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ON EQUIVALENCE OF SEMIGROUP IDENTITIES

O. MACEDONSKA and M. ZABKA

Abstract
For a given relation p  on a free semigroup F  we describe the smallest cancellative fully invariant 
congruence p# containing p.

Two semigroup identities are s-equivalent if  each of them  is a consequence of the other on 
cancellative semigroups. If  two semigroup identities are equivalent on groups, it is not known if 
they are s-equivalent. We give a positive answer to this question for all binary semigroup identities 
of the degree less or equal to 5. A poset of corresponding varieties of groups is given.

1. Introduction

Let F  be a free semigroup (Fx  be a free group) generated by x i ,x 2 , __
A semigroup identity of a group G (or a semigroup S) is a nontrivial identity 
of the form u = v where u , v  e F , which becomes the equality under every 
substitution of generators by elements from G (elements from S ).

There are several open problems concerning semigroup identities. By an 
old result of A. I. M al’cev [8 ] a group, which is an extension of a nilpotent 
group by a group of finite exponent, satisfies a semigroup identity. Recently, 
after more then 40 years, it was shown that the converse is not true [9].

In 1966 A. I. Shirshov (see [6 , problem 2.82]) posed the following problem: 
can the class of all groups with the n-Engel condition be defined by semigroup 
identities? This problem has a positive answer for residually finite n-Engel 
groups [2 ], but in general it is still open.

Another open problem is due to G. M. Bergman [1] (see also [10]): Let G 
be any group and S  be any subsemigroup generating G. Must any semigroup 
identity satisfied in S  be satisfied in G ? For a large class of groups the solu
tion of Bergman’s problem is positive in particular for residually finite and 
soluble groups [2], however S. V. Ivanov and E. Rips believe that there exists 
a counterexample. It can be shown (unpublished) that the Bergman’s problem 
is equivalent to the following:

Q u e stio n  1. Let a semigroup identity u = v imply a semigroup identity 
a = b for groups. Does the same implication hold in the class of cancellative 
semigroups?
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To illustrate the situation we give an example. The identity (x y ) 2 = (y x)2 
implies xy 2  =  y2x for groups, because the automorphism a  : x ^  x , y  ^  
x -1y changes (xy)2 = (yx)2 into xy 2  =  y 2 x .
For semigroups we can not use this automorphism.

So, to prove that (xy)2 = (y x)2 implies xy 2  =  y2x for cancellative semi
groups we need another way to go. The idea is to show first that (xy)2 = (y x)2 
implies:

(i) (y x )2y =  y (y x )2,
(ii) (yx)4 y 2  =  ((yx)2 y)2,

(iii) x ( ( y x ) 2 y ) 2  =  ( (yx) 2 y ) 2 x ,

(iv) (xy ) 4  =  (yx)4.

Then for some word p  we start with p  ■ x y 2 and by using (i)-(iv) obtain p  ■ y 2x , 
which by cancellation, implies required xy 2  =  y 2 x .

To be precise we introduce a relation p  containing pairs:
(i) ( ( yx) 2 y, y ( y x )2),

(ii) ( (yx)4y 2, ((yx)2 y )2),

(iii) (x ( ( yx )2y )2, ( ( yx)2y )2x),

(iv) ((xy)4, (yx)4).

D e fin itio n  1.1. For a relation p  we say that two words a , b  e F  are 
connected by a p -step, if a =  c 1 sc2, b =  c1 tc2, and (s, t) e p . In this case 
we write a <— > b. A sequence of a finite number of p -steps is called a p- 
sequence. If a and b are connected by a p-sequence, we write a F f  b or
(a = b).

In our case for some word p  we shall find a p-sequence connecting p x y 2 and 
p y  2x which after cancelling gives required xy 2  =  y2x .Namely, for p  = (xy)4 
we have

p x y 2 = ( x y f x y 2 = x ( y x ) 4y 2  =  x (y x ) 2 ((yx)2 y)y 

A  x ( y x ) ( y ( y x ) 2)y  = x ( ( y x ) 2y )2 A  ( ( yx )2y )2x

which gives p x y 2 = p y 2x and hence xy 2  =  y 2x as required.
The full proof ofthe equivalence of identities (xy)k = (yx)k and x y k = ykx , 

(k >  2) for cancellative semigroups is given in Theorem 3.2.
It was conjectured by J. Krempa that the identity u = v implies an identity 

a = b for cancellative semigroups if and only if for some p , q  e F  U 0  the
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words p aq  and pbq  are connected by a sequence of steps as in the above 
example. We prove this fact in Theorem 2.3.

While considering congruences, we work with pairs of words (u , v)  e 
F  x  F . Pairs of the type (a, a) we call trivial.

The identity u = v (the pair (u, v)) is called balanced if every generator 
occurs the same number of times in u and v. A cancellative semigroup which 
satisfies a non-balanced semigroup identity has to satisfy an identity of the 
type x n = x  which implies that the semigroup is a group (of a finite exponent). 
So we shall consider only balanced identities.

The degree of a balanced identity (pair of words) is the length of u (equal 
to the length of v). The identity u = v (the pair (u ,v ) )  is called cancelled 
if u , v  begin (and end) with different letters. It is easy to show that for any 
cancellative semigroup S , any semigroup identity satisfied in S  can be replaced 
by a cancelled identity of not higher degree.

We denote by End  the set of all endomorphisms of the free semigroup F  
and speak about End-invariant relations instead of fully invariant.

D e fin itio n  1.2. A relation on F  is called End-invariant if together with 
every pair (u, v) it contains all pairs (ue, ve) , e  e End .

A relation is called cancellative if together with every pair (paq,  pbq)  it 
contains (a,b),  (for p , q  e F  U 0).

For any relation p c  F  x  F  we shall consider the smallest cancellative 
End-invariant congruence on F , containing p , and denoted by p#. It means 
that the quotient semigroup is cancellative and satisfies the relation p  as an 
identity. In particular, if p = {(u, v)} where (u, v) is a pair of words from F  
then the above congruence will be denoted by (u, v)#.

In [5] the smallest cancellative congruence containing p  is described as an 
infinite sum of relations.

