100,000$
VENICE, CALIF.-Airesearch Mfg. Co., 9851 Sepulveda boulevard, has let contract for a plant 82×302 fect, to cost about $\$ 50,000$.

OREGON

HOSEBUHG, OREG.-Western Battery Separa tor Co., San Francisco, with factory at Marshfield, Oreg., plans construction of another large plant at Roseburg.

CANADA

BURNS TOWNSHIP, ONT.-.Barrys Bay Lumber Co. Ltd. is considering plans for construction of sawmill here, to cost, with equipment, about $\$ 30,000$.
HAMILTON, ONT. - A. H. Tallman Hronze Co. Ltd., Cavell avenue, has had plans prepared and will start work soon on construction of plant addition to cost about $\$ 10,000$.
HAMILTON, ONT.-Kemametal Tool \& Mfg. Co., 24 Dunbar street, has given general contract to W. H. Cooper Construction Co. Led., 306 Medical Arts building, for construction of plant building, one story, 50×150 feet, estimated to cost, with equipment, about $\$ 50,000$.
LONDON, ONT.-Sparton of Canada Ltd., 100 Elm street, G. A. Halmes, secretary. radios, electrical goods, las given general contract to W. C. Northey, 371 Vortley road, for construction of plant addition, estimated to cost about $\$ 15,000$
TIENTON, ONT.-Central Bridge Co. Ltel., 300 West street, has had plans prepared for construction of plant addition, to cost, with equipment, about $\$ 15,000$.
WINDSOR, ONT:-Dominion Forge \& Stamping Co. Litl., Seminule Road, has given general contract to Allan Construction Co. Ltd 44 Wyandotte strect East, for construction of plant addlition, to cost, with equipment, about $\$ 35,000$.
WINDSOR, ONT.-Ford Motor Co. of Canada Lttl,, Sandwich street East, has had plans prepared for further plant uldition here, to cost about $\$ 25,000$.
MONTREAL, QUE.-Cote Brothers \& Burritt, 1260 Conde strect, elevaturs, hoists, etc., are having plans prepared for construction of plant building 44×87 feet, to cost, with equipment, about $\$ 25,000$.
MONTREAL, QUE.-General Steel Wares Ltcl., 2355 Delisle street, has had plans prepared by Edward J. Tureotte, architect, 1010 St. Catharine street West, and will start work at once on construction of plant addition. 60×63 feet, to cost, with equipment, about $\$ 25,000$

CNILLAAMS

 DROP-FORGINGSANY SHAPE • ANY MATERIAL • COMPLETE FACILIIES Write for Free Forging Data Folder. Helpful, Informative J. H.WILIAMS\& CO, "Gne Drop-Forging People"BuFfalo,N.Y.

THE J. E. BAKER COMPANY

DEAD BURNED DOLOMITE LOW SILICA LIMESTONE CHEMICAL AND FLUXING LIME YORK, PA. \qquad

BRDDKB PPIC IRON

B. C C. Bioone IRON co. BIRDSBORO, PENNA

MFGRS OF HIGH GRADE FOUNDRY BASIC GREY FORGE MALLEABLE BESSEMER LOW PHOS.

5HEET IIETRLS

ORNAMENTAL-INDUSTRIAL For All Purposes
64 Years of Metal Perforating Prompt Shipments
Send for Metal Sumple Phates
THE ERDLE PERFORATING CO. 171 York Street Rachester, N.Y.

Pickling of Iron and Steel

-By.Wallace G. Imhoff

Price
Postpaid $\$ 5.00$

This book covers many phases of pickling room practice and construction and maintenance of pickling equipment.

THE PENTON PUBLISHING CO.

 Book Department1213 W. 3rd St.
Cleveland, 0.

| SMALL ELECTRIC STEEL CASTINGS |
| :--- | :--- |
| (CAPacley 500 Tons, Por Month) |

DO YOUR PART WITH

 SHAWINTAM PRODVGS कOस DRATOM

USED and REBUILT EQUIPMENT

量
SPECIAL ATTENTION!

steel mills,
blast furnaces and foundries! For Sale:
ALLOY ("CRITICAL") SCRAP

TURNINGS: $\$ 9.00$ G.T. Houston plus pay-

 able OPA Nickel or Molv. Preminms.$10 \mathrm{C} / \mathrm{L}$ SAE 3100; WPB No. 6
\Rightarrow C 1, SAF $4800 ;$ WPB No. 6
$10 \mathrm{C} / \mathrm{L}$ Moly.-Cr.; WPB No. 7
$15 \mathrm{C} / \mathrm{L}$ Ni.-Mo.-Cr.; WPB No. 6
TURNINGS: $\$ 12.91$ G.T. Tracks, Chicago, plus payalle
$9 \mathrm{C} / \mathrm{L}$ 1.00-3.75\% Nickel; WPB No. 6
FLASIIINGS \& CROPS: $\$ 16.50$ G.T. Houston plus payable OPA Nickel or Moly Premilums

8 C/L SAE 3100: WPB No. 6
$3 \mathrm{C} / \mathrm{L}$ SAE 4800; WPB No. 6

IRON \& STEEL PRODUCTS, INC.
13462 S. Bralnard Ave., Chicago. llifnols "ANYTHING containing IRON or STEEL'

FOR SALE

FORGED STEEL ROLLS
Four forged steel rolls $24^{\prime \prime}$ by $16^{\prime \prime}$ diameter, necks 12 3/16" diameter, woble 101 " diameter. Detail dimensions on request. RIGID-TEX CORPORATION
538 Ohio Street Bulfalo 3, New York

FOR SALE

STEEL BUILDINGS AND TANKS
PIPE AND BOILER TUBES
JOS. GREENSPON'S SON PIPE CORP.
National Stack Yds., Illinois

IMMEDIATELY AVAILABLE

1564 ft . 150 lb . Sullivan $22 \times 12 \times 14^{\prime \prime}$ WN31 Compressor. driven by Synchronous Motor, $3 / 60 / 2300$ Volt. Complete and guaranted. $5^{\prime} \times 18^{\prime}$ Air Complete and puarantece and fittings also available.

MISSISSIPPI VALLEY EQUIPMENT CO.
503 Locust Strect
St. Louls, Mo.

> ROLLING MILLS and EQUIPMENT FRANK B. FOSTER
> 829 OLIVER BUILDING PITTSEURGH.PA Coble Address "FO STER" Pitesourgh

WANTED

CARBON STEEL BARS PLATES, SHAPES, ETC.

We are an Eastern Pennsylvania warehouse interested in purchasing idle and excess stocks of the above items on a mill price basis and furnishing proper priority.

Address Box 930

STEEL, Penton Bldg., Cleveland.

WANTED
 STEEL BUILDING AND CRANES

75 to 100° wide $\times 500^{\circ}$ or longer. 40° to Runway, with one 20 and one 10 -ton crane. Will consider one without runway if trusses can support heavy monorail system.
HETZ CONSTRUCTION COMPANY
Warren, Ohio
Phone-4474

```
13OLRING MHLI, S4* N-[3-1* 1R.P.T., M.D.
GEARPIANLIRS, Hevel 30 &%H'G̈lenson, M.D
```



```
SH1FAlts, Plate44* & 54** 3/10% N!.D
STHAIGIITPNER, WIre Shuster, caj. 5/8*
STRAIGHTENER, Tube'Torrmonton 1/4"-5/8*O.D
TUIRREINIATME, 3-A W.ES, It.S. 3 11/10",S.P.D
TURRET lATME,34* Glsholt, HIS. 4-1/4*'M1.J.D
            LANG MACHINERY COMPANY
28th Stroot& &.V.R.R. COMPlitshurgh, Pa
```

SELLERS—BUYERS—TRADERS
Mare IRON \& STEEL 38 for Your PRODUCTS

Years
Dollorl INC. 13462 5. Bralnard Ave. Experience 13462 S. Bralnard Ave
Chieago, Illinols
Anyihing contafing 1 RON or STEEL"

-REBUILT-

blowers - fans - exhausters
Connersville-Roots Dositive blowers Centritugala for gas and ofl burning Gand blast, arinder and dust exhauster

GENERAL BLOWER CO
404 North Peorla St.
Chleago, 11

For Sale

BOILERS - BOILERS BOILERS

2-400 H.P. Sterling
$1-500$ H.P. Sterling
4-200 H.P.-H.R.T. Erie City
2-133 H.P. B \& W Sterling
1-6 Retort Taylor Stoker
1-Cochrane Open Feed
Water Heater
HETZ CONSTRUCTION COMPANY
Warren, Ohio
Phone-4474

RAIL

AND ACCESSORIES

RELAYING RAILS - Super-quality machine-reconditioned-not ordinary Relayers.
NEW RAILS. Angle and Splice Bars, Bolts, Nuts, Frogs, Swltches, Tie Plates, and all other Track Accessorles.
Although our tonnages are not as large ns heretotore, most alzes are uxually available from warehouse stocks.
Every effort made to take care of emergency Phone, Wrtte or Witit
L. B. FOSTER OOMPANY, Inc.

