

Rehabilitation of disabled soldiers-a challenge and opporfunity for industry. Page 84

EDITORIAL STAFF

E. L. Sinanen
Editor-in-Chief
E. C. Kimutzaeng Editor

Wh, M, Booner Nuss Elitor	C. W. Bampanar. Engineering Editor
J. 1). Knox	Gur lursaun

> Ahtinn F. Macconogime
> Contrihuting Editor
> ID. S. Canot -Irt Editor

Associate Editors

G. II. Mansovis W. J. Cambreht. Itwis II Sucir, Easern Editar
Neme York, B. K. Pmere, L. E. Bhowne
Piarsburgh, IR. I.. Hantrono Chicago, E. F. Hoss Detroit, A. IT. Ahil: Wheshington, L. M. Lame Lohifon, Vincerit Delpobt

Assistant Editors

J. C. Suldyant Jay DeEvela, F. 1R. Bugeg

BUSINESS STAFF

(:. O. HAPs
Business Manager
R. C. Jabiner

Adicertisimg Manager
C. 11. Bahley

Altrrrising Servicr
Nfie Yow, E. W. Khentablig, K. A. Zahaner I'ithshurgh, S. II. Jasideir, B. C. Swell. Chicugo, L. C. J'elott, V. W. Volk Clevilund, D, C. Khefli, C. H. Cross Los Angeles, F. J. Furibia J. W. Zunell

Circniation Manaber
Main Office
Jenten Building, Cleveland, Ohis

Branch Offices

Neu: Yorli.
110 Fiamt t2ad Strect
 Pitthberph. Kinpucrs Building
Vetroiz... I'roshimgton, Sis Sutional J'ress Building Cincinnai.. . 2030 Carew 'lower I.os Angrles, 130 North New Hamplhire Avenue Lmalom. . . 2 Caxton Street, Wentminster, S.W. 1

[^0]J U N EVolume 112
NEWS
Motor Freight Falters65
Industrial Developments-Present, Past and Pending 67
Antistrike Bill Gains Favor; Conferees Agree on Provisions 68
Steel Industry's Consumption of Raw Materials Huge 69
Batt Attributes Plant Closings To Huge Output 69
Synthetic Rubber Plants Require Large Quantities of Steel 72
Preference Rating for Steel Products To Be Eliminated July 1 73
Free Enterprise Depends on Balance of Profits and Wages 76
Priorities-Allocations--Prices 78
New Producers of Flanges Granted Mark-up on Government Orders 79
Disabled Veterans Look to Industry for Rehahilitation 84
Men of Industry 87
Obituaries 89
See Early Action on Move To Build Future Critical Metal Supply 90
Industry To Face Gigantic Task Converting from War to Peace 91
Electric Metal Makers Consider Quality Steel Production Problems 92
Automotive Engineers Discuss War Materiel Problems at Meeting 92
Co-Workers' Jibes Shame Absentees 93
Five Production Pennants Awarded by Army-Navy 94
Operating Expenses Absorb 96 Cents of Steel Sales Dollar
95
95
Tells Enamelers They Face Keen Competition in Postwar Period 150
FEATURES
Behind the Scenes with Steel 4
As the Editor Views the News 61
Windows of Washington 74
The Business Trend
96
96
Industrial Equipment 128
Helpful Literature 147
New Business
168
168
Construction and Enterprise 170
TECHNICAL
User Report No. 14 on Experience with NE Alloy Steels
98
98
Lundbye Process Increases Tool Life as Much as 300 Per Cent 100
How To Use "She:r" Type Tools 106
Locomotive Driving Wheel Centers Restored by Welding 108
Sintering-Plant Design 112
What Is the Future of Induction Heating? 117
Swing Arm Attachment Makes Handling More Effective 123
PRODUCTION
Steelworks Operations for Week71
MARKETS
More Semifinished Moving on Lend-Lease Account 153
Market Prices and Composites 154
Midwestern Warehouses Granted Price Rise on Galvanized Seconds 163
Index to Advertisers
Where-to-Buy Products Index carried quarterly 179

Below: Ex-Cell-O's new catalog on
precision machine tools, cutting precision mach Ex-Cell-O precision products. Contains Mustrations.
"We finish grind these fine pirds... on
from hardened solid blanks Grinders!"
EX-CELL-O Thread GreXLD
"We finish grind solid blank Grinders!"
from hardened
EX-CELL-O Thread GLD products. Contains and specincations. A descriplions, me mailed free to any copy will be miness letterhead. Ask request on business
for Ex-Cell-O Cotalog No. 27121.
\triangle

EXTENDS CUTTER LIFE: One can never know in advance how the solution of a problem in one field may help to solve similar problems in other fields. Who would expect, for instance, that an alert engineer in a printing plant would discover a process which would find wide application in the metalworking industries?

Crowell-Collier Publishing Co., Springfield, \mathbf{O}., faced the problem of extending the life of doctor blades which scrape off excess ink from the rapidly revolving cylinders on rotogravure printing presses. Blades of the best steel obtainable would stand up for only six to eight hours, after which they had to be reground.

In seeking a way to prolong the life of these blades, Axel Lundbye, chief engineer of CrowellCollier, restudied some experimental work on chromium plating he had conducted in Copenhagen in 1913. Through further experiments he developed a process of plating and treating by which the chromium plate becomes an integral part of the underlying material. Doctor blades thus plated run 110 hours before they need attention. Whereas nickel plated electroplates are worn out after a run of 300 ,000 impressions, plates coated by Lundloye's new chromium process are still in perfect condition after a run of $1,300,000$ impressions.

The process has been offered royalty-free to manufacturers engaged in war work. Hundreds of companies have tested cutting tools which have been chromium plated by the Lundbye process. Their experience proves conclusively ($\mathbf{p} .100$) that this method of treating cutters prolongs their life by at least 300 per cent. It is a brilliant contribution to the war effort.

PLAN STOCKPILING NOW: This

week the American Institute of Mining and Metallurgical Engineers is scheduled to vote on a resolution (p .90) advocating the accumulation by the government of an adequate reserve stockpile of critical minerals during the period of 10 years immediately following the end of the present war. The resolution is purposely general in character. It is designed to stimulate action on an important mat-
ter rather than to answer in detail the obvious questions regarding national stockpiles.

If this nation has learned anything from bitter experience, it has learned that the time to consider the storing of critical minerals is now- while the memory of our past follies still is fresh in our minds. In 1918, before the November armistice, Bernard Baruch suggested that Congress take action before the end of the war to store up certain materials for the next emergency. The advice went unheeded. After the war, the nation lapsed into complacency regarding the supply of minerals. Not until 1940, when the new war was about to involve this nation, did Congress authorize stockpiling.

We cannot afford to repent the mistake of 1918. During the last third of a century the world has used up more minerals than in all previous years. We must be forchanded in handling our supplies of critical minerals.

DISABLED SERVICEMEN: it is not too early for industry to be preparing to employ disabled servicemen. Already the vanguard of honorably discharged men is returning to civilian life. Many of them are finding important jobs in industry.

To date the problem has proved fairly simple. Men released from military duty because of mild shell shock, malaria and other not too serious physical and mental ailments (p. 84) have found employment readily. However, as time goes on and as the number of rehabilitation cases increases, it will be necessary to develop a systematic program pointing to the effective utilization of the thousands of soldiers, sailors, marines and others who will be released because of wartime injuries.
A few industrial companies have been quick to see the opportunity presented by this situation. They are welcoming honorably discharged servicemen, realizing that most of them not only will prove to be good employes but also will exert a constructive influence upon the morale of all workers in the establishment.

The co-operation of industrial employers in the problem of rehabilitating disabled servicemen pre-
sents a challenge and an opportunity. We belicve industrialists will be well advised to consider this matter seriously.

ACCENT ON AIR POWER: Donald

 Nelson's monthly report on munitions output for April is significant from two angles. It records an all-time high for war production in a single month (p. 70) and it indicates the importance the United Nations are attaching to the manufacture of aircraft.On the assumption that munitions output in the pre-Pearl Harbor month of November, 1941, equals 100 , the index for output in April, 1943, stands at 567. The value of the month's output was approximately $\$ 5,000,000,000$. Of this imposing total, $\$ 1,-$ $649,000,000$ represents the value of aircraft and aircraft parts and accessories produced in April. Thus 33 per cent of the productive effort of the arsenal for democracy is going into equipment for the war in the air.

Considering the marked superiority of Allied air power in all theaters of war during the past few months, the emphasis on aircraft production appears to have been wisely placed.

UNBALANCE BOTH WAYS: John
Frey is one of the veteran labor union leaders in the country. He has spent practically all of his adult life in the union movemenc. He leans toward the conservative views of the late Samuel Gompers.

In an exclusive article written for STEEL (p. 76), Mr. Frey makes the point that employer and employe, or "capital" and "labor," while at odds on various issues, can unite wholeheartedly in their common zeal for the preservation of private enterprise. As a matter of fact, Mr. Frey states that the average A. F. of L. member is somewhat more concerned about the preservation of private enterprise than are some industrialists.

Mr. Frey stresses the importance of maintaining a proper balance in the distribution of the income derived from industrial operations. He cites the situation existing in the late twenties as a case of unbalance which tends to make people doubt the effectiveness or the fairness of the system of private enterprise. During that period, he points out, employes were not receiving their proportionate share of reward from industry's activities.

No reasonable person will disagree with Mr. Frey's assertion that the system of private enterprise must afford a fair distribution of rewards for work if it is
to endure. Equitable distribution of benefits is a primary test for any system-communistic, socialistic or capitalistic.

However, those who complain about the inequities of the late twenties should in fairness agree that at present there is a strong tendency toward unbalance in the opposite direction. The government has put so many obstacles in the path of private investors that there is little if any incentive for a young man to go into business for himself.

This is as much a threat to Mr. Frey's union members as was the unbalance in the opposite direction in the late twenties.

KEEP THEM ROLLING: During the past two decades the iron, steel and metalworking industries have become accustomed to rely heavily upon highway transportation. The trucking lines have supplemented rail and water transportation systems satisfactorily.

Today highway transportation is threatened from several angles. Commercial truckers are handicapped by a shortage of experienced drivers and by difficulties in obtaining repair parts and accessories. Industrial companies operating their own fleets are confronted by similar problems.

A survey of a number of industrial districts ($p, 65$) indicates that these difficulties have resulted in impairments and curtailments in highway transport services which are beginning to affect shippers in the iron, steel and metalworking industries. Some large fleets which have been specializing on the hauling of iron and steel products have been reduced drastically. In some districts warehouses have been inconvenienced through inability to obtain reliable trucking service.

From the standpoint of the efficiency of the war effort there is no possible advantage in skimping the truck lines too severely. Every ton of essential freight which the trucks can't haul must be carried by the railroads or by water and these facilities already are overburdened. It would seem that WPB somehow must divert just a trifle more material and equipment to the rail and highway transportation systems. They must have it if they are to keep the trucks and trains rolling,

Structural Steels

in Stock at Ryerson

RYERSON STEEL-SERVICE

NEVER BEFORE IN ANYWAR-

 BARRAGE BALLOONS nor these modern "steel muscles" that hold them in place...
Preformed wire rope

Half the battle, in the performance of this great modern defensive weapon, is the part played by Preformed Wire Rope-not only the anchor lines which hold these balloons captive, but the steel tentacles that entangle and destroy invading planes.

Throughout this mechanized war-from the striking weapons of offense, to behind-the-line production and transportation of those weapons, there is hardly a task in which Preformed Wire Rope is not at work demonstrating its greater strength, greater stamina, longer life, man-hour saving and cost reduction-developed on peacetime industry's proving ground.

MOTOR

 FREIGHT

 FREIGHT

 FALTERS

 FALTERS}

Abstract

Increasing difficulty encountered in keeping war materials moving as replacement parts and labor become more scarce. Production so far only slightly affected

STEEL and other vital war material deliveries are menaced by faltering city and highway truck transportation.

Lack of new equipment and urgently needed replacement parts, shortage of maintenance and service labor, and restrictive government regulations are a combination of factors working toward a breakdown in vital shipping services at many points.

Curtailed gasoline supplics and tire conservation are additional factors contributing to motor freight haulers' difficulties, tending to slow down the movement of finished goods and raw materials.

The situation applies not only with respect to commercial truckers but with manufacturers and others who operate their own trucks as well.

Serious interference with war production due to raw material delivery failures so far has been averted. By ingenious adaptation of equipment and parts, and resort to service imnovations in the direction of utmost utilization of existing equipment, truck operators have been able to carry on in the face of mounting difficulties.

Indicative of commercial truckers' success in overcoming their difficulties is the fact that motor freight volume in

March this year was 21 per cent in excess of that in the like month of 1942. This betterment was a continuation of the record performance last year when 10 per cent more freight was hauled over the nation's highways than ever before.
But truck wheels are beginning to turn less rapidly. Wear and tear is taking toll of equipment and scarcity of replacement parts and competent garage labor makes it difficult to maintain trucks in topnotch condition. Trucks are being overused, and the pressure for war goods deliveries gives operators little time in which to completely rehabilitate equipment. Consequently fears are rising that the magnificent performance of past months cannot be maintained unless relief from existing difficulties is soon afforded.

Prospects Are Brighter

Fortunately, government authorities, cognizant of the seriousness of the situation, are moving to remedy conditions. During third quarter 7500 heavy-duty trucks and 9200 trailers will be mamufactured under War Production Board orders. Repair parts also will be made available in more plentiful supply. Additional allocation of materials for automo-

Shortages of replacement parts and skilled service labor pose a difficult problem for freight truck fleet operators
tive replacement parts for second quarter is expected to meet the trucking industry's request almost 100 per cent. Eighty-five per cent of the alloy steel requested for this quarter has been allocated and the industry received the full requested amount of carbon steel. Copper wire allocation to the industry was 90 per cent of the amount sought.
As a general thing truckers place lack of manpower and shortage of equipment as their No. 1 and No. 2 headaches. These are closely followed by finances, and confusion in the application of government regulations. Gasoline restrictions are an increasingly troublesome factor in some important war production centers, chiefly the East.

City deliveries have been drastically curtailed under gas and tire conservation regulations, but on the whole services at most points are maintained at sufficiently high level to meet minimurn requirements of community life. But with trucks steadily deteriorating and not being replaced a threatening de-

A wreck like this, all too frequent among heavy freight transports, means new materials mast be oblamed before the vehicles can resume hauling of war materials
livery situation is seen looming on the horizon.
Conditions vary between war prosduction centers as indicated by reports from Steel's district representatives. The overall situation, however, follows a general pattern and it is evident that with the nation's trucks wearing out a gradual slowing down of city and highway transport is inevitable.

EASTERN AREA:-Deliverics of steel from warehouse are threatened by truck maintenance problems which in this territory are enhanced by sharply restricted gasoline supplies. Thus far deliveries have not suffered serious delays, but cloubling of orders for shipment to the same district is frequent to climinate extra haulage, while for small lots, buyers are coming to the warehouses for steel in greater numbers.
Importance of steel deliveries in the war production program has given priority as to tires and generally for gasoline within limits. The mileage ration of gasoline for trucks has been cut 40 per cent throngh an extension of the valid period from June 30 to July 25 for all current "T" allowances. Retail and wholesale deliveries of many classes of products have been greatly curtailed or eliminated entirely, and in the case of trucks hauding steel, semifinished parts and raw materials, fuel will be spread thimer than before, which for most shippers has already been restricted (1) a low point.

In the New York metropolitan areat and other large city districts much sted is hauled by contract truckers. One of
the largest operates a fleet of 1600 trucks, several hundred at times engaged in moving steel. Replacements in normal years total 350 to 400 trucks; the nomal life of a truck with this company is five years. With few trucks available after 1942, replacements are nil and fleets are deteriomating for lack of new mits and parts.

PITTSBURGH AREA:-Industrial concerns, by and large, have been able to maintain and operate their own trucks with a minimum of difficulty. They have been able to get new trucks and repair parts much more easily than commercial tracking firms. Also, they have been in more favorable position as regards manpower. By utilizing commercial trucks for the longer hauls manufacturers have been able to save their own equipment for internal hauls and relatively short trips.

Increased load on the commercial truckers must be carried on equipment which cumnot be taken out of service for proper maintenance, and wher eduipment is serviced lack of skilled mechanics makes for unsatisfactory servicing. Skilled truck drivers also are scarce and this leads to additional truck upkeep problems since green drivers are not capable of making minor repairs.

Replacement parts are scarce and nomerous trucks are tied up awaiting repairs. The fuel problem is growing in importance, and shippers in the eastern area expect an acute shortage of railroad cars to develop unless graso-
line supply for commercial velicles is enlarged, as a considerable part of the normal truck load is being diverted to the railroads. It is estimated the heavy load now carried by the trucks will be cut an average of 35 per cent. The tire problem also is cause for concem.

CIIICAGO AREA: - A commercial trucking line in this district has been able to maintain operations to date but the future is unpredictable, it reports. Truck breakdowns formerly averaged one per 1000 miles. Now the figure is closer to two. Lack of mechanics and lack of equipment and parts are chict difficulties. For repair parts this trucker frequently is obliged to use substitutes or secondhand parts.
A midvestern supplier of cold-finished steel handles its shipments through commercial truck lines and firds it is getting only about 25 per cent of customary service. There are not enough low-side, open-top, or flat trucks available for hauling steel. The company is forced to lean more heavily on rail shipment and since most of its freight is less carkad shipments, it may be held up two or three days while full carloads are assembled.
Small plants requiring steel frequently do not have their own sidings and shipments must be picked up at freight terminals by trucks. Consumers often are obliged to shut down machines if they run out of steel amed additional supplies are not speedily ohtained.
YOUNGSTOWN AREA: - Some im-

This boom truck was constructed from scrap materials. Only new parts are two pulleys, indicating the ingenuity fleet operators must exercise to "keep 'em rolling." NEA photos
portant war production in this district is being threatened by lack of new trucks and inability of truck operators to obtain replacement parts. Scores of trucks, both those of manufacturers and commercial haulers, have been tied up within the past six months due to inability to obtain important functional parts. But the situation in parts today is better than it was in March and February. One trucker here comments: "The situation now isn't nearly as bad as it is likely to get before the war is over."

Much of the trucking here is done by contract hatulers and many of these interests report reductions in their fleets. One big truck line which hauls considerable steel reports its fleet reduced from about 140 trucks a year ago to about 40 at present. It has closed down some of its branch offices. So far none of the incustries in this area has lost any production due to the lack of truck parts.

CLEVELAND AREA:-Manufacturing interests in this area state deliveries have been slowed down somewhat due to inability of truckers to maintain service as formerly. The situation is not yet acute but shows signs of becoming worse, due to heavy use of trucks and inability to get prompt deliveries on some essential replacement parts. Parts on which deliveries are extended include rear axles, gears, front end and steering parts, crankshafts, brake parts and carburetors.

DETROIT AREA: - Gencrally, the trucking situation here is as yet mot critical. Repair parts are tight, but the Automotive Division of WPB has made a more liberal release of materials for parts in second quarter. This, however, will not be reffected in any increase in parts supply until probably the third or fourth quarter.

This stepup in materials was made largely because of the fear of a Senate investigation resulting from findings of the Truman committee, it is believed in some quarters. Some western semators recently declared truck operators in the West were facing a critical situation becaluse of lack of parts for repair work, and the Trumam committee hegan inrestigating the charges.

Tightness in repair parts seems to affect commercial hatulers more than Hect owners.

Transmissions and asles have been the most difficult repair items to obtain, but at the moment they are not in as tight supply as they were several months ago.

BUFFALO AREA: - Leading motorfreight companies using Buffalo as a terminal for deliveries east and west, report the cut in truck and trailer manufacture, and lack of repair parts
have curtailed their business at least 10 per cent. They state about 90 per cent of their total load is for the war effort. One large operator says about 10 per cent of his equipment is laid up due to lack of repair parts. Moderate improvement has been moted in parts deliveries recently.
CINCINNATI AREA:-More liberal supply of trucks, trailers and repair parts is needed here to facilitate the even flow of manufactured goods. The situation is seriously affecting a few fabricators, but in the main the situation is not critical. Survey discloses many
manufacturers have shifted to use of the railroads where this is possible. Real trouble is appearing in the heaviest type of trucks.
BIRMINGHAM AREA:-Many essential manufacturers are seriously handicapped by inability to purchase new trucks. An evell more serious problem is the scarcity of truck repair parts. One large interest reports deliveries delayed as much as a week in many instances since trucks often are idle while a search for parts is made. Shortage of garage mechanics is becoming increasingly serious.

Present, Past and Pending

E FORD BOOKS NEW GLIDER CONTRACT

Detiont-Ford Motor Co. announces reccipt of additional contract imvolving $\$ 31$,000,000 for gliclers for the Army Air Force. Contract is estimated to call for 6000 gliders.

- FARM MACHINERY PROGRAM INCREASED

Washingron-Substantially increased farm machinery program gets under way July 1. Total of 300,000 toms of carbon steel is allocated manufacturers for third quarter and advance authorization of 200,000 tons have been approved for three quarters, Oct. 1, 1943 to July 1, 1944. New farm machinery order will be issued replacing L-170.

- MOVES TO STEP UP ORE MOVEMENT

Washington-With movement of jron ore in the Great Lakes lagging behind schedule, the Office of Defense Tramsportation has broudened its permit system to cover virtually every commercial vessel afloat on the lakes to help the carriers meet the 1943 ore shipment goal. U_{p} to June 3 the lake ore movement totated only $12.550,836$ gross tons against $20,839,647$ up to the same date in 1942 .

- ASKS CONGRESS TO INVESTIGATE SCRAP

Wasmingron-Charging the War Production Board is gambling with vital scrap supply, Congressman Cecil R. King of California has demanded a legislative investigation of the entire scrap program. He challenges reliability of WPB figures, which, he says, indicate that while $5,000,000$ toms more of sted are expected this year that last, $2,500,000$ tons less of scrapp for melting are provided for in WPB plans.

: GALYANIZED SHEET PRICE RISE EXPECTED

Washingrox-Upward price revision of prime galsanized sheets shipped from warehouses in five Midwestern cities will be estathlished by OPA in amendment No. 16 to price schedule No. 49 , which it is reported, will be published this week to become effective June 21 .

FILE PRICE ON ELECTROLYTIC TIN PLATE

Wasmegon-New base price of $\$ 4.75$ per base box has been filed with OPA on three-quarter pound electrolytic tin plate by one or two producers. Tin plate quotas are reported likely to be boosted since control siver containers has been virtually taken out of the hands of WPB and turned over to the Food Administration.

- NEW WIRE MILL IS INSPECTED

Woncesten, Mass.-Top officials of the United States Steel Corp. inspected the new wire mill at South works of the American Steel \& Wire Co., June 9 and 10. Central works has been sold and North works will be abandoned after the war. New mill is designed for wide range specialties, also cable.

Antistrike Bill Gains Favor; Conferees Agree on Provisions

Eleven million tons of coal lost in second stoppage. Miners likely to obtain substantial increase in compromise on portal-to-portal pay. Coke costs to be increased 40 to 50 cents a ton

ANTISTRIKE legislation, often proposed in Congress but always blocked by administration leaders, now appears likely of passage, under the spur of the two recent stoppages in the soft coal mines and hundreds of "wildcat" strikes in other war industries.

Agreement on the Smith-Comnally bill -now referred to in Washington as the Lewis Antistrike bill-was announced last week by Senate and House conferees. The original bill was passed by the Senate several weeks ago. The House attached more drastic provisions and passed the amended bill.

Meanwhile, measures to regulate labor unions have been proposed in many of the state legislatures and laws of varying severity adopted in nine.

Advocates of the Smith-Connally bill expressed hope that both houses will vote upon it before the current coal truce expires June 20.

Fines, Imprisonment for Violators

As agreed upon by the conferees, the measure would prohibit strikes in any plant seized by the government, and provide fines of $\$ 5000$ and a year in prison for violators. Although the President already has seized war plants under his general wartime powers, the bill formally delegates him this authority.

Other provisions include:

1. Formal legal power for the War Labor Board, authorizing it to step into any wartime labor dispute of its own volition and to enforce its decisions through court orders.
2. Ban on unions making contributions to political campaign funds, such as the $\$ 500,000$ "loan" by the United Mine Workers to the 1936 Democratic fund.
3. Withdrawal by government from seized plant within 60 days after efficient operations had been restored.
4. Prohibition on the WLB authorizing closed shop or maintenance of membership contracts.

Labor umions are vigorously opposing the bill. If passed by Congress, it will place the President in a dilemma. Failure to sign the bill would be interpreted as encouraging stoppage in vital war industries, while approval of the act would bring protests from labor, upon which
the administration has leaned so heavily for votes.
While Congress was deliberating on the antistrike bill, some progress was being made toward a settlement of the coal dispute, with a compromise on the portal-to-portal pay issue likely. This would give the miners a substantial wage increase and probably would receive the approval of the WLB. At week's end, $\$ 1.30$ a day average increase for time spent in traveling from the mine entrance to the working face appeared probable. This with other adjustments ordered by the WLB, including increased vacation pay and the supplying by operators of certain equipment formerly supplied by the miners, would bring the total increase to about $\$ 1.50$ a day.

Average output per miner is five tons of coal daily. The increase thus would add 30 cents a ton to the cost of mining coal.
Effect on the steel industry, already pinched between frozen prices and increased costs would be severe, as it would add between 40 and 50 cents a ton to the cost of coke, of which the industry uses more than $50,000,000$ tons annually.

Eleven million tons of coal were lost by the recent 5 -day strike. At least 13 blast furnaces were taken off for lack of coke. At Pittsburgh the steelmaking rate dropped $81 / 2$ points due to lack of coke oven gas for the open hearths.

Nine States Approve Union Restrictions

Nine states have adopted laws placing restrictions on labor union activities. Nine others have rejected proposed bills, while measures are pending in others. Most of the regulatory laws were passed in the less highly industrialized states.

Colorado passed a haw requiring all unions to incorporate, placing all unions under the jurisdiction of the state industrial commission. Sitdown strikes and secondary boycotts are defined as unfair practices. The closed shop is also prohibited. Secret ballot is the method for determining employe representatives and policies.
Three amendments were added to the Pennsylvania labor relations act. The
new law forbids unions to deny membership because of political affiliation but provides that certification may be held up by appealing to the courts. Pennsylvania also banned political contributions by unions or other unincorporated groups, but an effort to empower the state to regulate labor organizations was killed in the committee.

Minnesota passed several amendments to its labor relations act. Strikes and picketing in jurisdictional disputes are forbidden after such disputes have been submitted to a referee. Conduct of unions is regulated and the period of time in which a temporary injunction in a labor dispute may remain in effect has been modified.

A measure approved in Idaho is similar in many respects to one passed in South Dakota earlier. The Idaho measure requires filing of financial and other information by labor unions. Picketing and boycotting of agricultural premises are prohibited. South Dakota law requires filing of financial statements and bans labor organizers from farms.

The Texas law requires financial statements and registration of organizers; regular annual elections; filing of collective bargaining contracts; court review of union expulsions, and bans political contributions. Legislation approved by Arkansas conforms to the anti-violence type for it prohibits picketing.

Kansas ordered licensing of union agents and accountings of the fiscal affairs and salaries of labor organizations and forbade sitdown strikes and jurisdictional disputes.

In Michigan molesting a truck bearing agricultural or commercial goods was made a felony.

Ickes Asks Republic To Build Up Stocks

Replying to a directive by Harold L. Ickes, solid fuels co-ordinator, that Republic Steel Corp. operate its Alabama mines on a 6 -day week until 60 days' supply of coal was built up, C. M. White, vice president in charge of operations for Republic, stated:
"In our Alabama mines this year we have had 11 separate work stoppages accounting for a loss of approximately $62,-$ 000 tons of coal. Additional losses by absenteeism ruming as high as 10 per cent cannot be measured. Had we not lost this large tomage, there would have been no necessity for a 6 -day operation."

Mr. White said the southern mines would continue to operate on a 6 -day week and that Republic would continue to buy all suitable coke offered on the open market to insure continuous operations of iron and steelmaking facilities.

Steel Industry's Consumption Huge

Data for 1942 show nearly four tons of supplies required to produce one ton of finished product . . . Over three-quarters of total charged into blast furnaces

MORE than $243,640,000$ tons of raw materials were consumed in American blast furnaces and steelmaking furnaces during 1942, exclusive of ferroalloys and alloying elements, accorcling to the American Iron and Steel Institute.

Production of finished rolled products amounted to about $62,446,000$ tons, indicating the industry consumed nearly four tons of raw materials for each ton of finished product produced.

In certain products using relatively large amounts of alloying elements and where loss of metal during manufacture runs high, as much as $51 / 2$ tons of raw materials were consumed for each ton of finished product obtained.

Over three-quarters of the total tonnage of materials consumed were charged into blast furnaces. Most of the pig iron, in turn, was utilized in the industry's steel furnaces.

In the production last year of 59,076 ,000 tons of pig iron, $188,615,000$ tons of raw materials were consumed. Almost $103,640,000$ tons of ore were used, nearly $52,822,000$ tons of coke, and $22,857,000$ tons of limestone.

In addition, about $1,994,000$ tons of scrap were charged into the blast furnaces, together with around $7,302,000$ tons of cinder and mill scale.

About $50,533,000$ tons, or over 85 per cent, of the pig iron produced last
year was charged into steel furnaces. Substantially all of the remaining pig iron was used by foundries.

Besides pig iron, almost $55,025,000$ tons of steelmaking materials (excluding alloys) were consumed by the steel industry last year. No estimate is available of the consumption of alloying elements.

Nearly $41,819,000$ tons of scrap iron and steel were charged into steel furnaces, along with approximately 5,400 ,000 tons of iron ore and $6,900,000$ tons of fluxes. In addition, 906,000 tons of iron in the form of cinder, mill scale and sinter were used.

Open Hearths Use 85,792,000 Tons

Open-hearth furnaces consumed over $85,792,000$ tons of metallic raw materials other than ferroalloys. Approximately 52 per cent of that total consisted of pig iron, about 44 per cent was scrap, and the balance consisted of the metallic weight of the ore, cinder and scale consumed last year.

Mare than $6,440,000$ tons of raw materials, of which over 95 per cent was pig iron, went into the steel industry's bessemer converters. Scrap represented the balance of the materials consumed in the bessemer process throughout the year.

- Electric furnaces consumed about $3,721,000$ tons of metallic raw materials,
not including what must have been a substantial tonnage of metal in the form of the ferroalloys used in the manufacture of alloy steels. Almost 97 per cent of the total electric furnace charges consisted of scrap, about one per cent was pig iron, and the remainder represented the amount of metal contained in the ore, cinder and scale consumed.

Batt Attributes Plant Closings To Huge Output

ABANDONMENT of some war projects was attributed jointly to the fantastic volume reçords registered by American builders of armaments and the necessity uf flexibility to meet overnight changes in the needs of global war, by William L. Batt, vice chairman of the War Production Board, in a radio address last week.
Mr. Batt said that in some cases "not only did we gear our war machine to a pitch much higher than Hitler fearedwe did better than even we thought we could."

A need that existed six months ago may be out the window now, he observed.
Asked about the shutting down of a big tank plant when its tank contracts were canceled, Mr. Batt said:
"In the first place, it's located in a pretty 'tight' labor market. The workers had little trouble finding new jobs. In fact nearby employers put in bids for
(Please turn to Page 149)

IRON ORE CARRIER BREAKS OWN RECORD HAULING 17,401 TONS

AFTER establishing an ore cargo record by delivering 17,101 tons of the mineral at Cleveland, June 4, the BENJAMIN F. FAIRLESS, one of the five largest carriers on the lake, broke its own mark last week by carrying 17,401 tons to Conneaut, O. THE FAIRLESS,
a 640-foot vessel, is owned and operated by Pittsburgh Steamship Co., United States Steel Corp. sub. sidiary. Other carriers are expected to establish new records when the MacArthur deepwater lock is completed, permitting heavier loading. NEA photo.

Munitions Output Up

Gains 7 per cent in April. Aircraft records greatest dollar volume increase. Better balance attained

MUNITIONS production in April reached an all-time record and adsanced 7 per cent over March, the previous peak, according to WPB Chaiman Donald M. Nelson. The WPPB production index advanced to 567 , based on November, 1941, as 100.

Better balance was attained in April than in any month since Pearl Harroor. Some items still were produced in excess of expectations, while others lagged badly.

Total munitions output for the month closely approached the $\$ 5,000,000,000$ mark.

The aireraft program, largest of all and calling for the must rapid progress, showed the largest dollar volme gain, but did not reach the April objective. The month's output totaled $\$ 1,649,000$,(000, or 33 per cent of all munitions produced.

Aerial Bomb Output Climbs

Aircraft ordnamee production also advanced rapidly, gaining 14 per cent over March due largely to increase in manufacture of heavy aerial bombs.

Ground signal equipment rose 22 per cent.

A great spurt was made in production of ammunition for the "bazooka" antitank guns, which reached the mass production stage earlier than expected.

Construction of Nasy vessels, ordnance and equipment increased 3 per cent in actual value during April, although tomatge dropped from 186,000 to) 157,000 displacement tons. Delivery of major combat vessels dropped pro-
rose 11 per cent. Automotive vehicles and equipment was up 9 per cent. An assortment of other miscellaneous items increased 22 per cent while clothing and persomel items declined 9 per cent.

May Plate Output Holds at High Level

Stee plate production in May was maintained at about recent levels, accorcling to the Steel Division, WPB. Shipments totaled $1,114,920$ net tons, compared with $1,121,647$ tons in April and 1,012,194 tons in May, 1942. The record for shipments in any month was set in March, when $1,167,679$ tons were shipped.
Included in May shipments were 535,528 toms produced on continuous strip mills which have been converted to roll plates. Strip mill shipments in April were 535,548 tons and in May, 1942, they were 425,211 tons.

WPB anomemement states plate shipments in May were in strict conformity with production directives and that shipments were in good balance with plate requirements of the claimant agencies.

STEEL INGOT STATISTICS

Hased on Reports by Companies whteh In $19+2$ made 98.3% of the Open Hearth, 100% of the

Jan.	6,576,589	97.8	478,058	85.9	369,395	95.4	7,424, 042	96.8	1.675,856	4.4?
Feb.	6,033,674	919.3	447.843	89.1	+344,532	98.6	6,826,049	98.5	1,706,512	4.00
March	6,785,295	100.9	503,673	90.5	381,219	98.5	7.670,187	100.0	1,731.419	4.43
1 st qutr	19.395.558	99.3	1,429,574	88.4	1,095, 146	97.5	21,920,278	98.4	1.704.532	12.86
April	6,509,812	99.9	481.810	89.4	382,5,32	102.1	7.374,154	99.3	1,718,917	4.29
May	6,664,298	09.1	483,024	86.8	398,057	102.9	7,545,379	98.4	1,703,246	4.43

 1942 Bessemer and 87.6% of the Electric Ingot and Sied for Castings Production

Jan. G, 322,215	95.3	490,874	86.0	299.017	94.2	7,112,106	94.5	1,605,442	4.43
Feb. 5,785,918	96.6	453,549	88.0	273,068	95.2	6,512,535	95.9	1,628,134	4.60
March 6,572,930	99.0	493,191	86.4	-325,990	102.7	7,3942,111	98.2	1,668,648	4.43
1st atr 18,681,063	97.0	1,437,614	86.7	898.075	97.4	21,016,752	96.2	1,634,273	12.86
April 6.345.133	98.7	454,834	82.2	321,324	104.5	7,121,201	97.7	1,659,975	4.29
May 6,595,440	99.4	443,938	79.5	333,200	104.9)	7,382,578	98.1	1,666,496	4.43
June 6,239,674	97.1	452,528	81.8	123,100	105.1	7,015,302	96.3	1,635,269	4.29
2nd atr 19,180,247	98.4	1,361,300	81.2	977,624	104.8	21,519,171	97.4	1,654,049	13.01
1st hlf 37,861,310	97.7	2,798.914	83.9	1,575,699	101.1	$42,535,923$	96.8	1,644,218	25.87
July 6,345,315	95.7	453.686	79.6	:145,957	96.6	7,144,958	94.5	1,616,506	4.42
Aug. 6,414,637	96.5	467,293	81.8	345,725	!6.3	7,227,655	95.4	1,631,525	4.43
Sept. 6,286,855	97.5	437,96].	79.4	332,703	95.9	7,057,519	96.4	1,648,953	4.28
3 rd qtr 19,046,807	96.7	1,358,940	80.3	1,024,385	96.3	21,430,132	95.4	1,632,150	13.13
9 mos. 56,908,117	97.3	4,157,854	82.7	2,900,084	99.4	63,966,055	96.3	1,640,155	39.00
Oct. 6,750,829	101.5	461.897	S0.9	266,788	102.2	7,579,514	100.0	1,710,951	4.43
Nov. 6,371,750	99.0	458,469	82.9	349,593	100.5	7,179,812	97.8	1,673,616	4.29
Dec. 6,471,261	97.6	475,204	83.4	358,075	100.0	7,304,540	96.6	1,652,611	4.42
4th atr 19,593.840	99.4	1,395,570	82.4	1,074,436	100.9	22,063,866	98.2	1,679,137	13.14
2nd hll 38,640,647	98.0	2,754,510	81.3	2,098,841	98.6	43,493,998	96.8	1,655,653	26.27
Total 76,501,957	97.9	5,553,424	82.6	3,174,540	99.8	86,029,921	96.8	1,649.979	52.14

[^1]

STEEL INGOT PRODUCTION BY MONTHS

May Ingots Gain

Institute reports production third highest in history at 7,545,379 tons

STEEL ingot and castings production in May was $7,545,379$ net tons, according to American Irom and Steel Institute, it new high for May and third largest in the history of the industry. This compared with $7,374,154$ tons in April, an incrase resulting from one more working day. It was substantially greater than $7,382,578$ tons produced in May, 1942, but failed to equal the all-time high of 7,670,187 tons in March this year.
During the first five months this year, output aggregated $36,8: 39,811$ toms, compared with $35,520,621$ in the corresponaling period last year.

During May the industry operated at an average of 98.4 per cent of capacity, against 99.3 per cent in April and 98.1 per cent in May, 1942. In the record month of March, 1943, production was at 100 per cent.

Electric steel production established an all-time record in May for the third consecutive month, output being 398,057 tons, compared with 382,532 tons in April, at 102.9 per cent of rated capacity:

Steel Corp. Shipments Show Increase in May

Shipments of finished steel products by the United States Steel Corp. in May totaled $1,706,543$ net tons, an increase of 75,715 tons over April shipments of

DISTRICT STEEL RATES

Percentage of Ingot Capacity Engaged in Leadhing Districts

Week Ended		Same Weck	
June 12	Clatige	1942	19.41
90	-8.5	95.5	100.5
97	Nome	10.4	102
95	None	96	97
97	None	95	98
86	-8	78	88
95	-0.5	94	92
90.5	Nome	90.5	90.5
95	-5	93	95
95	None	95	9.4
88	- 6	95	89
93	+1.5	95.5	98
83	$+3$	86	92
96.5	-2	$\bigcirc 99$	-99

Average

- Comptited on hases of stecelmaking capacity as of these dates.
$1,630,828$ tons and a decrease of $127,-$ 504 tons from the $1,834,127$ toms shipperi in May, 1942.

For five months this year total movement was $8,487,353$ tons, against 8,729 ,439 tons in the corresponding period last year.

Net Tons				
	1943	1942	1941	1940
Jan.	1,685,992	1,738,893	1,682,454	1,145,592
Feb.	1.691,592	1.616,587	1,548,451	1,009,256
Mar.	1.772,397	1,780,938	1,720,366	931,905
Apr.	1.630.828	1,758,894	1.687,674	907,904
May	1,706.543	1,834.127	1,744,2957	1.084,057
June		1,774,068	1,668,637	1,209,684
July		1,765,749	1.666,667	1,296,887
Aus.		1,788,650	1,753,665	1,453,604
Sept.		1,703,570	1,684,277	1,392,838
Det.		1,787,501	1,851,279	1,572,408
Nor:		1,665,545	1,624,186	1,42, 352
Dec.		1,849,635	1,846,036	1,544,623
Total $\ldots \ldots \ldots .21,064,157$ 20,458,93Adfust-				
Total				

Steel Rate 9612\%

Furnace operations are cut by mine strike, limiting coke and gas supply

PRODUCTION of open-hearth, bessemer and electric furnace ingots last week receded 2 proints to $961 / 2$ per cent, a result of the coal mining interruption which cont operations in the Pittsburgin area sharply: Two districts made small gains, five declined and five were unchanged.

The Pittsburgh loss cut its production to 90 per cent of capacity, lowest since the final week of 1941. This resulted mainly from lack of cokeoren gas to heat open-hearth furnaces. Wheeling dropped 8 points for the same reason.

Welding Wire Output Nearly Doubled in 1942

production of steel welding wire in 1942 was approximately $800,400,000$ pounds, almost double record ontput of $453,120,000$ pounds in 1941, the American Iron and Stecl Institute reports. The 1942 output was more than three times that made in 1940 and indicates increasing demand for ships, planes, tanks and other welded products.

For each ton of finished stecl made in 1942 almost 13 pounds of welding wire were made, compared with over seven pounds in 1941 and five pounds in 1940. In 1938 , the year before the outbreak of the war in Europe, about 4.9 pounds of welding wire were made for every ton of finished steel.

New Plants Require Large Quantities of Plate, Piping

AN INKLING as to the quantities of heavy-gage steel plate, piping, Hanges and welded construction going into the new govermment-owned synthetic rubber plants is given by these views of a Buma-S plant at Institute, W. Va., operated by the United States Rubber Co.

The entire government program is estimated to require nearly 150,000 tons of carbon, alloy and cast steel, as well as 2500 tons of copper and brass.

At right is shown some of the maze of piping required to transport successive batclies of synthetic rubber latex to twelve 30,000 -gallon storage tanks for blending to assure uniformity. The blended latex then is pumped to other tanks where the rubber is coagulated in flocs and crumbs.

Below at left is shown the lop of a "blowdown" tank ints which a batch of polymerized butadiene and styrene flows under pressure after polymerization in glass-lined steel reactor vessels. Polymerization is arrested in the blowdown tanks.
At bottom are three of nine 30,000 -gallon butadiene storage tanks. Compare their size with that of man atop center tank. The mine tanks hold enough butadiene for three days' operations at the Institute plant, or the equivalent for enough rubber for 190,000 passenger car tires.

Preference Rating System for Steel Products To Be Eliminated July 1

PREFERENCE rating system as such for deliveries of steel is eliminated by terms of an amendment to order M-21, effective July 1 when the Controlled Materials Plan goes into full operation. At present and mitil July 1 steel deliveries are permitted on a preference rating of A-10 or higher.

Under the amended order, steel produets may be delivered only on authorized controlled material orders; as permitted by priorities regulation No. 13; by CMP regulation No. 4 (sales of controlled materials by warehouses and distributors); by Orders M-21-b-1 and M-21-b-2 (distributors); or as specifically directed by WPB.

This applies to all steel products, except iron products and steel forgings which are not included as steel products in CMP regulation definitions. Iron products and steel forgings may still be delivered on an A-10 or higher rating; as permitted by priorities regulation No. 13; and on orders authorized by WPB.

The amended M-21 order also makes it clear that second quality material and shearing of all types are subject to the same control as prime material. In this connection, interpretation No. 1 of M-21 as : imended points out that the terms "steel" and "iron products" do not include used material or steel which has been recovered or salvaged from used material.

For example, shearings generated by a steel mill or croppings generated at a shipyard are covered by the order. If sold as scrap at OPA ceiling prices, however, such material may be disposed of free of restrictions of the order. Restrictions also do not cover used material such as line pipe which has been in use by an oil company for a period of time, or structural steel salvaged from a demolished building.

System of Identifying WPB Forms Being Simplified

A simplified system of iclentifying War Production Board forms is being put into effect as present stocks are exhausted. All forms in the WPB, PD, UF and RD series cventually will bear only the initials WPB, followed by new serial numbers.

All authorization, allocation and other form stationery used by industry divisions and field offices will carry the prefix GA (General Administrative), provided it
does not seck information from industry.

CMP and CMPL forms will continue to be identified as formerly.

Restricts Sales of Steel Listed with Recovery Corp.

Sales of stecl listed with Steel Recovery Corp. are prohibited except on authorizations issued by the War Production Board. This action was taken last week by an amendment to Priorities Regulation No. 13. Authorizations may be obtained either from WPB regional offices or from the WPB representatives at Steel Recovery Corp. and may be used without requiring the purchaser to count the steel bought agtinst his CMP allotment.

Wire Mills Permitted

More Latitude in Bookings

Wire mills may accept orders for wire mill products which they do not produce, if they are able to have the required item produced by another mill, War Production Board says. Original Direction No. 9 to CMP regulation No. 1 did not specify that wire mills could place orders for such products.

Definition of Quality Carbon Steel Revised

Steel Division, War Production Board, is revising its definition of "quality carbon steel" to read as follows:
"Quality Carbon Steel" is: (a) Made in hot topped molds, or (b) if made in open topped molds receives special surface preparation at an intermediate form or in final form and is subject to special diseard."

Producers whose production directives include separate tonnages for quality carbon steel may exceed these tonnages in acceptance of orders at the expense of regular carbon steel in the same product, providing: (a) They have the capacity (and, if nonintegrated, the semifinished steel) to supply the additional tonnage in quality carbon steel, (b) they have open space available within 110 per cent of their total directive for such product in carbon steel and (c) acceptance of such orders does not interfere with fulfillment of directives for other products in quality carbon steel.
Furthermore, any producer whose pro-
duction directive includes provision for quality carbon steel who has not received orders for the required tomnage by the lead time for the product involved may accept orders for the same product in regular carbon steel.

Stainless Steel Producers Asked for Output Figures

Ferroalloys Branch, War Production Board, is asking producers of stainless steel and valve steels to submit by letter monthly production of stainless steel, valve steel, and total stainless types of stecls for January, February and March, 1943. This letter should be submitted as early as possible to the Chromium section, Ferroalloys Branch, Steel Division, WPB.

Some Iron Ore Producers
 Granted Price Relief

Smaller iron ore producers are secking higher prices. It is moderstood most of these companies are now permitted to charge a base price of around $\$ 4$ a ton but it is said some seck a ceiling of $\$ 4.45$ now applying to the larger producers.

OPA has granted an increase of 38 cents to $\$ 4$ a ton on utility grade ore and 13 cents to $\$ 4.15$ on Schley grade ore to North Range Mining Co., effective Junc 9. Evergreen Mines Co. obtained an increase, effective May 13, of 18 cents to $\$ 4.60$ on 51.50 per cent iron content old range manganiferous ore from its Alstead group mines, plus 15 cents for each unit manganese over 5 per cent. OPA also granted a ceiling of $\$ 4.45$ on Mesabi nonbessemer 51.50 per cent ore from new mines and an increase of 6 cents to $\$ 4.30$ on same grade from old mines.

Warehouse Prices For Six Zones Named by OPA

Dollars and cents selling prices for prime quality heavy steel products sold by heavy line steel warehouses in six newly established pricing zones were announced last week by OPA.

The prices maintain the ecilings in line with those charged by warehouses on April 18, 1941.

These six new zones listed in amendment 16 to Revised Price Schedule 49 are effective June 21 . The six zones provide specific prices for 19 states and parts of 5 others in the East Central, Central and Western regions. The zones are numbered 5, 6, 7, 8, 9 and 10. Zones one to four were established April $15,1943$.

Not a Good Term

"POSTWAR PLANNING" is not a very groud term from the standpoint of the average businessman, in the opinion of a prominent industrialist whose principal interest long has had to do with finding and promoting new uses for the products made by his company.
"We always have tried to build up oui business in the past and we are doing that during the war by seeking to helps Uncle Sam to the utmost," he states. "We have pretty grood ideas about how we will go about promoting our business when we again will be able to use materials and labor in the normal way.
"The term 'Postwar Plaming'," he continues, "has come to be associated with the ideas of some of our political idealists about developing a milk and honey economy after the war. I hope that we will have a better plane of life for all our people after the war. However, our company does not have a single word of decision and all we can do is plan on what we propose to do.

We do not consider it as our worry if those in charge of our govermment intend to spend hage sums of money on public projects. We don't consider it our worry if the govermment continues its trend ink business. What we are interested in is to work for whoever spends the money and, as far as we are concerned, that means a retum to the oldfashioned way of rustling up business wherever it is to be had. There are a lot of people in this country and they will need a lot of stuft and we will block out our territory and go to work on it iust as long ats we are free to do so."

Postwar Credits

Postwar credits to corporations which now total 10 per cent of excess profits tax payments should be broadened to help small ipdustries resume normal activities, Representative Dewey of Illinois. Republican member of the House Ways and Means Committee, stated recently. He said that when work is stauted on a new revente hill this fall he would propose that a percentage of surtaves also be set aside.

Wrong Impression

Certain unts of the WPB Tools Division and some industrialists are suffering from the impression, that because pressure has been eased in demand for many types of machine tools pressure all through the Tools Division has abated. Certain units have been having a bad time of late in getting needed materials; the Autifriction, Chain, Foundry Equipment and Heat Treating Equipment units
have been hard hit, getting steel allotments that are 25 per cent less than they regarded as minimum for the purpose of meeting war production reçurements. The Heat Treating Equipment unit has encountered a difficult situation, not only because of the continued demand for additional furnaces, but because of the need for replacements on an increasing scale. Furnaces that are operated at cal-

STEEL STOCKS CUT

Better shipping situation has substantially reduced steel stocks at eastern and Gulf ports. Some exporters believe these stocks are the lowest in many months. South American comentries have benefitted materially, and indications are they will receive more steel in the third quarter than in any 3-month period since the United States entered the war.

Figures as to the amount of steel now moving and accurate estimates as to third quarter shipments to South America are not available.

The revolution in Argentina has had little bearing to date on the United States' policy of shipping to that country. Over past months very little steel is said to have been authorized by the government for shipment to Argentina, except tin plate for British account.
pacity 18 to 24 hours a day wear out. Unless these units are allotted more steel in the immediate future the industries they serve are in danger of developing bottlenecks.

Small Plants Aided

Brig. Gen. Robert W. Johnsom, chairman, Smaller War Plants Corp., and vice chairman, War Production Board, reports great progress is being made in findiug work for small plants and that the time is approaching when 60 per cent of the contracts provided to such mamufacturers will embrace products in the field of essential civiliam needs.

He said that the country is coming to a period when the manufacture of some essential civilian products would be more important than the manufacture of machine guns, and that this would help small manufacturers, as in most cases their establishments are better suited for civilian than war work. One large firm, the White Motor Co., Cleveland, is retooling for mamufacture of busses to alleviate the transportation bottleneck.

Minute Bottlenecks

Some amazing examples are reported of instances in which exccution of important war contracts has been delayed or threatened with delay because of insignificant shortages of needed items. Completion of an important power plant was held up when the contractor found himself umable to procure ten lengths of 8 -inch IPS copper pipe. Called on for help, the Philadelphia office of WPB'; Redistribution Division found a quantity of red brass pipe and this was used instead of the specified copper pipe. A war plant housing project was held up by lack of four rolls of steel wire mesh: the Dallas office located a retailer who had sold four rolls of this mesh to a farmer but had not made delivery-and the farmer was glad to release the material as soon as he learned that it was needed for the war program. In one place a certain job was held up by lack of 150 pounds of steel wool, which was located by the Boston office and made availalule. Great progress has been made by the Redistribution Division in locating critical materials in all forms and in compiling inventories which make it possible in practically all cases to find without delay something or other that will fill the immediate need. However, the Redistribution Division could do much better if holders of materials would report them promptly as they became excess or idle, also if they report promptly as they disposed of these materials.

Caskets of Rayon

Due to stopping production of metal caskets and metal grave vaults on June 30, 1942, and as a result of a reduction in use of metals in easket hardware under order L-64, schedule A, which became effective May 1, 1943, total curtailment results in an ammal saving of about 650 tons of copper, 800 tons of zinc. 1700 tons of antimonial lead and 64,000 tons of jrom and steel. By making caskets of lumber and rayon, and by limiting the quality of finish, some $2500 \mathrm{em}-$ ployes altogether have been or are being diverted to war work. The new limitation order set a limit of 3 pounds of metal hardware per casket and 2 pomads per burial vault or shipping case. Lead handle arms are limited to 3 pounds per casket and steel metal liner to 50 prounds. Thus here is another of the innumerable industries which. through wartime substitutions, present problems of regaining markets for the metals after the emergency is over. Annual production of these units, incidentally, now ranges between $1,250,000$ and $1,425,000$, depending upon the mortality. rate.
 on the Blanchard No. 18 Surface Grinder.

TIE BLANCHARD NO. 18 SURFACE GRINDER is used to rough and finish grind the oil burner pump parts shown above. They are first ground from the rough, then they are normalized and ground again. All boring and drilling operations are located from the flat Blanchard ground surfaces. After machining, all parts are finish ground on the Blanchard. Twelve pump bodies are ground at once on fixtures mounted on one base plate. The base plate is held magnetically, therefore the chuck may be cleared quickly for a change of jobs. The cast iron pump bodies are 6 inches in diameter. $.012^{\prime \prime}$ of stock is ground off one side to limits of $+.0003^{\prime \prime}$ -. $000 \mathrm{I}^{\prime \prime}$ at a rate of 48 pieces per hour. Close Limits

$$
\begin{aligned}
& \text { The BLANCHARD } \\
& \text { MACHINE compANY } \\
& \text { o4 state street, cambride, mass. }
\end{aligned}
$$

Send for your free copy of "Work Done on the Blanchard." This book shows over 100 actual jobs where the Blanchard Principle is earning profits for Blanchard owners.

Depends on Balance of Profits, Wages

Abstract

Co-operation between industry and labor necessary if totalitarian state is to be avoided when war ends. Metal Trades leader says workers fear government encroachment as much as management

EFFECTIVENESS of the American war effort is being hurt, to an indefinable extent, by a fear rumning through our whole midst-that the war's end will find us in some sort of a totalitarian state. Some people cry out against what they think is an encroaching Fascist state, others against an encroaching Commumist state.
The great majority of us, not being dialecticians, don't shape up our dread in any one rigid formula. We visualize something, instead, by which private enterprise and private initiative will be submerged under an overall goverument.
By private enterprise and private initiative, I mean a free system by which investors, men with capital, will dare risks of enterprise in the hope of receiving an adequate return. And by private enterprise and private initiative, I mean a free system under which workers will be able to select their employer and to be protected in their right to bargain collectively with him, a right to gang up, if you please, to assure themselves a fair return for their abilities and energies.

Private Enterprise Endangered

I believe the organized workers whom I represent-there are some $1,500,000$ in the Metal Trades Department-and the industrialists are together in a fear, perhaps vague, that this system under which we have lived is endangered.

We have had our quarrels, management and labor, in the past. They have been a bitter phase of our competitive way of life. We have all gained by them, both management and labor, and I am quite confident that we stand together in not wanting the free enterprise system changed.

The members of the American Federaltion of Labor, to the extent to which I represent them, are certainlv as much concerned today in preserving this system as any industrialist could possibly be, and as I have siewed the rapidly moving parade over recent years I am inelined to think that we are more concerned.

Speaking for myself alone, I am an apustle of the Samuel Gompers philosophy that when the trades unionists of this country begin to depend upon the government for their strength, they are in
as much danger of losing their freedom as were the workers of the totalitarian states-Germany, Russia and Italy, I say the same thing of the inclustrialists who have come increasingly to look to the government for the solation of their problems.

We have both been too prone to lean upon the govermment in recent years but I shall perhaps shock you when I give it as my conviction that the industrialists have been far greater offenders than we. Furthermore, if this government controlled economy which we mutually fear, comes to our country, it will be at the

> One of our most respected labor leaders for many years, Mr. Frey is a firm believer in the American free enterprise system. In the accompanying article, he makes the point that the system will work only if wages are increased as profits rise. Analyzing the causes of the depression that started to engulf our economy in 1929, he attributes the principal blame to maldistribution of profits. Wages, he says, did not keep pace with rising profits and rising dividends. Mr. Frey's statement, coming from a labor leader, is one that should receive careful study, particularly by employers who are preoccupied at this time with plans for a sound postwar connomic structure.

-The Editors
hands of the industrialists rather than the trade unionists of the American Federation of Labor. I miss my bet if I am not correctly reflecting their determination to resist it with all the strength at their command.

I have been an international officer in the American Federation of Labor for some 50 years, all of my adult life. The movement itself is more than 60 years old. I have grown up with it and inasmuch as its development coincides with the industrialization of America, my career in labor organization coincides with this industrialization. It is an American movement, born in America, grown up in America, steeped in the American

By JOHN P. FREY
President, Metal Trades Department
American Federation of Labor

traditions. It has the virtues and the shorteomings of the country itself. It will never sell the country down the river because to do so would be to sell the millions of Americans who constitute its membership down the same river.

In the pre-Pearl Harbor days it wats not the American Federation of Labor that kept up a steady tom-tom against inclustry for not then and there converting; it was not the American Feclemation of Labor that imputed unpatriotic motives to the great industries; it was not the American Federation of Labor that loaded up Washington with plamers of every description. These vociferous voices of the time were not of our councils. They came from elsewhere.

Now, frankly, I do not foresec the loss of our freedom-our freedom of action in industry and our freedom of action as trades unionists-through any man on horseback, or through any group of power-thirsty designers, notwithstanding there are men on horseback and powerthirsty groups on every hand watching for an opportunity.

Danger Is in Controls

Our danger, as I see it, is in the trend of the times. War necessitates certain controls over our lives. Certain controls over industry with a view to co-ordination were necessary.

It will remain for history to show whether or not the severity of these controls did not militate against production. But industry is placed under severe control. What then? There begins a clamor to regiment labor by way of being fair. Somewhat ahead of the complete regimentation of labor comes another movement out of the pot of envy-regiment the women also. Undoubtedly there will sonn be an agitation for a regimentation of those youngsters not yet ready for the draft. It is the spirit of the times, and herein lies danger for our future.

But bear in mind, this agitation for the state in which industry has been placed, did not come from my fellow trade unionists. You would be surprised at the alarm with which most of us have viewed it. And we have our troubles with the bureaucrats too.

I an frequently finding among my industrialist friends and acquaintances a spirit of despair. I have seen men of ability and energy from the industrial world rushing to Washington for a job

MR. FREY
in the conviction that henceforth the government will be the only outlet for a man's energies and abilities. You won't find that as prevalent among the trado unionists. It is a dangerous state of mind.

We trades mionists, thore of us of the Metal Trades Department of the American Federation of Labor, because they are whom I am authorized to speak for, would like to give encouragement to those industrialists who are concemed about and who are making a fight for the preservation of our American system. We shall not forsake them. Our stake is greater than theirs because it is the worker to whom enslavement is the most poignant.

These industrialists should be permitted to set aside adequate reserves for the peacetime transition of their plants. I am unalterably opposed to the destruction. of the private enterprise spirit through taxation.

There is, I think, a realization on the part of every sensible man that if private industry does not, or is not capable of giving employment to our workers after the war, that the government will do itmust do it. It is not a matter of advocating this so much as knowing the facts of life. But we want to make sure that the government gives industry the opportunity to create this employment. We must not sit idly by and permit bureaucrats and plamers to first shackle industry with restrictive legislation and then point an accusing finger and say: "You sec, you can't do the job."
Manifestly, there will need be some government work projects to assist in
giving employment. They should be plamed for their usefulness and wealth creating value instead of being a dressedup version of the dole. And with a view to stimulating a reorganized, industry they should be carried out through our industrial setup, not used for the further encroachment of govermment in the field of private enterprise.

