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1 Introduction

1.1 High Energy Physics

High Energy Physics (HEP) is a subfield of physics that investigates the elementary 

particles of matter and the forces between them. The name, of the field is related to the fact 

that many subatomic particles do not occur under ordinary conditions on Earth and can only be 

obtained during high energy collisions of regular particles that can be found in nature. These 

collisions are carried out in specialized instruments called particle accelerators. Currently, the 

world largest and highest-energy particle accelerator is the Large Hadron Collider (LHC) at CERN 

in Geneva, Switzerland (shown in Figure 1-1).

Figure 1-1 LHC Ring 
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Basically, two attributes characterize a particle collision: loss of energy by the particle and 

a deflection of the particle from its original motion direction [1]. These attributes are often 

registered for further analysis in order to extend the knowledge about the phenomena 

occurring during collisions. Cross section is the basic concept used in particle physics for 

evaluating the probability of interaction or collision between two particles. The second 

important property describing the collisions is the luminosity which is determined by storage 

ring operating conditions. By definition, the luminosity is the number of particles in the beam 

per unit time and can be increased by increasing the beam intensity. The luminosity is 

proportional to the number of particles of each of the two colliding beams and to the beam 

revolution frequency. It is inversely proportional to the beam size in the collision point. The 

luminosity multiplied by the cross-section gives the process collision rate. The two discussed 

quantities essentially allow estimating how many particle collisions will occur per unit of time 

and as a result, define the needed design data-taking rate.

1.1.1 Large Hadron Collider

The LHC is the largest circular accelerator with circumference length of 27 km, located 

about 100 to 150 m underground. The LHC is designed to accelerate two beams of hadrons 

(protons or lead ions) in opposite directions and then to collide them with energy of 7 TeV per 

each beam (14 TeV in total) and with luminosity of 1034 c r r f V 1 (which corresponds to a bunch 

crossing frequency of 40 MHz) [2]. The main goal of LHC is to study the electroweak symmetry 

breaking for which the Higgs mechanism theory is supposed to be an explanation. These 

experimental studies can also contribute to the mathematical consistency of the Standard 

Model at energy scales above about 1 TeV. Moreover, the LHC opens up opportunities for 

discoveries that could lead towards a unified theory such as extra dimensions or 

supersymmetry theory. Furthermore, the heavy-ion collisions carried out at LHC allow for 

conducting research on Quantum Chromodynamics (QCD) matter under extreme conditions of 

temperature, density, and parton momentum fraction (low-x).
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1.1.2 Compact Muon Solenoid

The Compact Muon Solenoid (CMS) is one of two large general-purpose experiments at 

LHC for studying proton-proton and heavy ion collisions at TeV scale. In order to avoid mixing 

a single event of particles collision with other collisions from the same bunch crossing CMS has 

been designed using high-granularity detectors with good time resolution (which results in low 

occupancy) and equipped with millions of readout channels.

Figure 1-2 The Overall layout of CMS detector

As shown in Figure 1-2, the CMS detector has an onion-like structure. It is constructed of 

multiple layers that are responsible for concurrent measurements of numerous parameters and 

phenomena caused by hadron collisions. The magnetic field is provided by a 4-T 

superconducting solenoid. In order to guarantee reliability and full geometric coverage, four 

muon stations have been installed, each of them composed of a number of layers of aluminum 

drift tubes (DT), and cathode strip chambers (CSC), completed by resistive plate chambers 

(RPC). The tracking volume consists of 10 layers of silicon microstrip detectors that ensure
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desired granularity and accuracy. Moreover, 3 additional layers of silicon pixel detectors are 

used to further enhance the observation quality of the impact parameter of charged-particle 

tracks, along with the position of secondary vertices. The electromagnetic calorimeter (ECAL) is 

made from lead tungstate (PbW04) crystals and placed in the central barrel part, with 

preshower detector in front. ECAL is encapsulated inside a hadron calorimeter (HCAL) that is a 

brass scintillator sampling calorimeter.

1.2 Data Acquisition

The goal of data acquisition (DAQ) systems is to register conditions, parameters and 

measurements describing some specific physical effects. [3] For example, the observed 

phenomena could be the effects of a drug on an organism, seismic activities, collision of 

elementary particles, and so on. Basically, any data acquisition system records only one thing, 

which is the voltage (or eventually the electric current). Therefore, all data acquisition systems 

require transducers that convert the phenomena of interest into voltage. For each data 

acquisition system a proper sampling rate has to be chosen. Too low sampling rate will result in 

inaccurate measurements that will not reflect the nature of the observed phenomena. Setting 

the sampling rate too high will result in large amount of redundant data that require additional 

resources for storage and analysis. In the case when at the time of measurement it is difficult to 

estimate the measurement's significance the acquired data often need to be filtered. Any 

detector used in data acquisition requires calibration, so the accuracy of the measurements is 

known.

1.2.1 Data Acquisition in High Energy Physics

The modern detectors used in high energy physics (HEP) experiments are complex 

instruments designed to register collisions of elementary particles at extremely high energies. 

Only a small fraction of such collisions results in interesting, new phenomena. Therefore, in 

order to maximize the probability of a discovery in particle physics, a collision rate in the MHz 

range is needed. Data that correspond to a single collision of particles referred to as an event 

are acquired from millions of readout channels. Those readout channels are merged into

15



several hundreds of detector front-ends. Each detector front-end serves as a source of event 

fragments. The event fragments corresponding to a single event contain a common, unique ID, 

so they can be combined into a whole event later. One of the major challenges that today's HEP 

Data Acquisition Systems are facing is to process the huge amounts of data produced by the 

detectors. Since it is not possible to send all collected events to persistent storage due to the 

required space, a drastic event filtration has to be achieved. The goal is to select only those 

events that describe the phenomena of interest (e.g. confirm the existence of Higgs Boson). The 

filtration process has to begin as soon as possible and therefore the first selection decisions are 

made based only on some partial event information (e.g. using an event fragment). Afterwards, 

when an event has been fully reconstructed more sophisticated algorithms are used in order to 

take the final selection decision. Depending on the filtering stage the selection algorithms are 

implemented either in hardware (early stages) or in software.

1.2.2 Drawbacks of static workload distribution

After the first event selection step that is completely realized in hardware, the data 

acquisition systems used in HEP experiments, acquire event fragments from numerous 

sources. [4] Further filtering steps are implemented in software running on a set of computing 

farms. In the very first software-selection step due to the still high rate (the order of 100 kHz), 

the data are usually distributed in a static way between filtering nodes. In case of systems, with 

only one stage of software filtration, this is also the final stage, where the event reconstruction 

has to be done. In this case the static distribution determines strongly the system. The 

processing power of the participating computing nodes and farms has to be easily measurable, 

so that the distribution schema could be prepared precisely. Subsequently, it is difficult to 

introduce heterogeneity to the discussed group of data acquisition systems. Moreover, static 

data distribution decreases fault tolerance and introduces additional single points of failure. 

The main goal of our research is to replace the static workload distribution policy with an 

algorithm that allows for dynamic adjustment to the changes in the available processing power 

and thereby increases the system's overall fault tolerance. The algorithm should also facilitate 

measurements of load on the system, and evaluation of the available computing power so it 

could be easily applied to heterogeneous systems.

16



1.2.3 CMS Data Acquisition System

The CMS is a multi-purpose detector for studying proton-proton and heavy ion collisions 

at TeV scale [2]. CMS is designed to collect data at the LHC bunch crossing frequency of 40 MHz 

(as described in subsection 1.1.1). The first level trigger pre-selects events with interesting 

signatures reducing the incoming data rate to a maximum of 100 kHz. The DAQ System (shown 

in Figure 1-3) acquires event fragments from about 500 sources and combines them into full 

events. Each data source delivers event fragments of an average size of 2 kB at a rate of 100 

kHz. Event fragments are transported by a non-blocking network [5] (based on Myrinet [6] 

technology) to the surface and statically distributed (usually in round-robin fashion) amongst 

several autonomous processing units called DAQ Slices.

Figure 1-3 Schematic view of the CMS DAQ System [2], described in more details in section 3.1

A DAQ Slice is a computing farm organized around a Terascale ForcelO switch, where 

parallelization is achieved through SPMD (Single Process, Multiple Data [7]) technique. In the 

first event building stage event fragments are received by a DAQ Slice through distributed 

readout consisting of computing nodes called Readout Units (RU), and then assembled into 

super-fragments inside these RUs. Subsequently, in the second stage, in each of the DAQ Slices,
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an Event Manager (EVM) node assigns super-fragments to Builder Units (BU) that construct the 

whole event. The complete events are then delivered to Filter Units (FU) that run the High Level 

Trigger selection algorithm (BU and FU are hosted on the same node). Events accepted for 

storage are transmitted to Storage Manager (SM) nodes connected to a Storage Area Network. 

Currently when one DAO. Slice becomes less efficient, e.g. because of some fault like a failing 

computing node it slows down other DAQ. Slices. Moreover, there are several potential single 

points of failure like the EVM, SM and RU nodes.

1.3 Fault Tolerance

The most popular way of achieving reliable computing is to employ fault avoidance that 

is most importantly about using the most reliable components and conducting comprehensive 

and careful testing. [8] Rare and incidental system errors are accepted as a necessity and 

require a manual intervention in order to recover from them (the probability of fault-free 

execution in a completely fault intolerant system is equal to the probability of a correct 

program operation). In some situations, the fault avoidance method is insufficient, in particular 

when the frequency and duration of recovery are intolerable or when the system may be 

unavailable to manual corrections and reparations. In these situations fault tolerance has to be 

employed.

To achieve fault tolerance additional components (protective redundancy) and sophisticated 

algorithms have to be integrated into the system. Their role is to ensure that an erroneous 

event will not lead to failure of the system. The efficiency with which erroneous states 

corresponding to faults are detected and diagnosed, and then successfully repaired defines the 

degree of fault tolerance. After a fault occurrence, depending on the extent of fault tolerance, 

and also on the complexity of the problem, the system may perform with its full efficiency, or 

may provide only reduced performance or limited functionality (fail-soft capability). In order to 

ensure reliability often many run time mechanisms have to be adopted and the system needs 

to be kept as close as possible to the correct state. [9] Most common fault tolerance 

mechanisms are:

18



• Error confinement: Each procedure has only least possible rights granted and 

a minimum domain of access. Also no operations on incoherent data are allowed. This 

policy limits error damage before detection.

• Detection and categorization: Each fault has to be detected and categorized in order to 

trigger appropriate reaction.

• Reconfiguration: For example excluding a failed unit from the system (whether it is 

hardware or software) or moving the system to a backup state.

• Restart: If the fault caused the system to stop a restart is needed.

1.4 Load Scheduling

The goal of load scheduling is to assign the incoming workload (data, calculations, etc.) 

to available resources of a distributed computing system. [10] The workload is allocated only 

once, at the point of load emergence in the system, before the actual processing of the 

workload starts. The load should be distributed in such a way that the execution time would be 

as short as possible and the available resources would be optimally utilized. Load scheduling 

algorithms (as well as load balancing algorithms) aim to balance the load to prevent coexistence 

of overloaded and idle resources, as well as to prevent from slowing down the more efficient 

parts of the system by the slower parts. [11] Such scheduling is also important because it helps 

to increase the fault tolerance of the whole system, amongst others, by removing single points 

of failure. Load scheduling techniques can be divided into two categories. [12] Static load 

scheduling allocates workload to computing nodes probabilistically or deterministically, without 

carrying out any analysis of runtime events, and as a result reduces communication delays. This 

method is lightweight, as well as efficient, as long as the workload is precisely identified, the 

available computing power is constant and the load scheduler is pervasive, which means that it 

is in charge of the whole incoming workload (or it is aware to a certain extent of the 

background load of the system). Difficulties arise when it is hard to predict the workload of 

incoming tasks, there are fluctuations in background load, or the computing power varies (e.g. 

due to some fault occurrence). Dynamic load scheduling is a method for distributing the load 

between available resources, based on the resources efficiency over the time. It is designed to
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handle the problems of unknown or unidentified workloads and runtime variations. As a rule, 

load indices are collected during workload processing, and then used in the load assignment 

procedure in order to enhance resource utilization and minimize the overall processing time of 

newly emerged workload.

1.5 Load Balancing

Load balancing also aims to enhance the performance of a distributed system, especially 

in terms of resource availability. [10] [12] However, in this case, the workload (processes, data) 

is being reassigned among a group of cooperating computing nodes during execution time. 

Typically, workload indices are monitored and measured so appropriate action may be taken in 

order to achieve exact load distribution. The concepts of dynamic load scheduling and load 

balancing are closely intertwined by definition. Both may be classified based on the method 

used for triggering load distributing and redistributing activities, load assigner location and 

workload data exchange pattern. The advantage of load scheduling over load balancing is that 

the overhead due to workload transfer from one computing node to another can be avoided. 

On the other hand, load balancing can be far more effective in case of several, not equally time 

consuming, interdependent tasks. Although, the main subject of this dissertation is dynamic 

load scheduling, we will also discuss some aspects of load balancing because of the analogies.