PITTSBURGH NEW YOLKK CIICAGO

RA/L-ACCESSOR/ES
 RAILWAY EQUIPMENT BOUGHT SOLD WRITE-WIRE-PHONE
 DULIEN STEEL PRODUCTS, INC,
 14 First Ave., So. 2280 Woalworth Bidg.
 Seatte, Wash. New York, N. Y

RELAYING RAIL

Practically all weights-Any guantity. Jnmediate shipment, strictly first quality reconditioned Relaying Rail and Accessories. Write, Wire, or Phone
MIDWEST STEEL CORPORATION Charleston, W. Va

RAILWAY EQUIPMENT AND

 ACCESSORIESWe can furnish rails, spikes, bolts, angle bars, locomotives, crancs and other railway material.

Wripe, wire or phone for prices.
SONKEN-GALAMBA CORP. 108 N. 2d St. Kansas City, Kansas

TTEEL CAN HELP YOU BUY OR SELL

Used or Surplus Machinery and Equipment. Send in your copy instructions for an advertisement in this column. Your ad will reach the important men in the metalworking and metal-producing industry. Write to STEEL, Penton Bldg., Cleveland.

14 CLASSIFIED

Positions Wanted

MAN 43; MARRIED; GOOD HEALTH; DRAFT classification 4-H. Successful experience selling
stainless and tool steels, stainless and tool steels, alloy seamless tubing machinery and special steel commodities. Worked three employers. Souis and Texas territories. Had three employers. Since 1937 located in Texas with large mill organization, specializing in stainless and tool steel alloys; at present in sales executive capacity. Familiar with refinery, process industries South and Southwest; also jobber conditions. Offer highest type references. Present employer advised. Reply Box 939, STEEL, Penton Bldg., Cleveland.

SALESMAN, ENGINEERING BACKGROUND devices, tool steel. Selling machine tools, electrical devices, tool steel. Selling 20 years. Age 50. ord. Live wire. Consider ce. Show selling recor Salesmanager. State change, top selling job to offer. Replies confidential ly what you have STEEL, Penton Bldg., Cleveland Reply Box 945 , STEEL, Penton Bldg., Cleveland.
STRUCTURAL AND PLATE SHOP SUPERINtendent. Thoroughly experienced. Exceptionally successful in handling men. Available on reasonBox notice. Can increase production. Address Box 937, STEEL, Penton Bldg., Cleveland.

Penton Bldg., Cleveland.

Help Wanted

WANTED: MAN WITH GENERAL OFFICE or field sales experience by large reputable manufacturer of seamless and electric welded tubing, alloy and carbon steels. Please apply giving full information, experience, etc., to Box 894, STEEL

TOOL MAKERS FOR DEFENSE PLANT IN Midwest; sfive experience and full particulars. Reply Box 932. STLEL, Penton Bldg., Cleve-

Employment Service

SALARIED POSITIONS-This advertising servfor high salaried supervisory standing negotiates ecutive positions. Procedure will be indial and exto your personal requirements and will not con flict with Manpower Commission. will not conprotected by refund provision. Send for dining fee R. W. BIXBY, Inc. provision. Send for details. N. Y. BIXBY, Inc., 110 Delward Bldg., Buffalo,

Y,

He contract worr ye

KIRK \& BLuM

MELDED machine bases.
PEDESTALS and FRAMES Lathe pais
GEAR and BELT GUARDS
Pressed Steel Louver Panels and Cover Plates
THE KIRK \& BLUM MIF. CO.
2822 Spring Grove Ave., Cincinnali, Obio

Castings

KING FOUNDRIES. LNC., NORTH WALES. Pa. Grey Iron and Semi Steel Cantinas, alwo alloyed with Nickel. Chrome, and Molybdemum. Wimot. Irnn. Firask, and Aluminum Pattern work

SUB-CONTRACT WORK

 is being given out daily. Put yourself in line to receise your share of this business by listing your services in this section. Write STEEL, Penton Bldg., Cleveland.
WANTED-NEW PRODUCTS, OLD PRODUCTS

PREPARE NOW FOR POST WAR BUSINESS

A 32-year old corporation, now producing 100% War Production employing 4000 persons, desires to contact established firms or reputable individuals having products for post-war manufacturing or promotion.
We offer the facilities of a large well equipped plant, efficient Management, trained En zincering and Production supervision, capable of designing and developing Tools, Dies, Jigs, Fixtures plus adequate machinery to fabricate and assemble anything made from, sheet metal. We also offer the facilities of a complete textile fabricating division having all new equipment consisting of 300 sewing machines, cloth laying machines, cuttinz and perforating equipment capable of fabricating any article made from wool, cotton, silk or peroratin We would be interested in the development of new enterprises, pasible intrist
or manufacturing on contract; we can assure the fullest cooperation outright purchase meritorious product old or new. we can assure the fullest cooperation in producing any

All communications will be considered in strictest confidence,
Address replies attention of: Box 936, STEEL, Penton Bldg., Cleveland,

Send your incuiries for
SPECIAL ENGINEERING WORK to the
A. H. WILSON MACHINE COMPANY, ERIDGEPORT, CONN.
designers and tuidders of wire and ribiben
scek forming machine
He rino wolicie your bids for cam millian

SHEET STEEL FABRICATORS

Welded or Riveted Construction. Can handle No. 10 gauge and lighter. Send rus your inguiries for estimates. THE HAINES COMPANY
1931 W. Lake St.
Chicazo. Ill.

PLANER CAPACITY OPEN

We have several hundred hours of planing time available, Largest tool three head $48^{\prime \prime} \times 53^{\prime \prime} \times 144^{\prime \prime}$. Experienced operators and excellent enzineering and supervisory personnel. Please send us your inguiries.
C. C. BRADLEY COMPANY

432 Frandlin St, Syracuse 4, New York

During wartime, production costs become secondary to production volume - natural and industrial resources available for war production have become the bases for our economy, and the ability to increase production has become the measure of proportional value.

On this basis KENNAMETAL has received the greatest acceptance over other carbide tools in the steel-cutting industry.

With Peace Comes The Necessity for Economy

This war will end . . . and with an armistice the concept of production must change. Economy once more will be a basic consideration in determining efficiency.

Tooling up with KENNAMETAL will assure you the most efficient and economic production in peace as well as the greatest volume of production now.

Write for your copy of catalog 43B which gives complete information about KENNAMETAL steel-cutting carbide tools and blanks.

B
Babcock \& Wilcox Co., Refractories Div..
Babcock \& Wilcox Tube Co.
Bailey, Wm. M., Co.
Baker Broihers. Inc.
Baker, J. E., Co.
Baldwin-Southwark Division, The Baldwin Locomotive Works
Bantam Bearings Division, The Torringion Co.
Barium Stainless Steel Corp.
Barnes, Wallace, Co., Division A Assaciated Barnes, W. F. and Johm
Basic Refractories, Inc.
Bayard, M. L., \& Co
Bay City Forge Co
Bay State Abrasive Products Co.
Beall Tool Co.
Beatty Machine \& Mifg. Ca
Belmont Iron Works
Birdsboro Steel found
Birdsboro Steel Foundry \& Machine Co.
Bissett Sleel Co., The
Bixby, R. W., Inc.
Blanchard Machine Co
Blawhard Machine Co
Blaw-Knox Co. Covi 21
Blaw-knox Division, Blaw-Knox Co.
Bliss \& Laughtin, inc.
Blodgelt, G. S., Co., Inc
Bohn Aluminum \& Brass Corp.
Bridgepori Brass Ca.
Brooke, E. \& G. Íron Co
Brosius, Edgar E., Co.
Brown \& Sharpe Mfg. Co.
Brown Instrument Co., The
uryant Machinery \& Engineering Co.
Buda Co., The
Buffala Forge Co.
Bullard Co.' The
Page

D

Darwin \& Milner, Inc.
Davenpart Besler Carp
Davis \& Thompson Co.
Denison Engineering Co., The
DeSanno, A. P., \& San, Inc.
Despatch Oven Co.
Detroit Electric Furnace Division, Kuhlman Electric Co.
Detroit-Leland Hotel
Detroit Rex Products Co
Defroit Tap \& Tool Co.
Diamond Tool Co.
Diebold Safe \& Lack Co.
Distart, Harry W., Co. '
Dission, Henry, \& Sans, Ine
Dow Chemical Co., The.
Downs Crane \& Hoist Co.
Dravo Corp., Machinery Di
Dulien Steel Products, Inc.