Because of the meaning which has come to be attached to the term in recent years I do not take kindly to the statement that govermment and industry should in the future form a partnership. I have always had my doubts about the vaunted efficiency of the totalitarian states even to wage war. But there is one thing I am convinced of and that is that there can be no $50-50$ situation, that is to say a half totalitarian economy and a half private enterprise ecomomy. My suggestion is that the far better partnership of the future should be between management and labor. By this, I do not mean that we of the Metal Trades Department want to take over or to share the management of industry.

In plaming for a sound future ceonomy: both industry and labor must be cletermined to bring about a fair distribution of the national income. When workers are denied an equitable propertion of industrial profits their ability to purchase groods is lowered. Failure to raise wages with profits results in a shrinkage of markets and the resulting necessity of curtailing production. That brings about unemployment and depression.

Discusses 1929 Business Collapse

Careful analysis of what went on during the fateful years ending in 1929 rereals that industrial and business management, through failure to recognize this truth, contributed materially to the severity of the depression that followed. During those years, industrial and business management utterly ignored the basic fact that to have and maintain prosperity it is essential to keep the purchasing power of the public at a high level.
A few statisties prove the truth of this contention.

In December of 1922 the capital of the banks in the Federal Reserve System was $\$ 1,940,000,000$. In December of 1929 this hat increased to $\$ 2,757,000,000$. Surplus in these banks in December of 1922 was $\$ 1,625,000,000$. Surplus in December of 1929 had increased to $\$ 2,864$,000,000 . Their andivided profits in December of 1922 was $\$ 797,000,000$. These undivided profits in December of 1929) had increased to $\$ 1,086,000,000$.

In 1922 the holders of stock in these banks were paid dividends of $\$ 246$,-

000,000 . In 1929 they received $\$ 408$,000,000 in dividend checks.
During the perioci following 1922 the ammal value of mamufactured products increased enormensly, but not as rapidly as the bankers' profits. Total value of products manufactured in 1923 was $\$ 60$,$529,000,000$. Total value of manufactured products in 1927 was $\$ 62,718,000,000$. Total value of manufactured products in 1929 was $\$ 69,417,000,000$.

During this period, when profits were great, when dividends were large, when value of the manufactured products was rising, what happened to wages?
In 1923 total wages were $\$ 11,007$,000,000 . In 1925 total wages were $\$ 10$,$730,000,000$. In 1929 total watges were $\$ 11,621,000,0000_{3}$ In brief, wages did not keep pace with the rise in profits and dividends. Wages were not elevated sufficiently to maintain public absorption of churable and consumer goods as fast as they could be produced.

Welcome Technological Gains

The lesson so painfully learned in the great depression of the thirties is one that industrial management as well as labor will have to bear in mind in the period ahead.

Intelligent labor leaders must welcome teclmological improvements that increase efficiency and bring about increased production on the part of the individual. Only by increased production per individual can we continue to improve our plane of life, thus not only providing greater comfort and lexury for our citizens, but adding to the amount of time which we can spend in leisure and in recreation, and in satisfying our cultural needs.

At the same time, technological improvement must not be permitted in the future to imperil our economy. It is to be hoped that industry in the future will follow a policy of dismissing men from their jolss only after other jobs have been found for them. Only hy such a policy can the nation's general prosperity be maintained.
At the same time, it is to be hoped that industrial management in the future will be mindful of the fact that wages mean purchasing power, and that wages and dividends must be kept in balance.

It seems to me that nothing is more important in planning for the postwar period than a clear understanding by management and labor of the problems which they face, coupled with a joint willingness on the part of management and labor to work out joint understandings which will result in an economically sound distribution of the annual volume of wealth created by the joint action of management and labor.

PRIORITIES-ALLOCATIONS-PRICES

Weekly summaries of orders and regulations, together with official interpretations and directives, issued by War Production Board and Office of Price Administration

CMP REGULATIONS

STEEL OIRDERS: Producers who accepted authorized controlled material orders for April delivery and who were unable to make delivery either in April or May have been instructed to fill such orders as soon as possible. This alters original provisions of CMP Regulation No. 1 which required that shipments of authorized controlled material orters be made in the month reruested or in following month.
Since April was the first month of operations under CMP, a substantial number of April orders have been carried beyond the end of May. If a report of all such orders and a suspension of production pending WPB advice were required, deliveries would have been unnecessarily hindered.
ALLOTMENTS: A quarterly basis has been established for allotments as well as applications for allotments in place of the original monthly basis. As reported in the June 7 issue of Steel., monthly percentage restrictions. previously imposed on placement of controlled material orders, have been eliminated from tenns of CMP Regulation No. 1.
Controlled material allotments made to a consumer for a particular calendar quarter or other specific period indicated on the allotment certificate may not be used for placing authorized controlled material orders for any other period. A consumer must specify on his order date of month in which delivery is requested, within the period for which his allotment is valid. The mill is required to make delivery as close to the delivery date as practicable.
OHDER TIME LIMIT: Provision of CMP Regulation No. 1 that a controlled materials producer is permitted to make deliveries up to 30 days after the last day of month in which delivery is requested, applies only to orders which were accepted on basis that they coukd he filled by the required delivery date. In such cases, it is permissible to make delivery cven though the month in which shipment is made is after the end of quarter for which allotment is valid. A controlled materials producer may not accept orders if he does not expect to be able to fill them during requested delivery month.
DATING PROCEDURE: Numerical method of identifying months and quarters previously prescribed has been aholished, effective July 1. Allotments will be required to show quarter for which purchase authority is valid instead of "quarter number" formerly used. For example, "third quarter $1943^{\prime \prime}$ or its abbrevintion " 3 Q 43 " will be used instead of " 19 ." Orders for controlled materials must indicate month in which delivery is required instead of a month number. For example. "July, 1943," as well as the quarterly identification must he used.

SMALL ORDER: Persons using "small order" procedure to obtain Class A products reguiring small amounts of controlled materials, need not reduce allotments they have received by amount of controlled material required to produce such product.

SAMPLE ORDERS: Deliveries may be made by a controlled material producer to fill a sample order in a case where the customer certifies that the controlled materials covered by such order are required for testing purposes in connection with war production. Aggregate amount of any item of controlled material delivered to any one customer in any one month for testing purposes may not exceed one per cent of minimum mill quantities prescribed with respect to such items in Schedule IV of CMP Regulation No. 1.

CONTROLLED MATERIALS LIST: List has been modified as follows: (1) both carbon and alloy steel dic blocks are included as controlled materials; (2) term "pipe" (both carbon and alloy stecl) is clariffed to indicate it incluctes threaded couplings of type normally supplied on threaded pipe ly pipe mills; (3) listings of hoth copper and copper-base alloy products are spelled out by the amendment in greater detail than they have been heretofore.

TME, QUANTITY FACTORS: Schedule III, reflecting mumbers of days arders must be placed in advance of first day of month in which deliveries are recfuested, has heen amended with respect to tubing. Schedule IV has been amender with respect to minimum mill quantities for tuhing. (CMIP Reg. No. 1).

INDEX OF ORDER REVISIONS

Subject	Designation
Automotive Vehicles	L-1-c
Cans	M-81
Chemicals, Chlorate	M-171
CMP Provisions. CMP	lieg. No.
Communications	U-3, U-4
Elevator Equipment	L-89
Files, Rotary	L-216
Hard Facing Materials	L-223
Instruments, Musical	L-37-a
Machinery, Farm	1P-19
Machinery, Processing	L-292
Machines, Sewing	L-98
Order Rejections	PR-I
Preference Ratings	PR-3
Steel Strapping	M-261
Studs and Bolts	M-293
Price Regulations	
Iron and Steel Products	No. 49
Machines and Parts	No. 136
Steel Valves	GMPR

1 ORDERS

AUTOMOTIVE VEHICLES: War Production Board has been empowered to issue from time to time letters of authority which will authorize manufacturers to produce a given mumber of automotive vehicles of the types specified within given periods of time. The amended order also provides that producers of medium or heavy trucks or off-the-highway vehicles may sehedule their production, notwithstanding provisions of Regulation No. 1, as if the purchase orders for them bore a rating of AA-2X. ($\mathrm{L}-1-\mathrm{e}$)

SEWING MACHINES: Manufacturers must reserve specified uumber of machines for orders from Army, Navy, Maritime Commission, War Shipping Administration and for Lend-Lease Release from reserve stocks must be specifically authorized by WPB through application on WP13-1319 (formerly PD-556). (L-98)
MUSICAL INSTRUMENTS: Control over use of critical materials has been extended to cover repairing and overhanling of musical instruments. Tin may be used in solder; and zine in brass. Copper may be used in manufacturing, repairing or replacing electricityconducting parts up to two pounds for each repair job, or to one pound more than the copper scrap recovered in the job. Use of iron, cork and lead is not prohibited lyy the order Production of pianos and organs requires specific WPB authorization and use of critical materials must not exceed 10% by weight. (L-37-a)

ELEVATOR EQUIPMENT: Inventory of maintenance parts may be maintained up to $\$ 25$ worth for each elevator operated, provided not more than $\$ 50$ worh of such parts per elevator are purchased in any one year. (L-89)
nOTARY FILES: Number of sizes which may be produced has been cut from 380 to 70 through addition of Schedule 4 to order L-216. Shanks for rotary files of $1 / 2$-inch diameter or more must be made of carbon steel only. Producers may apply for permission to devote up to 10% of their output to special cutting tools which do not conform to specifications. (L-216)

MARD FACING MATERIALS: Certain low-

 alloy hard-facing compositions may now be used for repair and mantenance of agricultural tillage equipment. Deliveries are restricted to orders rated AA-4 or higher for maintenance and repair of specifically mentioned end-prorlucts which now include welding electrodes. Purchasers must certify to their producers (after June 15 to a distributor as well) as to end use of hard-facing materials. Necessity for filing PD-783 has been eliminated and PD-734 has heen revised. (L-223)processing machinery: Production quotas on certain types of food processing machinery may be established and in meantime output is restricted to 1942 rate. Cominencing Oct. 1 and for year ending Sept. 30, 19.44, manufacturers may produce up to 50% of average yearly production during base period 1939-1941. No restrictions placed on quantity of replacement parts. Purchase and delivery orders must bear AA-3 or higher rating olitained under L-41 and assigned on WPB-617 (formerly PD-200); or for canning machinery or equipment listed in Schedule A, rated AA-3 or higher assigned on WPB-576 (formerly PD-285); or for dairy, egg or poultry processing equipment listed in Schedule A, rated AA-3 or higher assigned on WPB-748 (formerly PD-414); or order received prior to June 5 for items to be delivered on or after Jme 30 and has been approved by WPB; or a purchase order bearing AA-3 or higher assigned on PD-1A. These restrictions apply to new machinery valued at $\$ 50$; to used, reconditioned or rebuilt machinery valued over $\$ 300$. Hating for camming machinery may be obtained under P-115 and matings for dairy processing equipment uncler P-118. (L-2.92)

M ORDERS

Cans: Quota for packing paint. varnish, lacquer or other protective contings in fibre-bodied cans with blackplate ends has been increased to 55% of the area of plate used during 1942 . Restrictions prolibiting use of blackplate cans for drain eleaners and lye after June 30 have been removed. Use of blackolate cans for toilet bowl cleaners is restricted to 75% of area used in 1942 for neriod from Jan. 1 to Sept. 30, 1943; to 12% for period from Oct. 1 to Dec. 31. Twelve additional non-food products have been added to list which may be packed in cans while specified species of fisls may be packed in cans made of 1.25 hot dipped tinplate. Can manufacturers may use any "menders" arising in production of 0.50 tin plate. Manufacture of metal keys for opening cans, except for armed forces, has been prohibited. Cans for packing any food or nonfood product not listed on Schedule 1 or 2 are exempted from $\mathrm{M}-81$, if the cans are required for packing a product for delivery to a ship chandler. marine distributor or marine operator. (M-81)

Chlorate Chemicals: Producers and distributors should make application for allocation (now on a quarterly basis) on PD-602 listing individually reguests for more than 250 lh . per quarter; customers need not file any forms with WPB. Specific authorization is not required for delivery to amy person in any quarter of not more than 25 lb . of any chlorate chemical (1-171)
STUDS AND BOLTS: Alloy steel studs and headed bolts for high temperature service have been added to list of critical components sulbject to scheduling control by the Building Materials Division, (M-293)

STEEL STHAPPING: Following additional uses are now permitted: (1) For wooden ship-
ping containers in which vitreous chinai plumbing supplies or fixtures are packed; (2) use by railrond or truckers where needed to reinforce containers damaged in transit; (3) for fastening together group of filled containers into one unit. (M-261)

PRIORITIES REGULATIONS

ORDER REJECTIONS: Mamufacturer or

 other venclor is forbidden to reieet an order bearing a preference rating on the ground that price offered is below the regularly established price, if the purchaser meets the OPA ceiling. (PR lieg. No. 1)APPLICATION AND EXTENSION OF PREFERENCE RATINGS: Uniform methods in applying ratings to oltain preferential use of processing and fabricating facilities has been provided. A rating assigned by WPB to permit a nnmed person to obtain use of particular facilities may be applied only by that individual and then only to the specified facilities. When a person is authorized to apply or extend a rating to obtain material which he will dehiver, or which he will incorporate in material to be produced or delivered, he may make use of the same rating to obtain use of the facilities of a concern regularly engaged in the facilities to produce the rated material. A person to whom a rating has been extended to obtain use of his facilities may not himself extend the rating for any purpose. List A of Priorities Hegulation No. 3 names products and services which may be delivered without regard to preference ratings; List B contains items not subject to any ratings assigned to purchase of MRO sumplies. List C includes items which may be obtained by use of only ratings assigned or authorized by specified " M " and " P " orders. (PR Heg. No. 3)

FARM MACHINERY: Farmers may now obtain items of general industrial equipment frequently used on farms without furnishing $A-1-c$ priority ratings, reguired by others, by certifying to dealer that he is a farmer and needs the equipment in onerating his farm. It may he used in purchasing fractional horsepower motors and other items in "list A" attache'd to L-123. (PR Heg. No. 19)

PRICE REGULATIONS

STEEL VALVES: OPA has exempted, effective June 7, from price control steel valves, valve parts and subassemblies as well as any operation performed in the processing, machining, welding, treating or finishing of these items when sold or perfonned by new sulbcontractors to and for valve manufacturers under contract with the Navy department for these articles. (GMPR)
IRON AND STEEL PRODUCTS AT RESALE: A number of corrections, largely on typographical errors in the printing of amendment No, 14 to revised price schedule No. 49, have been issued by OPA. Corrections became effective as of April 15.

MACHINES AND PARTS: In calculating period of depreciation in computing maximum prices for second-hand machines and parts, the computation should begin with date of acquisition by original purchaser for use. Depreciation for sales by Defense Plant Corp. is figured from date of initial use after acruisition by DPC. Sellers of second-hand machinery are permitted to add actual transportation charges from Seattle to the job sites in sales to Alaskatn buyers, producers using rubber in manufacture of machines or machinery parts for government use may quote higher than ceiling prices to reflect cost increases resulting Irom an authorized increase in price for eride rubber. (No. 136)

U ORDERS

COMMUNICATIONS: Ratings and symbols assigned to telephone and telegraph operators by order U-3 and U-4, respectively, may be used to obtain maintenance, repair and operating supplics for offices, warehouses and other facilities essential to business operations. ($\mathrm{U}-3$ and $\mathrm{U}-4$)

New Producers of Flanges Granted Mark-up on Government Orders

METHODS for establishing ceiling prices for cast stecl, forged steel, and steel plate flanges sold for use in the war program by new producers who cooperate in the government program to ease a temporary nationwide shortage by undertaking production of these articles have been announced by Office of Price Administration.

To cover handling costs, a mark-up of 11 per cent over total production costs is fixed as a maximum for new producers who use facilities of small foundries and machine shops on a subcontracting basis to augment current production of flanges. This was provided in amendment 6 to order A-1 under price regulaNo. 188.

Generally, the amendment is applicable omly for producers who prior to Jan. I were not engaged in flange manufacturing, and who will sell and deliver before Aug. 31 flanges produced for ultimate use of the government.

In determining cost of manufacture, new producers will include cost of the rough flange, cost of machining and drilling, and cost of spot facing rough flanges, when computed in accordance with ceilings established by applicable price regulations. Actual transportation charges paid by the seller to obtain deliveries of the flange from foundry or machine shop to seller's place of business may be added. To cost of manufacture, the producer may add the 11 per cent mark-up. Under previous provisions of regulation No. 188, new producers would be compelled to use March, 1942, labor and material costs, a factor which would impede subcontracting efforts.
OPA emphasized that the amendment is not applicable to flanges made under contract or subcontract with the desigmated government agencies after Aug. 31, or for sales of flanges made for civilian use or consumption at any time.

Appointments-Resignations

Joseph L. Weiner has resigned as director of the Office of Civilian Supply, War Production Board. This office was replaced on April 15 by the new Office of Civilian Requirements under Arthur Whiteside.
J. F. Skillman has been appointed chief of the Ferrous Metals Section, Materials Branch,WPB, succeeding C. S. Snyder who has resumed his post with Republic Steel Corp. Mr. Skillman
wis formerly Detroit manger for Berger Mfg. division, Republic Steel Corp.

John S. Chafee has been appointed director of the Tools Division, War Production Board. Mr. Chafee has been deputy director of the Division and was formerly vice president of Brown \& Sharpe Mfg. Co., Providence, R. I.

George E. Talnage Jr. has been appointed assistant director of Division of Traftic Movement; Office of Defense Transportation. He will be in charge of the Export-Import Traffic section, succeeding John M. Montigney.
Ellsworth E. Clark has been appointed assistant gencral counsel in charge of the Rationing Legal Division, Office of Price Administration.

Conversion of Kilns to Charcoal Production Urged

Clay products plants, operating at only 35 per cent capacity due to curtailment of building programs, can readily be converted to charcoal production and thus lessen the critical shortage of this war material, War Production Board says.

It is estimated June output will be: sufficient for only 80 per cent of military and essential industrial requirements, without taking into consideration normal civilian consumption for which no charcoal is available.

In addition to its military uses, charcoal is needed for producing copper, brass, bronze, nickel, high carbon ferro chromium, ferrosilicon, glass and other important purposes.

An appeal is being made by WPB to operators of clay products kilus situated in wooded areas to convert to chareoal production.

Crown Manufacturers Seek Frozen Black Plate Stocks

Crown manufacturers have inaugurated a compaign to comb the country for steel, particularly black plate, which has been frozen in the hands of various manufacturers by War Production Board conservation orders. Only tin mill black plate rejects and electrolytic waste-waste may be used for crowns. It is estimated that about 15 per cent of eurrent consumption of crowns is being used to bottle beverages for the armed frorces.

Abstract

War program expansion forces upgrading of supervisory and managerial talent in automotive plants. . . New rubber life rafts for ocean-crossing aircraft more completely equipped ... CAP valuable supplementary transport service

WHEN Hal Howard, head of Chevrolet plants in Flint, Mich., was asked the other day what his company had gained from war production activity thus far, he gave an unexpected answer, but at the same time it was an observaltion which doubtless applies to nearly all plants in the metalworking industry now engaged in the feverish rush of war production.

Early in the conversion stage, Chevrolet was called upon to furnish supervision to new plants outside the Flint area which were gearing up for war production. This meant that the company had to draw on its so-called "first-line" executive talent from the Flint plants. Departure of these officials necessitated moving up the "second-line" supervision into the top ranks. This group comprised superintendents, assistant superintendents and others in a similar category, who found themselves suddenly moving "upstairs" into managerial tasks vacated by the top-ranking men who had gone out to new jobs.

Promotions Speeded Up

Naturally the posts emptied by the "second line" had to be filled by the "third line" supervisory men-foremen, assistant foremen, plant engineers, etc. In other words the entire supervisory and plant management fumily found itself moving up one or more notches into more responsible positions, elevations which in the normal course of events might have been spread out over five or ten years, yet under the pressure of war were bunched into a matter of months.

Howard pointed out it was a source of considerable encouragement the way his men stepped in to shoulder their new tasks. The change has a two-fold benefit, the men improving their position by virtue of added responsibility and the company gaining because of the increased reservoir of technical and managerial skill. This immediately implies the postwar problem of absorbing and taking advantage of such an administrative asset. Either industry will have to maintain its accelerated tempo, or the newcomers in ranking positions in management will have to step down the ladder one rung to their former positions. The latter is a difficult alternative, and men faced with it likely will seek new company affiliations rather than take what appears to them to be a step
in the opposite direction to progress. Chevrolet plants, particularly those in Flint, were among the last to move into full-scale war preduction, principally because of the pressure of expansion elsewhere. Now, however, the 3.5 plant buildings in Flint are nearly up to the peak peacetime level of employmentaround 15,000 -and are looking to further increases. Eleven of the plants are devoted entirely to war production, corering such products as armor-piercing shot, combat velricles, component parts for l'ratt \& Whitney aireraft engines which Cherrolet is building at Tonawanda, N. Y., 90 -millimeter antiaireraft guns, motors and motor parts, tools, dies, jigs, sheet metal parts, trucks, etc.

A special type of combat vehicle has
been in production there for some time, but for some unexplained reason the Army will permit nothing to be said about it, clespite the fact over 1000 have been assembled thus far, and anyone who cares to cim see them dodging aromad the main streets in Flint. (This writer salw a whole trainlsad of these combat vehicles on a siding near Los Angeles recontly.)

Rubber has gone to war in a hundred ways with which the average citizen is entirely unfamiliar. There is mothing particularly secret about these new usiges, but they just never come to the attention of most people, and the rubber companies are not doing any excessively loud talking about them. One of the newest developments is a 7 -man collapsible life raft for airplane erews, which is complete down to the last detail., Known as the E-1 life raft, it was developeed by United States Rubler Co. working in conjunction with engineers at Wright Field, who took advantage of field reports from such men as Capt.

One of 26 women workers in the shop of a Detroit Checrolet dealer now subcontracting on war production work, Mrs. Albert Bendetti is gas wehding a fitting on a radial engine intake manifold

Eddie Rickenbacker and others forced down in ocean waters. Compared with the original rubber rafts, the new model is luxurious down to the last detail. Oars, mast, sail, several types of rations, fishing tackle, bait, two-way radio, emergency water, sea marking compound, harpoons and dozens of other accessories are compacted into a neat bundle taking a minimum amount of room in a plame yet providing exceptional accommodations for bomber crews who are forced to take to the decp. Equipment even includes eight pages of fishing instructions printed on waterproof paper.

An appendix to this little treatise deals with emergency food other than fish, the following being one choice paragraph: "All animals are safe to eatmonkeys, bats, lizards, land turtles, frogs and even snakes, including poisonous snakes, if they have not bitten themselves. Snakes taste like frog legs or the white meat of chicken. Grubs found in the ground or in rotten wood make good food. So do grasshoppers, toasted on a stick. Pick off legs and wings before cooking. But do not eat caterpillars. Many are poisonous."

Conductive Rubber

One of the newest types of rubber which is finding military and war plant uses is the so-called "conductive" rubber, capable of transmitting electric current. This is an apparent anomaly, since rubber has always been thought of as an insulator, yet by adding extra amounts of lamplack (carbon) and other compounds to the crude mix a rubber is oztained which will conduct static charges and avoid sparks where they might be dangerous.

The material is visioned as having significint postwar uses in the form of heating elements, perhaps wall sections into which current might be fed and transferred into heat.
Not many automobile dealers have been able to get very far in subcontracting work for war production plants. Some time ago, Steex deseribed how a Youngstown, O., dealer organized a program of subcontracting. More recently details have been learned of how the Eastern Chevrolet Co. here adapted its facilities to production of subassemblies for radial aircraft and tank engines. Under direction of Ray M. Whyte, the company built up around a nucleus of former service department and office employes an organization which now supplies insulated intake manifolds for radial engines mounted in M-4 medium tanks; installing Hanges, drilling, threading, burring, welding on auxiliary pipe, Parkerizing, priming, enameling, baking, inspecting and shipping these manifolds; and also
dioes several finishing operations on the cowling of tank and airplane engines. The plant employs 26 women and 27 men, the women mostly former housewives from the neightorhood who were given special training in welding and in other essential operations.

The motor industry is making good use of "courier service" established by the

PIPE CLEANERS

Pipe cleaners, those fuzzy little gadgets of fine wire and wisps of cotton, ordinarily are not considered critical war material. However, a shortage nearly disrupted production in the Detroit Diesel Engine Division of General Motors recently.

Detroit Diesel uses a couple of thousand pipe cleaners a month. They are dipped in a solution of whe and abrasive and used to lap heat scale and other foreign matter from the inside diameter of eight small parts for diesel engines.

Usually they were bought from tobacco jobbers, but the gadgets have practically disappeared from the market due to the jobbers' inability to extend priority ratings for steel to the manufacturers.

Detroit Diesel's supply was almost exhausted. Company put its expediters to work and several thousand were obtained when the company extended AA-3 and AA-I priority ratings to the makers; diesel engine production was not interrupted.

Civil Air Patrol, aimed to link the country's war plants more closely by providing airplanes for emergency shipments of small parts. Here is an example of a recent mission: A Chevrolet Michigan plant was in urgent need of some tubular parts for a military product. Tubing furnished by a supplier in Muncie, Ind., and processed by another subcontractor in Warren, O., had to be delivered in a matter of hours to avoid a shutdown. So, at $2: 30$ one afternoon a CAP plane from the Detroit Wing took off for Muncie and by 5:30 had the parts aboard and was off for the Youngstown, O., airport. Weather forced the plane down at Mansfield, O., so the resourceful pilot engaged a truck to forward the shipment to Warren. In the morning the plane took off for Youngstown and picked up the parts which had been processed during the night. A defective exhaust stack forced the plane down at Detroit,
but the shipment wats transferred to another CAP plane and arrived less than 24 hours after leaving Muncie.

While the incident demonstrates the valuable aid being furnished plants by sueh groups as the CAP, it also demonstrates two serious fallibilities of air trans-port-weather and equipment breaktown. Until these are overcome, the air will continue to be just a tributary to the mation's freight transportation chamels.

Gear shaving vis. gear grinding is a topic for discussion when airplane engine and antomotive company process men get together to mull over their prol)lems. Automotive companies have long favored the gear shaving process because of the time savings it permits, and also because of difficulties in obtaining sufficient gear grinding machines. The aireraft engine builders prefer the grinding process although they are feeling their way into gear shaving.

Saves Tine

As an example of the time saving possible by shaving, certain gears which require 1 to 3 hours to grind can be shaved in 6 minutes. The shaving is usually done on "green" gears, which are heat treated and quenched after shaving. This calls for special quenching fixtures to hold the gears firmly to avoid distortion in the quench. However, steel up to 3540 Rockwell C hardness has been handled readily by gear shavers, it is reported.
The policy of one aireraft engine manufacturer with regard to gear shaving is outlined as follows:

1. Shaving is desirable where, because of the design, a hardened gear cannot be ground.
2. Shaving is desirable on gears which do not require hardening and where a saving in time or equipment can be effected.
3. Shaving is acceptable in hardened gears wherein accuracy can be maintained and where production is sufficient to warrant the use of complicated quenching fixtures. In this case the best method has been found to be shaving gears after carburizing and before hardening.

Another subject which engine builders have been pursuing is impregnation of magnesium castings before use. One ellgincer has defined a magnesium casting as "a series of holes surrounded by metal," indicating how serious the porosity problem is. Two sources furnishing magnesium castings impregnate them with tung oil. Another interest uses sodium silicate, impregnating castings after machining and testing for leaks, if necessary. One engine company places magnesium castings under 28 inches of vacuum for 15 minutes with temperature of 250 degrees to insure good penetration of tung oil into the castings.

IN HAPIPIEIR DAYS TO COME we will all have better, safer automobiles - more efficient refrigerators, washing machines and vacuum cleaners....farmers will have better, stronger tractors and other tools and machines.... aircraft will continue to set new
standards in speed, comfort and safety.....all made possible, in part, by the Wesson development of Carbide Cutting Tools to such high standards that they cut tougher metals than ever before-with greater precision - and at greater speed.

BATTLE-SCARRED VETERANS Look To Industry

REHABILITATION of the mation's war crippled and handicapped veterans looms on the industrial horizon as an increasingly important problem.
Success of the elaborate plans of the government for placing these herues in gainful employment, it is recognized, hinges upon the degree of co-operation given by employers. And industry, cognizant of its responsibility, is responding wholeheartedly.

Only recently the subject of industry's role in the rehabilitation of wounded soldiers and sailors came into the headlines with the ammouncement the Nitional Metal Trades Association, an organization with a membership of 1000 companies employing well over 1,000 ,000 workers, had recommended to its members the employment of disabled and incapacitated ex-servicemen. The association, which among other things sponsors practical machine operator and apprenticeship training programs, declared utilization of the disabled soldier has "tremendous possibilities" for not only aiding ex-servicemen but indastry and the nation as well.

Battle-scarred veterans of Pearl Harbor, Midway, Guadalcanal, Tunisia and other campaigns-many mere youngsters -are being rehabilitated in Army, Navy, and Marine hospitals and various institutions to play another important role in World War II. Some are returning to battle, Others, no longer fit for military service, are being placed on the nation's gigantic assembly lines producing mal-

Abstract

Return of wounded soldiers and sailors confronts employers with increasingly important problem of providing suitable occupations for the disabled in jobs which fit their capabilities. . . Industrialists "leaning backward" to aid government program

terials of war. And with huge casualty lists expected as the war progresses, the role of industry in this humanitarian and necessary work will grow apace.

Only a trickle of casualty cases has been routed to the nation's production army so far. But the machinery for preparing the war's disibled for useful work already is in operation. Through the close co-operation of industry, military hospitals, rehabilitation institutions, the United States Employment Service and the War Manpower Commission, it is expected the problem of fitting these

> By J. M. KURTZ
> Assistont Edifor, STEEL
veterans into well-paying jobs will be solved.

Comparatively few veterans of the present war have returned to industry, but great numbers of them have been rejected at military training camps because they are unable to withstand the rigors of military life. Latent hernia has developed from vigorous exercises in some cases. Mental strain has occurred in others.

War casualties seeking employment
have been few so far. The fact they will be increasing som, however, is indicated by the recent arrival of several shiploads of wounded from North Africa.

Severe cases are being handled by local draft boards. Each board has appointed an employment committeman whose duty it is to place the ex-soldier in a war job. Responsibility of finding employment for them has been placed in the hands of local draft boards becanse each board desires a record of the individual. And also, they see to it that employers live up to the provisions of the law requiring seniority preference of inducted men.

A number of problems have been encountered by local draft boards. Some employers have discontinued business since the outbreak of the war. Many others are in non-essential activities. Wherever possible attempts are made to place the veterans in essential occupations.

Actually little difficulty has been encountered in placing the disabled since industry has made requests for discharged servicemen. The War Manpower Commission and the United States Employment Service report industrialists have been "leaning backward to rehire ex-

servicemen in responsible positions."
Re-employment of the disabled servicemen is within the jurisdiction of the Veterans' Bureau. War Mampower Commission offices nearest Army, Navy and Marine hospitals register the disabled and question them regarding employment. Applications are forwarded to veterans employment representatives, there being one in virtually every state. This procedure is regarded as interim and will probably change as the flow of disabled increases.
The filing records of the Special Services Division, USES, are available to reterans' representatives. These files contain specific information on companies in the various areas which will accept certain types of handicapped individuals. Knowing low to place handicapped civilians means also knowing how to place veterans. For example, a certain bronze manufacturer will hire deaf mutes, heart cases, hernia cases, and persoms with one eye. A valve manufacturer employs persons with leg injuries, the hard of hearing, and mental cases. The file is so complete that few handicapped persons with ability are turned away.

The handicapped are paid the same hourly rate as normal employes. Men without legs were employed last year as draftsmen, clerks, drill press operators, machine operators, and handymen to name only a few. Men with hernias were found capable of performing light machine shop work and in some cases were able to perform hard labor. Especial care is taken in placing epileptics. Mental cases are placed in less arduous positions.

An outstanding example of industry's, co-operation to aid the disabled veterans is provided by the Gray Mfg. Co., manufacturer of communications equipment, Hartford, Comn. Recently in an advertis-
ing message addressed to disabled vetcrins, W. E. Ditmars, president of the: comprany, said:
"We would like to help you fit yourself back into a happy productive life and we feel that perhaps we can help. There are jobs open in our plant from time to time which you may be able to fill. Some of these jobs involve little activity, are only moderately manual, and are important.

"Presence Will Be Inspiration"

"Our desire to helpy you get into production' is not based on sympathy or on a sense of obligation (as grateful as we are to yon for what you have given our country), but on the cold harel fact that we know you want to continue to work for victory. We and the country need your continued help. We know, too that your presence here will be an inspiratiom and incentive to us to give our best to war production."

Realizing the effort of one company in such a tremendous project would be infinitesimal, Mr. Ditmars in at second! advertisement sought to encourage other industrial plants. His message was:
"We pass the jdea along to you and invite you to use it also. . . in the public print . . . for the public good."

Mr. Ditmars then quoted Brig. Gen. Alden H. Watt as saying: "The casualty lists are mounting. By spring lists will appall us and we shatl begin to realize how serious the war has become. Then the entire nation will be ready to go all out for victory, and right then we shall start to win the war."

Shortly after this advertisement appeared, Representative Miller, Wethersfield, Comn., suggested to President Roosevelt a survey be made of government positions outside the classified
service with the view of finding cmployment for veterans discharged from sersice because of war-incurred disabilities. He read the Gray company's advertise:ment on the House flow.
"I hope other manfacturers will copy" the ilea becanse this is a problem which will soom have to be faced, not only by industry throughont the country, but by the federal govermment as well," Representative Miller commented.

When read on the semate foom by Senator Damaher, the idea was characterized as "worthy of more than passing notice. It is a stimulating thing in these times," said Semator Damaher, "that the forward-looking management of an important industry takes such a progressive step and it is me which onght to find emulation in other indnstrics."

The govermment is lamehing rehabilitation programs for servicemen at several universities. Pennsylvania State College, for example, is a speech training center.
"Rehabilitation this time will be total, not partial as in the last war," Dr. Herbert Kocpp-Baker, atssociate professor of speech, states. "The govermment is planning to make as many servicemen as possible entirely fit to go out and earn their living."

In some of the more severe cases, training will be given in the Army,

Navy and Marine hospitals. But the majority of the men will be discharged from hospitals after their wounds have healed and will be sent to rehabilitation centers.

An interesting case turned over to the Cleveland office of the USES is that of a 40 -year-old man who served in the merchant marine for 18 years. He suffered a nervous breakdown when his ship was shelled in a Russian seaport. Discharged recently from a merchant marine hospital as cured he is still suffering from shell shock, officials point out. Rehabilitation in a sheltered workship is necessary to restore him.

A 26 -year-old victim of the North African battlefront suffered blocked heart condition resulting from a gunshot wound. He has been placed in industry as a guard at a large defense plant. Malaria undermined the health of a veteran who fought in Dutch Guiana. It left him in a highly nervous condition, but he has been sufficiently rehabilitated to be placed in a shop as a precision grinder on tool production.

Industry Lending a Hand

W. C. Dunn, president, Ohio Crankshaft Co., Cleveland, recently said "we want to do all we can to rehire servicemen who may have been wounded and we will make every effort to find them work which they can do."

A plan is now in effect whereby the Ohio company communicates with the armed services relative to certain individuals on how their cases can be treated best from an industrial point of view.

One interesting case is that of a former machine tool operator who returned to the company after being wounded in action. This sailor came back to his old job with a dislike for his former lathe. The personnel department is testing him at a number of jobs to determine which gives him the greatest satisfaction.

Walking through the Thompson Products Co. plant in Cleveland, one cani see a clean-cut looking youngster of not more than 20 , bent over a drafting board. He is a shell shock victim from Guadalcanal but has been sufficiently rehabilitated to return to his old position. Still another victim of shell shock and malaria has been placed in the responsible post of assistant director of activities and is giving an excellent performance in the job.
"The forthcoming postwar period will not only be concerned with the problem of providing jobs as ordinary employment, but industrial management and facilities will have to be directed to the matter of making special employment adjustments for disabled war veterans who must have some means of making a livelihood," Fred C. Crawford, president, National Association of Manufac-
turers and Thompson Products Inc., Cleveland, states.
"The rehabilitation of veterans is already a standard part of industrial programs which are currently meeting the problem as disabled servicemen, unfit for active duty but still anxious to play a part on the production front, trickle back from the various war fronts."

Mr. Crawford said Thompson Products Inc., in line with its invested policy of interest in employe welfare, is leading off research plamning for postwar jobs with an intensive study of individual cases of returned veterans who are employed, or applying for employment, at its plants.

The management, he added, is uniting the thinking-power in all the various phases of production to build up a program of rehabilitation which will make
one service is complete. There first must be adequate physical rehabilitation which includes occupational and physical therapy."
She points out occupational rehabilitation is useless unless preceded by physical rehabilitation.
"Fundamental principle of rehabilitation is the maximum restoration of physical capacity," she declared. "Then there must be an analysis of assets and liabilities of the individual. Too often the mistake has been made of analyzing the liabilities and not the assets."

Miss Greve warns industrialists against placing a disabled veteran in a sinecure. A handicapped person knows that if given the opportunity to work, he can be an asset to the company and not a burden or moral obligation.

Rehabilitation specialists stress in-

This former Marine was wounded during an attack on the Japheld Solomon Islands last year. He was rehabilitated at a Marine hospital and now is employed as a draftsman at the Thompson Products Co., Cleveland. He is tupical of hundreds that have undergone special training before being placed into industry

the lot of returning war heroes as true to "the American way of life" as humanly possible-a reward they so justly merit.

Government officials indicate private, state and industrial establishments will be called upon for aid in rehabilitating the wounded. Typical of private institutions which will play an important role in this work is the Assuciation for the Crippled and Disabled. This rehabilitation center has placed hundreds of handicapped civilians in war jobs since Pearl Harbor. Miss Bell Greve, executive secretary of the organization, has specialized in rehabilitation work for the past 20 years. After the last war she worked for the Red Cross rehabilitating disabled veterans in virtually every European country.
"For complete rehabilitation there must be teamwork of services and mited planning," Miss Greve said. "No
dustry would be performing a tremendous service to disabled veterams if it took a keen interest in seeing to it that they have the opportunity for complete rehabilitation before being assigned to a job. It has been found that when proper placements are made it is a distinct benefit to the company.

Deshon General Hospital, Butler, Pa., is typical of the many military hospitals scattered across the country which are restoring the disabled veterans for industry. It is crowded with 400 heroes of the global battlefields. Some of these have returned to industrial jobs.

Legislation passed in 1920 placed the disabled of World War I under the jurisdiction of the Federal Board for Vocational Education. Later they were transferred to the jurisdiction of the Veterans' Bureau which provided medical care.
(Flease turn to Page 149)

Clarence B. Randall, vice president, Inland Steel Co., Chicago, has been made president of Hillside Fluor Spar Mines, Rosiclare, Ill., recently purchased by Inland; P. D. Block Jr., assistant vice president of Inland, vice president; while Inland's secretary, J. H. Morris, has been made secretary of the Hillside company and W. D. Truesdale, treasurer of Inland, has been made treasurer. A. J. Cayia, who is general superintendent of Inland Lime \& Stone Co., Manistique, Mich., will serve as manager of operations of the newlypurchased company and Gordon W. Hughes, sales manager, Inland Lime \& Stone Co., manager of sales. II. W. Hurst of Hillside will continue as general superintendent. J. C. Hench, former president of Hillside, has retired to devote full time to other business interests, including presidency of Mid-West Forging \& Mfg. Co., Chicago.

Glenn C. Paxton, former production manager, Morrison Engineering Corp., Cleveland, has been appointed production manager, Industrial Oven Engineering Co., Cleveland. Mr. Paxton has also been associated with the Electric Furnace Co., Salem, O., and McCannHarrison Corp., Cleveland.
A. M. Wibel, formerly vice president and director of Ford Motor Co., has become vice president of Nash-Kelvinator Corp., Detroit. W. F. Armstrong and Frank R. Pierce, vice presidents, NashKelvinator, have resigned.

Ralph L. Hohnhorst has been appointed Connecticut district representative, machinery division, Austin-Hastings Co. Inc., Cambridge, Mass.

John S. Gregg has been made district sales manager, Cincinnati sales office, Inland Steel Co., to succeed Kenneth J. Burns who has become an executive in the company's plate and shape sales division, Chicago.

Robert II. Gibb, manager, Allegheny Ludlum Steel Corp.'s Pittsburgh district sales office, has left to accept a commission in the United States Navy. Max Pischke will succeed Mr. Gibb with title of acting district manager.
W. H. Houghton, comptroller, Bendix Aviation Corp., South Bend, Ind., for 14 years and a director since 1942, has been elected treasurer to succeed E. R. Palmer, who has resigned as vice president and treasurer, but who will continue as a director and a member of the executive committee. Arthur Raabe, who has been
with the Bendix Co. since its inception in 1924, will be in charge of Bendix radio division, Friez instrument division and Norwood and marine divisions.

- 0 -

E. J. Ellertson, purchasing agent, Caterpillar Tractor Co., Peoria, Ill., has been advaneed to the newly-created position of general purchasing agent. Succeeding Mr. Ellertson as purchasing agent is W. H. Steele, assistant purchasing agent since 1929.
W. S. Edsall, formerly manager, Switchgear Division, at Allis-Chalmers Co., Buston Works, has been made manager of a newly combined switchgear and control division of the company's electrical department at Milwaukee.

Albert V. Beet has been appointed general superintendent, Arrow Head Steel Products Co., Howell, Mich., in full charge of all operations.
V. H. Peterson, for past two years vice president, Elliott Co., Jeannctte, Pa., has been appointed assistant to the president, Baldwin Locomotive Works, Philadelphia.

Elvin E. Holland has been named first vice president, Star Electric Motor Co. and its affiliate, Star Efuipment Corp., Bloomfield, N. J. and general manager of the motor unit; Ivor C. Peterson, vice president in charge of sales and R. J. Gash, secretary and treasurer. Raymond E. Hollander has been named vice president in charge of planning and purchasing for the motor company, while Fred Eberhard has been chosen president and general manager of the equipment company.
L. C. Goad, general manager, General Motors Corp.'s eastern aircraft division, Linden, N. J., has been elected a vice president.

$$
-0-
$$

Edward Shaw Sr., formerly New Englaud sales representative, Producto Machine Co., Bridgeport, Comn., has joined Moore Special Tool Co. Inc., Bridgeport, Conn., as sales manager, in charge of tool-and-die division and also sales of job borers and jig grinders.

Millard Romaine, following service of two years with WPB, Washington, and Wright Field, Dayton, O., has returned to Cincinnati Milling Machine Co., Cincinnati, to assume his new duties as assistant to the president. Mr. Romaine was formerly sales manager of the company. Lester F. Nenninger, engineering department head, has been named works manager, succeeding W. Peaslee who re-

E. J. ELLERTSON

v. H. PETERSON

D. K. BALLMAN

Who has been named head of the newly organized service and development division of Dow Chemical Co., Midland, Wich., as announced in STEEL, June 7, p. 92
cently retired. Swan E. Bergstrom, formerly manager of the company's Detroit office, and recently assistant sales manager, has been appointed sales manager.

James M. Conway, formerly vice president in charge of purchases, Bishop

Guttia Percha Co, New York, has been elected president to succeed the late Henry D. Reed.
\qquad
Richard D. La Fond has been made director of public relations, Sperry Products Inc., Hoboken, N. J. Prior to his assuciation with the Sperry company, Mr. La Fond was sales promotion manager, Dresser Mfg. Co., Bradford, Pat, and before that was comected with the industrial advertising section, General Electric Co., Schencetady, N. Y.

Dr. Roger H. Lueck, director of research, American Can Co., Maywood, Ill., has been awarded the honorary degree of doctor of science by Carroll College, Waukesha, Wis.

- 0 -

M. J. Matthews, associated with Caclillac Motor Car division, Detroit, since 1910, has been appointed superintendent, Sheet Metal Division, succeeding A. A. Weidman, recently transferred to Detroit Diesel Division, General Motors Corp.

John E. Wells, formerly advertising manager of Ex-Cell-O-Corp., Detroit, and more recently associated with Manning, Maxwell \& Moore Inc., Muskegon, Mich., has been appointed advertising director, manufacturing subsidiaries of Aviation Corp. with hedaduarters in Detroit.

Harrison I. Dixon, formerly sales manager, Park Chemical Co., Detroit, is now associated with the H. H. Marris Engineering Service Co., with offices in Boston, Detroit and Chicago.

Daniel C. Green has been named president, Cleveland Preumatic Tool Co. and its subsidiary, Cleveland Pneumatic Aerol Ine., Cleveland. As chairman of the board of directors, Mr. Green had been the chief executive officer of the company since March, 1942. He replaces John De Mooy, who retired after 42 years with the company. John S. Clark has been appointed treasurer, and J. W. Roberts, assistant treasurer.

$$
-\mathrm{o}-
$$

H. B. Shepherd has been appointed district manager of sales, Washington office, Jones \& Laughlin Steel Corp., to succeed J. B. DeWolf who has resigned.

Clyde Vandeberg, deputy of OWI and chairman of the government's interagency production information committee, has resigned to become general manager, Aircraft War Production Council East Coast Inc., with headquarters in New York. Mr. Vandeburg will continue to serve OWI in a consulting capacity
on labor and management relations in the industrial field. Prior to 1941 he was assistant to the president in charge of inclustrial relations for Packard Motor Car Co., Detroit.

-0-

Lee Schoenfeldt, former economist and manager of commercial research, General Electric Co., Schenectady, N. Y., has joined the radio division of Bendix

W. P. DRAKE

Aviation Corp., New York, as assistant marketing director.

William P. Drake, recently appointeG manager of sales, Pennsylvania Salt Mfg. Co., Philadelphia, has been placed in charge of the company's stiles of acid and alkali-resistant cements and chlorinated organic chemicals, in addition to his former duties as manager, Pemisalt Cleaner division. Assisting Mr. Drake are Albert H. Clem and Joseph J. Duffy, formerly of the Detroit and Rochester territorics, respectively. J. S. Dimon, formerly local representative in the Philadelphia area, has been given charge of sales and service in the transportation field, while W. J. Hennessy, with headquarters in littsburgh, has been given charge of technical service to the steel industry.

Palmer Nichols has been elected president, Bendix Aviation Letd., North Hollywood, Calif. Mel M. Burns continues as vice president and assistant general manager.
W. A. Mann has been appointed assistant manager, industrial division, General Electric's central district, Chicago. Mr. Mamn joined the company's electric turbine department at Schenectady works in 1923.

- 0 -

John W. Hart has been elected executive vice president, McCray Refrigerator Co., Kendallville, Ind. Mr. Hart suc-
ceeds Paul W. Miller, who has been . elected chairman of the board.

- O -

A. Howard Fuller, formerly vice president and director of production, leuller Brush Co., Hartford, Conn., has been elected president to succeed Alfred C. Fuller, founder of the company, who has been named chairman of the board of directors. Alfred C. Fuller is also presi-

JAMES F. STRNAD
dent of Comecticut Manufacturers Association.

James F. Strmad, presiclent, Lempeo Products Inc., Bedford, O., has been made president of the Evans Reamer \& Machine Co, Chicago, formerly known as the Evans Flexible Reamer Co. and recently purchased by Lempeo. O. T. Hillshafer, former Lempeo assistant sales manager, has been promoted to executive vice president in charge ol sales of Evans Reamer \& Machine Co., while John Y. Blazek, general manager of Lempeo has been named treasurer and Herbert A. Spring has been made secretary.

Harold E. Hall has been elected president, Metals Disintegrating Co. Inc., Elizabeth, N. J. He has been general mamager the past six years.

- $0-$

Thomas J. Connors, for 20 years special representative, steel division, The Stimley Works, Bridgeport, Conn., has been appointed New York district sales manager.

$$
-\mathrm{O}-
$$

E. G. deCoriolis, research director, Surface Combustion Corp., Toledo, O., has been given honorable mention by the National Metal Trades Association at its ammal dinner recently at the Palmer House, Chicago, in recognition of his work in development of the RX gas generator, an outstanding contribution in the
heat treating field for savings in critical alloys.

- $0-$

Shelby G. Fell, superintendent of cost and accounting, Kearny, N. J. works, Western Electric Co., has been promoted to assistant controller of manufacture at general headcuarters, New York. Succeeding Mr. Fell in his former post are Irving M. Baker and John M. Camplell.

GEORGE JOHNSTONE JR.

George Johnstone Jr., formerly assistant foundry superintendent at Grove

City, Pa. plant, Cooper-Bessemer Corp., has been named fomudry superintenclent.

- 0 -

J. W. St. Clair, vice president, Hajoca Corp., Jhiladelphia, has been elected secretary, Philadelphia Control of the Controllers Institute of America. Charles L. Jones, assistant treasurer, Alan Wood Steel Co., Conshohocken, Pa, was reelected a clirector.

FRED H. JOHNSON

Fred H. Johnson has been appointed assistant chief engineer, Pittslurgh dis-
trict, Carnegie-Illinois Steel Corp. In charge of the defense engineering staff for two years, Mr. Johnson came to Car-negie-Illinois in 1940, having previously served with Interlake Iron Corp., Chiaggo, from 1926.

Dr. William E. Wickenden, president, Case School of Applied Science, has been appointed a public member of the wage-honr committee for the stome, clay, glass and allied industries.
B. L. Whelam has been named acting general manager, Sikorsky Aircraft division, United Aircraft Corp., East Hartford, Comn., to succeed J. R. Miller who has been granted a leave of absence becanse of ill health.

- $0-$

James C. Daley, treasurer, Jefferson Electric Co., Chicago, has been elected president and treasurer to succeed J. A. Bennan, founder of the company, who has become chairman. Alfred E. Treganza, vice president, was named executive vice president.

-0-

Harry J. Wines, general New York sales manager, Frigidaire division, General Motors Corp. for past cight years, has been appointed to sales executive staff of Zenith Raclin Corp., Chicugo.

OBITUARIES

George Washington Connors Sr., 77, board chairman, Comors Steel Co., Birmingham, Ala., died June 5 in that city. Mr. Connors established the ConnorsWeyman Steel Co. at Helena, Ala., in 1908 and in 1915 organized the Comnors Steel Co. He served as gencral manager until 1937 when he was made chairman of the board.

> -0-

Harry P. MeCamn, 63, head of McCann Furnace Co., Cleveland, died June 7 in that city.

Edward H. Bardes, 76, founder of the E. H. Bardes Range \& Foundry Co., Cincinnati, died recently in that city.

$$
-0-
$$

William L. Krodel, 72 , founder, general manager and secretary, Waterbury Brass Foundry, died June 3 at Millville, Conn.

$$
-0 \text { - }
$$

John J. Holub, 66, for the past 15 years factory superintendent, Excelsior Steel Furnace Co., Chicago, died June 2
in that city. He had been associated with the company 50 years.

Otto A. Frederickson, 50, chief engineer, National Electric Products Co., Pittsburgli, died June 5 in Orange, N. J.

William H. Stratton, 76 , former manager, export department, American Bridge Co., died June 4 at Ridgewood, N. J. Mr. Stratton was general manager, Berlin Iron Bridge Co., Berlin, Conn., when that firm was taken into the United States Steel Corp. in

John W. Callaghan, 71, president and treasurer, White Wire Works Co., Rochester, N. Y., died June 3 in that city.

$$
0-
$$

William A. Sinnott, 44 , assistant to division superintendent, steel production, in charge of personnel, open hearth department, South Works, Carnegie-Illinois Steel Corp., Chicago, died June 1 in that city. He had been employed at South Works since 1917.

$$
-0-
$$

Dr. Philip H. Kreuscher, 59, chief
surgeon, Chicago district, CamegicIllinois Steel Corp. from 1936 until his retirement in February this year, died Jume 1 in Chicago.
R. I. Chadwick, assistant to the manager in charge of engincering, Fort Wayne Works, General Electric Co., died May 29.

Harry S. Hitchcock, 75, president and general manager, Apex Steel Corp., Los Angeles, died May 30. He was one of the early pioneers in the iron and steel industry of Southern California, having formerly been connected with the Baker Iron Works Plant, Los Angeles.
-0-
Alee C. Gerrard, 59, founder of Gerrard Wire Tying Co., Chicengo, now a subsidiary of United States Steel Corp. and inventor of several wire tying devices, died June 5 in San Francisco. He was also associated with A. J. Gerrard \& Co., Chicago.

- O -

Adelbert Emmons Bronson, vice president and director, Dill Mfg. Co., Cleveland, died May 26 in that city.

Action Expected Soon on Move To Build Critical Metal Supply

Directors of A.I.M.M.E. likely to take up for final consideration resolution aimed at advancing proposed accumulations of essential materials after the war

BEHIND a resolution likely to come up for final action this week by directors of the American Institute of Mining and Metallurgical Engineers is a strong convietion that a reserve of critical metals and minerals should be set up after the war and that something should be cone about it now and not after the war is over.

The reserve, it is contended, should be adequate to meet or at least cushion future national emergency needs and to preclude postwar dumping of heavy excess stocks of metals and minerals. But for the plan to go through, it is considered important for Congress to act while recent difficulties in getting strategic materials are still fresh in mind and before the matter becomes submerged in a wide diversity of problems likely to arise after the termination of the war.

Back in 1918 Bernard Baruch proposed such action before the end of the first World War,, but nothing came of it-at least not until as late as 1940, when stockpiling was finally authorized by Congress, and with war looming on the horizon. And even then had it not been for the foresightedness of industrialists in laying in substantial stocks, it might have been too late. As it was, the situation for a while appeared acute.

Proposes Congressional Action

This was emphasized earlier in the year at the Mining and Metallurgical Engineers' annual meeting by R. C. Allen, Oglebay Norton \& Co., Cleveland and past president of the institute, who proposed that members start formulating a policy for submission to Congress that it, in turn, might enact a law providing for such reserves. Subsequently, a resolution was drawn up advocating the accumulation by the govermment of "adequate reserve stockpiles of critical minerals during the period of ten years immediately following the termination of the present war." The resolution over recent weeks has been put before various sectional groups of the organization and is now up for final action by the directors June 17. It is considered probable that the resolution will be passed, with few, if any changes.

As now drafted, the resolution enunciates only a broad policy; it deliberately avoids various details, for the formula-
tion under a comprehensive stockpiling program naturally can be accomplished only after the clarification of various important questions. A. B. Parsons, commenting editorially in a recent issue of the institute's publication, Mining and Metallurgy, lists some of the more fundamental questions, which must first be solved:
(1) What metals or ores should be inclucled?
(2) To what state, if any, should ores be processed: should manganese be stocked in the form of ore or as ferromanganese; should copper be stocked as concentrate, as blister, or refined wire bars?
(3) How much of each critical material should be accumulated?
(4) Should domestic producers be subsidized by premiun prices when they are unable to compete with producers from foreign countries; and, if so, by how much?
(5) How rapidly should the determined quantity be acquired?

What changes there will be in the weapons and technique of waging future
wars, or precisely what the advances will be in metallurgy and engineering no one can foretell; nevertheless, he believes, that with the co-operation of Army and Nasy officials, civilian technologists and engineers, economists, and statesmen, a useful program can be developed.

Clearly it is impossible at the moment to estimate how much of a surplus will be on hand at the close of this war. Figures developed at the end of the first World War searcely provide an index, for the reason that present hostilities are on a much vaster seale and are so much more highly mechanized.

As indicated above, there are various uncertain factors in connection with the whole problem. For instance, what would be the influences of lend-lease and reciprocal trade agreements, and to what extent will it be necessary to cushion the effect of the postwar trimsformation for domestic operators? These and other phases will have to come in for study:

Huge Reserve Required

It has been roughly estimated that a reserve with a minimum value of $\$ 3$ billion would be adequate. Much of this valuation, of course, would be represented by materials on hand, and undoubtedly, too, by materials which would be brought in from abroad in exchange for food and manufactured products. Consequently, any program set up on this basis would not require new appropriations for anything like the amount.

Discussing the desirability for main-

POTENTIAL DOOM FOR ENEMY BATTLESHIP

> ARMOR-PIERCING bomb comes off the press at a Bethlehem Steel Co. plant while the makings of another goes on. One bomb of this size is capable of sinking or crippling a heavy cruiser or battleship
taining a stockpile of domestic as well as foreign minerals, Mr. Allen recently pointed out that during the past third of the century the workl has used more minerals than in all previous time and that exhaustion of many of this country's great mineral deposits is proceeding at an appalling rate. For instance, shipments of iron ore of good grade from the Lake Superior district camnot be maintained at the present rate for more than six or seven years, he said. Hence, he belicved that even domestic iron ore should be stockpiled.

In its proposed resolution, the mining
institute offers to provide Congress, without cost, disinterested and expert engineers and technological advice regarding needs and sources as may be necessary; and should the resolution be approved by the directors in its present form, a copy will be sent to the Presiclent and to each member of the Senate and House of Representatives.

Far from beating the drums of war in making this proposal, proponents of the stockpiling program believe that suc! reserves, at worst, would only contribute to an early victory in the next war and might defer such a conflict indefinitely.

Industry To Face Gigantic Task Converting from War to Peace

ASSUMING the country will have a sound cconomic system, much can be achieved after the war is over in putting men to work, Lammot du Pont, chairman, E. I. du Pont de Nemours \& Co., Wilmington, declared recently at the amual meeting of the Manufacturing Chemists Association, Hotel Wal-dorf-Astoria, New York.

To obtain the best results, he declared, certain fundamentals will have to be respected, for instance (1) sound money, based preferably on the gold standard; (2) taxes at such a level as to give industry the incentive to expand; and (3) government abstinence from competing with private business.
He revealed that his own company's postwar planning group has made a survey which "indicates that the new projects which Du Pont will be ready to launch when the war is over, together with increased outlets for existing products, will give rise to an all-time high in peacetime employment by the company. Such a result, of course, assumes that the country will have a sound economic system and that there will be no seriously abnormal man-made business conditions or difficulties which cannot be foreseen now."

Mr. DiI Pont asserted that regional and national planning conferences are educational and serve a useful purpose in giving incentive, but emphasized that "when problems are actually tackled, each company or corporation must consider its own needs and work out each solution, not selfishly but with consideration for the greatest good for the greatest number."

He stressed the magnitude of the problem involved in absorbing millions of demobilized fighting men and other millions of workers from closed-down war plants. He declared that although
the United States would have the greatest productive capacity in its history, the task of swinging this capacity from the channels of war to those of peace would be fully as titanic as was the "onversion of a peaceful nation into the "arsenal of democracy".

Huge Peacetime Demand For Goods Is Predicted

By the end of 1944 demand for power for war production will be decreasing, Charles W. Kellogg Jr., president, Edison Electric Institute, told 500 members of the organization at its amual meeting in New York recently.

He pointed out that the combined clectric generating capacity of the nation's power systems, both private and public, has increased by $6,500,000$ kilowatts since June, 1940, to a present level of some $47,500,000$ kilowattsmore than the combined installed capacities of the Axis nations.
Hugh C. Thuerk, chairman, institute's postwar planning committee, asserted that from the present outlook the deferred demands for both consumer and durable goods in this country will be relatively much greater than after the last war.

Economist Declares War's Maladjustments a Problem

The fourth bulletin of a series on postwar readjustments titled Maladjustments in the Postuar has been released by the Chamber of Commerce of the United States.