1.6 Problem Formulation

In the classical load scheduling problem (Figure 1-4) a load scheduling algorithm aims to 

distribute the incoming workload that is produced by one load source between available 

computing nodes. In our case (Figure 1-5), the workload takes the form of a distributed stream 

by which we mean that the stream consists of numerous sub-streams, each of them provided 

by a separate load source. Such a single sub-stream by itself carries no information and 

therefore cannot serve as the basis for any computations. However, all the sub-streams 

together constitute a logical wholeness that outlines the hadron interactions that take place in 

the LHC accelerator and were selected by the first level trigger. Furthermore, the workload 

stream has another interesting property, namely it is divisible in the sense that it consists of a
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sequence of independent data that may be processed individually. This independent data 

correspond to single collisions of two bunches of particles and are referred to as events. Each 

load source produces event fragments in the same sequence and with the same frequency. The 

goal of the proposed load scheduling algorithm is to balance the incoming workload between 

several computing farms that are carrying out the task of selecting events with interesting 

signatures for persistent storage. The filtering farms are receiving the incoming events through 

a distributed readout that consists of a set of readout nodes. Each readout node receives the 

workload only from several load sources, and the workload transfer from load sources to 

readout nodes is not synchronized. The workload allocation has to be done with a particular 

emphasis on fluctuations in computing power of filtering farms that may be caused by faults.

1.6.1 Objectives

i. Investigating of the extent to which the load scheduling can increase the reliability of a 

distributed data acquisition system.

ii. Providing dynamic load scheduling for heterogeneous computing farms, as well as, 

homogeneous computing farms, where the imbalance could be caused by faults.

iii. Increasing the efficient utilization of available resources.

Load source

Figure 1-4 Load Scheduling, classical case Figure 1-5 Load scheduling, investigated case

Worker Distributed
worker

Distributed
worker

Distributed
worker
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iv. Proposing a scalable load scheduling protocol along with a distributed asynchronous load 

assignment policy and a robust load index.

1.6.2 Hypotheses

i. Dynamic load scheduling Increases the overall fault tolerance of a distributed data 

acquisition system.

ii. Asynchronous, distributed load scheduling can be performed on workload fragments 

(constituting coherent wholeness) produced by numerous load sources, provided that each 

load source is producing the workload fragments in the same sequence.
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2 State of the Art -  Dynamic Load Distribution and Fault Tolerance

Although, the available literature discussing workload distribution (load scheduling and 

load balancing), data acquisition and fault tolerance separately is very rich, the number of 

papers dealing with the problem of workload scheduling and fault tolerance and at the same 

time addressing requirements comparable to those of the Compact Muon Solenoid DAQ. system 

is very modest. Even in High Energy Physics there are only several experiments that have 

comparable data-taking and event size conditions to the CMS.

In this chapter our aim is to give a complex and most up to date overview of the state of the art 

in the fields of workload distribution and fault tolerance. However, we will only focus on 

research and methods that could be applied In our system. First we will discuss the taxonomy 

and classification of load distribution algorithms and the possible workload indices. 

Subsequently, we will present several load scheduling and balancing methods, as well as fault 

tolerance strategies and designs that have some features essential for our research project. 

Additionally, we will give an overview of dedicated load scheduling/balancing algorithms that 

have been applied in other data acquisition systems of HEP experiments, which have similar 

requirements to the CMS in terms of data taking.

2.1 Load Distribution Strategies

The following load distribution taxonomies will be the basis for classification of 

algorithms mentioned latter in this dissertation. Figure 2-1 shows the taxonomy of dynamic 

load distribution algorithms proposed by Osman and Amar in [13]. In the discussed 

classification method, in order to specify a load distribution algorithm, four major sub

strategies have been characterized: Initiation, Load Assigner Location, Information Exchange 

and Load Selection. [13] The initiation method defines the procedure for invoking activities that 

lead to exact load distribution. In the proposed classification two types of initiation may be 

distinguish: periodic and event driven. The event driven initiation is usually based on local
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Figure 2-1 Taxonomy of dynamic load distribution algorithms [13]

workload observation and can be triggered either by sender or receiver. In general, event 

driven policies are more sensitive to workload fluctuations, while periodic policies are easier to 

implement. The Load Assigner Location policy defines the placement of the workload assigning 

algorithm itself. If there is a single agent supervising and controlling the whole process of load 

distribution the load distribution algorithm is classified as central. On the other hand, if each 

workload source (whether it is the original point of load emergence in the system, or an 

overloaded node) may decide about the load assignment independently the algorithm is said to 

be distributed. The distributed strategy may be further characterized as synchronous or 

asynchronous. The central policy introduces an additional single point of failure to the 

distributed computing system, and may lead to a bottleneck. The distributed policy, in turn, 

depends heavily on load indices propagation over the system, which may result in higher 

communication cost. The workload and load indices flow through the system is defined by the 

Information Exchange strategy. This policy specifies whether the information used by Load 

Assigner is local or global. Furthermore, it characterizes the connection topology that is used 

for information exchange and that in practise specifies the neighbourhood of each node (this
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may be randomized or uniform). Finally, the communication strategy determines whether the 

workload may be shared only inside a predefined group of computing nodes (local) or over the 

whole system (global). The last sub-strategy, the Load selection is responsible for choosing 

appropriate workload for transferring. The workload maybe selected based on the available 

computing nodes (processor-matching) or based on its suitability for reallocation (load- 

matching).

Although, the taxonomy proposed by Osman and Amar delves into the very technical detail of 

algorithm architecture and implementation, it does not emphasize in particular on the load 

assigner algorithm itself. As shown in Figure 2-2, Shirazi et al proposed a different scheduling 

taxonomy that is focused more on task assigner characteristics. Two groups of dynamic load 

distribution algorithms have been proposed: distributed and non-distributed. [10] An algorithm 

is classified as distributed if the process of load allocation is carried out by a set of computing 

nodes. On the other hand, if the assignment decision is taken by a single computing node the 

algorithm is classified as non-distributed. The distributed algorithms are further divided into 

cooperative and non-cooperative. In case of non-cooperative strategies, the scheduling 

decision is carried out by each of the load scheduling nodes autonomously of the actions of 

other nodes. In the cooperative case, each of the load scheduling nodes is responsible for 

a fraction of the workload, but yet they are pursuing a common, global goal. As a result, the 

assignment decision is taken in the context of the whole system. The cooperative method may 

be further characterized as optimal or suboptimal. It can be easily noticed that workload 

scheduling is optimal if and only if all available computing nodes finish workload processing 

exactly at the same time, and there were no interruptions and pauses during workload 

processing. If this conditions are fulfilled it is guaranteed that the execution time is minimal. 

Unfortunately, finding an optimal solution is an NP-complete problem [14] [15] [16]. Therefore 

the suboptimal strategies are more common. In the discussed taxonomy two types of 

suboptimal policies are distinguished. The approximate algorithms use identical computational 

schema as the optimal algorithms, but rather than generating optimal schedules, they 

terminate when a solution is obtained that is considered as 'good' enough. The evaluation
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method of the solution is a significant component of such algorithms, and its computational 

complexity, along with its accuracy determines whether this approach is appropriate or not. 

However, if such an easily computable method exists, the approximate policy can cut down the 

time needed for finding sufficient schedule significantly. Heuristic methods, in turn, often make 

use of some specific properties of the system that are rather easy to monitor and calculate and 

influence the overall performance in an indirect way. Usually the heuristic strategy is the most 

robust one in terms of time performance and resource utilization. However, it is not always 

possible to prove a first-order correlation between the adopted heuristic solution and desired 

outcomes.

All the workload distribution strategies discussed above employ a single stage decision 

procedure. There are also load allocation methods that adopt multi-stage decision-making 

procedures that are constructed like an OR-decision tree [17]. Such solutions are used to 

process job consisting of a chain of tasks, which are dynamically created accordingly to tree-like 

precedence constraints.
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2.2 Workload Indices

Before the load scheduling can be performed and the load distributed between 

available resources, first the workload of particular system parts, like computing nodes or 

network connections, has to be determined [11]. In order to measure the load, a unified metric 

for the whole system has to be established. A load index is an important and essential part of 

every load scheduling algorithm and has to be carefully chosen as it has a significant impact on 

the algorithm's overall efficiency.

Over the years many load indices were proposed. Theimer et al. [18] suggested a metric based 

on the fastest response policy. To determine the load of particular load-balancing participant, 

a load exchange request is multicast to all potential load receivers. It is assumed that the 

response time is inversely proportional to the receiver's workload. Therefore, simply the first 

receiver who responds is regarded as the least loaded. Borzemski et al. also investigated the 

possibility of adopting the request response time as a load index in [19]. The studied algorithm 

is based on a fuzzy-neural decision-making scheme, which allocates the workload (HTTP 

requests) accordingly to the expected request response time. The request response time is 

being estimated by a broker node, which is taking into account historical latency 

measurements, the class of the request and the current workload on a given worker node 

(collected from local switches). More common load metrics usually explore the availability of 

resources more directly. They take into account e.g. CPU queue length, I/O queue length, 

memory utilization etc. Werstien et al. [20] presented a load metric reflecting CPU utilization, 

memory utilization and network traffic. He proposed four-level-hierarchy for evaluating the 

load of computing nodes: idle, low, normal and high. To assign a load-level to a particular 

computing node, first the average workload in the cluster has to be estimated. Afterwards, the 

load of the computing node is compared to the average value and on this basis a load-level is 

assigned to the node. A different strategy has been introduced by Fonlupt et al. [21], in this 

approach the load of a processor is measured by the data it owns. The total load of the system 

is estimated as the sum of load of all processors participating in load-balancing (which in this 

case are all data owned by participating processors). As previously reported by Regina et al. [22]
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two groups of load metric can be distinguished: generic and specific ones. Discussed above 

metrics were examples of generic load indices. Applying such a metric to the CMS data 

acquisition system would not result in achieving desired objectives. Generic load metrics are 

designed to rate a single computing node's performance, and not, as it is needed in case of CMS 

experiment, to rate whole computing farm's performance. Nevertheless, there are some 

analogies between above mentioned metric's requirements and those in CMS DAQ. system. 

Those analogies may be used while creating a specific load-metric dedicated for the discussed 

system (as described in section 5.1).

2.3 Dynamic Load Scheduling

There are numerous, both generic and dedicated strategies for scheduling the incoming 

workload in distributed computer systems. A large fraction of the currently conducted research 

concentrates on cluster based web-systems [23] [24] [25]. In this section we aim to focus on 

generic algorithms that are most interesting from standpoint of our studies. Therefore, we 

concentrate on scheduling multisource loads, divisible loads and distributed stream processing.

There are two main concepts for generating schedules for multisource workloads: a strategy 

based on superposition and an approach referred to as network partitioning. [26] In the 

superposition strategy all computing nodes are assigned with multiple fragments of workloads 

from numerous load sources accordingly to their computing power. The main drawback of this 

method is due to the need of additional communication between nodes, which as a result may 

lead to large overheads and difficulties in exercising control. Network partitioning, in turn, 

involves partitioning the whole network into disjoint areas, of equivalent computational power, 

corresponding to each load source. The idea is that each source will only send its workload 

through its own network area. This way a source node may dispatch the workload 

independently of other sources. Unfortunately, solving the problem of partitioning the network 

involves finding an optimal spanning tree of an arbitrary graph, which is proven to be NP- 

hard [27].

Jia et al proposed in [26] a dynamic load scheduling algorithm for multisource loads that follows 

the network partitioning concept. The algorithm is designed for a system of m load sources and
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n processing nodes. Each of the load sources has an independent workload inflow, and also 

participates in load processing. The partitioning mechanism takes into account the 

communication time between source nodes and processing nodes. Each processing node is 

assigned to the source for which the communication time is minimal. This way, m regions are 

created, each of them being the shortest path spanning tree. Subsequently, the source with the 

smallest workload processing time tmm is determined. The source nodes distribute the workload 

fraction inside their regions, in such a way that the expected processing time in each region is 

tmin. From that point on, all incoming workloads are queued in source's buffers. After the 

distributed portion of workload has been processed new partitioning is carried out, and again 

the source with lowest load processing time is being determined. This process is repeated until 

the entire workload is consumed. Note that after a load processing cycle is finished the source 

that has been previously recognized as the one with lowest processing time tmin, not necessarily 

needs to own any further workload. In this case, the resources assigned to this source, along 

with this source node itself, will be reallocated to other regions. On the other hand, if an idle 

source found itself in possession of new workload a new region will be created. As a result the 

number of sources and regions may fluctuate. The discussed algorithm is difficult to apply for a 

HEP data acquisition system because it assumes that the data inflowing in different sources are 

not related. The algorithm also implies that the source nodes have unlimited buffers, which 

could turn as a drawback due to the huge amount of data acquired at high rate by the HEP 

experiments. Nonetheless, the discussed scheduling strategy has some properties and 

mechanisms that are considered as desirable for our system. Moreover, the algorithm analysis 

method presented in [26] is very interesting.

Yu and Robertazzi, in turn, proposed in [28] a dynamic load scheduling strategy for multisource 

loads that follows the idea of superposition. Similarly as in electric circuit theory, they conduct 

the workload distribution analysis for each load source separately, as if other sources would not 

exist. Subsequently, the single-source workload has been assigned to available computing 

nodes proportionally to their computing power. Since the Divisible Load Theory is linear [29], 

and there is a pre-assumption made that the load is indeed arbitrary divisible, and that the 

inflowing workload in different load sources is not related, the solutions obtained for each
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source can be superimposed algebraically. As a result, the multi-source workloads have been 

allocated to computing nodes proportionally to their computing power. What is more, the 

amount of workload that has to be transferred between nodes is minimized. As already 

mentioned, the discussed solution is unfortunately meant for load sources that deliver 

unrelated workloads, and as a result cannot be directly applied to a HEP data acquisition 

system.