Easton Car \& Construction Co
Eclipse Counterbore Co.
Egyption Lacquer Mfg. Co., The
gyption lacauer Mig. Co., The
Electric Controller \& Mfs
Electric Controller \& Mfg. Co.
Electric Furnace Co., The
Electro Alloys Co., The
Electro Metallurgical Co.
Eliotf Manufacturing Co., The
Enterprise Galvanizing Co .
Erdle Perforating Co., The
Erie Bolt \& Nut Co.
Erie Foundry Co.
Efna Machine Co.
Euclid Crane \& Hoist Co., The
Eureka Fire Brick Works
Eutectic Welding Alloys Co.
Ex-Cell-O Corp

Fafnir Bearing Co., The
Fairbanks, Marse $\&$ Co
Fairfield Mfg. Co.
Farquhar, A. B., Co., Lid.
Farval Corp., The ….....Inside Back Cover
Ferracute Machine Co.
Fidelity Machine Co.
Fitchburg Grinding Machine Corp. ...
Flarimans Co., The
Foote, Brad, Gear Works
Foote, Brad, Gear Works 27
Foote Bros. Gear \& Machine Corp. 27
Fosdick Machine Tool Co
Foster, Frank B. Inc.
Foxboro Co., The
Fox Grinders, In

H

Hagan, Gearge J. Co.
Honlon-Gregory Galvanizing ro
Hennd Furnace Corp.
Hennifin Mfg. Co
Hansen Mfg. Co.
Harbison-Walker Refracto ies :o.
Harrischfoger Corp.

Hassal, John, Inc
Hays Corp., The
Heil Engineering Co....... Inside Froni Cover
Heil Engineering Co.
Hendrick Manufacturing Co. 157
Hercules Co.. The
Hevi-Duty Electric $\mathrm{C} \dot{\mathrm{Ca}}$.
Hill Acme Co., The
Hills-McCanna Co.
Hindley Mfg. Co.
Homestead Valve Mfg. Co
Horsburgh \& Scolt Co.
Houghton, E. F., \&
Hubbard, M. D., Spring Co. 153
Hyatt Bearings Division, General' Mators
Corporation
Hyde Park Foundry \& Machine Co.
Hydraulic Machinery, Inc.
Hydrculic Press Mfg. Co., The 73
Hydro-Arc Furnace Corp.
Hydropress, Inc.

Jones, W. A., Foundry \& Machine Co
(Confinued on nexi page)

Page
(Continued from preceding page) Kardong Brothers, Inc. ${ }^{K}$ Kaydon Engineering Corp., The Kemp ${ }^{2}$ \& Trecker Corp
Kemp,
Kester
Solder
Co.
Keyter Solder Steel \&
Xidde, Walter, \& Co., Ine
King Fifth Wheel Co
King Fcundries, Inc.
${ }_{\text {Kinnear }}$ Mfg. Clim Mfg. Co.
Kold-Hold Manufacturing Co
Koppers Co. Co
Kropp Forge Co
Laclede-Christy Clay Products Co.
Ladish Drop forge Co.
Lake City Malieable Co
Lakeside Steel Improvement Co., The
Laminated Shim Sessions Co., The
Lamson Corp.
Landis Machine Co.
Lang Machinery Co. Coll., The
Latrobe Electric Steel Co.
Layne \& Bowler. Inc.
Lebanon Steel Foundry
Leeds \& Northrug Co.
Lee Spring Co., Inc. Loboratories, Inc
Lesehen, A. \& Sons Rope Co.
Levinson Steel Co., The
Levinson Steel Sales Co.
Levinson Steel Sales
Lewis Foundry \& Machine Division of
Blaw-Knox Co.
Lewis Machine Co., The
Lincoln Electric Co., The
Linde Air Products Co., The
Linde Air Products
Link-Belt Co.
Logemann Bros. Co.
Lovejoy Flexible Coupling Co
Luers, J. Milto:I.
Lyon-Raymond Corp.

MacDermid, Inc.
$\begin{aligned} & \text { Mackintosh-Hemphill Co. } \\ & \text { Macklin Co. }\end{aligned}$
Macklin Co.
Macwhyte Co. Co., The
Maehler Paul, Co.,
Magnaflux Cord.
Magnus Chemical Co.
Mahon, R. C., Co., The
Mahr Manufacturing Co.
Mallory, P. R., \& Co., Inc.
Manheim Manufacturing \& Belting Co.
Markal Co.
Master Electric Co., The
Mathews
Matihews, Jaseyer Co
M.,
Mattison Mashine Works
Medart Co., The
Mercury Mfg . Co.
Metal \& Thermis Corporation
Michiana Products Corp.
Michigan Seamless Tube Co
Michigan Tool Co. Corp
Micromatic Hone Car.
Midwest Sleel Corp.

Mississippi Valley Equipment
Moltrup Steel Products Co.
Molybdenum Corporation of America
Monarch Machine Toal Co., The
Monarch Steel Co.
Morgan Construction Co.
Morgan Engineering Co.
Morrison Engineering Corp.
Morton Salt Co.
Match \& Merryweather Machinery Co
Mueller Brass C_{0}

Niagara Machine \& Tool Works
Page
41, 159
Nison, A. H., Machine Co.
Nitralloy Corp., The
Norma-Hoffmann Bearings Corp.
Northwest Engineering Co.
Norton Co., The
Oakite Products, Inc.
Ohio Crankshaft Co
Ohio Electric Mfg. Co,
Ohio Galvonizing \& Mfg. Co.
Ohio Knife Co., The
Ohio Locomotive Crane Co., The
Ohio Machine Tool Co., The .
Ohio Seamless Tube Co., The
Ohio Steal Foundry Co., The
Oliver Iron \& Steel Carp.
Osgood Co., The.
Oster Mfg. Co., The

Page Steel \& Wire Division American Chain \& Cable Co., Inc.
Pangborn Chemical Co.
Parker-Kalon Corp.
Pabbody Engineering Corp
Pennsylvania Flexible Metailic Tubing Co.
Pennsylvania Industrial Engineers
Pennsylvania Salf Mfg. Co.
Penola Lubricants
Perkins, B. F.: \& Son, Inc.
Philadelphia Gear Works
Phillips Screw Manufacturers
Phoenix Mrg. Co.
Pittsburgh Crushed Steel Co.
Pittsburgh Gear \& Machine Co.
Piltsburgh Lectromelt Furnace Corp.
Pittsburgh Plate Glass Co.
Pittsburgh Ralls Division of Blaw-Knox Co
Plymouth Locomative Works Division of
the Fote-Root-Heath Co.
Pollock. William B.. Co., The
Poole Foundry \& Machine Co.
Poole Foundry \& Machine Co.
Porter, H. K., Co., Inc.

Pressed Steel Tonk Co.
Progressive Welder
Protected Steel Products
Purdy, A K., Co., Inc.
Racine Tool \& Machine Co
Ransohoff, Inc
Ransome Air hinery Co
Raymonc: Wig. Co., Division of Associated Spring Corp.
Reading Chain \& Block Carp.
Ready-Power Co Mafaturing
Reeves Steel \& Manufacter
Reeves Steel \& Manufacturing Co.
Reid-Avery Co., The
Reliance Electric \& Engineering Co.
Republic Drill \& Tool Co.
Republic Steel
Republic Steel Corp.
Revere Copper
Revere Copper \& Brass, Inc.
Rhoades, R. W., Metaline Co., Inc.
Richards, Arklay S., Co., Inc.
Rocijling's, John A., Sons Co.
Rowlway Bearing Co., Inc.
Rolway Bearing Co., Inc
Roper, George D., Corp
RS Products Congoralion Inc.
Ruemelin Mfg. Co
Ruemelin Mrg. Co. Ward Boll \& Nut Co.
Russell, Burdsall
Rustless Iron \& Steel Corp.
Ryerson, Joseph T., \& Son, Inc.
Saginaw Malleable Iron Div. General MoSt. Joseph Lead Co.
St. Louis Bution Co
Salem Engineering Co.
Samuel, Frank,
Samuel, Frank, \& Co., Inc
Sandvik Steel, Inc.
Savage Tool
Scherr, George, Co.
Sellers, Wm.i \& Co., Inc.
Seneco Wire \& Mfg. Co., The
Seymour Mfg. Co., The
Shawinigan Products Corp.
Sheffield Corp., the
Sheflield Corp., the
Shenango Furnace Co., The
Shenango-Penn Mold Co.
Shepard Niles Crane \& Hoist Corp
Shuster F. B., Co., The
Silent Hoist Winch \& Crane Co.
Simonds Gear \& Mfg. Co.
Sinclair Refining Co.
SKF Industries, Inc.
Smith, David, Steel Co., Inc.
Smith Oil \& Refining Co.
Smith fool \& Engineering Co .
Smit, J. K., \& Sons, Inc.
Snyder, W. P., \& Co., Ine.
Socony-Vacuum Oil Co., Inc
Sonken-Galambo Corp.
South Bend Lathe Works
South Bend Lathe Works
Spriesch Tool \& Manufacturing Co.
Standard Steel Works
Standord Tube Co., The