Dr. Emerson P. Schmidt, economist and secretary of the groun's committee on Economic Policy, is the author of the latest bulletin. The booklet discusses the
maladjusted economy as a result of war. It points out that some industries and some workmen are adversely affected while others are greatly stimulated. It regards the price spreads and deringements resulting from war as constituting a barrier to active business-the exchange of goods and services.

Suggests Policing World's Mineral Resources

Formation of a postwar intermational policing body to enforce peace by controlling the world's mineral resources was proposed recently by Charles Kenneth Leith, head, Metals and Minerals Branch, Office of Production Researeh and Development, War Production Board. This program should permit mations to expand industrially, but prevent them from rearming for war.

He spoke at the amual commencement of the gradnate school of Stevens Institute of Technology, Hoboken, N. J., at which the college conferred upon him the honorary degree of Doctor of Sci ence and on George Bucher, president, Westinohouse Electric \& Mfg. Co., Pittshurgh, the honorary degree of Electrical Engineer.
Dr. Leith declared the United Nations were not only keeping even with the Axis but in some cases were well ahead in the technology of metal production and use.
"We are now in position where our vastly superior weight of metal will begin to count," he assertetd. He advocated the postwar accumulation of stockpiles of strateric minerals and the study of the technology of warfare.

National Planning Group Seeks Realistic Program

The business, labor and agriculture committees of the National Planning Association declared in a joint statement recently that "we believe what happens to this country after the fighting is over is of personal concern to every American."

The committees, organized by the association, said that their function is not so much to create new plans as to seek out the best of postwar plaming from other sources. They agree that the war will have been lost if masses of workers are idle. They seck to face postwar planning realistically and prepare against muemployment during the reconversion period.
The committees also agree that the basis of America's postwar ceonomy should be private enterprise but that private enterprise should adjust itself to a chauging workl.

Electric Metal Makers Consider High Quality Steel Production Problems

MAINTENANCE of the high-quality of electric furnace steel in the face of lower quality raw materials and unskilled help wats given chicf attention at the eleventh annual meeting of the Electric Metal Makers Guild at Canton, 0 ., June 4 and 5.

James Sweitzer, Sivyer Steel Casting Co., Milwatuke, was elected president to succed Harry F. Walther, Timken Roller Bearing Co., Canton, O. Mr. Sweitzer has been vice president of the guild for the past year. In that position he is succeeded by Alex C. Texter, Atlas Steels, Ltd., Welland, Ont. John E. Arthur, Crucible Steel Co. of America, Pittsburgh, was re-clected secretarytreasurer.

President Walther in his welcoming address emphasized the importance of the job done by electric furnace steel, pointing out that capacity operations must be maintained in spite of increasing difficulties with respect to alloys, scrap and manpower.

Hardenability Tests

Guest spataker at the opening session was Walter G. Hildorf, chief metallurgical engineer, Timken Roller Bearing Co. Mr. Hildorf summarized wartime developments in alloy steel metallurgy and pointed out the increasing value of hardenability tests as a criterion of the value of a steel. Buyers of alloy steels in the postwar period will probably pay little attention to the alloy content, he said, but will base their decisions on the harclenability as an indicator of what the steel will do.

Technical sessions were split into two groups-one of ingot manufacturers under the chairmanship of Edward J. Chelins, Duquesne works, Carnegie-IlLinois Steel Corp., and the other section composed of steel foundrymen under the chairmanship of Martin T. McDonough, National Malleable \& Steel Castings Co., Sharon, Pal

Chief subjects covered at the ingot section were on charging practice, hot metal preparation, duplexing of steel, refractory furnace linings and scrap melting. The foundry section discussed heat treatment, applications of low-alloy stcel castings, use of transformers and reactors in foundry operations, and foundry metal practices.

Col. Steven Conner, Watertown Arsenal and a nember of the guild, discussed the Army gun program and the part industry has played in it. Aside from a continned trend to larger caliber,
according to Colonel Conner, the Army gun program is pretty well settled. No further changes in metallurgy can be expected in view of the fact that so fir in this war no American gun has failed in the hauds of troops.

Some of the problems of the industry which must be faced before the war is over, as well as some postwar problems, were discussed by Harry W. McQuaid, principal industrial specialist, Iron and Steel Division, War Production Board. According to Mr. MeQuaid, only the tonghest steel jolss are now being given to the electric furnace manufac-
lurers for production, but there are so many of these, that unless all units are pushed to capacity, we will be umable to meet production schedules.

James E. Lewis, Industrial Salvage Section, War Production Board, outlined the work of this mit and gave some indication of serap supplies which can be expected during the next few months.

At the ammal clinner Walter M. Farnsworth, Republic Steel Corps, acted as toastmaster and introduced Lewis II. Creighton, chief, Alloy Stecl Branch, Iron and Steel Division, WPIB. Mr. Creighton gave a broad general picture of the alloy steel situation, how the supply of eritical alloys is expected to batance together with serap to provide sufficient melting stock for the expauded electric furnace program, plas the open hearth capacity for melting alloy steels.

Automotive Engineers Discuss War Materiel Problems at Meeting

CAST IRON and steel are satisfactory substitutes for aluminum in the mamufacture of brake cylinder pistons, J. F. Bachman, Chrysler Corp., told the war materiel meeting of the Socicty of Automotive Engineers at the BookCadillace hotel, Detroit, last week.

Tests of all other materials, Mr. Bachman told the group, were found unsatisfactory. Steel requires rigid inspection for nicks and burrs and very carcful handling before installation, he added. Dure\% plastic with harclened steel insert was found a possibility hut more experience is desired.

Brig. Gen. Jolm K. Christmas' statement that "dust is as real an enemy to our mechanized war equipment as the enemy themselves" provoked a discussion of "Dust Problems In Military Vehicle Operations" by L. F. Overholt, Intermational Harvester Co.

Vital Parts Protected

Mr. Overholt said that the tractor industry experience has proved that all vital parts of the machine must be protected against dogging or abrasion by dirt. Lessons obtained the hard way, he added, have talught designing and development engineers that the dust problem is not a stepehild to be pushed around but a real enemy that cannot be defeated by halfway measures.

Col. E. S. Van Deusen, Ordnance Department, Tank-Automotive center, presented a paper titled "Lessons Learned From World War II About Designing For Accessibility." He said that relative accessibility is measured in units of
time by our troops in the field-and in the theatre of operations, time is measured in flesh and hlood. Thus, a physieal relationship of units and assemblies such as may chable maximm, mhindered, manual adjustment on the one hand, and minimum special tool work on the other is to be classed as nothing less than a military objective in itself. He proposed that inclustry compromise just a bit more in favor of accessibility.

Much Progress Made

Rear Admiral Ralph E. Davison, Bureatu of Aeronautics, U. S. Navy, told the group that much progress has been made. Navy airplanes are now being produced in quantity on assembly lines that are becoming more efficient and are at the same time flexible. The trained engineers of the Navy are ready to help in any way that is within their power, he added.
"Shot Blasting to Increase Fatigue Resistance" was the subject of a paper by J. O. Almen, Research Laboratories division, Gencral Motors Corp. Mr. Almen declared that while great strides have been made in most phases of engineering and metallurgy it is doubtful that in dynamically loaded parts we are getting more net work from our metals today than was obtainable 25 years ago. Although no super strength alloys have been discovered, he added, and no such discoveries seem to be imminent, there is much that can be done to materially increase the fatigue strength of many machine parts made from ordinary structural materials.

Co-workers' Jibes Shame Offenders

Steel castings company official describes corrective measures his firm found successful

ABSENTEEISM continues one of the most difficult problems confronting industry despite considerable attention to the problem in recent mouths.
Plant and industry surveys have developed much information on caluses and clleets, and some progress has been made in effecting a program for combating the evil. Much remains to be done as inclicated by a recent survey by the National Association of Manufacturers.

This survey (Stekl, May 24) showed average absentecism in 25 major war plants increased 56 per cent since the start of the war cffort. Present percentage of absenteeism was found to be 5.42 per cent, compared with 3.48 before the outbreak of hostilities.

Chief canses were found to be sickness, accidents, housing and trimsportation problems, high earnings, inexperience in regular employment and irresponsibility.

That the problem is not impossible of solution is the opinion oxpressed by most industrialists. The manufacturers association, in fact, adrances 30 suggested steps whereby management can alleviate the problem. In many instances, however, it is recognized that comditions peculiar to a particular plant or area must enter into the formulating of any plan or program designed to correct the loceal situation.

In this latter connection John Somenfeld, vice president and works manager, Korokuk Steel Casting Co., Keokuk, Iowa,
in a letter to the editor of Stebi, details his company's expericnce in handling the problem which shows how a psychological approach can be ntilized suecessfully as a corrective.
"Patting-om-the-back' methods have failed from the start," Nrites Mr. Somnenfeld. "Disciplinary moasures are not advisable clue to possible mperenssions coming often from delicate cases where it is difficult to determine the real canise. of a man's absence from work.
"The highest percentage of absentecism develops immediately after the worker receives his pay, which in our case lere is on the nightshift Fridity, thengon Saturday and some on Mondlay, ind despite laying such men ofl for fromitivo to six days, no improvement resulted, On the contrary, these men got sour and got a lot of sympathy from their co-workers.

Company Changes Pay Day

"As stated above, fere are prying our men on Friday. The night men can have their checks begiming 10 a. m. Friday which gives them time to do their weekly shopping in daytime.
"To break the habitnal alsentees from their practice of staving away either on Friday or on Saturday, I decided to change the pay day from Friday to Saturday and motified the mion committeemen, who voiced their approwal and promised to co-rperate.
"It should be maderstood the mions do not approve of wildeat absentecism and, properly handled, will co-operate in comhatting this evil."
Notices of the change were posted on a Tuesday.

"The trigger-man didn't come in today"

The raction started to set in on Tharsdey when a number of steady workers came to ask if they conldn't get paid as heretofore on Friday and why should they be penalized for the sins of a few reckless en-workers, cte.
"By Friday morning the psychological cycle was complete and one of the most itstomurling reactions hat erystallized: The condemmation and rebuff of whesentees by their own eo-workers.
"The rest was ensy. The payroll department had orders from the mutset to have the paychecks ready as ustal on Friday morning and the paymaster to hand the checks sut to all except to the habitual absentees, whose checks were to be delivered to me and the delincuents to call for their chacks at my office.
"So when the paymaster started his romals of paying off he maturally skipped the colprits whereupon a big rumpus all over the departments started. Jibing, poking fun and generally provoking the checkless men never ceased matil the end of the dayshift, when these justly disciplined men singly charged into my office ready to strike back.
"I was prepared for them, however, and as sion as one of them stepped in, I handed him his check, asking if that was what be wanted. I told him also to look at the figures on his check and asked if he did wot realize that his check shoukd have been for a much larger amount, had he not been foolish conough to loat rather than work and do his share towards the war effort like the rest of us."
Following this, the company had no mwarranted absenteeism on Friday, Saturday, or Monday.
Keokuk Steel Casting uperates an open shop, has a mion agreement, cmploys about 240 men.

Work Shirkers Given "Tall" Harpooning by Cartoonists

Absenteeism is being given some "tall" harpooning ly American cartoonists at an exposition of more than 200 cartoons recently opened at 335 Fifth avenue, New York. One of the cartoons on display appears on this page.

The display is the work of members of the American Society of Magazine Cartoonists and is being held under the sponsorship of the United States Production Information Committee, comprised of the War Production Board, the War Manpower Commission, the Maritime Commission, the Office of War Information and the Army and Navy.

Shortly 25 of the cartoons will be selected by a board of seven judges chosen from xepresentatives of the war agencies making up the United States Production Committee.

At right, Robert H. Luckenbach, left, safety director of the Edward G. Budd Mfg. Co., Philadelphia, receives congratulations and a certificate of merit from M. L. Wurman, chairman, industrial section of Philadelphia Safety Council. The Budd company won the first quarter inter-plant safet! contest for having achicved the greatest decrease in accident frequency rates among large metal products manufacturers

\star

Republic Drill \& Tool Co., Chicago, manufacturer of high-speed twist drills, received the " E " burgee at recent ceremonies, below, the first in which the award was made to an organization primarily designed for and operated by women. Employe representatives hold the flag. At left are Col. W. H. McCarty and E. F. Reinhart, president

Five Production Pennants Awarded by Army-Navy

Five Army-Navy production awards for excellence in performance of war work were announced last week by Under Secretary of War Robert P. Patterson and Under Secretary of Navy James V. Forrestal. They are:
Eagle Precision Tool \& Die Co., Long Island City, N. Y.

Fletcher General Hospital Construction Project, Cambridge, O .
Hawaiian Air Depot, Hickam Field, Territory of Hawaii.
Liberal Air Field Construction Project, Liberal, Kan.
Ozark Ordnance Works Construction Project, El Dorado, Ark.

Operating Expenses Absorb 96 Cents of Steel Sales Dollar

PAYROLLS, taxes, raw materials, depreciation and depletion and other opcrating expenses absorbed 96 cents of the steel industry's sales dollar in 1942. This was $2 \frac{1}{2}$ cents more than in 1941 and 5 cents more than in the last peacetime year of 1940, according to the American Iron and Steel Institute.

Of the 4 cents remaining after paying operating costs, $2^{1 / 2}$ cents were paid out in clividends, $1 / 2$-cent in bond interest, and 1 cent was added to the companies' surplus as a reserve for future needs.

In 1941, costs of operation consumed $931 / 2$ cents of each sales dollar. Dividends represented 3 cents, $1 / 2$ cent was accounted for by interest, while 3 cents were left in the business as an addition to surplus.

In 1940, the proportion distributed to bondholders was twice as much as in 1942. One and one-lualf cents more of each sales dollar were paid out in dividends that year than in 1942, while 3 cents more of each sales dollar were added to surplus.
The rise in operating expenses evident during 1941 continued in 1942. Payrolls increased from 33 cents in every sales dollar to $361 / 2$ cents. Taxes rose from $11^{1 / 2}$ cents to $121 / 2$ cents per sales dollar, more than three times the portion consumed by taxes in 1929 and almost double the figure for 1940 when only $6 \frac{1}{2}$ cents in every sales dollar were absorbed by govermment.

Largest percentage increase in costs last year was in payrolls, which took 10 per cent more of each sales dollar in 1942 than in 1941. Taxes ranked second, increasing 9 per cent over the year before.

Percentage of each sales dollar accounted for by interest and dividend payments to investors and by additions to surplus was nearly 40 per cent less last year than in 1941.

Costs of materials, freight charges and nther expenses reflecting indirect labor costs took $421 / 2$ cents of each sales clollar in 1942, two cents less than in the preceding year.

Armco's '42 Sales Soar; Net Declines 31 Per Cent

Record volume for the year 1942 is reported by American Rolling Mill Co., whose net sales rose to a new high of $\$ 180,978,867$, a gain of $\$ 11,800,628$ over preceding year. In sharp contrast, however, was the decrease in net eamings which, according to Charles R. Hook,
president, were reduced to $\$ 7,780,988$ by the largest tax bill in Armco's history, higher labor costs and refund of $\$ 2,500,000$ as a result of contract renegotiation. Net for 1942 was $\$ 11,288$,475 , or $\$ 3.21$ a common share, compared with $\$ 2.01$ a share last year.
Most of the major construction work started by the company in 1940 was completed in 1942 and is producing steel, Mr. Hook said. Expansion embraced modernization of the Ashland, Ky., division sheet mill, improvements at other divisions and the new plant of Sheffield Steel Corp. of Texas.

Armeo International Corp., export dision of American Rolling Mill Co., has contracted to build and manage a fully integrated steel plant at Monclava, Coahuila, Mexico, by Altos Hornos de Mexico, S. A., a Mexican corporation.

First quarter operations of the company resulted in net earnings of $\$ 1,535$,205 , equal to 36 cents a share on common stock, against $\$ 1,731,635$, or 43 cents a share, in the 1942 period.

Rustless Iron \& Steel Corp.

Report of Rustless Iron \& Steel Corp. for quarter ended March 31, 1943, shows net profit as $\$ 822,680$, equal to 86 cents a common share, compared with net of $\$ 576,011$, or 60 cents a share, in like quarter last year.

Superior Steel Corp.

Superior Steel Corp.'s report for quarter ended March 31 shows net profit as $\$ 151,014$, equal to $\$ 1.33$ per share, compared with $\$ 121,786$, or $\$ 1.07$ per share, for corresponding three months last year.

Steel Payrolls, Wages At New Peak in April

Payrolls of the steel industry in April set a new record for a 30 -day month, totaling $\$ 133,275,000$, the American Iron and Steel Institute reports. The April total came close to equaling the record of $\$ 136,813,000$ paid out in March, a longer month, and was substantially above the April, 1942, total of $\$ 118,568,000$.

Employment in the industry declined during April, apparently reflecting lengthening of the average work week. Although total number of hours worked during April set a new peak for a 30 -day month, the number of employes in April
totaled 634,000 , against 637,000 in March and 654,000 in April, 1942. Average work week in April was 42.5 hours per week, unchanged from March but higher than the 39.7 hours per week in April, 1942.

Average hourly earnings increased to a new peak of $\$ 1.112$ per hour in April, compared with $\$ 1.103$ in March and $\$ 1.004$ in April last year.

activities

Sunlight Electrical and Packard Electric divisions of the General Motors Corp., Warren, O., will be combined July 1. New division will be known as Packard Electric division with B. N. MacGregor, general "manager of the new division. J. B. Estabrook, general manager of Sunlight Electrical, will be special assistant to Mr. MacGregor.

Stewart-Wamer Corp., Chicago, has leased for five years the twenticth floor of the Builders building, 228 N . LaSalle street, and will move its executive offices from 1828 W. Diversey Parkway about July 1.

Lempco Products Inc., Bedford, O., has purchased the Evans Flexible Reamer Co., Chicago, James F. Strnad, president of Lempco, announces. The name of the company will be changed to Evans Reamer \& Machine Co.

Hallmark Laboratories has been established in Corry, Pa., as an industrial research laboratory. The company plans to develop manufacturing possibilities in salvageable residue. Research in textiles and coal also is planned.

The Grobet File Co. of America, importers of precision Swiss files and manufacturers of rotary files, has more than doubled factory area of its New York plant at 421 Canal strect.

Bellows Division, Cook Electric Co., has opened a new plant at 909 Diversey Parkway, Chicago. The plant has a modern testing laboratory with the newest facilities for altitude tests for aircraft work.

The Ridge Tool Company, Elyria, O., recently moved from its original factory site at North Ridgeville, O., into completely remodeled and modernized plant and offices in Elyria.

$$
0-
$$

American Pipe \& Construction Co., Los Angeles, manufacturers of corrosion resistant thermoplastic coatings, announces appointment of Gunite \& Waterproofing Ltd., Montreal, Canada, as Canadian distributors for Amercoat.

Lend-Lease Accounts for 60\% of Export Trade

IN the two-year period since the passage of the LendLease act, the United States has exported to other United Nations a vast quantity of war materials and equipment aggregating $\$ 7,105,000,000$. Of this sum munitions represent almost half, or $\$ 3.4$ billions, agricultural products over $\$ 1.6$ billions and industrial items close to $\$ 2$ billions.

Both volume and rate of shipments have increased substantially since mid-1942 in anticipation of extension of the fighting fronts to western Europe and consequent development of civilian supply requirements for liberated areas. This double role is expected to add immeasurably to the scope of lend-lease operations. The trend is indicated by the report for March of this year when total exports under the act reached $\$ 712,000,000$, the highest on recond, 20 per cent more than in any previous month and over twice as much as in the corresponding month a year ago.

1942 Volume Near World War I Pcak

Lend-lease shipments for 1942 amounted to 60 per cent of total exports for that year. Total exports were $\$ 7,823$,000,000 ; lend-lease shipments were $\$ 4,668,000,000$. Last year's lend-lease shipments totaled only slightly less tham all exports during peak year of World War I.

Effects of war on export and import activity in 1942 are shown on the accompanying chart. In 1937, when peacetime exports totaled $\$ 3,349,000,000$, the United Kingdom, our largest present customer, took only 16.4 per cent of United States exports, while in 1942 her share had grown to 30.2 per cent. Canada's requirements increased only 2 per cent to 17.5 per cent in the interval. Latin America in 1937 took 19.1 per cent of total shipments, but in 1942 this amount was reduced to 10.7 per cent. Exports to the Far East and Australia and New Zealand were somewhat lower in the first instance and slightly higher in the latter. The most significant changes occurred in the Russian, Near East and African markets, whose demands increased 16.3 per cent and 6.9 per cent, respectively. Effect of the war on other European mar-

Chart: National Industrial Conference Board
kets is demonstrated by a decrease over the five years of its share of total exports from 22.9 per cent to 0.4 per cent.

The program of lend-lease aid by the United States is being matehed by other United Nations to the extent of their available resources which aid, up to the present, has taken the form principally of assistance to and supply for our forces abroad. Lack of shipping and restrictions to trade imposed by war reduced imports to $\$ 2.742$,000,000 in 1942. Logically the nearest neighbors, Cantda and Latin American countries contributed over 64 per cent of the total. Imports from the Far East, which in 1937 made up a third of the total of $\$ 3,084,000,000$, fell to 11 per cent last year. Shipments received from the United Kingdom declined 1.7 per cent. However, the Near East and Africa, increased its share of United States business 4.9 per cent in 1942.

FIGURES THIS WEEK

INDUSTRY

Steel Ingot Outpui (per cent capacity)
Preight Car Loadings (unit- 1000 ears)
Bit. Coal Production (daily av. -1000 tons)
Petrolewn Production (daily av.- 1000 bbls.)
Construction Volume (ENH-unit $\$ 1,000,000$)
Automobile and Truck Output (Ward's, mumber) - Dates on request.

L.atest	Jrior	Month	Year
'eriod ${ }^{\circ}$	Week	Ago	Ago
98.5	09.0	98.5	(19).0
3,926	3,990	3,90.4	3,372
1.945	1,928	1,584	2,092
6,933	4,006	-4,076	3,60) 1
106.9	46.5	72.2	275.0
16,215	16,775	18.405	21,975

TRADE

Freight Car Loadings (unit- 1000 cars) \mid
Business Failures (Dun © Bradstreet, number)
8451
56
$\$ 17,196$
Money in Circulation (in millions)
Retail Sales (change from like week year ago) | Preliminary.

859
64
$\$ 16,902$
$+10 \%$

816
64
$\$ 16,683$
$\div 9 \%$

855
$10!$
$\$ 15,141$
16%

Iron and Steel Scrap
Bureau of Mines
(Gross tons-000 omitted)

Foreinn Trade
Bureau of Foreign and Domestic Commerce
(Unit Value- $\mathrm{SI}, 000,000$)

	1943	1942	19.1	19.3	mparts	19
Jan.	698	479	325	228	253	22
Fel).	679)	478	303	234	253	23.
Mar,	931	611	357	2.18	272	208
Apr.		695	385		23.1	287
May		525	385		191	297
Junc		618	330		21.5	27
July		627	359)		214	278
Aug.		694	455		18.1	282
Srpt.		718	417		196	203
Oct.		776	666		199	$30-1$
Nov.		750	492		174	280
Dece.		853	851		356	3.4
Total		7826	5126		$27 \cdot 13$	33.15

FINANCE

Bank Clearings (D\&:B-totaI, in billions)
Federal Gross Debt (in billions)
Bond Volume, NYSE (in millions)
Stock Sales, NX'SE (thousands of shares)
Loans and Investments (in millions) \dagger
Commercial-Agricultural Loans (in millions)
U. S. Govt. Obligations Held (in millions) \dagger

Bank Debits (member banks, 101 cities) \dagger
Member banks, Federal Reserve System, Dates on request.

Prior	Month	Year
Week	Ago	$A g 0$
$\$ 8,685$	$\$ 10,098$	$\$ 6,294$
1899	135	809
68.5	126.1	35.2
6,333	12,915	2,162
$\$ 47,308$	$\$ 45,772$	$\$ 9,364$
5,545	5,645	6,542
32,390	29,917	14,559
12,304	11,957	9,364
$\$ 56.73$	$\$ 58.73$	$\$ 56.73$
245.7	246.7	229.2
113.7	112.5	94.8
101.0	100.8	99.2

PRICES

STEEL'S composite finished steel price av
Spot Commodity Index (Moody's, 15 items) i
Inclustrial Raw Materials (Bur. of Labor index) ;
$\$ 56.73$
Manufactured Products (Bur. of Labor index) t
$\$ 1931=100 . \quad \$ 1926=100$.
Latest
Period
$\$ 7,769$
140
41.8
5,736
$\$ 47,068$
5,512
32,275
11,607

Lend-Lease Accounts for 60% of Export Trade

IN the two-year period since the passage of the LendLease act, the United States has exported to other United Nations a vast quantity of war materials and equipment aggregating $\$ 7,105,000,000$. Of this sum munitions represent almost half, or $\$ 3.4$ billions, agricultural products over $\$ 1.6$ billions and industrial items close to $\$ 2$ billions.

Both volume and rate of shipments have increased substantially since mid-1942 in anticipation of extension of the fighting fronts to western Europe and consequent development of civilian supply requirements for liberated areas. This double role is expected to add immeasurably to the scope of lend-lease operations. The trend is indicated by the report for March of this year when total exports under the act reached $\$ 712,000,000$, the highest on recond, 20 per cent more than in any previous month and over twice as much as in the corresponding month a year ago.

1942 Volume Near World War I Peak

Lend-lease shipments for 1942 amounted to 60 per cent of total exports for that year. Total exports were $\$ 7,823,-$ 000,000 ; lend-lease shipments were $\$ 4,668,000,000$. Last year's lend-lease shipments totaled only slightly less than all exports during peak year of World War I.

Effects of war on export and import activity in 1942 are shown on the accompanying chart. In 1937, when peacetime exports totaled $\$ 3,349,000,000$, the United Kingdom, our largest present customer, took only 16.4 per cent of United States exports, while in 1942 her share had grown to 30.2 per cent. Canada's requirements increased only 2 per cent to 17.5 per cent in the interval. Latin America in 1937 took 19.1 per cent of total shipments, but in 1942 this amount was reduced to 10.7 per cent. Exports to the Far East and Australia and New Zealand were somewhat lower in the first instance and slightly higher in the latter. The most significant changes occurred in the Russian, Near East and African markets, whose demands increased 16.3 per cent and 6.9 per cent, respectively. Effect of the war on other European mar-

Chart: National Industrial Conference Board
kets is demonstrated by a decrease over the five years of its share of total exports from 22.9 per cent to 0.4 per cent.

The program of lend-lease aid by the United States is being matched by other United Nations to the extent of their available resources which aid, up to the present. has taken the form principally of assistance to and supply for our forces abroad. Lack of shipping and restrictions to trade imposed by war reduced imports to $\$ 2,742$. 000,000 in 1942 . Logically the nearest neighbors, Canada and Latin American countries contributed over 64 per cent of the total. Imports from the Far East, which in 1937 made up a third of the total of $\$ 3,084,000,000$, fell to 11 per cent last year. Shipments received from the United Kingdom declined 1.7 per cent. However, the Near East and Africa, increased its share of United States business 4.9 per cent in 1942.

FIGURES THIS WEEK

INDUSTRY
Steel Ingot Output (per cent capacity)
Freight Car Loadings (unit- 1000 cars)
Bit. Coal Production (daily av.- 1000 tons)
Petroleum Production (elaily av. -1000 bbls .)
Construction Volume (ENR-unit $\$ 1,000,000$)
Automobile and Truck Output (Ward's, number)
${ }^{\circ}$ Dates on request.
latest
latest

3,926
1.945
1.945

3,933
106.9
16.215

Wyed
99.0

3,990
1,928
$\begin{array}{rrr}46.5 & 72.2 & 275.0 \\ 6,775 & 18.405 & \end{array}$
$\begin{array}{lll}1,006 & 1,086 & 3,601\end{array}$

l'ear lear go 99.0 ,092 $\mathbf{2 7 5 0 1}$
275 21,975

TRADE

Freight Car Loadings (unit- 1000 cars) f
Business Failures (Dun \& Bradstreet, mumber)
Money in Circulation (in millions)
Retail Sales (change from like week year ago) \dagger Preliminary.

8451
56
817,196
\$17,196
$+15 \%$

852
64
$\$ 16,902$
$+10 \%$
$+10 \%$

816
64
$\$ 16,683$
$-\quad 9 \%$
8.55
$19!$
$\$ 12,141$
$+6$

Foreign Trade
Bureau of Foreign and Domestic Commerce
(Unit Value- $\$ 1,000,000$)

FINANCE

Bank Clearings (DE-H-total. in billions)
Federal Gross Delet (in billions)
Bond Volume, NYSE (in millions)
Stock Sales, NYSE (thousands of shares)
Loans and Investments (in millions) \&
Commercial-Agricultural Loans (in millions)
U. S. Govt. Obligations Held (in millions) \dagger

Bank Delits (member banks, 101 cities)
Hember banks, Federal Reserve System. ${ }^{\circ}$ Dates on request.

PR/CES

STEEL'S composite finished steel price av.
Spot Commodity Index (Moody's, 15 items) \dagger
Industrial Raw Materials (Bur. of Labor index)
Manufactured Products (Bur. of Labor index) $\dagger 1931=100 . \quad \$ 1926=100$.

For information on development of NE steels and their properties, see STeel, Feb. 9, 1942, p. 70; March 16, p. 72; June 8, p. 66; June 15, p. 66; July 13 , р. 80; July 20, p. 86; Aug. 3, p. 70; Aug. 17, p. 40; Aug. 31, p. 41 and 76; Sept. 7, p. 78; Oct. 19, p. 66; Nov. 9, p. 96; Dec. 28, p. 27; Jan, 25, 1943, p. 84; Feb. 22, p. 102; March 1, p. 94; March 8, p. 90; March 22, p. 78; March 29, 1. 76; April 5, p. 116 and 118.

For reports from users of NE stcels, see Nov. 16, $1942,1,106$; Nov. 23, p. 90 ; Nov. 30, p. 62; Dec. 7, p. 112 ; Dec. 14, 1. 99 ; Dec. 21, p. 70; Jan. 11, 1943, p. 60; Jan. 18, p. 66; Feb. 1, p. 100; March 8, p. 109, March 15, p. 96; March 29, p. 72; April 26, p. 84.

For latest revised listing of NE ALLOY steels, see March 1, p. 98.

For list of NE CARBON steels, see March 8, p. 90.
For list of AMS (Aireraft Material Specification) steels, see Sept. 7, 1942, p. 78.

For details of WD (War Department) steels and complete listing, see Feb. 8, p. 80 .

For STEEL's latest Handboak on NE Steels and the NE Steel Selector, address Readers' Service department, Penton building, Cleveland. Price $\$ 1.00$ per set.

Fig. 11-Results of end-quench hardenability tests on NE-9422
Fig. 12-Results of end-quench hardenability tests on NE-9430
Fig. 13-Case structure of NE9422 oil quenched from 1525 degrees Fahr. and drawn for 3 hours at 400 degrees Fahr. Shown at 750 diameters

Fig. 7-End-quench hardenability curves from tests on NE-S620
Fig. 8-Case structure of NE8620 oil quenched from 1500 degrees Fahr. and drawn for 2 hours at 320 degrees Fahr. Shoton at 750 diameters
Fig. 9-Same as Fig. 8 but quenched from 1525 degrees Fahr. Fig. 10-Same as Fig. 8 but quenched from 1550 degrees Fahr.

User Report No. 14 on Experience with

NE
 National Emergency ALLOY STEELS

In second section of this report, Allis-Chalmers metallurgists give more details of their experience in using some 85 heats of NE steels. Discussion of NE-8620 is concluded here and information presented on NE-9422 and NE-9430

(Continued from Last Week)

FURTHER testing of a regular NE8620 steel was done and the results are shown in Table III. The Jominy hardenability results are shown in Fig. 7. It will be noted that the total difference in hardness readings between the two quenching temperatures at no place is greater than 2 points rockwell C. Traverse hardenability curves on carburized bars also showed this characteristic, corresponding to the Jominy hardenability curves.

Figs. 8, 9 and 10 show at 750 diameters the case structures of carburized NE-8620 reheated to various temperatures and oil quenched. All were drawn at 320 degrees Fahr. for 2 hours. It is shown from the accompanying structures that 1525 degrees Fahr. is the minimum quenching temperature allow-

By FREDERICK HORAK And
EUGENE CHAMPLIN Metallurgisfs Allis-Chalmers Mfg. Co. Milwaukee
able as excess carbide particles are clearly evident at 1500 degrees Fahr.

NE- 8620 was tested with the thought of substituting it in place of SAE- 4620 for gear transmissions. The properties of the two steels compare very favorably. In general, it has been our experience that NE-8620 can readily be substituted for SAE-4620 for transmission gears.

NE-9422 and 9430: Jominy hardenability curves for NE-9422 and NE-9430 steels are shown in Figs. 11 and 12 respectively. One fact brought out by traverse hardness curves on carburized
and hardened 1 -inch rounds was that our lardness dropped off considerably at the higher quenching temperatures. This was attributed to a very small amount of decarburization and the fact that the steel was quite abnormal. The slight scale resulting from reheating this steel in the shop gets rid of this soft skin. We have experienced no trouble with soft skins on our experimental NE-9422 gears.

Figs. 13, 14, 15, 16 and 17 show at 750 diameters the case structures of the above steels reheated to different temperatures, oil quenched and drawn at 400 degrees Falhr, for 3 hours. The foregoing photomicrograplis together with case and core structures of NE-9422 and NE9430 shown in Figs. 18 through 27 at 100 diameters clearly indicate maximum solution and refinement of core and case at 1560 degrees Fahr. quenching temperatures.

NE-9422 was tested with the thought of substituting it for NE-8620 for smaller, less stressed transmission gears. Sce Table IV.

It is eviclent from Table IV that notch (Please turn to Page 126)

Fig. 14-Same as Fig. 13 omly guenched from 1560 degrees Fahr. Fig. 15-Same as Fig. 13 only quenched from 1600 degrees Fahr.
Fig. 16-Case structure of NE9430 oil ruenched from 1560 degrees Fahr. and drawn for 3 tours at 400 degrees Fahr. Shown at 750 diameters
Fig. 17-Same as Fig. 16 only quenched from 1580 degrees Fahr.

HAVING now been in use for more than a year, it is possible to appraise the value of the Lundbye chromium-plating process with considerable accuracy.
As the result of full page advertisements in July 11, 1942, Collier's and September 1942 issue of The American Magazine offering the process royalty free for the duration to manufacturers engaged in war work, literally hundreds of companies sent tools in to the CrowellCollier Springfield, O., plant for sample processing. Upon receipt back in his own plant, each manufacturer made comparative performance tests of treated and untreated tools. Results of some of the most outstanding of these tests are given in Table I. These dlata were culled from a group of several hundred reports by individual companies on tests made in their own plants, thus are completely unbiased. Names denoted by (${ }^{\circ}$) in the table can be had upon request.
Test Results: Brief referenceto Table I will show the amazing results obtainable by the Lundbye process. Remember these tests were made against the best high-speed tool steels. When test after test reveals increases of 300 , 400,600 -yes, and even several thousand per cent, the only conclusion is that the process must have merit. Of course not every test showed such great increases, but almost every test did show some increase in tool life. In fact, where little or no improvement resulted, the user himself was able, for the most part, to put his finger on the cause and subsequently to remedy it.
Significance: From a detailed analysis of the results of these hundreds of tests, it is believed conservative to
state that the treatment, if used to best advantage, can be relied upon to show an increase in tool life of 300 per centthat is, tools so processed will last four times as long as duplicate untreated tools working the same material with the same speeds and feeds.

That means our present supply of critical tool steel would go four times as far as now if every cutting tool were to be processed by this method in its most effective form.

That means our toolmakers' efforts would go four times as far als now. Think what that would mean in relieving critical toolroom bottlenecks.

Besides lengthening tool life, other significant advantages are detailed in a typical user report (19°): "Sample tools for use in manufacture of armor piercing projectiles have recorded a splendid performance in production. It is most apparent that the chromium surface not only supports (fortifies) the cutting edge but materially reduces chip friction over the tool. This is confirmed by the nilture of the chips and improved finish of the cut. Spindle torgue is definitely reduced, as much as 30 per cent on drilling operations, with consequent sucing in machine wear (and power consumption)".

Cuts Tool Consumption: One lest by this user resulted in a ribl, form tool producing 925 cuts when treated, compared with 230 cuts for an identical untreated tonl-a performance ratio better than 4 to 1 . With $1 / 2$-inch twist drills, maximum performance ratio was also well above the 4 to 1 figure, 166 cuts per grind against 37 for an untreated drill. Most significant is his comment:

fathed when these mechanical difficulties are overcome".

Increase Machine Speeds: Because of the excellent cutting performance of treated tools, it often is possible to run them at greater feeds and speeds. For example, Cincinnati Planer Cob. reports a $41 / 84$-inch highspeed steel drill working at 0.013 -inch feed and speed of 250 revolutions per minute drilled 40 holes. With a treated drill, it was possible to go to a feed of 0,019 -inch and step up the speed to 100) revolutions per minute. And the treated drill completed 214 holes at this much greater cutting rate. Obviously, this greatly increased production in drilling these holes.

Cuts "Down" Time: Equally important in obtaining increased output is the lengthened work period that ensues from using the treated tools. This makes it possible to eliminate completely many of the machine "stops" formerly required to remove a dull tool, insert and set un) a sharp one. This can easily be all important factor in raising production.

For example, another user (${ }^{\circ} 22$) reports in comection with regular production work, not on isolated tests: "We increased time between grinds of turret lathe form tools 500 per cent and of milling cutters 1000 per cent. The turret lathe formerly had to be shut down 30 mimutes every 3 hours for tool grinding (and setup). Down time has been reduced from 15 per cent to 3 per cent and production has increased 14 per cent."

Range of Application: Trable II inchudes a partial list of cutting tools on which the process has been used. Data on results of comparative performance tests are included. These are not average figures for these types of tools but results of inchividual performance tests which accounts at least partially for the wide divergence in figures. The process works well on :uy high-speed steel with carbon content up to 0.60 per cent. It can also be used with steds having higher carbon but then it is necessary to substitute chemical cleming for the electrolytio deaming eycle as will be exphaned in the description of the prow csi itself. Carkon coatents up to 0.70 pro cent may give no trouble but above 0.70 the carlon is almost sure to cause difficoltios by producing a black soum on the work in the electrolytio cleaning eycle, which then prevents proper adherence of the chromum. But this diffoulty is casily obviated by going to chemial precleaning.

In addition it high-speed steels, the zrates can be applied to carbide cators to ingrove performance and life. It has already been appliad to phata car-
TABLE I-Comparative Tests of Lundbye Processed Tools as Reported by Users on Work Done
in Their Own Plants in Their Own Plants

Company \quad Test or Tool | Maxi- |
| :---: |
| mum \% \% |
| Increase in |
| Tool Life |\quad Hemarks

Slip taper type files. Outpus "at least 2 to 1 over untreated files"
Machined 38 parts against 8 for untreated tool
Machined 126 parts against S
Machined 30 parts against 11
Machined 16 parts against 8
New taps avg. 200 holes. Wom out tap plated ran 1,568 holes
Usually get 25 holes per grind. Plated get 152
Plated tool still okay after cutting 13 times usual output
Gave 50 hours on vertical boring mill compared to usual 5 hours
Drilked 28 pieces with 3 regrinds against usual $51 / 2$ pes., 4 regrinds
Reduced number of punches required
Instead of only a few holes, plated drills made 18 to 40; double-plated drill made 125
Worked 1,524 shells against avg. of 175 for nitrided units at 62 R . "C"
Down time for regrinding of cut down from 15% to 3%; production increased 1.4%
Time between grinds increased $1,000 \%$
Better coolant partly responsible
Turning π_{1}-inch hex. 4130 steel bar to 0.406 -inch dia.
High speed drill, 1 grind per hour; plated drill 9 hours, no grind
fotinch drill, 1800 r.p.m. High speed steel drill, 75 holes; plated drill, 740 holes
$41 / 64$-inch drills. High-speed at 0.013 -inch feed, 250 r.p.m. 40 holes. Plated at 0.019 -inch feed, 400 r.p.m., 214 hales
Expect built-up gages to last for the duration
50 hours against the usual 4 hours between regrinds

Extenal Fellows-type shaper cutter; 9 parts against 2 per shappening. Also increased daily output 33 \%
Production upped 47% by going from 34 to 50 r.p.m. No wear on tool after 60 pieces
Salvage job gave much finer finish. Output per sharpening increased 600 to 1000 pieces
Output per grind increased from 6 to 26 pieces
150 pieces against avg. of 19. Cutting speed, 75 f.p.m.
150 pes. against avg. of 25: hetter showing expected, test on baed material
2.61\% px. against 540 per trind
116 againct 34 f feed 0.0039 in sece.; sutter r.p.im. 570
Alin uses process on gages
2.000 asainst 150 pes. per set of chavers
101 (ks. Inetween griods commared with usual 50
Sulutitutest plated Tobin fremse for a Monel pump shaft: life leustboned sevwal times

Let Us Help You Tackle Tough Stainless Fabricating Problems！

Machined to hairline tolerances，

thermometer wells like this are pro－ duced faster，because of the free－ machining properties Carpenter gave to Stainless Steel．And from the designer＇s stondpoint，this Stainless is ideal for licking fough heat and corrosion problems．

Sharp bends and intricafe shapes

present fewer problams
uthere soft，ductle Cor－ penter Stoindess Strip is wed．This Stainles：Strip is idenl for mokeng prod

wet：rerging from roserder pent like This to of ficeld seripment thest＂feskes ＂becting＂every day of the yeur．

Along with providing useful technical data for designers and engineers，Carpenter＇s ner vice organization is helping to do trouble－ shooting jobs along many production lines where Stainless Stoel is used．For example， in one plant，daily production of Stainless parts was greatly increased（and scrap loss reduced 30%－through a Carponter rep－ resentative＇s suggestion．：

If you are running up against tough Stain－ less fabricating problems，get in touch with your nearby Carpenter representative．Ho can give you real help in the plant，and can keep your engineors in close touch with our Metallurgical Department．

Fabricating Hints and

 Engineering Information．．．this 98 －pago working dala boak is ollered hree to usars of Stainkess Stast in the U．B．A．Por your copy，drop us a noto on your company lellemead， Betwoen the covers of＂Working Data for Carpenter Stainkew Stogls＂you will find uselul hinta on：

Machining
Fozming
Illankfing
Welding
fiveling
Porging，ate，
－as well as angr 10 pages of importam facta and fables giving the physieal and morkimy pongenties， analyses，ste of the worious sppes of Ptamestes Steal，fisk for your egay teday．

Carpenter STAINLESS STEELS

The Carpenfer Steel Gompany
139 Bern Street，Reading，Pa，

TABLE I-Cont.-Comparative Tests of Lundbye Processed Tools Reported by Users on Work Done in Their Own Plants

Company	Test or Tool In	Maximum © trease in Tool life	Itemarks
10°	Thread tapper	400	
11°	Turning 1,030 steel	500	Turning steel burned from plate stock
11°	$11 / 2^{\prime \prime}$ drill	1,100	
12°	Rongh boring torchcut holes	400	20 pes. against previous max. of 4
12°	Combination reamer	339	In drill press, 15.911 pes. against usual 4,700
Meckethom Mfg. \& Sup. Co.	Form shaving tool	900	Obtained 30,000 pes. against
Intemational Busincss Machines Con?.	Cutters	300	$3,000$ dided greatly in maintaining ordnance production schedules in this plant
13°	Heamer	3.000	Produced 28,000 pes. on test, "mmmy thousand per cent increase"
14°	Drills	900	
14°	Spot freing	300	Cast carbon-moly steel, tough job)
Molded Insulation Co.	1/" reamer working aluminum	900	Wrorked 30,000 pes. against 3,000 usual and still going
Molded Insulation Co.	6-32 taps working	900	

National Acme Co.	Cutters 300
15°	Fellows gear cutters 2,770
	working NE-8447

bon steel cutters which then have been substituted satisfactorily for high-speed steel cutters-significant in view of shortages of high-speed steel. It also increases performance and life of "moly" high-speed steel cutters.

When chemical precleaning is used, the finish can be applied on any metal except zinc. This opens up some interesting possibilities, a number of which are examined here:

Corrosion Deterrent-Valves: A processing plant was having considerable trouble with valves on a certain application where the chenicals handled rapidly damaged the valve and seat, causing leakage. Bronze was no good at all, leaking alnost at once. However, when chromium plated by the Lundbye process, bronze valves and seats had been performing satisfactorily for $21 / 2$ months and were still going strong when last reported. Similar results obtained in
other applications where corrosion is a factor indicate the chromium plate produced by this method closely approaches the high inherent corrosion resistance of solid chromium.
Controls Dimensions-Gages: A shell producer after using the process in his own plant for 5 weeks reports: "We have been able to build up wom gages to exact sizes so they are good as new. Since many of our gages are not only very expensive but also difficult to procure due to the great demand, this one use of the plating system has and will continue to effect a tremendous saving in both time and money. In fact, we expect it will make it possible for us to use the same gages for the duration.
"Recently we received two new thread plug gages that were oversize by $0.0003-$ inch. By first plating them and then stripping, we were able to reduce them
uniformly to the desired dimensions so they could be used satisfactorily, thus avoiding the delay that would have occurred in obtaining new gages."
Reduces Friction: One of the important characteristics of chrominm plated surfaces is their low coefficient of friction. They are characterized as "slippery, greasy and nonwetting". That is probably the reason why dental drills processed by the Lundbye method develop less heat resulting in less pain and discomfort to the patient. Too, cutting tools so treated can make heavier cuts. One example is in making threads on armor steel bolts. Whereas plain Stellite cutters broke, treated cutters were able to make the full depth thread in one turning due to reduced friction.
Reduced friction also is evident in elimination of "blucing" of the stec cuttings when making extremely heavy cuts. Orclinary cutters develop sufficient heat to cause the turnings to become blue or almost black. Treated cutters doing same work produce bright turnings, indicating reduced friction and absence of high heat.
Too, reduced friction enables much higher cutting speeds and feeds to be employed. For example, treated drills are now being used to produce $7 / 16$-inch diameter holes in armor plate 1 inch thick in 32 seconds.
Cuts Wear: Any process that reluces surface friction should be of value int lengthening life of gears and cams, and that has been found true of this process. It is also being used on piston rings of aviation engines to increase their life several times. Likewise it has been found to multiply life of gears several times. Life of cams on automatic screw machines has been lengthened to four times that usually experienced.
One of the umsual applications where advantage is being taken of this claracteristic of reduced friction is on the imner surface of gun barrels. Here it reduces wear on the rifled interior by lowering friction, increasing life several times over. Of contrinuting importance here is the fact that the surface is also completely protected against corrosion. preventing that factor from influencing the life of the gum barrel.
For the same reason, the process is providing about a 300 per cent increase in life of dies for extrusion presses and heavy forging presses.
Electrotypes and Engraving Plates: An outstanding possibility for expanded use of the process lies in its application to the printing industry where it replaces nickel on electrotype engravings with unusually successful results. This use of chromium plating is not new
(Please turn to Page 134) LOGOHOTIVES

MODERN

 IN EVERYDETAIL!

You can order a Porter Locomotive with the comfortable assurance that it will not quickly become obsolete. Porter Engineers are wide awake to current trends in design and quick to adopt new features of proved value. As a result, Porter Locomotives are featured by many advanced technical improvements and in most respects are far ahead of the field.

ONLY PORTER BUILDS A COMPLETE LINE OF LOCOMOTIVES FOR INDUSTRY H. K. POBTER GOMPANY, INC. PITTSBURGH

OFFICES IN NEW YORK, CHICAGO. PHMADELPHIA

How to Use

"SHEAR" TYPE TOOLS

From top to bottom: Fig. 1Machining parts of tough alloy steel such as this one is an easy job for shear type tools
Fig. 2-Good results were obtained in machining this part by using a shear type tool having a somewhat smaller negative back rake than standard
Fig. 3-Interrupted cuts like this are handled effectively on a 35 -year old boring machine Fig. 4-Carboloy cementedcarbide shear type tools are characterized by unusually high negative back rake

INTRODUCTION of sume of the extremely tough alloy steel castings for war equipment was followed by extensive application of carbide tools in order to obtain satisfactory production rates. Interrupted cuts caused some difficulty at first in obtaining ligh cutting speeds.

Some years ago tools with an extreme negative back rate had been applied successfully by Carboloy engineers but litthe general attention was paid to this development. But when the demand for carbides for machining steel began to rise, it was cliscovered that "shear" type tools had been developed by Northern Pump Co. and were doing in outstanding job in machining certain ordnance parts at that plant. Since then Carboloy cemented carbide "shear" type tools have been successful in eliminating many a bottleneck on interrupted steel cutting jobs.

When properly applied the shear type tool effectively meets the problem of interrupted steel cutting with carbides. Fundamentally what the tool does is to enable the entire cutting edge of the tool to enter the cut before the nose radius of the tool does so. Since the nose radius is normally the weakest part of any tool, the shock load in interrupted cutting is thus transferred back from the nose to a stronger portion of the tool. As a result the nose radius practically never breaks down first when using a shear type tool, enabling the tool to hold size over longer cuts. It also permits the use of a smaller nose radius than would otherwise be the case which, together with a relatively large side rake, imparts to the tool good free-cutting action.

In general, the major advantage of shear type tools is that they will withstand more shock and impact load than standard tool types. This ability to take abuse enables them to stand up better when taking interrupted cuts and when
the material is scaly or impregnated with sand pockets and hard spots.

Ability to withstand shock means that they can be operated at higher cutting speeds and feeds than standard tools. In addition the shape of the tool also reduces the impact on the machine in interrupted cuts. This is particularly pronounced when the tool is mounted in rams with considerable overhang. On quite old machines where considerable backlash exists, shear type tools present a definite advantage from this standpoint. It should be poisted out, however, that shear type tools tend to use more power than conventional tools for the same feed, speed and depth of cut.
On continuous cuts, shear type tools will produce a chip which may be difficult to handle. Ground in chip breakers have not proved generally satisfactory since the tool directs the chip toward the finish cut. For this reason the shear type tool is also not as suitable for the taking of finish cuts as it is for roughing, since the chip may develop a tendency to mar the finished surface.

Cannot be Run Close to Center

While satisfactory on most facing cuts, shear type tools cannot be rum in as close to center as standard tool designs because the nose radius lies too far behind center in a tool with considerable negative back rake.
"Standard designs" of shear type tools are now available in shank sizes 1 inch square or larger. Smaller shank sizes are not generally recommended due to the decreased lack of shank support below the carbide tip.
Tool Design: Fig. 4 shows the "standard design" shear type tool adopted as a result of extensive experimental production work in the field employing various shapes and angles. It will be noted that the main characteristic of the tool is a 40 -degree negative back rake, together with a 15 -degree side rake. The tip is mounted in such a way that it projects somewhat above the top of the shank, this design providing increased support below the nose of the tool with the large negative back rake used.

While the 15 -degree side rake angle appears satisfactory for most types of
(Please turn to Page 124)

Fig. 5-In a setup of this kind, shear type tools will virtually eliminate vibration in the direction of arrows A, vibration frequently experienced with conventional too ls . Thus shear type tools permit higher cutting speeds

Locomotive Driving Wheel Centers

. . . . restored to original diameter by welding process

By C. H. EASUN
Assistant Mechanical Engineer
Central Region
Canadian National Railways Toranto, Ont., Canada

FOR SOME time the increasing number of driving tire failures which have occurred on fast passenger and freight locomotives caused concern to the officers of the mechanical department. During the investigation it was discovered that there were no failures with tires on newly built power or on engines which had wheel centers turned before now tires were applied.

This indicated that the cause of the tire breaking had some relation to the wheel center. Although the shop practices were followed in regard to turning the rims when out-of-round, it was found that a number of rims were apparently pitted or distorted, and that the new tires applied did not have a perfect metal-to-metal contact.

Metal to Metal Contact Sought

At this point of the investigation decision was made that all wheel centers, when tires were being applied, would be turned so that at each application of the new tire we would have new metal contact between the two surfaces. It then became necessary to place a limit on the permissible reduction of the diameter of the wheel center. This limit was set at $1 / 4$-inch less than standard diameter. When wheel centers had been reduced to this limit, consideration was given to some method of restoring them to the original diameter.

The method adopted consists of the application of a steel plate liner in three sections, welded to the wheel center. While this method was partially successful, trouble was experienced in applying the sectional liner. It was found almost impossible to obtain a metal-tometal contact between the surfaces, which is essential before any welding is attempted. Further experimentation developed the idea of applying this liner in one piece, and this method was finally adopted as follows:

A mild steel liner is cut to length, and the edges are beveled on a plate planer. Liner is rolled to the required diameter,

[^2]

Close-up of weld on outside of wheel
after which the joint is welded. This ring is then placed in a large boring mill and bored to an inside diameter which will provide a shrink fit on the wheel center. The wheel center is turned to a diameter of $3 / 4$-inch less than the standard diameter, and the edges are beveled. The ring is now heated, using a gas-fired heating ring. Then it is placed on the wheel center and allowed to cool. When cool, the edges of the liner are arc welded to the wheel center as follows:

The ring is tack welded at intervals on both sides of the wheel, using a $5 / 32$ inch diameter shielded are electrodes. The pair of wheels, mounted on the axle, are placed on end as this position facilitates down-hand welding. Two operators are used, each using a Lincoln 400 ampere dual-control welding machine. One operator works on the lower wheel,
and the other on the upper wheel.
The first pass of weld is made with $5 / 32$-inch diameter shielded arc electrodes. For the second pass, $1 / 4$-inch diameter shielded arc electrodes are used. These electrodes are of the same type as Lincoln Fleet Weld No. 7. Upon the completion of one side of each wheel, the position of the wheels is reversed and the operation repeated.

The method just described is less costly than the application of the three-piece liner, chiefly because extensive clamping operations are unnecessary and the application is easier. It is believed that longer life is obtained from the wheel centers which are reclaimed in this manner.

The steel liner is found tougher than the original casting and provides a better seat for the tire. Necessary figures to sub-

Dra Mather,
Jucta hincto an mel night 4.e arher atent the guh - -ul,

WAS THE 72nd YOUR BABY?

THE SMALL metal parts many of us are working on today may be in Tunis next month. If they don't do their job, boys like Bill may never cross the ocean again.

Parts like EMPIRE bolts and nuts, for example. Shipped by carloads, each one must fit, tighten easily, stand up under fire. They must move fast - or war equipment will move slowly.

Here, ar R B \& W, machines of our own design are improving the strength of metal, cold-reducing Empire bolts, cold-forging the threads, cold-punching Empire nuts, repunching to insure perfect fit. To this inventiveness, we're adding personal care to make quite sure no weapon fails or waits because of us.

* If you, too, are making vital "bits and parts", we'll send you posters made up from this ad-omitting any reference to us. They're free. Just write Russell, Burdsall \& Ward Bolt and Nut Company, Port Chester, N. Y.

R BEMM Making strong the things that make America strong

TABLE I-Table Showing Cost of Making Up and Applying Two New Wheel Centers and Two New Crankpins to the Old Axle
Materinl
Two wheel centers- 4,600 lbs. each . $\$ 1,080.00$
Two crank pins - 465 lbs each
120.00

Stores expanse

Table Showing Cost of Machining Old Wheel Center Moanted on Axle for Application of Steel Bands to Restore Original Diameter
Labor (including cost of living bonus)
Machining wheel centers ready for band-5 hrs. (in 75 3.75
Turning bands after npplication - 5 hrs. (i) $86 \mathrm{c}$.
Shop expense
4.03

Manufacturing bands:
Material

Stores expense . $\quad 1.47$

Labor (including cost of living bonus)

Mnchining	-10 lirs. @ 86c	8.60
Welding joints in bands	1 hr . @ 86c	. 86
Bore to fit wheel center	-12 lirs. (1) 86c	10.32
Weld to wheel center	-18 hrs. (6) 86c	15.48
Shop expense		17.63

Total
Comparative Statement Showing Estimated Savings
Cost of applying two new wheel centers with new crank pins to the old axle
Cost to restore wheel centers to the original diameter by the application of sted bands, are welded to the whole center

Saving per pair wheels
Saving per wheel
Proportionate cost saving
Estimated number of wheel centers which will be reclaimed per annum over the entire system, representing a total saving of

Note:-

The above figures are all hased on actual operations as perfomed in our shops.
$\$ 29,698.00$
90.94
stantiate this statement, however, would be difficult to obtain as it would be almost impossible to keep an accurate record of the service of any particular wheel. It is realized that with present day high speeds and maximum loadings the closest
attention should be given to the condition of wheels and tires.

Table I gives the cost of the various operations. It will be observed that the method described shows a considerable saving in labor and material.

Salsbury Corp. Reveals Quick Checking Method

A final inspection gage which requires about one-sixth the time formerly needed to check draw punches can be made very economically by any company interested, according to Salsbury Corp., 1161 Florence avenue, Los Angeles, responsible for the develomment of the unit.

Costing less than $\$ 70$ to make, the gage consists of a machined base approximately 14 inches long on which is mounted the necessary tool supports and three Koch test indicators.

The tool the gage was designed to test is a precision-ground draw punch having three tapers. Formerly, checking diameters of these tapers required separate micrometer readings ly a traned in-
spector. Now, three operations are combined into one by simply laying the tool on the gage and cheeking all three diameters at once.

The gage, the company reports, is not necessarily limited to checking draw punches. By adding addlitional indicators, it can be made to check other tools or make as many simultancous inspections as needed.

The development is not for sale, but by revealing how to make the gage the company feels that other manufacturers with similar production problems might be able to use the iclea in helping push war production.

Joins Theory, Practice Of Metal Heat Treating

Heat Treatment of Metals, by J. Winning; cloth, 99 pages, $5^{1 / 2} \times 81 / 2$ inches; published by Chemical Publishing Co. Inc., Brooklyn, N. Y., for $\$ 1.50$.
Tremendous increases in metal production, with resultant increase of new blood, new methods and demands for increased efficiency and production, showed a need for closer union between theory and practice. This volume has been written to give a condensed but fairly complete logical account of modern heat treating methods, with the underlined principles on which they are founded.
It is designed for engineers and others who, while not being specialists in metallurgy, make contact with heat treatment and its problems in their work. The author believes a thorough grasp of essential theoretical points is imperative to a practical application and for that reason has given that side of the subject as much prominence as the practical.
Realizing the impossibility of including all commercial alloys in use today a selection was made of the materials dealt with. The alloys presented are thoroughly representative of their classes and all are widely-used materials.

New Coating for Corrosive Conditions Offered

A new protective coating for extremely corrosive conditions is amounced by United Chromium Inc., 51 East Fortysecond street, New York. Called Ucilon, it is formulated with improved synthetic resins, producing in tough, flexible coating that is resistant to organic and inorganic acids, alkalies, salts, alcohol, gasoline, oils, greases and moisture.
The coating also is reported to have excellent cliclectric strength, and can be readily applied to wood, metal, concrete and other surfaces by brushing, spraying or dipping. Also being offered by the company is Ucilon F, a special formulation for use on objects coming in contact with food products.

Mi= THE NS

E parts for precisian tools.
V_{I} tools which insure the high caliber of workmanship that goes into every' round of ammunition.