Another branch of load scheduling, which is important for our research, is distributed stream 

processing. A stream is a potentially unlimited set of continuously incoming data produced by 

a data source [30]. In contrast to the other workload types, the stream data are produced in 

real time. What is more, the stream data are feasible only at a given point, only for a short 

moment, and as a result the stream itself as wholeness is not available. Broberg et al proposed 

a set of three algorithms for addressing the problems of: feasibility, maximally proportional 

throughput of output streams and best allocation of resources in [31]. The load scheduling 

strategy for a continuous flow of loads (feasibility) will be regarded as stable if the whole 

number of loads staying in the system remains limited. In order to fulfil this condition, an 

algorithm has been presented that depending on a potential function's outcome balances the 

workload in a distributed way using backpressure. A potential function corresponding to each 

queue is defined. The arguments for such a function are the heights of the queue. Each 

computing node assigns the workload in such a way that the potential of its outgoing queues is 

kept as low as possible. In order to find the maximally proportional throughput of output 

streams, the maximum concurrent number of flows has to be found (the input load at 

respective rate has to be feasible). The optimal value can be found by adding bisection search 

to the original algorithm. To address the problem of best allocation of resources the algorithm 

needs to be further extended by adding buffer control (maximum allowed queue height). Flows 

that exceed this newly added restriction will be deleted and the optimal weighted throughput 

will be obtained. Although the discussed multi-commodity flow algorithm has been extended 

by an available computing power constraint, the main concern of multi-commodity flow 

modelling is still to achieve maximal flow between sources and sinks. The issue of fault tolerant 

stream processing has been addressed in [32] and [33] by Gorawski and Marks. The aim of their
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research is to provide continuity and reliability of an ETL [34] process conducted on data 

streams from multiple sources. The studied system remotely and automatically reads out media 

consumption meters (electricity, water, gas). The data are first acquired by so called collecting 

nodes, and then are passed further to telemetrie servers. Subsequently, in order to facilitate 

the data analysis (e.g. predict media consumption), those data are transferred into a stream 

data warehouse. To ensure that a stream has not been corrupted while being processed, it is 

being replicated first (redundantly transmitted) and then processed in parallel on several 

nodes. The obtained outcomes are then compared: the timestamp analysis allows to identify 

missing tuples and the attribute analysis makes it possible to detect processing errors. A stream 

is being considered as reliable if more than half of the analysed tuples were confirmed as 

errorless by other replica streams. The parallel telemetrie data warehouse described in [35] is 

a system that handles the data incoming from the telemetrie servers. The warehouse is 

composed of a set of computing nodes that do not share any resources and are not 

homogeneous. Every query served by the system is passed further to each of the computing 

nodes in an unchanged form. Subsequently, the nodes are carrying out the requested operation 

on their subset of data. In order to achieve the optimal performance the data that are being 

loaded from telemetrie servers are allocated in such a way that each worker node should finish 

its part of a query-task at the same time.

Lin et al gave us in [36] an in-depth analysis of a few generic, real time load scheduling 

strategies. The scope of their work concerns algorithms that are a combination of studied 

scheduling, node assignment and task partitioning policies. When it comes to the scheduling 

strategy, three possibilities are considered: First In First Out (FIFO), Earliest Deadline First (EDF) 

and Maximum Workload Derivative First (MWDF). The FIFO method assumes that the loads will 

be processed in the order of their arrival. The EDF algorithm, in turn, schedules loads by their 

deadlines. The MWDF policy is meant for divisible loads and adopts the following rule: the 

costliest workload is ordered first. As for node assignment, two strategies are analysed. The 

first one allocates all available computing nodes to the scheduled workload in order to process 

it as soon as possible. The second one allocates the minimum number of computing nodes 

needed by the scheduled workload to meet its deadline. This way, other resources are saved
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for new, incoming workloads. Likewise, two partitioning methods are studied. Optimal 

Partitioning Rule (OPR) results from divisible load theory, and aims to ensure that all 

computation finish at the same time. On the other hand, Equal Partitioning Rule (EPR) 

addresses the partitioning problem by dividing the scheduled workload into n possibly equal 

sub-loads, where n is the number of allocated computing nodes. The main conclusion of the 

discussed research is that the algorithms adopting OPR strategy achieve lower load reject ratio 

and therefore outperform the corresponding algorithms. This confirms the working hypothesis 

that it is beneficial to adopt divisible load theory for real time scheduling in cluster 

environment.

2.4 Load Balancing

Although load balancing is not the main topic of this thesis, it is closely related to load 

scheduling, and therefore it is also crucial to present here a brief load balancing overview. In 

the following section we focus on algorithms adopted for SPMD and distributed stream 

processing, as well as on solution for achieving asynchronous, distributed load balancing. These 

topics seem to be most analogous to the subject of this dissertation.

Thome et al [37] gave us a compact overview and comparison of load balancing strategies used 

in a SPMD systems adopted for computing macroscopic thermal dispersion in porous media. 

The discussed research focuses in particular on the mechanisms used for triggering load 

balancing activities, as well as on workload indices communication. For us, the most important 

outcome from the presented analysis concerns the approach for gathering internal load indices 

and for workload redistribution. It has been shown that the global, collective load balancing led 

to the best results. The global strategy implies that the load data should be gathered from the 

whole system at once. The collective strategy in turn, implies that load balancing should lead to 

exact workload redistribution in the whole system. Using these strategies provides the fastest 

reaction to imbalance in the system. Another interesting fact is that algorithms using these 

strategies obtained almost identical results for distributed and centralized load balancers.

Osman and Amar [38] also proposed a load balancing algorithm for the pipelined SPMD 

computational model. Although, the discussed data processing model has many advantages,
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especially when it comes to scientific applications, it also has a major drawback. Namely, 

presence of a slower computing node in the system results in a slowdown of other computing 

nodes. The load balancing strategy introduced in [38] is distributed by which we mean that 

there is no central workload scheduler. Moreover, the algorithm is asynchronous in the sense 

that the load balancing activities carried out in a computing node are autonomous and there is 

no need for synchronization with other computing nodes. The initiation of load balancing 

activities, in turn, is triggered by the overloaded node. The algorithm is design with a particular 

emphasis on scalability, and therefore the decision process is performed based on exchange of 

local workload indices. This way the communication overhead that usually increases with the 

number of computing nodes in the system, is reduced. The load index is expressed in a unit 

called data point. A data point is the smallest, distinguishable amount of data that can be 

defined by requiring a given number of computational operations and storage space. Based on 

the measurement of data points allocated to a computing node, the node is assigned to one of 

the three categories: overloaded, normal and underloaded. When a computing node reaches 

the overloaded state the load balancer is triggered. First, the load balancer queries its 

neighbours to see how many data points can be accommodated before the underloaded 

neighbours reach normal state. If the neighbour nodes can accept the extra workload without 

reaching overloaded state the data are transferred. Otherwise, the overload is averaged 

between all underloaded and normal computing nodes. In this case, calculation of the workload 

to be exchange is crucial, because the overload transfer may result in bouncing-load effect: the 

workload receiver becomes overloaded itself, and as a result it decides to transfer the load back 

to the load originator, which in turn becomes overloaded and performs again the same load 

balancing activities, and so on. The described bouncing-load effect generates a substantial 

overhead and also prevents the system from reaching the balanced state. The discussed 

distributed, asynchronous strategy is especially interesting from the standpoint of our research. 

In case of a multi load source system applying such a strategy may result in substantial 

reduction of the overhead of the workload distribution algorithm. Moreover, the proposed load 

index (data point) seems to be a natural choice when it comes to SPMD computing model.
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Cherniack et al [39] discuss two stream processing systems: Aurora* and Medusa. Both 

architectures are designed to support large scale, distributed stream-based computations. 

Aurora* provides infrastructure for a system where all computing nodes are subordinated to 

a single administrative domain. On the other hand, Medusa assumes that there are several 

administrative boundaries, and therefore supports federated operations. Nevertheless, both 

architectures have to address the problem of workload management. The case of Medusa is 

slightly more complicated since it implies that the computing nodes not necessarily need to be 

under common control. In both cases, an overlay network is defined that is independent from 

the physical network topology. Each event produced by a data source is labelled with a stream 

name, and then transferred to one of the computing nodes in the overlay network. A load 

balancing daemon is invoked periodically on each node. The daemon is responsible for 

offloading its machine or accepting additional workload depending on its node state. Since in 

case of stream processing, the workload is related to a constant and continues data flow, rather 

than to some computational tasks running on single nodes, load sharing is achieved through 

overlay network repartitioning. There are two main workload sharing policies: box sliding and 

box splitting. Box splitting is a heavier and more complicated operation since it has to be 

ensured that the result before and after splitting will be the same. It is crucial to choose 

a suitable frequency of load balancing activities so that the daemon will be able to handle not 

only the incoming workload changes, but also the changes in the overlay network topology. It is 

also critical to take into account the bandwidth availability before repartitioning of the overlay 

network takes place. Finally, it is important that a sub-network split has a long-lasting effect. 

Besides load management the discussed architectures have also interesting fault tolerance 

properties. There is a heartbeat mechanism implemented between neighbour nodes. If 

a computing node timeouts on the heartbeat of its neighbour it triggers a recovery procedure. 

The backup node starts to emulate the processing of the failed computing node. Subsequently, 

the load balancing mechanism is used to offload the backup node.
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2.5 Data Acquisition in High Energy Physics

It is not always possible to adopt the general workload balancing/scheduling strategies 

discussed so far in the data acquisition systems of high energy physics experiments. In this 

section dedicated algorithms are presented, together with a short introduction to the data 

acquisition systems and experiments they are employed for.

2.5.1 LHCb experiment at CERN

LHCb is one of four experiments at CERN's new LHC. [40] It seeks to discover new 

phenomena, in particular CP-violation in B-decay and other new rare decays. LHCb expects 10 

MHz rate of visible interaction and 100 kHz of b-anti-b-pair production. LHCb employs two level 

trigger selecting only the interesting events. The first level is a low-latency high-rate trigger 

implemented in FPGAs and carrying out the task of reducing the incoming data taking rate from 

40 MHz to 1 MHz. The second one, the software trigger (HLT) is implemented on a CPU filtering 

farm and performs further reduction to 2 kHz. The LHCb readout consists of detector-specific 

front-end electronic boards connected to a group of 320 Readout Boards (total bandwidth of

4 Tb/s). A router with the strongest density of Gigabit Ethernet switching within reach 

guarantees full connectivity with the filtering farm and a data throughput of 35 GB/s. A single 

Readout Board holds only a fragment of data describing an event. Therefore, event building and 

HLT selection is carried out by transferring all event fragments to the same filtering node in the 

filtering farm. The expected event fragment size is 120 Bytes. In order to improve network 

utilization a packing of event fragments into Multi-Event Packets (MEP) is performed (typical 

packing factor is ten). The communication between Readout Boards and filtering farm is 

provided by UDP protocol and the packet loss detection (very rare) is implemented on event 

building level. The whole process of event building and filtering is supervised by a single entity 

called Readout Supervisor (implemented in FPGAs). Among others, the Readout Supervisor 

assigns beam-synchronous clocks and synchronous resets, and receives back-pressure from 

Readout Boards. Although the Readout Supervisor is designed with a particular emphasis on 

reliability, it appears to be a potential single point of failure. There are several spare Readout 

Supervisors normally used for concurrent standalone runs with sub-detectors. In order to
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activate adding event fragments to the current MEP the Readout Supervisor broadcasts a 

Trigger Type command. The Destination command in turn, closes the MEP that is under 

construction and also contains the IP address of the destination node in the filtering farm. The 

destination node is assigned depending on a credit scheme. Credit corresponding to each 

destination node acts as a counting semaphore. Initially, at the beginning of the run, as well as 

after processing of each MEP, each filtering node asks for new events throughout sending a 

MEP Request to the Readout Supervisor. The credits corresponding to a filtering node are 

incremented based on the MEP Requests and decremented whenever the corresponding node 

is used as the destination for the next MEP (push mode with passive pull mechanism). If a credit 

is zero or negative the destination is skipped but the credit is still decremented. This way 

dynamic load scheduling of the filtering farm has been obtained. This strategy is also very 

convenient for detecting failing nodes because credit corresponding to such a node becomes 

increasingly negative.

It can be noticed that the central agent policy that has been adopted for Readout Supervisor 

increases the number of single points of failures rather than decreases it, which is our objective. 

Moreover, LHCb data acquisitions system operates on much smaller event fragments than CMS 

(more than ten times smaller) which allows for packaging during data transfer and results in 

less time consuming filtering. There is also a possibility that the policy of requesting new events 

only after the whole MEP is being processed will result in idleness.

2.5.2 ATLAS experiment at CERN

ATLAS is one of two general purpose experiments at CERN's new LHC. It is designed to 

discover the same phenomena as CMS, and therefore it has to fulfil similar design conditions. 

ATLAS is supported by a large, distributed trigger and data acquisition system (TDAQ.) that 

employs three stages of event filtering to reduce the initial data acquisition rate of 40 MHz to a 

rate of stored events of 200 Hz. [41] The first level trigger that is implemented in dedicated 

custom hardware, is responsible for the first selection step whose output will be in the order of 

100 kHz. Subsequently, the trigger information is built by the Region of Interest Builder, and 

then assigned in round robin fashion and transmitted to one of the second-level trigger
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supervisors. This entity acts as a central agent that performs the load scheduling of the 

incoming events between processing applications running in the second level trigger sub-farm. 

A processing unit requests partial event data from the Readout System, runs a filtering 

algorithm, and passes the result back to the second-level trigger supervisor, which in turn sends 

the information to the DataFlow Manager (DFM). The pre-filtering step done on the basis of 

partial event information causes further data rate reduction down to 3 kHz. The DFM is also a 

central load scheduling agent, who supervises the event reconstruction process. For each 

accepted event the DFM allocates an event-building node according to the pull-requests 

obtained from those nodes. This way, a demand driven load scheduling has been obtained. 