We give here a simple description of the smallest cancellative End-invariant 
congruence containing p . This description allows for using computer to show 
that in a cancellative semigroup one identity implies another.

We describe the poset of all two-variable semigroup identities of degree 
less or equal to five, and show that if one of them implies another for groups 
then also for semigroups.

2. Cancellative Congruences

In this section for any relation p  on F  we describe the smallest cancellative 
End-invariant congruence p # containing p . The existence of such a congruence 
follows, since the class of cancellative semigroups is closed under forming 
cartesian products and taking subsemigroups. If p  consists of trivial pairs, 
then p # is equal to diag ( F  x  F ) and is called trivial.



1 6 4 o . m a c e d o n s k a  a n d  m . z a b k a

We need also

D ef i n it io n  2.1. A relation p  satisfies Ore conditions, if for every a , b  e F  
there exist a' ,b '  e F  such that (aa' , bb') e p , and there exist a", b" e F  
such that (a"a, b"b) e p .

Lemma 2.2. Any nontrivial cancellative End-invariant relation p on semig
roups satisfies Ore conditions.

P ro o f. By using a proper endomorphism we can get a cancelled pair (u ,v)  
of two-variable words in p , such that the first letter in u is x and the first letter 
in v is y . Then

u(x,  y) = x  • u’(x, y),  v(x,  y) = y • v'(x,  y).

For any given a, b , if substitute a, b for x, y  then

(aa' , bb') e p

for a' = u'(a, b) ,b '  = v'(a, b), and hence the right Ore condition is satisfied. 
For the left Ore condition we deal with the last letters.

For a given relation p  we denote by p 115 the End-invariant, reflexive, and 
symmetric closure of p . That is p 118 is a set containing all End-images of pairs 
(u ,v )  e p  and of pairs (v ,u) .  It contains also all trivial pairs (a, a), a e F .

p irs =  {(ue, ve), (ve, ue), (a, a); b(u, v) e p , e  e En d , a e F }.

We write it shortly as a sum over (u ,v )  e p:

(1) p lrS =  U{(u, v), (v, u), (x, x)}End.

The smallest End-invariant congruence on F , containing a relation p  is 
described in [3]. Namely, two words are congruent if and only if they are 
connected by a p irs-sequence.

Our description of the smallest cancellative End-invariant congruence con
taining p  is also based on conection of words by a p irs-sequence.

T heorem  2.3. For a given relation p , let p* denote a relation consisting 
of  all pairs (a, b) such that for  some p , q  e F  U0, the words p aq  and pbq  
are connected by a p irs-sequence. Then p * = p # is the smallest cancellative 
End-invariant congruence on F ,  containing p.

P ro o f. Let p  * be a relation defined by: (a ,b)  e p  *, if and only if for some
p , q  e F U0, p aq  and pbq  are connected by a p irs-sequence (p aq  pbq).
It is clear that p * is a cancellative relation and that p* c  p #.
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To show that p* is an equivalence relation it is enough to check transitivity, 
because p irs is symmetric and reflexive. Let (a, b) and (b, c) be in p*, that is 
for some p,  q ,r ,  s e F , paq  4=^- pbq  and rbs  4=^- rcs.  We have to find 
elements g and h in F  such that gah  4=4> gch.  By Lemma 2.2 for p irs there 
exist p " , r ", q ', s ', such that p 115 contains pairs

(i) (p ”p , r " r ) ,  (ii) (qq' ,ss ' ).

Now we denote g = p"p ,  h = q q ' , then

gah = p"  • p aq  • q ' p"  • pbq  • q ' = p " p  • b • qq'
(i) H 7 ! (ii) H i  t H i  !<— > r r • b • qq <— > r r • b • ss = r • rbs • s

, irs. // / a ! (i) // / (ii) n ! ir • rcs • s = r r • c • ss <— > p  p  • c • ss <— > p  p  • c • qq = gch.

So, p * is transitive and hence the equivalence relation.
We check now that p* is a congruence, that is for every s , t  e  F , i f  (a ,b)  e 

p *, then (sat, sbt) e p *. By another words for some p,  q we have paq  4 = ^  
pbq  and we have to show that there exist g , h such that g • sat  • h 4 = ^  g • sbt  • h. 
By Lemma 2.2 for p irs we conclude that there are s", p",  t ' , q'  such that p irs 
contains pairs

(i) (s" s ,p " p ) ,  (ii) ( t t ', q q ').

If denote g = s" , h  = t ', then

g • sat  • h = s"s • a • t t '  p " p  • a • tt '  < (u\  p " p  • a • qq'  = p"  • p aq  • q '
, irs , H 1 f ff 1 f (i)’(ii) // i . ./ 1^.14 F  p  • pbq • q = p  p  • b • qq <— > s s • b • t t  = g • sbt  • h, 

which finishes the proof.

3. Properties of the congruence (u, v)#

We take now a nontrivial balanced pair of words (u, v) as the relation p  to 
describe the smallest cancellative congruence (u, v)#, such that the quotient 
semigroup is cancellative and satisfies the identity u =  v. By Theorem 2.3 a 
pair (a, b) is in (u, v)#, if and only if for some p , q  e F  U0 ,  the words paq  
and pbq  are connected by a (u, v)irs-sequence, where by ( 1 ):

(2) (u, u)ffS =  {(u, v), (v, u), (x, x ) }End

We need some properties of this congruence.
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P ro p e r ty  1. Two identities a = b and u = v are equivalent on cancellative 
semigroups if and only if (a, b)# = (u, v)#. These identities are equivalent on 
groups if and only if the words a b -1 and uv -1 define the same verbal subgroup 
in the free group Fx .

It is clear that if two identities are equivalent on cancellative semigroups, 
then they are equivalent on groups, and hence we have

P ro p e r ty  2. If a b -1 and uv -1 define different verbal subgroups, then the 
identities a = b and u = v are not equivalent on cancellative semigroups.

The converse statement is an open problem (equivalent to Question 1).

Q u e stio n  2. Is it possible that (u, v)# = (a, b)#, while uv -1 and a b -1 
define the same verbal subgroup in F OT?