Stanley Works, The
Steal \& Tubes Division, Republic Sicel Corp.
Steel Founders' Sociely of America
Stee
Steelweld Mrovement \& Forge Co., The
Machinery
Division, Cleveland
Crone \& Engineering Co.
Sterling Grinding Wheel Div. of the Cleve-
Stramberg-Carison Co.
Stramberg-Carlson Co
Strong Steel Foundry 'Co
Struthers Wells Corp
Struthers Wells Carp.
Sturtevant, B. A. Co
Sun Oil Co.
Superior Steel Corp.
Surfare Combustion Corp.
Swindell-Dressler Corp.
Syntron Co.
Talon, Inc., Steal Tube Division
Taylor-Wilson Mfg. Co. Railroad Co.
Tennessoe Coal, Iron \& Railroa
exas Co., The
Thomas Flexibla Coupling Co.
Thomas Machine Mfg. Co
Tide Water Associaled Oil Co
Timken Roller Bearing Co Co.
Timken Sleel \& Tube Division, The Timken
Roller Bearing Co.
Tinnermen Products, Inc.
Tinnermen 75
Titanium Alloy Manufacturing Co
oledo Scale Co
Tomkins Johning \& Mfg. Co
Torrington Co., The
Towmotor Co
Trabon Engineering Corp.
Trico Products Corp.
Triplex Screw Co., The
Trundle Engineering Co.
Tubular Alloy Sieel Corp.
Turchan Follower Machine Co.
ureo Products.
Turner Gauge Grinding Co.
U. C. Lire Mig. Co

Un:on Carbide \& Carbon Carp.
102
Union Drawn Steel Div., Republic Steel
Union Steel Castings Division of Blaw
Knox Co.
United Chromium,
Uniled Engineering \& Foundry Co
United States Graphite Co
United States Rubber Co
United States Steel Corp. Subsidiaries.. 43, 129
United States Steel Export Co.
Vanadium Alloys Steel Co.
Vanadium Corporation of America
Vaughn Machinery Co., The
Veeder-Rool, inc.
Vickers, Ine

Waldron, John, Corp.
Walker-Turner Co,' ne.
Warner \& Swasey Co.
Washburn Wire Co.
Watson-Stillman Co., The
Wean Engineering Co., The
Webtherhead Corporation, The
Weinman Pump \& Supply Co., The
Weirton Steel Corp.
Welding Engineering Co.
Walding Equipment \& Supply Co.
Wellman Branze \& Aluminum Co.
Wellman Engineering Co.
Wells Manufacturing Co.
Wesson Co.
Westinghouse Electric \& Mifg. Co.
West Penn Machinery Co
West Steel Casting Co.
Wheeling Steel Corporation
Whitehead Stamping Co.
Wickes Brothers
Wickwire Brothers
Wickwire Spencer Steel Co
Williams J. H. \& Co.
Wilson, Lee, Engincering Co
Wilson Welder and Metals Co., Ine
Wisconsin Motor Corp. Calumet \& Heala
Consolidated Copper Co. Camet \& Hecla
Woad, R. D., Co.
Woods, S. A., Machine Co
Worthington Pump \& Machinery Corp.
Worth Steel Co.
Wright Manufacturing Div., American Chain
Wy Cable Co., Ine.
Drawn steel Co.
Yoder Co., The
Youngstown Alloy Casting Corp.
Zeh \& Hahnemann Co.

ELECTRIC FRRRET

You are looking down a cylinder barrel for a 2000-h.p. aircraft engine.

Here you see the rough-machined forging. When the engine builder gets through with this forging it will be finished to precise dimensions, smooth and bright as a mirror, and extremely hard.

Such a transformation takes time and money. If the last strokes of the polishing machine should uncover injurious imperfections on the smooth inner walls of the barrel, that time and money would be wasted.

To prevent spoilage and rejections after machining, Bethlehem gives all Aircraft Quality steel routine representative Magnaflux tests -first when the steel is still in billet form and later (in the case of cylinder barrels) when these rough-machined forgings are ready to ship to the customer.

In principle, Magnaflux is quite simple. The sample is magnetized . in a bath of light oil and iron powder, then removed and examined. Hidden flaws are instantly revealed, as the iron powder clings tightly to the surface of the steel directly above any imperfection, indicating its shape, severity, and approximate depth beneath the surface.

The Magnaflux is one of many tests applied by Bethlehem to Aircraft Quality steel. We produce steel for cylinder barrels, connecting rods, gears, cams, and bearings, as well as for dozens of other important aircraft-engine applications. Bethlehem Aircraft Quality Steels are fighting over Europe and the Mediterranean, and over the Pacific.

A Result of Alliance Cranes

For every step of steel production, from charging the open hearth to shipping the finished products, there's an Alliance long-life crane. Alliance Charging Machines exemplify the high quality found in all Alliance equipment. They stimulate higher production, thus producing more steel for flying fortresses and hundreds of other important implements of war.
Designed and built to do rough and tough jobs, Alliance Charging Machines operate smoothly. The terrific and destructive shocks, often accepted as necessary evils, are absorbed mechanically. Hence, the equipment not only lasts longer without maintenance, but there is also far less strain on the operator. When pushing cars, the side thrust is easily absorbed by expertly designed girder construction. The locking lever remains stationary as the peel is raised and lowered in charging. Furthermore, as the peel enters the charging boxes, heavy springs absorb the extreme shock which would otherwise be transmitted to the equipment and operator. But, the most appreciated feature of all is the patented shock absorbing device at the rear end of the machine. The rear wheels are mounted on slow re-coiling Edgewater springs which resist the severe up and down shock at the rear of the equipment as the charger is loading or unloading, or leveling the charge. Thus, the frequent time out periods, due to operator fatigue caused by repeated vertical shocks, are tremendously reduced. More steel production and lower maintenance costs result. And, it's this type of designing and building that makes all Alliance equipment extremely practical for rough, tough material handling jobs.
chino dra witis 120 and citurs Safety Suggestions

FREE INSTRUCTIUE BOOK STILL AVAILABLE

Now in its third printing this Know How illustrated 64 page booklet has proved an invaluable aid to grinding departments. Both large and small users of grinding wheels welcome the in formative contents of this comprehensive book.

New grinder hands find "Helpful Hints and Safety Suggestions" particularly useful.

Your entire grinding department will find its many concise facts constructively valuable.

Ask for sufficient copies to be placed in the hands of all interested in grinding.

INVEST IN WAR BONDS

[^11]
Apologies to the Doctor

- A lot of fellow gardeners seemed to get cuite a kick out of Dr. Horatio K. Bunbottom's garden column which we ran here two weeks ago, and we hasten to correct a very unfortunate error in giving proper credit for this expert down-to-earth advice.

As a matter of fact, the Doctor is an authority on a wide range of subjects and has regularly been giving of his knowledge on such things as "Better Babies" (having been one once himself) and advice to the women war workers on house cleaning. The Doctor is nome wher than Charles W. Stewart, advertising manager of the Meuhlhausen Spring Corp., Logansport, Ind., who docs such an excellent job of publishing that company's monthly employes' magazine, Spring Times.

New Draft Classification

- In the same issue of Spring Times in the Doctor's garden column we notice a new draft classification has been set up for the past 38 'ers. The new classificition is known as 5 - B; the " B " stamding for Baldness, Bridgework, Bifocals, Baywindows and Bunions.

Get Out Your Paper and Pencil

문 Do you think you're up to a Steel Quiz today? This one comes from the American Iron \& Steel Institute and they say a 70 per cent score is a grood average. You'll find the correct answers on page 144 but no fair peeking now.