Afterwards, the event-building node requests all event fragments, assembles the whole event 

(expected event size is 1.5 MB) and transfers it to the Event Filter that performs the final 

selection step and reduces the output rate to final 200 Hz. It can be easily noticed that it was 

possible to adopt central agent policy only because an additional filtering step has been 

introduced. However, applying this policy to the CMS data acquisition system would rather 

increase the number of single points of failures than decrease it, which is our goal. Moreover, in 

the very first step data distribution is done in a static way using a round robin algorithm.

2.5.3 DZERO experiment at Fermilab

The DZERO experiment at Fermilab's Tevatron is one of two experiments designed to 

investigate high energy proton-antiproton collisions. The data acquisition system of the DZERO 

experiment [42] (similar solutions are also used in Zeus [43] and CDF [44] experiments) handles 

an incoming data rate of 2.5 MHz. The filtration of acquired data is carried out in three stages. 

The first level trigger, implemented in custom high speed electronics, performs the filtration 

based on simple criteria. As a result the first level trigger has an output rate of about 5 kHz. The 

second level trigger, composed from custom electronics, as well as from generic processors, 

assembles partial information from detector subsystems and executes more precise selection 

algorithms to further reduce the rate to 1 kHz. The Level three data acquisition and trigger 

system is built around a single CISCO 6509 switch. The data sources are connected to the 

central switch through five CISCO 2948G switches (up to 20 data sources per switch). Each data 

source provides event fragments containing up to 20 kB of data. The event building and filtering
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is supervised by a single process called Routing Master running on a single board computer. The 

Routing Master chooses the destination using a table containing the information about the 

number of free buffers on each farm node. First, a set of the least loaded nodes is identified, 

and then the destination node is chosen in round-robin manner. After assigning an event to 

a farm node the corresponding entry in the table is decremented. Farm nodes update the table 

entries periodically, through messages with the number of available buffers. The farm node 

assembles the whole event (average event size is 250 kB) and then runs sophisticated filtering 

algorithms in order to finally reduce the rate to 50 Hz. Potentially, the load scheduling solution 

applied in DZERO level 3 data acquisition could be adopted for higher data taking rates 

provided that the assignment decision would be made and distributed for bunches of events, 

which is possible since the load scheduler is aware of the space available in farm node's buffers. 

However, the Routing Master is an additional single point of failure.

2.6 Fault Tolerance

At this point we aim to focus on fault tolerance issues. We will discuss cluster 

environments with self-stabilization properties and frameworks that combine their fault 

tolerance features with workload scheduling/balancing utilities. Moreover, we will also consider 

fault tolerance mechanisms employed in the data acquisition systems of high energy physics 

experiments.

Sevilla et al analysed in [45] the impact of applying aspect oriented programing paradigm 

(particular emphasis is laid on software modularity) to High Performance Computing. They 

propose a framework for automated code generation called CORBA-LC that is an extension of 

standard Common Object Request Broker Architecture (CORBA). The framework, amongst 

others, facilitates implementing load balancing and fault tolerance. The fault tolerance, in 

particular, is achieved by replicating a given component on a set of computing nodes. Every 

time an action is called on the fault tolerant component, a set of threads (each of them 

corresponding to one instance of the component) is used to communicate all component 

replicas distributed over several nodes. Subsequently, failed nodes are detected and a voting is 

performed in order to determine the computing node that will carry out the submitted task.
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Load balancing is provided in a similar way, the module whose operations should be balanced 

between several nodes in the cluster is replicated. In this case, however, the worker node is 

chosen according to the least loaded policy. It can be easily noticed that the two discussed 

attributes are implemented in a similar way, and therefore it is easy to provide components 

that are both fault tolerant and load balanced, and that they performance will not differ 

significantly from components that have only one of those attributes.

Another example of combining load balancing with fault tolerance was proposed in [46]. The 

discussed strategy is designed for Peer-to-Peer (P2P) systems, which are mainly used for 

sharing files, streaming multimedia and hosting social networks. The idea behind the P2P model 

is to allow users for registering voluntarily their hosts as a P2P node. Once the machine 

becomes a P2P node, it may use the facilities provided by the P2P system. The O-Ring 

architecture introduced in [46] adopts the ring topology in order to enhance and facilitate load 

balancing and reliability of the overall P2P system. The participating P2P nodes are organized in 

an overlay ring network, each of the nodes in the network shares part of its load (e.g. data) with 

its predecessor and its successor. A P2P node manages its own workload and also due to load 

sharing it is assigned with replicas of partial workload of its neighbours. These replicas are used 

in case of fault occurrence, but also they are used during load balancing. This way, the 

overhead of load balancing due to load transferring has been reduced. Short term fluctuations, 

in the workload of given a P2P node, are balanced by passing some of the node responsibilities 

to its neighbours. This involves only some changes in the request routing and does not require 

sending of data. A major advantage of this strategy is that it is easily reversible. Long-term, big 

fluctuations, in turn, can be addressed by propagating the replicated data over the system. This 

operation can be performed in the background without involving the overloaded P2P node 

itself that is responsible for handling requests concerning the overload. On the other hand, in 

the case of fault occurrence, the neighbour nodes can take over the responsibilities of the failed 

P2P node. In order to do so, the neighbour nodes extend their own workload by the replicas of 

the load of the faulty node. Subsequently, the newly obtained load needs to be replicated in 

the successor/predecessor node of the neighbour nodes. If there is an idle, spare peer in the 

ring it can be used as a replacement for the failed node in the ring. Otherwise, the ring has to
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be closed by cross-replication of the data between the neighbour nodes themselves. In this 

case, it is very likely that the neighbour nodes will be overloaded, and as result load balancing 

actions will be necessary. This, in turn, confirms that combining load balancing and fault 

tolerance mechanisms is advantageous.

As it has been shown in the above discussed examples fault tolerance and load 

scheduling/balancing complement and enrich each other. Moreover, both fault tolerance and 

load scheduling/balancing require similar resources, and therefore the overhead caused by 

adding load scheduling/balancing features to a fault tolerant system (or vice versa) is relatively 

small.

Flatebo et al observed in [47] that dynamic load scheduling algorithms have self-stabilizing 

features. Self-stabilization, first introduced by Dijkstra in [48], is a system property such that 

regardless of the system's initial state (in particular illegal state), the system will stabilize itself 

to a legal state in finite number of steps. In the proposed algorithms the system is considered as 

being in an illegal state if a new workload is received, processing of an old workload has been 

completed or in case of error occurrence, i.e. node or link failure. [47] The algorithm 1 is 

triggered only by newly received workload, the receiver node first checks its neighbours, and 

then evaluates their workload. Subsequently the load is transferred to the least loaded 

neighbour node. The scenario is repeated until the workload reaches the least loaded node in 

the system. In case if the receiver node is one of the least loaded nodes, the workload is 

processed on the receiver node. This is a potential drawback when it comes to systems where 

one particular node is the only source of load. The second, more sophisticated, algorithm 

assumes that each computing node has three variables used for monitoring the system and for 

deciding about state changes and workload transfers. These variables are the lowest known 

workload in the system L, id info of the node that has the most up to date information about L, 

and the id P of the least loaded computing node. A node's state is being updated either because 

of receiving new workload or because of processing of some part of current workload is 

completed. In both cases this can lead to updates in state variables of neighbour nodes, which 

is also considered as a state update. When a computing node receives new load, it is first tested 

whether the receiver node itself is the least loaded node. In order to do so, the values of the
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above mentioned variables are taken into account, as well as the states of the neighbour nodes. 

If it is the case, the receiver node starts to process the newly assigned workload. Otherwise, the 

workload is transferred to the computing node indicated by info variable, which subsequently 

executes the algorithm again. This continues until the workload is transferred to the least 

loaded computing node. When, in turn, a computing node finishes processing a workload and it 

becomes the least loaded node the information is propagated over the system using the L 

variable. The system is considered as being stable if the state variables of all the computing 

nodes are set to the same value. Both algorithms 1 and 2 have a distributed workload 

scheduler. It Is also worth mentioning that the algorithm 2 is an optimal self-stabilization 

algorithm.

We will discuss a dedicated fault tolerance solution for a data acquisition system based on the 

research presented in [49] and [50]. The proposed method is studied for the BTeV experiment, 

which is a high energy physics experiment, and is meant for a Real Time Embedded System in 

general. The data acquisition system and high-speed trigger of the BTeV experiment are 

designed to collect data at 500 GB/s, and then, after the selection of interesting events is done, 

to send data to mass storage at 200 MB/s. The idea is to create a subsystem that will be 

responsible for handling faults and errors. This subsystem should carry out local actions that 

correspond to a single computing node or application, like changing thresholds, and global 

actions related to the overall system such as load shifting. The two mainly employed 

technologies in this project are ARMOR (Adaptive, Reconfigurable, and Mobile Objects for 

Reliability [51]) and VLA (Very Lightweight Agent [50]). The ARMOR is a multithreaded, event 

driven solution organized around objects that are being supervised. The ARMOUR approach 

implies one Fault Tolerance Manager (FTM) per system that initializes the reliability features 

and triggers the recovery procedure from faulty states (e.g. node failure). Robustness of the 

FTM itself is provided by a heartbeat mechanism (heartbeat AMOR). Moreover, there is one 

daemon per computing node responsible for inter ARMOR communication, and several objects 

that provide monitoring services. The VLA method, on the other hand, follows the idea of 

submission architecture [52] and highly supports reactive behaviour. The agents responsible for 

fault tolerant features are organized in layers and their actions are determined by finite state
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machines. The main advantage of this approach is that several rules can be triggered in parallel. 

Potential conflicts between such concurrent activities are solved using a set of priorities. In 

general the layer of the agent determines the priority of its actions (higher layer means higher 

priority). Moreover, the lower the layer of the agent, the more lightweight the agent should be. 

In order to provide reliability, a VLA agent may perform corrective and preventive actions, 

request more data from agents within its layer, or pass the problem to higher layer. Conclusions 

on the state of a computing node are made, amongst other, on the basis of the CPU workload, 

e.g. a low load may indicate that there is a CPU or network problem, on the other hand, a high 

load may indicate that the workload limits are badly evaluated. At this point it is important to 

notice that workload measurements are a key even for a heavily integrated fault tolerance 

solution.

Our goal and priority is to provide fault tolerance in such a way that the number of additional 

components and their impact on the system is minimized as much as possible. Therefore, only 

some specific attributes that will allow for concluding about the entire system, have to be 

monitored. Also, the additional components have to be as lightweight as possible. As a result, in 

our case, it is not possible to apply fault tolerance mechanism that requires detailed monitoring 

of the system at several levels.
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3 Case Study: The Compact Muon Solenoid Data Acquisition System

As a case study we consider the Data Acquisition (DAQ) System of the Compact Muon 

Solenoid (CMS) experiment at CERN [53] [54], The discussed DAQ. system is designed to sustain 

a maximum data taking rate of 100 kHz of 1 MB zero-supressed events coming from 

approximately 512 sources that corresponds to an average input of about 100 GB/s. Each data 

source is expected to deliver event fragments of average size of 2 kB (in some case two sources 

are merged so that the nominal size is obtained). The system has to carry out software filtration 

of the incoming events to reduce the rate of stored events by a factor of 1000. In order to reach 

the desired rejection factor substantial computing power is needed that corresponds to 

thousands of computing nodes. The configuration of the CMS Data Acquisition cluster is carried 

out dynamically at run-time so the DAQ System may adapt to required performance and also 

can be partitioned in order host concurrent test- and data-taking runs [55].

Triggers DAQ Control
Data Flow Control column column

Figure 3-1 Functional decomposition of the CMS DAQ System {for clarity, multiplicity of each entity is not
shown). [2]
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The component architecture of the CMS DAQ system, along with the data flow is shown in 

Figure 3-1. The sub-detector front-end systems store data constantly in 40 MHz pipelined 

buffers. For accepted events, a L I  trigger signal is delivered through the Timing, Trigger and 

Control (TTC) system. The data of selected events are transferred from buffers to the Front-End 

Drivers (FEDs), and then are read into the Front-End Readout Links (FRLs) that, as previously 

mentioned, are able to combine data from two FEDs and act as the data sources for the CMS 

DAQ system. Afterwards, the data fragments provided by FRLs are assembled to whole events 

by the Event Builder, and then are passed to the Event Filter for further processing. The Event 

Builder is composed of a so-called FED-Builder and RU-Builder, which, in turn, is divided into 

several autonomous computing farms called DAQ Slices (the RU-Builder can be deployed in up 

to 8 DAQ Slices). [11] In case of congestion, back-pressure is propagated from the RUs to the 

FRLs and then to the FEDs. FEDs in turn, in order to avoid buffer overflows, may throttle the 

trigger rate through the Trigger Throttling System (TTS).

The whole process of data acquisition is started, configured and supervised by the Run Control 

and Monitoring System (RCMS) [56] [57]. The RCMS is a distributed system based on Java and 

Web Services technology running in a set of Apache Tomcat servers. Its structure is organized 

into several subsystems corresponding to sub-detectors and self-contained components.

From our standpoint the Event Builder is the most important part of the system, and therefore 

we will describe the FED-Builder and RU-Builder in a more detailed way in the following 

sections.

3.1 Event Builder

The goal of the Event Builder (shown in Figure 3-2, also previously shown in Figure 1-3) is to 

acquire event fragments from about 500 data sources at a rate of 100 kHz, and to construct 

whole events. Event fragments are transported by a non-blocking network [5] (based on 

Myrinet [6] technology) to the surface and statically distributed amongst several autonomous 

computing farms called DAQ Slices. A DAQ Slice is a computing farm organized around a 

Terascale ForcelO switch, where parallelization is achieved through the SPMD (Single Process, 

Multiple Data [7]) technique. In the first event building stage (FED-Builder level) event
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fragments are received by a DAQ Slice through distributed readout consisting of computing 

nodes called Readout Units (RU), and then assembled into super-fragments inside RUs. 