For the next property, we denote by u(x1, . . . ,  x n) the word obtained from 
u(x1, . . . , x n) by writing it backward. For example xy2 =  y2x.

For a pair (a, b) we denote (a, b) := (a, b). For a set A  we denote A := 
{a; a e A}.

What will happen to a congruence if we change every pair (a , b) in it for 
the pair (a, b)? We shall call a congruence p bar-invariant if p = p .

In the case when p = (u, v)# we can show that the set (u, v)# is also a 
congruence. We call it a bar-congruence.

Lemma 3.1. (u, v)# = (u, v)#.

P ro o f. For e e End  we define e e End  by: x f  = x f ,  then End = End . For
u = u(x1, . . . ,  x n) itholds ue = u e and hence (ue, ve) := (ue, ve) = ( u e, v e). 
So

(u, v)irs =  {(u ,v) ,  (v ,u) ,  ( x , x ) } m  = {(u, v), (v ,u ) ,  ( x , x ) } End = ( u , v ) irs.

Now, a and b are connected by a p-step if and only if a and b are connected by 
a p-step. Similarly p aq  and pbq  are connected by a p -sequence if and only if 
q a p  and q b p  are connected by a p-sequence. To prove (u, v)# = (u, v)# we 
note that: ______

(a, b) is in (u, v)# iff (a, b) e (u, v)#, which is iff for some p,  q, pa q  
and pb q  are connected by a (u, v)irs-sequence, which is iff q a p  and q b p  are 
connected by a (u, u)irs-sequence, which is iff (a, b) e (u, v)#, and hence the 
statement follows.

It is clear that the congruence ( x y , y x ) # is bar-invariant. As another example 
we show that (xy2xy ,  y3x 2)# =  (xy2xy ,  y3x 2)#, which is the same as

(3) (x2y3, y x y 2x)# = (xy2x y , y 3x 2)#.



o n  e q u i v a l e n c e  o f  s e m i g r o u p  id e n t i t i e s 1 6 7

To get p =  p  it is enough to check p c  p, so in our case we check only
(x2y3,y x y 2x) e (xy2x y , y 3x 2)#.

We take the following pairs in (xy2xy ,  y3x 2)#:

(i) (xy2xy ,  y3x 2),

(ii) ( y x 2y x , x 3y 2),

(iii) ( (xy)2x 2y, (y x)3x)  (=  (i)a , a  : x ^  x,  y ^  xy;  cancelled),

(iv) ( y x3yx, x 3yxy) (=  (i)a , a  : x ^  xy ,  y ^  x; cancelled),

(v) (xy3xy, y3xyx) (=  (i)a , a  : x ^  xy ,  y ^  y ).

Then for p  = x 3, q = x y  we get:
y  o o o  o a  3

p (x  y )q = x 3(x2y3)xy =  x 4(xy3xy) 

x 4(y3xyx) =  x 3(xy3xy)x x 3(y3xyx)x =  (x3y2) ( yx )2x

A  ( y x2y x ) ( y x ) 2x  = y x 2((yx)3x)  A  yx2((xy)2x 2y) =  (yx3y x)yx2y
(iv) 3 2 3 2 2<— ► (x y x y ) y x  y = x  (yxy  x ) x y  = p ( y x y  x)q,  

which proves the example.

So a natural question arises: Does the following equality always hold (u,v)# =  
(u, v)#? This question can be formulated also as:

Q u e stio n  3. Are semigroup identities u = v and u = v always equivalent 
for cancellative semigroups?

Similar question for groups has a positive answer because u(x1, . . . , x n) =  
u(x - 1 , . . . , x - ) - 1 .

We show now that two pairs of different degree can define the same congru
ence. The following Theorem shows that the pair ( (xy)k , (y x)k) of the degree 
2k defines the same congruence as the pair (xyk , y kx)  of the degree k +  1 .

T heorem  3.2. For k > 0, (xyk , y kx )# = ( (xy)k , (yx)k)#.

P ro o f. By Theorem 2.3, to show ( (xy)k , (yx)k) e (xyk , y kx ) # we take 
q = x  and check that (xy)kq and (yx)kq are connected by a (xyk , y kx ) rrs- 
sequence. The sequence will consist of one step, for which we use the pair
( x (yx )k , (yx)kx),  which is equal to (xyk , y kx ) e for e : x ^  x,  y ^  yx.  
Namely

(xy)kq = (xy)kx  = x ( y x ) k <— ► (yx)kx  = (yx)kq,

which gives ((xy)k , (yx)k) e (xyk, ykx ) # and hence ( (xy)k , (yx)k)# c  
(xyk , y kx ) #.



1 6 8 o . m a c e d o N s k a  a n d  m . z a b k a

To prove (xyk , y kx) e ((xy)k , (yx)k)# we use the following pairs in 
( (xy)k , (y x)k)# (we explain later how to obtain them):

(i) ( (yx)k yk , ( ( yx)ky)k),
(ii) (x ( (yx )ky)k , ( (yx)ky )kx ) ,

(iii) ( ( y x f  , ( x y f ).

Now we can see that for p  = (xy)k2, (q empty) the words p x y k and p y kx  are 
connected by a ((xy)k , (yx)k)#-sequence:

p x y k = (xy)k  x y k = x ( y x ) k2 y k < % x ( ( y x ) ky )k
(ii) k k (i) k2 k (iii) k2 k k

<— ► ((yx) y) x  <— ► (yx) y x  <— ► (xy) y x  = p y  x,

which implies (xyk , y kx f  c  ((xy)k , (yx)k)#.
Now we show that pairs (i)-(iii) are in ( (xy)k , (yx)k)#. The first inclusion 

follows from ( ( yx)kly l , ( (yx)ky )1) e ((xy)k , (yx)k)#, which can be obtained 
by induction on l with use of ((yx)ky l , y l (yx)k) e ((xy)k , (yx)k)#, which 
follows by induction on l, while for l =  1  ( (yx)ky , y ( y x ) k) e ((xy)k , (yx)k)# 
follows from (yx )ky = y ( xy )k <— > y ( y x )k.

The inclusion for (ii) follows from (x(xy )k , (xy)kx) e ( (xy)k , (yx)k)#, by 
using the endomorphism g : y ^  y ( xy )k - l y, x  ^  x . The inclusion for (iii) 
is clear. This finishes the proof.