Long before Pearl Harbor, OSTUCO supplied machine tool manafacturers with seamless steel tubing, drawn, finished and formed to individual specifications for such parts as spindles, collet and pusher tubes. The ability to meet these rigid specifications substantially reduces machining operations, an advantage that counts even more today when the demand for greater production must be met without any let-up in quality. And while Victory gets first consideration now, OSTUCO is looking ahead to applying newly-acquired skills, techniques and experience to the postwar developments your new experience is certain to produce.
(A) Samples of OSTUCO tubing supplied to the National Acme Company; (B) Finished spindles, and pusher tubes used in the AcmeGridley machines illustrated above. Upsetting for spindles done by OSTUCO. Unusually thin-walled tubing furnished with high tensile strength. Inside of tubes is commercially smooth furbish supplied by mill. Forming, and finishing operations at mill cut number of operations this manufacturer must make. (Photos courtesy of National Acme Company.)

This is for Victory:

- - bUY MORE WAR BONDS
- - KEEP UPTHESCRAP
- - BEONTHE JOEEVRYDAY

Bin hoppers and feeders showing material to be sintered being distributed in proper proportions on belt conveyor. Material is conveyed to hopper serving pug mill. Photo, Youngstown Sheet \& Tube Co.

$$
\begin{gathered}
\text { SINTERING- } \\
\text { Plant Design-1. }
\end{gathered}
$$

(Continued from Last Week)
Certain fundamental factors in the design of a sintering plant govern the economy of the operation regardless of the type of sintering machine used. With these fundamentals recognized the construction of the plant resolves itself into an engineering problem of arranging the material handling equipment to the best advantage of that particular plant.

From the foregoing premise the physical characteristics of the materials to be sintered will govern the mechanical equipment necessary before the sintering machine and the chemical composition of the materials will govern the mechanical equipment necessary after the sintering machine. Particle size is the most important physical characteristic of a material to be sintered because it not only affects the regularity of feeding the material to the sintering machine but the sintering operation itself. The silica content is the most important item of

By CHARLES E. AGNEW Consultant

Blast Furnace \& Sintering Plant Operation Cleveland
chemical composition of a material to be sintered because the percentage of iron and the chemical composition of the iron silicate compounds formed during the sintering operation determine the natural friability of the sinter.

I-Preparation of Materials and Regularity of Feed

The plant built to sinter flue dust only has a simple problem of material preparation. Screening coke or other debris from the dust is the only preparation necessary to assure uniform feed conditions. Plants sintering concentrated ores likewise have a simple problem of material preparation because the preparation has been done at the ore concentration plant. For the plant which must
sinter an earthy ore with a wide range in particle size there are more complicated preparation problems and the sintering plant of the future probably will require a material preparation house equipped with screens, crushers, and mixers, ahead of the feed storage bins. In present operations where earthy ores are screened it is usual practice to transfer the oversize particles to the furnace trestle and charge them into the furnace direct. The opinion is offered that with this practice an opportunity to increase sinter production is being overlooked by failing to take advantage of the benefits to be had from crushing the oversize particles and re-introducing them into the mix to aid in opening up the bed of material to a better passage of waste gas. Such gritty material would have the same beneficial affect upon the permeability of the bed of material to the passage of gas as that obtained from the use of return material. Likewise

IHE ruggedness of Lectromelt top charge furnaces assures larger tonnages of high alloy steels. Their simplicity affords longer, more efficient service with minimum maintenance. Their quick charging features enable them to produce steel faster.
such gritty material could be used in a batch mixer with a plastic ore to destroy the plastic characteristic which is most objectionable to the uniform feeding of such ore. The practicality of such use for oversize particles will vary with materials.

Maintaining the regularity in percentages of the different materials in the mix is of the utmost importance in producing a uniform product. In the continuous process, which is the more generally used, the percentages of the -different components are set by area of feed gate opening which area gives the volume flow in the desired percentages. To maintain the desired chemical specification of sinter the materials must be mixed in the proper percentages by weight but actually the weight is controlled by the volume flow which serves all purposes so long as the materials are fed uniformly.

Importance of Particle Sizes

Physical characteristics of the materials to be fed determine the feed problems. If there is a wide range in the particle sizes there will be irregularity in the weight of the material when fed by volume because such a material must obey the natural law governing the flow of loose solids. There is certain to be more or less segregation of particle, sizes as the flow line of the stock in the feed bin changes and such segregation is certain to affect the weight of the materials when fed by volume. The ideal maximum in particle size for uniform feeding might be said to be $1 / 8$-inch but the
practical size will vary with materials There will be less segregation of particles in a soft earthy ore than in a gramular material of the same screen test because of the tendency of the earthy particles to adhere. In actual practice soft ores sereened to minus $3 / \mathrm{i}$-inch have given good results.

Since all sintering machine grate bars are on a horizontal plane the materials to be sintered must be delivered to the bars in a vertical stream and again there is segregation of particle sizes, most of the coarse particles rolling to the bottom of the heap and most of the fines remaining at the top with the intermediate sizes being progressively deposited. The affect of this segregation is to partially mullify the bencfits from the pugging operation; the bed of material will be too tight on top and too loose on the bottom. The smaller the range of particle sizes of materials the less segregattion there will be and permeability to air and gas through a vertical section of the bed will be more uniform.
Feeding equipment for all raw materials should operate at a uniform speed. This can be accomplished by applying power to all feeders from a single line shaft. With this arrangement the volume of feed can be controlled by the speed of the line shaft and since the percentages of materials are set by the area of the feed gate openings a change in line shaft speed does not affect the percentages but only the volume of feed. Each feeder should be equipped with a separate clutch so that it can be made idle when not needed. The fuel feeder
should have a scparate control because the fuel percentage needs adjustment occasionally as the efficiency of it varies.

II-Use of Return Material

Return material is collected through grid bars located in the chute at the discharge end of the sintering machine. The grid chute primarily was intended to recover unsintered fines but a large percentage of the material recovered is sintered. Return material plays tivo vital parts in the sintering operation, as collected it is hot and dry and these two properties are the only means of counteracting excess moisture in raw materials. When sintering a material of high moisture content, or any natural ore in periods of wet weather, the heat and dryness of the return material are absolutely necessary to the success of the operation and the conservation of the two properties for the purpose described is of vital importance.

Serves Dual Purpose

That part of the return material which is sintered particles serves a dual purpose: it supplies heat when needed and when pugged with the raw materials it serves to make the bed of material on the hearth more permeable to air and waste gas. The need for this second service is of the greatest importance particularly when the raw materials are of small particle size.

The amount and character of return material produced is affected by the quality of the sinter, length of grid chute, and the width of opening between grid bars. Assuming a normal operation of good sinter the percentage of unsintered fines in the return material will be small and the larger percentage will be sintered particles graduated down from the top size, which is governed by the width of the grid bar openings, to the approximate size of the unsintered material. For the purpose of opening up the bed of material to the passage of air it is practice to mix return material and raw material in the proportions necessary to give a bed sufficiently permeable.

An increase in the percentage of return material in the mix does not decrease tonnage. For any given sintering machine the cubical dimensions over the hearth are fixed and the productive capacity of that machine depends upon the number of times per hour the materials over the hearth are replaced with fresh material. An increased percentage of return material in the mix will decrease the percentage of fresh material in a like amount but production will not be decreased so long as there is an increase in the sintering rate to compensate for the decreased percentage of fresh material. Frequently production
(Please turn to Page 139)
 for an estimate on your work.

Once installed, American Diesel Engine Exhaust Hose stays on the job for years ... absorbing vibration, providing permanent tightness against seepage, deadening noise, compensating for expansion and contraction caused by the terrific temperature changes encountered in exhaust lines.
Here's why American stands up so well in this unusually severe service: essentially this hose is a flexible pipe. Made of heavy galvanized steel, it is spirally wound so that each convolution becomes fully interlocked with the next. A continuous packing, fed into a pre-
pared groove, insures permanent tightness. And because it's flexible, it's easy to install. American also furnishes flexible metal tubing for fuel, air and starting lines on Diesels.

In addition to Diesel duty, many other types of American Flexible Metal Hose and Tubing serve war industries with distinction, some by conveying oil, steam, gas and water; others as a vacuum service for removing filings and dust, as protective armor and to shield electric wires, and in a thousand and one other important applications.

Whatever your needs in metal hose or
tubing, you'll likely find one in the American line that will help you do the job just a little bit better. Your inquiries are invited.

43201

American Interlocked - wound of strip metal, ioints packed; the roughest type of extremely fexible metal hos:

AMERICAN METAL HOSE BRANCH

 OF THE AMERICAN ERASS COMPANY General Offices: Waterbury, Connecticut Subsidiary of Anaconda Copper Mining Company In Canada:Anaconda American Brass Lid., New Toronto, Ont.

WHAT IS THE FUTURE OF
 By FRANK W. CURTIS
 Chiet Enginear
 Van Norman Machine Toal Co. Springfield, Mass.

 in heat treating, joining, forging, melting

 Induction Heating}

 Induction Heating
}

(Concluded from May 31 Issue)
OTHER hardening operations revealing the scope of high-frequency induction hardening are shown in Fig. 4. The cluster gear at A has both gear sections hardened, each being handled separately as is usual practice with parts of this kind. The gear at B is provided with a bronze bushing, which can be pressed into place before cutting the gear teeth since the heat generated during induction hardening will not reach the center portion of the blank.

With induction heating, it is also possible to harden carburized parts such as the spiral bevel gear shown at C. This procedure is sometimes necessary on spiral gears because the eddy currents of the high-frequency current cause heating more on one side of the teeth than on the other.

Differential hardening, producing different degrees of hardness on the same

[^3]piece, is also possible with high-frequency induction heating. On the part shown at D, the gear teeth are hardened to 54 rockwell C, the eccentric to 62, and the clutch teeth to 57 .

With parts like that at E, localized hardening by induction has many advantages, the outstanding being the absence of warpage which eliminates a costly straightening operation. Parts can also be heat treated to between, say, 32 and 34 rockwell C , then localized hardened. Such a case is the shaft shown at F which has two surfaces hardened to 62 rockwell C without affecting the other heattreated portions.

While a steel having 0.40 per cent carbon is satisfactory for high-frequency hardening, it must be remembered that carbon is a more powerful hardening element than alloys. Even though a steel with a carbon content of 0.35 per cent can be successfully induction hardened, a steel with higher carbon is preferable, especially since the hardness can be controlled by means of timing as has al-
ready been explained. A practical waterquenching steel for induction hardening is X-1340, now SAE C-1141, also C-1144. Because of the presence of manganese and sulphur in these grades of steel, they have excellent machining qualities, far hetter than either SAE-1040 or 1045. As far as can be determined, the manganese and sulphur do not have any affect on hardenability with induction heating.

An ideal steel for high-frequency induction hardening applications that has not been made so far, but which can well be visioned as a general all-parpose steel would be an X-1350, or perhaps X-1360 (C-1150 or C-1160). With good machinability and with suitable response to induction hardening, as it no donbt would possess, this steel could well fill the requirements for an extremely broad range of machine parts in many indus-

Fig. 4. (Abave and below)This illustrates the variety of parts that can be hardened by induction heating

AGAIN, Surface Combustion leads with this outstanding heat treating unit for finishing operations in the steel mill. This unit is characteristic of SC organization ability to build equipment to meet specific needs of industry.

Rods and bar stock of high and low carbon steels are being heat treated in this SC Radiant Tube Car Bottom Furnace which utilizes a Char-Mo atmosphere to prevent decarburization. Combined are the car bottom and individual lift-cover features that eliminate furnace doors and increase efficiency. The method of
control that is employed makes certain that the gas eous atmosphere will be in equilibrium with the steel at all heating and cooling temperatures. All size stocks can be annealed without scale or decarburization.

The flexibility and efficiency of use for annealing both plain and alloy steels makes this SC Steel Mill unit both practical and desirable. Whenever equipment is needed for roughing and finishing operations you can depend upan SC experience and facilities to build practical equipment to meet your need.
SURFACE COMBUSTION... TOLEDO, OHIO

tries. In the meantime, C-1144 is the nearest approach to the solution, having about 0.45 per cent carbon, 1.50 manganese and 0.28 sulphur. This steel will suit the requirements of many parts where a hardness of 55 to 57 rockwell C will suffice. In cases where a higher hardness is needed, a carbon content of at least 0.50 per cent would be the answer.

Toolroom Uses: Before long, induction heating will find many uses in modern toolrooms and to some extent may change our principles of tool design. Fixture components, such as clamps, locating blocks, studs, bushings, V-blocks, plungers, etc., can all be hardened by the induction process. Where haste is a factor, no other method would prove faster or better. A variety of tool and fixture parts suited to induction heating are illustrated in Fig. 5. Another possibility in this connection is the hardening of fixture parts after they have been assembled to the base or body unit.
Brazing: The wide scope of brazing made possible by induction heating will have an affect on engineering design. Parts now machined or forged in one piece may well be made of two or more pieces and joined together by induction brazing with, of course, a direct saving in material cost.
Such an example is shown in Fig. 6, representing a flanged shaft which could easily be made in two pieces, joined by induction brazing. The induction coil is made to surround the assembled pieces, which are centralized in and supported on a fixture. A formed ring of a small diameter brazing rod is placed on the flange. When heated, it flows into the joint faces of both members and forms a solid bond.

Melting: Another practical use for induction heating is that of melting metals

Fig. 5. (Above)-Fixture components such as these can all be hardened by the induction process
Fig. 6. (Left, below) -This part was formerly made by machining from a solid piece of bar stock. Now much material is saved and machining capacity released by making it from two pieces-ioined together by induction brazing as shown

Fig. 7. (Right, below) - Melting small quantities of metal can be done practically by induction heating
in relatively small charges. For this, a small crucible is used, preferably of graphite. Around it is wound a coil of copper tubing with an insulating layer of powered alundum and asbestos as is illustrated in Fig. 7. The charge in the form of iron or steel chips is placed in the crucible.

Heating such a charge, weighing from 10 to 30 pounds, requires only 50 to 60 minutes. The action of the high-frequency induction current causes agitation similar to a volcanic eruption, resulting in the thorough mixing of the charge so especially desirable when alloys are used.
A possibility for this use of high-frequency heating is the making of small castings in plants where foundry facilities are lacking. Another use in this direction is the salvage of precious metals from floor sweepings, an idea already in practice at several plants. For the manufacture of small centrifugal castings, where small heats are required, induction heating has also proved of value.

New Manufacturing Procedures: Induction heating is sure to result in new engineering principles and basic changes in materials for certain types of products. Less expensive designs will be made more practical. Critical or hard-to-get materials will give way to the simpler steels, which are easier to obtain and process. When the full possibilities of induction heating and hardening are exploited, fewer steels will be required for the usual variety of parts made in manufacturing plants so that small inventories will result.
Both high and low-production methods will find induction heating practicable. With standard forms of fixtures, change-overs from one job to another can be made in 2 or 3 minutes, making the handling of lots as low as six or twelve units entirely practicable.
In high-production plants, induction heating units can be installed right in the continuous production line so parts can be hardened after the rough-machining and then passed on to grinders-all in the same department, eliminating transportation and trucking expense to a central heat-treating department.
There is no doubt but what the use
(Please turn to Page 143)

With W P B approval and endorsement, we

- Wherever you find a Chicago Mounted Wheel at work, you'll find 100% grinding speed and efficiency.

Mounted firmly on its own steel shank, each wheel is a whirling point of easily controlled power that cuts valuable man hours.

Jobs are completed so speedily that bottlenecks due to slow finishing of vitally needed parts are removed. Work is so smooth that rejections are practically nil.

Available in 300 shapes and sizes - every grade and grain - a best wheel for every job.

TEST WHEEL FREE-Tell us kind of job, type grinder you use and size wheel you'd like and we'll send one postpaid for you to try.

[^4]stopped making all wheels larger than $3^{\prime \prime}$ in diameter. By specializing* on Mounted Points and Grinding Wheels $3^{\prime \prime}$ and under in diameter, 24 hours a day, we have stepped up production and are keeping up with demand. Our central location is another big advantage-no time is lost between our production line and yours.
NEW CATALOG-Shows Chicago Mounted Wheels in actual colors, also portable electric tools and time-saving accessories.

CHICAGO WHEEL \& MFG. CO. 1101 W. Monroe St. Dept. ST Chicago, III.

Emergency Lights. A Midwestern manufactuter has a bright idea for emergency lighting. He equipped a number of his battery industrial trucks with headlights and conventionalelectric outlets. Then he installed 32 -volt lighting circuits at various key points in the plant. During power failures each truck proceeds to a designated point, the line is plugged in and the emergency lights go on.

Turnover. One of the reasons experienced industrial truck operators prefer alkaline batteries is that they know the steel construction of these batteries withstands rough usage. They have had their share of accidents in which the trucks overturned without damage to the batteries. And they know by experience that the common electrical accidents don't damage them either.

Quick Battery Exchange. An important reason for the ability of battery industrial trucks to provide dependable 168 -hour duty lies in the fact that the batteries work in relays, as railroad locomotives do. Like the train, the truck maintains a schedule. Like the locomotives, one battery furnishes motive power while another is charged and serviced. And with modern power hoists, exchange of batteries is a matter of only a minute or two.

Edison Storage Battery Division Thomas A. Edison, Inc.

WEST ORANGE, N. J.

POWER for Production

In production, it's what gets done that matters! And for maximum production there is nothing more important than uininterrupted handling of materials. Of course, man power is essential; so are plant and equipment. But none of these can work at full capacity unless there is a smooth, bottleneck-free flow of materials all the way through receiving, stores, process, assembly and shipment.

It's self-evident, therefore, that the battery industrial trucks in our war industries need the most dependable, trouble-free storage batteries that American inventive genius has produced. It's reassuring that so many of them-a majority in factare powered by the alkaline type of battery, an invention of Thomas A. Edison. No more durable, reliable portable power source is known.

INDUSTEY NEEDS THE DERENDABILITY OF

 Edison alkaline ваттеннея

A FORK TRUCK becomes a helpless device for handling material in an aisle or storage space too narrow to permit maneuvering into position for a lift.

As an alternative to the usual solution of increasing the width of the aisles, an arm attachment that can easily be secured to the fork and will swing 90 degrees to each side of it has proved effective.
An additional advantage of the arrangement is that it allows the truck to handle items too small for its fork, and yet too heavy to be piled on a pallet by hand.

Pivots on Turntable

The platform for the arm consists of two pieces of 1 -inch steel plate separated by four welded spacers cut from I-beam or U-channel sections. The welded arm pivots on a simple turntable arrangement. Ball bearings make it easy to turn to any position. It may be held at any point of its 180 -degree arc by a locking pin. The platform is secured to the fork of the truck by means of four locking screws. It can be attached or removed easily.

The capacity of the device is 1000 pounds as described. There is no reason why this figure could not be increased by proper design.
Fig. I shows a cross section of the at-

A R M

. . . . improves effectiveness of fork truck in crowded areas and narrow aisles

By GEORGEH. SCHWAB General Electric Co. Schenectady, N. Y.
tachment which can be fitted to any type of fork truck. To attach it to a truck for use, the forks are run into two of the
hollow sections between the upper and lower plates and between adjacent separators. Since spaciug of forks is adjustable on most trucks, this cun be set to fit the attachment. With forks in place, it is impossible for the attachment to skew sideways. It is prevented from slipping off the forks hy means of two capserews or locking bolts bearing against the forks as shown in Fig. 1.

Advantageous in Narrow Aisles

Consider what an advantage this type of lift can be in a narrow aisle such as that in Fig. 4. Here the attachment is being utilized to handle steel tote boxes in and out of storage bank. An aisle merely wide enough to allow the truck to pass is all that is required for the operator can run the truck up to any point, swing the lift hook sideways to pick up a box or unload one. Since the hook arm is pivoted by a ball bearing arrangement as shown in Fig. 1, the arm can be swung easily by hand although it may be carrying its full rated load.

In calculating the maximum load that can be lifted, it is necessary to take into account the fact that the center of the load is no longer between the forks but is in front or to one side of them. The tipping movement from this overhanging load must be considered in making heavy lifts, for it would not be difficult to over-

Fig. 1. (Above)-Diagram of cross section through revolving lift arm attachment for fork trucks. A shows attaching lock bolts for securing unit to truck forks; B is indexing lock pin to hold arm when it is to retain a fixed position; C indicates openings for insertion of truck forks
Fig. 2. (Left, below)-Scraj) barrel being loaded on pallet by swing arm attachment working from a truck
Fig. 3. (Right)-Fabricated steel generator frames being stacked in outside storage areas by use of the swing arm attachment. Note aisle is barely wide enough for truck to enter

Shear Type Tools

(Continued from Page 106)

 cuts in which shear type tools have been used, an increase in side rake beyond this amount has a tendency to reduce power consumption, as might be expected from the freer cutting action. The comparison in Table I is based on the use of a Carboloy standard tool from which the chip breaker has been removed, duplicating all operating conditions in the machining of a steel billet.It has been found that the best results have been obtained with shear type tools
when using Carboloy grade 78 B cemented carbide, with the cutting edge along the lead angle stoned to remove the feather edge. When stoning, incidentally, it is advisable to remove the wheel feed marks along the face and relief angles.

The stoned edge should be in the shape of a land approximately 0.002 to 0.005 -inch and at an angle of 45 degrees to the direction of feed.
Where a tendency develops for the cutting edge to chip, this chipping action can be decreased by reducing the freecutting action of the tool. Indications

Fig. 4-Parts box being removed from bank by swing arm on fork truck in a narrow aisle
balance the truck.
In Fig. 2, for example, the truck is using the arm extended in front of the forks. This about doubles the distance from the front axle to the center of gravity of the load compared to lifting the same load on the forks.
Fig. 3 shows another valuable application of the attachment. Here it is being used to handle welded fabrications. These motor and generator frames are far too heavy to attempt to handle by hand, yet storing them compactly as shown here would be difficult for a truck without the attachment. In fact, an overhead crane might easily be tied up with this job if the truck and its attachment were not available.

There are many similar places where this type of unit could be employed to advantage. Its flexibility should make it extremely useful in increasing the capacity of storage areas by allowing width of aisles to be decreased, thus utilizing more fully the available floor space.
are that this can be accomplished by decreasing the side rake slightly.

In contrast, if the cutting edge tends to run too hot and even begins to glow, a free cutting action can again be obtained by increasing the side rake a slight amount.

Applications: When standard type tools are used to take intermittent cuts on a vertical boring mill with a large ram overhang, see Fig. 5, there is a tendency for the tool and ram to develop vibration in the direction of the feed, as indicated by arrow A. In contrast, when a
(Please turn to Page 144)

[^5]
THIS "BOMBARDIER" HITS THE TARGET EVERY 4 SECONDS

At Wheeling Steel Corp., batteries of TOCCO machines are really putting the heat on the Axis -heating the ends of pipe to $2100^{\circ} \mathrm{F}$. for the spinning of bombs.

One operator, manning two TOCCO machines, each with two inductors, heats tail ends of these " 500 -pounders" and feeds one to the spinner every 49 seconds.

The heated area of every bomb is uniform. TOCCO's automatic timing assures accurate temperature for uniform forming results.

Yes, it's a fast pace, but the "bombardier" maintains it easily. The push of a button starts each TOCCO station. His "bomb bay" between the four stations of the 7^{\prime} wide TOCCO machines is compact. His working conditions are safe and free of fire, heat and fumes.

Just as TOCCO is blasting the Axis in this and hundreds of other war factories, so will it crack wide open many of your tough problems in postwar planning. Find out how these dependable, rugged induction heat-treating machines will cut your costs and improve your products.

THE OHIO CRANKSHAFT COMPANY Cleveland, Ohio

HARDENING ANNEALING BRAZING HEATING for forming and forging

NE Alloy Steels

(Concluded from Page 99)
toughness and ductility of the higher carbon NE-9400 steels are lower than for similar properties of NE-8620.
(Concluded Next Week)

Fig. 18-Case structure of NE9422 oil quenched from 1525 degrees Fahr. and drawn for 3 hours at 400 degrees Fahr. Same material and treatments as Fig. 13 except shown here at 100 diameters Fig. 19-Core structure of same material as Fig. 18
Fig. 20-Same as Fig. 18 but quenched from 1560 degrees Fahr.

TABLE LII-Chemienl Analyses and Properties

NE-8620 SAE-4620

Physical Properties
Pseudo-carburized at $1700^{\circ} \mathrm{F},-8$ hrs.
Heheated to $1525^{\circ} \mathrm{F}$.-Oil quench-Drawn $320^{\circ} \mathrm{F} .-2 \mathrm{hrs}$.

Grade	Size Treated	Tensile Strength ISI	Yield Point PSI	in 2 "	\% Red. Area	Keyhole Charpy Impact ft ths	Breaking
NE-8620	1/2" IRd.	153,000	118,000	14	50		po
	$1^{\prime \prime}$ Rd.	120,000	90,000	22	57	32	$75^{\circ} \mathrm{F}$.
SAE-4620	1/2"Rd.	133,000	100,000	15	57	27	$75^{\circ} \mathrm{F}$.
	$\mathrm{l}^{\prime \prime} \mathrm{Rd}$.	127,000	95,000	22	54	33	$75^{\circ} \mathrm{F}$.
		BLE IV	nical Analy	and Pr	perties		
		C	- Si	Cr	Ni	Mo	Grain Size
NE-9422		. 27	8 . 47	.35	. 38	. 17	- 7
NE-9.430		. 31	8 . 43	. 50	. 32	. 18	-7-8

Treatment: Psendo-carburized at $1700^{\circ} \mathrm{F}-8$ Propertie
Reheated to $1560^{\circ} \mathrm{F}$, oil quenched-Drawn at $400^{\circ} \mathrm{F}$, -3 hours.

SteelNE-9422	Size Treated $1 / 2^{\prime \prime} \mathrm{Rd}$. 1" Rd.	Tensile Strength PSI 169,500 149,100	$\begin{gathered} \text { Yield } \\ \text { Point } \\ \text { PSI } \\ 98,500 \\ 95,500 \end{gathered}$	$\%$ Elong. in $2^{\prime \prime}$ 12 17	\% Hed. Area 25 41	Keyhole Charpy Impacl ft. lbs.	Breaking Temperature
						$\begin{aligned} & 25 \\ & 18 \end{aligned}$	$\begin{array}{r} 75^{\circ} \mathrm{F} . \\ -20^{\circ} \mathrm{F} . \end{array}$
NE-9430	1/2" Rd.	240,000	130,000	10	42		
	1" Rc.					$\begin{aligned} & 17^{1 / 2} \\ & 14 \end{aligned}$	$\begin{array}{r} 75^{\circ} \mathrm{F} . \\ -20^{\circ} \mathrm{F} \end{array}$

Fig. 21-Core structure of same material as Fig. 20
Fig. 22-Same as Fig. 18 but quenched from 1600 degrees Fahr.
Fig. 23-Core structure of same material as Fig. 22
Fig. 24-Case structure of NE-9430 oil quenched from 1560 degrees Fahr. and drawn 3 hours at 400 degrees Fahr.; at 100 diameters
Fig. 25-Core structure of same material as Fig. 24
Fig. 26-Case structure of NE-9430 quenched from 1580 degrees Fahr.; compares with. Fig. 24
Fig. 27-Core structure of same material as Fig. 26

Here at last . . . the answer to Corrosion Problems

 ANTICORRODE
New Liquid Safeguard Developed by Cities Service

Anti-Corrode, Proved Perfect by Months of Laboratory Testing, Meets Severest Corrosion Re. quirements. It's Easy, Economical to Apply.

Afcer months of laboratory research and rigorous service tests, Cities Service takes pride in announcing the development of a new and completely effective corrosion preventive-AntiCorrode.

This new liquid safeguard, by virtue of its special properties, and its reasonable cost, is hailed by many engineers as a perfect answer to the viral problem of metal conservation that American induscry faces today.

METHODS OF APPLICATION

Anti-Corrode can be applied to raw stocks, finished parts, or to complere machines during storage, assembling or shipping. It is easily applied by dipping, brushing, rubbing, hand or power spraying -and provides a safe film which does not harden, becone brittle or crack.

WEATHERING

Anti-Corrode is not alfected by rain, salt air, oxygen bearing moisture, etc.

ODOR

Aaci-Corrode has no disagreeable odor.

CHEMICALLY INERT

Anti-Corrode is chemically inert to ferrous or non-ferrous metals. Therefore, it can cause no injury to any metal to which it is applied or with which it may be brought in contact.

FINGER STAINS

Surfaces coated with Auci-Corrode can be handled freely without danger of rust spots caused by hand acid.

ANTI-CORRODE MEETS U. S. NAVY TEST

BUTH STRIPS of freshly ground steel picturad here uere impnerscd for 20 hours in a 3% salt solution. Strith on left trus unereated; strip on right, couted with Anti-Corrode, shous no trace of rust. (Eten affer 90 hours of immersion Ansi-Corrate coating still resisted rust.)

A LUBRICANT, TOO

Anti-Corrode is compatible with drawing compounds; there is no need to remove it from

CIIIES SERVICE OIL COMPAII

metal about to be drawn, stamped or orherwise formed.

IDEAL FOR MANY USES

Anti-Corrode can be used on almost every kind of metal or metal equipment--indoors or otrdoors. Fencing, piping, tubing, wire, wire mesh, girders, sheet metal, meetal stock, machinery, rrucks, spare automotive parrs, tools, metal containers-all need the protection of this new corrosion preventive.

ECONOMICAL

In accordance with regular U. S. Navy Test procedure, Anti-Corrode proved far superior to other leading anti-rust compounds costing as much as 25% to 40% more per gallon.

Whatever metal equipment you may have, you owe ir to yourself to investigate the moneysaving advantages of Cities Service AnciCorrode. (One gallon of Anti-Corrode protects approximately 1200 square feet of sheet metal.) Send the coupon below for further information on how to obtain an adequate sample of Anti-Corrode FREE.

End-Dump Hopper

H. L. Pitcher Co., Detroit, is offering a new model No. 4004 automatic enddump hopper on casters adaptable for handling of sand, gravel, coal, stamp-

ings, small castings and all kinds of scrap and refuse.
In use, when the latch is relcased and the load is dumped the bucket is so balanced that it automatically returns and latches in position when reloaded. It rides empty in the balanced position.

Hopper is of structural steel and heavy plate-it is designed to fit any kind of lift truck but may be built to specifications as to capacity and yardage content.

Dust Control

Dust Control Division, American Air Filter Co. Inc., Louisville, Ky., amnounces a new type N Roto-Clone bench for use in safety burring, filing and flexible shaft grinding of magnesium. Unit provides a semi-enclosed bench assembly with down draft ventilation through wood grilles and is furnished complete with tool shelf, fluorescent lights and partitions between stations.

Distinguishing features of the dust unit are the elimination of all restric-

tions, ledges or recesses where damp magnesium dust can be deposited. The magnesium dust is precipitated and stored under water-none of the particles can pass to the drain, since any overflow consists only of excess make-up water that might be required of magnesium, and water is automatically vented whether fan is stopped or in operation.

The benches are made in a wide range of sizes with capacities from 1000 to 20,000 cubic feet per minute. In addition small individual units which can be located directly in back of magnesium grinding stands also are available. Inlets are placed so exhaust ducts are short and rim directly into the collector.

Riveting Tool

Cleveland Pneumatic Tool Co., Cleveland, announces a new tool-the Riv-N-Jector-which is claimed to speed up the number of rivets driven per minute and reduces the amount of waste rivets by 90 per cent. It not only eliminates the reason for dropped rivets but relieves the worker from the tedious juggling of a handful of rivets.

The worker is always supplied with

an ample supply of rivets and avoids repeat trips to the rivet center.

Designed to be easily handled by women operators, the unit is light, and has a magazine holding up to 50 rivets. A special nose jaw holds a rivet ready at all times to insert into the hole of the metal as easily as pointing a pencil at the same hole, the company reports.

Electric Tool

H \& H Research Co., Detroit, announces a new push-and-pull action portable electric tool for use in filing, burring and chamfering; honing; polishing and lapping; scraping, sawing and sanding. It features a new pistol grip equipped with a finger-control switch, shaped for quick and easy handling.

Fan of the tool, air inlets and outlets are completely redesigned for larger capacity. A spiral wire cord protector prevents the cord from slipping in or out of the unit, or being damaged by sharp turns or twisting. Also a heavier
armature is used, and the work spindle is provided with three bushings instend of two, as in the older models.

The new tool is being offered in two models, having different push-and-pull stroke lengths. Model CX provides a

$3 / 8$-inch stroke while model EX a $1 / 8$-inch stroke. Rate of stroke is 1000 to 1200 per minute, for either model. Its power is of 30 to 40 -pound push or pull at the working end.

Metal Parts Washer

Industrial Washing Machine Corp., New Brunswick, N. J., is offering a new Rotospray industrial washing machine suitable for cleaning such parts as ball bearings, large castings, crankçase parts, nose sections, large cams and gears, impeller shafts, diesel engine blocks and other items.

The machine consists of a rotating mesh turntable 2 feet or larger in diameter, housing, pump, motor and spray system. The parts to be cleaned are placed upon the mesh turntable, the door closed and quick-opening valve turned on which allows the cleansing solution to

spray upon the work. As parts are sprayed a gearhead motor rotates the turntable to expose all sides of the work to the spray action which is directed by nozzles from the top, sides and bottom.

After the work has been cleaned, it can be rinsed with fresh water if so de-

Dodge Solid Friction Clutches in duplex on

FULL PDIVER

ADEQUATE control of power-flow over the power "roadbeds" of your plant, will minimize power loss. Rugged Dodge Friction Clutches, stationed at proper places on your line shafts or on your machines, assure positive control, and release capacity loads, without loss . \quad. delivering more horsepower to production machines, to boost battle power!
The Dodge Solid Friction Clutch is one of several popular Dodge types, outstanding for sturdiness, simplicity and economy. It can be quickly furnished for use as a cut-off coupling or with sleeves for mounting pulleys, sheaves, gears or sprockets.

For power transmission on line shaft or on clutch-operated mobile machinery, you'll find the right clutch for every job in the complete Dodge line. Teamed up with other Dodge Power Transmission Equipment, they put all the power into the job, to maintain peak production.
Nearest Dodge Distributor can help you determine whether Dodge Solid, Split, Expanding Ring or Diamond "D" Clutches answer your purpose . . . or write to

DODGE MANUFACTURING CORPORATION mishawaka, indiana, e. s. a.

DadgeDiamand "Fxiction Clutches High precision exiremely rug ged, compact, imple, fully enclosed, pro tecled against dirt or dust Whether engaged or disengaged. Generous salely factor above rated capacity, for momentary shock loads.

$4\left(\frac{11}{6}\right.$ Dodge Expanding

 Ring Iriction ClutchesA. machinery clutch... compact, rugqed, extremely simpla, fully enclosed for protection against dust or dirt. Convenient one point selflocking adjustment, Suitable for a wide variaty of light machinery applications.

Dodge Solid Friction Clutches Friction disc type, adapted for qeneral power transmission service as well as many types of machinery applications Rugged, simple in design easy to adjust and maintaln Widely used on machinery subjected to severs service.

Dadge Splis Fixition Clutches

 For severe, continuous power transmission service on big installations. Particularly suitable for large shaftr operat ing at slow to medium speeds. Split construction parmits easy inglallation on shafting al ready in place. Parls inter changeable far replacements.

MISHAWAKA
sired. The water does not drain into the solution tank, but passes directly to the sewer by means of a tilting drain plate which is coupled to the fresh water valve handle.

New AC Welder

Allis-Chalmers Mfg. Co., Milwaukec, amounces a new Ampac " 200 " welder said to introduce an important forward step in alternating current welding.

Described as the welder with the ideal operating curves, the Ampac " 200 " is reported to give the operator correct voltage automatically for the continuous range of currents available, rather than using an almost constant voltage at all current settings. This adjustment simplifies welding at low currents because of the high striking voltage, but saves

power when welding at high currents because the voltage is low, it is stated.

Other special design and operating features of the welder include the new integrated reactor-transformer construction which provides the high, yet safe voltage for easy welding at low currents; active duty from every line of flux assured by reactor coils which surround the variable air gap; and simplified construction using fewer working parts.

The unit handles rods $1 / 16$ to $1 / 4-\mathrm{inch}$ in size, for thin sheets or heavier plates. Most direct-current rods as well as all alternating-current rods can be used, the company says.

Magnet Block

Diamond Tool Co., Chicago, announces a new "Angle-Set-magnetblock" for magnetic chuck grinding-a further development of the "Angle-Set"
tool to adapt it in combination with the "Magnet-Block" for accurato diamond dressing of surface grinders.

The unit is designed for wheels up to

8 inches diameter, however, larger diamonds can be set in it for larger wheels.

The dresser comprises three units, the "magnet-block" $2 \frac{1}{2} \times 3 \times 1$, containing a 12 -degree "Angle-Set" fitted with a Big-Hed nib containing a No. 10-CNX ($11 / 4$ carat common quality) diamond.

Pickling Machine

Howard Engineering \& Mfg. Co., 1848 Freeman avenue, Cincinnati, is offering a new pickling machine which steps-up cleaning in shell production. It is designed to conserve manpower and critical materials, as well as to speed pickling output.
Actual operations reveal the machine is capable of pickling a maximum of roughly eight thousand, 37 millimeter shell cases per hour.
Parts to be cleaned travel through the macime in a cirum which varies in diameter between sections, so each section of the drum runs in its particular tank. Scale is removed from annealed parts by successive pickling, rinsing, neutralizing and rinsing operations. A variable speed

drive provides necessary changes in the pickling time.

Acid, rinse and neutralizing solutions are picked up by scoops on the side of the drum, and are dumped by the scoops on the parts. The machine is 35 feet long, 8 feet wide and 9 feet high. To withstand acid corrosion, the pickling and first rinse drums are of monel metal
and the tanks are lead-lined. The machine is available in special sizes and can be adapted to the pickling of parts other than shell cases.

Cutting Bandsaw

Universal Vise \& Tool Co., Parma, Mich., amounces a "Roll-In" metal cutting bandsaw, featuring a new gravity feed principle. According to the company, the saw blade feeds into the work through movement of a balaneed blade wheel frame on an inclined track.
Blade pressure is regulated automatically by texture and degree of hardness of metal being cut. Saw may be used for cut off, trim and contour work. A

swivel block for holding work can be removed for contour jobs or long straight cuts.

The machine features three speeds81,161 and 264 feet per minute. Its saw blades are $81 / 2$ to 9 feet long. In cutting into the work, the saw cuts vertically and down, the blade traveling 7 inches into the work.

Angle Gage

Engis Equipment Co., Chicago, announces a new vernier angle gage called the Clinometer, recommended for general purposes wherever angles and inclinations must be checked. It is used on various types of machine tools-lathes, drill presses, shapers, gear hobbers, etc., and for test setups in the inspection room, it is said.

Precision measuring of angles and inclined surfaces is accomplished by the unit's new gravity mechanism. The action of the instrument is by a free swinging drum graduated in 360 degrees which is
supported by ball bearings. When the device is applied to an inclined surface, the drum swings to a position which brings its center of gravity under its center line. The degrees of inclination can then be read from a pointer located above the clrum. Minutes of the are are indicated by a separate Vernier scale; repeating accuracy has been tested to a precision of $71 / 2$ seconds, reading accuracy to one minute.

Reading is facilitated by a patented brake mechanism, and by an attached magnifying glass which enlarges both the degree scale and the vernier scale. Through a hand knob brake, the rotating drum can be locked in position; in con-

sequence, a reading can be taken after the instrument has been removed from the measured surface. The instrument is not sensitive to shock, and can be used in all temperatures. In the aviation field, the maker states, the Clinometer has been used successfully in the manufacture of propeller blades, for the checking of wing sections, tail sections, ailerons and fuselages, both during production, assembly and on the complete plane. The instrument is being offered in five models.

Photoelectric Protection

Photoswitch Inc., 77 Broadway, Cambridge, Mass., announces a new photoelectric system which projects a fence of invisible light over distances as great as 1500 feet and gives instant local or central-station alarm if an intruder enters the protected plant area.

In operation, light source is aligned with receiver to which it focuses a modulated beam of infra-red light. Because the receiver responds only to the frequency of light emitted from the light

Features: Not only efficient tor single apiadle dritling, boring and lacing operations, but also multiple apindle drilling and boring purposes. (Machine shown is aquipped with heavy duty 8 -apindle head.) Multi-vee belt drive from molor mounted on pivoted base. Multiple head and spindle assembly counterweighted to allow for raising and lowering without effort. Entire machine mounted in welded ateel pan which serves as sump for coolant. . . . Complete details and specilications available in compact bulletin, well illuatrated.

BARER BROTHERS

TOLEDO, O H I O, U.S.A.

- That is a pretty good picture of conditions in the wire business today . . . More wire, more Shaped Wire, more Stainless Steel Wire, and more Welding Electrodes than ever before in the history of America . . . And less, where there is any, for your civilian needs.
- So continue to buywire carefully. Be "Scotch" about it. And if you are planning production that must await peace, we are more than willing to work with you on any of the jobs that call for the use of wire.

PAGE STEEL AND WIRE DIVISION
Monessen, Pa, Allanta, Chicago, New York,
Piltsburgh, San Francisco, Portland

In Business for Your Safety
AMERICAN CHAIN \& CABLE COMPANY, Inc. BRIDGEPORT CONNECTICUT
source, it is not affected by other artificial light or by daylight. This, it is said, permits extreme sensitivity, enabling the equipment to function over a greater range than it has been previously possible. If invisible infra-red light is not

required, the operating range of the system exceeds 2000 feet.
Within the light source, a fan driven by a gearless, brushless motor, serves as a light chopper to produce rapidly fluctuating light of the desired frequency, and also cools the heavy-duty lamp.

Once the invisible beam of light projected to receiver is momentarily broken, the alarm circuit latches in operation. An additional safety feature is that either power or tube failure will cause the alarm circuit to operate as though the light beam had been broken. Both the receiver and light source are of rugged construction, and are furnished in weather-proof housings. The equipment is designed for operation on 105 to 125 volts alternating current.

Extractors

Reps Tool Co. Inc., 99 Wall street, New York, is offering double purpose extractors which are said to remove stub ends of pipe, nipples, tubes, bolts or

screws. Units are of forged tool steel with heavy square shank followed by a sharply tapered, short, reverse thread ending in a square reaming end.

Simply by inserting the tapered end in the stub of pipe, tube, or drilled screw or bolt, without any hammering or other preparatory steps, a powerful four-point
grip is obtained. It is emphasized that this shallow, multiple bite greatly lessens expansion and jumming.

The built-in spuare reamer automatically removes burrs, eliminating interference with the extractor's bite. Continned increased pressure of a wrench on the squared shank positively pulls the broken piece back outward on its threads. Ten cadmium plated extractors make up the set and cover the entire range of pipe from $1 / 8$ to 2 inches and bolts or serews from $3 / 8$ to $31 / 2$ inches.

Electric Furnace

Harold E. Trent Co., Manayunk, Philadelphia, ammounces a new electric tool room furnace for hardening, amnealing and heat treating operations. Known as type MLR- 4 bench furnace, it has heat-

ing elements of folded and formed nickel chromium ribbon units.

Outer casing of the furnace is of steel reinforced and lined with different layers of insulation. The quick-acting, leveroperated steel door is brick lined, and can be used as a loading table. The furnace can be controlled either manually or automatically.

Limit Switch

General Electric Co., Schenectady, N. Y., announces a new lightweight, dust-tight limit switch specially designed for use where space is limited such as in aircraft. It features a contact mechanism of the snap-action, double-break type which gives it a high current rating making it also suitable for applications where severe vilbration conditions are encountered.

Designed for use in a wide range of ambient temperature-from 95 to - 40 degrees Cent-the switch is corrosionproof and can be used at altitudes from sea level to 40,000 feet. It is a springreturn, plunger-operated type with a $7 / 32$-inch overtravel. It can be mounted either on the cover side or on the opposite side. It is being offered in three different contact arrangements-singlecircuit, normally open; single-circuit normally closed; and 2-circuit, normally open and normally closed.

Sh longer need mean any let-down in the quality of manufactured products. Warplants now are demonstrating that new high standards can be rigidly maintained through systematic application of Foxboro Measurement and Control Instruments.
With these production aids, exacting operations are reduced to routine ... even "green hands" can produce surely and accurately. Automatical. ly, workers are supplied with exact
measurements to guide them . . . graphic records are provided wherever needed . . . manual control is often completely replaced!
For post-war planning, take a tip from war industries. Learn how Foxboro Instruments can assure higher uniformity and quality in any process requiring critical temperatures, pressures or flow rates. The Foxboro Company, 118 Neponset Avenue, Foxboro, Mass., U. S. A. Branches in principal cities of U.S. and Canada.

TherelsNoSubstitute For Results

It is a principle of logic that every "effect" must have a "cause." In judging a product (the cause), you've got to look to the results it produces (the effect) to determine its true value in relation to others in the same field. If the results are superior then it is only logical that the product, too, must be superior in construction and engineering design.
That reasoning is especially true with airless Wheelabrator blast equipment, because the results it produces are unequalled in the field of blast cleaning. A test will show why that is true.

300\% Tool Life Increase

(Continued from Page 104)
but the greatly increased life obtained by the Lundbye process is a definite advance. The following will indicate the results obtainable:
In addition to Collier's and The American Magazine, Crowell-Collier Publishing Co. prints Women's Home Companion at the Springfield, O., plant. Here over a million periodicals are turned out every day. Thus it has widely utilized nickel electrotypes to print as great a number of copics as possible from each set of plates, nickel giving a longer life than the regularuncoated copper electrotypes.
Fig. 2 shows results of a trial run comparing conventional nickel plated electrotypes and chromium processed plates. These were used by Rumford Press, Concord, N. H., to run off the blue color matter on the title page (pago 1) of the January 1943 issue of The Readers' Digest. The nickeltype was made in the conventional manner by pouring

TABLE II-Some Cutting Tool Applications and Results of Comparative Performance Tests

Maximum
\% Increase
Type of Tuol
In Tool Life

Reamers

Drills
2,000
Tool bits
1,300
1,200
solution 65-2/3\%

Whereas 30 minutes had been required to clean 500 pound loads of hard iron and ammealed permanent mold castinas with inefficient blast barrels at the Elmira Foundry Co Elmira, N. Y., only five minutes are now needed to handle a larger
Thorough eleaning of castings weighing from one pound to one ton-approximately 95% of the production of green castings-is obtained with the Wheelabrator Special Cabinet at Spring City Foundry Co., Waukesha, Wisconsin. Nearly half the total tonnage passes through the Cabinet a second time to remove scalc after heat treating.

Castings are carried into the calbinet on the mono-rail conveyor at the rate of 40 hooks per hour. Only one pass through the Cabinet is required to remove every trace of foundry sand or scale from all comers a pockets of intricate shaped castings. $48^{\prime \prime} x$ of the same work in the $48^{\prime \prime} \times 42^{\prime \prime}$ Wheelabrator Tumblast.
2300 pound loads of exceptionally difficult to clean leat treated bearings are Wheelabrated in less than one-fourth of previous time neeessary. Savings of several dollars per ton have also been realized due to the faster cleaning resulting.

Forming tools
Tups
Counter loores
Milling cutters
End mills
Files
Hols
Dies, punches
Special cutters
Thread chasers
Bronches
Cut-off saws
Fellows gear cutters
Spot facers
Gear cutters
Circular saws
900
3,000
600
600
550
100
960
1,100
435
750
400
400
100
100

100
the lead-antimony backing against the copper plate which was produced by electroplating against a wax form made from set type, rules and cuts. This was then nickel plated. After running off 300,000 copies of the issuc, the nickeltype was so badly worn that it could no longer be used. As can be seen by close examination of Fig. 2, the edges of the characters are rounded off, no longer make sharp ink impressions.

A cluplicate plate made in the same manner except finished by plating by the Lundbye process ran of the remainder of the copies needed- $1,300,000$-and is still in perfect condition. It is estimated that it could be used for a run of $5,000,000$ copies. That is a performance ratio of better than 16 to 1 for the chromium processed plate.

As a result of this test the Crowell-

Collier Publishing Co. is changing over its nickel-plating plant to the new process as fast as possible. With rums of $5,000,000$ copies now in sight, the process makes it possible to print any magazine from a single set of plates, thus cutting engraving costs and saving press time formerly required for changing plates or electrotypes.

Material Substitutions: Indicating the possibilities of the process in making substitute materials do the work of hard-to-get materials is the experience of the South's well known shipbuilder, Higgins Industries Inc. Many of the boats made by this company are equipped with a pump formerly fitted with an impeller shaift of " K " Monel. With the increased dificulty of obtaining Monel, it was necessary to find a substitute. The shafts are $1 \frac{1}{4}$ inches in diameter, 24 inches long. Of this length, the most critical portion is an area of $11 / 2$ inches long where a packing gland fits tightly.

Ordinarily an application of this type could well be handled by a bronze shaft. However, service conditions to which this unit is subjected are unusually severe in that they include continuous opcration for long periocls without any water to lubricate the impellor shaft packing gland. To prevent air leaking while the pump is rumning dry, graphite packing is tightly pressed against the shaft for $1 / 2$ inches along the shaft length.
Of course, there are several possible substitutes that could be cmployed. The difficulty with most of them was that they were just as hard to obtain as the Monel. Ordinary bronze wore rapidly and was entirely unsuitable, yet this was most desirable from the supply point of view. Accordingly several bronze pump shafts were sent to the CrowellCollier plant for sample processing. Their tests showed them entirely satisfactory.

Immediately Vice President A. J. Higgins Jr. telephoned to Springfield asking for complete enginecring details to start up a plant for processing the shafts at his own works. Fifteen minutes later a complete plating plant design was on the way by air mail. This was on a Friday. The following Tuesday morning the chromium processing department was in operation.
Mr. Higgins comments, ". . . . it has overcome one of our major difficulties in finding a suitable substitute for Monel metal which is so critical at this time". This substitution has received government okay and many other similar substitutions for critical materials have likewise been approved but cannot be described at this time due to wartime restrictions. It can be said, however, that

THE TRUNDLE ENGINEERING COMPANY

Consulting Management Engineering

GENERAL OFFICES - CLEVELAND • BULKLEY BLDG. CHICAGO - City National Bank Bldg. - 208 S. La Salle Street
NEW YORK • Graybar Building • 420 Lexington Avenue

Long in popular demand in metal working plants, the sale of Monarch lathes has received a tremendous impetus during recent years.

Repeated enlargements of plant have been necessary and upon completion of each new building additional Euclid Cranes have been installed.

Today ten 10 -ton Euclids are operating "around the clock" -moving heavy lathe beds-stepping up assembly-speeding finished lathes toward the shipping platform and production fronts throughout the world.

Euclid Cranes and Hoists are privileged to be partners in production with leaders in all principal lines of manufac-ture-in normal times and now in increased measure during the war program.

Continued acceptance by leaders of industry-men who know and build machinery of the highest calibre-gives assurance that Euclid Cranes and Hoists serve with the utmost efficiency and satisfaction.

THEEUCLIDCRANE \& HOISTCO. 1365 CHARDON RD., EUCLID, 0.

the process is in wide use in government arsenals, and many other important war production plants.

Test It Yourself: The ccompany's offer still stands-any plant doing war production work can send in to Axel E. Lundbye, chief engineer, Crow-ell-Collier Publishing Co., Springfield, O., sample cutting tools or other work which will be processed without charge. A report on their performance compared with untreated tools is the only thing asked. To any company that wishes to use the process, Crowell-Collier executes a royalty free license for use on war work, sends complete plant design details and will help train your own men to run it-all without charge-in an effort to further our country's war production efficiency.

In order to furnish a design for a plant to handle the process, it is only necessary to tell Mr. Lundbye how many tools are to be handled per day and the size of the biggest tool. Then wiring diagram, generator requirements, tank layouts and complete description of procedure can be on the way in a few moments if necessary. Hundreds of these designs have already been sent out and are now in use all over the country.

Origin of Process: The CrowellCollier Publishing Co. maintains one of the largest continuous production plants in America at Springfield, O., where three 8 -hour shifts manufacture more than a million magazines a day. At the outbreak of World War II, the installation of eight giant roto-gravure presses had just been completed for printing fast color work.
Highly volatile ink is spread on the surface of large etched copper cylinders of these presses and the excess scraped off by a "doctor" blade-a long steel blade comparable to a razor blade except that it is 72 to 76 inches long, just a few inches wide and 0.006 -inch thick. Under 1000 pounds pressure, this blade oscillates across the face of the rapidly revolving cylinder a distance of $21 / 2$ inches at a rate of 30 strokes per minute. As can be imagined, this severe service demands the very best steel obtainable. These eight presses employ 53 rotogravure units-said to be the largest such installation in the world-so maintaining these doctor blades in perfect shape not only involves a maintenance problem but new ones must also be available for replacement.

These doctor blades have always been made of the best Swedish bluc-tempered spring steel, analyzing 0.95 to 1.05 per cent carbon with phosphorus limited to between 0.015 and 0.025 per cent, sulphur from 0.005 to 0.015 per cent. Even before the outbreak of hostilities in 1939, the company had anticipated difficulties
in obtaining this material and had sought a satisfactory substitute. Careful spectrographic analysis of the Swedish steel and various American-made steels resulted in locating several equally as good. But these high grade stecls were also hard to obtain due to the tremendous demand. They were being sent to Great Britain and her allies even before the United States entered the war. Thus the company was no better off than before. The discovery of some method of prolonging the life of these doctor blades was a "must".

Accordingly, a program of intensive research was started under the direction of Axel E. Lundbye, chief engineer. Everything was tried-all through the ferrous metals down to the nonferrous; rubber, synthetic and natural; plastics of all kinds and descriptions-but with no success. Some of the materials were actually dissolved by the inks.

Then Mr. Lundbye went back to some experimental work on chromium plating he had done in Copenhagen, Denmark, in 1913 (he is a Dane by birth, now a citizen of the United States). He had carried on considerable additional research since that time. In the course of this new investigation, a method was discovered by which chromium plating could be made an integral part of the underlying material. As will be explained in discussing the characteristics of the finish, this is something new, for usually cliromium plates are characterized by an extreme brittleness that renders them entirely unfit where shock loads and high unit pressures are involved.

A number of doctor blades were given treatment by the new process. Their life was found to be increased from the usual 8 hours to a point where now they need not even be examined until the issue is off the press-a minimum of 110 hours (per week). After this 110hour run, the blades are removed from the press and trued up by just "kissing" them with a grinding wheel to remove a maximum of about 0.01 -inch. Thus after 100 weeks' operation, only 1 inch has been removed from the blade width. Edge of blades is ground square, not a knife edge.
This performance compares with the former 6 to 8 hours' service after which it was necessary to remove about $0.110-$ inch in truing up the blade. This consumed 1 inch of blade width in only 50 to 75 hours of press time-more than an inch per issue. Obviously the doctor blades did not last long at that rate. Treated blades are now good for at least 100 weeks' service.

In addition to this 1380 per cent increase in performance of the blades it formerly was necessary to shut down the

the work-To-WIN SLogan of every WYCKOF PRODUCTION SOLDIER . .
"PRAISE THE CORD AND
 FASTER"

Wyckoff production soldiers pledge their all-out effort for Victory!

Wishful thinking never won a marble game or a great war. Only the will and the ability to "Do the Job" has won six American Wars. To help keep our coveted freedom, the contribution of every Wyckoff production soldier will be to do the very best job of "passing war-vital steel" until Victory is won!
press for a half hour every 6 to 8 hours while blades were being changed. The treated blades now permit continuous operation, saving a minimum of 8 hours press time per week. Since each press represents a quarter million dollar investment, eliminating these frequent shutdowns has resulted in an important saving by permitting increased utilization of the equipment.

Cutters: After company engineers had satisfied themselves that the process worked on doctor blades, they tried it on cutting tools. Quite a large ma-
chine shop is an essential part of this plant and this became their proving ground. The result, to their knowledge, was the first successful treatment applicable to all types of cutting tools, for their work showed an average increase in production of 33 per cent made possibe by higher speeds and feeds. This was considered of sufficient value to report to Donald Nelson of WPB and other groups. As previously detailed, the process has now been tested and adapted by hundreds of plants.

An anlaysis of the characteristics of

max

TIME IS SHORT!

the plate produced by this process and a complete description of the equipment and procedure employed will be included in the second section of this article.

(Concluded Next Week)

$11 / 2$ Pounds of Meat

Enough for Hard Worker

One and one-half pounds of meat a week is enough to maintain the health of any harcl-working man, provided a variety of other foods is inclucled in the clay's meals, according to the National Research Council's food and nutrition board, Food Distribution Administration, Nutrition in Industry Division, United States Department of Agriculture, Washington.

Such foods should consist of poultry, eggs, fish or cheeses; wholegrain or restored cereals, bread, peas, dried beans, lentils, soybeans, peanuts or nuts; green and yellow vegetables; fruit and milk, the board states.

Present ration allowance is sufficient to provide from 2 to $2 \frac{1}{2}$ pounds of meat, and appreciably more if one meal a day is eaten in a cafeteria or restaurant.
"It would help workers to make the necessary adjustments in their food habits if they realized there are foods other than meat which provide protein for muscle building and body repair," says Dr. Robert S. Goodhart, chief, Nutrition in Industry Division. "Some workers do not seem to realize that poultry and fish are as valuable sources of protein as the rationed meats."

All ounce and a half of chicken has more protcin value than $11 / 2$ ounces of lean beef, Dr. Goodhart says. Halibut has nearly as much protein value as lean beet. A glass of milk provides $871 / 2$ per cent as much as $11 / 2$ ounces of lean beef.

Introduces New Victory

Wrinkle Finishes

A new line of Victory wrinkle finishes, containing no Chinawood oil is reported by Maas \& Waldstein Co., Newark, N. J. Finishes in the line closely resemble standard finishes, the manufacture of which is now restricted.

According to the manufacturer, the new finishes form hard, durable coatings, cover rough met:l surfaces effectively in a single coat and are applied in regular wrinkle patterns by the same methods. These are being offered in a full range of colors.

Starts Sintering Plant

A sintering plant, with a rated capacity of 1500 tons a day, was placed in operation recently at the Hamilton works of American Rolling Mill Co. The sintering mit was authorized by the Defense Plant Corp. it is reported.

Sintering-Plant Design

(Continued from Page 114)
can be increased and sinter quality improved by the use of an increased percentage of good quality return material. The sintering rate is dependent upon the possible rate of fuel combustion consistent with the necessary transmission of heat to the materials to be sintered. The preferred percentage of return material in the mix is that percentage which will permit the most rapid sintering rate; the critical percentage is that beyond which there is no compensating increase in the sintering rate.

Size of Returns Vary

Preferred particle size range of return material is a variable dependent upon the particle size range and other physical characteristics of the primary material. It should be of such size to permit homogeneous mixing when pugged with the primary material and one which will permit a minimum of segregation of sizes when the mixed mass is delivered to the sintering hearth. Obviously the percentage of unsintered fines in the return material camnot be of any benefit in opening up the bed of material because those fines are of the same particle size range as the material to be sintered. All benefit must come from that percentage which is larger in particle size than the raw material but to give that bencfit the material must remain uniformily mixed when delivered to the sintering hearth. Because of the segregation of particles when the mix is delivered to the hearth, heretofore described, most of the larger particles of the return material will roll down to the bottom of the bed and in that position they cannot give any benefit to the opening of the material above them. The dividing line governing this segregation is the size and weight of particles in their relation to the forces of adhesion and gravity.