1. The United States has more blast furnaces in operation today than ever before. True or folse.
2. Extension of a 48 -hour work week throughout the stecl industry would increase payrolls by (a) $\$ 100,-$ $000 ;$ (b) $\$ 100,000,000$; (c) $\$ 100,000,000,000$.
3. Electric furnaces are used primarily to produce (a) carbon steels; (b) pig iron; (c) alloy steels.
4. During the past three years electric furnace capacity has risen (a) 140 per cent; (b) 14 per cent; (c) 1.4 per cent.
5. One of the following breakfast foods is used in manufacturing steel products. Which one? (a) orange juice; (b) bran; (c) bacon.
6. America's steel mills are run by a home front working force that is the numerical equivalent of more than (a) one; (b) three; (c) five regular ficld armies.
7. In 1942, the American steel industry's furnaces were active (a) 90 per cent; (b) 94.5 per cent; (c) 99.7 per cent of the time.
8. Which of the following states has no iron or steel plants within its borders. (a) California; (b) Wyoming; (c) Oklahoma.
9. Last year, shipbuilders took nearly (a) twice; (b) three times; (c) four times the amount of finished steel consumed by them in 1941.
10. About (a) one; (b) two; (c) three tons of steel go into one of our heavy bombers.

War of Metals

a And incidentally the steel industry in 1942 poured
the equivalent of 24,600 pounds of steel for each man in the armed forces. That was 1500 pounds more per man than the peak year of World War I.

STEEL in the Senate

- In the mail this week comes a letter from Senator John A. Danaher, Comnecticut:

I have interestingly read Mr. Kurtz's article entitled "Battle-Searred Veterans Look To Industry," which ran in the June 14 issuc of STEEL. The article commends itself to careful examination particularly by industry leaders.
It would seem several people down in Washington find Steel a usable and relable source of information. Senator Thomas of Oklahoma quoted a rather extensive passage from E. C. Kreutzberg's series of articles on Postwar Planning the other day in the Congressional Record.

Safety Poster

- Here's how the Ampen Metal safety committee hits at plant accidents:

The finger that was cut-the shell that was never shipped by the finger that was cut-the soldier who didn't have the shell that was never shipped by the finger that was cut-the battle that wasn't won by the soldier who didn't have the shell that was never shipped by the finger that was cut-the war that was lost by the battle that wasn't won by the soldier who didn't have the shell that was never shipped by the finger that was cut-
Hold on there! Whose cut finger was that? It could have been yours.

New CED Booklet

最 If you haven't a copy of "Target for Peace", the little booklet just published by the Committee for Economic Development, write and get one at Room 3311, Department of Commerce Bldg., Washington. In it is this quotation from Sumner H. Slichter, professor of economics, Harvard University:

Undoubtedly security is worthy of a high place in men's ideals. Let us remember, however, that :10 nation has ever achieved greatness simply by striving for security. . . . More positive and dynamic ideals are needed in order to bring out the best in men. Hence the nation which wishes to he great must place enterprise ahead of security. It must regard innovators, experimenters, starters of enterprises as peculiarly useful citizens and go out of its way to furnish them a congenial and hospitable enviromment. It must strive to increase the proportion of its citizens who become experimenters and innovators and who make their living, not hy getting on someone else's payroll, but by creating payrolls of their oun.

Reprints

- The excellent article in the June 14 issue by John P. Frey, president, Metal Trades Department, American Federation of Labor, is being reprinted (50,000 copies) by the LaSalle Extension University for further clistribution.

/deas for Victury from the Production Lines behind the Firing Lines

A Citation for Men

 in War Industry

A SIMPLE IDEA...BUT IT STEPPED UP PRODUCTION 40\%

In addition to the Victory Pin presented by Warner \& Swasey, operator Miller was awarded a war bond by his company, and a citation from W. P. B. He was also given credit, along with other employees who had contributed valuable service to war production, on a national radio broadcast sponsored by The General Motors Corporation.

ONE of the jobs being machined by John Miller, turret lathe operator at the Cadillac Motor Company, is a gear with shaft extension on both sides. As set up, there was not room enough between the spindle and the bar turner in the hex turret to permit square turret operation while the bar turner was cutting. One shaft extension had to be turned before the second could be rough cut and finished.
But John Miller studied the job and found a solution. By pulling more stock out of the spindle and placing cutters in the right side of the square turret, instead of the left side, he was
able to combine square turret cu with hexagon turret cuts, finishin both ends simultaneously, and sa ing 3 minutes per piece. The rigidi of the hex turret unit on his No. Warner \& Swasey made it possible use this setup, holding .002 accurac

Many turret lathe operators hav written us, telling how they used th machines and tools at hand to be: advantage. Many of these ideas ar passed along in Blue Chips, a sho bulletin mailed free to the homes over 38,000 turret lathe operator Are your operators getting "Blu Chips"? Just write Warner \& Swase Cleveland, Ohio.

You Can turn it Better, Faster, for Less.... WITH A WARNER \& SWASEY

fully armored against the entry of

 DESTRUCTIVE MATERIALS-RESISTANT TO CORROSION AND EXTERNAL DAMAGEOn this new member of the TriClad motor family, end shields and frame are solid cast iron, smoothly contoured and tightly fitted. Ball bearings are protected by a rotating-labyrinth bearing seal-against damaging dusts or liquids. The leads are sealed in compound in a cast-iron pocket in the frame. Inside, the motor has all the extra-protection features of Tri-Clad open motors, such as Formex* wire.

An outstanding feature of these new motors is that their mounting dimensions are interchangeable with those of open motors of like rating.

For complete information on the totally enclosed Tri-Clad,

FRAME SIZES			
Hp	Rpm	Poly. phase	Singlephase
1/9	900	204	
$3 / 4$	1900	203	204
3/4	900	924	
1	1800	203	203
1	1200	204	
1	900	295	
$11 / 2$	3600	203	203
$11 / 2$	1800	204	904
$11 / 9$	1200	924	
2	3600	904	904
2	1800	924	204

see your G-E representative, or write to General Electric Co., Schenectady, N. Y.

FOR "CRUEL" SERVICE CONDITIONS LIKE THESE

(Meeting requirements of WPB
Molo: Conservation Order L-921)
destructive dusts
Where rock dust, metal filings, powdered chemicals, or other finely divided materials are present in destructive quantities.

CORROSIVE FUMES ${ }^{\prime}$
Where motors are exposed to corrosive acids and alkalies in liquid or vapor form, such as on mixers in chemical pilot plants.
gUMMY, VISCOUS MATERIALS
In working with paints, oils, syrups, and other materials which might "gum up" the interior of an open motor.

SUPERSATURATED ATMOSPHERES Where motors must operate without fail in areas filled with steam, water vapor, oil droplets. Also out of doors in humid, stormy climates.

* In addition to this standard totally enclosed Tri-Clad motor, G. E. can furnish explosion-proof types, tested and listed by Underwriters' Laboratories, Inc., for (1) hazardous dusts, such as magnesium dust, coal dust, grain dust, (2) hazardous fumes, such

THE JOB:
Grinding free hand and dry on Excello Tool Grinder carbide-tipped tools 11 $\times 1$ " $\times 6$ ", for turning airplane struts, shaping airplane carburetors, shaping and turning gun turrets for planes.
the Wheel: Por-os-way 1011 x 2 " x 2 " C54KV3

All facts and figures given are taken from an actual field survey made by a Por-os-way correspondent

Quotes POR-OS-WAY'S War Plant Reporter from Interview

THE RECORD	POR-OS-WAY WHEEL	FORMER WHEEL
Number tools per hour per man	37	26
Number of dressings required	NONE	Every 2 hours
Pieces per wheel	888	520
Stock to be removed	$.000^{\prime \prime}-.250^{\prime \prime}$	same
Wheel life	24 hours	20 hours
Depth of cut	$.002^{\prime \prime}-.010^{\prime \prime}$	Tools burned when jammed into wheel
Number of passes required	12	48
Amount of rejects	0	50 per day (scrapped)
Increase in production	42.3%	

WRITE, for completa booklef "Facls Aboul Por-as-way". The address is 436 Wheatland Streel, Phoenixville, Pennsylvania.

POR-OS:WAY

 a new RADIAC* PRODUCT

The Gestapo would kill to get this information

It's yours simply for the asking!

T^{0}you men, who are today using steel in a hundred new ways who must perform the veritable miracles of production upon which the success of our war effort depends-to you we offer practical assistance in the use of steel that will make your job easicr.

Here for your use are the very latest wrinkles in the wartime application of steel that keen metallurgical skill and American manufacturing ingenuity have developed.

Much of this information is of such a "hush-hush" nature that . we dare not be specific here. But this we can say-most of it is based on the solution of knotty problems in war production such as you face every day, and therefore should be of inestimable help to you

Closely guarded in our confidential files are actual case histroties that will help you short-cut your fabricating processes - that will make steel do more for you than it has ever done before, or do is a better.

Here is the kind of information that Axis agents would stop at nothing to get their hands on.