4. Two-variable identities of small degree

Let (u, v) be a pair of two-variable words written through generators x,  y, 
and let a  permutes x and y. It is clear that (u, v)# =  (v, u)# = (ua , va)# =  
(va , u a)#, so it makes sense to consider only one of the above pairs. We define 
a standard form for pairs and identities.

We say that a word u ( x , y )  is of a type X kY l if the first letter in u is x , the 
exponent sum of x ’s is k  and the exponent sum of y ’s is l .

We say that a pair (u, v) is of the type X kY l if u is of that type.
In a cancelled balanced pair (u, v) of the type X kY l the word v is of the 

type Y lX k. We note that va is then of the type X lY k.

D e f in itio n  4.1. A cancelled balanced pair (u ,v )  of the type X k Y l is called 
standard if k < l or k = l and u is lexicographically less than, or equal to va . 
An identity defined by a standard pair is called standard.

Since either (u, v) or (va , ua) is standard, we get

C o r o l l a r y  4.2. I f  (u ,v )  is any cancelled balanced pair o f  degree n, then 
the congruence (u, v)# can be defined by a standard pair o f  degree n.
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Q u e stio n  4. Is it possible that standard pairs (a, b) and (u, v) of the same 
degree and of different types define (a, b)# = (u, v)#?

Two-variable identities o f  degree < 4

Two semigroup identities are s-equivalent if each of them is a consequence 
of the other in every cancellative semigroup. In this case corresponding pairs 
define the same congruence. Every identity is s-equivalent to a standard iden
tity. We show that there are seven standard identities of degree <  4, which 
split into six s-equivalence classes. This classes form a poset with respect to 
implication of identities in cancellative semigroups.

T heorem  4.3. There are six s-equivalence classes o f  two-variable semig
roup identities o f  degree < 4. The poset  o f  the classes is given below.

Poset of s-equivalence classes of two-variable 
semigroup identities of degree < 4

P ro o f. The only standard pairs of the degree 2 and 3 are a := (xy, yx)  
and b := (xy2, y 2x).  To describe congruences of degree 4 we have to consider 
pairs (u, v) only of the type X Y 3, and X 2 Y 2. There exists only one pair of the 
first type: c := (x y3, y3x).

The set of possible words u of the type X 2 Y2 is U = {x2y 2, x y 2x,  (xy)2}. 
The set of possible words v is U a = {y2x 2, y x 2y, (yx)2}. Since the pairs 
(u, v) have to be cancelled and of the length 4, we have to consider only:

(x2y2,y 2x 2), (x2y2, ( y x ) 2), (x y2x, yx2y), ( (xy)2, (y x)2).

Since by Theorem 3.2, ( (xy)2, (yx)2)# is also defined by the pair (xy2, y 2x)  
of degree 3 we have to consider only pairs:

d := (x2y2, y2x 2), e := (x2y 2, (y x)2), f  := (xy2x, y x 2y).
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To show that the six congruences defined by pairs a - f  of degree <  4 are 
different for cancellative semigroups it is enough (by Property 2) to show 
that the corresponding identities define different verbal subgroups V  in the 
two-generator free group F .

It is clear that

V(a) = [F, F ], V(b) =  [F , F 2], V(c) =  [F, F 3], V(d) =  [F 2, F 2].

For e we write corresponding identity x 2y2 =  (yx)2 in anon-cancelled form as 
x 3y3 =  (xy)3, then by [4] it defines the verbal subgroup V(e) = F 3 n  [F, F]. 
For f  the corresponding identity xy2x =  yx2y , is equivalent by [11] to 2- 
engel identity [x, y, y ] =  1, and hence in the 2-generator group F  it defines 
the verbal subgroup V ( f )  =  [[F, F ], F ]. It is known that all these verbal 
subgroups are different and hence the congruences are different.

To draw the poset of congruences (s -equivalent classes of identities) we 
need to chek implications. Since most of implications are obvious, we have to 
prove only that on cancellative semigroups the identity x 2y2 =  (y x)2 implies 
both xy3 =  y 3x  and xy2x =  yx2y . To prove the first implication we show that 
(x y3, y 3x) € (x2y2, (yx)2)#.

We define p,  q and connect p x y 3q and p y 3xq  by a (x2y2, (yx)2)#-sequence. 
Every step of the sequence uses one of the following pairs in (x2y2, (yx)2)# :

(i) (x2y2, ( y x)2),

(ii) ( ( x y f y ,  y x y 2x) (= (i)a , a  : x ^  xy ,  y  ^  y; cancelled),

(iii) (x yxyA, y 2x y 3x)  (=  (i)a , a  : x ^  xy ,  y ^  y 2; cancelled),

(iv) (y4x 2, (xy2)2) (= (i)a , a  : x ^  y2,y  ^  x).

Then for p  = y 2, q = x  we get:

3 2 3 (iii) 4 2 2 p ( x y  )q = y x y  x<— ► x y x y  = (xy) yy

yxy2xy2 =  y(xy2)2 ^  y(y4x 2) =  y2(y3x)x =  p ( y 3x)q,

which by cancellation leads to required (x y3, y3x)# c  (x2y2, ( y x)2)#.
To prove the second implication we show that (x y2x, y x 2y) €

(x2y2, (yx)2)#. We note that (x2y2, (y x)2)# contains the following pairs:

(i) (x2 y2, ( y x)2),

(ii) (y2 x 2, (xy)2),

(iii) ( (xy)2y, y x y 2x) (= (i)a , a  : x ^  xy ,  y  ^  y; cancelled).
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Then for p  = y 2 we have:

A  y(y2x 2)y = y 2( y x 2y) =  p ( y x 2y),

which finishes the proof.

[F, F ]

F 3 n  [ F, F ] [F, F2]

[[F, F], F ] [F2, F2]

The poset of verbal subgroups defined by a single two-variable semi
group identity of degree < 4 in a two-generator free group F

Two-variable identities o f  degree < 5

We show that there are 13 standard pairs of degree 5, which give only four 
new s -equivalence classes, and draw the poset for s -equivalence classes of 
identities of degree <  5.