In short, there is a percentage of return material between the fines and the oversize which is the ontimum size for increasing the permeability of the bed to air. To get enough of this optimum size it is necessary to use a larger percentage of return material than would be necessary if all the oversize particles were reduced to the optimum size. By crushing the oversize to the optimum size the same increase in sintering rate can be obtained from a small percentage of returr material as is usually obtained from the use of a large percentare and since the percentage of raw material in the mix is greater with the small percentage of return material production for anv given machine would be increased.
Efficient use of return material for making the bed of material permeable to

Jungle waters are purified ... with the aid of a deep-drawn cylinder

Shown below is another of the many products built by Hackney for the war effort. This cylinder is used for transporting and storing liquid chlorine, vitally needed by the armed forces for purifying water supplies in the tropics. This Hackrey Cylinder is cold-drawn to specifications. It meets all the strength, weight, safety and bandling requirements for this type of container.

Hackney Chlorine Cylinders are used in the transportation and storage of chlorine, bringing it safely to destination over thousands of miles of land and sea. They comply with I.C.C. specifications. These cylinders are made from flat circular plates of steel. By a series of cupping.and colddrawing operations they are formed into seamless cylinders made to exacting specifications with uniform sidewall thickness. The result is a lightweight cylinder, yet one providing adequate strength.

It may be that your war and postwar problems can be solved by Hackney designs and production of special deep-drawn cylindrical shapes. They may prove advantageous for war products you are now making-for improving existing equipment-and in the design of new products for the postwar period. Through use of Hackney Deep-Drawn Shapes, manufacturers have been able to conserve material, man-hours and equipment-assure adequate strength while reducing weight. Write today for all, the facts.

air can be accomplished by cracking down the oversize particles to the optimum size before feeding into the mix. In the category of materials sintered $1 / 8-$ inch size is large enough to scrve all purposes of opening up the bed of fine material and small cnough to feed uniformily and to hold a position in the stream of material when delivered to the sintering hearth. The optimum maximum size for return material might well be considered $1 / 8$-inch.

Degree of permeability to air of a mass of fine material is dependent upon the size of the interstices of the mass and that size is dependent upon the compactness of the surface contacts between the particles composing the mass. When a coarse material is introduced into a fine material mass for the purpose of increasing permeability, the benefit gained is from a change in the surface contacts of the fine particles and the increase in the size of the voids between particles gives the desired increase in permeability. The opportunity for greatest gain is the introduction of a material just enough larger in particle size to give the best average change in surface contacts. For purpose of illustration a $3 / 4$-inch cubc will be used as representative of the top size of return material. The total surface area of a $3 / 4$-inch cube is 3.375 square inch. If that cube was broken uv into $1 / 8$-inch cubes there would be 216 cubes with a total surface area of 20.25 square inches, an increase in surface area of 600 per cent.

Moisture Is Eliminated

A common expression in the sintering industry is "moisture gives porosity to the bed." It does because moisture occupies space and when driven off by heat a void is left and the void permits a free passage of air. Soft earthy ores usually contain approximately 15 per cent, plus or minus, of surface and absorbed moisture and combined colatile matter and the elimination of these volatiles serves to open up the bed of material to a better passage of air. The volatiles of such ores are uniformily disseminated and since much of the moisture is absorbed the ore may be barely damp to the touch. Magnetite concentrates, being of a hard physical structure, will not absorb moisture and all moisture present is on the surface of the concentrate particles and such material will be dripping wet at 5 per cent moisture, or less, and aside from the sulphur present in some of the magnetite ores, this class of material usually is free from combined volatile matter.

In the vernacular of the industry there is a "burning moisture" which may be said to be a moisture content at which ignition is uniform across the top surface of the bed. The limit of this sur-
face moisture content is the percentage beyond which ignition is impossible; absorbed moisture does not affect ignition as the surface moisture does. The soft ore mix, therefore, can carry more moisture than the hard concentrate mix and still have good ignition. The soft mix will get a proportionately greater benefit from moisture in opening up the bed to the passage of air than the hard concentrate mix can get from the lesser amount of moisture carricd. To offset the disadvantage a greater percentage of return material usually is needed with the concentrate mix than with the soft ore mix.

To get the greatest bencfit from the return material, equipment should be provided to prepare the material to the most desirable size, in relation to the particle size of the primary material, so that the percentage of the returns can be held to a minimum and still approach the benefits of fine dissemination as described from the presence of finely disseminated volatiles in the soft ores.

III-Material Handling Before the Sintering Machine
The problems in this phase of the subject concern construction, operation, and maintenance. For year-round operation weather conditions must be considered. Frozen materials must be crushed or thawed to feed uniformily. Feed bins should be built so that heat can be applied to the bins to thaw the frozen materials before they reach the feed gates.

Any number of lins can be constructed in a line with all feeders delivering their stock to a common collector belt, as shown in the accompanying illustration. Such construction is common, practical, and economical, the principal consideration being clearance and accessibility to feeders, belt pulleys, and driving mechanism.

Turntable, belt, drum, or electric vibrator feeders are all practical. The electric vibrator feeder in this application is too new to be proven in the maintenance factors: of the others the ovinion is offered that over a long period of time the turntable will prove to be the most economical in maintenance charges.

Materials Are Pugged

Raw material mixture from the collector belt and the return material from the discharge end of the sintering machine must be brought together for pugging and the arrangement of the equipment for this purpose should be governed by the well-known affect of return material upon handling equipment and upon the service the material must give to the operation. In the early years of sintering ferrous material plants were built to sinter flue dust only and the usual practice was to use current dust supplement-

NO LOST PRODUCTION TIME WITH THOMAS FLEXIBLE COUPLINGS

No LUBRICATION

Since there are no parts to wear out in Thomas Couplings, they last a lifetime. Furthermore, your machinery and prime movers will last longer, and require less maintenance while at the same time they give better service. Thomas Couplings provide these outstanding advantages since there is no stress, thrust, or cross pull on bearings when either parallel or angular misalignment, or both in combination are present. Serving all industries for 29 years there is no equal to Thomas Couplings for long, maintenancefree and continuous production service. Write for catalog today.

THOMAS FLEXIBLE COUPLING CO.
W-A R R $\quad \mathbf{R} \bullet P \quad E \quad N \quad N \quad A$.

THIS is a war of fire power. Regardless of the courage of our armed forces, regardless of the inspired leadership of our generals and their strategists-our armies must have superior fire power to win.
Pangborn Corporation, in company with the front line of American industry, recently won the Army-Navy " E " pennant for excellence in war production. This citation came because Pangborn ROTOBLAST Barrels, Tables and Special Cabinets-Pangborn AIR BLAST Rooms and Special Machines are removing scale and dirt from hundreds of thousands of castings, forgings, stampings, heat treated and other metal parts daily to help SPEED
 UP the fire power that is so badly needed NOW.
Pangborn men and management can, and WILL, do more. If you have a blast cleaning or dust control problem-"come to Pangborn." The recent citation-proudest in our 39 years of progress-plus the efficiency and performance built into every Pangborn machine-give irrefutable reason for your complete confidence.

ed with stock dust. The current dust being hot and dry had to be wet down anyway to get a mix of proper moisture content for sintering. The same condition holds true today in those operations where llue dust is the major portion of the mix. With such conditions the heat and dryness of the return material had no value and the material usually was wet down to protect the equipment used to deliver it to a bin for feeding into the mix.

But for the modern plant whioh uses a large percentage of ore the fundamentals of this part of the sintering operation are completely reversed from the old flue dust practice. With the moisture content of natural ores the heat and dryness of the return material are of the utmost importance and during periods of wet weather they are vital.

Values Are Utilized

To utilize the full value of heat and dryness the return material should be introduced into the mix withont wetting or cooline. Conveying the raw materials is not difficult. Construction, operation, and maintenance of a belt conveyor are simple and economical. A rubber conveying belt resists alrasion and has long life when conveying cold materials. Conveying return material presents some difficult problems. The material is hot and alrasive.

Heat, as known, makes a rubber belt entirely impractical. Pan or vibrating conveyors are practical but are expensive to install and have operating and maintenance problems due to the heat and abrasive nature of the return material. One solution of this problem would be to have a refractory lined bin, directly under the grid chute, equipped with a gate to permit direct feed into a preliminary pug mill and then bring the cold raw mix to the mill. This construction would permit full recovery of the heat and druness values of the return material and completely eliminate all of construction, operating, and maintenance problems of conveying the lot abrasive return material.

Preliminary pug mill could be of the simble drum type since its purpose is simply to kill excess moisture in raw material and/or to kill excess heat in the return material as a protection for the rubber conveying belt after the mill. From the preliminiary mill the pugged mix can be conveyed by rubber belt to a secondary pug mill located at the feed end of the sintering machine. Just ahead of the secondary mill there should be a small surge bin to take care of any momentary irregularity in the feed flow.

Secondary pug mill should be a blade mill. Importance of the pugging operation will vary with materials but no material can be overpugged. At this
mill, located just ahead of the sintering machine and close to the hand of the machine operator, the mix should be conditioned for moisture and carbon. Both of these factors are vital to the operation and when adjustment is needed it should be possible to make it where the benefit can be had immediately. Controls for governing the feeding rate of raw materials, fuel, and return material, should be located to the convenience of the machine operator. With such an arrangement a steady flow of feed can be maintained and any necessary change in the proportions of materials can be immediately effected.

> (Concluded in next issue)

Savage Tool Offers

Films on Gage Blocks

Four new 35 -millimeter sound slicle films describing the use of gage blocks are being offered for presentation before plant executives, foremen, inspectors, trade school classes, by Savage Tool Co., Minneapolis. These give presentations on: "Theory of Gage Blocks," "How Gage Blocks are Used," "How Gage Blocks are Made" and "The Use of Gage Instruments."

The films, states the company, are designed to remove the "mystery" and misunderstanding prevalent in industry about these modern "jewels of industry." Entire history of how gage blocks came into being is graphically shown by a complete portrayal of the evolution of our modern system of measurement.
The discovery of the constancy and uniformity of light waves, which finally gave man a permanent basis on which to base the formerly arbitrary units of length, is presented in a clear and understandable manner. "How Gage Blocks Are Used," shows the proper care of these gages as well as the manifold uses for them in actual machining operation, as well as the multitude of applications in inspection and checking.

Induction Heating
 (Concluded from Page 120)

of induction heating will increase rapidly in the immediate future for all types of heating operations-hardening, annealing, brazing, forging, soldering, and melting. Many changes in our methods of manufacture can be expected because of the speed with which heat can be developed in the work by high-frequency currents. Add to this the uniform and precise results that induction heating offers, and it is obvious that this process will make possible the handling of jobs which can be done in no other way as well as greatly facilitate more conventional operations.

MARINE FASTENERS just one branch of OLIVER SPECLALIZATION

Manufacturers of machinery and automotive equipment, railroads, construction companies, shipbuilders and other users of fastening devices find the accuracy and uniformity of Oliver bolts, nuts and rivets a practical help in speeding production, conserving labor, reducing costs.

Made by a company that specializes in this field, Oliver products are a good choice always.

SOUTH TENTH AND MURIEL STREETS - PITTSBUREM, PENUSYLNANIA

（2）

coursed for jus Looting Aliserds

山青み$$
11+10+1
$$

Praclaton fuel shakers进 ghiotres on thana

SCIENCE will win the WAR！

THE LAKESIDE STEEL IMPROVEMENT CO．
5418 Lakeside Avenue

Flame Hardening－Annealing－Serocasing Bar Stock Treating and Straightening Heat Treating－Pack or Gas Carburizing Sand Blasting－Chapmanizing－Tempering Caning－Nitriding－Hi－Speed Hardening

Shear Type Tools

（Continued from Page 124）
shear type tool is mounted in exactly the same position，the vibration is gen－ rally reduced to practically zero．
Fig． 1 shows a sketch of a part made of a particularly tough alloy steel cast－ ing on which the outside diameter was turned，both ends faced and the flat planed．The first of these operations was performed on a 60 －inch vertical boring mill in good condition with the tool mounted in the side head and the ram having an overhang of 19 inches．

It was found that the entire part could be easily machined without regrinding the tool，using a feed of 0.015 －inch per revolution，a depth of cut ranging from $1 / 4$ to $3 / 4$－inch and a cutting speed of 200 feet per minute．The bottom end of this part was faced on the same machine， with the tool mounting in the right hand vertical ram．Speed，feed and depth of cut were approximately the same as for the turning operation．

Vertical Lathe Used

A vertical turret lathe was used for facing the top end of this tough casting． This machine was considerably lighter and speed was reduced in accordance to 158 revolutions per minute．
The last operation，planing the flat， was performed on a planer with tool in a vertical head position．Cutting speed was 50 feet per minute and cutting time was reduced from 8 to 3 hours．Feed in this case was 0.045 to 0.050 －inch with a depth of cut of from $1 / 4$ to $5 / 8$－inch．

Another type of application in which good results were obtained with a con－ siderably smaller negative back rake is illustrated in Fig．2．The operation con－ sisted in facing top and bottom of this tough alloy steel casting．Two castings were mounted on a vertical lathe for simultaneous machining．A Carboloy standard T－1410 tool was used with the back rake ground to a 5 －degree mega－ tive angle．With a cutting speed of 240 feet per minute（at the beginning of the cut）and a depth of cut of roughly $1 / 2$－ inch or better，both castings could be machined on both sides without regrind－ ing the tool．Finish near the inside di－ ameter was not as good as at the begin－ ming of the cut since the speed dropped to 94 revolutions per minute and the negative back rake placed the nose of the tool considerably back of center．

The same part also was turned on the same type machine with the regular ＂shear＂type tool mounted in the side head．
The ram overhanging in this case was 16 inches．With a cutting speed of 197 feet per minute，a feed of 0.015 －inch and a depth of cut from $1 / 4$ to $3 / 4$－inch， several castings could be turned before
the tool required attention or regrinding. An example of machining an extremely tough-to-machine part on an old machine is illustrated in Fig. 3. The job was to bore the 32 -inch inside diameter with an interrupted cut. The machine was a 35 -ycar-old horizontal locomotive cylinder boring machine in extremely bad condition. Gear teeth were shot, while the spindle actually had $1 / 16$-inch of play. The electrical system was in no better condition. The work was clamped to the table, poorly supported using shims and jacks.

Tools Come Through

In short, this was just the assortment of conditions which would make the successful use of a carbide tool seem highly improbable. To meet this set of conditions, the tools were provided with a 60 -degree lead angle instead of the usual 15 -degree to compensate for the upward lift of the spindle resulting from the bad bearings in the machine.

Two tools were inserted in a 28 -inch diameter cat-head mounted on an 8 -inch diameter bar with an overhang of 32 and 40 inches. The maximum safe speed was only 10 revolutions per minute for a surface speed of 83 feet per minute. Lowest available feed per tool was 0.021 -inch. Depth of cut was roundly $3 / 8$-inch,
With this setup the shear type tools produced two to three complete pieces per tool grind.
All castings mentioned here were not only extremely tough but also scaly and well impregnated with sand pockets and hard spots. In addition, some portions of the castings had glassy hard surfaces as the result of previous flame cutting.

Revised List of Standards Published by ASA

More than 600 standards are embodied in the new list of standards recently published by the American Standards Association, 29 West Thirty-ninth street, New York, for use as reference by engineering and purchasing departments of manufacturing plints. Ninety-four of these represent new and revised standards approved since the last issue.

Standards in the publications are listed by subject and cover civil, mechanical, electrical, mining, chemical and other engineering fields as well as metals and materials, methods of test for the finished product, dimensions etc. They serve as a basis for many municipal, state and federal regulations.

According to ASA, the standards represent in each case general agreement on the part of maker, seller and user groups as to the best current practice. More than 500 national organizations are at present taking part in this work.
 Unless body salt is replaced and the correct balance maintained, Heat-Fag takes its toll. It slows down reactions - renders men inalert - exposes them to industrial accidents.
Production-minded industries insist on Salt Tablets for men who sweat and do hot work. They keep men alert and efficient through long, hard, hot hours.

MORTON SALT COMPANY - CHICACO, ILLINOIS

Keeping things " O_{n} the Beam

- BIG BEAMS HAVE GONE TO WAR on Land, Sea, and Air ... and they're helping to win it. BIG BEAMS are standardized by some of the largest Defense Plants, Public Utilities, Hospitas, Railroads, and other industries throughout the country. BIG BEAMS guard against sabotage around plants,
protect against light failure, high line inspection and repair, and have many other important functions.

Diversified uses have made necessary many special designs which will greatly increase the utility of these fine lamps AFTER THE WAR!

- Write Sales Department for descriptive literature.

CHICAGO. ILLINOIS

- Welding has become a quantity production operation with C-F POSITIONERS because the welders themselves can now position giant weldments without a crane or sling crew. On the giant turbine gear blank shown the welder welds all sides and internal angles downhand - just pushes buttons to tilt the blank up to 135° beyond horizontal or rotate it 360°, under variable speed control to make the endless peripheral welds. So it is thruout many shipyards, welders with C-F POSITIONERS are building parts and sub-assemblies which would require many more hours of labor, highly skilled men and machine tools to produce by other methods.

[^6]Write for

POSITIONERS help build ships for Victory

Segment Cutting Method Conserves Steel Plate

A highly efficient method for conserveing steel plate stock, simultaneously increasing the number of segments cut from it, was recently suggested by Spencer K. Fredericks, General Electric welder. It involved changing the are length and rearranging the nesting of the templets of segments cut from large rectangular sections of 1 and $1 / 2$-inch steel plate stock.
By reducing the are lengths of the segments from 90 to 60 degrees, and by arranging the templets crosswise rather than lengthwise on the plate stock before cutting, the amount of scrap left from the operation was greatly reduced. In addition, the nesting arrangement results in sections of uniform shape being so placed that a battery of acetylene torches cuts through them simultaneousfy, rather than singly, thus conserving man-hours and speeding up production.

These segments are welded together to form large motor frames. On a recent job requiring the cutting of sufficient segments for 72 large motors, the new rethod effected a saving of 20 per cent
scrap over the former method. The company awarded Spencer $\$ 750$ for his suggestion.

Report on Tropical Hard Wood in Industry Offered

A wartime report on Lignum-Vitac, a tropical wood said to have a density approximating that of iron, is being offered by Lignum-Vitae Products Corp., 96 Boyd avenue, Jersey City, N. J., to production and engineering executives.
The report describes many diversified and some unknown applications of the wood in connection with the war effortits uses with mechanical equipment in form of pulleys, roll bearings for steel mills, cylinders, wheels and bushings.
Schools, research labs and others interested in the report are invited to send for it.

Booklet Tells How To Lubricate Wire Rope

To aid in the conservation efforts of industrial America, Keystone Lubricating Co., Philadelphia, recently issued a booklet dealing with the lubrication of wire cable. It likens the wire cable to a group of bearings working against each other, in pointing out to the reader the reasons for lubrication.
According to the publication, friction is the greatest enemy of the wire rope, and means must be taken to prevent chafing, scraping and destructive action as the individual wires of the wire rope work against each other.

Helpful Literature

1. Aircraft Tubing

Ohio Seamless Tube Co.-7-page booklet, "Steel Tubing for Aircraft Use," offers purchasing data, specifications, information and definitions to facilitate the ordering of welded and seamless tubing for aircraft applications. Material is presented in outline form for casy reference.

2. Safety Equipment Care

Mine Safety Appliances Co.- 32 -page illustrated handbook lists "Do's and Don'ts" of safety equipment care for key personnel in form adaptable for instruction of equipment users. Covers every type of personal protective equipment. Includes section on methods of sterilization of masks and respirators.

3. Furnaces

Lindberg Engineering Co.-8-page illustrated bulletin No. 140 discusses applications of line of fumaces for heat trentment of aluminum, magnesium and their alloys. Zone control method of heating lnrgo loads is explained. Wide range of sizes available in both vertical and box type furnaces are shown. Line drawings point out construction fentures.

4. Temperature Cabinets

Precision Scientific Co.-48-page illustrated catalog No. 325 is descriptive of "PrecisionFreas" coustant temperature control cabinets. Included are veriety of standard models as woll as constant temperature cabinets and baths built to specifications. Catalog also contains general information pertaining to mechanical and gravity convection heat transfer.

5. Adhesives

Paisley Products, Inc.-4-page illustrated iolder on labeling and packaging adhesives covers materials for labeling, wrapping, sealing and other packaging operations in all types of industries.

6. Refractories

Laclede-Christy Clay Products Co.-8-page chart gives engineering information and uses of complete line of refractories and refractory specialties. Products included are high temperature cements, coatings, plastics, fire brick and insulating fire brick. Chart is particularly useful in helping to determine what refractory is right one for specific job.

7. Thread Miller

Plan-O-Mill Corp.-14-page illustrated bulletin is on No. 3 "Plan-O-Mill" form and thread milling machine which features complete feed control. This production machine is designed for milling internal and extemal, right and left hand threads and forms ranging in size from $1 / 2$ to 8 inches inside and outside diameter.

8. Variable Speed Drive

Link-Belt Co-58-page illustrated bulletin No. 1874 describes "P.I.V." positive infinitely variable speed changer. This fully enclosed, self-lubricating chain drive speed selector is available in 7 sizes and in 5 standard types for horizontal and vertical mountings. Either mechanical or electrical controls may bo used on all types. Bulletin shows sizes, types, capacities, speeds, operating principles and typical applications.

9. Rectifiers

Hanson-Van Winkle-Munning Co.-12-page illustrated bulletin No. ER-103 describes line of copper oxide rectifiers for electroplating, anodizing and electrotyping. Units are made in sizes ranging from 300 to 2000 amperes at 6 volts and from 150 to 1000 nmperes at 12 volts. Construction, operation and applications of these units are discussed.

10. Brass \& Bronze Castings

Hammond Brass Works-20-page illustrated bulletin, "Practical Data on Brass and Bronze Castings" explains nomenclature of coppar alloys; gives compositions and properties of copper, manganese and aluminum bronzes, and lists standard specifications. Physical constants of metals and metallurgical elements are tabulated.

11. Marking Crayons

Helmer-Staley, Inc.- 8 -page illustrated folder, "Write With Real Paint," is descriptive of line of "Paintcil" marking sticks which are available in types for permanently or temporarily marking on hot surfaces of metals and for marking on all hard surfaces. Sticks are furnished in several colors.

12. Cut-off Wheels

Norton Co.-28-page illustrated booklet describes abrasive cut-off whecls. Aluminum oxide is used for cutting steel and most other metals; silicon carbide for cutting non-metallic materials such as carbon, tile, slate, ceramics and insulating board. Chart lists general recommendations for selecting wheels for cutting various materials.

13. Brazing Alloys

Handy \& Harman-20-page illustrated bulletin No. 12-A explains application and procedure for low temperature brazing of metals with "Sil-Fos" and "Easy-Flo" alloys. First is low temperature copper-phosphorus-silver alloy which melts at 1185 degrees Fahr. and is intended for use only on nanferrous materials. Second melts at 1160 degrees Fahr. and may be used on all ferrous and nonferrous metals.

14. Rotary Gear Finishers

Michigan Tool Co.-A-page illustrated bulletin No. 862 is descriptive of "Michigan 862" rotary crossed-axis gear finishers for shaying gears up to 2 feet in dinmeter, such as those used in speed reducers and turbines. Provision is mado to permit crowning of gears when desired.

15. Recirculating Fans

Mahr Manufacturing Co.-4-page illustrated bulletin No. 1070 covers temperature fans built specifically for recirculation of heated gases, Fans can be re-assembled at any time in any of sixteen accepted, standard discharge positions withozt cutting, welding and rebuilding of housing.

16. Carbide Tools \& Blanks

McKenna Metals Co-40-page illustrated catalog No. $43 B$ contains revised prices of Kennametal" standard, non-standard and special tools and blanks, Diagrams show clenrance and rake angles, sizes of tips, shank dimensions and proper use of tools.

17. Spring Design

Mid-West Spring Manufacturing Co.-40page illustrated manual, "Spring Design and Enginecring," contains formulas of spring design and engineering for compression, extension, torsion, flat spiral or motor, flat springs and wire forms. Data sheets are included for making sketches of spring requirements.

18. Bolt Cutters

H. K. Porter, Inc,-48-page illustrated handbook on "Porter Cutters" presents data on application, selection, use and care of bolt, chain, rod and other lever action hand cutting tools. Detailed directions are given also on correct use of cold chisels, files, ball poin hammers, hack saw blades, taps and high speed
tool bits.

19. Precision Gages

Perfex Gage \& Tool Co,- 4 -page illustrated bulletin, "Rigid Inspection for Grenter Perfection," explains methods used to inspect gages under exact temperature control. Typical gages shown include thread length, fush pin, thread, contour snap, arbor concentricity, adjustable snap and contour types.

20. Milling Machine

Pratt \& Whitney division Niles-Bement Pond Co- -8 -page illusirated circular No. 470 gives full specifications of No. 3 model C universal bench miller which is designed for toolroom or production line applications. This precision machine tool is adaptable to wide range of operations through relatively simple setups.

fTEEL Readers' Service Dept.

1213 West Third St., Cleveland, Ohio
Please have literature circled below sent to me.

FMAST CLASS
PERMIT No. 36
(Sec, 510 P.L. 8 en
Cleveland, Ohio

Name

21. Corrosion Data

Interaational Nickel Co. 4 -page "Corrosion Data Work Sheet" is designed to assist executives and engineers in their study of corrosion problems. Sheet scts as check list to insure consideration and evaluation of all factors influencing comrosive action. Company's Technical Service invites plant men to submit completed Work Sheets for interpreted data fromi its files.

22. Gas Furnaces

Johnson Gas Appliance Co.-8-page tllustrnted broadside, "Two Weeks" Delivery," is descriptive of bench and pedestal type heat treating furnaces, pot-hardening fumaces and heavy duty gas-fired furnaces which are available in wide range of sizes and capacitles for various industrial applications.

23. Combustion Control

North American Manufacturing Co.-2-page illustrated bulletin No. 13-O concerns "Ratiotrol," a single valve operated device which furnishes exact amount of oil necessary to maintain same combustion conditions for any given How of air in oil burner. Since only pressures are controlled, one or many bumers may be operated from same control. Illustrations show operation.

24. Industrial Shades

Hough Shade Corp.-Illustrated bulletin No. 151 shows how "Ra-Tox" offset wood slat shades for industrial sash are being used in large plant to control light from windows without glare or draft. Shades are rendily installed and protect workers from sun heat.

25. Material Handling Tongs

Heppenstall Co.-20-page illustrated bulletin, "Heppenstall Automatic Safe-T-Tongs," covers design and capacity of various types of tongs for ferrous material handling, as well as devices for handling coil reels, ingots, paper bales and similar materials. Actual applications of these units in all types of operations are shown.

26. Precision Products

Hardinge Brothers, Inc.-16-page illustrated "General" bulletin is descriptive of precision lathes, second operation machines, milling machines, collets, feed fingers, circular form and cut-off tools, speed chucks and collet index fixtures. All of these machines and accessories are designed for precision machining applications.

27. Diaphragm Valves

Mills-McCanna Co.-20-page illustrated catalog No. V-41 gives details of design and applications of "Saunders" diaphragm valves which are made for effective control of acids, alkalies, gases, semi-solids volatile and viscous substances, hot and cold water, and compressed air. Various constructions are engineered for specific types of service conditions.

28. Tool Maintenance

Independent Pneumatic Tool Co.-20-pago illustrated booklet No. JE-199 tells how to obtain maximum sorvice from portable electrio tools. Complete instructions are given on proper care and operation, with right and wrong methods clearly illustrated

29. Fire Fighting

Walter Kidde \& Co.-16-page illustrated bulletin, "How to Teach Fire Fighting," gives detailed instructions for staging demonstrations before factory personnel on correct fire fighting procedure. Types of industrial fires, soda-acid extinguishers, water extinguishers, dry compound extinguishers, foam extinguishers, vaporizing liquid and carbon dioxide types are described.

30. Portable Search Lights

U. C. Lite Manufacturing Co.-Three 2 page illustrated data sheets are descriptive of No. 411, No. 700 and No. 1000 portable, storage battery-operated and dry cell type searchlights which are adaptable for emergency lighting service.

31. Machine Drives

W. A. Jones Foundry \& Machine Co.-20page illustrated bulletin No. 80 describes herringbone reducers, worm gear speed reducers, worm-helical speed reducers for vertical shaft drives, spur gear reducers and gears. Also covered are car pullers for spotting railroad cars, door hoists for handling furnace doors, skip hoists and wide range of power transmission equipment.

32. Press Welders

Progressive Welder Co.- 4 -page illustrated bulletin No. 601 describes and gives full specifications of line of standard press welders which are made in ratings ranging from 30 to 600 kilovolt-amperes. These machines are designed for use wherever assembly by projection welding is feasible. All models are fitted with dauble cooling water manifolds.

33. Black Oxide Finishes

Oaldte Products, Inc.-20-page illustrated booklet No. 5769 is entitled, "Surface Preparation of Metals With Oakite Materials and Methods Before Black Oxide Finishing." Degreasing, descaling and derusting methods being successfully used for prefinish surface treatment are covered. Data are included on reclaiming of black finished parts that have failed to pass inspection.

34. Milling Machines

Industrial Tool \& Die Works, Inc.-12-page illustrated bullctin gives complete specifications and describes features of No. O-9 vertical milling machine which is combination vertical miller and jig borer. Spindle speeds range from 325 to 3800 revolutions per minute and overall table working surface is 24×6 inches.

35. Metal Cleaning

Magnus Chemical Co., Inc.-72-page illustrated booklet is technical manual on materials, methods and machines for war time metal cleaning. Machines illustrated are of special design to meet condltions imposed by specific cleaning problems. Among subject discussed are alkaline cleaners, solvent cleaners, petroleum spirit cleaning and emulsifable cleancrs.

36. Manufacturing Facilities

Lombard Governor Corp.-64-page illustrated booklet is enttled "A Heport To The Nation." It shows company's plant, many products and methods of machining. First section is devoted to history of plnnt; middle section to methods of manufacturing, personnel and some of products; last section to prospects of the future.

37. Fluorescent Fixtures

Mitchell Manufacturing Co.-8-page illustrated catalog No. 400 introduces "Mitchelite" line of guorescent fixtures for factory, office or drafting room use. Fixtures meet requirements of WPB and U. S. Bureau of Standards. Models can be used for both individual and continuous row lighting, for surface or suspension mounting. Prices are listed.

38. Retaining Rings

National Lock Wosher Co.-6-page illustrated folder describes retaining rings made of spring steel which are heat treated after forming. Rings are made in closed and open types in round or in square sections. Charts list standard stock sizes but special sizes and cross sections can be made at small extra cost to meet individual requirements.

39. Milling Machine

Ohio Machine Tool Co.-8-page illustrated bulletin No. 400 is descriptive of the "Ohio Miller" which is capable of milling with and against feed. Climb-cutting produces longer life and ability to mill both ways makes possible continuous milling with fixtures secured rigidly to table without index tables. Line drawings show construction.

40. Industrial Lighting

Holophane Co-16-page illustrated bulletin, "Controlled Lighting," deals with design, selection and application of industrial lighting systems in all types of plants. Concentrating distribution, intensive distribution, extensive distribution and widespread distribution are explained. Typical lighting firtures which are designed for industrial use are briefly described.

41. Metal Band Saw

Johnson Manufacturing Carp.-4-page illustrated bulletin describes "Johnson" metal cutoff band saw which has capacity up to $10 \times$ 18 -inch stack. Machine may be used to cut rods, tubes, angles, heavy rounds and irregular shapes. Accurate cuts are possible with minimum of set-up requirements. Feed is automatic

A SHOT IN THE ARM

> MAY SAVE A

SOLDIER'S LIFE

Precious blood plasma for the wounded, serums for the sick, narcoties to deaden pain-yes, hypodermic injections are vital life-savers on every battle front!
Today, the plungers for these hypodermic injectors are made of glass, centerless ground within a tolerance of .0005" for roundness and dimension. The aceuracy and fimish of the centerless grinding is of

Lives depend wpon the accurate orinding of these little piecces of glass.
the utmost importance. Any pitting or irregularity may permit air bubbles to get into the fluid and, in turn, be pumped into the blood stream with fatal results.

Accurately ground glass plays another important part in the war effort, too. Glass "go, no-go" plug-type gauges ground within a tolerance of $.0001^{\prime \prime}$ are helping manufacturers of vital precision parts for planee, tanks, guns and ships do a faster, better job,
Precision grinding of every type with amazing accuracy, ON A MASS PRODUCTION BASIS!-that's ACE's vital contribution to winning this war. Here is a great Anerican plant with precision tools, centralized responsibility and slecpless ingenuity. Here is where to come for practically every operation in the manufacture of small parts where aecuracy is required, both now and after the war.
Inspection of each individual piece!

> ACE MANUFACTURING CORPORATION for Precision Parts

1249 E. ERIE AVENUE, PHILADELPHIA

Disabled Veterans Look To Industry for Future
 (Continued from Page 86)

When dismissed from the hospital, the disabled triainee was turned over to the Vocational Rehabilitation Division of the Bureau of Vocational Training and Placcment. Training afforded them often was incomplete. Rehalilitation specialists declare that this same mistake can be avoided this time by the thorough methods developed since 1918.
Industry is being depended upon to provide the practical means for applying the principles and policies developed over the past 25 ycars. In meeting this obligation employers confront the necessity for developing within their own organizations plaus whicl will hest work out under the conditions peculiar to their operations. The task will not be an easy one.

Batt Says Huge Output

 Forces Plant Closings(Continued from Page 69)
them before they were released.
"In the second place, the type of tank they were building was no longer needed in quantity by the armed forces. And this plant was not rated as one of the most efficient tank producers. Then, too, and this is an important factor, some of its tools and welding equipment were needed in speeding up production of more urgent war material."
Mr. Batt said a WPB engineer was already surveying the plant and remaining equipment with a view to putting it to work on other war production.

Warehouses Authorized to Stock Aluminum Rivets

War Production Board has arranged to have stocks of aluminum rivets carried in the following warehouses: Whitehcad Metal Products Co. of New York Inc., New York; Steel Sales Corp., Chicago; Metal Goods Corp., St. Louis; J. M. Tull Metal \& Supply Co., Atlanta; and Pacific Metals Co. Ltd., San Francisco.

Northwest War Plant Receives Kaiser Iron

A 50-ton carload of pig iron was unloaded at the Western Foundry Co., Portland, Oreg., recently-the first shipment received by a Pacific Northwest war plant from the Fontana, Calif., stack of Kaiser Co. Inc.
The iron will be used in marine engines for Liberty ships completed at Kaiser's Oregon Shipbuilding Corp.

BAD

for dead pans and sour pusses who complain that American industrial facilities are inadequate to handle rush war orders

WE HAVE EXPANDED THREE TIMES

to take better care of

GALVANIZED PRODUCTS

AND
PRODUCTION HEAT TREATING

Monulaclurers of
TENT POLE HARDWARE PIPE FLANGES
TANK TRACK GROUSSER AND COVER PLATES

When you place your order with us, you'll notice
"A Material Difference"

Better Hydraulic Power...

Sectional View

- Hannifin patented high pressure hydraulic cylinders provide stronger, simpler construction, easier application, and high efficiency use of hydraulic power. Mirrar finish honing produces a cylinder bore that is straight, round, perfectly finished for efficient piston seal with minimum fluid slip. No-tie-rod design and universal and caps which may be positioned independently provide for simplest installation and convenient piping
Built in sevenstandard mounting types, with small piston rod, 2 to 1 differential piston rod, or doublo and rod, in all sizes. Furnished with or without cushion. Many special types available, any size, for any pressure. Write for Bulletin $35-\mathrm{S}$ HANNIFIN MANUFACTURING COMPANY 621-631 S. Kolmar Avenue, Chicago, Alinois

hanNIFIN HYDRAULIC CYLINDERS

You Can Still Get Service from BISSETT!

We're sorry that we can't tell you the whole story . . . of all the things Bissett engineers are doing for Bissett customers these days but needless to say, you can still get service from our warehouse. Why not try us?

BUY WAREONDS:

HORMALLY CARRIED IN STOCK
N. E. Steels and Standard S.A.E. Steels, both Carbon and Alloy, Hot Rolled and Cold Diawn - Chisel Sieels. Cumberland Ground Shafts - Drill Rod High Speed Tool Bits - Shim Steels Tool Steels . Taol Steel Tubing. Boiler Tubing

Tells Enamelers They Face Keen Competition

ENCROACHMENT in the postwar period of light metals, plastics, plywoods and other products upon established markets for enameled metals may mean some loss of business for producers in that inclustry, but closer control of operating costs and industry-wide concentration on methods to reduce them should vastly improve their competitive position.

This view of the future for enameled metals was presented by L. S. Hamaker, assistant general manager of sales, Republic Steel Corp., in his address before the Porcelain Enamel Institute at its twelfth anmal meeting in Cleveland June 8 .

Mr. Hamaker said economics will govern the application of these products after the war as was true in the past; that any loss of business in the past has not been due to the superior merits of substitute products but because the cust of enamel has been too high.

New market developments, important as they are, will not make obsolete every' thing that has been done before the war, he stated. Technical changes must be albsorbed and digested. The constumer will not wait for the last word in technical development to satisfy a long-postponed want. As a result, most companies will resume production of the models for which they have the dies and tools. Changes will not come until the need for sales stimulation becomes evident.

Several Factors Improve Outlook

Among factors improving the outlook for the industry, Mr. Hamaker listed the redistribution of wealth and income that will enable millions to satisfy long-established needs for the first time; th: anticipated postwar housing hoom which is estimated at one million new dwellings per year for perhaps ten years; large increase in the number of future family mits to result from the much higher birth rate and millions of postwar marriages; great reservoir of consumers' cash savings and regional shifts in population tending to aggravate the shortage of consumers' goods of all kinds in the areas of concentration, many of them new war production centers.

Discussing "Building Codes as The: Affect the Porcelain Enamel Industry," B. L. Wood, consulting engineer, American Iron and Steel Institute, pointed ont that the most cleverly conceived promotional campaign for broader participa-
tion of architectural porcelain enamel in the postwar construction market may prove to be ineflective if buidding ordimances of cities prevent use of the prodnet or if improper installation of the product in conspicuous places results in an unsightly appearance.

Mr. Wood described the work of the Institute's Committee on Building Codes toward revision of regulations on a basis consistent with relative fire salfety afforded by different types of construction.

All officers of the Porcelain Enamel Institute were re-elected: P. B. McBride, Porcelain Metals Corp., Lonisville, Ky., president; R. H. Turk, Porcelan Enamel \& Mfg. Co., Baltimore, vice president; R. R. Danielson, Metal \& Thermit Corp., Carteret, N. I., vice president; William Hogeuson, Chicago Vitreous Enamel Products Cos., Cicero, Ill., treasurer, and C. S. Pearce, Washington, managing director.

Metal Institute Seeks
 To Speed Production

The Pressed Metal Institute, organized last March by representatives of sheet and strip metal fabricators, rolling mills and metal press manufacturers, will cooperate closely with the varions government agencies in speeding up and increasing mass production of war materials, George E. Whitlock, president, states in an amouncement outlining the objectives of the organization.
In acldition the group will press research in an effort to develop new and extended uses for metal stampings.

Administrative offices of the orgamizaltion are at 19 West 44 th street, New York city, but in addition the institute has opened an office in the Press building, 14th and F streets, N.W., Washington.
In acldition to Mr. Whitlock, officers are: S. J. Menzel, Detroit, vice president; H. L. Moody, New York, secre-tary-treasurer, and managing director. The board of trustees consists of the following: Frimk E. Graper, Toledo, O.: W. W. Galbreath, Alliance, O.; J. H. Robins, Philadelphia; G. F. Ahlbrandt, Middletown, O.; William H. Miller, Utica, N. Y.; W. E. Porter, East Boston, Mass.; R. W. Glasner, Chicago; G. H. Roberts, Detroit; William J. Mcinal, Philadelphia; W. C. DeMaris, Philadelphia; Roy C. Ingersoll, Chicago; Steplien J. Menzel, Detroit; George E. Whitlock, Salem, O.; I: R. Morris, Cleveland; K. T. Norris, Los Angeles.

Miscellaneous construction projects having total estimated cost of $\$ 4,160,08.5$ were halted during the period of May 24 through May 28.

Acceleration of materials handling tempo puts the spotlight on safety. Krane Kar's ease of operasion, stability, unobstructed vision, full traction, and other safety features provide maximum manpower protection 168 hours a week. Send for literature. Amnng the Users: American Smelting \& Refining; Basic Magnesium; Lockheed Aircraft; Bethlehem Steel; Hercules Powder; DuPont de Nemours; Follanshee Steel Corp; General Motors; Keystone Steel \& Wire; General Electric; etc.

$21 / 2,5$, AND 10 TON CAPACITIES
 rane rap

LEWIN-MITDES Got the niokt ansmen at

They had a job of pointing heavywalled copper tubing, and wanted to speed up the operation. Just how to do it didn't appear on the horizon, and so Lewin-Mathes did the safe and logical thing-they put their swaging job up to Etna.
The answer to that problem is illustrated on this page. It's a modern Etna Swaging Machine that paints more copper tubes per hour in lass time at less cost. If you hove a problem invalving faparing or redueing tubing and solid rounds-ask Etna about it.

Etna has the swaging machines from $3 / \mathrm{g}^{\prime \prime}$ to $4^{\prime \prime}$ and the expcrience to help you get the most out of this type of machine.

Need some particular thread gages in a hurry? Here's your best bet: Every two weeks Detroit Tap issues to its field representatives lists showing sizes and quantities of standard thread gages available from stock in Detroit. Chances are your size may be readily available. It only takes a phone call to find out. Pick the nearest one from those listed below:

CHICAGO	KEdzie 3170	PITTSBURGH	MAyflower 3177
CLEVELAND	HEnderson 6113	HOCKFORD	MAin 2243
DETROIT	MAdison 0260	ST. LOUIS	CEntral 4435
DENVER	KEystone 7229	ST. PAUL	GArfield 4341
FLINT	FLint 4-2624	SYRACUSE	SYracuse 8-1462
HOUSTON	CApitol 5634	TOLEDO	GArfield 8017
INDIANAPOLIS	Rlley 9393		
LOS ANGELES	KImball 9111	MONTREAL	MArquelte 5346
MILWAUKEE	. DAly 4256	TORONTO	WAverly 2688
NEWARK. N. J.	MArket 3 -1492	WINDSOR	WIadsor 4-9229

Perhaps you would like to receive copies of these gage stock lists regularly? Make a phone call today, or write:

DETROIT TAP \& TOOL CO.

8432 BUTLER STREET, DETROIT, MICHIGAN, U.S.A.

More Semifinished Moving On Lend-Lease Account

Export shipments increasing as ocean safety grows . . . Mills booked for most of last half . . . Tin plate orders heavier, production af 65 per cent . . . Railroad needs pressing

DEMAND
 War needs take entire outpur.

PRODUCTION
Down 2 points to $961 / 2$ por cent.

PRICES
Steady at cailings.

AN IMPORTANT factor in the tightening situation in steel delivery may be found in increased shipment of semifinished material abroad.

Present indications are third quarter movement will be the heaviest in more than a year, in sharp contrast with last fall when tomage accumulated at ports was offered for sale and orders on mill books were canceled. Since then the quantity moved under lend-lease has been small, until late February when it started to increase. This resurgence of exports reflects the easier shipping situation ats more vessels are clearing American ports and arriving safely. A recent decrease in ocean insurance rates by Lloyds is an earnest of the better shipping situation.

Deliveries on current steel orders are receding steadily in spite of practically capacity production. Plates, monder close supervision by War Production Board, are being supplied to shipyards, the largest consumers, strictly on schedule and stocks are kept close to needs, inventory being held to tonnages that will prevent delays. Occasionally some sheared plates are delinquent at the monthend but this is corrected with little delay. Bars are available on steadily receding deliveries, although small sizes can be placed in small lots for July shipment, with August available on medium sizes. Many mills are booked almost solidly for third quarter on small and medium and practically all are out of the market on large sires for third quarter, some having rothing before Nowember.

Sheetmakers in general are covered for third quarter delivery on both hot and cold-rolled material, exceppt galvanized, and in some cases are booking considerable tonnage for fourth quarter. Mill quotas have restricted coldrolled capacity to an extent that producers are as iightly booked as for hot-rolled. Midwestern sheet distributors have been granted a price increase on galvanized secondary grades.

Steel ingot and castings production in May was third largest for any month in the history of the industry, at $7.545,379$ net tons, an increase over April but short of the all-time record in March. A feature of May production was the third consecutive high mark in electric furnace ingots, which were produced at 102.9 per cent of rated capacity.

Scrap supply is sufficient for current needs and deliverjes in the Midwest have returned to normal after recent
floods subsided. In general mefters are able to lay down some reserves but backlogs have not been acemmulated to the usual degree. Banking of blast furnaces in the Pittsburgh district as a result of the conal mining intermption is cansing use of more scrap in steelmaking ind may cut into accumnations laid aside for the winter. Quality has improved in reeent weeks as heavier material is coming out better.

Steclworks operations last week dropped 2 points to $961 / 2$ per cent of eapacity, Jowest since March, 1942. Pittshurgh was hardest hit, dropping $81 / 2$ points to 90 per cent. Wheeling lost 8 points to 86 per cent, Cleveland $1 / 2$ ponint to 95 , Cincimati 6 jowints to 88 and 13 jrmingh am 5 points to 95 . St. Louis gained $11 / 2$ points to 93 per cent and Detroit 3 points to 83. Rates were anchanged at Chicago, 97 per cent; New England, 95 ; Yonnustown, 97; eastem Pemnsylvania, 95 ; Buffale, $901 / 2$.

Indications are that new freight car prodisction this year will fall far short of ueeds as only about 1500 of the 20,000 units planned for first half have been delivered and the remainder probably will not be available before the end of third quarter. It does not seem likely steed will be released for building anything like the 40,000 additional cars asked by the carriers. Steel rail production. estimated at $2,000,000$ toms at the beginning of the year, has been reduced considerably, to abent $1,200,000$ tons, and further cuts may be made.

Relief for the agricultural implement industry is afforcled by allocation of 300,000 tons of carbon stece for third quarter and 200,000 tons each quaster from Oct. I (1) July 1 .

Tin plate demand is increasing and producers expect third quarter operations will be at the limit of thein quotas. While some tomage is required for ondnance most current output is for cammaking, ore large procliceer estimating that for third quarter 97 per cent of his production will be for that purpose. Labor shortage is being encomentered as many workers left for other employment during the slack period. Production now is at ilhout 65 per cent of capacity.

Average composite prices of steel and jror products are unchanged at the levels of the past several months. Finished steel composite is $\$ 56.73$, semifinished steell $\$ 36$, steelmaking pig iron $\$ 23.05$ and steelrnaking serap $\$ 19.17$.

| Five | | | | | |
| :--- | ---: | :--- | :---: | :---: | :---: | :---: | :---: |
| | | | One | Three | One |

Finished Steel Composite:-Average of industry-wide prices on sheets, strip, bars, plates, shapes, wire, nails, tin plate, standard and line pipe. Semifinished Steel Composite:-Average of industry-wide prices on billets, slabs, sheet bars, skelp and wire rods, Steelmaking Pig Iron Composite:Average of basic pig iron prices at Bethlehem, Birmingham, Buffalo, Chicago, Cleveland, Neville Island, Granite City and Youngstown. Steclworks Scrap Composite:-Average of No. 1 heavy melting steel prices at Pittsburgh, Chicago and eastern Pennsylvania.

COMPARISON OF PRICES

Representative Market Figures for Current Week; Average for Last Month, Three Months and One Year Ago

Finished Material	$\begin{gathered} \text { June } 12, \\ 1943 \end{gathered}$	$\begin{aligned} & \text { April, } \\ & 1948 \end{aligned}$	$\begin{aligned} & \text { Feb., } \\ & 1943 \end{aligned}$	May, 1942	Pig Iron	$\begin{array}{r} \text { June 12, } \\ 1943 \end{array}$	April, 1943	$\begin{aligned} & \text { Feb, } \\ & 1943 \end{aligned}$	May, 1942
Steel hars, Pittsburgh	2.15 c	2.15 c	2.15 c	2.15 c	Bessemer, del. Pittsburgh	\$25.19	\$25.19	\$25.19	\$25.19
Steel bars, Chicago	2.15	2.15	2.15	2.15	Basic, Valley...	23.50	23.50	23.50	23.50
Steel hars, Philadelphia	2.17	2.49	2.49	2.49	Basic, eastern, del. Philadelphia	25.34	25.39	25.39	25.39
Shapes, Pittslurgh .	2.10	2.10	2.10	2.10	No. 2 fidry., del. Pitts., N.\&S. Sides	24.69	24.69	24.69	24.69
Shapes, philadelphia	2.15	2.22	2.22	2.22	No. 2 foundry, Chicago	24.00	$\underline{94.00}$	24.00	24.00
Shapes, Chicago.	2.10	2.10	2.10	2.10	Southern No. 2, Birmingham	20.38	20.38	20.38	20.38
Plates, Pittsburgh	2.10	2.10	2.10	2.10	Southern No. 2, del. Cincinmat	24.30	24.30	24.30	24.06
plates, Philadelphia	$\underline{2.15}$	2.15	2.15	2.15	No. 2 fdry, del. Philit. (elifer. as,	2.5.8!	25.89	95.89	25.89
Plates, Chicago	2.10	2.10	2.10	2.10	Malleable, Valley	24.00	24.00	24.00	24.00
Sheets, hot-rolled, Pittsburgh	2.10	2.10	2,10	2.10	Malleable, Chicago	2-4. 00	24.00	24.00	24.00
Sheets, cold-rolled, I'ittshurgh	3.05	3.05	3.05	3.05	Lake Sup, charcoal, del. Chicago	81.31	31.54	31.54	31.54
Sheets, No. 24 galv., Pittsburgl	3.50	3.50	3.50	3.50	Gray forge, del. Pittsburgh	2.119	2.4 .19	24.19	24.19
Sheets, hot-rolled, Gary	2.10	2.10	2.10	2.10	Ferromanganese, del. Pittshurgh	1.10 .33	140.65	140.65	140.85
Sheets, cold-rolled, Gary	3.05	3.05	3.05	3.05	Scrap				
Sheets, No. 24 galv., Gary	3.50	3.50	3.50	3.50					
Bright bess., basic wire, Pittslurgh	2.60	2.60	2.60	2.60	Heavy melting steel, Pittshurgh	\$20.00	\$20.00	\$20.00	\$20.00
T'in plate, per base box, Pittsburgh	\$5.00	\$5.00	\$5.00	\$5.00	Heavy melt. steel, No. 2, E. J'a,	18.75	18.75	18.75	18.75
Wire nails, Pittsburgh	2.55	2.55	2.55	2.55	Heavy melting steel, Chicago	18.75	18.75	18.75	18.75
					Hails for rolling, Chicago	29.25	29.25	22.25	22.25
Semifinished					No. 1 cast, Chicago	20.00	20.00	20.00	20.00
					Coke				
Sheet hars, Pittshurgh, Chicago	\$34.00	\$34.00	\$34.00	\$34.00					
Slabs, Pittsburgh, Chicago	34.00	34.00	34.00	34.00	Connellsville, furnace, ovens	\$6.50	\$6.50	\$6.40	\$6.00
Rerolling billets, Pittsburgh	34.00	34.00	34.00	34.00	Connellsville, foundry, ovens	7.75	7.75	7.50	7.25
Wire rods, No. 5 to ${ }^{\text {d }}$-inch, Pitts.	2.00	2.00	2.00	2.00	Chicago, by-product fúry, del.	12.25	12.25	12.25	12.25

STEEL, IRON, RAW MATERIAL, FUEL AND MEYALS PRICES

Following are maximum prices established by OPA Sehedule No, \mathfrak{G} issued April 16, 1941, revised June 20, 1041 and Feb. 4, 1942. The schedule covers all fron or steel ingots, all semifnished iron or steel products, all finished hot-rolled, cold rolled fron or stee products and any iron or stee product whtch is further finished by galvanizing, plating, coating, drawing, extruding, etc., altheugh only prinelpal established basing points for selected products are named specifically. All seconds and off-grade products also are covered. Exceptions applying to Indlvidual conapanles

Semifinished Steel

(iross ton basis excent wire rods, skelp Carbin steet lngots: F.o.b. mill base, revolling qual., stand. analysis, \$31.00.
(Empire Sheet \& Tín Plate Co., Mansfleld, O. may quote carbon steel ingots at $\$ 33$ gros ion, r.o.b. mill.)
Allos Steel Inkote: Pittsburgh, uncropped $\$ 45.00$.
Kerolling RHIets, Niabs: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, Sparrows Polnt Birmingham, Youngstown, \$34.00: Detrolt, del. \$36.25: Duluth (bll.) \$36.00.
(Andrews Steel Co., carbon slabs \$41: Continental Steel Corp., bllets $\$ 34$, Kokomo, to Acme Steel Co.: Northwestern Steel \& Wire Co. S41, Sterling, III.: Laclede Steel Co. S\$4, Alton ur Madison, III.: Wheeling Steel Corp. $\$ 36$ base, bllets for lend-lease, S34, portsmouth, O., on slabs on WPP directives.

Forking Qually Hhlets: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, Birmingham, Youngstown, $\$ 40.00$; Detruit, del. \$42.25: Duluth, S42.00.
(Andrews Steel Co. may quote carbon forging billets $\$ 50$ gross ton at establlshed basing points.)
Open Ilearth Shell Steel: Pittsburgh, Chicago. base 1000 tons one size and section: $3-12 \mathrm{in}$. \$52.00; $12-18$ in., $\$ 54.00 ; 18$ in. and over $\$ 56.00$.
Alloy Billets, Slabs, Blomoms: Plttsburgh, Chicago, Buffaio, Bethlehem, Canton, Massillon, $\$ 54.00$
Sheat liarn: Pittsburgh, Chicago, Cleveland, Buffalo, Canton, Sparrows Point, Youngstown, \$34. (Wheellng Steel Corp. $\$ 37$ on lend-leise sheet bars, $\$ 38$ Portsmouth, O., on WPB disheet bars, $\$ 38$ Portsmouth, O., on WPB directives: Empire Sheet o Tin Plate Co., Mans fleld, O., carbun sheet bars, \$39, f.o.b. mill.) skelp: Plttsburgh, Chicago, Sparrows Pt. Youngstown, Coatesville, 1b., 1.90c.
Wire Rods: Pittsburgh, Chicago, Cleveland, Blimingham, No. 5-9/32 in.. inclustve, per 100 lbs.. $\$ 2.00$.
Do., over $9 / 32-47 / 64-i n$. incl., 52.15 . Wor
cester add 50.10 . cester add $\$ 0.10$; Galveston, $\$ 0.27$. Paclflc Const $\$ 0.50$ on water shipment

Bars

Hot-Rolled Carbun Burs: Pittsburgh, Chicugo, Gary, Cleveland, Buffalo, Birmineham, bas 20 tons one slze, 2.15 c ; Duluth base 2.25 c : Detrolt, del. 2.27c: New York del. 2.49c; Phila. del. 2.47c: Gulf Ports, derk 2.52 c , all-rajl $2.50 \mathrm{c}:$ Pac, ports, dock 2.80 c . (Phoenix Iron Co. Phoenixville, Pa., may quote 2.35 c at established basing points. Joslyn Mts. Co. may quote 2.35 c , Chicago base. Calumet Steel DIquate $2.35 c$, Chicago base. Calumet Stec Borg Warner Corp., may quote 2.35 . Chicago base, on bars produced in its 8 -inch mill.)
Rall Stpel hars: Same prices as for hot-rolled carbon bars except base is 5 tons.
(Sweet's Steel Co., Willamsport, Pa., may quote rail steel merchant bars 2.33 se f.o.b. mill. Hut-Rulled Allay Hars: Piltshurgh, Chicago, Canton, Massllon, Buffalo. Bethlehem, base 20 tons one size, 2.70c; Detrolt. del., 2.82c.
(Texas Sted Co. may use Chicago base price is maximum f.u.b. Fort Worth. Tex., price on sales outslde Texas, Oklahoma,

| Alsi (Basic AISI | |
| :--- | :--- | :--- |
| Series | B-H) (*Basic |

Series O-H1 Srries O-HI
$1800 \ldots$. S $50.10 \quad 4100(.15-.25 \mathrm{Mo}) 0.55$
$1.70 \quad(.20-.30 \mathrm{Mo}) \quad 0.60$

2300	1.70	4340	1.70
2500	2.55	4600	1.20

3000	0.50	4800	2.15
?190)	0.70	5100	0.35
3200	1.35	5130 or 5152.	0.45
3400	3. 20	6120 or 6152.	0.95

[^7]Relnforchas lsars (New Millet): Pitisburgh Chleago, Gary, Cleveland, Birmlngham, Sparrows Polnt, Buffalo, Youngstown, base 2.15 c ; Detrolt del. 2.27e; Gulf ports, dock 2.52 c , illrail 2.f1c; Pacilic ports, dock 2.80 c , illt-rail 3.25 c .

Relnforchag Hars (Raif Steel): Pittsburgh, Chlcago, Gary, Cleveland. Blrmingham, base 2.15 c ; Detroit, del. 2.27c: Gulf ports, dock 2.52 c , all-rail 2.61c: Paclfle ports, dock 2.80c, all-rall 3.25c.
(Sweet's Steel Co.. Willamsport, Pa., may quote rall steel relnforeing bars 2.3ỉc, f.o.b. mill.)
Iron Bars: Single refined, Pitts. 4.40 c , double refined 5.40 c ; Pittsburgh, staybolt, 5.75 c ; Terre Hate, common, 2.15 c

Sheets, Strip

Hot-Itolled Sheets: Pltsburgh, Chlcago, Gary, Cleveland, Birmingham, Buffalo, Youngstown, Sparrows Pt., Middletown, base 2.10 c : Granite City; base 2.20 c ; Detroit del. 2.22 c ; Phila. del. 2.27c: New York del., 2.34c; Pacific ports 2.65c.
Andrews Steel Co. may quote hot-rolled sheets for shipment to Detroit and the Detroit area or the Middletown, O. base.
Cold-Falled Sheets: Pittsburgh, Chicago, Clevetand, Gary, Buffalo, Youngstown, Middletown, hase, 3.05 c : Granite City, base 3.15 c : Detrolt del. 3.17c: New York del. 3.39c; Phila. del. 3.37 e : Pacille ports 3.70 c .