Subsequently, in the second stage (RU-Builder level), in each of the DAQ Slices, an Event 

Manager (EVM) node assigns super-fragments to Builder Units (BU) that construct the whole 

event. It has to be ensured that all data fragments corresponding to one event are sent to one 

and only one DAQ Slice, and then after assembling to super fragments go into one BU. Since it is 

assumed that each event requires similar computing power in order to be processed, the 

events are usually distributed in round robin fashion between DAQ Slices, which are identical in 

the sense that they consist of the same number of identical computing nodes. For this reason 

a non-blocking network has been employed, so the transfer of event fragments to one DAQ 

Slice is non-blocking in respect to other DAQ Slices. This way, each DAQ Slice has not only the 

same computing power, but also access to the same bandwidth. Furthermore, the round robin 

assignment policy can be carried out in constant time, which is undoubtedly an important asset, 

since DAQ Slice allocation has to be done at least once per 10 us on a RISC processor with clock 

speed in order of 10 MHz.

3.1.1 FED-Builder

The FED-Builder is composed of multiple N x M networks that carry out the task of building 

super fragments from event fragments obtained from N sources and distributing them between 

M DAQ Slices. [58] For the standard system N < 8, and M = 8. Physically the FED-Builder 

network takes form of a non-blocking network based on Myrinet [6] technology. Myrinet is a 

network solution composed of Network Interface Cards, containing user-programmable RISC 

processors (NICs) and cross-bar switches interconnected with bidirectional fiber-optic links. In 

order to guarantee lossless packet transfer two mechanisms are adopted: wormhole routing 

and flow control. The wormhole routing [59] [60], also called wormhole switching is a technique 

that allows for dividing larger network packets into smaller parts, which are then sent using
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common routing. The first fragment of the network packet, a so-cal 

information about the route (namely the destination address). The routing decision is taken 

only once while the header is passing through the network. This way a temporary circuit is 

created via which the subsequent packet parts flow (therefore it may be considered as dynamic 

circuit switching [61]). It is worth noticing that the transmission of a given packet may be 

pipelined across series of devices, and as a result the destination node may receive the header 

before the source node finishes sending the whole packet. The last packet part, called tail is 

responsible for closing the connection between the sender and receiver nodes. This method 

successfully minimizes the latency in the message transmission and is independent of the 

package length. The flow control [60], in turn, aims to ensure that no buffers are overwritten at 

any of the stages of package forwarding and receiving. This means that in the case when it is 

not possible for a packet to proceed, the data source may continue to transfer data only until
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all buffers are full all the way to the congestion point (this way lossless transmission is 

guaranteed). It is assumed that this mechanism is performed on packet fragments and 

therefore, similarly as the wormhole routing, is independent of the packet size.

Each Myrinet NIC is connected to two independent, but identical Myrinet switch fabrics (two- 

rail configuration) using two bi-directional optical data ports. [58] This way the bandwidth is 

doubled and redundancy is provided. Moreover, adopting a large switch fabric per rail instead 

of using an individual N x M switch per super fragment facilitates reconfiguration of 

composition of super fragments, which in turn helps to balance super-fragment size and route 

avoiding erroneous hardware. In order to facilitate the use of the bandwidth barrel-shifter [62] 

traffic shaping has been employed.

As shown in Figure 3-3, there are four stages of 16x16 crossbar switches organized as 

a reconfigurable Clos network [5], the first two layers are placed in the underground counting 

room, while the other two layers are located on the surface. The first three layers of the 

network provide a completely independent path for each data packet. The fourth layer, in turn,

carries out the task of constructing super-fragments (two super fragments per 16x16 switch) by 

sending respective event fragments to a Readout Unit. This however, entails throughput 

reduction due to head-of-line blocking [63] [64].
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Readout Unit host R y  
with Myrinet N IC  o l l

16x16 
cross-bar switch 
(depicted as 4x4)

,,Clos256+256“ 
Myrinet Enclosure

Frontend Readout Link 
with Myrinet NIC

Figure 3-3 The FED-Builder non-blocking network (only one rail shown), the four stages of the CIos network 
correspond to LI, L2, L3 and L4. The number of crossbar switches in each layer and the number of input/output 

per crossbar have been scaled down by a factor of 4 for clarity. [58]

Underground Counting Room

200 m --------- ►
Surface Event Builder/ 

Filter Farm
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The custom firmware running on the Myrinet NICs has been implemented in C programming 

language. [58] The Myrinet NICs on the FRLs are programmed to receive the event fragments 

from FRLs, assign a destination to each event fragment based on the event number and a look

up-table (the algorithm is illustrated in Figure 3-4) and then subsequently to send the data to 

the selected receiver according to a credit schema (the algorithm is illustrated in Figure 3-5). 

Moreover, the discussed software provides load balancing over the two rails (if one rail fails the 

whole traffic is redirected to the other one), as well as carries out the task of re-transmission in 

the rare case of transmission failure caused by fibres or hardware errors.

Figure 3-4 Event fragment polling algorithm used to receive fresh blocks pushed by FRL
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V

Figure 3-5 Acknowledge handling algorithm

The Myrinet NICs on the RUs side, in turn, are concatenating event fragments corresponding to 

the same event in order to construct super fragments (the algorithm is illustrated in Figure 3-6). 

Each of the currently built super fragments is assigned with one entry in the super fragment 

array. The super fragment array consists of 32 super fragment records, and therefore up to 32 

super fragments may be built in parallel. An event fragment is assigned to an appropriate array 

entry based on a hash function result. The hash function employs the same look-up-table that is 

used to assign the event fragments to their receivers.
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Figure 3-6 Super Fragment concatenation algorithm
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It is worth noticing that the discussed strategy is meant for destination computing farms with 

exactly the same capacity. As a result, the look-up-table is set to distribute the events in round 

robin fashion between the filtering farms. It is also possible to serve computing farms with 

diverse capacity, but the fraction of workload assigned to each farm is still constant for the 

duration of the whole data-taking run. This approach has a major drawback when one filtering 

farm loses part of its original capacity for example due to a fault. In this case, the event 

fragments corresponding to the erroneous farm will dominate the buffers in each Myrinet NIC. 

This, in turn will lead to data acquisition rate throttling, because the degraded filtering farm 

cannot handle the nominal data-taking rate and the system has to adapt to its new capacity. 

Since the fraction of workload assigned to each farm is predefined, also the fully operational 

farms will be processing events at lower rate (in case of round robin event distribution all farms 

will be processing events at the same rate), which means that the available resources are not 

fully utilized.

Since there is no risk of congestions in the FED-Builder network (the network is exclusively used 

for transferring the data from CMS detector) no congestion avoidance mechanism [65] [66] has 

been implemented. The employed data transmission protocol is based on the sliding window 

protocol [67]. An analytical description of the sliding window mechanism has been given in [68]. 

The main difference in respect to the TCP protocol [69] is that the discussed protocol's basic 

transmission unit is a packet instead of a byte. Moreover, two credit schemas are adopted, one 

corresponding to the available buffer space, and an additional one that corresponds to 

available entries in the super fragment array. The sliding window protocol implies that each 

packet is assigned with a sequence number that is used to place packets in correct order, detect 

lost packets and discard duplicates (reliable, in-order packet delivery). [67] Both the sender and 

the receiver have to use three dedicated variables for the sliding window protocol. In case of 

the sender these are: the number of unacknowledged packets that the sender may transmit, 

also called sender window size sw, the sequence number of last acknowledged packet received 

sm, and the sequence number of the last packet that has been send s^. The relationship 

between these variables is determined by the following invariant:

S l s -  S l a ^  S w  
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A packet is retransmitted if it timeout before an acknowledgement is received which means 

that the sender may have to buffer up to sw packets. When an in order acknowledgement 

arrives Sla is incremented, allowing the sender to transmit more packets. The Sla variable is 

possibly further incremented for each out of order previously received acknowledgement 

provided that all packets with lower sequence number are now acknowledged. For example, let 

us assume that sM = 5, and that the acknowledgement is received first for packet 7, and then 

for packet 6. At the point when packet 6 acknowledgement arrives the Sla is incremented, but it 

is also incremented for packet 7 since its acknowledgement is now also in order, and as a result 

Sla = 7. The receiver, in turn, keeps track of the number of packets that can be received out of 

order, which is called receiver window size rw, the highest acceptable sequence number rHA, 

and the last packet sequence number received rLR. The relationship between these variables is 

determined by the following invariant:

fHA~ i'w

When a packet arrives the receiver checks its sequence number. If it is within the receiver's 

window it is accepted, otherwise it is discarded. An acknowledgement is not sent if the 

accepted packet is received out of order. However if the packet is received in order, the 

acknowledgement is sent for the currently highest, in order packet (cumulative 

acknowledgement). For example, suppose that rLR = 5, and that the packet 7 is received first, 

and then the packet 6 (let us assume both packets are within the receiver's window). At the 

point when packet 6 is received an acknowledgement is sent, but since the highest in order 

packet is 7, it is the one that will be acknowledged. After an acknowledgement is sent, rLR is set 

to the sequence number of the recently acknowledged packet, and rHA = I'm + rw. This way the 

receiver is allowed to accommodate more packets.
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3.1.2 RU-Builder

As previously mentioned, the RU-Builder is composed of up to 8 autonomous computing 

farms called DAQ Slices. Each DAQ Slice (shown on Figure 3-7) is assigned with equal workload, 

which means that at the nominal data acquisition rate of 100 kHz it is building events at a rate 

of 12.5 kHz. The network of a DAQ. Slice is implemented by one switch (Terascale ForcelO 

switch). The super fragments are received by RU applications (there are about 72 RU nodes per 

DAQ Slice), and then assigned by an EVM supervisor to a BU processes (there are about 126 BU 

nodes per DAQ Slice), which carries out the task of constructing the whole events.

Global Trigger 
Processor

XTTB
TTC Detector Front-Ends

M M

RU.

Event
Manager

FED

DAQ links 
FED Builders

Readout
Units

N Readout Builder Network
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Figure 3-7 DAQ Slice schematic view [2]

At this point we would like to focus on RU-Builder applications (EVM, RU, BU), with the 

particular emphasis on the employed communication protocol and FIFO queues. First we will 

discuss the BU application, which carries out the task of building events. An event consists of 

one trigger super fragment (obtained from an EVM) and n RU super fragments, where n is the 

number of RUs. Afterwards we will present the EVM application, which supervises the event 

flow inside a DAQ Slice of the RU-Builder. In the end we will give a short overview of the RU 

application, which carries out the task of buffering super fragments until they are allocated
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to a BU. The EVM and RUs are communicating with the FED-Builder via FED-Builder Output 

(FBO) application.

Send Request

Confirm

EVM(.Step a.

Allocate new and/or 
clear previous

BU
RU

discardFlFO

Discard

Super Fragment

blockFlFO

Resource
Table LSI?®.?..-

X
fullResourceFlFO

requestFIFOs

FU
■ 'r V i b*r

Take

Allocate FU

Figure 3-8 Builder Unit internal FIFOs [70]

A schematic view of the BU component is shown in Figure 3-8. If a BU is able to accommodate 

new events it notifies the EVM (step 1). [70] The EVM assigns the event by transferring a super 

fragment (trigger data), along with the event ID to the BU (step 2). Subsequently, the BU asks 

the RUs to transfer it the remaining super fragments of the event (step 3). The BU constructs an 

entire event from the received super fragments (step 4) using the Resource Table (step 5). The 

built events, in turn, are reserved by FUs (step 6). The BU handles the allocation request by 

making the recently built event available to the FU (step 7). As soon as the FU executes the 

filtering algorithms it sends a discard message to the BU (step 8).
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Figure 3-9 Event Manager internal FIFOs [70]

A schematic view of the EVM component is shown in Figure 3-9. The trigger data of an event 

are transferred to the EVM via the FBO application (step 1). [70] The received trigger data are 

assigned with free event IDs (step 2). Subsequently, the EVM requests RUs to readout super 

fragments that correspond to the recently received trigger data (step 3). A BU with free 

capacity available will send a request to the EVM to allocate an event to it (step 4). Within such 

a request, an ID of an event will be returned to the EVM in order to be cleared. Each cleared 

event ID will become a free event ID (step 5). The EVM allocates an event to the BU by 

transferring the trigger data of the assigned event, along with the event ID (step 6).
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Figure 3-10 Readout Unit internal FIFOs [70]

A schematic view of the RU component is shown in Figure 3-10. The EVM requests the RU to 

read out an event fragment by sending the trigger event number, along with the assigned event 

ID (step 1). Simultaneously, the FBO notifies the RU about super fragments that are completed 

and available for processing (step 2). Each super fragment for which a RU received an event ID -  

event number pair is positioned in the super fragment lookup table (step 3). BUs are requesting 

super fragments of the events that they are constructing (step 4). The RU is handling those 

requests by retrieving appropriate super fragments from the lookup table and then transferring 

them to respective BUs for further processing (step 5).
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Figure 3-11 The event building protocol (for clarity, multiplicity of each entity is not shown) [70]

Summarizing, the event building protocol (shown in Figure 3-11) operates as follows: FBOs are 

serving trigger super fragments to the EVM and data super fragments to the RUs (data ready 

message). Simultaneously, whenever a BU has free capacity to accommodate an event, it 

requests the EVM to allocate it an event (allocate new and/or clear previous message). 