T heorem  4.4. There are ten s-equivalence classes o f  two-variable semig
roup identities o f  degree < 5. The poset is given below.

P ro o f. We note that for the degree equal to 5 there are standard pairs 
only of the type X Y 4, and X 2Y3. There exists only one pair of the first type:

For standard pairs of the type X 2 Y 3, the word u is in the set U23 below (split 
with respect to the last letter of the words):

The word v is in

U32 =  {yxyxy ,  yx2y2, y2x 2y } U {yx y2x,  y 2xy x ,  y3x 2}.

Combining possible u and v we can see that there are 12 (=  3 +  3 • 3) diffe
rent cancelled pairs of the type X 2Y3. So there are 13 standard pairs of the

(xy4, y4x).

U2 3  =  {xy3x } U {xyxy2, x y 2xy ,  x 2y3}.
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Poset of s-equivalence classes of two-variable semigroup identities of degree 
< 5

degree 5. However we can prove that they define only four new congruences. 
The following Lemma will finish our proof.

Lemma 4.5. There exist only four  different congruences o f  the degree five.

Proof. First we show that 7 of the 13 standard pairs of the degree 5 
define known congruences, already obtained by using pairs of smaller degrees, 
namely:

1. (xy3x,  y2x 2y)# =  (xy,  yx)#,

2. (xy3x,  yx2y2)# =  (xy,  yx)#,

3. ( (xy)2y, y x y 2x ) # = (x2y2, ( y x)2)#,

4. (xy2xy ,  y ( y x ) 2)# = (x2y2, ( y x)2)#,

5. (xy3x,  (y x)2y)# =  (x y2x, yx2y)#,

6. (xy2xy ,  y x y 2x ) # = (x y2, y2x)#,

7. ( (xy)2y, y ( y x ) 2)# = (x2y2, y2x 2)#.
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Proof. Equality 1 is proven in [7, p. 132]. We obtain 2 by taking the bar- 
congruences in equality 1:

( xy3x, yx2y2)# =  (x y3x, y2x 2y)# =  (xy, yx)# = (xy, y x ) #.

For following equalities of the type (a, b)# = (u, v)#, we shall check (a ,b)  € 
( u , v ) # and (a ,b )# b (u,v) .  To get (a ,b)  € (u, v)# we define p,  q and connect 
pa q  and pbq  by a (u, v)#-sequence. Every step of the sequence uses some 
pair in (u, v)#, which is obtained as an image of (u, v) under some a € End . 
The pairs and sequences are found by using computer.

3.1. ( (xy)2y, y x y 2x) € (x2y 2, (yx)2)#.

This follows by applying a  : x ^  xy ,  y ^  y  to (x2y2, (y x)2) and cancella
tion.

3.2. ( ( x y f y ,  y x y 2x f  b (x2y 2, (yx)2).

We use the following pairs in ( (xy)2y,  yxy2x)#:

(i) ( (xy)2y , y x y 2x),
(ii) ( (xy2)2, yxy3x) (=  (i)a , a  : x ^  xy ,  y ^  y ; cancelled),

(iii) ((y2x ) 2x, x y 2x 2y 2) (=  (i)a , a  : x ^  y 2, y  ^  x),

(iv) (y2xy3xyx, xy3(xy)2y) (=  (i)a , a  : x ^  y 2, y  ^  xy;  cancelled).

Then for p  = x y 2, q = y 2 we have:

p (x 2 y 2)q =  xy2 (x 2y 2 )y  2 =  (xy 2 x 2 y 2)y 2
(iii) 2 2 2 2 2 (i) 2 2 2 2<— ► ((y2x )2x )y 2 =  y ( y x y  x ) x y  <— ► y ( (xy ) zy ) x y z = y x y ( x y z)2

(ii) 3 2 2 (ii) 3 2 3<— > y x y ( y x y  x)  = y ( xy  ) y x  <— ► y ( y x y  x ) y x  = y x y  x y x
(iv) 3 2 2 2 2 2<— > x y  (xy) y = x y z (y x) zy 2 =  p ( y x ) zq,

as required.
So the equality 3 follows.

The equality 4 follows from equality 3 by taking bar-congruences, similarly 
to as 2 follows from 1.

5.1. (xy3x , ( y x ) 2y) € (xy2x , y x 2y)#.

We apply endomorphism a  : x ^  y , y  ^  x y  to the righthand pair
(xy2x,  y x 2y). After cancellation it gives ( (yx)2y,  xy3x , ) € (xy2x,  y x 2y)# 
which implies 5.1.

5.2. (xy3x,  (y x)2y)# b (x y2x, yx2y).
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We use the following pairs in (xy3x,  (y x)2y)#:

(i) (xy3x,  (y x)2y),
(ii) ( ( yx)3y, (xy2)2x) (= (i)a , a  : x ^  y, y ^  xy).

Then for p  = x y 2 we get:

2 2 2 2 2 (ii) 3 2p ( x y l x)  = x y  (xy2x) =  (xy2)2x^— ► (y x)5y = ( (yx )1 y) xy
(i) 3 2 2 2<— ► (xy x ) x y  = x y  (yx y) = p ( y x  y),

which gives 5.2 and hence 5.

6.1. ( xy2xy ,  y x y 2x) € (xy2, y2x)#.

We use the following pairs in (xy2, y2x)#:

(i) (xy2, y 2x),

(ii) (yx2, x 2y).

Then for p  = y 2 we get:

2 2 2 2 2 (i) 2 2 3 2p ( x y  xy)  = y (xy xy)  = y L(xyL) x y <— ► y2(y2x)xy =  y3(yx2)y
(ii) 3 2 3 2 (i) 3 2 2 2 2<— ► y (x y) y  = y x ( x y  ) <— ► y x ( y  x)  = y (yxy  x)  = p ( y x y  x).

6.2. ( xy2xy ,  y x y 2x ) # b (xy2, y 2x).

We use the following pairs in (xy2xy ,  y x y 2x)#:

(i) (xy2x y , y x y 2x),

(ii) ( ( yx)2y 2x,  x y ( y x ) 2y) (=  (i)a , a  : x ^  y , y  ^  xy; cancelled).