Galvanzed Sheets, No. 2t: Pittsburgh, Chicago, Gary. Birmingham, Buffalo. Youngstown, Sparrows Point, Middletown, base $3.50 c$; GranHe City, base 3.60 c ; New York del. 3.74c: Phila. del. 3.6ic: Pachife ports 4.05 c .
(Andrews Steel Co. may quote galvanzed sheets 3.75 c at established basing points.) Corrurated Gialv. Sheets: Pittsburgh. Chicago. Gary. Birmingham, 29 gitge, per square 3.31 c . Culvert Sheets: Pittsburgh, Chicago, Gary Culvert Sheets: Pittsburgh, Chlcagn, Gary,
Birmingham, 16 gage, not corrugated, copper alluy 3.60 c ; copper Iron 3.90 c , pure iron 3.95 c . alluy 3.60 c ; copper incon 3.90 cot , pure , hot-dipped, heat-treated, No. 24 , rinc-coated, hot-d
Pittsburgh $4.25 c$.
Himmellnt Sheets: Pittsburgh, Chicago, Gary, Cleveland, Youngstown, Aiddletown, 10 gase.
base 2.75c: Granile City, base 2.85c: Pacill ports 3.40 c ,
Pithsburgh, Chlcago, Gars', Cleveland, YoungsCity, base $3,45 \mathrm{c}$; Pacinage, base $3.3 \overline{\mathrm{~F}}$; Granlte Hily. base 3.45 c ; Pacifle ports 4.00 c .
Sheets, No. 84 :

	Pittsburgh	Pacilic	Granite
	Batse	Ports	City
Field srad	3.20 c	3.95 c	3.30 c
Armature	3.555	4.30 c	3,65c
Electrical	1.05 c	4.80 c	4.15c
Motor	4.95 c	5.70 e	5.05 c
Dynamo	5.65 c	6.40 c	5.750

Hat-Rolfed Sirla: Plttsburgh, Chicago, Gary

 Cleveland, Birminsham, Youngstown, Middlelown, base, 1 ton and over, 12 inches wlde and less 2.10c; Detroit del. 2.22c: Pacille ports cago base.)Cold IRolled Sitrlp: Pittsburgh, Cleveland Foungstown, 0.25 carbun and less 980 c . Che cago, base 2.90c; Detrult, del. 2.92c: Worcester base 300 c .
Commodity C. IR. Sitrlo: Pittsburgh, Cleveland, Youngstown, base 3 tons and over, $2,95 \mathrm{c}$ Worcester base $3.3 \overline{3} \mathrm{c}$.
Cold-Findshed Spring sted; Pittsburgh, Cleveland bases, ndd 20c for Worcester; 2(b-.50) Carth., 6.15e; $.51-.75$ Carb., $4.30 \mathrm{c}: .76-1.00$
Tin, Terne Plâe
Tin I'late: IPittsburgh, Chiciagn, Gary, 100-ib. base box, $\$ 5,00$: Granlte Cits $\$ 5.10$.
Electrolstic Tin Plate: Pittsburgh. Gary, 100It. base box $\$ 4.550$.
Tin Min Bhek
Tin Mill Blick PIate. Pittsburgh, Chicago,
Gary, base 29 gase and ilahter itc Clty, 3.15c; Pacific ports, boxed 405 : GranIank Ternes: Pittsburgh, Chlcago Gary 24 unassorted 3.80 c .
Hannfacturing Termes: (Npertal Couted) Pitls burgh, Chicago, Gary, 100-base box $\$ 4.30$: Granite City $\$ 4.40$.
Runlag Ternes: Pittsburgh base per pickS12.00; $15-1 \mathrm{~b}$; $20 \times 28 \mathrm{in}$., coating I.C., $8-1 \mathrm{l}$.

Piates

Carbon steel Plates: Pittsbureh, Chicazo, Sparrows Point, Coatesylle Clam, Youngstown, Sparrows Point, Coatesville, Claymont, 210 c : New York, del., 2.29c; Phlla., del. 2.15 c ;
St. Louis, 2.34 c ; Boston, Paclfle ports, 2.65c; Gust Ports, $2.47 c^{2} .42-67 \mathrm{c}$: (Granite City Steel Co Ports, 2.47c. plates 2.35 c, f.o.b. mill. Central quote carbon Co, 2.20c, f.o.b. basing points, Iron \& Steel Floor Plates: Pittsburgh
Gulf ports, 3.72 c ; Pacific Chicago, 3.35c: Open-Hearih Allas Pacinc ports, 4.00 c
ago, Coatesvilies Plates: Pittsburgh, Chl-

Shapes

Siructural shapes: Pittsburgh, Chlcago, Gary, Blrmingham, Buffalo, Bethlehem, 2.10c: New York, del., 2.27c: Phila., del., 2.215e: Gulf ports. 2.47c; Pacific ports, 2.75c,
choendx Iron Co., Phoenixville, Pa. may quote carbon steel shapes at 2.30 k at established bort, points and 2.50c. Phoenlaville, for export.)
Steel Sheet lillins: Pittsburgh, Chlcago, Bur-

Wire Products. Nails

Wire: Pittsburgh, Chicago, Cleveland. Birmingham (except spring wire) to manufacturers in carloads (add $\$ 2$ for Worcester) Gright basle, bes
Galvanized wlre

Spring wire

Standard ants to the Trade
polished and Cement-coated wire nalls,
polished and staples, $100-1 \mathrm{~b}$. ker
Galvanized fence wire, 100 lt
Woven fence, $12!$ sage and lighter, per
base column base column
Do., 11 gage and heavier
Barbed wire, 80 -rod spool, col
Tingle loop baless wire, col
Single loop bale tles, col.
Fence posis, carloads, col

Cut nalis, Pittsbu

Wedled Pbe: Base price in carloads to con sumers about $\$ 200$ per net ton. Base dis counts on steel plpe Pittsburgh and Lorain mint less on butt points less on lap weld, 1 on wrought Iron pipe. Butt

Rails, Supplies

Standard rails, over EiO-16., 1.o.b. mlll, gross tun. $\$ 40.00$.
Llght rails (bllet), Pltsiburgh, Chicago, Birmlaghiam, gross ton, S-10.til).
Fload and basing points, and owe
road and basing points, $\$^{2} 28-s i 30$. rack spikes, 3.00 c ; track bolt heat treated, 5.00c.
${ }^{*}$ Fixed by OI'A Schedule No. 46, Dec. 15.

Tool Steels

Tool Steels: Plttsburgh, Bethlehem, Syracuse Oise, cents per lb.: Rea. carbon 14.000: exir: carbon 18.00 c : spectal carbon 22.00 c ; oll-hardening $24.00 \mathrm{c} ;$ high car -chr. 43.00 c .

Tung.	Chr.	Van.	Moly.	Pitts, bise. per 1 b
18.00	4	1	8	67.00 c
1.5	4	1	8.5	54.00 c
	4	2	8	54.00 c
5.50	4	1.50	4	57.50 c
5.50	4.50	4	4.50	70.00 c

Stainless Steels

Base, Cents per lu.-[.o.b. Piltsburgh CHROMIUM NICKEI, STEEI.

Tspe	Burs			H. 12.	C. IR,
302.	24.00 c	Plates	Sheets	Strip	Strip
303.	26.100	29.00	36.000	21.50 c	28.000
304	25.00	29.00	36.00	23.50	30.00
308	29.00	34.00	41.04 J	28.50	35.00
309	36.00	40.00	47.00	37.00	47.00
310	49.00	52.00	53.00	48.75	56.00
312	33.00	40.00	49.00		
- 316.	40.00	44.00	48.00	40.00	48.00
+321	29.00	34.00	41.00	29.25	38.00
\$347	33.00	38.00	45.00	33.00	42.00
431	19.00	22.00	29.00	17.50	22.50

S゙THAIGHT CHROMIUM STEEI

403.	21.50	24.50	29	21.25	
- 410.	18.50	21.50	26.50	. 00	
416.	19.00	22.00	27.00	18.25	23 \%0
† $\dagger 420$.	24.00	28.50	33.50	23.75	36.50
430	19.00	22.00	29.00	17.50	22.50
\$ $\ddagger 480 \mathrm{~F}$	19.50	22.50	39.50	18.75	24.50
440A	24.00	28.50	33.50	23.75	36.50
442	22.50	25.50	12.50	24.00	12.00
443	22.50	25.50	32.50	24.00	32.00
446	27.50	30.50	36.50	35,00	52.00
501	8.00	12.00	15.75	12.00	17.00
502	9.00	133.00	16.75	13.00]	18.00
STAINIESS CIAII STEEI. (20\%f)					
304		18.00	19.00		

With 2-3cr moly. +With lltanlum. \ddagger With columbium. *Plus machining agent. t+High carbon. $\ddagger \pm$ Free machlning. HIncludes annealIng and pickllng.
Baslrak Polnt Prifen are (1) those annrunced by U. S. Steel Corp. subsidlaries for first quarter of 1941 or in effect April 16, 1941 at designated basing paints or (2) those prices announced or customarily quoted by other producers at the same designated points. Base prices under (2) cannot exceed those under (1) except to the extent prevalling in third quarter of 1940 .
Extras mean addlitions or deductions from base prices In effect fipril 16. 1941.
Dellvered prleces applying to Detrolt, Eastern Hichizan, Gulf and Pacifle Coast points are deemed basing points except in the case of
he latter two areas when water transportation is not avallable, in which case nearest tasing point brice plus all-rall frelght may be Donestic colling prifes are the agsregate of (1) goveralng basing noint price, (2) extras and (3) transportation charges to the point of dellvery as customarlly computed. (iov praine basing point is basing point nearest the consumer providing the lowest delivered price Emeriancy lasins point is the baslag point a (${ }^{\prime}$ near the place of production or arimin
Kucords, maximum prlces; lhat-rolled rejects $75{ }^{\circ} \mathrm{r}$, of prime prices; wasters $7 \mathrm{j}^{\circ} \mathrm{r}_{\mathrm{r}}$, waste asters 65°. exerept plates, which take waster prices: tin plate $\$ 2.80$ per 100 lbs.: terne plite $\$ 2.25$: semitlnished $85 r^{\prime}$ of prlmes: othe rades Ilmited to new material ceilings.
Finurt celling urlews may be elther the ag gency basing Roverning bnslag point or emer burt transportathon charges provided thes atre purt transportathon charpes provided thes are
the fd.s. senbord quotatons or the it the f.a.s, senboard quotations or
Steel Export Co. on April $16,1941$.

Bolts, Nuts

F.ub. J'ttshurgh. Cleweland IHImmaham, Cheage. Discounts for carlevis achationat rull contaitners, add 10) Carriaze und Machatae
6×6 and smalle
65\% or
 1:4 and to $\& \times$ G-in. and shorter.
an and larger, all lengths
All diameters, wer (i-In. long
Tire bolts
Slep bolts
Mow bolts
61 off
59 off

Shove Bolls
In vackares with with nuts attached 71 off; bulk 80 wff of 15,000 of 3 -inch and shorter, or 5000 user

Semilinished hex.
U.S.S. S.A.J.

> -inch and less
> $\begin{aligned} & 3 \cdot 1 \text {-inch } \\ & 13_{N-1}^{3}-1 \\ & \text {-inch }\end{aligned}$
$\begin{array}{ll}62 & 64 \\ 58 & 6 i 4 \\ 57 & 58 \\ 56 & \cdots\end{array}$
1 *s and larget 56

dinare Head siot serews
Uuset, 1-in.. smaller
T1 ofr
Headless, li-in., larger
60 off
70 off

Piling

Pittsburgh, Chicaso, Buffalo
$2.40 k^{\circ}$

Rivets, Washers

F.o.b. Plisburgh, Cleveland, Chiengo,

Structural \qquad
Te-Inch and under
3.75

Wrought washers, Pittsburgh, Chseagn,
Philadeljhia, to jobbers and large nut,
bolt manufacturers l.e.l.82.75- 3.00 off
Metallurgical Coke
Prlee Per Net Ton
Inehlye Uverns

*Operators of hand-drawn avens using trucked oal may charge 87.00 , effective Fels. 3,1943
\$ $\$ 12.75$ frum other than Ala., Mo. Tenn

Coke By-Products

Spat mal., freizht allowed east of Omatia pure and 90 ge benzot
15.000

Toluol, two dearee
28.00 c

Solvent naphtha
27.00 c
27.01 c
industrial xylol Pe' f.o.b. works
Phenol (car lots, returnable drums)
12.50

Do.. less than car lois
11.50 c

Eastern Plants, per 16.
Naphthalene flakes, balls, bbis., to jots-
bers . Per ton. bulk. r.o.b. port
8.00 ke

Sulphate ur ammonat
$\$ 29.20$

June 14, 1943

Pig Iron
Prices (In gross tons) are maximums fixed by OPA Price Schedule No. 10, effective June 10, 1941. Excentions indicated in footnotes. Allocation bold face, dellvered light face. Federal tax on frelght charges, effective Dec. 1, 1942, not included in following prices.

	$\begin{array}{r} \text { No. } 2 \\ \text { Foundry } \end{array}$	Itasilc*	Brssemer	$\underset{\mid(\sim i l \mid}{M}$
Bethlehem, Pa., base	\$25.00	\$24.50	\$26.00	\$25.50
Newark, N. J., del.	26.53	26.03	27.53	27.03
Brooklyn, N. Y., del.	27.50			28.00
Burdshoro, Pa., base	25.00	24.50	26.00	25.50
Hrminglam, base	$\ddagger 20.38$	$\dagger 19.00$		
Baltimore del.	25.61			
Boston, del.	25.12			
Chicago, del.	24.22			
Criclnnats, del.	24.06	22.60		
Cleveland, del.	24.12 .	23.24		
Newark, N. J., del.	26.15			
Pheladelphia, del.	25.46	24.58		
St. Louis, del.	24.12	23.24		
Burfito, base	24.00	23.00	25.00	24.50
Boston, del.	25.50	25.00	26.50	26.00
Rochester, del.	25.53		26.53	26.03
Syracuse, del.	26.08		27.08	26.58
Chioaro, base	24.00	23.50	24.50	24.00
Milwaukee, del. ...	25.10	24,60	25.60	25.10
Muskegon, Mich., del.	27.19			27.19
Cleveland, base	24.00	23.50	24.50	24.00
Akron, Canton, O., del.	25.39	24.89	25.89	25.39
Delrolt, base	24.00	23.50	24.50	24.00
Saginaw, Mich., del.	26.31	25.81	26.81	26.31
Duluth, base	24.50	24.00	25.00	24.50
St. Paul, del.	26.63	26.13	27.13	26.63
Erie, I'a., base	24.00	23.50	25.00	24.50
Everett, Mass., base	25.00	24.50	26.00	25.50
Boston, del.	25.50	25.00	26.50	26.00
Granite Clty, Ill, base	24.00	23.50	24.50	24.00
St. Louls, del.	24.50	24.00		24.50
Hinmilton, O., base	24.00	23.50		24.00
Cincinnat, del.	24.44	24.61		25.11
Neville Islund, Pra., base	24.00	23.50	24.50	24.00
sPittsburgh, del.		2419	25.19	
Irovo, Utali, base	22.00	21.50	25.19	24.69
Sharpaville. Pra, base	24.00	23.50	24.50	24.00
Sparrows roint, Md., base	25.00	24.50		
Baltimore, del,	25.99			
Steclton, Pra, base		24.50		25.50
Swedeland, Pra, base	25.00	24.50	26.00	25.50
Philadelphia, del.	25.84	25.34		26.3
Toledo, O., base	24.00	23.50	24.50	24.00
Mansfleld, O., del.	25.94	25.44	25.44	25.9
Youngntown, 0., base	24,00	23.50	24.50	24.00

- Baslc sillcon grade ($1.75-2.25 \%$), add 50 c for each 0.25%. +For phosphorus 0.70 and over deduct 38c. tOver 0.70 phos. 8 For McKees Rocks, Pa., add . 55 to Neville Island base; Lawrenceville, Homestead, McKeesport, Ambrldge, Monaca, Aliquippa, 84; Monessen, Monongahela Clty 97 (water) ; Oakmont, Verona 1.11 Brackenrldge 1.24.
Note: Addl 50 cents per ton for each 0.50% minganese over 1.00%
Excentions to Ceiling Irlces: Pitts
burgh Coke \& Iron Co, (Sharpsville Pa. furnace only) and Struthers Iron \& Steel Co. may charge 50 prices for No. 2 Foundry Bosic Bessemer ind $\frac{2}{}$ Foundry, Basic Iron Works, Everett Mass. mas exceed basing point prices by $\$ 1$ per ton, effective April 20, 1942. Chester, Pa., furnace of Pittsburgh Coke \& iron Co. may exceed basing point July $27,194^{2} 25$ per ton, effective

Refractories

Per 1000 f.o.b. Works, Net Prices
Firo Clay Brick

(For higher silleon irons a differ- Pa., Mo., Ky. SGs. 60

Southern

Semi-cold blast, high phos.,
f.o.b. furnace, lyles Tenn 52850
femi-cold blast, low phos.,
aray Forge
33.00
Neville Island, Pa. $\$ 23.50$
Valley, base 23.50

Low lhaspharie

Basing polnts: Birdsbora and Steelbase; $\$ 30.74$, delfvered, Philadelphia Swlteling Charses: Basing point prices are subject to an additional charge for dellvery within the switching limits of the respective districts.
Silleon Differentials: Basing point pharge not to excecd 50 an additional for ench 0.25 exced 50 cents a ton fare grade (1.75 to 2.25%).
Ihosphorus Differential: Basing lon of 38 cents a ton for phosphorus content of 0.70% and over.
Manganese Differentials: Basing charge not to exceed 50 cents a ton for each 0.50% manganese content n excess of 1.0 co.
Celling Prices are the agregate of (1) governing basing point (2)
differentals (3) iransportation charges from governing basing polnt to point of dellvery as customarlly computed. Governing basing point dellvered price for the consumer.
Pa., Ill., Mdrst Qualsty Pa., Ill., Md., Mo., Ky. New Jersey Ohio
Pa. Inl. Second QualltyAlabama, Georga., Ky.New Jersey

New Jersey	19.00
Ohio	

Malleable Hung Hrlek
All bases
$\$ 59.85$
Pennsylvanla $\$ 51.30$
$\begin{array}{ll}\text { Jollet, E. Chlcago } & 58.90 \\ \text { Blrmingham, Ala, } & 51.30\end{array}$

> Iadlo Brick O., W. Va.,

Domesile Masmeslte
net ton frains
Wash., net ton, bulk.......
net ton, bags
22.00
26.00
Hande Brick
Net ton, f.o.b. Baltimare, Plymouth Meetlng, Chester, Pa.
Chrome brick bonded chrome $\$ 54.00$
Magnesite brlek .'.'....... 76.00

Fluorspar

Washed gravel, f.o.b. IIl.
 (Prices effectlve Nov. 23, 1942)

Ferroalloy Prices

Ferromanamese: 78-82\%, carlots, ross ton, duty pald, Allantic ports, Southern (urnaces $\$ 135$. Add $\$ 6$. ber Southern furnaces $\$ 135$; Add $\$ 6$ ner aross ton for packed carloads $\$ 10$ for less than 200 -lb. lots, packed.
Splegelelsen: 19-21\%, carlots per kross ton, Palmerton, Pa. $\$ 36$
Electrolylle manganere: 99.9% plus, less ton lots, per 1 b . 42.00 c . Ton Chromlum Melal: Per lb contained hromlum in gross ton lots, con$80.00 \mathrm{c}, 88 \%$ 79.00c. Spot prices 5 $80.00 \mathrm{c}, \mathrm{88}$ cont 79.00 c .
Ferrocolumblum: $50-60 \%$, per 1 lb . ontained columbium in gross ton lots, concract bas!s, l.o.b. Niagara Fi.iso. spot prlees 10 cents per 1 b . S2.30.
hisher.
Ferruchromas: 66-70\%: per 1 b . coninlned chromlum in carloads, frelght allowed, $4-6 \%$ carbon 13.00 c ion luts $13.75 \mathrm{c}:$ less-ton $10 \mathrm{ts} 14.00 \mathrm{e}:$

	$\begin{gathered} \text { Car } \\ \text { louds } \end{gathered}$	Ton lots	$\begin{aligned} & \text { Less } \\ & \text { ton } \end{aligned}$	$\begin{aligned} & \text { Iess } \\ & 200 \\ & 1 \mathrm{bs} . \end{aligned}$
20 C	19.50c	30.25 c	20.75 c	21.00 c
$1 \% \mathrm{C}$	20.50 c	21.25 c	21.75 c	22.00 c
$\begin{aligned} & 0.20 \% \\ & 0.10 \% \end{aligned}$	C. 21.50 c	22.25 c	22.75 c	23.00 c
	C. 22.50 c	23.25 c	23.75 c	21.00 c
	Sput is	Kc h	cher	

Clirominm liriguetw: Continct basin In corloads per 1 b ., frelght allowed
 lb. loter 9.25 c . Spot milees $1 / 4$-cent hisher.

Ferromolybdenum: $55-75 \%$ per lb contained molybdenum, f.o.b. Lannace, any quantity 95.00 c . Pa., fur-

Cajelum Molybdate (Molyte): 40 45%, per jb . contained molybdenum contract basis, f.o.b. Langeloth and Washington, Pa., any quantly, 80.00 c .

Molybdlc Oxide Hriquels: 48-52\% per 1 . contakined molybam, $1,0 . \mathrm{b}$

Molybdenum Oxide: 53-63\%, per Jb. contalned molybdenum in 5 and 20 b. molybdenum contained cans, f.o.b. Lengeloth and Washington, 1'a., any quantity 80.00 c .

Molybdenum Powder: 990 per 1 b . In 200-lb. kegs, f.o.b. York, Pa, \$2.60: 100-200 lb. lats $\$ 2.75$; under $100-\mathrm{lb}$. lots $\$ 3.00$.
Ferrophosnhorus: $\mathbf{1 7 - 1 9 \%}$, based on 8\% phosphorus content, with unitare of $\$ 3$ for each 1% of phosphortons per car below the base: gross works. with freight coualized well Rockdale, Tenn. contract wrice $\$ 58.50$, spot $\$ 62.25$.

Ferrophosphomas: 23-26c, based on 24% phosphorus content, with unitage of $\$ 3$ for each 1% of phosphorus above or below the base: gross tons per carload f.o.b. sellers' works, with frelght equalized with Mit. Pleasant. Tenn. ; contract price $\$ 75$. spot $\$ 80$.
Farrosilleon: Contract basls In gross tons per carload, bulk, frelght alHica, unltage applies to cach 1% sllicon above or below base.

50\%	Carloads $\$ 74.50$
Unitage	1.50
75\%	135.00
Unitage	1.80
85\%	170.00
Unilage	2.00
90-95\%	10.25 c

Ton lots $\$ 87.00$ 1.75
151.00 2.00
88.00 $\begin{array}{r}88.00 \\ 2.20 \\ \hline\end{array}$
Spot prices 14 -cent higher
filicon Metal: Contract basis per b., f.o.b. producers plants, freight on lots 15.00 c less-ton lots 15.25 c , allowed: 1 co iron; carlots 14.50 c , ess 200
Silicon Metal: Contract basls per lb.: 2% iron: carlots 13.00 c , ton ots 13.50 c , less-ion lots 13.75 c , less 200 lbs. 14.00 c . Spot prices lís-cent

Silicon isriquets: Contract basls: in carlonds, bulk frelght allowed, per on $\$ 74.50$; packed $\$ 80.50$; ton lots ess 200 -1h. lots per $1 \mathrm{~b}, 425 \mathrm{c}$.
Spot jésent per lb. higher on less. on lots; 55 per ton ligher on ton luts and over.
Shlommmanese: Contract basis rarlonts allowed, $11 / \mathrm{cos}$ carbon: in lots $\$ 147.50$. Spot $\$ 5$ per ton higher. Shllo-mumanaese Hriguets: contract basis in carloids per pound, bulk relght allowed 5.80 c ; packed 6.05 c : ess 200-1h. ints G.SAc. Spot prices 1/4-cent higher.
Ferrotungestea: Carlots, per 1b. conTuncatem test, os per 1 b . any quantity $\$ 3.55-2.65$.
Ferrotitanlim: $40-45 \%$, $1.0 . \mathrm{b}$. Nigosarams, N. perib. contained

Iots $\$ 1.25$. Spot up 5 cents per lb Ferrotlanium: 20-25\%, 0.10 maxitanlum: ton lots $\$ 1$ 35. Dess-ton lots \$1.40. Spot 5 cents per ib. higher Hyh-Carbon Ferrotitanlum: 15-20\%, contract basis, per gross ton, f.o.b lowed to destinations cast of Missls slppl Rlver and North of Baitimore and St Louls, 6-8\% carbon S14250 $3-5 \%$ carbon $\$ 157.50$.
Ferrovinadium: $35-40 \%$, contract basis, per 1 l . contained vanadlum f.o.b. producers plant with usua reize $\$ 2.70$ allowances: special open-hearth highly-special srade $\$ 2.90$.
Trnadlum lentoxide: Technical grade, $88-92$ per cent $\mathrm{V}_{2} \mathrm{O}_{5}$; con pound $\mathrm{V}_{2} \mathrm{O}_{3}$ contained: spot 5 cents up.
Zirconlum Alloys: 12-15\%, contract basis, carloads bulk, per gross ton $\$ 102.50$: packed $\$ 107.50$: ton lots $\$ 108$; less-ton lots $\$ 112.50$. Spot $\$ 5$ per ton higher
Zirconfum alloy: $35-40 \%$, contract basls, carloads in bulk or package per 1 ots. of nlloy 14.00 c : less-tos ton ots 1h.00c ass-ton lots 16.00c. Spo
Almifer: (Approx. 20\% aluminum 40% sillcon, 40% Iron) contract ba sis, f.o.b. Nastara Falls, N. Y., pe cent hlaher
Simanal: (Approx. 20% each sillcon mankanese, aluminum) Con tract basis, frelght allowed, per lb 10.50 c, less ion lots, 11.00 c .

Horasil: 3 to 4% boron, 40 to 45%

WAREHOUSE STEEL PRICES

Sase Prices in Cents Per Paund, Delivered Locally, Subiect to Prevailing Differentiats.

NOTE-All prices except cold-rolled serips representing mill prices, plus warehouso sprend. Irice Schedule No. 49.

RASE QUANTITIES

2 400 to 1999 pounds; ${ }^{2}-400$ to 14,999 pounds; '-any quantity; - 400 to 1999 pounds; 39,999 pounds; -under 2000 pounds; - 300 to 1999 pounds; ${ }^{10}$ - 500 to 1499 pounds; "-under 2000 pounds; "under 4000 pounds;

Cents Forelsn Ore
Cents per unit, c.i.f. Atlantic ports
Manganiferous ore, 45 Manganiferous ore
55% Fe., $6-10 \%$ Mang.
N. Afrlean low phos...
Spanish, No. Africa

Spanish, No. African
brasic, 50 to 60%.....
Brazil Iron ore, 68-69\%
f.o.b. Rio de Janelro. 7.50-8.00c
Tungaten Ore

Chinese wolframile, per
short ton unit, duty

Chrome Ore
(Equivalent OPA schedules):
Gross lon f.o.b. cars, New York,
Philadelphta, Baltimore, Philadelphta, Baltimore, Charleston, S. C., Portland, Ore, or Tacoma, Wash.
(S/S payfing for discharging; dry basis; subject to penalties if guarantees are not met.)
Indian and African $48 \% \quad 28: 1$
-
43.50
(Extras for alloy content)

2249 pounds; "-150 to 1490 pounds; "-Liree to 24 bundlea; 16 - 150 to 1409 pounds; ${ }^{10}$ ono bundle to 1409 pounds; ${ }^{17}$-one to nine bundlesa in-one to six bundles; 18 - 100 to 740 pounds; $20-300$ to $10 D 0$ poundes 39.999 pounds; $34-400$ pounds; $143-1500$ to 1000 pounds s3 1000 to 39.999 pounds; ${ }^{24}-400$ to 1490 nounds: ${ }^{26}-1000$ to $19 \% 1$ nobinls;

less $\$ 7$ trelght allowance Munganeme Oro	Chllean, 48\% Indlan, 50\%
Inclitling twar risk but not duty,	Indian, 18 c
cents per gross-ton unit, dru, f.o.b.	South Airican, 48\%
cars, New Orleans and Moblles 5	(Duty Frea)
cents higher at Norfolk, Baltimore,	Cuban, 5t\%
Philadclphia, New York; adiustmants	Cuban, 48%
for atialysts variations, (Based on	Cubarn, 45%
OPA schedules.)	Hillpplne, 50\%
Brazilian, 48\% 73.8 C	
Brazillan, 46\% 71.8 c	Malylodamest
Caucaslan, 51\%, 75.3c	
Caucaslan, $50 \% \ldots$.	mines

NATIONAL EMERGENCY STEELS (Hot Rolled)

Desig. nation	Chemical Composition Límita, I'er Cent					Hasio omen-hemarth			Electrie furnace	
	Carbon	Mn.	Si.	Cr			peer	Hillela	per	Millets
NE 1330	.28-33	1.00-1.90	.20-.35					ner C.I	100 Hs .	per $\mathrm{C}^{\text {T }}$
NE 8020	.18-. 23	1.00-1.30	20-.35				- .10	\$2.00		
NE 8442	. $40-.45$	1.30-1.60	.20-,35			.10-. 20	. 45	9.00	\$.05	\$19,00
NE 8613	.12-.17	.70-. 90	.20-,33			. $30-40$. 10	18.00	1.40	28.00
NF:8720	.13-18	.70-. 90	.20-.35	. $40-.00$. 10.70	-16.25	. 75	18.00	1.25	25.00
NE 9255	. $50-.60$.75-1.00	1.80-2.20	.40-.00	. $40 . .70$.20-,.30	. 80	18.00	1.30	20.00
NE 9262	. 0 ธั-.65	.75-1.00	1.80-2.20	.20-. 40			. 10	8.00	, ...	
NE 9415	.13-. 18	.80-1.10	, 10-.60	.20-. 10			. 08	13.00		
NE 9442	-40-.45	1.00-1.30	. $40-.60$. $20-.40$. $20-.50$.08-15	.80	18.00	1.100	20.00
NE 8537	. $35-10$	1.20-1.50	40-60	. $.10-.60$	$.20-.80$ $.40-70$.188-.15	. 8.8	17.00	1.35	27.00
NE 9630	. $28-.33$	1.20-1.50	.10. 60	. $40-.80$.40-.70	.15-25	1.20	24.00	1.70	84.00
NE 96.42	.40-.45	1.30-1.60	. 40.00	. $40-60$. 80	18.00	1.30	20.00
							. 86	17.00	1.35	27.00

SCRAP
auoted delivered to inating from railroads AND

Other than railroad qrades quoted on the basis of bas
consumers＇plants loeated on the line of the railroad from
 an Frimeisco includes South San Francisco，Niles and Oakland，Calif．Chicago inclucies Gary，Ind．
Inferior Grades：Maximum prices of inferior grades shall continuc to bear the same differential

 Commissions：No commission is payable except by a consumer to a broker for services rendered， guarantees the quality and delivery of an agreed tonnage the scrap is purchased at a price no higher ourchased it；the broker does not split the commission with the seller of the scrap，with another broker
or sub－broker，or with the consumer．Commissions must be shown as separate $i t m$ on invoice． Maximum Shipping Point Price：Where shipment to consumer is by rail，vessel or combination of
both，scrap is at its shipping point when it has been placed f．o．b，railroad car or f．a．s．vessel．In such cases，maximum shipping point prices are：at the basing point in which the shipping point is located， moints located outside a basinz point，the price in the above table for scrap at the most favorable bas－
poing point，minus the lowest transportation charge by rail，water or combination thereof，When movement is involved，dock charxes shall be 50 cents at Memphis，$\$ 1$ at Great Lakes ports，$\$ 1.25$ at
Nev England ports， 75 cents elsewhere．New England shipping point prices computed on most favor－ able basing point prices；maximum transportation charge on scrap from New Encland，$\$ 8.65$ per ton． basing points．maximum is price listed in table minus lowest switching charge．When outside basing by common earrier．When hauled by seller charges are based on carload rate for rail shipment，mini－ Maximum Delivered Prices：Determined by adding established transportation charges to shipping 4 （Amendmerit 1）apply to St．Louis district consumers，to WPB allocations，to water shipments from Duluth or Superior，Wis．，to shipments of billets，blooms and forge crops from pittsburgh and to ship－
ments of eleoric and foundry grades from Nichigan；to shipments of turnings to ferroalloy producers

 dexos posedaxd jo soperz zuppuodsoioo，oч se flosn әq soperis
 consumer＇s plant，provided swori details furnished OPA．Permission rectuired to exceed by more than $\$ 7$
 lloy－Free
Low
Phos．\＆
Sulphur
Turnings
$\$ 18.00$
16.75
16.25
17.25
17.50
15.85
16.75
16.25
16.00
15.50
15.00
14.50
12.50 $\begin{array}{lll}\text { Heavy } & \text { Structural，Plate } \\ 3 \mathrm{ft} & 2 \mathrm{ff} & \text { Pl } \\ \begin{array}{l}\text { and } \\ \text { and } \\ \text { less }\end{array} & \text { and } & \text { lis．} \\ \text { less } & \text { and }\end{array}$

| $\begin{array}{c}\text { popun } \\ \text { pue } \\ \text { uṬ } 81\end{array}$ |
| :---: | 0s＇斌S 23.25 00 ＂ 56

気菏总

RAILROAD SCRAP

Claymont，Coatesville，Harrisburg，Conshohocken．Phoe－

 Betheliem
Jetroit
Duluth
Birminghan，Atlanta，Alabama City，Los Angeles，San
Francisco，Pittsivarg，Calif．
Mhmeg
Scattle

Group A includes the states of Montana，Idaho，Wyoming，Nevada，Utah．Arizona and New Mexico．
Group B includes the states of North Dakota，South Dakota，Nebraska，Colorado，Kansas，Oklahoma Group C includes states not named in groups A and B，plus Kansas City，Kans．－Mo．
＇Open Hearth Grades refer to No． 1 heavy melting steel，No． 1 hydraulic compressed black sheet
scrap，No． 2 heavy melting steel，dealers＇No． 1 bundles，dealers＇No． 2 bundles nnd No． 1 busheling．
No．1 chem．borings， 1 per cent oil，$\$ 1$ under，No． $2,1.5$ per cent oil，$\$ 2$ under heavy melting steel．No，
3 bundles，$\$ 2$ under No． 1 heavy meltin．cast steel，$\$ 250$ over，No， 2 busheling $\$ 20$ under No 3 bundles，$\$ 2$ under No． 1 heavy melting；cast steel，$\$ 2.50$ over，No． 2 busheling，$\$ 2.50$ under No． 1
heavy melting steel，auto springs，crankshafts，$\$ 1$ over No． 1 heavy melting．十Toledo open－hearth grades cludes basing point incildies the switching district of the city named．The Pittsburgh basing point in－ A bashg point inciudes the switching district of the city named．The Pittsburgh basing point in－
cludes the switching districts of Ressemer．Homestead，Duquesne．Munhall and Mckeesnort．Pa．Cin－
cinnati inchudes Newport，Ky．St．Louis basing point includes Granite City，East St．Louis and Madison，

NONFERROUS METAL PRICES

Conper: Electrolytic ar Lake from producers in carlots 12.00 c , D(l. Conn.. less carlots 12.124 , reflinery: dealers may add fe for 50 no los. ti carload: 1000-4999 lbs. 1c; 500-999 114c; 0-499 2c. Casting, 11.75c, reflnery for 20,000 ibs, or more. 12.00 c less than 20,000 lbs

Rrass Ingot: Carlot prices, including 25 cents per hundred freight allowance; add $1 / \mathrm{cc}$ for less than 20 tons: $85-5-5-5$ (No. 115) 12.25c ${ }_{14.10-2}$ (No. 215) 16.50c; $80-10-10$ (No .305) 14.25 c : Navy G (No. 225) 16.75 c ; Navy M No. 245) 14.75 c : NG. 1 yellow (No. 10.
10.00 c ; manganese bronze (No. 420) 12.75 c .

Zinc: Prime western 8.25 c , select 8.35 c , brass special 8.50 c , intermediate 8.75 c , E. St. Louis, for carlots. For $20,000 \mathrm{lbs}$. io carlots add $0.15 \mathrm{c} ; 10,000-20,0000.25 \mathrm{c} ; 2000-10,0000.40 \mathrm{c}$; under 20000.50 c .

Ifad: Common 6.35c, corroding or chemical, 6.40 c, E. St. Louls for carloads; add 5 polnts ror Chicago, Minneapolis-St. Paul, MilwaukeKenosha districts; add 15 points for Cleveland-Akron-Detrolt area, New Jersey, New York State, Texas, Pacific Coast, Richmond, InState, Texas, Pacific Coast, Richmond, In-dianapolls-Kokomo; add 20 points for Birmingham, Connecticut, Bos i on-Worcester Springheld, New Hampshire, Rhode Island.

Primary Aluminum: 99\% pllus, ingots 15.00c del. . pigs 14.00 c del, : metallurgical 94% min. 13.50 c del. Base $10,000 \mathrm{lbs}$. and over: add 1 ic 2000-9999 lbs.; 1c less than 2000 lbs .

Secondary Ahaminum: All grades 15.00 e per b. except as follows: Low-grade piston alloy No. 122 1ype) $14.5(c$; No. 12 foundry alloy No. 2 grade) 14.50c; chemleal warlare serv ce ingot (991% plus) 14.50 c ; steel denvidlzers in notchbars, pranulated or shot, including ingot containing over $25^{\circ} \mathrm{c}$ iron, Grade 1195 $171 / \%$) 14.75c, Grade 2 (92.95%) 14,50c Grade $3(90-92 \%) 14.00 \mathrm{e}$, Grade 4 ($85-90 \%$) 13.50 c , Grade 5 (less than $85 \%^{\circ}$) 12.50 c . Above prices for $30,000 \mathrm{lbs}$. or more: add sic 10,000 30.000 lbs.; $1 / 2 \mathrm{c}$ 1000-10,000 lbs.;]c less than 1000 lbs. Prices include frelght at carload rate up to 75 cents per hundred.

Mamestum: Commercially pure (99.88°) standard ingots (4-notch, 17 lbs .) 20.50 e lb.; addl 1e for special shapes and sizes, including $3-1 \mathrm{~b}$. Ingot and $12-1 \mathrm{~b}$. round insot; incendiary bomb alloy $23.40 \mathrm{c}, 50-50$ magnesium-aluminum 23.75 c , ASTM B80-41T No. 11 25.00e, ASTM B94-40T No. 1325.00 c , all others 23.00 c . Prices for 100 lbs or more; for $2 \overline{5}-100$ lbs. add 10 c : for 100 lbs or more; for $25-100 \mathrm{lbs}$ add 10 c : for
less than 25 lbs. 20 c : incendiary bomb alloy less than 25 lbs 20c: incendiary bomb alloy
f.ob. plant any quantity: carload frelght rate f.n.b. plant any quantly: carload frelght
allowed all others for 500 lbs. or more.

Tin: Prices ex-dock. New York in 5 -1on lots. Add 1 cent for $2240-11.199$ ths., $14 \mathrm{cec} 1000-2239$. $21 / \mathrm{c} 500-999,3 \mathrm{c}$ undrr 500 . Grade A. $90.8 \mathrm{r}_{0}$ 90 hisher (includes Strats). 52.00 c ; Grade B . $99.75-99.79 \mathrm{c}$ incl. $51.621 / 2 \mathrm{c}$; Grade C C Cornlsh refinpd $51.621, \mathrm{c}$; Grade D. $99.0-99.74 \mathrm{Fi}$ incl. 51.121 c : Grade E . below $99 \%, 51.00 \mathrm{c}$.

Antimony: American, bulk, carlots, f.o.b. Laredo, Tex., $99.0-99.8 \mathrm{c}$ ह grade 14.50 c . 99.8 C purity to farsenic 0.05% max.: no other imnurity to exceed $0.1 r^{\prime}: 15.00 \mathrm{c}$. Add lac for less-

Nickel: Electrolytle cathodes, 99.5c, f.o.b. reflnery 35.00 c 1 b. . plg and shot produced from clectrolytic cathodes 36.00c: " F " nickel shot nr ingot for addltions to cast fron, 34.00 c ; Monel shot 28.00 c .

Vereury: Prices per 76-lb. flask for.b. polnt of areg. Wash entry, Domestic produced in Calif., Oreg., Wash.. Idaho, Nev., Ariz. \$191: produced in Texas. Ark. \$193. Foreign, produced in Mexico, duty paid, $\$ 193$.
Arspalc: Prime, white, $99 \mathrm{r}_{\mathrm{e}}$, carlots. 4.00 c lb .
Meryllium-Copper: $3.75-4.25 \%$ Be., $\$ 15 \mathrm{lb}$. contained Be.
Cadmium: Bars, ingots, pencils. pigs, plates, rods, slabs, sticks and all nther "'regular"; straight or flat forms 90.00 c 1 lb ., del.: anndes. ralls, dises and all other spectal or patented shapes 95.00 c Ib . del.
Cobalt: $97-99 \mathrm{c}$. on contract, $\$ 1.50 \mathrm{lb}$.
Indium: $99.5 \mathrm{r}_{\mathrm{r}}$, s10 per troy ounce.
Ciold: U. S. Treasury, $\$ 35$ per ounce.
silver: Open market, N. Y. $44 . \overline{i 5 c}$ per ounce Plathum: sizg per ounce.

Iridum: \$16б per troy ounce.
Palladium: $\$ 24$ per troy ounce.

Rolled, Drawn, Extruded Products

(Copper and brass product prices based on 12.00 c, Conn., for copper. Freight prepaid on 100 lbs. or more.

Sheet: Copper $20.87 \mathrm{e}:$ yellow brass 19.48 c commercial bronze, 90 er $21.07 \mathrm{c}, \quad 95 \% 21.28 \mathrm{c}$ red brass, $80 \% 20.15 \mathrm{c}, 85 \% 20.36 \mathrm{c}$; phosphor bronze. Grades A, B S 5% Herculoy, Duronze or equiv. 26.00e; naval bras 24.50 c ; munranese bronze 28.00 c ; Muntz metal 22.75 c ; nickel silver $5 \% 26.50 \mathrm{c}$.

Rods: Copper, hot-rolled 17.37c, cold-rolled 18.37c; yellow brass 15.01 c ; commercial bronze $90 \% 21.32 \mathrm{c}, 95 \mathrm{c}$. 21.53 c ; red brass 80% $20.40 \mathrm{c}, 85{ }^{\circ} \mathrm{C}$ 20.61c; phosphor bronze Grade A, 1 B $5 \% 36.50 \mathrm{c}$; Everdur, Herculoy, Duronze or equiv. 25.50c: Naval brass 19.12 c ; manganese bronze 22.50 c ; Muntz melat 18.87 c ; nlekel silver 5 \% 28.75 c .

Sramless Tubink: Copper 21.37c; yellow brass 22.23 c ; commerclal bronze no 23.4 T c ; red brass $80 \% 22.80 \mathrm{c}, 85 \% 23.01 \mathrm{c}$.

Extruded Shapes: Copper 20.87 c ; archltectural bronze 19.12 c ; manganesc bronze 24.00 c , Muntz metal 20.12 c ; Naval brass 20.37 c .

Angles and Channels: Yellow brass 27.98 c ; commercial bronze 90 穴 $29.57 \mathrm{c}, 95 \%$ 29.78c; red brass 80 é 28.65 c , 85 ro 28.86 cc
Copper Wire: Bare, soft, f.o.b. Eastern mills, carlots 15.371 e, less-carlots $15.871 / 2 \mathrm{c}$; weatherproof, f.o.b. Eastern mills, carlots 17.00 c , less-carlots 17.50 c ; masnet, delfvered, carlots $17.50 \mathrm{c}, 15.000 \mathrm{lbs}$, or more 17.75 c . less car lots 18.25 c .

Alaminum Sheets and Circles: 2 s and 3 s , flat, mill finish. base 30,000 lbs or more; del: sheet widths as indicated: circle diameters 9 " and larger:

Gage	Width	Sheets	Circles
249 "-7	12"-48"	22.70 c	25.20 c
8-10	$12^{\prime \prime}-48^{\prime \prime}$	23.20 c	25.70 c
11-12	$26^{\prime \prime}-48^{\prime \prime}$	24.20 c	27.00 c
13-14	$36^{\prime \prime}-48^{\prime \prime}$	25.20 c	28.50 c
15-16	$26^{\prime \prime}-48^{\prime \prime}$	26.40 c	30.40 c
17-18	$26^{\prime \prime}-48^{\prime \prime}$	27.90 c	32.90 c
19-20	$24^{\prime \prime}-42^{\prime \prime}$	29.80 c	35.30 e
21-22	24"-42"	31.70 c	37.20 c
23-21	$3^{\prime \prime}-2.4$ "	25.60c	29.20 c

Lad Products: Prices to jobbers; full sheets .50c: cut sheets 9.75 c : pipe 8.15 c , New York 8.50 c Philadelphla, Baltimure, Rochester and Suffalo; 8.75 c . Chicago, Cleveland, Worcester, Boston.

Rine Products: Sheet f.o.b. mill, 13.15c: 36,000 ths, and over deduct T Tr. Ribbon and strip $12.25 \mathrm{c}, 3000-\mathrm{lb}$. lots deduct $1 \%, 6000 \mathrm{lbs} .2 \%$ 9000 lbs. 3 er. 18,000 lhs. 4 m , carloads and over Tes. Boiler plate (not over $12^{\prime \prime}$) 3 tons orer ter Boller plate not over 12 , ${ }^{\circ}$ tons 12.50 c : $100-500 \mathrm{c}$: 1 sb tons 12.00 c ; $500-2000 \mathrm{lbs}$ 4.Onc. Hull plate (over $12^{\prime \prime}$) and te to boiler plate prices.

Plating Materials

Chromle Abid: 99.75\%, flake, clel., carloads 16.25c: 5 tons and over 16.75 c : 1 -5 tons 17.25 c 400 lbs . to 1 ton 17.75 c ; under 400 lbs 18.25 f :

Copper Anodes: Base 2000-50:00 lbs., del. ; oval 17.62c; untjlmmed 18.12c; electro-deposited 17.37c.

Copper Carbonate: 52-54č metallic cu; 250 lb barrels 20.50 c

Copper Cyanide: 70-71\% cu, Jon-ith. keas or bbls. 34.00 c f.o.b. Niasara Falls.
Sodlum Cyande: $96 \mathrm{f}, 200-\mathrm{Ib}$. (irums 15.00 c ; $10,000-1 \mathrm{~b}$. lots 13.00 c 1.0.b. Niagara Falls.

Niekel Arodes: 500-2999 lb. lots: cast and rolled carbonized 47.00 c ; rolled, depolarized 48.00 c .

Nelid Chlorlde: 100-Ib, kegs or 273-1b. bbls. 18.00c lb., del

TIn Anodes: 1000 lbs. and over 58.50 c . del. Thn Crystals: 400 lb . bble. 39.00 c f.o.b. Girats selli, N. J.; 100-1b. kegs 39.50c.

Thne Cwande: 100-lb. kegs or bbls. s:3.00e fob. Ningara Falls

Scrap Metais

Braks sith Allowamees: Prices for less than 15,000 lbs. f.o.b. shipping polnt. Add ise fol

Oher than lsrass Blll sirrap: prices apply on material not meeting brass mill specifications and are fo.b. shipping point; add Me for shipment of 60,000 lbs. of one grisup and sid for 20,000 lbs. of second 4 roup shipped in same car. Typical prlees follow:
(Group i) No. 1 heavy copper and wire, No. 1 linned copper, copper borlngs 9.75 : ; Nos. 2 copper wire and mixed heavy copper, crippel tuyeres 8.75x.
(Group 2) solt red brass and borings, aluminum bronze $9,00 c:$ copper-nlckel and borings $9.25 x^{\prime}$: ear bowes, cocks and faucets 7.75 c ; lsell metal 15.50e; babbitt-lined brass hushlnes 13.00 c .
(Group 3) zines bronze burlige Admirally
condenser tubes, brass plpe 8.00 M ; Muntz metal condenser lubes 7.50 c ; yellow brass 6.25 z ; manganese bronze (lead $0.00 \%-0.40 \%$) $7.25 c$, (lead (1.415 ${ }_{c}^{5}-1.0 e_{n}$) 6.25e: manganese bronze borings (lead $0.00-0.40 \%$) 6.50 c , (lead 0.41 1.000°) 5.50 c .

Aluminum Serap: Prices f.o.b. point of shipment, respectively for lots of less than 1000 Ibs.: $\pm 000-20,000 \mathrm{lbs}$. and $20,000 \mathrm{lbs}$. or more; plant scrap only. Segregated $2 s$ solids 10.00 c , $11.0 \mathrm{ce}, 11.50 \mathrm{k}$; all other sollds $9.50 \mathrm{c}, 10.50 \mathrm{c}$, 11.00 c ; borings and turninss $7.50 \mathrm{c}, 8.50 \mathrm{c}$, $9.00 \mathrm{c}: \mathrm{mlxed}$ solids $8.50 \mathrm{c}, 9.50 \mathrm{c}, 10.00 \mathrm{c}$, maxed borings and turnings $6.50 \mathrm{c}, 7.50 \mathrm{c}, 8.00 \mathrm{c}$

Ifad Scrap: Prices f.o.b. point of shpment For soft and hard lead. Including cable lead deduct $0.5 \bar{x}$ e from basing point prices for re fined metal.

Sinc Suran: New ellppings, old zine 7.2 F (1.0 b point of shipment: add 1,2 -cent for 10.000 Ibs or more. New die-cast serap, radiator grllles 4.95 c : add $\mathrm{t} 2 \mathrm{c} 20,000$ or more. Unsweated zinc cross, die cast slab 5.80 c any quantity.

Nlekel, Monel seran: Prices f.ob. point of ship ment: add $1 / \mathrm{sc}$ for 2000 lbs . or more of nicke or cupro-nickel shipped at one lime and $20,000 \mathrm{lbs}$. or more of Monel. Converters (dealers) allowed 2 c premium.

Nekel: $98{ }^{\circ} \mathrm{c}$ nir more nickel and not over 16 jickel contained

Cupromickel: 90\% or more combined nickel and copper 26.00c per It. contained nickel, plus 8.00 c per lb . contalned copper: less than oof combined nickel and copper 26.00c for contalned nickel only.
honel: No. 1 castimes, turnings 15.01 c ; new clippling 20.00 c ; soldered sheet 18.00 c .

Sheets, Strip

Sheet \& Strip Prices, Page 154
While gaps in sheet schedules have been opened recently, as a result of revisions in ordnance programs, particularly the landing mat program, they have been filled speedily and most sellers now are not only out of the market for third quarter on hot-rolled, but cold-rolled sheets as well. Demand for cold-rolled has not been nearly as active all along, as for hot-rolled material, but mill quotas have restricted cold-rolled capacity to such an extent that some producers now are in little better position in this grade than they are in hot-rolled.

Some producers are booking heavily
for fourth quarter delivery while some capacity still is open for third quarter in galvanized and specialty grades. Some steelmakers find application of CMP has brought a better balance and facilitated smooth rolling schedules.

Bars

Bar Prices, Page 154
While bar deliveries generally are tightening, some producers still are able to make good deliveries on small rounds, sizes running up to $5 / 8$-inch. One large producer can actually work in a little for shipment early in July, and certain others have some capacity available in these small sizes late in July and carly

... - where speeds are high, where smooth operation is required and where quietness is a factor, Horsburgh \& Scott Herringbone Gears are ideal. Sykes type, continuous, double helical teeth give increased bearing surface and greater resistance to wear. They meet the most exacting requirements and provide the smoothest known means of transmitting power between parallel shafts.

GEARES AND SPEED REDUCERS

 5112 HEMMLTON AVENUE - CLEVBLAND, OHIO, U.S. A.in August. On medium size rounds, however, August now appears to be the earliest and no large amount is available even then. Some producers are booked up rather solidly through the entire quarter on all sizes, although cut-backs in certain lines may open gaps as the period advances. All producers are out of the market for third quarter on large rounds and squares. Some, in fact, have nothing to offer before late November.

Cold drawers are virtually booked up for third quarter, as orders for coldrolled carbon bars taken now would be for rolling by the hot mills in September, which would leave little time for cold drawing and shipment before October. As for alloy cold-drawn bars, deliveries range about a month beyond. The aircraft and maritime industries are the largest consumers of cold drawn bars in the East. Machine tool reguirements have eased somewhat and there is a much lighter volume of shell inquiry. In fact, some shell cancellations continue, although the gaps have been quickly filled by requirements from other directions.

The ratio between open-hearth and bessemer is narrowing somewhat. At one time, well prior to the war, about as much bessemer steel was used by cold drawers as open-hearth steel. This ratio became increasingly out of balance as the war approached and less than a year ago had reached the point where only about 15 per cent of the steel used was bessemer. This was attributed in no important measure to the character of government specifications.

More recently, however, Washington has made an effort to stimulate the use of bessemer, so as more fully to utilize available capacity. Early in the year, for instince, warehouses were given larger quotas of cold-drawn bars, with the increase to be made up of bessemer. The War Production Board also urged easing in specifications of government procurement agencies, with some success, although not as much as desired. According to some trade interests, cold drawers are now using about 25 per cent bessemer and 75 per cent openhearth steel.

Plates . . .

Plate Prices, Page 155
Plate deliveries to several shipyards in the East are slightly heavier to bring inventories up to better balance. A few yards have been operating on somewhat closer margins of supplics, but on the whole shiphuilders have ample workable rescrve stocks. Delinguent tonnage eacd month is mostly on sheared material and is not serious, slight lags usually being taken up with only minor delay.

Outside of shipbuilding there i; some shift in demand. Requirements for stee! boilers are declining steadily; new order thus far this year are less thain hall those for the corresponding period, 1942 , while the decline in square feet of hoating space has been even greater, to slightly more than one-fourth. On the other hand, requirements for locomestive building are heavier with two shops taken off tanks and again building locomotives for the services. Deliveries on flanged and dished work are improving. for while shops engaged in semi-fabricating are active, the pressure is off some.

Flame-cutting absorbs a substantial
tonnage of heavy plate; there has been much expansion in this branch growing out of war demand. Warehouses are moving plates in good volume for ship repairs and fill-in needs, but are hampered by lack of rounded stocks of standard sizes. They are forced to shear a larger number than usual. Third quarter orders are appearing in heavier volume and some shipyards have covered through the remainder of the year.

Wire

Wire Prices, Page 155

There has been a slight increase in production of various types of fencing but total output is still far below the accumulated demand and will probably remain so to the end of the year. Situation is spotty in other merchant wire products, particularly nails, where some districts report fair supplies and others virtually nothing. Jobbers' stocks of all merchant wire items are low, generally speaking, and for the most part are not sitisfying demand. Shipments of manuficturers' wire remain unchanged, with available orders rumning ahead of the steel directives for wire products with some nonintegrated wire mills hopeful that their supply of wire rods will be increased somewhat in the directives issued this month for July production.

Rails, Cars

Track Material Prices, lage 155
While an increase in domestic freight car inquiry may develop fairly soon, car deliveries this year apparently will fall substantially short of predictions of even a month or so ago. The 20,000 freight cars originally contemplated for constrnetion and delivery to domestic carriers in the first half are far behind schedule, due to inability of carbuilders to obtain materials, and there now appears little likelihood of steel and other materials being granted by Washington before the fourth quarter for construction of additional domestic freight cars, none of which in all probability will be delivered before the beginning of next year.
Of the current program of 20,000 freight ears, only about 1500 have been turned over to the railroads to date. An effort is to be made. lowever, to deliver the remaining 18,500 before third quarter is ended.
Shortage of materials for car construction has not coly delayed the present program, but has apparently caused the re:jection by the War Production Board of the appeal of the domestic lines for 40 ,000 to 44,000 freight cars this year, in addition to the quota of 20,000 . Not only is there a shortage of steel, it is pointed out, and particularly steel castings, but a scarcity of lumber. Steel allowances for third quarter for new car construclion are practically nil, car authorities claim.
Of the various railroad demands, freight cars stand fourth on the list, in the opinion of WPB officials, MRO requirements; then rails; next motive power; and finally freight cars, with every effort being made to limit the needs of all four groups as much as possible. For instance, rail requirements have been slashed considerably since the first of the year, when $2,000,000$ tons were con-
sidered probable. Now the figure has been reduced to about $1,200,000$, it is clamed, with even this figure subject to some further reduction.

While it appears that car builders once they complete the domestic freight car program of 20,000 , will not have an opportunity, due to limitations on materials, to do further domestic work before the latter part of the year, it is believed likely that some fairly sizable inquiry may develop within the next few weeks at the outside, so as to get a program set up on the chance that some steel and other materials will be available later in the year.

Meanwhile, were it not for sulbstantial army orders on hand and still others in sight, the car shops would be in for
a dull period over the next fow months. Even as it is there will be considerable idle cajacity, car huilders fear.

Latest locomotive awards include twes Mallet type engines for the Bingham \& Girffeld, placed with the Baldwin Locomotive Works.

Reinforcing Bars ...

Reinforcing Bar Prices, Pitge 155
The increase in reinforcing bar shipments during April, which resulted, in a slight increase in the May clirective, did not continue and total shipments during May dropped below April. June shipments will probably run less than May, although the June directive is up slightly and orders on books are now somewhat

CASTINGS SAVE MONEY

Strong takes the same well earned pricie in its cleaning operations that it has for its annealing facilities. In addition to the cutting, grinding and chipping processes, Strong operates two sandblasts with the larger one capable of handling any casting which comes from its 15 by 19 annealing furnace.
All of which adds up to a standard of castings which are much easier to machine-because the steel making, the molding, the annealing and the cleaning are all handled by Strong quality controls that safeguard the buyer's interest at all stages of the work. The surest way to have stronger castings is to have them Strong-cast!

STRONG STEEL FOUNDRY COMPANY. BUFFALO. N. Y.

heavier than the directive tomage available.
New sales are slow with little activity in sight, and since the July directive is about to be issued, it is probable the tonnage allotted will be less than June in view of the cleclining orders. There is some interest on the part of certain governmental agencies for additional tonnages to be shipped before June 30 to take up parts of appropriations which have not yet been spent and which expire on that date.

Pig Iron

lig Iron Prices, Page 1 sug
With steel works operations in New England at about 95 per cent of capacity,
occasionally hitting 100 , demand for basic varies little each month. Inventories for open hearths are much lower than in normal times, kept down by allocations and in the case of one producer pig iron costs are heavier under the current system of control. That the pig iron sitnation is somewhat easier is indicated by a slightly more liberal attitude on allocations. Inventories are maintained and shops with higher rated war orders have substantial reserves; in scattered instances more irom is allotted than recpuested where reserves appear too low.

The lower melt by some gray iron foundries, notably in the jobbing field, has cooled demand for iron and current inventories are maintained and even slight-

Iy expanded loy less tomage each month than was the case earlier in the year. Malleable requirements are steady with foundries in this group generally bolding production schedules. Procurement offices for the various government shops continue from time to time to take open bids on small tonnages, but final clisposition as to suppliers is subject to WPB allocation.

Applications for July pig iron allotments show little change in number or tomage involved. Greatest variation is in foundry grades but in most cases smaller reduirements for this irom is balanced by greater need for basic. Part of the lessened demand for fomedry irom may be seasonal and partly the result of changes i a war demand.

Scrap

Subsidence of floocls in the middle West has removed obstacles to collection and shipment. Heavier clemand for scrap has developed to offset the clrop in hos metal supplies following the banking of blast furnaces, due to coke shortage in stme ristricts.
In the Chicngo area flow of scrap has been resumed, sufficient to meet current demand and provide some for reserves. Industrial scrap is steady though some loss has followed changes in war demands cutting into production of some forms of war fabricating.
Reduction in volume of hot metal following suspension of coal mining was felt severely in the littsburgh district where numerons stacks were banked. Scrap receipts are about normal but heavier use for steelmaking is cutting into reserves. Some furnaces will remain down for relining, putting is continuing burden on scrap supply in the interval.
Cincinnati scrap dealers fear the present quict situation may be followed by demand late in the summer, without adequate supply. A recent domestic drive in a city in that area resulted in only 80 tons of doubtful material being colllected. The heavy drive a year ago had depleted supply from this source.

Demand for top grades of open-hearth and electric furnace scrap keeps pace with supply but lighter grades lag. Plant scrap is being produced on good volume. Demand for foundry grades contimues dull. Recent revisions covering scrap sales antomatically lift the shipping point price at some northern New England poiats to \$14. On hauls taking high freight charges to outside districts shipping point prices have been as low as $\$ 13$, ranging upward to $\$ 14.06$, depending on freight cost.