It is our responsibility to see that this information is distrifuted where it will do the greatest good. It is your responsibility to use it to America's advantage.

```
ONE AJM...VICTORY...EUY EONDS!
```

CARNEGIE-ILLINOIS STEEL CORPORATION Pittsburgh and Chicago

UNITED STATES STEEL

High maintenance cost from dirty flood water...

- Your bearings and rolls will last longer with FIL. TERED WATER and your hydraulic equipment will give more hours of trouble free service.

The success of ADAMS AUTOMATIC filters where others have failed is due to low velocity filtration. Where outdated equipment used 5 sq. fr. of filtered area, ADAMS AUTOMATICS use 100 sq. ft. For steel mill service, we recommend Adams monel PORO-SCREEN tubes capable of removing particles $4 / 1000^{\prime \prime}$ and larger. The multiple tube design has no moving clearances and is fully automatic. One tube backwashed at a time while filter is delivering full rated capacity. Adjustable control gives flexibility of backwashing-flood water more frequent normal water less frequent. Built in four sizes from 300 gpm . to 2000 gpm . Write for Bulletin 901.

\star R. P. ADAMS COMPANY, INC. \star 75 CHICAGO STREET, BUFFALO, N. Y.

 planes, our tanks and other vital weapons the finest in the world. Link-Belt engineers have helped solve many critical design and production problems by their ingenious and efficient applications of chain. Link-Belt, through its vast experience and extensive producing facilities, has developed and expanded its line of chains and sprockets into scores of standard types and sizes for every conceivable purpose. Wherever chain is needed-for power transmission or for conveying-remember, it's Link-Belt for Chain!

LINK-BELT COMPANY
Chicago
Philadelphia Indianapolis Atlanta Dallas

L/NK-EELT for CHADN

Scrap is needed to make steel. Steel, more stecl, is needed by the Armed Forces to bring Victory.

If you have old machinery that can't be used to produce War Materials, turn it over to your local Scrap Dealer. He will see that it reaches the steel producers. All trimmings and short ends of steel you have left over should be collected and stored until such time as you have a full load. Then call your Scrap Dealer. Make sure he picks it up, at once. In this way you can aid the steel producers, our Armed Forces and yourself.

Keep the Scrap coming.

GISHOLT SIMPLIMATICS provide the extremely high speed essential in the mass Apryoduction of parts for planes, tanks, trucks,

With their automatic machining cycles, these multiple-cutting lathes require little more of the operator than to load and remote the work. The machine does the rest -qwittly, accurately.
Mafing a wide variety of parts is only half of a Simplimatic's job. Making them indeso time is the other. For in war, time

GISHOLTMACHINE COMPANY 1217 East Washington Avenue Madison, Wisconsin

Tycol lubricants are rigidly controlled and tested during manufacture to the required characteristics for optimum performance. Among many other tests they must meet the pour point requirements of the individual application.

DRUMS! DRUMS! DRUMS!
War needs make it extremely important that all empty drums be returned immediately.
TIDE WATER ASSOCIATED OIL COMPANY
Eastern Division: 17 Battery Place, New York Principal Branch Offices: Boston. Philadelphia, Pittaburgh, Chaslotte, N. C. MAKERS OE THE FAMOUS VEEDOL MOTOE OIL

INDUSTRIALLUBRICANTS ENGINEERED FOR EVERY INDUSTRIAL USE

Nothing against you, Litecote. You've always been a good electrode. But this is war! And your place must be taken over by other electrodes more urgently needed in war production -in arsenals, shipyards-and for maintenance of vital machinery on the home front.

You're in retirement until the war is over. Meanwhile, the production of P\&H Alloy Electrodes is being increased to supply the demand for more and more uses in hard surfacing, in resistance to wear, impact and abrasion, for welding stainless steels, $4-6 \%$ chrome steels, armor plate, etc.

Procedures for P\&H Alloy Electrodes are available on request.

P\&H builds a complete line of A.C. and D.C. welders - all with single control. All P\&H machines are rated on W.S.R. which is actual delivered output.

General Offices: 4411 W. National Avenue, Milwaukee, Wis.

Illustration is approximately full size.

Sorry, we can't tell you what this is-or what it does. But it IS a beauty, isn't it? We can tell you that it started out as an Anaconda Hot Pressed Part, and that it was machined to its extremely close limits by the E. W. Bliss Co. It should give you an idea of what can be accomplished in the production of complicated parts of intricate design. Anaconda Hot Pressed Parts are strong, tough, closegrained and readily machined. They can be made of wrought copper, brass, bronze or special copper alloys ... and design possibilities are almost unlimited.

THE AMERICAN BRASS COMPANY, General Offices: Waferbury, Conn.

 ANACONDA
Here's how to get a headstart

 on a Finished Product

"Hot Pressed Parts...Require a Minimum of Finishing"

Point for point, this check list will belp you compare your present materials withs Anaconda Hot Pressed Parts.

Consistently accurate in dimension.
2 Freedom from internal defects.
3 Gas, air and water-tight.
4 Twice the strength of sand castings.
5 Uniform, dense grain structure.
6 Smooth, fine-texture finish.
7 Readily machined-very little scrap.
3 No sand-long tool life.
9 Available in copper, brass, bronze and special copper alloys.

If the production of complicated parts of unusual design is causing you concern, Anaconda Hot Pressed Parts may be the answer. They have proved to be an economical short-cut to a finished product in many instances. The check list at the left will help you compare Hot Pressed Parts with the sand castings, permanent mold castings, or other forms of material you may be using. If the use of a Hot Pressed Part indicates a possible cost saving, an improved product, a production speed-up, or release of important machining equipment, we'll be glad to talk it over.

See how quickly this Pressure Die Casting becomes a Finished Airplane Part!

On the left is an Anaconda Pressure Die Casting as supplied by The American Brass Company to the Dominion Electrical Mfg., Inc. This unique shaped part is a component of an Airspeed Tube, mounted on the wing to measure the speed of the plane. Drilling, tapping and slotting produce a finished part, as shown at the lower left, with a minimum of time, material and scrap. Anaconda Pressure Die Castings have
most of the advantages of other types of dic castings-plus higher strength, higher resistance to impact, greater hardness and ductility, and a high degree of corrosion resistance. While they do not have as dense a grain structure as Hor Pressed Parts, they are ada ptable to more intricate coring and a wider range of design. Publication B-9 tells more about both of these Anaconda Products. Shall we mail a copy?

THE AMERICAN
 General Offices: Waterbury, Connecticut
 BRASS COMPANY
 Offices and Agencies in Principal Cifie
 In Conada: Anaconda American Brass Lrd., New Toronto, Ont.

A difficult partage is lessened with a substantial GIIIDE!

TRANTINYL GUIDES ARECAST TO TAKE.IT

aungstoun lloy asting orporation
 Y O U N G S TO W N

Sawing hot pipe...

NEWS OF WESTINGHOUSE SERVICES AND PRODUCTS FOR THE STEEL INDUSTRY

Arm Your Screw Driving Army for SPEED TACTICS

SPEED-UP WITH PHILLIPS SGREWS!

Give your assembly line Phillips Recessed Head Screws and you'll give them the ammunition to clean up lagging assembly jobs on the double-quick!
In most cases, change-overs to Phillips Screws have cut driving time in half! All of the screw driving troubles that slow-up work are eliminated by the Phillips Recessed Head. The scienrific recess, by automatically centering the driving force, prevents fumbling, wobbly starts . . . prevents slant-driven screws . . . burred and
broken screw heads . . . dangerous screw driver skids.

The Phillips Recess lends "old-hand" skill to the newest newcomer . . . makes fast, faultess driving automatic. It permits power or spiral driving on almost any job.

They cost less to use! Compare the cost of driving Phillips with that of slotted head screws. You'll realize that the price of screws is a minor item in your total fastening expense . . . that it actually costs less to have the many advantages of the Phillips Recess!

PHIIIIPS ${ }^{\text {witu }}$ SCREWS

KEY TO FASTENING SPEED AND ECONOMY

The Phillips Recessed Head was scientifically engineered to afford:
Fant Starting - Driver point automatically centers in the recess - fits snugly. Screw and driver "become one unit." Fumbling, wobbly starts are eliminated.
Fastor Driving - Spiral and power driving are made practical. Driver won't slip out of recess to injure workers or spoil material. (Average time saving is 50\%.)
Easlor Driving - Turning power is fully utilized by automatic centering of driver in screw head. Workers maintain speed without tiring.
Bettor Fastenings - Screws are set-up uniformly tight, without burring or breaking heads. A stronger, neater job results.新

Pheoll Manulatturing Co., Chieago. III.
Reading Serew Co., Narristown, Pa.
Rusell Burdsalf a Ward Bolt \& Nut Co., Port Chestor Scovill Manufacturing Co., Watervlle, Conn.
Shakearoof Ine., Chicago, III.
The Southington Hardwart Mfs, Co., Southington, Conl
Whitney \&crow Corp., Nashu, N. K.

have you added up the facts on

MORE THAN 2,000,000 KW serving war industries - in the electrochemical, steel, mining and transportation fields.