Subsequently, the EVM assigns the BU with an event by sending it the trigger super fragment, 

along with the event ID (confirm message). The trigger event number, along with the event ID, 

is also sent to all RUs (readout message). After receiving a send request a RU is transferring an 

appropriate super fragment to the BU. The BU is constructing entire events and then assigning 

them to FUs (take message), accordingly to allocate requests received from them. The event is 

stored in shared memory, and is only discarded after a FU finishes executing the selection 

algorithms (discard message). Therefore, the BU may request a new event only after a 

previously built event had been processed by a FU.

The behaviour of BU, RU and EVM applications is determined by respective finite state 

machines (FSM). [70] Those FSM share several common characteristics. The Configured state is
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used for reading and acting upon configuration parameters. The enabled state indicates that an 

application is ready to participate in event building activities. The halted state is used to clean 

all Internal data, and also indicates that an application will not respond to any incoming 

messages (except control messages). Finally, the Failed state means that an application 

encountered an fatal error state (currently once an application entered the Failed state it 

cannot be recovered). The EVM and BU application share the same FSM shown in Figure 3-12.

Figure 3-12 Finite State Machine of BU and EVM applications [70]

As shown in Figure 3-13 there are two additional states in the RU application. In both cases the 

RU is back pressuring the Global Trigger Processor. The Timed Out state indicates that the FBO

Figure 3-13 Finite State Machine of the RU application [70]
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stopped sending super fragments. Mismatch Detected, in turn, indicates that some event 

fragments were assigned to a wrong DAQ Slice.

3.2 Event Filter

The Event Filter aims to reduce the nominal input rate of accepted events so the output 

stream is manageable for mass storage and offline processing. Moreover, it has to ensure that 

all interesting physic events are preserved and that no additional dead-time due to event 

reconstruction and processing is introduced into the overall system. Besides running 

reconstruction and filtration algorithms the Event Filter generates, collects and distributes Data 

Quality Monitoring (DQM) information as well as, supervises transferring the selected events to 

local storage.
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Figure 3-14 Architecture of the Event Filter [2]

As shown on Figure 3-14 the same computing nodes that are hosting the Builder Units (BU) are 

also hosting several instances of Event Filter Units. When an event is constructed the BU is 

passing it to one of several copies of Filter Unit Event Processor (FU-EP) through the Filter Unit 

Resource Broker (FU-RB). The RB carries out the task of managing memory resources, and takes 

care of exchanging data with the Event Builder and the Storage Managers (SM). There are 

several EP processes that are requesting and then processing built events. The selection 

algorithms are chosen and configured at the start of each data-taking run. When an event is 

select for offline analysis it is passed via RB to a SM node. The SM computing nodes are
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connected to a Fibre-Channel SAN that has a throughput of 1 GB/s and a capacity of several 

hundred TBytes.

3.3 Summary

The research goal of this PhD thesis is to study whether it is possible to enhance the 

current CMS Data Acquisition System so the static event-fragment distribution can be replaced 

with a more fault-tolerant dynamic workload scheduling mechanism. The proposed solution has 

to meet the CMS experiment requirements. Foremost, the system has to be able to sustain an 

average input of about 100 GB/s, and it has to be guaranteed that all event-fragments will end 

up in same filtering farm (DAQ Slice). Also, the scheduling mechanism should be lightweight so 

the current Myrinet network topology, component hierarchy and the two-step event building 

algorithm remains unchanged (as described in section 3.1). However, new functionalities can be 

added to existing components, e. g. to the Event Manager, Readout Unit and Builder Unit. 

Likewise, the network can be expanded to some extent, e. g. a dedicated network for EVMs 

could be easily added to the system. The custom Myrinet protocol and driver can be also 

modified, especially in terms of RU -  FRL communication where a high bandwidth is being 

unutilized. However, it is important to keep in mind that any changes that will lead to 

interference of the non-blocking properties of the network are unwanted. In particular, it is not 

possible to implement the multicast operation in the Myrinet network using a multicast 

tree [71], because this would require sending packages (or package acknowledgements) from 

one source to two or more different destinations.

In parallel other kinds of research is conducted on the CMS DAQ. System, including studies on 

possible replacement of a current electrical extension the S-LINK64 (Simple Link Interface 64 

bit) [72] for reading out the detector front-ends. A solution based on 10 Gigabit Ethernet that 

would allow for larger throughput and for simplification of the architecture is under 

consideration [73].
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4 Requirements analysis

In this chapter we consider the requirements and present use cases of the proposed 

load scheduling method. We aim to indicate that there is a clear need for a dynamic load 

scheduling algorithm in the CMS DAQ system, and that such an algorithm enhances the system 

and facilitates the data acquisition.

4.1 Lost luminosity analysis for CMS experiment

The luminosity loss gives us the information about the amount of potentially useful data 

that have been lost during the data acquisition process (the concept of luminosity has been 

described in more details in subsection 1.1.1). Around 10% o fth e  luminosity during stable 

beam is lost due to various types of malfunctions and general human errors. The luminosity 

loss, as shown in Figure 4-1, is caused by many factors, amongst others by errors in the sub

detectors and the data acquisition system's hardware and software. In order to reduce the 

downtime it is necessary to increase the reliability of all components that are subject to faults. 

The downtime due to both the hardware and software problems in the CMS DAQ system 

(CDAQJHW and CDAQ_SW, shown in Figure 4-1) corresponds to 5% of the total downtime. 

Potentially, the problems causing up to 43% ofthe CMS DAQ downtime (1 hour, 7 minutes and 

43 seconds) could be addressed and solved by the dynamic workload scheduling algorithm, 

meaning that in the discussed period of 7.5 months additional 387.5 TB of data could be 

acquired for the online filtering and then approximately 0.4 TB of selected events could be sent 

to persistent storage for further offline analysis.
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Figure 4-1 Lost luminosity analysis for CMS experiment (measured in the periods form
01/03/2011 to 12/10/2011)

4.2 Business Use Cases

The two most important business use cases for the dynamic workload scheduling 

algorithm (presented in Figure 4-2) are: ensuring reliable data acquisition and providing more 

efficient resource utilization. Both business use cases are described and analysed in a more 

detailed way below.
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Figure 4-2 Business use cases diagram

4.2.1 Ensure reliable data acquisition

The proposed algorithm should ensure reliable data acquisition by which we mean that 

in case of some fault that is critical and reduces heavily the capacity of a processing farm the 

congestion that will appear in this farm should not affect other fully functional filtering farms, 

and in particular should not cause a data taking run to stop. This is especially important for all 

single points of failure that are local to a single processing farm (DAQ Slice), but because of the 

currently used, static event fragment distribution they are becoming global and affect the 

whole system.

Use case main flow:

1. There is a fault occurrence in the DAQ system

2. The fault is detected by the algorithm

3. The capacity of the damaged filter farm is estimated

4. The workload flow adopts to the new conditions dynamically

Sample use case scenarios corresponding to the discussed use case and illustrating how the 

proposed algorithm should work have been given below.
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The scenario (shown in Figure 4-3) starts when an SM node fails. Subsequently, the 

monitoring tool detects the fault while measuring the event building efficiency of the damaged 

DAQ Slice. The erroneous DAQ Slice may accommodate at most as many events as can fit into 

its readout buffers. Therefore, the data sources have to be informed about the new capacity of 

the damaged DAQ Slice before it runs out of buffers. This way it is ensured that the data 

acquisition rate will be decreased respectively to the capacity loss in one DAQ Slice.

4.2.1.1 Storage Manager node fails
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The scenario (shown in Figure 4-4) starts when one network connection of a multi-rail 

configuration breaks. Subsequently, the monitoring tool detects the fault while measuring the 

event building efficiency of the damaged DAQ Slice. The erroneous DAQ Slice may 

accommodate at most as many events as can fit into its readout buffers. Therefore, the data 

sources have to be informed about the new capacity of the damaged DAQ Slice before it runs 

out of buffers. This way it is ensured that the data acquisition rate will be decreased 

respectively to the capacity loss in one DAQ Slice.

4.2.1.2 A network connection of the multiple rail configuration breaks

Figure 4-4 Network connection breaks scenario
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The scenario (shown in Figure 4-5) starts when a RU node fails. Subsequently, the 

respective data sources detect the fault using a heartbeat mechanism. Also, the monitoring tool 

detects the error during measurements of the event building efficiency of the damaged DAQ 

Slice. Since a Readout node is a local single point of failure, the erroneous DAQ. Slice will be 

excluded from the data taking run. The corrupted DAQ Slice may accommodate at most as 

many events as can fit into its readout buffers, excluding the event fragments that correspond 

to the failed RU (those have to be discarded if necessary).Therefore, the data sources have to 

be informed about the exclusion of the damaged DAQ Slice before it runs out of buffers. This 

way it is ensured that the data acquisition is not stopped.

4.2.1.3 Readout node fails
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The scenario (shown in Figure 4-6) starts when an EVM node fails. Subsequently, the 

respective data source, as well as the monitoring tool detects the fault using a heartbeat 

mechanism (measurements of the event building efficiency are no longer possible because the 

EVM is the supervising node). Since an EVM node is a local single point of failure, the erroneous 

DAQ. Slice will be excluded from the data taking run. The corrupted DAQ Slice may 

accommodate at most as many events as can fit into its readout buffers, excluding trigger super 

fragments, which correspond to the failed EVM (those have to be discarded if 

necessary).Therefore, the data sources have to be informed about the exclusion of the 

damaged DAQ Slice before it runs out of buffers.

4.2.1.4 Event Manager node fails
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The scenario (shown in Figure 4-7) starts with a failure in a DAQ Slice that reduces its 

capacity. The load scheduling algorithm starts to assign fewer events to the damaged DAQ Slice. 

DAQ shifter notices in the DAQ View monitoring page that the erroneous DAQ Slice collect data 

at lower rate than expected.

4.2.1.5 Detect problems in an individual DAQ Slice

Figure 4-7 Error detection scenario 

4.2.2 Increase efficient resource utilization

The presented load scheduling method should enhance the resource utilization, which is 

a classical use case for this type of algorithms. The workload flow should adapt to the new 

conditions (throughput, computing power, nature of registered events) dynamically. As a result, 

higher data event building and filtering rate should be achieved.
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Use case main flow:

1. There is an imbalance in the DAQ system

2. The imbalance is detected during routine measurements of the workload on DAQ Slices

3. The workload flow is balanced between DAQ Slices dynamically

Sample use case scenarios corresponding to the proposed use case have been presented below.

4.2.2.1 Transient imbalance

The scenario (shown in Figure 4-8) starts when a transient imbalance is introduced into 

the system. The imbalance may be cased either by some non-persistent behaviour of the 

hardware (fluctuations in network link or computing node performance over the time) or by the 

variations in the nature of the registered events (the event selection is not a constant time 

process and depends on the event type). In the first stage, the algorithm detects the imbalance 

during routine measurements of the workload on the filtering farms. In the second stage, the 

measurements are communicated to the data sources so they can dynamically balance the 

workload between DAQ Slices.
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The scenario (shown in Figure 4-9) starts when an additional DAQ. Slice is introduced 

into the DAQ system. The new DAQ Slice is non-identical in respect to other DAQ Slices. It could 

be either a test farm running experimental algorithms on a small fraction of incoming events, or 

a powerful farm realized in a completely new technology. The algorithm will have to estimate 

the capacity of the new DAQ Slice and pass the measurements to the data sources. 

Subsequently, the data source will have to assign the recently introduced DAQ Slice with a 

fraction of the workload that corresponds to its capacity in order to fully utilize its resources.

4.2.2.2 Non-identical DAQ Slices
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4.3 System Use Cases

The following system use cases (Figure 4-10) were developed based on business use 

cases and scenarios presented in previous section. The Monitor DAQ Slices use case covers 

workload measurements, as well as detecting the failure of critical nodes, which in turn is also 

a use case for the data sources that have to detect the failure independently. The Exclude DAQ 

Slice use case fulfils the need for masking out a computing farm during data taking run. The 

workload measurements and exclusion decisions have to be communicated with data sources 

(Communicate measurements with data sources use case). Finally, the most important use

case, and also our main goal, is to balance the event flow between available computing farms.

Figure 4-10 System use cases diagram
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It is important to notice that our aim is to enhance the system so it is more reliable and the 

resources are utilized in more efficient way. Several system use cases have been identified that 

have to be implemented in order to achieve these goals. A monitoring utility is needed so 

workload measurement can be conducted and computing node failures can be detected. Those 

measurements need to be communicated to the data sources that in turn will use them to 

make the event fragment assignment decision. In the worst case scenario, when a critical node 

fails a DAQ. Slice has to be excluded from the on-going data-taking run.
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5 Proposed workload scheduling method

In this chapter we will propose a dynamic load scheduling algorithm for a distributed 

data stream, which allocates the workload between several autonomous computing farms. As 

previously mentioned the processing farms are accommodating the load through distributed 

readout. The proposed method employs event driven initiation of load scheduling activities, 

which is considered as very sensitive to fluctuations and therefore allows for detecting and 

adapting to faults. Since the algorithm should be as lightweight as possible, and most 

importantly should not introduce additional bottlenecks and single points of failure into the 

system, we decided to employ a distributed and asynchronous load assigner. The algorithm is 

also cooperative in the sense that all load assignees instances pursue to a common, global goal. 

Finally, the load assignment method is suboptimal and the monitoring of the workload on the 

filtering farms is heuristic.