Recession of flood waters has released much scrap in the St. Louis district and shipments are satisfactory. Current arrivals are mainly allocations of remote scrap, most of which is desirable material. The Missouri drive for serap for donation to the Army is progressing, soldiers manning 45 trucks for collection. One firm has bought 15,000 tons for delivery at St. Louis, proceeds to go to soldier benefits. Quality is high, mainly agricultural and project wreckage material.

At $\$ 17.67$ a gross ton, Luria Bros., Philaclelphia, has been sold 90 gross tons of welding rod butts, sale of miscellaneous supplies B-808, navy yard Philadelphia. To Michael Flynn, Braklyn, went $1,000,000$ pounds of scrap dec-
tric cable at 3.87 e a pound; Canaden Compressed Scrap Steel Co., Phitatolphia, bought 125 gross tons of miscallaneous sheet irom at $\$ 12.20$ a tom and 70 gross tons of light galvanized steel scriap at $\$ 10.91$.
Battlefield scrap from North Africa is begiming to trickle into this country, cargoes having arrised recently at two ports, forerunners of larger supply as gathering facilities are improved.

Semifinished Steel

Semifinished Prices, Page 154

Billets and other semifinished steel are moving abroad more freely under lend-lease abd third qutarter shipments are expected to be heaviest in more than a year. The situation contrasts sharply with last fall, when some export accumulations along the Atlantic seaboard were offered for resale on this side. During the latter part of last year and early this year movement of semifinished abroad was practically nothing.

In late February tomage started moving agrain and since then there has been a moderate increase in volume. Contributing to the better mowement at this time is an easier shipping sithation. Not only are more vesisels clearing American ports but more are getting to destination safely. The latter situation is reflected in the lowering of Transatlantic insurance rates by Lloyds about a week ago, the first in many months.

As a result of this improved shipping sitmation steel stocks along the eastern seaboard for shipment aroroad under lend-lease are perlapss the lowest since this country entered the wirr. Sosuth American conntries are benefiting as well ats allies in the combat zones.

Three Warehouses May

Stock Aircraft Hardware

Ducommun Metal \& Supply Co., Los Angeles; Supply Division Inc., Robertson, Mo.; and Aircraft Hardware Mfg. Co., New York, have been authorized by the War Production Board to stock and deliver aircraft hardware, valves and fittings. These initial authorizations were provided in directive No. 1 to L-296.

Each of these warchouses, in addition to its regular stocks, may now carry and cleliver all items on Schedule A of the order, in quantities authorized by the Aircraft Scheduling unit at Wright field, Dityton, O.

Limitations on deliveries by warehouses confine deliveries to: (i) manufacturers for domestic use in construction, maintenance or repair of aircrift and air-borne accessories, parts and sub)assemblies; (2) maintenance and repair of planes used by air lines holding certificates of mecessity issued by Civil Aeronatical Administration; by the CAA Training Service and by Civil Air Patrol in class A category; (3) maintenance of other aircraft, when authorized by WPB's Aircraft Priorities Brancl; (4) Aircraft Modification Centers and Army and Navy Supply Depots; (5) other warehouses designated by WPB to carry the same type of hardware and components.
Quantities of any specific item which may be delivered to any one customer in any month are limited.

Midwestern Warehouses Granted Price Rise on Galvanized Seconds

PRICES of secondary and rejected classifications of galvanized sheets from warchouses in five mid-western cities have been advanced by Office of Price Administration, effective June 21.
lncreases were necessitated by allocation of galvanized sheet production to non-integrated mills in the castern and southern states. As a result of this allocation, integrated mills with a Chicago basing point, no longer are manufacturing galvanized sheets but are using their producing facilities to turn out other types of steels for war inclustries
and warchouses in the midwestern are: must pay higher transportation costs for longer-haul shipments from producing mills.

The price increases in the reject classifications are as follows on a net ton basis: Chicago, \$6.60; Milwatuke, \$5; St. Paul, \$4.60; Detroit, \$2.60; St. Louis, $\$ 1.40$. Increases for wasters, waste wasters, offal, side and end shearings, and galvanized sheets sheared to specifications, have been adjusted upward accordingly.
The new prices are established in

Thru World Wars I and II

A.C.P. PROCESSES HAVE DONE THEIR BIT

In giving more and better HELL to the enemy

ACP Chemicals and Processes, plus the facilities of a wellequipped laboratory staffed with technological experts skilled in the mass production and processing of all kinds of metal, are at your service to help you turn out more and better war equipment
-ships,tanks, guns, bombs, shells and other accessories.
Wherever metal has been fabricated all over the world, ACP has pioneered in the supplying of chemicals and processes to facilitate production and perfect the surfaces of metal for final finish.

RODINE-an acid inhibitor, DEXODINE-an acid cleaner, CUPRODINE-for copper coating to facilitate drawing, KEMICK-for painting exhaust manifolds. These are but a few of the chemicals that have been factors in speeding the production of better products. Consult with us on your metal treating problems.
amendment No. 15 to price schedule No. 49. Provision is also made for adjusting transportation charges when iron and steel products are delivered by truck outside the warchouseman's normal marketing area. The seller now may charge the truck transportation costs actually paid for, minus a deduction at the rate of 25 cents per 100 pounds.

To determine a quantity charge or deduction on a shipment of secondary iron and steel products, the seller may combine the weight of material on all orders of one day from one person for shipment to one destination, regardless of how shipments may be split by the seller for his own convenience or at the buyer's request.

Tin Plate . . .

Tin Plate Prices, Page 155

Tin plate producers are in receipt of sharply increasing amount of incuiry, which assures their operating in third quarter at as high a rate as their mill quotas will permit. It is estimated that these quotas during third quarter will average about 65 per cent. While some tin plate is going into ammunition cases and certain other types of ordnance, most is going into the manufacture of samitary cans. One large producer estimates that 97 per cent or more of his tonnaige in third quarter will go into these cans.

At least one prediction of tin plate

DETROIT Melting Furnaces for Precise

 Metallurgical ControlFor close chemical and metallurgical control of any desired fer-
rous or non-ferrous alloys, the Detroit Rocking Electric Furnace
with its exclusive, automatic stirring action under non-oxidizing
conditions simply cannot be beaten. You can run a different mix-
ture on each subsequent heat or the same alloy all day long with
remarkable uniformity. Write today for complete facts about this

producers made last year is now coming true. Because tin plate operations were reduced so sharply at the close of last year and during the early part of this year, many eniployes in tin plate departments left to take jobs where they would be assured of more continuous employment. Now with production schedules expanded, tin mills are having considerable difficulty obtaining sufficient labor. Some tin mills expect to have difficulty maintaining operations at the estimated 70 per cont level, which will probably hold for the remainder of the producing season. Production of coldrolled strip for tinning is now at about 70 per cent of capacity, and although actual tin mill operations have not reached that level yet, they soon will.

Nonferrous Metals

Nonferrous Prices, Page 159

New York-Rescrve stocks of most nonferrous metals appear casier as indicated by the lifting of a few restrictions on uses. Zinc and lead conservation orders have been amended, the zinc being freer for the galvanizing of pails. Allocations of zinc for galvanizing, however, arc geared to steel tomages available for coating.
Brass mills generally are well stocked with scrap, affecting copper allocations to an increasing extent. While certain grades of scrap are tight, plans for a nation-wide drive for scrap copper and brass are meeting with some opposition by those who believe no large amount of scarce grades would be uncovered. Those favoring a scrap drive, mostly in the copper division, WPB, claim results would take up the slack at refineries. The tonnage of fired brass cartridge cases held by Army ordnance is increasing.
Producers' zine stocks are increasing mradunlly and inventory carried by MRC has been extended, hut easing on general restrictions has been slight. Producers could fill heavier allocations were they certified. However, WPB has ruled that only MRC buys for public account and is the only buyer of zine permitted to acquire the metal without allocation. Because of the lower demand for paint pigments. leaded zinc oxide operations are but 50 per cent of capacity at some units.

Close control of tin distribution continues with a minimum of cross-hauling. Electrolytic units are getting into production on a heavier scale and tin going to tin plate mills was about equally distributed over the three months of the scoond quarter. To provide for sales of grades produced at the Texas smelter which fall below Grade A, an amendment to the price schedule is thought likely. Now selling on the basis of 99 per cent tin, the Texas material contains nearer 99.5 per cent. Grade A price of 52.00 c will not be changed. An estimated 3000 tons of tin will be saved in 1943, and 5000 in 1944 by a single use of silverlead instead of tin-lead solder. This tin saving will result from the use of silverlead solder in 40 per cent of the 1943 ontput and 70 per cent of the 1944 output of cans for foods, household products, chemicals and other purposes. The sil-ver-lead solder contains about 2.5 per cent silver, 5 per cent tin and 93.5 lead, while the tin-lead solder contains 30 to 40 per cent tin and 60 to 70 per cent lead. And since lead has almost ceased to be a critical material-all restrictions

Do You Need. . .

IMMEDIATE PRODUCTION

 of FORMED SHEET METAL PARTS?Then think in terms of Metal Spinning and particularly "Spincraft's combination of spinning, fabricating and assembling-set up to translate your blueprinted ideas into finished products within a matter of days, not weeks or months. How this is achieved will be detailed in a new data book now being compiled.

You need this information. Get on the mailing list immediately by writing for Bulletin A. Use your company's letterhead and give your title, please.

MILWAUKEE METAL SPINNING COMPANY 3502 West Pierce Street Milwaukec, Wisconsin

Reg. U. S. Patent Office

HUBBARDSPRINGS

Exiension spring with ralsed elon. gated hook end.

Torsion spring with one offset hook end and one straight end

Torsion spring with special hook end.

Torsion spring with both ends special.

Hubbard makes Springs and Spring Parts in all types, forms and shapes, and in all kinds of metals, for manufacturers' products and specific needs. ALSO-SMALL STAMPINGS AND WIRE FORMS

M. D. HUBBARD SPRING CO. 702 Central Ave., Pontiac, Mich.

MOTORIZED WORM GEAR REDUCER
Horizanlal drive mado in 19 sixes in ratios of 6 to $80: 1$ and from $/ /{ }^{2}$ to 50 harsepower.

SAVE ESSENTIAL AND VALUABLE SPACE

War time requirements make the D.O.James Motorized Reducers a very important Must in solying and meeting the power-saving needs of modern industry. Their accessibility and compactness make them most désirable when foor space is limited. Their soundness of design and manufacture insures maximum efiiciency with minimum maintenance.

D.O.JAMES MANUFACTURING CO. Estoblished 1888

1140 W. Monroe Street Chicago, U. S. A

having recently been removed from its use for essentiat purposes- the increased consumption of that metal is no problem. New regulations primarily aimed at more rapid turnover in warchouse produets is tentatively included in a proposed revision of CAP regulation No. 40 . No distributor would be permitted to deliver any ahminum except to fill an authorized controlled material order. After July 1 no warehouse could make delivery of any brass mill or wire mill products except to fill an authorized controlled material order. While the prohibition against ordering or accepting deliverics from warchonse stocks of brass mill prodnets during any one month in excess of 2000 pounds gross weight remains unchanged, the proposed amendments raise
this limitation in the case of wire mill products to 3000 pounds copper content.

Pacific Coast

Seattle-Industrial plants in this area are operating at top speed, more tham 90 per cent on contracts related to the war effort. Ship construction is in full swing while subsidiary plants and machine shops have capacity bookings of ship equipment. Willamette Iron \& Steel Corp., Portland, Oreg., has been awarded an additional $\$ 6,000,000$ eontract for the manufacture of 64 engine sets for Liberty ships. This firm has already delivered 109 engines to yards on this coast.
Pacific Car \& Foundry Co., Seattle, is nearing completion of a contract to

build 170 -ton steel barges, of 250 tons capacity for the Navy. These units required approximately 100 tons of shapes and plates each. Some of them were built at the Renton plant and then hauled to water by house-moving ectuipment.
Structural fabricators are seeking new business as present demand fails to keep their facilities ferlly employed. No major private jolss are pending although much government work is still on the books. Worden-Allen Co., Milwaukee, low at $\$ 25,035$, has the contract to furnish structural steel for the spillways at Alder and LaGrande dams, Tacoma's seeond Niscually power project. About 150 tons of shapes are involved. Supply by special engineers discloses that the cost of this installation will exceed $\$ 17,000,000$. Original estimates were $\$ 1,000,000$.

The first unit of the govermment-owned magnesium plant at Spokane, Wash., went into operation May 25 . It was built by the Electro Metallurgical Co. subsidiary of Union Carbide \& Carbon Co., for the Defense Plant Corp. Full operation is plamned by the end of the year. Iron ore from a newly developed property it Pateras, Wash., is being shipped out a carload daily. Citizens of The Dalles, Oreg., are urging a local site for a proposed aluminuma extrusion plant and plans will be submitted to WPB.
Seattle's city light department plans construction of a substation in the Magnolia district, Hendrikson Constraction Co., Seattle offering the low bid, $\$ 26$, 500 .

United States engincers, Scattle, have awarded more than 30 comtracts recently, including one to Clifton \& Applegate and Henry Georg, Spokime, for construction of railroad tracks. Sound construction \& Engineering Co., Seattle, has a military installation job in Western Washlingtom in excess of $\$ 100,000$. One contract is over $\$ 1,000,000$ and four over $\$ 100,000$ for military projects in this state and Montana, Large housing projects have been placed lately, one at Bremertom. Wash., imwolving 1000 unifs. contract pencling.

Steel in Europe

London - (By Radio) - Armameat needs of Great Britain are being met and heavy bookings have been made for third quarter delivery, especially for shiphuilding materials. Denand for finished irm and steel products is much inproved. Tin plate demand is quiet.

Canada

Toronto, Ont. - A number of adjustments are being made in specifications for steel as a result of change in the Canadian war production program. Specification revisions are chiefly associated with alloy steels and some other lines for entirely new production. While there has been some slowing in new steel buving, there has been a sharp upturn in tomatges involved in individual orders with the result that mill backlogs are gaining in volume. Despite announcements from the head of the Department of Munitions and Supply, that larger quantities of steel may become available to civilian users, nothing definite in this respect has yet developed, and practically all new steel orders are directly associated with the war program.

While there has been some easing in

I.B. GRANES HELP AMERICA "THROW YOUR SGRAP INTO THE FIGHT" IN A HURRY!

The American public has beer daing an outsianding job these lasi few months, turning in scrap for conversion to war material. Helping to handle this hugo flow of scrap iron trom deaters' yards to many of our largest steel mills are Industrial Brownhoist Cranes In a wide variety of other industries from Maine to California, I. B. Cranes are working night and day. handling heavy loads with magnet. hook or bucket; helping to build ships, guns, tanks, airplanes-and railroad equipment.
II you are playing a pari in America's war efforl I. B. Cranes can help you help America. Industrial Brownhoist Corporation. Bay City. Michigan. District Ottices: New York. Philadelphia. Pittsburgh. Cleve.
land. and Chicago.

INDUSTRIAL BROWNHOIST BUILDS BETTER CRANES

Less fatigue, faster inspections, are speeding up the gaging of millions of precision parts in more than 2500 war plants now using the TRICO MICRO-CHEK. Its advantages: 1. Greater speed with no sacrifice of accuracy; 2. Faster reading, less eyestrain and fatigue on operators; 3. Original accuracy continuously retained by resetting with original master parts; 4. Inexperienced workers quickly become accurate inspectors.

Write for illuatroted bevekine nhaoning many applientinus of Mirro- Citarks.
ITRICOPIRODUC.TS CORP. Mosan to 'I'rico Buildiag, Itulfula, N. Y.
plate orders demand is sustained and backlogs extend to the end of the year. Shipbuilding is absorbing most domestic plate production, as well as imported plate. However, deliveries to rolling stock builders continue to expand and efforts are being made to speed production of urgently needed freight cars for Canadian use and engines for India. Marine boilermakers are swinging into maximum production and are seeking larger quantities of plates.

Demand for merchant bars is absorbing all available supply, and while backlogs extend well into fourth quarter mills continue to take on additional business. So far there has been no easing in civilian supply and most deliveries on
this account are if and when surplus stocks are available. Demand for alloy bars is gaining in volume with most new bookings running to new specifications. Producers of alloy bars report output close to capacity.
Dealers report scrap iron and steel receipts steady, with sufficient tonnage appearing to enable scheduled deliveries to consumers. While some dealers are piling scrap for future sorting and have accumulated fair tonnages, others have only small quantities on hand and their yards are being kept fairly clean. Automobile wreckers are taking more care in wrecking operations and are salvaging parts for resale that formerly were consigned to the scrap heap.

HONG-FLAME BURNERS

NO DELAY
NO SHUTDOWNS
SAME HEATING RESULTS

The design and consiruction of Bloom LONG-FLAME Burners permiks use of either gas or oil without delay for change over; ditions.

BLOOM
ENGINEERING COMPANY
857 WEST NORTH AVENUE • PITTSBURGH, PA.

Predicts Postwar Boom In Textile Machinery

The war-time strain on textile mill equipment has been so great that prompt widespread replacement will be one of the first necessary readjustments confronting that industry with the return of peace. Machinery manufacturers will be deluged with the greatest volume of orders they have ever known, according to C. T. Murchison, president, The Cot-ton-Textile Institute. It is highly desirable that each mill operator plan probable machinery needs as far in advance as possible and have orders ready for placement just as soon as they can be given consideration by the machinery builders, he advises.

Textile mill machinery will be badly worn and battered, looms designed for light fabrics over-strained on heavier work. Most equipment will have operated throughout the duration 24 hours a day, six days a week, and much of it will have been operated seven clays a week. Repair and maintenance will have been accomplished with great difficulty because of continuity of operation and the extreme scarcity of repair parts. To establish itself on a thoroughly efficient basis the greater part of the industry will need entirely new equipment, in Mr. Murchison's opinion.
The large textile equipment industry in New England has been partially engaged on war production, largely outside its regular field, due to restrictions on new textile machinery. Only recently were restrictions on repair and maintenance parts lifted slightly. While machining and metalworking departments have been active on war work, other departments have been down and pig iron melt for castings has been well below normal.

DPC Authorizes Plant Expansion, Equipment

Defense Plant Corp. has authorized the following expansions and equipment purchases (figures are approximate):

National Screw \& Mfg. Co., Cleveland, machinery and equipment for a plant in Ohio, chinery and equip
costing $\$ 175,000$.

General Electric Co., Schenectady, N. Y., equipment for a plant in Pennsylvania, costing $\$ 825,000$.
Fulton Iron Works, St. Louis, plant equipment in Missouri, costing $\$ 100,000$.

Goodyear Aircraft Corp., Akron, O., increase in contract to provide additional facilities at plant at Arizona, costing $\$ 450,000$. Overall commitment now $\$ 6,400,000$.

Air Products Inc., Detroit, plant facilities in Michigan, to cost $\$ 225,000$.

Iron Fireman Mfg. Co., Cleveland, additional equipment for plant in Ohio, costing $\$ 100.000$.

Jensen Machinery Co. Inc., Bloomfield, N. J., increase in contract to provide additional equipment for plant in New Jersey, resulting in overall commitment of $\$ 165,000$.

Crown Can Co,, Philadelphia, for additional facilities at plant in Pennsylvania, to cost $\$ 130,000$, making overall commitment $\$ 4,-$ \$00, 000 .

Studebaker Corp., South Bend, Ind., additional facilities at plants in Illinois and Indiana, to cost $\$ 3,600,000$, making overall commitment $\$ 87,000,000$.

Plantation Co. Inc., Vienna, Ga., for plant facilities in Georgia, $\$ 120,000$.
B. F. Goodrich Co., Akron, O., for machinery and erdipment at a plant in Ohio, to cost $\$ 900,000$.

General Motors Corn., Detroit, for facilities
 with LYON TRUCKS

having Hydraulic Elevating Tables

Do this heavy, hazardous work the easy, quick, safe way that saves manpower and prevents damage to dies. LYON Hydraulic operation (no ratchets or gears) gives maximum power, simplest control. Standard models carried in stock for prompt shipment. Special models furnished to your requirements. When inquiring, please specify:
1-Capacity 2-Size of Table 3-Lowered Height 4-Elevated Height WRITE FOR LITERATURE
LYON-Raymond Corporation MATERIAL HANDLING EQUIPMENT

Like the success of accomplished players, who achieve the unusual and thus attract more "box office", CMP precision cold rolled strip steel consistently delivers applaudable cost-saving qualities -exceptionally close tolerances, uniformity of properties in coil after coil, and fulfillment of all exacting specifications. It makes possible the CMP strip record performance for essential war industry. And CMP did not fail when called upon in many cases to extend its service, and replace other "gone-to-war" performers, such as critical light gauge non-ferrous metals; again CMP proved its wide adaptability by meeting the important physical characteristic requirements so that the Victory "production show" could go on.
Wouldn't it be wise to investigate right now how this "know how" specialist in precision light gauge strip steel could help you get "top" box office for your post-war products? CMP offers their cooperation.
 for facilities for a plant in Oregon, to cost $\$ 185,000$, total commitments now $\$ 1,000,000$.

STRUCTURAL SHAPES

SHAPE CONTRACTS PLACED

1000 tons, modification center, Stamiford fiedd, for U. S. Engineer, Lonisville, Ky, to Mississippi Villey Structural Steel Co., Decutur, 111.

350 tons, leanto, airplane repair building, Oklahoma City air depot, Olilahoma City, Okla., to Muskogee Iron Works, Muskagee, Okla.
343 tons, radial gates, La Grande, Wash.. for City of Tacoma, to Worden-Allen Co., Milwankee.

SHAPE CONTRACTS PENDING

1700 tons, testing laboratory, Wright Field, Dayton, O.; bids Jume 24.
100 tons, miscellaneons steel structures, switehvard, Shasta Power nlant, Burean of Reclatmation; Bethehem Sted Co., San Frameisen, low

REINFORCING BARS

REINFORCING STEEL PLACED

390 toms, modification center, airplane phant, Fi. Crook, Neb., to Ceen Steel Products Corp., Omata, and Concrete Products Co., Omaha; Peter Kiewit Sons Co., Omaha, emmtractor.
175 tons, Pemselvania state bridge, Delaware comety, to Taylor-Divis Inc., Philadelphia. 1 GO toms, box culvert, CAA, Robertson, Mo., to Laclede Steel Co., St. Louis.

100 toms, air base, Rapik City, S. D., to Ceco Steel Products Corp., Omaha, Neb.

REINFOHCING STEEL PENDING
100 tons, building, A. E. Staley Mrg. Co., Decatur, III.: J. L. Simmons Co., Indiamapolis, contractor; bids asked.

RAILS, CARS

LOCOMOTIVES PLACED

Bingham \& Garfield, two Mallet-tye locomotives, to Baldwin Locomotive Works, Edely stone, Pa.

CONSTRUCTION

AND ENTERPRISE

OHIO

AKRON, O.-Inchastrial Aireraft Mfy. Co., has been incorporated by Herman M. Greene, George Schinolt and Harry F. Clarke io manufacture tools and eduipment for the aircraft industry. Paul H. Dilworth, 20 Hulhert avenne, is statutory agent.
Alllance, O.-Alliance Radio Corp., re cently incorporated, is preparing to mantifacture radios, gemerators and electronic deviecs and will eprom 6010 to 700 persons when production reaches its peak, in about eight months.
BEREA, O.--Finkbeiner. Pctlis \& Stront, 725 Nicholas building, Toledo, O., are consulting engineers on municipal water purification plant remars and alterations, involving monderpiming, lanks and additional inside piping to cost aloout $\$ 10,000$, on which bids will be opened June 14. L. D. Repperd, Portage, O., lats plans.
CLEVELAND-Champion Machine of Forging Co., H. W. Foster, president, 3695 East beventerei hth street will erect a di: storage and service buikling at Actna road and Fiast Seventevignth street, ten stories, $80 \times$ 200 feet.
CLEVELAND-Dust Control Co., Charles Weger, 1823 Alvin avenne, agent and incorporator, has been organized to manufacture dust control equipment and is negotiating for a suitable plant.
CLEVELAND-Newhurgh Machine Engineering Co. has been incorporated by Lawrence A. Suhnalolnik, 3733 Sulbury road, and associates, to operate a machince shop.

CLEVELAND-American Magnesium Corp., Leslie W. Rogers, secretary-treasurer, and If. Numberger, glant engineer, 1099 Ivanhoe road. will buikd new one-story boiler plant 45×100 feet. Firm is subsidiary of the Aluminum Co. of America, Gulf building. Pitishurgh.
CLEvELAND-Monda Kelly Machine Products Co. has been incorporated by W. M. Van Aken, 1715 Euclid avente, to engage in tmsiness of machining: bearings at First and Hayden avenues, East Cleveland. S. M. Mondia is president, C. E. Kelly, vice president.
CLEVELAND-Cleveland Bock Drill Co. Inc. has been incorporated as a subsicliary of the Cleveland Pneumatic Tool Co. by Puter Reed, Charles Follett and Sheldon S. Reynolds. McKechan, Merrick, Arter d Stewart, Tominal Tower, are legal representatives.
CLEVELAND-Linderme Tube Co, Fmil M. Linderme, vice president and treasurer, will buikd a one-story degreasing buikling 42 x 60 feet, at 1300 East 21911 street, Euclid, to cost alonut $\$ 5000$.

EldiRIA, O.,-Henty Furnace Co. is being incorporated as suhsidiary of C. A. Olsen MEq. Co. and includes in its assets the real estate and exuipment of the Henry Furnace \& Foundry Co., Cleveland, which has been

2. Trasse AJBCRAETM STRELSS
 bars

SAE 4130X COLD FINISHED Spec. AN-QQ-S-684 SAE 4340X C.F. AND H.R.) Spec. AN-QQ-S.756 \times NEW! 12 Chrome Stainless c.f. Spec. AN-QQ-S-763
SAE 4140 HOT ROLLED Spec. AN-QQ-S-752 NE 8740 C.F. A.ND H.R. Spec. AN-S. 16
NE 8630 COLD FINISHED Spec. AN-S-14 18-8 STAINLESS COLD FINSHED Spec. AN-QQ-S. 771 Spec. AN-QQ-S-763

SHEETS

18-8 STAINLESS COLD HOLLED Spec. AN-QQ-S-772

Peter A.

TUBING

Seamless Cold Drawn SAE 4130X Spac. AN-WW-T-850 Welded Cold Drawn SAE 4130X Spec. AN-T-3

BITHTTS

SAE 4130X HF. Spec. AN-QQ-S-684

Prasse

and Co., Inc.

Mechanical and Aircraft STgels
New York - Philadelphia - Buffelo - Jersey cily - Hariord - Rochester - Syracuse

HOT-DIP GALVAMIZIMG PRACTICE

An up-to-date treatise on zinc coatings of steel that will appeal to those who dally are engaged in surfacing metals with zinc. 200 Pages- 45 Illustrations- \rightarrow Tables -7 Charts. Price $\$ 4.00$ Postpaid.

THE PENTON PUELISHING COMPANY Book Department Cleveland, oblo 550-S

Industrial

DIAMOND TOOLS

The STA-KOOL Single Point Tool is equipped withinter nal coolant ducts and external cooling fins to quickly dissipate the heat, thus prolonging tool life :

SMITITE Djamond Dressing tools employ a sinfered mefor setting, which firmity folds the stones, til they are

SPRING COTTERS

 RIVETED KEYS SCREW EYES, HOOKS and WIRE SHAPESHINDLEY MFG. CO.
Valley Falls. R. 1

THE SIMONDS GEAR \& MFG. CO.

25TH STREET, PITTSBURGH, PA.
70 all gear user.
1942 martes our soth year in the gear Gusinus; this means that our gualisy gears are now brected by haff a curtury of experience in the manulacture of all types of dependable geass... spurs tevel, mitre, worm rache intermaletc. If we hevent just the type you need. we can make it and in a hurry.too!

Positive Protection

In A PS, a thick (20lbs. per square) protective coating is BONDED DIRECTLY TO THE STEEL at high temperature. Into this coating is impregnated a special mica finish, which adds further protection and improves appearance.
This protected metal withstands all extremes of weather, as well as acid fumes, corrosive dusts and salt air.

Economy

Its low first cost is practically the only cost, because A P S requires no painting when erected or thereafter, and gives years of main-fenance-free, satisfactory service!

> A P Scan be obtained in stock sizes from leading disiributors throughout the country.

Write for new descriptive folder or Engineers' Handbook

No. 2
Ad No. 6

PROTEBTHD SHMP PRODUUTS 60.

General office and Plants whsthnctosk Pa.
bought by C. A. Olsen, president of the firm. Cleveland assets, consisting of an office and warchouse, are held by Leonard G. Roof, Cleveland, and associates.
WARREN, O.-lackard Electric division of General Motors Corp., B. N. MeGregor, plant manager, 3-523 Dana street, is spending $\$ 65,000$ on plant additions, including a loading and storage dock and a two-story building 84×101 feet, construction to start at once.
WARHEN, O.-Hrainard Steel Co., Larchmont avenue NE , is spending about $\$ 100,000$ for equipment and remodeling the former creamery plant at East Onvell for a steel fabricating plant. Tubing for the Army will be manufactured, with 24 to 30 workers employed.

CONNECTICUT

BRIDGEPORT, CONN.-Sikorsky division of United Aircraft Corp. has bought a plant here from Crane Co. and will use it for manufacture of helicopters. An adjoining tract has been acquired for an airfield.

NEW YORK

BAYSIDE, N. Y.-Sylvania Electric Products Inc., 500 Fifth aveme, New York, plans postwar erection of a researel, development and administration center comprising nine buildings, at cost of albout $\$ 2,000,000$. Austin Co., 19 Rector street, New lork, is engincer.

MICHIGAN

DETROIT-Willey's Carlude Tool Co. is tak ing bids through Charles N. Agree, 1140 Book Tower, for an addition to its plant at 1340 West Vernor highway.
DETROIT-Bryant \& Detwiler Co., 2304 Penobscot building, has been awarded general contract for aircraft engine test building, extension 3, for Ford Motor Co., to be located at the Rouse plant, Dearborn, Mich.

MISSISSIPPI

JACKSON, MISS.-United States engineer, Mobile, Ala., has let contract to Capitol Building Co., Jackson, at $\$ 90,000$, for additional facilities for second air force, additional facilities for anti-submarine command, flight surgeon's building and motor repair shop in Harrison county, Mississippi. Invilation No 569-43-729

SOUTH CAROLINA

HOLLY HLL, S. C.-Volunteer Portand Cement Co., Knoxville, Tenn., and American Naphthaline Co., J. Ross Hamahan, president, New York, are forming a joint operatins company to develop and operate a $\$ 2$, 650,000 alumina plant near Holly Hill. RFC has authorized funds for coustruction. Plants will be built about $21 / 2$ miles from Harleyville. Capacity will he ahout 40 tons of alumina daily.

WISCONSIN

BUTLLER, WIS.-A. O. Smith Corp., Milwaukee, will let contracts for a propeller blade factory, including main building 340×440 feet, boilerhouse 50×120 feet and garage 60×120 feet. E. W. Burgess, company engineer, is drawing plans.

minnesota

minneapolis-Pal Tool Co., J. E. Ander son, proprietor, manufacturer of dies and metal stampings, is adding a second story addition to its plant.
MINNEAPOLIS-Majestic Drill Sharpener Co., 1224 Harmon place, has been incorporated to manufacture drill sharpening machinery by James R. McKenzie, F. F. McKenzie and Arthur J. Severtson.

MinNEAPOLIS-Strong-Scott Mfg. Co., manufacturer of flour mill and grain elevator machinery, has given contract to C. F. Hag-
in \& Sons Ince, 720 National buidding, for one-story plant addition 30×80 fect. Larson \& McLaren, Foshay Tower, are architects.
MINNEAPOLIS-General Mills Inc. hats hought large two-story butding aljoining its naval ordnance plant on Central avenue Northeast o) provide additional facilities. The ordmance plant is operated as the mechanical manufacturing division.
IINNEAPOLIS-Franklin Transfonner MEg. Co., 607 Twenty-second avenue Northeast has bought buikling at 65 Twenty-second avenue, to be converted into a factory, giving firm three plants and doubling capacity Company manufactures battery charging and testing equipment, industrial transformers, welding, equipment, electric motors, electronic devices and radio equipment.
REI) WING, MINN.-Northern States lower

FULLERGRIPT BRUSHES For your machine needs.

 Made with metal backing; spiraled or formed to specifications.

FULLERGRIPT BRUSHES for your Pickling, Galvanizing and Tinning Departments. Furnished in straight strips to be applied to your present wood blocks for the removal of middlings.

Also furnished in a continuous, complete (close or open) spiral formation for cylindrical scrubbers in steel or brass mills.
FULLERGRIPT BRUSHES have greater holding and non-shedding qualities, resulting in longer life and more dependable operation. Less frequent replacements will save you time and money. Send blueprints or specifications of your requirements.

The FULLER BRUSH Company Industrial Division; Dept. 8C
 3582 maln st.
 HARTFORD, CONN.

REEVES STEEL \& MANUFACTURING CO.

Dover, Ohio

SHEET STEEL AND SHEET STEEL PRODUCTS FOR WAR NEEDS

"To economize galvanize at Enterprise ${ }^{\prime \prime}$, ENTERPRISE GALVANIZING COMPANY 2525 E. CUMBERLAND STREET,

Have It Galvanized by-
Joseph P. Cattie \& Bros., Inc. Gaul \& Letterly Sts., Philadelphia, Pa.
Philadelphia's Oldest, The Country's Largest Hot Dip Job Galvanizer
Galvanized Products Furnished

The "Used and Rebuilt Equipment" section is the weekly meeting place for buyers and sellers of good used or surplus machinery and supplies. Displayed classified rates are moderate. Send your instructions today to STEEL, Penton Building, Cleveland.

Co., 2 South Barstow street, Ean Claire, Wis., is having plans prepared for a postwar electric power plant, to cost about $\$ 1,500,000$. STILLWVATER, MINN.-Standard Salt \& Cement Co. and Gibhert Mfg. Co. will remodel old Gilsert plant into war production plant for forgings production. C. E. Gilbert will be plant manager. Ralway spur will be minit into plant.
T. PAUL-St. Paul Welding \& Mfg. Co., manufacturer of welding torches and other welding equipment, hats let contract to Latuer Construction Co., 230 Western avenue South, for a one-story lactory addition.

TEXAS

CONROE, TEX.-Columbian Carhen Co., Houston and losslyn roads, Houston, Tex., plams a carbon hack plant for synthetic rubber program. Total estimated cost $\$ 3$, 000.000 ; present appropriation $\$ 1.225,000$. M. R. Howell, kemeral delivery, Comroe, is engineer.

UTAH

MAHISVILLE, UTAH-An RFC loan of S775,000 to Aluminum luc, George A. Critchlow, manager, has been made for construction of a plant at Maryssille, to produce alomina. Of the loim $\$ 4.50,000$ is for buildings :ud equipment.

CALIFORNIA

ALHAMBRA, CALIF.-Dingee Aircraft 12oduction has been formed by William w. Dingee Jr. and will estahlish a phant at 3060 West Main street.

BURBANK, CALIF.-Adel Precision Products Corp., 10777 Vanowen street, North Ifollywood, will build plant No. 2 near the present plane and will make additions and alterations to buidings recently purchased for plant No. 3 in Burbank, total cost to be $\$ 500,000$, including equipment.

EUREKA, CALIF,--Eureka Shipbuilders lne. has been organized with $\$ 500,000$ capital by L. Mone Call, 1506 Sixth street, and associates. Representatise is Walter Sorensen, 501 Helm building, Fresno, Calif.
hUNTINGTON PARK, CALIF.-bacific Pump

Works, 5720 Bickett street, has let contract for a plant addition 70×172 feet, to cost bout $\$ 30,000$

HUNTINGTON PARK, CALIF,-Baker Oil Tool Co., 6000 South Boyle avenuc, will build a plant addition at 2959 Slaton avemic, 58×60 feet, to cost about $\$ 3000$.
long beacir, Calif.-Creseent Tool Co. 3369 Cherry avenue, has been formed hy Panl Joln Powers, Edwin Brans and Clarence H. Mangels.

LOS ANGELES-Jumior Stecl Co., 1960 South Alameda street, will build a warehouse addition 40×60 feet, to cost about $\$ 3400$.
LOS ANGELES-California Sted Treating Co. will buikd a factory building at 28.40 East Washington boulevard, 45×75 feet, costing $\$ 1500$.

OS ANGELES-American Serew Poolucts Co. is building a mathine shop at 7000 Avalon bouleward, 26×40 feet, to cost about $\$ 1000$
LOS ANGELES-Western Nipple Mfg. Co. is the firm name under which Republic Supply Co., W. L. Dublig, president and F. E Wilkinson, secretary, has published intention to comaluct business at 5816 South Boyle avenue.
LOS ANGELES-General Metals Co., 5701 South Boyle avenue, has let contract for an addition to cost about $\$ 25,000$ for steel frame and corrugated stecl plant.
LOS ANGELES-Newport Aero Marine Inc. has been organized with $\$ 100,000$ capital by Hallam Mathews, 846 Maltman avenue, and associates. Kepresentative is Gillurt Fall, 1212 Spring, Arate building, Los Angeles.
NOHTH HOLLYWOOD, CALIF.-Coast Bushing Co. has been formed by H. L. Bryan to conduct business at 4806 Lamrel Camyon boulevard.
VERNON, CALIF.-David C. Jones Sted products has been formed by David C Jones to conduct business at 4636 lacific boulevard.

WILMINGTON, CALIF.-Texas Co. will start work at once to adapt its refinery on East lacific Coast Highway in Los Angeles harbor to 100-octane gasoline at cost of about

THE HANNA FURNACE CORPORATION
MERCHANT PIG IRON DIVISION OF NATIONAL STEEL CORPORATION
$\$ 50,000,000$. including about 40 buildings Foster-Wheeler Corp., 715 West Olympic boulevard, Los Angeles, has been awarded contract for the alkylation system and feed preparation.

WASHINGTON

SEATTLE-Johnson Mfg. Co., Fox and Holly streets, engaged on government contracts for marine machinery, recently suffered severe losis by fire in its plant.

SEATTLE-Smithway Machine Co. is building a plant addition at $+616-24$ Seventh avenue South, 55×100 feet, general contract lecing awarded to H. E. Carlhorn. Willimm G. Brust is architect.
EATTLE-Plant of Heffeman Engine Works, used in recent years as repair shops by the Alaska Steamship Co., has been bought by Trodd Seattle Diy Docks Inc. and will bee used for outfiting and repair. Plant is at 1700 Harbor avenue SW , and contains, dock, erane and show facilites.

CANADA

SHELBURNE, N. S.-Camadian Fairlanks Morse Co. Lid., 980 St. Antoine street, Montreal, Que., manufacturer of scales, valves and equipment, will start soon on construction of plant addition here to cost about $\$ 75,000$, with equipment.

CHIPPAWA, ONT- - Norton Co. has had plans prepared for furnace room addition to cost about $\$ 12.000$, with erpuipment. H. J. Dily is plant manger.
HAMLLTON, ONT.-Dominion Fonndries \& Steel Ltd., Depew street, is having plans prepared by C. D. Howe Co. Ltd., Pigott building, for new plant buikling. two stories, 50×70 feet, to cost about $\$ 65,000$.

ST. CATHARINES, ONT.-McKinnon Inclustries Lid., Ontario street, manufacturer of automobile parts and similar products, has had plans prepared for additions and alterations to plant on which contracts will he awarded soon.

ST. THOMAS, ONT.-Webster Air Equipment Co. Ltd., 1161 King street West, London, Ont., W. C. Webster, president, plans additions and alterations to building formerly oceupied by Erie Iron Works, Moore street, and will remove plant from London to that location.

TORONTO, ONT.-Camdian General Electric Co. Ltal., 212 King street West, is having plans prepared by Beck \& Eadie. architects, 220 Bloor street West, and hids will be asked soon for plant audition at 189 Dufferin street, to cost about $\$ 250,000$, with equipment.
WINDSOR, ONT.-Chrysler Corp. of Camada Ldd., 300 Tecumseh boulevard East, will let contracts soon for plant addition to cost about $\$ 50,000$.
LACHINE, QUE. - Dominion Engineering Works Ltd.. First avenue, has let general contract to Hyde \& Miller Ltd., 1500 Guy street, Montreal, for an addition to its coppersmith shop and storage huilding near the marine erection shop, to cost about $\$ 40,000$, and addition and alterations to transformer house, costing about $\$ 25,000$.
MONTREAL, QUE.-Montreal Tramways Co., 159 Craig street West, A. Duperron, chief engineer, plans construction of hus garage and shops on Atwater avenue, to cost about $\$ 250,000$, with equipment.

MONTREAL, QUE.-Camadian Car \& Foundry Co. Ltd., 621 Craig street West, will let contracts for further additions to plant of the Turcot Propeller division. to cost alout $\$ 25,-$ 000. Foundation Co. of Camada Ltd., 1538 Sherbrooke street West, is erecting an addition costing about $\$ 75,000$.
Valleyfielid, que. - Canadian Bronze Powder Works L.tel., 9 East Park, P. Schopflocher, chief engineer, is having plans prepared and will start reconstruction of burned plant buildiugs, to cost with equipment about $\$ 60,000$.