Then for p  = yx,  q = x y  we get:

2 2 2 (i) 2 2 2p ( x y  )q = yx  (xy )xy  = y x ( x y  xy)<— ► y x ( y x y  x)  = (yx) y x

x y ( y x ) 2y = (xy2x y ) x y  ( y xy2x ) x y  = y x ( y 2x ) x y  = p ( y 2x)q,

as required.

7.1. ( (xy)2y , y ( y x ) 2) € (x2y2,y 2x 2)#.

The lefthand pair is the cancelled image of (x2y 2, y2x 2) under a  : x ^
x y , y ^  y.

7.2. ((xy)2y, y ( y x ) 2)# b (x2y2, y2x 2).
We use the following pairs in ( (xy)2y, y ( y x ) 2)#:

(i) ((xy)2y , y ( y x ) 2),
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(ii) ( ( y x f x , x ( x y ) 2),
(iii) ( ( xyx )2y, y ( x y x ) 2) (= (i)a , a  : x ^  x,  y ^  xy; cancelled),

(iv) ( ( yx2)2, (x2y)2) (=  (i)a , a  : x ^  xy ,  y ^  x ; cancelled).

Then for p  = x y x  = q we have:

p ( x 2y  2)q =  x yx(x2y2)xyx =  x yx3 ( y (yx )2)
(i) 3 2 2 2<— ► xy x 3((xy)2y) =  x yx2(x(xy)2)y

(ii) 2 2 2 2 (iii) 2 2 2 2<— ► xyx ((yx) x ) y  = ( (xyx) y) x  y <— ► (y(xyx)  )x y = y x ( y x  ) x y

y x ( x 2y ) 2x y  = y x 2(( xyx )2y) A  yx2(y(xyx)2) =  y (x (xy )2)x2yx
(ii) 2 2 2 3<— ► y((yx )  x ) x  y x  = (y(yx)  ) x 3yx

(i) 2 3 2 2 2 2<— ► ((xy) y)x  y x  = x y x ( y  x  ) xyx  = p ( y  x  )q,

as required.

So seven pairs of the degree equal to five give known congruences, which 
were defined by pairs of smaller degrees.

We have five more pairs of degree five to consider. They define not more 
than three different congruences because we know by (3) that

8. (x y2xy ,  y3x 2)# =  (x2y3, yxy2x)#.

Also we can prove that:

9. ( x y x y 2, y3x 2)# =  (x2y 3, y2xyx)#.

By bar-equivalence reason we show only that (xyxy  2, y 3x  2) € (x 2y3, y  2 xyx)#. 
We take the following pairs in (x2y 3, y2xyx)#:

(i) (x2y 3, y ( y x ) 2),

(ii) (y2x 3,x 2yxy),

(iii) ( y x y x 3, (x2y)2) (=  (i)a , a  : x ^  xy ,  y ^  x ; cancelled),

(iv) (y4x 3, x ( x y 2)2) (=  (i)a , a  : x ^  yy, y ^  x),

(v) (xy2xy3, y 2x y 3x) (= (i)a , a  : x ^  xyy ,  y ^  y ; cancelled).

Then for p  = x y 2, q = x y x  we get

p ( x y x y  )q = x y  ((xy) y ) x y x  = x y ( yx )  (y(yx)  )
(i) 2 2 3 3 3 (iii) 2 2 3 2 2 3<— ► x y (y x )  (x2y3) =  x y (yxyx3)y 3 <— ► xy(x2y)2y3 =  xy x 2y(x2y3)y

(i) 2 2 2 3 2<— ► x yx2y ( y (y x )  )y = x y x y  )(xy)
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(i) 2 2 3 2 (ii) 3 2 3 2 3 2<— ► x y (y (y x )2) ( xy )2= x y 5x y ( x Lyx y)  <— ► xy3x y (y 2x 3) =  x y (y 2xy3x )x 2
(v) 2 3 2 2 3 (v) 2 3 2 2<— ► x y ( x y  x y  )x = x y x ( y  x y  x ) x  <— ► x y x ( x y  x y  )x = x y ( x ( x y  ) )yx

(iv) 4 3 2 3 2 3 2<— ► x y ( y  x  )y x  = x y  (y x  ) x yx  = p ( y  x  )q,

which implies ( x y x y 2, y3x 2)# c  (x2y3, y2xyx)#. By taking bar-congruences 
we get the equality.

So Lemma is proven, there are not more than three different congruences 
of the type X 2 Y3 and one of the type X Y 4, defined by pairs:

g := ( x y x y 2,y 3x 2), i := (x2y3,y 3x 2), 

h := (xy2xy, y3x 2), j  := (xy4, y4x).

To show that these pairs are not r-equivalent and hence define different con
gruences it is enough (by Property 2) to show that the corresponding identities 
define different verbal subgroups V  in the two-generator free group F . It is 
clear that V(i) =  [F 2, F 3], V ( j )  =  [F , F 4].

I. We prove now that V(g) =  [[F, F ]F , F 5]. Because of the known equal
ity [[F, F ]F , F 5] =  [[F, F ], F ][F , F 5] it is enough to prove that g# =  
{ f ,  (xy5, y5x)}#, since V ( f )  =  [[F, F ], F ]. So we need to check:

1°. ( x y x y 2, y 3x 2) € { ( x y 2x , y x 2y),  (x y5, y 5x)}#,

2°. ( x y x y 2, y 3x 2)# b (xy2x,  y x 2y),

3°. ( x y x y 2, y3x 2)# b (xy5, y5x).

1°. We take the following pairs in {(xy2x,  y x 2y), (xy5, y 5x)}#:

(i) (xy2x ,y x 2y),

(ii) (xy5, y 5x),

(iii) (yx5, x 5y),
(iv) ( (xy)2x,  yx3y) (=  (i)a , a  : x ^  x,  y ^  xy; cancelled),

(v) ( ( yx)2y, x y 3x) (= (i)a , a  : x ^  y, y ^  xy; cancelled),

(vi) (x (xy )2x 2, y x 5y) (=  (i)a , a  : x ^  xx ,  y ^  xy;  cancelled).