5.1 General idea

In this section we aim to give a brief overview of the proposed workload scheduling 

method. A schematic view of all important components (computing nodes, networks, etc.), 

along with the scheduling algorithm's workflow, has been presented in Figure 5-1. Firstly, the 

capacity of DAQ. Slices and their workload have to be estimated. All Builder Units (BUs) in
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Figure 5-1 Schematic view of CMS DAQ components, along with the scheduling algorithm's workflow [74]
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a given DAQ Slice are passing the information about their capacity and occupancy (Figure 5-1, 

step 1) to the Event Manager. More details about the adopted load index will be given in the 

following section. The EVM is merging those data in order to have a unified view of the 

workload and performance of the filtering farm (DAQ Slice) that it is supervising. Afterwards, 

the EVMs are exchanging with each other the measurements of the workload in each filtering 

farm (load data) in order to achieve redundancy (step 2). In the next step, the redundant load 

data are sent to FRLs (step 3, part 1 and 2). A more specific description of the load scheduling 

protocol (including the communication between EVMs, the two-step load-data transfer to FRLs 

and fault tolerance mechanisms) can be found in section 5.3. Based on the load data received 

from all EVMs the data sources (FRLs) are scheduling the event fragments and in case of serious 

malfunctions are taking the decision of masking out a filtering farm (step 4). The proposed 

event fragment allocation algorithm will be described in section 5.4. There are two more 

components (shown in Figure 5-1) that were not discussed yet, namely Filter Units (FUs) and 

Storage Managers (SMs). Although, they are not directly involved in load scheduling activities, 

they are important components of the CMS DAQ system, and likewise have a crucial impact on 

data taking rate (in the production system, usually the FUs are the limiting factor). Their 

performance is reflected in the workload and capacity measurements done by BUs because of 

the employed queuing mechanism, which will be explained in more details in section 5.3.

It is important to notice at this point that the goal of the proposed workload scheduling 

algorithm is not only increasing the capacity of the system by more efficient utilization of 

available resources, but also increasing the fault tolerance of the system and minimizing the 

number of lost events in case of some software or hardware error occurrence (event loss is 

tolerated to a certain extent, but it should be minimized).

5.2 Load index

Before the load-scheduling activities can be performed and the load distributed 

between available resources, first the workload on particular system parts, like computing 

nodes, network connections, or entire computing farms has to be determined. In order to 

measure the load a unified metric for the whole system has to be established. A load index is an
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important and essential part of every load scheduling algorithm and has to be carefully chosen 

as it has a significant impact on the algorithm's overall efficiency.

FRLs deliver data with 100 kHz frequency, which means that approximately every 10 us there 

are about 500 new event fragments that need to be assigned to a DAQ Slice. Sending a single 

message between computing nodes in the discussed system, depending on the network type 

takes about 10 to 100 [is. The latest networking technologies are an order of magnitude faster, 

however adopting them for the CMS DAQ system is only in an experimental stage [73]. As 

a result, currently it is not possible to calculate the workload and exchange the load-data 

separately for every event [11]. This operation has to be rather made for bigger groups of 

events in advance. However, it has to be guaranteed that a DAQ Slice can accommodate the 

assigned group of events. Otherwise, congestion in one DAQ Slice may result with idleness of 

other DAQ Slices. For this reason, it is desirable that the load index carries the information 

about the occupancy of the readout buffers in the readout nodes. Furthermore, the available 

processing power of each DAQ Slice, as well as the workload on the DAQ Slices has to be 

estimated in order to assign them with an appropriate fraction of the incoming workload. On 

the other hand, accurate monitoring of all computing nodes in terms of workload, processing 

power and buffers availability is very resource consuming and thus in case of the discussed 

system not acceptable. Therefore, a more general way of determining the properties of interest 

is needed. Since the parallelism inside of a DAQ Slice is achieved by SPMD [7] technique, the 

workload on a DAQ Slice is directly proportional to the size of data that it has to process. 

Therefore, the best solution in the discussed case is to measure the workload on a DAQ Slice by 

the size of the data it owns (as proposed by Fonlupt et al. [21]). The capacity of a DAQ Slice, in 

turn, can be estimated as the number of events built in a given period of time. Taking into 

account the structure of the employed FIFO queues and the event building protocol, described 

previously in chapter 3, it can be noticed that the estimated capacity also reflects the efficiency 

of event filtration and the transmission rate to persistent storage. The workload and capacity 

measurements can be easily combined by assigning an initial number of events n to each DAQ 

Slice, and then, after a given period of time, by checking the numbers of events n0 that still have 

to be built in each DAQ Slice (an EVM, as it supervises its DAQ Slice, keeps track of how many
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events were built, which carries the information about the number of events under 

construction as long as the original number of events allocated to the DAQ Slice is known). This 

way, both the workload (n0 events) and the capacity (n - rta events per measurement time) have 

been estimated. Determining the occupancy of all readout buffers at once is currently not 

possible because the addressed system is a distributed real-time system. Nonetheless, the 

proposed measurement gives us the information about worst case readout buffer occupancy. 

Since the received super fragments that were not yet assembled into whole events are stored 

in the buffers of Readout Units, the highest possible occupancy is na super fragments. The 

occupancy might be lower because not necessarily all super fragments that were assigned to 

a DAQ Slice have been already sent. The information about the available space in the readout 

buffers is inaccurate because the event size is variable. Nevertheless it is sufficient because the 

average event size, as well as the event size distribution is known. When it comes to the initial 

number of events n it cannot be greater than the readout buffer size divided by the average 

super-fragment size. This way, it is guaranteed that all events assigned to a DAQ Slice will be 

accommodated regardless of its capacity, which is crucial in order to avoid idleness periods. For 

example let us consider a DAQ System consisting of two DAQ Slices (Slice 0 and Slice 1). Let us 

assume, for simplicity, that there are no queues on the data sources' side, and that each data 

source provides 1 event per time t {1 evt / 1). Moreover, suppose that an event is transmitted 

exactly after time t from the previous event transmission, and that the transmission time from 

the data source to the Readout Unit is negligible. If an event is considered as constructed, all 

respective super fragments are removed from readout buffers. If a Slice's readout buffers are 

empty the DAQ Slice is considered as idle since there are no events to build. The data sources 

are distributing the event fragments in round robin fashion for the initial group of events, and 

will start to send the next group only after receiving the information about the workload 

measurements. An event may only be send if there is space for it in the receiver's readout 

buffers. Slice 0 is building 1 event in time 3 t (1 e v t / 3 t) while Slice 1 in time 2 t (1 evt /  2 t), 

both DAQ Slices have readout buffers for 3 events. Initially each DAQ Slice is assigned with n = 

12 events (24 events in total), and the workload measurement will be performed after time 2 1 1 

(from receiving the first event). As shown in Figure 5-2, Slice 1 is building and receiving events
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at the same rate and for this reason there is never more than one event in its readout buffers. 

On the other' hand, after time 10 t (from receiving the first event), the readout buffers from 

Slice 0 are completely filled in, and as a result receiving of the next event fragment is delayed 

by t. This, in turn, delays sending the next event fragment to Slice 1, and results in idleness 

periods. Of course if the initial event group would be smaller, the workload measurement 

would be carried out earlier and communicated fast enough to the data sources, the system 

could start sending less events to Slice 0 than to Slice 1 and avoid idleness in Slice 1. 

Nevertheless, this example helps to understand that a Slice has to be able to accommodate all 

the incoming events in the readout buffers. This property is especially crucial when a fault leads 

to loss of entire capacity of a DAQ Slice. In practise, in order to minimize the probability that the 

assigned group of n events will not fit into the readout buffers, the buffer space needs to be n x  

(average super fragment size) plus some additional reserve due to the variable even size.

Buffer occupancy
(event)

Idleness periods

Figure 5-2 Time diagram for a not sufficient readout buffer case

Now let us assume that the load-data communication time is 18 t. As shown in the Figure 5-3 

(continuation from Slice 0 time diagram shown in Figure 5-2), after the workload
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measurements were triggered 3 more events were received. Also, there are 2 additional events 

in the readout buffers. In total the time needed for processing these 5 events is 15 t. This, in 

turn, results in 3 ttime idleness until the load-data reach data sources and new events are sent. 

This leads us to the conclusion that the approximate processing time needed for the remaining 

events (the events that were assigned to a Slice but were not yet build) has to be higher than 

the time needed for transferring the load-data to the data sources. Therefore, the workload has 

to be measured when the number of events assigned to a DAQ Slice for building reaches a 

minimum (an event driven approach) that allows for sending the obtained load-data to the data 

sources without an idleness period. When a DAQ Slice reaches this minimal number of events it 

is considered as underloaded. An advantage, of the event driven strategy is that the frequency 

of the workload measurements depends on event building efficiency of DAQ Slices, and as a 

result it depends automatically on the data acquisition rate.

Buffer occupancy 
(event)

Figure 5-3 Time diagram for too few remaining events in respect to the load-data communication time case

The load assignment algorithm (located in each data source) makes the allocation decision only 

if the load-data corresponding to measurements in all DAQ Slices are available. Otherwise, if 

the allocation decision in each data source would be made based on the actually available load- 

data, the load assignment algorithm would be non-deterministic (possible race conditions). 

This, in turn, would lead to mixing the event fragments corresponding to one event between 

several DAQ Slices, which is unacceptable. Since, on the one hand, the measurements are 

triggered autonomously in each DAQ Slice, but on the other hand the data sources need the
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load-data from all DAQ Slices to allocate them with new blocks of events, an idleness period is 

still possible. Let us consider a DAQ system exactly the same as the one described in the 

previous examples, except that now both Slices initially are assigned with 8 events (16 events in 

total) and have enough buffers to accommodate them. Let us also assume that a DAQ Slice is 

considered as underloaded if less than 4 events are allocated to it for constructing, and that 

measuring the workload and sending the load-data to data sources takes 8 t. As shown in 

Figure 5-4, Slice 1 reaches the underloaded state after time 8 t (from receiving the first event). 

The load-data, in turn, reach the data-sources after another 8 t. At that point the Slice 1 

processed all events that where assigned to it. However, since the load-data from Slice 0 did 

not reach the data sources yet (they were sent later because it is building the events slower), 

new block of events cannot be allocated to the Slice 1. As a result, there is an idleness period in
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Figure 5-4 Time diagram for an unsynchronized load measurement case

Slice 1. In order to solve this problem, the workload measurement and load-data transfer has to 

be triggered at once in all participating DAQ Slices. Therefore, the DAQ Slice that becomes
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underloaded has to notify other DAQ Slices. This way, the workload estimation and load-data 

update will be carried out in parallel in all DAQ Slices. Subsequently, the data sources will 

allocate new blocks of events to all DAQ Slices, which will be distributed after the currently 

used blocks are all sent. Now, let us consider how to determine the initial number of events 

that will be assigned to each DAQ Slice. Suppose that the underloaded state is reached after 

building / events. It is desirable to keep / as small as possible to achieve more accurate load 

scheduling. On the other hand, the time needed for processing n - / events has to be higher 

than or equal to the transmission time of load-data from EVM to FRLs (as shown above, this is a 

necessary condition that has to be fulfilled in order to avoid lowering the data taking rate). The 

second set of load-data may be sent to the data sources only after the first one has been 

received, so n - 1 is actually the smallest possible number of events after the construction of 

which the underloaded state can be reached for the second time. Since, the underloaded 

threshold has to be constant, it can be concluded that I = n - 1. As a result, n = 2 I, and so the 

underloaded state is reached when n/2 events are constructed. The time needed for processing 

the initial number of events n has to be twice as big as the load-data transmission time.

In order to determine the optimal initial number of events n, a series of experiments has been 

conducted during the LHC Winter Technical Stop on the CMS DAQ production system (8 DAQ 

Slice setup with 1 EVM, 63 RUs and 82 Bus per each slice) using a prototype workload 

scheduling algorithm. As shown in Figure 5-5, the data acquisition rate has been measured for 

different values of the n parameter. The experiment has been repeated, in turn, for different 

event-fragment sizes. The system was running with the 'Drop at BU’ option, which means that 

the only limitation of the data-taking rate came from the network. It can be easily noticed that 

if the underloaded threshold is to low (the load-data update is triggered to late), the workload 

scheduling algorithm slows down the system due to an idleness period. The idleness starts 

when all events that have been allocated to DAQ Slices in the given scheduling round have been 

sent, and continues until new load-data from all DAQ Slices are received. For 2 KB event- 

fragments (the expected event fragment size for the CMS experiment) the data-taking rate 

stops being limited by the scheduling algorithm (becomes constant) fo r71/^ greater than 1200 

events. The curve corresponding to the 3 KB event-fragment reaches its maximum at the latest
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(n/2  value equals to 2000 events). Hence, the underloaded threshold, including a reserve due 

to the variable fragment size, should take a value in the range from 1500 to 2000 events.

Underloaded threshold, n/2 (events)

Figure 5-5 The Data acquisition rate depending on the underloaded threshold for various event-fragment sizes

So far, it has been defined how to conduct the workload measurement but the number of 

events that each DAQ Slice should request by sending the load-data still has be considered. It 

has been determined that when the load-data update is triggered each DAQ Slice has 

constructed m¡ events, where / is the index of a given DAQ Slice. It is also known that the Slice¡ is 

still assigned with n - m¡ events, where n is the number of initially assigned events. Moreover, 

n - m¡ is the maximal possible occupancy of the readout buffers and so m,- is the number of 

available buffers, in the respective DAQ Slice. The maximal workload that can be requested in 

total (for k DAQ Slices) is:

m0 +  m-L +  m2 H------1- rak
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Since, the number of requested events cannot adversely affect the frequency of workload 

measurements (it depends only on the load-data transmission time) it is desirable to ask for as 

many events as possible. In order the request the maximum, each filtering farm has to request 

m¡ events, where m¡ corresponds to the number available buffers in this farm. For example, if at 

the point when the load-data update was triggered, the Slice0 built 1500 events and the Slicei 

1000 events, the slices should request respectively 1500 and 1000 new events. This strategy 

intuitively seems to be right since the faster Slice requests more events, and the slower less. 