EMPLOYEES' BADGES NUMBERED BUTTONS FIBRE TIME AND TOOL CHECKS CELLULOIDCASES
 ```AIR MAIL-TELEPHONE-TELEGRAPH YOUR ORDERS!```
 Three Long Distance lines, CEntral 4916-4917-4918. After six p.m. PRospect 6778. HUdson 5211. CEntral 0379. EOUIPMENT. EFFICIENT SUPERVISION. 50 Years' experience in back of us! We are ready to serve 24 hours a day. Send for Catalog.

ST. LOUIS BUTTON COMPANY
No Orders Filled Without Priority Extension,
Government Contract Number and final use.

- ELMONT $\frac{R \quad O \quad N}{\text { PHILADELPHIA }} \quad 1 / \frac{O R K S}{\text { EDDYSTONE }}$ Engincers - Contractors - Exporters STRUCTURAL STEEL-BUILDINGS \& BRIDGES Riveted-Airc Welded
Helmont Interlocking Cilannel Flooh
Main Officemphilu... Prite for Catalogue

SMALL ELECTRIC STEEL CASTINGS
(Capacity 500 Tom Por Month)

CASTING CO. ohio. U.s. A. Hoteer Steel
Casings Castings

Pickling of Iron and Steel

-By Wallace G. Imhoff
Price Postpaid $\$ 5.00$

This book covers many phases of pickling room practice and construction and maintenance of pickling equipment.

THE PENTON PUBLISHING CO. Book Department 1213 W. 3rd St.

Cleveland, 0. 429-S

Immediate Shipments of BARS-PLATES
SHAPES-SHEETS From Stock

OUICK SHIPMENTS CF F AME CUT PLATES IN IRREGULAR SHAPES, CIRCLES, DISCS. ETC.

CALCOS STEEL \& IRON COMPANY

1332 North 30th Street - Philadelphia, Pa.
From Stock
BARS - STRIP - SHEETS - PLATES
 TOOL SIEELS - STAMLEES STEELS - STWIERED CARBIDES FOR GOMPLETE SHOP TOOLING - WeRcesport, Pa.

QUALITY STEELS

TOOL STEELS-TOOL STEEL TUBING-DRILL ROD fine spring steels-band saw steels Steel specialties
SANDVIK STEEL, INC. \qquad
NEW YORK - CLEVELAND - CHICAGO - LOS ANGELES

1903-1943
FOHTY YEARS OF BETTEIK STAMPINGS

Catalog on Request

WHITEHEAD
STAMPING.CO.

USED and REBUILT EQUIPMENT

SPECIAL ATTENTION!

STEEL MILLS,
blast furnaces and foundries!
alloy ("CRItical") SCRAP
TURNINGS: $\$ 9.00$ G.T. Houston plus payable OPA Nickel or Moly. Premiums.

10 C/L SAE 3100; WPB No. 6
$\begin{array}{cccc}\overline{3} \mathrm{C} / \mathrm{L} & \mathrm{SAE} & 4800_{i} & \text { WPB No. }{ }^{6} \\ 10 \mathrm{C} / \mathrm{L} & \text { Moly.-Cr.; } & \text { WPB No. } 7\end{array}$
$15 \mathrm{C} / \mathrm{L}$ Ni,-Mo.-Cr.; WPB No. 6
TURNINGS: 512.91 G.T. Tracks, Chicago. plus payable OPA Nickel Premium.
$9 \mathrm{C} / \mathrm{L}$ 1.00-3.75\% Nickel; WPB No. 6

FLASIIINGS \& CROPS: $\$ 16.50$ G.T. Houston plus payable OPA Nickel or Moly. Premiums.

> 8 C/L SAE 3100; WPB No. 6
> 3 C/L SAE 4800; WPB No. 6
> 9 C/L Mo.-Cr. WPB No. 7

IRON \& STEEL PRODUCTS, INC.
13462 S. Bralnard Ave., Chicago, llifnols
"ANYTHING containing IRON or STEEL.

WANTED

CARBON STEEL BARS, PLATES, SHAPES, ETC.

We are an Eastern Pennsylvania warehouse interested in purchasing idle and excess stocks of the above items on a mill price basis and fur nishing proper priority.

Address Box 930

STEEL, Penton Bldg., Cleveland.

HAMMER: Steam Forglns 1100 lb . N-13-1'.	
STRAIGITENER, Wire Shuster cap. $5 / 8^{\prime \prime}{ }^{\circ}$ \%	
RRET LATHE, 3-A W\&S. H.S. $311 / 16^{\circ}$. S.P.D.	
TUMRET LATHE, 34" Gishoit, II.S. 4-1/4" "M.D TURRET LATHE, 26° Libby, II.S. 7-1/2". S.P.J.	
SELLERS-BUYERS-TRADERS	
More for Your Dollar!	IRON \& STEEL 38
	PRODUCTS Years'
	C. Experience
	462 S. Bralnard Aye
"Anything contalning IRON or STEEL"	

FOR SALE

1-TWO TON LECTROMELT FURNACE NOW BEING REBUILT BY MANUFACTURER. $800 \mathrm{KW}-3$ PHASE TRANSFORMER. ALL COMPLETELY OVERHAULED.

Available within 30 days.

SCHNITZER STEEL PRODUCTS Portland, Oregon

FOR SALE-SHERADIZED

SEAMLESS TUBING

Approximately a Carload
SIZES FROM $11 / 4$ TO $31 / 2$ INCHES Write for prices and quantity desired. Address Box 931, STEEL, Penton Bldg., Cleveland

IMmediately available

1564 ft . 150 lb . Sullivan $22 \times 12 \times 14$ WN31 Compressor, driven by Synchronous Motor, $3 / 60 / 2300$ Volt. Complete and guaranteed. 5' x 18' Air Receiver and pipe and fittings also available.

MISSISSIPPI VALLEY EQUIPMENT CO
503 Locust Street
St. Louis, Mo

FOR SALE

STEEL BUILDINGS AND TANKS
PIPE AND BOILER TUBES
JOS. GREENSPON'S SON PIPE CORP. National Stock Y'ds., Illinois

-REBUILT-
 BLOWERS - FANS - EXHAUSTERS

Connersville-Roota pasitive blowera.
Centrifugala for gas and oll buroing. Gand blast, brinder snd dust exhausters

GENERAL BLOWER CO.
404 North Pearla St.
Chicago, III

RAILS
AND ACCESSORIES
RELAYING FAILS - Super-quality machine-reconditioned-noi ordinary Relayers.
NEW RAILS, Angle and Splice Bars, Bolts, Nuts,
Frogs, Switches, Tio Plates, and all other Track Accessories.
Althotigh our tonnages are not ag large nt here-
tofore, most sizes are unually avaliable from waretofore. most sizes are usually avalilable from warehouse stocks. made ta take care of emergenc requirements. Phone, Write or Wire...
L. B. FOSTER COMPANY, Inc
PITTSBURGH NEW YORK CHICAGO

RELAYING RAIL

Practically all weights-Any quantity, Immedinte shipment, strictly first quality reconditioned Relaying Rail and Accessories. Write, Wire, or Phone
MIDWEST STEEL CORPORATION Charleston, W. Va.

RAILWAY EQUIPMENT AND ACCESSORIES

We can fumish rails, spikes, bolts, angle bars, locomotives, cranes and other railway material.

Write, wire or phone for prices.
SONKEN-GALAMBA CORP.
108 N. 2d St.
Kansas City, Kansas

> RA/L-ACCESSSORIES RA/LWAY EQU/PMENT BOUGHT WRITE-WIRE-PHONE DULIEN STEEL PRODUCTS, INC. $\begin{aligned} & \text { 414 First Ave., So. } \\ & \text { Seattle, Wash. }\end{aligned} \quad$ New Woolworth BIdg.

Grinder, Roll 30"x76 Farrel, M.D.

Keyseaters, No. 2 M . SI . N No. 2 Baker
Shaper, 30° Morton Draw Cut.

Shent, Rotary $3 / 4^{\prime \prime}$ Newbold, 50°
Shears. Alligator.
10

Slotter, A" Putnam, 33° table, B.D
Straghitener, $48^{\circ}-17$ rolls-4 dia.
Stralghtener. $54^{\prime \prime}-17$ rolls $4-1 / 4^{*}$ din Stralghtener. No. 2 Sutton, $3-1 / 2^{*}$. Mi. D. Testing Machine. $400,000 \mathrm{IJ}$. Rlehle, B.D. WEST PENN MACHINERY COMPANY 1208 House Eldg.

WHEN THERE IS SOMETHING

you want to buy or sell, use the classified pages to tell other readers. Rates are moderate. Write STEEL, Penton Bldg., Cleveland.

CLASSIFIED

Positions Wanted

MECHANICAL - STRUCTURAL ENGINEER. College education and shop training. Industrial experience in design, field work and sales. Materials handling equipment and heavy machinery. At present employed and with excellent record of constant employment. Have had charge of engineering, supervision of erection and sales office. Can fumish good references from employers and clients. Wishes to make connection with manufacturing company or engineering firm where his experience and versatility acquired through experience here and abroad could be used to better advantage. Could also be of help for expansion of business in foreign markets. Speaks Spanish. Prefer connection with company where capability and reliability for work speak louder than talk. Address Box 942, STEEL, Penton Bldg., Cleveland.

Positions Wanted

MAN 48; MARRIED; GOOD HEALTH; DRAFT classification 4-H. Successful experience selling stainless and tool steels, alloy seamless tubing, machinery and special steel commodities. Worked in Detroit, St. Lovis and Texas territories. Had three employers. Since 1937 lacated in Texas with large mill organization, specializing in stainless and tool steel alloys; at present in sales executive capacity. Familiar with refinery, process industries South and Southwest; also jobber conditions. Offer highest type references. Present employer advised. Reply Box 939, STEEL, Penton Bldx., Cleveland.

STRCCTURAL AND PLATE SHOP SUPERIN-

 tendent. Thoroughly experienced. Exceptionally successful in handling men. Available on reasonable notice. Can increase production. Address Box 937, STEEL, Penton Bldg., Cleveland
Positions Wanted

ENGINEERING GRADUATE WITH YEARS OF experience in heavy and light machine work forging, and welding, wants connection wher more use of his ingenuity and experience can be utilized. Knows management and handling men No small job considered. Reply Box 941 , STEEL Penton BIdg., Cleveland.

Representatives Wanted

MANUFACTURERS AGENT WANTED TO represent us in Washington, D. C. Object sale of fabricated steel platework. Apply direct to Tippett \& Wood, Phillinsburg, N. J.

Help Wanted

MECIIANICAL DRAFTSMAN WITH PRACtical mechanical experience in blanking, drawing and forming dies for sheet aluminum products in defense plant in Midwest; givo experience and full particulars. heply Box 933 , STEEL, Penton Bldg., Cleveland.
TOOL MAKEHS FOR DEFENSE PLANT IN Midvest; give experience and full particulars. Reply Box 932, STEEL, Penton Bldg., Cleveland.

Employment Service

SALARIED POSITIONS-This advertising service of 33 years recognized standing negotiates for high salaried supervisory, technical and executive positions. Procedure will be individualized to your personal requirements and will not confict with Manpower Commission. Retaining fee protected by refund provision. Send for details. R. W. BIXBY, Inc., 110 Delward Bldg., Bulfalo,

Help Wanted

WANTED

Tool Engineer for shect steel and sheet aluminum fabrication for aircraft detailed parts and sub-assemblies. Those employed parts and sub-assemblies. Those employed detailed information abeut experience, salaries, former employers, age, family status, aries, former employers, age, fanily status,
citizenship to Box 940 , STERL, Penton citizenship to Bo
Bldg., Cleveland.

WANTED: MAN WITII GENERAL OFFICE or ficld sales experience by large reputable manufacturer of seamless and electric welded tubing, alloy and carhon steels. Please apply giving full information, experience, etc., to Box 894, STEEL, Penton Blds., Cleveland.

Help Wanted

HEAT TREATING FURNACE DESIGNER

Permanent position with long established and progressive Einstern manufacturer of heat treating fumbecs. Applicant must have at least ten years of desiguing experience on medjum-sized furnaces, be thorouphly familiar with standard furnace construction and catpable of adyanced designing for fufure operntions.
Substantial salary to start with unlimited bossibilities, for an interview at our expense, kindly furnish detailed experience and ruanifeations in writing. Meply Box 938, STEEL, Penton Bldg., Cleweland.

CONTRACT WORK

WANTED-NEW PRODUCTS, OLD PRODUCTS

PREPARE NOW FOR FOST WAR BUSINESS

A 32-year old corporation, now producing 100% War Production employing 4000 persons, desires to contact estahlished firms or reputable individuals having products for post-war manufacturing or promotion.
We offer the facilities of a large well equipped plant, efficient Management, trained En vineering and Production supervision, capaule of designing and developing Tools, Dies metal. W/o niso equipment consisting of facilities of a complete textile fabricating division having all new equipment consisting of 300 sewing machines, cloth laying machines, cutting and perforating We would be capable of fabricating any article made from wool, cotton, silk or Nylon.
We would be interested in the development of new enterprises, possible outright purchase or manufacturime on constract; we can assure the fullest cooperation in producing any meritorious product old or new.

All communications will be considered in strictest confidence.
Address replies attention of: Box 936, STEEL, Penton Bldg., Cleveland.

KIRK \& BLum Weldeo machine bases. PEDESTALS and FRAMES Lathe pais
 GEAR and BELT GUARDS Pressed Steel Louver Panels and Cover Plates
 THE KIRK \& BLUM MFG, CO.
 2822 Spring Giove Ave., Cincinnoli, ohio

SAY IT HERE

If you have facilities to handle additional work. An advertisement in this section will tell others of your capacity, etc. Write STEEL, Penton Bldg., Cleveland.

PLANER CAPACITY OPEN

We have several hundred hours of planing time available. Largest tool three head $48^{\prime \prime} \times 53^{\prime \prime} \times 144^{\prime \prime}$. Experienced operators and excellent engineering and supervisory personnel. Please send us your inquiries.
C. C. BRADLEY COMPANY

432 Franklin St., Syracuse 4, New York

SHEET STEEL FABRIGATORS

Welded or Riveted Construction. Can handle No. 10 gauge and lighter. Send us your inquiries for estimates. the haines company
1931 W. Lake St.
Chicsgo, Ifl.

Send your Inquities for
SPECIALENGINEERINGWORK to the
A. H. NILSON MACHINE COMPANY BRIDGEPORT, CONN.
designers and builders of wire and ribbon stack forming machines.
We also solicit your bids for cam milling

WANTITD

SUB - CONTRACTIMG WORK in

WELDED and RIVETED ASSEMBLIES

We offer you an unusual combination of engineering, designing and fabricating skill, ability. experience and facilities for Welded and Riveted Assemblies of all types and sizes.

Your inquiries are invited on weldments for all types of products. We can assure high quality, accurate work, and prompt delivery.
Send blueprints for estimate, or write telling us your problems.

WORDEN-ALLEN GOWPAIT Home Office and Factory - P. O. Box 2057 MILWAUKEE 1, WISCONSIN Soles Offiess at Duluth, Minn., Chisago, I!l, Appleton, Wis.
 "Over 40 Years Dependable Service in Structural Stee

Castings

KING FOUNDRIES, INC., NORTH WALES, Pa. Grey Iron and Semi Steel Castings. also dlloyed with Nickel. Chrome, and Molybdenum. Wood. Iron. Brass. and Aluminum Pattern work.

Industry's Choice

Even before war production begins to decline, industry is becoming conscious of its immensely broader choice of materials.

There will surely be a postwar competition of materials, greater than we have ever known.

In this competition of materials-welded, rolled, stamped and forged steels, powder metallurgy and plastics-Steel Castings have achieved a position of strategic importance.

Cast Steel is not a universal material, or a universal method. But wherever the strength and toughness and rigidity of steel are needed, the casting process offers advantages that cannot be secured in any other way.

A wide range of steels is being cast into shapes other methods cannot produce so quickly or so economically, and there are significant savings in machining, finishing and assembly.

In your postwar manufacturing, you can secure for yourself important competitive advantages by using the features-many of them exclusive - that are inherent in Cast Steel.

The Steel Founders' Society of America, Cleveland, Ohio

Abrasive Co,
Abrasive Products, Inc.
Accurate Spring Mifg. Co
Ace Manutacluring Corp.
Acheson Colloids Corp.
Aetna-Standard Engineering $\mathrm{Ca} ., \mathrm{The}$
Ahlberg Bearing Co. Air Reduction
Ajax Electrothermic Corp.
Alax Flexible Coupling Co.
Aldrich Pump Co., The
Aldrich Pump Co., The Corp
Allen-Bradley Co.
Alliance Machine Co.
Alloy Metal Abrasive.
Alloy Metal Abrasive Co
Alrose Chemical Co
Amminum Company of America
American Agile Corp.
American Air Filier Co.. In
Americon Brake Shoe C
American Brass Co.
American Bridge Co
American Broach \& Marhine Co
American Cable Division of American Chain
American Chain \& Cable Co., Inc., American Cable Division
Ameriean Chain \& Cable Co., Inc. Ameri can Choin Division
American Chain ${ }^{\text {s Cable Ca., Inc, }}$ Cage American Chire \& Manufacturing Division
American Chain Division of American Chain a Cable Ca., Inc.
American Chemical Paint Co. 163
American Foundry Equipment Co.
American Gas Association
American Hot Dip Galvanizers Association
American Metal Hose Branch of the Ameri. can Brass Co.
American MonoRail Co.
American Nickeloid Co. 175
American Pipe Bending Machine Co., Inc.
American Pulverizer Co.
American Roller Bearing Co.
American Rolling Mill Co., The
American Rolling Mi
American Screw Co
American Shear Koife Co.
American Shear Knife Co.
American Zinc Sales Co.
Ampco Metal, Ine.
Amsler-Morion Ca., The
Anaconda Wire \& Cable Co.
Andrews Steel Co., The
Anker-Holih Mfg. Co.
Apex Machine \& Tool Co., The
Arkansas Fuel Oil Co.
Armstrang-Blum Mfg. Co
Armstrang-Blum Mrg.
Atlas E . C.
A Co
A
Allas Car \& Mfg. Co
Atlas Lumnite Cement Co

B
Babcock \& Wilcox Co., Refractories Div
Babcock \& Wilcox Tube Co
aley, Wm. Mi, Co
Baker Brothers, In
Baker, J. E., Co.
Baker, Jaulang Co.
Baldwin-Southwark Division. The Baldwin
antam Bearings Corp
Barium Stainless Steel Corp
Barnes, Wallace, Co., Division of Associated Spring Corporation
Barnes, W. F. and John, Co
Basic Refractories, Inc.
Bayard, M. L., \& Co.
Bay Cily Forge Ca.
Bay State Abrasive Products Co.
Beall Tool Co
Beatly Machine \& Mig. Co
Belment Iron Works Berger Manufacturing Div.... Republic Siel 1751 Corp.
Bethlehem Steel Co
Birdsboro Steel Foundry \& Machine Co
Bixselt R R W Co.. The
Bixby, R. W., Ine.
Blanchard Machine Co
Blaw-Knox Co.
Blaw-Knox Division, Blaw-Knox Co.
Bliss \& Laughlin, Inc.
Blodgett, G. S., Co.. Inc
Bohn Aluminum \& Co
Bohn Aluminum \& Brass Corp
Bridgeport Brass Co.
Bristol Brass Corp., The
Brooke, E. \& G.. Iron Co
Brosius, Edgar E., Co.
Brown \& Sharpe Mfg.
Brown \& Sharpe Mfg. Co
Brown Instrument Co., The
Bryant Maching Grinder Co. Engineering Co
Buda Co. The C . Engineering Co
Buffalo Forge Co
Bullard Co., The
Bundy Tubing Co
Page 115

Eureka Fire Brick Works
Eutectic Welding Alloys Co

Ex-Cell-O Corp.
60

Fafnir Bearing Co., The
Fairbanks, Morse \& Co
Fairfield Mfg. Co. Co., Lid
Farquhar, A. B., Co.
Farval Corp., The
Ferracute Machine Co .
Fidelity Machine Co.
Firth-Sterling Steel Co.
Fitchburg Grinding Machine Corp.
Fitzsimons Co., The
Foote Bros. Gear \& Machine Corp
Fosdick Machine Joal Co.
Foster, Frank B.
Foster, L. B., Co.,
Foxboro Co., The
Foxboro Grinders, In
Frasse, Peter A., \& Co., Inc.
Freyn Engineering
Fuller Brush Co.
Coicos Steel \& Iron Co.
Carboloy Co., Inc.
Cardox Corp.
Carnegie-lllinois Steel Corp.
Carpenter Steel Co., The
Callie, Joseph P., \& Bros., Inc
Ceilcole Co., The
Century Electric Co.
Chambersburg Engineering Co.
Champion Rivet Co., The
Chicago Metal H Mig. Co.
Chicago Metal Hose Corp.
Chicago Pawhide Co .
Chicago Tramrail Mfg .
Chicago Virreous Enamel Produci Co.
Chicago Wheel \& Mfg. Co
Cincinnati Milling Machine Co
Cincinnati Shaper Co., The
Cifies Service Oil Co. .
Clark Tructractor Div. of Clark Equipment
Cleereman Machine Taol Co
Cleveland Automatic Machine Co
Cleveland Cap Screw Co.
Cleveland-Cliffs Iron Co
Cleveland Crane \& Engineering Co.
Cleveland Hotel
leveland Pneumatic Toal Co., The
Cleveland Punch \& Shear Works Co
Cleveland Tool Engineering Co.
Cleveland Tramrail Division, Cleveland
Crane \& Engineering Co .
Cleveland Twis! Drill $\mathrm{Co}_{\text {. }}$ The
Cleveland Worm \& Gear Co., The
Cimax Molybdenum $C a$.
Cipper Mfg. Co., The
Cold Metal Producis Co
Colanial Broach Co.
Columbia Steel
Calumbus Die, Tool \& Machine Co . 46, 47
Commercial Forgings Co., The
Commercial Metals freating, inc.
Cone Automatic Machine Co., Inc.
Consolidated Machine Tool Corp.
Continental Ralf \& Sieel Foundry Co.
Continental Steel Corp.
Copperweld Steel Co.
Cowles Tool Co
Crane Co.
Cross Gear \& Machine
Cuban-American Manganese Corp.
Cullen-Friestedi Co.
Curtis Pneumatic Machinery Division of
Curtis Manufacfuring Co.
Culler-Hammer, Inc.

Darwin \& Milner, ne
Davenport Besler Corp.
Davis \& Thompson Co.
Davis Brake Beam Co.
Denison Engineering Co., The
DeSanno, A. P., \& Son, Inc.
Despatch Oven Co.
Detroir Electric Furnace Division, Kuhlman
Delrait-Leland Hotel
Detroit Rex Producls Co.
Detroit Tap \& Tool Co.
DeWitt Operated Holels
Diamond Toal Co.
*

Diebold Safe \& Lock Co.
Dietert, Harry W., Co,
Disston, Henry, \& Sons, Inc
Dission, Henry, \& Sons, Inc
Dow Chemical Co., The
Downs Crane \& Hoist Co.
Doyle, J. E., Co., The
Dravo Corp., Machinery Div.
Dulien Sicel Products, Inc.
E

Egyptian Lacquer Mfg. Co., The.
Electric Controller \& Mifg.
Inside Front Cover
Electric Furnace Co., The Co.
Electric Slorage Batiery Co.
Electro Alloys Co., The
Electro Metallurgical Co.
Electroweld Steel Corp. Th
Eliot Manufacturing Co., Th
Enterprise Galvanizing Co.
Erdle Perforating Co., The
Erie Bolt \& Nui Co.
Eris Foundry Co.
Euclid Crane \& Hois: Co.. The

Newpors Rolling Mill Co.. The
New York \& Now Jersey Lubricant Co.
Niagara Machine \& Tool Works
Niles Steel Products Div., Republic Steel Corp.
Nilson, A. H., Machine Co.
Nitralloy Corp., The
Norma-Hoffmann Bearings Corp
Northwest Engineerin
Norton Co., The
Oakite Products, Inc
Ohio Crankshaft Co
Ohio Electric Mfg. Co.
Ohio Galvanizing \& Mfg. Co
Ohio Locomotive Crane Co... Th
Ohio Machine Tool Co., The
Ohio Seamless Tube Co., The
Ohio Steel Foundry Co., The
Oliver Iron \& Steel Corp.
O'Neil-lrwin Mfg. Co.
Osgood Co., The
Osier Mfg. Co., The
Page Steel \& Wire Division American Chain Pangborn Corp Cable.
Pangborn Corp.
Park Chemical Co
Parker-Kalon Corp. Corp
Peabody Engineering Corp.
Pennsylvania Flexible Metalic Tubing Co.
Pennsylvania Fiexible Metalic
Pennsylvania Industrial Engineers
Pennsyvania Salt M
Penola Lubricants
Perkins, B. F., \& Son, Inc,
Philadelphia Gear Works
Phillips Screw Manufacturer
Phoenix Mfg. Co.
Phoenix Mrg. Co. Sitsburgh Crushed Steel Co
Pittsburgh Gear \& Machine Co
Pittsburgh Gear \& Machine Co
Pitisburgh Plate Glass Co Corp. 113
Pittsburgh Rolls Division of Blaw-Knox Co.
Plymouth Locomative Works Division of The Fate-Root-Heath Co.
Poole Foundry \& Machine Co
Portar, H. K., Co., Inc. .
Porter, H. K., Inc. Co., Inc.
Pressed Steel Tank Co.
Progressive Welder Co.
Protected Steel Products Co.
Purdy, A. R., Co., Inc.
Racine Tool \& Machine Co
Ransohoff, N., Ine.
Ransome Machinery Co
Raymond Mfg. Co., Division of Associaled Pering Corp
Reading Chain \& Black Corp.

Page
Spriesch Toul \& Manufacluring
Standard Steel Works
Standard Tube Ca., The
Stanley Works, The
Steel \& Tubes Division, Republic Steel Corp.
Steel Founders' Saciety of America
Steelweld Machinery Division, Cleveland
Crane \& Engineering Co. ... The Clove
land Quarries Co.
Stramberg-Carlson Co
Strom Steel Ball Co.
Strong Steel Foundry Co
Struthers Wells Corp.
Sturtevant. B. F., Co
Sturteyant, P. A., Co.
Sun Oil Co. Cor...
Surface Combustion Corp.
118,119
Swindell-Dressler Corp.
Syntron
Taylor-Wilson Mig. Co.
ennessee Coal, Iron \& Railroad Co.
Thomas Fiexible Coupling Co.
Thomas Machine Mfg. Co
Thomas Steel Co., The
Tide Water Associated Oil Co. ...
Timken Roller Bearing Co.Front Cove
Timken Steel \& Tube Division, The Timken
Raller Bearing Co.
Tinnermon Products, Inc.
Iitanium Alloy Manufacturing Co. 26
Toledo Stamping \& Mfg. Co.
Toledo Stamping \& Mfg. Co
Tomkins Johnson Co
Torrington Co., The
Towmotor Co.
Trabon Engineering Carp.
Triplex Screw Co., The
Triplex Screw Co., The
Trunde Engineering
Tubular Alloy Steel Corp
Turchan Follower Machine.
Jurco Products, Inc.
Turnar Gauge Ǵrinding Co.
U. C. Lite Mfg. Co.

U

Union Carbide \& Carbon Corp.
Union Carbide \& Carbon Corp. 45
Union Drawn Steel Div., Republic Steel 4
United Chromium, Ine.
United Engineering \& Foundry Co
United States Graphite Co
United States Steel Corp. Subsidiaries....46, 47
United States Steel Export Co
United States Steel Supply Co.

Ready-Power Co
Reeves Steel \& Manufacturing Co. 173
Reliance Electric \& Engineering Co
Republic Drill \& Tool Co.
Republic Steel Corp.
Revere Copper \& Brass, Inc.
Rhoades, R. W., Metaline Co., Ine
Richards, Arklay $S_{\text {., Co., Inc. }}$
Roebling's, John A.., Sons Co.
Rollway Bearing Co., Inc.
Roosevelt Hotel
Roper, George D.: Corp.
Ross Heater \& Mfg. Co., Inc.
R-S Producls Corporation
Ruemelin Mig. Co
Russell, Burdsall \& Ward Bolt \& Nut Co.. 109

Saginaw Malleable Iron Div. General Mo-
Si. Joseph Lead Co
St. Louis Button Co
Salem Engineering Co .
Samuel, Frank, \& Co., Inc.
Sandvik Steel, Inc
Savage Tool Co
Scaife Co.
Scherr, George, Co.
Sellers, Wm., \& Co., inc.
Seneca Wire \& Mfg. Co., The
Seymour Mfg. Co., T
Sheffield Corp., The
Sheffield Corp., The
Shell Oil Co., Inc.
Shenango Furnace Co.. C The
Shenanco-Penn Mold
Shenanao-Penn Mold Co .
Shepard Niles Crane \& Hoist Corp.
Shuster, F. B. Wo., The Co.
Simonds Gear \& Mfg. Co
Simands Gear \& Mfg. Co
Simands Saw \& Steel Co.
Sinclair Refining Co.
Smith Dovid, Steel
Smith, David, Siel Co., Inc
Smith Tool \& Enginearing Co
Smith Iool \& Engineering Co
Smit, J. K., \& Sons, Inc.
Snyder, W. P., \& Co., Inc.
Socony-Vacuum Oil Co., Inc.
Socony-Vacuum
South Bend Lathe Works
Vanadium Alloys Steel Co
Vanadium Corporation of America
auah Machinery Co., The
Veeder-Roof, In
Vickers, Inc.
Waldron, John, Corp.
Ward Leanard Electric
Ward
Washburn Wire Co
Watson-Stillman Co., The
Wean Engineering CO., The
Weatherhead Co., The
Weinman Pump \& Supply Co., The
Weirton Steel Corp.
Welding Engineering Co
Welding Equipment \& Supply Co.
Wellman Bronze \& Aluminum Co.
Wellman Engineering Co.
Wells Manufacturing Co .
Westinghouse Electric \& Mfg. Co
West Penn Machinery C
Wheeling Steel Corporation
Whitcomb Locomotive Co., The
Whitehead Stamping Co.
Wickes Brothers
Wickwire Brothers, Inc.
Wickwire Spencer Steel Co.
Willioms, J. H., \& Co.
Wilson, Lee, Engineering Co
Wilson Welder and Metals Co., Ine
Wisconsin Motor Corp.
Wolverine Tube Div., Calumet \& Heclo Consolidated
Wood, R. D., Co.
Woods, S. A., Mochine Co.
Worden-Allen Co
Worden-Allen Co.
Worthington Pump \& Machinery Corp
Worth Steel Co.
right Manufacturing Div., American Chain
Wyckoff Drawn Steel Ca.
Yoder Co., The
Youngstown Alloy Casting Corp.
Zeh \& Hahnemann Co

BETHLEHEM WIRE ON ACTIVE SERVICE

Bethlehem Wire has gone to war. Millions of bullet cores made from Bethlehem wire are being hurled at the Axis from the muzzles of rifles and Tommy guns. . . . Hundreds of miles of underwater communication cables are being armored by corrosion-resisting bethanized wire. . . . Wire rope made from Bethlehem wire is anchoring mines, trapping submarines, rigging fighting ships. . . . Almost every kind of military equipment depends upon steel wire, as an actual working part, or at least in its manufacture. If you find Bethlehem Wire difficult or impossible to obtain we hope you will remember that a very large proportion of our output has been assigned to duty right on the fighting fronts, on land and sea.

5

blooming mills
sLabing sizes

$$
\begin{aligned}
& \text { OABBING SILES } \\
& \text { LAL TYPES, RIL SIRGEST } \\
& \text { ALL WORL'S LARG }
\end{aligned}
$$

Jules Dierckx

- Is the industrial machinery business such a "tough game"? We doubt it after hearing Guy Jubbard, Steel's machine tool editor, tell enthusiastically of his recent reunion with Jules Dierckx in New York, twenty-two years after their first meeting as adjoining exhibitors at the now historic New Haven Machine Tool Show.

That 1921 show was merely "yesterday" in Jules Dierckx' career. Born not far from the battlefield of Waterloo in Belgium, he first came to the United States in 1888, and in 1893 he had charge of an extensive showing of ceramics at the World's Columbian Exhibition in Chicago. Switching from ceramies to metalworking machinery, Jules became an executive of the Keller company in Brooklyn and "world salesman" of the Keller mechanical process of die sinking.

Today-old in experience but young in spirit-Jules Dierckx is one of the most active figures in the machinery exporting business, vice-president of an organization specializing in sales to Latiu America, authority on die forging equipment, and a senior member of the Engineers' Club of New York City.
Just in case there do happen to be any of Steele's readers who have not had the privilege of meeting Jules at some spot on the globe during the past seventy years or more, his name is pronounced "Derricks" in the language of his beloved adopted country.

Planning Is Also Doing

- Speaking of individuals, don't fail to read what Joseph J. Chency, president, Spriesch Tool \& Manufacturing Co. has to say in this week's issue on Postwar Planning. Mr. Cheney seems to have plenty on the ball. One of his recent statements was this: "One decision you can make today about tomorrow is to plan on using modern war production ability to insure your survival and leadership in business."

The Postwar Automobile

- The reprint booklet containing A. H. Allen's special report on The Postwar Automobile is now ready. It will be sent in limited guantities free of charge to all subscribers. Please send your request to Readers Service Dept., Penton Building, Cleveland, 13, Ohio.

Not Unlucky, We Hope

Which reminds us that we should remind you that our postal district number is " 13 ", and it should be carried on all mail headed our way to insure prompt delivery. Steen is cooperating to the fullest extent with the Post Office and has sent to each of the 175 cities covered by the new rule complete circulation galleys on which the new postal district numbers will be placed for each subscriber. These will then he added to your addressing stencil just as quickly as possible so that your copies will reach you without any delay the first of each week.

The Post Office Department is not only willing but
anxious to add these numbers to any mailing lists you may have. Simply send the list on cards or galleys direct to the Postmaster in each of the 175 cities covered by the ruling.

Armored Bibles

- We see where the War Production Board has approved the use of several tons of waste steel plate for steel-jacketing Bibles, but at the same time has suggested that manufacturers avoid giving any impression that such Bibles will stop bullets.

Small Bibles are sold in Army post exchanges and elsewhere and usually are purchased for service men by their relatives to be carried in their breast pockets. The steel book covers might deflect or stop some flying fragments, but WPB emphasizes they afford no protection against direct rifle or machinc-gun fire.

Forms for Freedom

Nancy Goldhaber is the Priorities Consultant for the Emsco Derrick and Equipment Co. out on the coast and her experiences have so moved her that she broke into verse in the following "Forms For Freedom":

> The muscled arm of our Miss Liberty Adjusting to the fevered pulse of War Receives a shot of serum called Priority And feels much sicker than she did before!
> And yet the sage physicians who preseribed The formulae of "Purp" and CMP Allege they were entirely contrived To centralize our vital industry!

New "forms" of treatment come in every mail
With full directions for correct "consuming"
And flocks of orders couched in logic frail
Make queries with professional presuming.
For each plant must be weighed and diagnosed Before it gets its dose of medicines
And every secret symptom swift disclosed
To prove the need for controlled vitamins.
Steel, copper and aluminum by strict decree
If used in products of the listed kind
Are classified in category B
The rest to category A consigned.
And yet it's just becuuse we're geared to Liberty We've trouble with the discipline of War And since I cannot fight to keep us free
r'll fill out forms-and swear-and fill out more!

Stand-Sit Seats

- Note to efficiency depts: Stand-sit seats installed in the metalpolishing department of a war plant increased production 32 per cent.

[^8]
TURNING UP PRODUCTION SCHEDULES WITH INDUSTRY'S NEW RIGHT HAND

Production-line Efficiency in

a Single Piece of Equipment!

Indexing tables put wings on many production operations-as effectively at the revolving pistol harrel put wings on trig. ger fingers!

And wherever quick, aceurate indexing can help production, HydrOILic equipment offers distinct advantages. Hydrollic indexing presses show why. Their hydraulically operated tahles position the work with higher precision. Rapid, continuous operation is achieved by merely feeding and emptying the table. Safely too, hecause hands are never near the ram.
"Start and stop" shocks of indexing tables are overome, because oil is the medimm through which they are propelled. Oil (and the speed of the tahles) can be regulated instantly without wear or strain, and with absolute aceuracy. That's why Hydrollic equipment ham proved so effective in speeding up such wartime jolss as shell loading and crimp. ing, powder compressing . . . ats well an many pressing, pushing and lifting operations.

Why not get together with Denison Hydrollice engineers on your prolfems or ideas: Write. The Denison Engineering Co., 1163 Dublin Rd., Columbine, Ohio

ACCURATE RELIABLE DURABLE

(14)

THE OHIO STEEL FOUNDRY CO.

ENGINEERS • FOUNDERS• MACHINISTS

THE LEADER IN IMPROVED ROLL MANUFACTURING TECHNIQUE

Number 1 of a series covering use and maintenance of Southwark Testing Machines

Memo:
 War Service

the proper use and care of

Grips

Here are a few suggestions that will enable you to extend the life of grips and eliminate one of the primary sources of trouble in physical testing.
Grips are especially designed for handling various shapes and types of specimens. Always use the proper grips for each specimen. Use "V"-grips for rounds and flat grips for flat specimens.
In selecting proper grips, the material to be tested must be considered. For example, round bars of soft steel or brass up to abour $1 / 2$-in. diameter can be safely tested with flat wedge grips, whereas, spring temper or hard drawn wire only $1 / 8$-in. diameter would damage flat-face grips. For materials such as music wire, special grips with renewable file faces are recommended.

Remember that in the interest of strength and toughness, the ordinary wedge grip-either flat or "V"-cannot be made as hard as a file. Occasionally it may be necessary to make tests on materials harder than the grips. In this case an old ser of grips should be used.

Before a specimen is pulled, the double pinion gears used for moving the grips in the slots should be centered and anchored in place with the ser bolts. Otherwise the specimen will not be centered apo mapr not be pulled straighr.
Sufficient liners should be used, of the same thickness on borh sides of each grip, so that the grips are well within the crosshead of the machipie. If one or both grips pull through when the load is/applied they may break or they will upser the corners fof the crosshead casting and asc likely to damage the double pinions.
Tegt specimens should extend ar least $3 / 4$ of the length of the grips.

When grips/do not move smoothly in the heads, as revealed by a flicking noise and a jump on the load indicator, a lubricapt should be used on the back of the grips. Any grease ased to lubricate lathe centers is satisfactory. White lead, no oil is frequently used. Use only a small amount -and only on the backs - or it will collect scale and dirt. Always use grips retainer furnished for bolting to crosshead castings, otherwise recoil may throw the grips out of the machine.

SOUTHWARK

INGENIOUS DESIGNING NEIS SALEM CUSTOMER 2 million pounds per month.

GIVES 30\% EXTRA PRODUCTION

Designed and built in 1935 for peacetime produc. tion, this Salem Continuous Pusher Type Furnace is now meeting increased war production demands which are FAR in excess to the original requirements. The furnace has a double chamber - one for hardening small forgings or stampings, and another chamber for drawing, and both chambers can be used for normalizing. There is a common center wall to save heat loss. All firing is done on one side of each chamber, and due to the furnace design, excellent heat uniformity is provided. Scale is held to a minimum. SOne man feeds material into
the hardening chamber. The parts are discharged from inside this chamber through a special chute which carries them onto a conveyor in the quench tank. The conveyor supplies another man with quenched parts which he places into the drawing chamber. This equipment, producing as much as 2 million pounds per month on various operations, nets our customer 30% higher production than he expected. And, remember, please, that during many years of this efficient production service, there have been no major repairs. Write Salem today for the answer to your heat treating problem.

$\mathbf{N}-\mathbf{A}-\mathbf{X}$ High Tensile

takes to the water with the amphibious jeep

. . . the low alloy steel with unusually high resistance to shock and fatigue

When jeeps are constructed they have frames made of N-A-X HIGH TENSILE. The outstanding record made by these little four-wheel drive cars of being able to stand the gaff, over rough terrain, under all types of weather conditions, is known the world over.

It was natural, then, for the manufacturers of the "Amphibious Jeep" to again use N-A-X HIGH TENSILE for frames . . . because this superior low alloy steel has the physical properties, such as resistance to fatigue and impact even at sub-zero temperatures, to withstand severe operating conditions.

N-A-X HIGH TENSILE has other important properties, too . . . high yield point, high ultimate strength, excellent welding characteristics, unusual ductility and greatly increased resistance to both corrosion and abrasion.

A Great Lakes engineer will be glad to discuss your production problems with you-to show you how other manufacturers are using
this remarkable HIGH TENSILE steel to advantage. Send for new booklet on N-A-X 9100 Series-and useful Hardenability Chart.

Detroit, Michigan
Sales Offices in Principal Cities

NATIONAL STEEL CORPORATION
Executive Offices - Pittsburgh, Pa,

War Slogan ${ }_{\text {vins }}^{\text {ron }}$ "Make'em Last!"

(here are two ways to do it ...)

BUY THE BEST BELTS . . Texrope Super-7's new design-against-wear gives maintenance a head start. The 20% more cords made 50% stronger hy the new Flexon process - combat stretching, give Super-7's extra pulling power. Revolutionary new shockabsorbing cushion of special coorl-running ruth ber eases pulling cords around sheaves. Tough, new Duplex-Sealed cover protects inner tele structure against grit, grime and moisture. When you do need new V-lelts, ineest in the best - Texrope Super-7!

USE THE BEST CARE . . vilutever brand of V-frelta you now wes, you can make thern leat lomger by following the Lips, in AllisChalmers" Srese handlosok: "Jlain Prects on Wartirare Care of Rubber V-Lbellos." How V-inelt anatomy afferda mainternamese . . . what determinee. V-lelt "Jife expectasury". . . bere is the foll seory, packed with practical dufafully illustraked. The tew harmberok cembains no asdvertiaing, applies to all makes. Tear oAl the coupron bellow ards send for yruer capy of this valuable new handlowok coxlay!
A. Yes, lots of it. Airplanes and their hundreds of parts are shaped and built with zinc dies. In addition, every Flying Fortress contains about 8 slabs of zinc, every fighting plane more than two slabs, and every transport plane more than nine slabs. The flare which lights the bomber's target contains a pound and a half of zinc. The radio set requires from two pounds to three hundred pounds of zinc. Every bomb contains zinc.

But just as vital as zine is today in the manufacture of thousands of items of war, tomorrow it will serve in hundreds of new uses for the enjoyment of peace.

AMERIGAN ZIMG SALFS GOMPANY

I
In a recent letter from a lad at Guadalcanal to his former employer was voiced the greatest challenge of our time.
"What," he said, "am I, and all these fellows with me, going to do when this thing is over?" Is peace to bring with it the deadly spiral: men laid off and demobilized, hence less purchasing power, hence more plants closed down, hence more men laid off, hence - ?

We believe we've seen the answer right on the production lines and right in the post-war plans of American industry.
We've seen and consulted with hundreds of research men uncovering new secrets in metallurgy, synthetics, plastics, aeronautics - finding
new techniques and economies - planning new and wonderful products that will cushion the post-war interim to the greatest production age in history.

As internal grinding specialists, we at Bryant have already helped to solve production problems involving the machining of many new light metals, alloys, and synthetic materials including glass, plastics, hard rubber, wood, graphite, and even machine parts made of paper.
We've developed many new techniques in tooling, and we believe that this knowledge is important to your future. For that reason, our Consulting Service is available at all times. Call upon us now!

Bryant Chucking Grinder Company

Old friend arrives . . . Thanks to you

When you're half way around the world, trying to finish an important job, it's mighty pleasant to greet an old and very helpful friend you used to work with.

Back home, in scores of industries, the men now on palm-fringed shores learned an affectionate respect for the dependability of Wickwire Rope. Now when stout wire rope is more than ever a matter of life and death, the sight of a reel of W ickwire Rope brings double cheers.

These buddies of ours know that you need Wickwire Rope, too-to help in your speededup production of lots of things for them. So they're grateful when you make each length you now have last longer, so that more Wickwire Rope can be used to equip the

Liberty Ships, and to send overseas.
But when you do need more of this friendly Wickwire Rope to help maintain your warproduction pace, won't you please order it without reels, if lengths will permit, so that handier reels can be spared for the boys out there? Wickwire Spencer Steel Company, 500 Fifth Avenue, New York.

Wick wire Spencer was the first manufacturer in all New England to be awarded the Maritime M andVictory Flect Flag for outstanding production accomplishmentrl

DO YOUR MEN KNOW HOW? Our free book "Know Your Ropes" pictures the best ways to splice, attach sockets, ete. Also shows the right and wrong ways to use wire rope. In the hands of new men (and even ald (imers) it can help you make your present wire rope last longer. Send for a free cony.

SEND YOUR WIRE ROPE QUESTIONS TO WICKWIRE SPENCER

WICKWIRE ROPE
Sales Offices and Warehouses: Worcester, New York, Chicaga, Buffalo, San Francisca, Los Angales, Tulsa, Chattanaoga, Houston, Abilane, Texas, Seatle. Export Sales Department: New York City

and I learned to run his Oster in a jiffy!"

Men leaving machines for military service. Experienced operators frozen to jobs. Only solution is rapid training of new operators. It's a serious problem with complicated machines. Not so with the Oster No. 601 "RAPIDUCTION" - the SIMPLIFIED Lathe now equipped with automatic indexing of its 6 -station turret.
Capable of handling a wide variety of bar and
chucking operations, including unusually heavy forming cuts, Oster "RAPIDUCTION" Turret Lathes have SIMPLIFIED the problem of training new operators rapidly to necessary standards of efficiency.
Does this seem to offer YOU at least ONE solution to YOUR problems of man-power shortage? If so, use the form below NOW!

THE OSTER MFG. CO., 2037 E 61st ST., CLEYELAND, OHIO, U. S. A.
We are seriously interested in the Oster No. 601 "RAPIDUCTION" Turret Lathe. Please send Catalog No. 601 at once.

NAME \qquad
ADDRESS \qquad
CITY \qquad

ABLE TOTAKEIT--

IN THE TOOL ROOM OR ON THE PRODUCTION LINE

Built to "dish it out" and take it, too, Uncle Sam's tanks demand tough materials and skilled design to give them stamina and striking power. The same principles hold for milling machines -the machine tools that are mighty important in building tanks and other weapons. In tool room or on the production line, milling machines must be built to perform at a recordbreaking pace and maintain close toleranceaccuracy in operation.
The center bearing on the spindle of Milwaukee Milling Machines reduces by one-half the distance between bearings-increases rigidity eight times! Ask the man at the controls of a Milwaukee-he can tell you how important this center bearing is (in addition to the husky column) in providing built-in rigidity and all that it means in sustained accuracy - longer cutter life -smoother performance at all speeds and feeds.

KEARNEY \& TREGKER

СНРOHAT:ON

MILWAUKEE, WISCONSIN

Buy Vietory with at least 10% in War Bonds:

"~20"

LIKETHIS

ARE NO "BREAK" FOR PRODUCTION

Broken tools-mechanical troubles - caused by improper care and operation of machine tools, are no help in production for Victory. Practically every machine tool manufacturer offers valuable advisory service - "care and operation" handbooks - technical bulletins - on better methods of operation that help green men as well as speed and improve production of skilled workers.

Put full information in the hands of the men who operate your machine tools - teach them the "know how" to get the most in production with the least waste of time, effort and materials.

Euy Vietory wiefint least 10\% in War IEonds: PIGH" FOR TRAINING MILLING MACHINE OPERATORS...

"MILLING PRACTICE" Visual Training Cowrse

This Visual Training Program, consisting of five sound-slide films dealing with the fundamentals of milling practice, continues to prove highly popular with technical instructors and industrialists everywhere. Interestingly arranged, the films show many types of operations such as T-slotting, angular and straddle milling, circular milling, dovetailing, boring and end milling. Many shop training. directors report unusually successful results with this visual course. It is available on a rental basis at nominal cost. We invite you to write for full information to our Department of Industrial Education.

No. 130 - High Speed Steel Heat-Treating Furnace
No. 120 - High Speed Steel Heat-Treating Furnace
No. 130A - High Speed Steel Heat-Treating Furnace
No. 575 - Pot Hardening and Melting Furnace
No. 2014 - Oil Tempering Furnace
No. 570 - Pot Hardening and Melting Furnace No. 101 - Bench Furnace

ALL PRICES F.O.B. FACTORY

Distributors in All Principal Cities Write for free catalog today 591 E Ave. NW.

JOHNSON GAS APPLIANCE CO. GEDAR RAPIDS, IOWA

The information printed on this large card ($14^{\prime \prime} \times 20^{\prime \prime}$) will answer many questions for machine operators, to whom the machining of aluminum is new. Use this coupon to send for a copy or write us on your company letterhead-

Alumincm Company of America 2112 Gulf Building, Pittsburgh, Pa.

Please send me your wall card on "Tools for Machining Alurninum."

Nuy \qquad 1715 \qquad
coMplur
ATOIEST
TOMA \qquad TTATE \qquad
"Black Lighe" truting makes certain the binnd is perfect on elges of all Mallory Bearings. Under its magic rays, microscopic wids and cracks show up by fuorescence. A filter cuts out visible radiation from the "Black Light", allouing only altra-violet radiation to pass.

MALEDRY Bearings Meet Critical Loads Superbly

WHERE ordinary bearing surfaces are inadequate to meet the stresses and strains a fighter plane's engine must undergo, Mallory Bearings function marvelously. They can take the terrific pounding and fatigue stresses imposed by suddenly applied loads from a high powered pursuit plane in action.

Mallory Bearings are made by Mallory's Mallosil Process of bonding silver to base metal backings. They provide a tough, homogeneous, heat dissipating silver surface of high fatigue resistance; ample strength and hardness; and high resistance to seizure.

What is more, Mallory Bearings are precision made. Through use of newly designed precision tools and test instruments, skilled Mallory eraftsmen have set remarkable records for exactuess and uniformity in producing bearings, bushings, pinion races, gear races and other aircraft engine parts. With tolerances measured in split-thousandths, they are turning out ever-increasing quantities of precision parts with an accuracy and uniformity considered impossible only a few short months ago.
Continuous experimental designing and testing indicate even greater results for the future. The experience and technique gained in War production will be invaluable for commercial motors development when Peace has arrived. Consult us on the possibilities of the Mallosil Process for you.
P. R. MALLORY \& CO., Inc., IndIANAPOLIS, INDIANA • Cable Address - PELMALLO

Trademarks Reg. U. S. Pat. Off, Mallosil, Rectosfarfer, Vibrapack

SERVES THE AVIATION, THE AVIATION-INSTRUMENT AND THE AVIATION-COMMUNICATION FIELD WITH WELDING TIPS, THE MALLOSIL PROCESS-BEARINGS, SPECIAL ALLOYS,
ELECTRICAL CONTACTS, VIBRATORS, VIBRAPACKS, CONDENSERS, ROTARY AND PUSH BUTTON SWITCHES, ELECTRONIC EQUIPMENT, COMMUNICATIONS HARDWARE, RECTOSTARTERS

TO YOU it looks like a tank, but to us it is reminis. cent of a dredge pump casing . . . or a locomotive frame . . . or a bank vault . . . or an annealing box . . . or any other tough and enduring industrial casting made by Union Steel.

The tank is reminiscent of these things, because these are the things we used to make before Uncle Sam became our Class "A" customer, and Army and Navy ordnance armor our major product. But, while our production effort here at Union is mainly concentrated on the war, we are thinking hard about what is coming after. It may be that our post-war planning could be of help to you-in making castings that fit Tomorrow's bewildering needs.

Driving wheel centers, locomotive frames, pump casings, vault doors and frames, annealing boxes, spindles, coupling boxes, open bearth charging boxes, gear blanks-and other steel and alloy castings for steel mills and general industry.

- A new principle in construction made "MAJOR" the leader in welding cable nearly ten years ago; today it is the fastest selling cable in shipyards, arms plants and all wartime industries. In spite of these - unprecedented demands we can, for a limited time, still make quick shipments-investigate!

Size	SPECIFICATIONS				Wf. in lbs. per $M \mathrm{ft}$.
	Amps.	Strands	0.D.	$\frac{1 . D}{210}$	
4	125	1029	. 495	. 275	202
3	150	1323	. 500	. 305	235
2	200	1666	. 560	. 335	295
1	250	2156	. 625	. 400	373
1/0	300	2646	. 675	. 440	450
2/0	375	3381	. 750	. 490	570
3/0	450	4284	. 815	. 545	705
4/0	550	5376	. 900	. 635	860

WELDING ENGINEERING COMPANY MILWAUKEE, WISCONSIN
 MANUFACTURERS-DISTRIBUTORS
 OFFICES.AND AGENTS ALL OVER:THE UNITED STATES

THEFLORI PIPE COMPANYOST.LOUIS-GHICAGO

More Windocus IN YOUIB TDDL. CIEIIB

 plates, cite.

LESS Waiting Time FOR YOUR MEN

Hereis a tool crib with five windows - one for every class of tools and supplies. It's big, but the management finds that it pays big returns - by reducing waiting time for men and "down" time for machines.

Your layout may not need to be so claborate; but careful planning of your tool crib to assure free movement and systematic order always results in longer life and more effective use of your tools.

A 100% RECORD

 Awards on May 8th, 1943 to two plants in Kenosha, Wisc., completed this 100% record for the American Brass Company.
all ten american brass co. PLANTS IN U. S. A. have earned right to FIY ARMYY-NaVY "E" FLAGS

This is the story in terms of war production

Our Connecticut plants were among the first in the brass industry to receive the coveted "E" Award for outstanding production of war materials. Since then all our plants, including those in the States of Michigan, Wisconsin and New York, have been similarly honored.

As the largest fabricator in the copper and brass field, The American Brass Company is keenly aware of its responsibility and its opportunity to serve the cause of the United Nations.
Since 1939, production has been tripled, with virtually every pound today going for war purposes.

This chart*, based on 1939 peacetime production, shows the rapid swing into all-out war production, both by the copper and brass fabricating industry All-rime production records hay (notincluding Government-owned plants). National Droduction records have been continually broken ever since the National Defense Program was initiated in 1940. - Based on compllations of Tho American Bureau of Metal Staristice

This record was accomplished by close cooperation between management and labor... careful planning
for rapid conversion to wartime operations . . . iniensive training of new personnel. . . plus efficient utilization of existing and new plant equipment.
Detailed figures, of course, cannot be revealed, but The American Brass Company is consistently breaking all previous volume records. In addition to its U. S. plants and that of a Canadian subsidiary, Anaconda American Brass Ltd., the company's production also embraces three plants operated for the United States and Canadian Governments.
Shipments this past January were the largest in the company's history. March exceeded January. The first quarter of ' 43 was by far the greatest tonnage quarter in the records of the company.

PRODUGTION OF COPPER RLLOYS FOR Ammulitign by Tho American Brass Co. This chart shows the vast increase in production of copper-base alloy's directly earmarked for ammu. nition in plants operated by The American Brass Company. This is one of the most vital needs for copper and brass. Tremendous quanticies are required for all types of ammunition.

The American Brass Company is proud indeed that all the plants it operates in the U. S. A. have won the honor of flying the Army-Navy " E " for excellence in production. But it is even prouder of the organization and the will-to-produce that have made this record possible ... and will keep it going.

431846

THE AMERICAN BRASS COMPANY

AMMGAA subsidiary of Liracoreda Copper Prinisg Comppany

If you ever

need a sub-contractor

to stamp, fabricate and finish

metal parts

TO THROW an airplane into the air takes a mighty strong arm. Launching these eyes of the fleet from a cruiser deck is the job of the catapult.

Gears on the catapult must be rugged to stand the punishing shock that comes when the speed of the airplane weighing more than two tons is increased from 0 to 70 miles per hour in a distance of 60 feet!

The gears in the engines powering these planes must be tough, too. For though light in weight, their job is to transmit the power of 2000 horses to whirling propeller blades.

Making these gears-the rugged ones for the launching devices and the marvels of high precision for the airplane engines-is Foote Bros.' job, and Foote Bros.
are proud of the service that the gears they make are rendering-proud of the manufacturing know-hows, the advancements in techniques that have been developed to produce these gears in the tremendous quantities needed for an America at war.

But more important to American Industry is what these manufacturing know-hows will mean to peacetime production. For experience gained today in producing gears that are tougher-gears that possess a higher degree of precision-gears that demand the latest manufacturing technique will assure more economical power transmission-more efficient machines for American Industry when the war is won.

FOOTE BROS. GEAR AND MACHINE CORPORATION 5225 South Western Boulcvard - Chicago. Illinois

WATISON GRIDDERS II PRODUGTIOL an Breed Rings and Breech Blacks

The illustration above shows a Mattison High-Powered Precision Surface Grinder in production on breech rings for a Canadian war production plant. These rings are ground 5 sides and must be held to close limits and square with the bore.

Breech blocks in illustration to the right are ground four sides. Approximately $.015^{\prime \prime}$ is ground off and a tolerance of .002 " is allowed, but they are actually ground to size much closer than that.

Mattison Surface Grinders are constructed to an unusually high degree of accuracy and sturdiness which permit the profitable production of precision work at a high output rate. For further information, regarding the grinding of war jobs, ask us to send you free set-up sheets with complete information.

How to select the correct

 $-\cdots$ N.E.STEEL!Thousands of these books already have been distributed and are proving of inestimable value in helping steel users speed up and increase war production. If you are an engineer, metallurgist or production executive using N.E. steels, or if you contemplate changing to them, you should have a copy. Fill in and send the coupon below, and your book will be mailed promptly.

REPUBLIC STEEL CORPORATION Alloy Steel Division

 Sales Offices - Massillon, OhioGENERAL OFFICES - CLEVELAND, OHIO Berger Manufacturing Division Culvert Division
Steel Products Division Niles Steel Products Division
Union Drawn Steel Division Sreet and Tubes Division Export Department: Chrysler Building, Truscon Sew Yorkel New Yompy

- Republic's N. E. Steel Handbook will tell you how! It will bring you valuable facts and information prepared by the same men who helped develop the National Emergency Steels - Republic metallurgists.
This timely book offers an unusually complete description of the N.E. Steels, their chemical analyses, physical properties, their relationship to standard steels and why they substitute satisfactorily for high alloy steels. It presents the very information you need on how to select the correct N.E. grade for each application, how to fabricate it and the precautions to exercise. It explains the end quench hardenability test and why it is used in predicting certain physical properties. It contains many useful tables, including combined standard lists of A.I.S.I. and S.A.E. steels.

Republic Steal Corporation, Depf. $S T$ 3100 East 45th Street, Cleveland, Ohio
Please send me a copy of your N. E. Steels Handbook
Name
Title

Company

Street

You Name the Part-

 Probably we make itBrake Shae MAKES PARTS for original equipment and for maintenance; parts that are upset and drop forged; molded fabrics and plastics; ferrous and non-ferrous castings. In war, as in peace, Brake Shoe ships millions of parts to thousands of manufacturers, in many fields of industry.

The services of our research and development engineers are available for immediate or post-war problems.

American Brake Shoe Company, 230 Park Avenue, new York

BIAST FURNACES - STEEL PLANTS AND ALIIED INDUSTRIES

The WILIIAM B. POLIOCK COMPANY YOUNGSTOWN, OHIO

STEEL PLATE CONSTRUCTION © ENGINEERS - FABRICATORE

It's no good if he doesn't
 $\frac{\text { know how }}{\text { to use it! }}$

- It's an odds-on bet . . . sometime soon one of your men will face a fire, armed with one of your extinguishers.

Will he know what to do? Will this man in your plant know what kinds of fire this extinguisher should be used against? Does he know how to make it work?

There is one sure way to control blazes in your plant-fast and sure-handedly. Teach key men how to handle fire . . . how to handle fire-fighters. Stage demonstrations. Show these men how extinguishers behave under fire. We can help you do it.

A new Kidde handbook-"How to Teach Fire-Fighting"tells how to stage a fast-moving, interesting, instructive demonstration of extinguishing methods. Send for your copy. Walter Kidde \& Company, Inc., 647 Main St., Belleville, N. J.

TRANSPORTATION IS THE LIFE-LINE OF THE STEEL MILL

$W_{\text {ITH }}$ the steel industry going at full blast, movement of materials is clockwork precision with each operation.

That's why the Superintendent of Transportation in one of the nation's largest steel plants isn't worrying about switching and spotting cars . . . shifting moulds . . . getting the ingots and scrap hauled . . .
switching out the loads . . . because Plymouths are doing EVERY job efficiently.

Plymouth Flexomotives are built for steel mill service. Their availability, dependability, low maintenance and operating costs make them a highly desirable unit for steel plant operation.

Buy More War Bonds

PLYMOUTH LOCOMOTIVE WORKS

 DIVISION OF THE FATE-ROOT-HEATH CO., PLYMOUTH, OHIO June 21, 1943
B \& W "KNOW-HOW" SMASHES A BOTTLENECK

A manufacturer of aircraft parts with a new need for seamless steel tubing came to The Babcock \& Wilcox Tube Company with rigid specifications for a cold drawn tubing that
 B\&W couldn't furnish for months.

B \& W engineers investigated - asked about rough and finish cuts, heat treatment, distortion and matters the manufacturer hadn't thought worth considering. They recommended a size of hot finished tubing instead of the cold drawn, showed how it could be machined to produce the desired result.

Accepting B\&W suggestions, the buyer found that even with the necessarily increased machining costs, the overall cost was less. And the hot finished tubes could
be delivered immediately!
Time and again B\&W engineers have combined imagination with a keen understanding of production methods to recommend changes in tubing or changes to tubing that speeded deliveries, accelerated production or saved steel.

B\&W may or may not be able to meet all your specifications, but given all the facts about your use of tubing, B\&W engineers can help solve your tube procurement problems.

Where plate Is WELDED

A SteELWELD IS NEEDED...

Whether you make army tanks, boilers, railroad cars, ships, machinery or airplanes, if you work with metal from 12 gauge to one inch thick, most likely you have great need for a Steelweld Bending Press.

Steelwelds are versatile tools that perform many types of work quickly and easily, whether only one piece o: a production run is required. Long, sharp welded corners can be replaced by quickly made, smooth, round, bended ones, and both appearance and strength improved. Illustrated below are some of the many kinds of work that can be performed on any Steelweld.
It will pay you to investigate the many possibilities of this modern metal-forming tool that is improving product appearance and saving time and money for many

Corrugating and any straight-line production bending can be done to hairline accuracy.

Conical sections are quickly formed whit standard bending dies by use of the ram-faporing mechanism.

Large diameler holes can be punched singly. Bolf holes and other holes can be punched 25 to 150 al a lime.

The Gleveland Crane \& Engineering co.

STEELWELD PRESSES
general sales agehts: The cyril bath co. e. 70 II \& machinery aye, sleyeland

No Produdion Delays
 - with this Shuttle Table Press
 A steady stream of airplane parts flows uninter-

 ruptedly 24 hours a day from this big Birdsboro Hydraulic Press. There are to wait for loading Hys. The press never needs anged shuttle tables, ups. The four conveniently arrang from all sides, which providesee to that
sing operations are fully symchronized and automaticaily controlled to minimize the strain on operators and to provide the utmost in safety. Engineered to produce Big Birdsboro Press also demanded today, handle the many has the flexibility to work that will be different kinds of wortory is achieved. its job when problem, of the If yours is a press problem, will pay to present or future, If you desire, our consult Birdsbill be glad to work with yours, right from the start!

"To insure good broaching results, broach, machine and

 set-up must be handledwith utmost care,"

says JOHN J. PRINDIVILLE, Jr., Vice-Pres. Lapointe Machine Tool Company Hudson, Mass.

The correct cutting oil is as important to proper broaching operations as the correct care and operation of the broach and the machine. That's why Shell has developed a control technique that "balances" the oil to the machine, the application and the tool. Call in the Shell man now for details.

SHELL LATA OILS
"The high-grade steel and many precision operitions that so into the production of a broach make it an extremely valuable piece of equipment. When not in use broaches should be protected with a rust preventive und carefully packed; elther in their orlginal crates or in racks mide for that purpose."

> "To hnsure the operating efficiency of machine and broach, the care of the broaching machine slopuld be minde a dally routine. Special attention should be given to the selection of the coolant and the hydranalic oil used. In the above photograph Mr. Cambriat, our design engincer, polnts our the features of a gun-rifling machine."

"While most broaching machines have one-shot oilers, proper fubrication is still an important function, an is the proper setting of stops and controls. Most jobs set-ups ou our machines are relatively easy to do hecatuse of spechat fixtures. However, constant care ln sctuing up fixtures and putting in pleces will save unnecessary spoilage of booh plece and broach.

To decermine whether or not a job canbebroached, coniplete information as well as prints and samples of the job must be thorouphly checked. On the particular machining job being discussed, estimates show over 50% can be saved by broaching."

What can we do

 WITH
ALL THESE Machines?

Foreseeing Victory in the war, some of the doubters are begimning to say "Machine tools are going to be a dime a dozen. We'll have too many."

But wait.

By 1944, we shall have a dammed-up market for twice as many new automobiles as any one year has ever produced. And the whole world will be after all the surplus we can turn out.
Today, less than a quarter of American farms are mechanized, and only 1% in the whole world. Few have all the tools they need. We are not now making enough implements to replace those that are wearing out.

And even our enlightened country needs millions of modern houses. We have made just a start toward real convenience, health and safety in the home.

Every day sees more of our living equipment worn out-and our post-war backlog of demand increased.

Filling this demand is the job that Acme-Gridley Bar and Chucking Automatics will do-machines that are built to produce high quality metal parts in great volume, at low cost.

Low-cost production must be the basis of sound and lasting prosperity. Acme-Gridleys began, 40 years ago, to prepare for that.

ACME-GRIDIEY AUTOMATICS maintain accuracy at the highest spindle spoeds and faslesl feeds modarn culting tools can withstand.

The NATIONAL ACME Company

THAT'S THE WAY TO WIN this war . . . and that's theway to speed the production of vital war material.

Keeping materials, parts and supplies moving to waiting machines and eagerhandswith a Mathews Time-Controlled Conveyer System is a sure-fire means of making production schedules "click."

Mathews Engineers are helping American War Industries dish it out faster; perhaps they can also help you. or anything vital to the success of the war effort, you can get Mathews Conas usual on your Mat material. Rely

NILSON

automatic metal wire forssing machine

The Nilson line includes machines for forming paper clips, buckes, cot hook and hat hooks, ceiling hooks, wire ears, cable rings, screw eyes, sash cheins, autamobile slide chains, flat open link chains, staples, cotter pins, hose clamps, etc. Nilson also makes wire straighteners, wire reels, frame bend. ing machines and'spexial presses.

The machine pictured here is a simple and ingenious contrivance. Sturdy, solid, compact, requiring little space, it is a highly efficient and practical machine for forming wire and punching patterns from ribbon stock. Various patented features and extra attachments make it a necessary factor in reducing the manufacturing cost of your product. The Nilson automatic metal wire forming machine turns out the work faithfully, accurately and speed-ily-and it functions a long, long time free from repairs and replacements.

THE A. H. NILSON

"Yoder Automatic Cut-Offs" cut off tubing, moulding, wire rods and strip metal, accurately, speedily and with a comparatively light burr. The cuttingoff operation can be synchronized with the forward motion of the entire lineup of Roll-Forming, Straightening, Leveling and Welding Machines.

This machine stands last in the line of operations but first in the choice of necessary auxiliary equipment. For "TOTAL" quality roll-forming production, USE YODER ROLL-FORMING MACHINES AND YODER AUXILIARY EQUIPMENT.

METAL - PORM NC - PRODUCTIO ON . MACHINERY

THE YODER COMPANY CLEVELAND, OHIO, U. S. A.

NEED STEEL? Callus

Circle Heat Treated Carbon Steels

"Pinch Hit" for Critical Low Alloys

AVERAGE PHYSICAL PROPERTIES OF CIRCLE (I) HEAT TREATED CARBON STEELS AFTER WATER QUENCHING FROM 1525° F. AND DRAWN AS SHOWN*

SPECIFICATIONS MET BY LEBANON (L) EMERGENCY CARBON STEELS

HAVING trouble obtaining critical low alloy castings? Investigate the possibilities of Circle (L) Heat Treated Carbon Steels! These steels meet specifications for machinery, structural and other castings where high strength is extremely important.

Lebanon's heat treatment of Circle (1) Carbon Steels develops nominal ductility and impact resistance as well as high strength. Physical properties are excellent. Circle (D)-A will meet many war production requirements. Circle (L)-C and (L)-D are satisfactory emergency "pinch hitters" for low alloy structural steels.

Lebanon offers these emergency materials to aid war industries who require critical low alloy steels but who cannot extend the necessary priorities to procure critical low alloy steels.

Lebanon foundry engineers and mafallurgists have had close contact with wor production requirements since the beginning. Their experience in solving today's type of industrial problems is available to inferesfed organizolions.

LEBANON STEEL FOUNDRY

LEBANON, PENNA.

Lehanoll

 STANLESS AND SPECIAL ALLOY Steal Gastings vital war work in steel mills throughout the Nation. It will take the punishment of hard continuous service without stress or strain, and can be depended upon to cut costs. Easy to operate - built in four sizes, to accommodate a wide range of tube diameters from $3 / 8$ inch O.D. to 16 inch O.D., furnished either with or without hydraulic system.

TAYLOR-WILSON MFG. CO.

 15 Thomson Ave. (Pittsburgh District) McKees Rocks, Pa.IN THE NEWS

25 rons of Charge are carried by buggies like this one, to feed the steel furnaces at the Kaiser plant on the West Coast. Constructed by the American Car and Foundry Company, these cars employ Needle Bearings Type NCS on the axles, as shown in drawing. Efficient service is contributed by the low friction coefficient, high load capacity and effective lubrication method of these bearings.

DRILL PRESS OPERATION was obtained in this Black \& Decker portable drill through the development of a radial arm attachment to speed production in an airplane factory. Compact arm design and flexibility over a wide radius of operation are combined with anti-friction performance through the use of NCS Needle Bearings - a typical case where the small size and high load capacity of these bearings have proven important advantages.

nO TIME FOR SHUTDOWNS in the oil industryand these sturdy two-cycle, gas-engine-driven compressors built by Clark Bros. Co. Inc., are designed for service 24 hours a day. Type NCS Bearings are used in the wrist pins of the scavenging pump crossheads where the high load capacity of these bearings assures smooth, reliable performance. A catalog containing complete data on our line of Needle Bearings will be gladly sent upon request. Just write for Bulletin H-104.
needie bearings for all purposes, as well as special and standard anti-friction bearings of every type, are available from one source through the combined facilities of Bantam and Torrington. Here, too, is experienced skill to serve you in the unbiased selection or design of bearings to meet any requirement. For the utmost satisfaction in the solution of your bearing problems, TCRN TO BANTAM.

FARM PLANTING is made easier by this heavyduty "Rototiller" which prepares seed beds all ready for planting in a single operation. Needle Rollers Type LN are assembled into economical, high-capacity anti-friction bearings on both ends of the connecting rods and on the wheels of this progressively designed unit. The rollers at the wrist pin end are projected beyond the connecting rod in such a way that they are constantly lubricated by a fog of oil from the crankcase. At the lower end, oil catches are used.

Toprancoron Berarncos

STRAIGHT ROLLER • TAPERED ROLLER • NEEDLE • BALL THE TORRINGTON COMPANY•BANTAM BEARINGS DIVISION SOUTH BEND, INDIANA

THE aircraft manufacturing industries face special problems today in the finishing of transpatent plastics. Therefore, an understanding of the abrasive products and methods of use best suited to their solution is important.
The picture above shows a process employed by Bell Aircraft Corporation using a Carborundum Brand Silicon Carbide cloth sleeve to finish the edges of enclosure sections for Airacobra cockpits. Abrasive discs, sleeves, belts and sheets are all widely used throughout the aircraft industry to meet the various finishing conditions encountered.
For best results in most edging operations, sanders should be operated at about 3,000 feet per minure. In general

CARBORUNDUM
 ABRASIVE SATO PRODUCTS

it is better to use a wet sanding process than a dry, in order to reduce heat, settle dust, climinate loading of the abrasive surface, speed curting and increase abrasive life. For surface finishing it is well to select as fine an abrasive as possible. One just fine enough to remove any scratches left by the previous operation is usually the right choice. This is a typical example of an operation employed on one of the newer materials of construction. In metal finishing operations, Aloxite Brand Aluminum Oxide in its various forms-discs, sleeves, belts and shects-is used extensively.
Whatever may be your use of abrasives, we ask you to remember one thing:every abrasive tool is a "Weapon for Production"; it's important to use it wisely.

THE CARBORUNDUM COMPANY, NIAGARA FALLS, N. Y.

 Manufacturers of grinding wheels, coated abrasives, super refractories, heating elements Sales Offices and Warehouses in New York, Chicago, Philadelphia, Detroit, Cleveland, Boston, Pittsburgh, Cincinnati, Grand Rapids(Carhorundum and Alosite are regine ered trade-murk of and indicale manufacture ly The Carbarnomun Company)
 picture, compared to the height of the one wheel, shows the relative increase in the number of these wheels finished per day, now and formerly. The operation consists of turning the outside diameter, from rim to rim. Formerly, this was done on standard lathes. By putting the job on Monarch-Keller lathes, with electric controls, production was increased 800%. By this method, a thin metal template is drawn over an electrically controlled tracer, and the cutting tool automatically follows the specified contour, thus permitting greatly increased speed and accuracy of production.

Monarch-Keller lathes are similarly increasing production of many and varied kinds of war work. If we can help you select the right tool for the right jot, we'll gladly work with you.
the monarch machine tool co. . . sidney - ohio

MONARCH LATHES Save Tine
 Phovographs by courtesy of Hayes Industries, Inc.

[^0]: Publiahed by The Prexton I'undeninge Cab, Penton Building, Cleveliud, Ohin. E. L. Siavor, reaticnt amd Treanureri G:O. Hors, Vice rebident; (x. Steinenacif, Sceretiry.
 Memher, Audit Bureau of Circulationa: Auspciated Ausineas I'apers, Ine., aud National Publishers Absociation.
 Publiplied every Monday. Suhecrintion in the United Statce athd posmessions, Canalit, Mexico, Cula. Cemiral and Soulh America, one year $\$ 6$: (wo years \$lu; all other ennmies, one year $\$ 12$? Single copries, (curreat issues) 25 c .
 Entered as mecond clasis matter at the poatoffice at Cleseland, ander the Aet of March 3,1879 . Copyright 1943 lyy the Yenton Publishing Co.

[^1]: The percentages of capacity operated in the first 6 months of 1942 are calculated on weekly capaclites of $1,498,029$ net tons open hearth, 128,911 nel tons Bessemer and 71,682 net tons electric ingots and steel for castings, total $1,698,622$ net tons; based on annual capacities as of Jan. 1, 1942, as follows: Open hearth $78,107,260$ net tons, Bessemer $6,721,400$ net tons, electric $3,737,510$ net tons. Beglnning July 1, $19-12$, the persentages of capacity operated are calculated on weekly capaclties of $1,500,714$ net tons open hearth, 128,911 net tons Bessemer and 81,049 net tons eleccapacities of $1,500,714$ net tons open hearth, 128,911 net tons Bessemer and 81,049 net tons and steel for casings, total $1,710,674$ net tons: based on annual capacties as follows: tric ingots and steel for castings, total $1,710,674$ net tons: based on annual capaclties as
 Open hearth $78,247,230$ net tons, Bessemer $6,721,400$ net tons, Electric $4,225,890$ net tons.
 'The percentages of capacity operated in 1943 are calculated on weekly capaclties of $1,518,621$ net tons open hearth, 125,681 net tons Bessemer and 87,360 net tons electrlc ingots and steel for castings, total 1,731,662 net tons: based on annual capaclties as of January 1, 1943 as follows: Open hearth $79,180,880$ net tons, Bessemer $6,553,000$ net tons, electric 4,554,980 net cons.

[^2]: From a paper in the $\$ 200,000$ award program sponsored by the James F. Lincoln Arc Welding Foundation.

[^3]: From a paper presented at the annual meeting of the American Society of Tool Engincers, Milwaukee, March 27, 1943.

[^4]: * Half a century of specialization has established our reputation as the small wheel people of the abrasive industry.

[^5]: Both the shear tool and T-1810 had: La $=15^{\circ}:$ Relicf $=7^{\circ} ;$ Grade $=78-\mathrm{B}$.

[^6]: CULLEN-FRIESTEDT. CO.,

[^7]: * Add $0.2 \overline{5}$ for acid open-hearth: 0.50 electric. Cold-FInished Carbon Bars: Pittsburgh, Chicago, Gary, Cleveland. Buffalo, base 20,00039.999 lbs., 2.65c; Detroit 2.70.

 Cold-Finished Alloy Rars: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, base 3.35c: Detroit, del. 3.47 c .
 Turned, Ground Shaftine: Pittsburgh, Chicago, Gary, Cleveland, Buffalo, base (not including turning, \&rlndlnx, polishing extras) 2.65 c ; turning, srindlns, polishing extras) 2.65 c :
 Detroit 2.72 c .

[^8]: Vol. 112, No. 25 , June 21,1943 , issue of STEEL, published every Monday at Cleveland, Ohio. Entered as second class matter at the post office, Cleveland, O., under act of March 3, 1879. U. S. and possessions, Canada, Maxico, Cuba, Central and South America, 1 year $\$ 8 ; 2$ years $\$ 10$; all other countries, 1 year $\$ 12$. Current issues, 25c. Yearbook of Industry issue, $\$ 2.00$. Editorial Contents-Page 49