LEAD - The Available Metal

The protection of steel with lead is not a particularly new idea. Terne plate, a steel plate coated with a tin-lead alloy, has been in use for a great many years.

Since the war has brought about a shortage of tin, steel shapes are being coated with lead alone, and sometimes a very small amount of tin, and/or antimony, is added to advantage.

Lead, the metal, is practically everlasting. Lead pipe, in excellent condition, was excavated in Rome in 1907. It had been put in service over 1800 years ago during the rule of Emperor Caesar Augustus Vespasian.

The American Society for Testing Materials placed samples of lead-coated steel hardware on tacks at three localities, fifteen years ago, and samples of lead-coated steel wire at eleven locations throughout the country, six years ago, to test them against atmospheric corrosion. The favorable showing of lead against other rust-inhibiting materials, in these tests, indicates that lead, of which there is an abundant supply, should be used much more extensively than it is even now. We are told that lead-coated steel has come to stay.

ST. JOSEPH LEAD COMPANY

250	PARK AVENUE	NEW YORK
Lead	ELdorado $5-3200$	
Zinc	Zinc Oxide	Antimony
Antimonial Lead	Cadmium	

[^12]

NOW AVAILABLE for DriveN as well as DriveR applications

Women assembling GIANT DRIVEN SHEAVES, no longer are an oddity to be headlined in Ripley's "Believe It Or Not." INEXPERIENCED "GREEN" HELP in assembly plants find these sheaves simple to mount.

The problems of assembling and maintaining Vital DriveN and DriveR machinery have been greatly simplified with the introduction of the Worthington patented QD Sheave with its "Easy To Get On-Easy To Get Off, YET ALWAYS TIGHT ON THE SHAFT" features.

The QD Sheave design has now been incorporated into a complete range of DriveN and DriveR sizes that will accommodate 10,000 drive combinations up to 150 horsepower from stock.

One demonstration will convince you that a wrench and inexperienced hands are all that are needed to install or remove a QD Sheave, regardless of size. Arrange for your demonstration today-write or call the Worthington
 Multi-V-Drive dealer or the Worthington District Office in your territory.

MV3-10

QUICK DETACHABLE SHEAVES

Superior Advantages of the QD Sheave Design Cost No More

1 Split Hubt for anas monnting ar momeval from ilis shinfi.
2 Tapered Tii betwem aplii link and rim for wast manating or removal af rime tran bah.
3 Pext-ap Holto whidh lhold the ciul cruto tapered yplit hab for tapered friction drive assomhly and pasitive preas fil on the shati.
4 Tripped boles in rim for shing pulitup bolta as jack serews to free the lapered frimtion fit when detacking the sim.

I would like more information about the Tirae, Labor, amil Material Sawing Advarz tages of the Forthingtor OD Sheave.
Name.
Tils
Comprany
A Aldrem
Gitiv State

County

A Park researh metallurgit Park maintains laboratory control of all raw Section of experimental heat treat where proper runninig a corourizing test. materials and finished products in this chemical. heat treat procedures are determined. laboratory.

- Liquid and Solid Carburizers in Cyanide, Neutral and High Speed Steel Salts is Lead Pol Carbon is Charcoal is Coke is No Carb. is Carbon Preventer is Quenching and Tempering Oils is Drawing Salts is Metal Cleaners is Liquid Grain Cement

CONSERVE HIGH-ALLOY. LOW-CARBON SCRAP

> BY USING IT FOR HIGH-ALLOY, LOW-CARBON STEELS.

DON'T WASTE VALUABLE STAINLESS STEEL SCRAP

BY USING IT IN THE OPEN HEARTH FURNACE.

- Alloy steels are among our most critical materials today. To insure your supply of critical alloys for alloy steel... to prevent the waste of tons of alloys lost as residual content in plain carbon steels...conserve alloys by using scrap to the best advantage.

While alloy steel borings and turnings are more difficult to use than heavier scrap, they can be used efficiently if they are crushed or briquetted. The savings made possible by reusing critical alloys will usually more than pay for the cost of conditioning the scrap.

As a producer of ferro-alloys and alloying metals used in the production of steel, Electro Metallurgical Company is concerned with the conservation of these vital materials. From their fund of metallurgical information, Electromet's
technical service staff can advise you on problems encountered in the manufacture of alloy steel. Your request for this service will not obligate you in any way.

Electromet Ferro-Alloys and Metals are available through offices of Electro Metallurgical Sales Corporation in Birmingham, Chicago, Cleveland, Detroit, New York, Pittsburgh, and San Francisco. In Canada they are sold through Electro Metallurgical Company of Canada, Limited, Welland, Ontario.

[^13]
IHIS LEWIS CIIL SAIES FLLOR SPIGE

The photograph shows a good example of how Lewis has designed a sturdy Six Stand Tandern Cold Strip Mill to combine precision rolling with minimum bulk. This mill is equipped throughout with anti-friction bearings. It has universal spindles. Screwdowns are motor operated.
Lewis Rolling Mill Machinery is always abreast with the latest improvements in rolling mill practice.

RVI

4 HAT is your heaviest forging job? Is it cogging down ingots? Working heavy billets? Is it working with tough tool steels? For these and other tough flat die forging jobs, we built this broad base, pyramid-like Double Frame Steam Hammer. It provides ready accessibility to the die from all four sides and ample height under the arch. Like all Erie's it features speed and power with hair-trigger control. No forging job is too tough or too big for an Erie.

ERIE FOUNDRY CO . ERIE, PA.

ERIE BUILDS

HAMMERS

 STRENGTH needs
peak productive power. For
full output from STEEL
MILL equipment use \ldots

.....SINCLAIR LUBRICANTS...

 Specialized oils for highly efficient service in turbines, compressors and circulating systems. Sinclair quality greases cut replacement costs by saving wear on roller bearings, gears and cables.Write for "The Service Factor"-a free publication derotal to the solution of lubricating problems.

SHMCLARR MDUSTRIAL OMS

FOR FULL INFORMATION OR LUBRICATION COUNSEL WRITE NEAREST SINCLAIR OFFICE SINCLAIR REFINING COMPANY (Inc.)

- "How to do it?" "What to use?" If the conditions of service are unusually severe in nature, the answer probably is Republic ENDURO Stainless and HeatResisting Steels.

ENDURO is truly the "how to do ir" metal-because it does so many things unusually well.

It resists the attack of corrosion, wet or dry, acid or alkaline. It resists scaling and oxidation at elevated temperatures. It is high in strength-high in creep values. It is clean and sanitary-does not contami-nate-is easy to clean. And it fabricates readily to desired shapes.

The burner parts above, made of ENDURO HC
(Type 446) illustrate heat-resisting and fabricating qualities of this problem-solving material. Other illustrations plus detailed information on corrosionand heat-resistance, physical, mechanical, electrical, heat-treating, welding, machining, drawing and stamping properties of the popular ENDURO analyses will be found in the ENDURO Booklet No. 361.
Write for a copy. If you would like specific data on any particular type or on the use of ENDURO for some certain application, ask for it at the same time.

REPUBLIC STEEL CORPORATION Alloy Steel Division, Dept. ST
 Sales Offecs - Massillon, Ohio
 GENERAL OFFICES - CLEYELAND, OHIO

 Berrer Manufactaring Divikion Ste Culvert Divipion Uniont Department: Chrryiler Building, New York, N, Y.

Homestead Lever-Seald Valves

A QUARTER-TURN FULLY OPENS OR CLOSES

From wide open to completely closed position in an instant is only one of the many features that make the operation of Homestead Lever-Seald Valves fast, sure, positive! An easy, QUARTER-TURN of the upper lever, through a 90 degree arc, fully OPENS or CLOSES the valve. As a result, Homestead Lever-Seald Valves OPERATE 16 to 28 TIMES FASTER! And visible outside stops tell you that your Homestead Lever-Seald Valve is fully opened or closed.

In addition to faster operation, the QUARTERTURN principle makes possible installation and operation of Homestead Lever-Seald Valves in restricted areas . . . next to walls, floors, ceilings, congested piping and other obstructions. For fast, speedy, time and labor-saving operation, keep these important points in mind when renewing valves or specifying for new installations.
Homestead Lever-Seald Valves are made in combinations of metals and alloys to meet your service requirements, in sizes $1^{1 / 2^{\prime \prime}}$ to $10^{\prime \prime}$, for pressure ranges from 150 pounds to 1500 pounds. Our Engineers will design valves to your specific requirements. Write NOW for Valve Reference Book No. 38.