Then for p  = x 2, q = yx  we get:
ry 0 0 0 0

p ( x y x y  )q = x  (x yxy  )yx  = x  y ( xy  x)
(v) 3 2 2 2 (i) 2 2 2 2

<— ► x y ( (yx )  y) = x  (xy x ) y x y  <— ► x (yx  y ) y x y  = x  y x ( x y  x ) y

A  x 2y x(yx2y)y =  (x(xy)2x 2)y 2 A  (yx5y)y2 =  y (x5y )y 2
(iii) 5 2 5 (vi) 2 2 2 2<— ► y ( yx  ) y 2 =  y ( y x Dy) y  <— ► y ( x ( x y ) 2x 2)y = yx  y x ( y x  y)



(i) 2 2 2 2 (i) 2 2 3 2<— ► yx2y x ( x y  x)  = y x L( y x2y ) yx  <— ► yx2(xy2x)yx =  ( y x 3y ) ( y x )2
( iv) 2 2 2( (xy)1x ) (yx )  = x ( (yx )  y ) x yx

( v) 3 2 3 2 3 2<— ► x ( x y  x ) x y x  = x  (y x  )yx  = p ( y  x  )q.

2°. To prove that (xy2x, yx2y) € ( x y x y 2, y3x 2)# we use the following pairs 
in ( x y x y 2, y3x 2)#:

(i) ( x y x y 2, y3x 2),
(ii) ( y x y x 2, x 3y2),

(iii) ( (xy2)2, y 3xyx )  (=  (i)a , a  : x ^  xy ,  y ^  y ; cancelled.)

Then for p  = yxy ,  q = x y 2 we get:
0  0 0 0 0 0 p ( x y  x)q  = y x y ( x y  x ) x y  = y ( x y x y  )x y

y ( y ix 2) x 2y 2 =  y4x (x 3y2) A  y4x(y x y x 2) =  y (y3xyx )y x 2

y(xy2 )2yx2 =  yxy2x (y 3x 2)
(i) 2 2 2 2 2<— ► y x y  x ( x y x y  ) = y x y ( y x  y ) xy  = p ( y x  y)q.

3°. To prove that (xy5, y 5x) € ( x y x y 2, y 3x 2)# we use the following pairs in 
( x y x y 2, y 3x 2)#:

(i) ( x y x y 2, y3x 2),
(ii) ( ( yx2)2, x 3yx y)  (= (i)a , a  : x ^  xy ,  y ^  x ; cancelled),

(iii) ( (xy2)2, y3xyx )  (= (i)a , a  : x ^  xy ,  y ^  y ; cancelled),
(iv) ((y2x ) 2x, x 3y 4) (= (i)a , a  : x ^  y y , y  ^  x ),
(v) (xy3xy2, y3xy2x) (=  (i)a , a  : x ^  xyy ,  y ^  y ; cancelled),

(vi) (y3x y 3x 2, x 3y 6) (= (i)a , a  : x ^  yyy ,  y ^  x ).

Then for p  = x 4,q  = y  we get:

p ( x y 5)q = x 4(xy  5)y =  x 2(x3y 6) + - ^ x 2(y3 xy3x 2) =  x ( x y 3x y 2) y x 2
(v) 3 2 2 3 2 2 (v) 3 2 2 3 2 2<— ► x (y 3xy2x )y x 2 =  (x y3x y ^ ) x y x 2 <— ► (y3xy2x )xyx2 =  y3x y ( y x 2)2

(ii) 3 3 3 2 (iii) 2 2 2 2 2<— ► y3x y (x 3yxy) =  (y3x y x)x (xy)2 <— ► (xyL) x ( x y ) L = x ( ( y 2x )2x)yxy

A  x (x 3y4) y xy  = x 4(y5x ) y  = p ( y 5x)q,

and hence V(g) =  [[F, F ] F 5, F].

II. We prove now that V (h) =  [[F, F ] F 4, F ]. Because of the equality 
[[F, F ] F 4, F ] =  [[F, F ], F ] [F 4, F ] it is enough to prove that h# =  { f ,  j }#. 
So we need to check:

o n  e q u i v a l e n c e  o f  s e m i g r o u p  i d e n t i t i e s  1 7 7
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100. (xy2xy ,  y 3x 2 ) e {(xy 2 x, y x 2y),  (xy4, y4 x)}#,

200. (xy2xy ,  y 3 x 2 )# 3 (xy2x,  y x 2y),

300. (xy2xy ,  y 3 x 2 )# 3 (xy4, y4 x).

100. We use the following pairs in {(xy2x , y x 2y),  (xy4 , y 4 x)}#:

(i) (xy 2 x , y x 2 y),

(ii) (xy4, y 4 x),

(iii) (yx 4 ,x 4 y),

(iv) (yx 4 y, x 2y 2x 2) (=  (i)a , a  : x ^  y, y ^  xx).

Then for q = x 2  we get:

(x y 2  xy )q  = (xy2x y ) x 2 = (xy2x ) y x 2J - U ( y x  2 y)yx 2  =  y (x 2  y 2 x 2 )

A  y ( y x 4y) = y 2(x4y) A  y 2(y x 4 ) =  (y 3 x 2 )x 2  =  (y 3 x 2 )q.

200. To prove that (xy2x,  y x 2y) e (xy2xy ,  y 3 x 2 )# we use the following pairs 
in (xy2xy ,  y 3 x 2 )#:

(i) (xy 2 x y , y 3 x 2 ),

(ii) (y x2y x , x 3y 2),

(iii) ( (xy)2x 2y, (y x)3x) (= (i)a , a  : x ^  x,  y ^  xy; cancelled),

(iv) (x (xy )2x 3 y, (y x)2yx 4 ) (=  (i)a , a  : x ^  xx ,  y  ^  xy;  cancelled),

(v) (y x3yx ,  x 3 yxy) (=  (i)a , a  : x ^  xy ,  y ^  x ; cancelled),

(vi) ( (xy)3x 2y, (y x)3xyx )  (=  (i)a , a  : x ^  xx y ,  y ^  xy;  cancelled).