HOMESTEAD VALVE MFG. CO.,
P. О. BOX 22 - CORAOPOLIS, PA.

1. Instant stick-proof operation.
2. ©UIRTIER-TURN FULLY OPENS OR CLOSES.
3. Positive seal without lubrication.
4. Seating surfaces always protected in both open and closed positions. Corrosion practically eliminated.
5. Unobstructed straight-line fluid flow.
6. All operating parts protected from ravages of service conditions and weather.

J-M Industrial Insulations cover every type of heat control. Each type of insulation is tailormade to fit the particular job for which it was designed. In addition: Johns-Manville's 85 years' experience in every conceivable type of insulation problem makes it possible for J-M Engineers to design insulation applications for special conditions with utmost speed, thoroughness and economy. Following are just a few of the many types of J-M Industrial Insulations:
INSULATION FOR TEMPERATURES TO 1900° F. J-M Superex Blocks have long been standard for this service. High heat resistance, low thermal conductivity. Sizes $3^{\prime \prime} \times 18^{\prime \prime}, 6^{\prime \prime}$ $\times 36^{\prime \prime}$ and $12^{\prime \prime} \times 36^{\prime \prime}$; from $1^{\prime \prime}$ to $4^{\prime \prime}$ thick.
FURNACE INSULATION UP TO 2600° F. J-M Insulating Brick and Insulating Fire Brick are available in 7 types, with temperature limits ranging from $1600^{\circ} \mathrm{F}$. to $2600^{\circ} \mathrm{F}$. All provide light weight, low conductivity.

FOR TEMPERATURES TO 600° F. J-M 85% Magnesia his been for many years the most widely used block and pipe insulation for temperatures to $600^{\circ} \mathrm{F}$. andi, in combination with Superex, for higher temperatures. Maintains high insulating efficiency. Standard block sizes $3^{\prime \prime} \times 18^{\prime \prime}, 6^{\prime \prime} \times 36^{\prime \prime}$ and $12^{\prime \prime} \times 36^{\prime \prime}$; from $1^{\prime \prime}$ to $4^{\prime \prime}$ thick.

FOR STEAM LINES UP TO 700° F. J-M Asbesto-Sponge Felted Pipe Insulation is recommended where maximum efficiency, high salvage and resistance to abuse are essential. For temperatures over 700°, used in combination with Superex. It is available in 3 -ft. lengths, from $1^{\prime \prime}$ to $3^{\prime \prime}$ thick, for standard pipe sizes.

SIL-O-CEL C-3 CONCRETE-Cast on the job from Sil-O-Cel C-3 aggregate and cement. Sets up into a strong, durable semi-refractory insulating concrete for temperatures up to $1800^{\circ} \mathrm{F}$. Crushing strength: 1000 lbs . per sq. in.

For details on these materials, and on the complete J-M Insulation line, write for Catalog GI-6A. Johns-Manville, 22 East 40 th Street, New York, N. Y.

How Are W V eight 貶ecords

Made In Your Plant-

For precision weighing and precision recording use Fairbanks Scales with Printomatics

- Of course, sustained accuracy in the weighing machine is vitally important. But no matter how accurate the machine is, unless weights are accurately recorded, the element of error still remains.
Fairbanks Scales with Printomatics eliminate these human errors-because the scales read the weight automatically and then automatically make a printed record of the weight. In addition to eliminating errors, Fairbanks Scales can be fitted into your production flow to do a variety of jobs better than they can be done in any other way. Fairbanks Scales weigh loads in motion ... count small parts . . record the flow of liquid chemicals . . . guard secret formulas in compounding . . . control batching . . . automatically control ingredients ... automatically control aggregates . . . and many other jobs.

The organization which made Fairbanks the greatest name in weighing brings you 113 years of scale manufacturing experience. That, too, is worth serious consideration.

Fairbanks, Morse \& Co., 600 S. Michigan Avenue, Chicago, Illinois.

[^0]: Shoe shank and arch support;
 Dust pans;
 Dust pans;
 Binders and rings for lonse-kraf notelooks;
 Alarm clock case;
 Shell grommets;
 Rope, twine and flat woven cable now widely used instead of stcel wire and strapping in packaging;

 Instrument cases;
 Phonograph base;
 Screen cloth;
 Electric insulator hax;
 Dust cover for Packard motor;

[^1]: From information furnished by E. F. Houghton \& Co., Philadelyhia.

[^2]: For information on development of NE stecls and their propertics, see STEEL, stects and their propertics, sed STEEL,
 Feb. 9, $19.12, p, 70 ;$ March 16, p. 72; June 8, p. 66; June 15, p. 66; July 13, June $8, ~ p .66 ;$ tune 15, p. 66; July 13 ,
 p. 80 July 20, „. 86 ; Aug. 3, p. 70 : p. $80 ;$
 Aug. $17, ~ p . ~ 40, ~$; Aug; Aug. 3, p. 70. 70 . 41 and 76; Sept. 7, p. 78 ; Oct. 19, p. 66; Noo. 9, p. 96; Dec. 28, 1.27 ; Jane 25, 1943, p. 84; Fel. 22, p. 102; March 1, p. 94; March 8, p. 90, March $22, p$. 78 , March 29, $1.76 ;$ April 5, p. 116 and 118 .

 For reporis from users rf NE steels, see Now. 16, 1942, ${ }^{1}$. 106 ; Nov. 23 , p. 90 ; Nov. 30, p. 62; Dec. 7 , p. 112 ; Dec. 14, n. 99; Dec. 21, , 70 , Jan. 11 1943, p. 60: Jan. $18, p$. G6; Fcb. $1, p$ 100 ; March $8, p .109$; March 15, p. 96 : March 29, p. 72; April 26, p. 84.
 Fror latest revised lisling of NE ATLOY stecls, see March 1, p. 98. For list of NE CARBON steels, see March 8, ?) 90.
 For list of AMS (Aeronantical Ma terials Specifications) stecls, see Sept. 7. $1942,18.78$

 For detnils of WD (War Department) stecks and complete listing, see Fel. 8, 1943, p. 80.

 For STEEEL's latest Handbook on NE Steels and the NE Steel Sclector, addres. Renders' Service depariment, Penton heutding, Clereland. Price $\$ 1.00$ per set.

[^3]: Anaconda Wire \& Cable Company 25 Braadway. New York City
 Please send copy of the Anaconda Preventive Maintenance Plan for safeguarding wartime production.

 Individual

 Company

 Address

[^4]: Blast Furnace \& Sintering Plant Operation Cleveland

[^5]:

[^6]: AMERICAN SHEAR KNIFE CO
 HOMESTEAD . PENNSYLVANIA

[^7]: *Add 0.25 for acld open-hearth; 0.50 electric Cold-Finished Carlon Bars: Pittsburgh, Chi cago, Gary, Cleveland, Buffalo, base 20,000 39.999 lbs., 2.65 c ; Detroit 2.70 .

 Cold-Finished Alloy Bars: Pittsburgh, Chleago, Gary, Cleveland, Buffalo, base 3.35c; Detroft, del. 3.47 c .
 Turned, Gromnd Shafting: Pittsburgh, Chlcago, Gary, Cleveland, Buffalo, base (not including turning, grinding, pollshing extras) 2.65 c ; Detroit 2.72 c .

[^8]: Basle sllicon grade ($1.75-2.25 \%$), add 50c for each 0.25%. tFor phos phorus 0.70 and over deduct 38c. \ddagger Over 0.70 phos. §For Mckees Rocks, Pa., add . 55 to Nevllle Island base; Lawrenceville, Homestead, McKeesport, Ambrldge, Monaca, Aliquippa, .84; Monessen, Monongahela City 97 (water); Oakmont, Verona 1.11; Brackenridge 1.24.
 Note: Add 50 cents per ton for each 0.50% manganese over 1.00%.

[^9]: ${ }^{\circ}$ Basing point cities, with quotations representing mill prices, plus warchouse spread.
 Price Schedule No. 49.

[^10]: M.D.Hubbard Spring Company

[^11]: MAGKLIN GOMPANY
 Manufagurers of GRINDINE WHEELS - JACKEON, MICHICAN, U.S. A
 Distributors in all principal cifies
 Sales Oficas: - Chicago - New Yark - Detroif - Pityturgh - Glevefand - Cincimafi - wibwakec - Philadelphio

[^12]: THELARGESTPRODUCEROFLEADINTHE UNITEDSTATES

[^13]: "Electromet" is a registered irade-mark of Electro Melallurgical Compony.