Then for p  = x 4  , q  = y x y  we get:

0 ¿ 1 0  ¿ 1 0  p ( x y  x)q  = x  (xy x ) y x y  = x  (xy xy ) x y
(i) 4  3 0 3 0 3 (ii) 0 3 0 3<— ► x  (y x  )xy  = x ( x  y ) y x  y <— ► x ( y x  y x ) y x  y = x y (x ( xy )  x  y)

A  x y ( ( y x ) 2y x 4) = x y ( ( y x ) 3x ) x 2 A  x y ( ( x y ) 2x 2y ) x 2 =  x ((y x ) 3 xyx)x
(vi) 3 2  2  2  2  (iii) 2  3 2  3<— ► x ( (xy )  x 2 y)x  =  x 2 y((xy)2 x 2 y)x  <— ► x 2 y ((yx )3 x)x =  x (xy 2 xy)xyx 3

( i) 3 2  3 2  3 2  (v) 2  3 2  3 2<— ► x ( y  x  ) x yx  = x y  (yx yx ) x  <— ► xy (x y x y ) x  = x y ( y x  y x ) y x
( v ) 3 2  3 2  2  (v) 3 2  2  4  3 2<— ► x y ( x  y x y ) y x  =  x (y x 3 yx)y 2 x 2  <— ► x (x 3 yxy)y 2 x 2  =  x 4 y x(y 3 x 2 )

x 4  yx  (x y2 xy)  = x  4(yx  2  y ) y x y  = p ( y x 2y)q.

300. To prove that (xy 4 , y4 x) e (xy2xy ,  y 3x 2 )# we use the following pairs in 
(x y 2 xy, y 3 x 2 )#:
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(i) (xy2xy ,  y3x 2),

(ii) ( y x 2y x , x 3y 2),

(iii) (x2y2x 2y, y3x 4) (=  (i)a , a  : x ^  xx ,  y ^  y),

(iv) ( y x3yx, x 3yxy) (=  (i)a , a  : x ^  xy ,  y ^  x; cancelled),

(v) (xy3xy ,  y3xyx) (= (i)a , a  : x ^  xy ,  y  ^  y ; cancelled).

Then for p  = x y 2, q = x 3 we get:

4 2 4 3 2 3 3 (i) 3 2 3 3 3 2 3 2P(xy  )q = x y  (xy4)x 3 =  (xy2x y )y 3x 3<— ► (y3x 2)y 3x 3 =  y3x 2(y3x 2)x
(i) 3 2 2 3 3 2 (ii) 3 2 4 2 2<— ► y x (xy x y ) x  = y (x y ) x yx  <— ► y (yx y x ) x y x  = y x  (yx yx)

A  y4x 2(x3y2) =  y (y 3x 4)xy2 A  y(x2y2x 2y)xy2 =  yx2y(yx2yx)y2

A  yx2y(x3y2)y2 =  ( y x 2yx)x2y4 A  (x3y2)x 2y4 =  x (x 2y2x 2y)y3
(iii) 3 4 3 3 3 2 (ii) 3 2 3 2<— ► x ( y  x  )y = x y  x ( x  y )y <— ► xy x ( y x  y x ) y  = (xy xy )x ( xy )

(y3x y x ) x ( x y ) 2 =  y3 x ( y x 3y x ) y  y 3x ( x 3y x y ) y  = (y3x 4) y x y 2
(iii) 2 2 2 2 2 2 2<— ► (x2y2x 2y ) y x y  = x 2y2x(xy2xy)y

x 2y2x (y 3x 2)y =  x (x y 2xy)y2x 2y x (y 3x 2)y 2x 2y =  xy3(x2y2x 2y)

^  x y 3(y3x 4) =  xy2(y4x )x 3 =  p ( y 4x)q.

So we can see that all ten pairs a -  j  define different verbal subgroups and 
hence the four pairs of the degree 5 define different congruences of degree five 
which finishes the proof of Lemma 2.2.

To finish the proof of Theorem 3.2, that is to draw the poset of s -equivalent 
classes of identities of degree <  5 we need to check implications. The only 
non-obvious implications are denoted by * on the picture.

1*. The inclusion (x y2x, yx2y) e ( x y x y 2, y3x 2)# is checked in the case 20 
above.

2*. The inclusion (x y2x, yx2y) e (x y2xy ,  y3x 2)# is checked in the case 
2 00.

3*. The inclusion (xy4, y 4x) e (xy2xy ,  y3x 2)# is checked in the case 300.

4*. To prove that (x2y 2, y2x 2) e (xy2xy ,  y3x 2)# we use the following pairs 
in (xy2xy ,  y3x 2)#:

(i) (xy2x y , y 3x 2),

(ii) (x2y2x 2y,  y3x 4) (=  (i)a , a  : x ^  xx ,  y ^  y),

(iii) (y2x 2y2x, x 3y4) (=  (i)a , a  : x ^  yy, y ^  x),
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(iv) (x y3xy, y3xyx) (=  (i)a , a  : x ^  x y , y  ^  y ; cancelled),

(v) (y x3yx ,  x 3yxy)  (= (i)a , a  : x ^  xy ,  y  ^  x ; cancelled).

Then for p  = y 3,q  = x 3 we get:

p ( x 2y 2)q = y 3(x2y 2)x 3 =  y (y2 x 2 y2x )x 2 < ^ y ( x 3y4)x2 =  y x 3y ( y 3x 2)
( i) 3 2 3 2 ( v) 3 2 3 3<— ► yx y ( xy  xy)  = (yx  y x ) y  x y  <— ► (x y x y ) y  x y  = x  y ( xy  xy)

A  x 3y(y3xyx) =  (x3y4)xyx A  (y2x 2y2x)xyx =  y2(x2y2x 2y)x

A  y2(y3x 4)x =  y3(y2x 2) x 3 =  p ( y 2x 2)q,

which finishes the proof.

[F, F ]

[[F, F ] F5, F ] F3 n  [F , F]

[F, F3]

[[F, F ], F ] [F, F 4]

[F, F 2]

[F2, F3] [[F, F ]F 4, F ]

[F2, F2]

The poset of verbal subgroups defined by single two-variable semi
group identities of degree < 5 in a two-generator free group F
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