Now it has to be proven that the proposed event distribution is proportional to the measured 

capacity of the DAQ Slices. Let us assume that the workload measurement was triggered after 

time t, this way DAQ. Slices were building events respectively at:

mo %  m2 rnjc
t ' t '  t '  t

Therefore, they should request respectively the following fraction of the workload:

m0 mt mk
m0+m1+ —+mic' m0+m1+ —+mk "' m0+m 1+---+mic

Hence:

Slice0: -------—-------  x  (m0 +  m x +  — +  m j  =  m 0
m0+m 1+ - + m k u

slice i ; „  ' X  ( m 0 +  m x +  -  +  m k )  =  m 1TnQ+TTL̂ -\-”,wbTn.ĵ

Slicek: -------— -------  x  (m 0 +  m 1 +  — +  mk) =  m kTtlQ+Tn.i + '"-rTTLlc

This proves that the requests for new events are proportional to the estimated event building 

efficiency of DAQ Slices. Moreover, after triggering the load-data update each DAQ Slice is again 

assigned with the initial number of events n (n - m¡ + m¡). This is an important property of the 

proposed load index because it makes the discussed procedure repeatable, by which we mean 

that the upcoming workload measurements can be done exactly in the same way as the first
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one. Whenever a DAQ Slices reaches the underloaded state the workload calculation and the 

load-data update are triggered.

5.3 Load scheduling protocol

The load scheduling protocol is responsible for transferring the load-data from DAQ. 

Slices to the data sources and gathering the workload indexes. Key features of such a protocol, 

in case of the discussed DAQ system, are efficiency and scalability. It is also crucial that the 

protocol is as lightweight as possible so it does not decrease the available processing power and 

bandwidth. In case of an asynchronous, distributed algorithm, the load scheduling protocol is 

also responsible for ensuring coherency of the allocation process that is made in numerous data 

sources concurrently.

5.3.1 Collecting workload indices from Builder Units

As it has been said in previous section, each DAQ Slices is assigned with an initial group 

of events for building. When the number of these events drops to a certain level the DAQ Slice 

is considered as underloaded. Therefore, the number of constructed events has to be 

monitored. Since an EVM is a central point of each DAQ Slice that supervises its activities, it 

seems to be a natural choice for collecting the workload indices from BUs.

In the standard system the only message that a BU is sending to the EVM is Allocate new and/or 

clear previous. This message is sent each time the BU receives a discard message, which, in 

turn, is sent by a Filter Unit after running the HLT selection algorithms. As a result, monitoring 

of this message would give us the information about the number of built and filtered events in 

a given period of time, and the information about the number of not yet filtered events. Since 

the filtration time is match longer than the event construction time, the estimation about the 

(worst case) readout buffer occupancy would be very inaccurate (large fraction of the unfiltered 

events would be actually stored in BUFU's buffers rather than in RUs' buffers). Therefore, as 

shown in Figure 5-6, the Builder Unit has to be modified so it sends an additional Event 

constructed notification message (step 6) each time a new event had been assembled.
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Figure 5-6 Builder Unit internal FIFOs, Event constructed notification message added, due to the load scheduling
algorithm

5.3.2 Two-step load-data transfer

After reaching the underloaded state, the EVM needs to send the load-data to the FRLs. 

An EVM is directly connected to all FRLs through the non-blocking Myrinet [6] network. 

Unfortunately, the Myrinet network does not support multicasting, and implementing it using 

a multicast tree would interfere with the non-blocking properties of the network, and as 

a result would decrease the available throughput. On the other hand, the Terascale ForcelO 

switch, which lies at the heart of each DAO Slice, supports multicast data delivery. Moreover, 

the multicast facility is implemented in a very efficient way and scales very well. Therefore, the 

ForcelO switch can be used for transferring the load-data to the readout nodes (shown in 

Figure 5-7, step 1). Since the readout nodes are receiving the event fragments from FRLs, each 

RU can transmit further the load-data to a subset of FRLs using the same non-blocking routs
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that are used for event fragment transfer (shown in Figure 5-7, step 2). In practise this means 

that RUs will be sending the load-data fully in parallel to different FRLs without interfering with 

each other. This way the sequential communication has been significantly reduced, which is 

important to achieve good scalability and efficiency. What is even more important, the load- 

data transfer will not interfere with the adopted non-blocking topology, and will not reduce the 

available bandwidth.

5.3.3 Requirements for triggering load-data transfer

As discussed in previous section, there are two events that may trigger a load-data 

transfer: a DAQ Slice reaches the underloaded state itself, or receives a notification that 

another DAQ Slice reached underloaded state. Therefore, before focusing on the load-data 

transfer protocol, first the communication mechanism that triggers the load-data update has to

DAQ Slice 0 DAQ Slice 1

FRLo FR lt FRL2 FRLj FRL, FRLs

Figure 5-7 Load scheduling protocol - load-data redundancy. Step 0: EVMs exchange load-data. Step 1: EVMs 
multicast the redundant load-data to RUs (RUu is faulty). Step 2: RUs transfer the load-data to FRLs via non- 

blocking network (FRLq and FRL, receive the load-data from DAQ Slice 1 via RU0i)
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be discussed (shown in Figure 5-7, step 0). For the purpose of this intercommunication a DAQ 

Slice is represented by its EVM, as it is its central point. The notification protocol has to be 

designed having in mind the essential system attributes, as well as that the subsequent load- 

data transfer will be carried out in two stages.

Firstly, in the standard production system all DAQ Slices have equal capacity (assuming that 

there were no fault occurrences), and are assigned with equal number of events for processing. 

Therefore, statistically the workload on each computing farm should be the same, and as 

a result, it is very likely that all DAQ Slices will be reaching the underloaded state in the same 

time. Secondly, since the load-data update is realized in two steps, it is sensitive to failures in 

readout nodes (they are responsible for passing the load-data further to FRLs). Therefore, there 

has to be a redundancy in the load-data, which means that in practise an EVM has to transfer 

load-data not only from its own DAQ Slice, but also from another DAQ Slice. This way, in case of 

a RU failure in one computing farm the respective node in another farm will pass the load-data 

to the appropriate subset of FRLs (as illustrated in Figure 5-7). For this reason, the notification 

protocol has to be additionally responsible for load-data exchange between EVMs. And thirdly, 

the notification protocol has to able to detect failure of an EVM, as the algorithm is also 

sensitive to this kind of faults. In this case, another EVM should transfer fully-loaded message to 

the FRLs, on behalf of the broken DAQ Slice (this way, it will be not assigned with new events).

Having in mind the discussed particularities, one-directional ring topology has been 

studied [11]. In the considered case each DAQ Slice, represented by its EVM, has only one 

successor: EVMi is the successor of EVM0, EVM2 of EVMi, and so on until the last EVM whose 

successor is EVM0. When a DAQ Slice becomes underloaded it notifies its successor by 

transferring its load-data. Each load-data update is identified by a unique sequence number. 

When an EVM receives the notification from its predecessor it checks whether the load-data 

update was already served using the sequence number. If no, the newly notified EVM notifies 

its successor, and so on, until the ring is closed. Each DAQ Slice may inform its successor about 

a given load-data update only once. If a DAQ Slice already triggered load-data update, because 

it became underloaded itself, and then was notified by its predecessor it will not pass this 

notification further. Transferring of the load-data to FRLs via RUs can only begin after receiving
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the notification from the predecessor, as only then the EVM has the complete information 

about its and its predecessor workload. This way the necessary redundancy has been achieved 

by transferring load-data concerning each DAQ Slice to FRLs twice: firstly by the DAQ Slice itself, 

and secondly by its successor. As previously mentioned, this strategy has been designed 

keeping in mind that in the production system the DAQ Slices have the same capacity. 

Therefore, all DAQ Slices are expected to reach the underloaded state and send the notification 

to their successors at the same time. It can be also noticed that this strategy is convenient for 

detecting DAQ Slices that for some reason became slower, or excluding a broken processing 

farm from a data-taking run, at a very low network-traffic cost.

Let us consider an exemplary DAQ System of 3 DAQ Slices (Slice 0, Slice la n d  Slice 2), and let us 

assume that the notification message is sent exactly after reaching underloaded state and is 

delivered in time tn. The load-data transfer to FRLs starts immediately after the notification has 

been received. The remaining assumptions from the previous examples remain unchanged. As

Slice 0

Slice 1

Slice 2

Slice 0 reaches 
underloaded state

tn

X t

Slice 1 reaches 
underloaded state

tn

Slice 2 reaches 
underloaded state

tn

Notification from EVM2 
reaches EVM0

x t t t n

Notification from EVM0 
reaches EVMj

xt + tn

Notification from EVMi 
reaches EVM2

_nme (t)

Time (t)

Tjme ( t )

xt xt + tn

Figure 5-8 Time diagram for triggering load-data update (expected case scenario)

shown in Figure 5-8, in the expected case (all filtering farms are reaching the underloaded 

threshold at the same time), the load-data transfer to FRLs is only delayed by tn time in all DAQ
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Slice. At this point, it can be noticed that adding an additional DAQ Slice to the system does not 

introduce additional delay (good scalability). On the other hand, in the worst case, the load- 

data transfer to the data sources is delayed by t„ * k, where k is the number of DAQ Slices (as 

shown in Figure 5-9). In this case, the time t</ after which the load-data are sent to FRLs grows 

linearly with the number of DAQ Slices (t¿ = tnx k). Such behaviour is expected in a DAQ System 

where the processing farms have different or varying computing power. It is especially likely if 

there is one filtering farm that outperforms significantly the others. In this case, the more 

capacious slice will be the only one that reaches the underloaded state. The other slices will be 

only passing the underloaded notification further through the adopted ring network.
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underloaded state
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Figure 5-9 Time diagram fortriggering load-data update (worst case scenario)
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5.3.4 EVM's workload communication algorithm

In order to introduce the proposed method the Event Manager entity has been modified 

in respect to the standard system as shown in Figure 5-10. Firstly, the ability to process the 

event constructed notification send from BUs has been added (step 4). The notification is 

passed to Event Counter, which keeps track of the number of built events. Moreover, also the 

notifications from the EVM's predecessor have to be handled (step 5'). The underloaded 

notification consists of a load-data, request number and the slice mask triplet. The EVM 

updates its own slice mask accordingly to the one received in the triplet. The request number, 

similarly as the event constructed notification is passed to the Event Counter (step 6'). Based on 

those two values the Event Counter decides when to send an underloaded notification to the 

EVM's successor (step 7'). After receiving the load-data from the predecessor EVM, a load-data 

quadruplet is multicast to all FBOs. The load-data quadruplet contains information about the 

number of built events in the given workload scheduling round (worst case buffer occupancy) in 

the given DAQ Slice and in its predecessor Slice, along with a unique request number and the 

slice mask. After sending the load-data quadruplet a new workload scheduling round starts: the 

DAQ Slice counts as being assigned with the initial number of events n and the Event Counter 

resets the built event counter. The multicasting itself is based on UDP protocol; only a simple 

software acknowledgement has been added. If the multicasting algorithm timeouts before 

receiving acknowledgements from all FBOs the quadruplet is being multicast again. If a given 

FBO continuously fails to send the acknowledgement and the DAQ Slice did not build any 

events in the given workload scheduling round, the host RU is being considered as faulty and 

the EVM masks its own Slice in the DAQ Slice Mask, which will be propagated over the system 

during the next workload scheduling rounds, and will result in excluding the broken DAQ Slice.
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E V M s  E V M p

Figure 5-10 Event Manager internal FIFOs (Event Counter entity has been added, along with corresponding 
notification messages, due to the load scheduling algorithm)

The value of the timeout as well as the number of retries must be determined experimentally. 

Therefore, the distribution of round trip time has been studied (shown in figure 5-11). In this 

context by round trip time we mean the time from the point of multicasting the load-data until
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the moment when the last ACK has being received. For the purpose of this experiment the 

timeout has been switched off. At this point it is important to note that although only UDP 

protocol has been used, no package loss has been observed. Accordingly to the obtained results 

an optimal timeout should be in the range from 12 ms to 15 ms.
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Round trip time (100x, jis)

Figure 5-11 Exemplary multicast efficiency measured. The experiment has been carried out during 30 minutes of 
a data taking run with a DAQ System consisting 7 slices, which corresponds to about 10000 load-data updates.

The fault tolerance mechanism embedded in the EVM entity has been illustrated using a finite 

state machine and shown in figure 5-12. It is important to notice how the exclusion of a DAQ 

Slice happens in case a RU failure. First, the EVM supervising the erroneous RU masks out its 

own DAQ Slice in its own slice mask. Subsequently, the slice mask is sent as a part of the 

underloaded notification to the successor EVM during the next round. If the successor EVM did 

not send the underloaded notification to its successor yet, the slice mask will reach its 

successor in the same round. However, if the notification has been sent already the slice mask 

will be propagate further in the subsequent round, and so on. After receiving the slice mask the 

successor EVM will close the connection to the broken slice. It will however leave the respective 

port open. Until the slice mask reaches the predecessor of the broken slice, it will keep sending 

the underloaded notifications to the broken slice, which in turn will pass the notification further
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(the connection will be reopened and then accordingly to the above described procedure 

closed again). When the mask will reach the predecessor EVM, it will close the connection to its 

broken successor, which will be effectively excluded from data-taking. Then a new successor 

will be resolved (the successor of the faulty slice) and an introduction message containing the 

predecessor slice number will be send, which will end the recovery procedure.

Figure 5-12 EVM's Finale State Machine, the transition explanation is given below:
1. EVM received an 'underloaded' notification from its predecessor.
2. EVM became underloaded itself.
3. Automatically.
4. Automatically.
5. EVM received an 'underloaded' notification from its predecessor.
6. If requirements '7' and '9' are not met.
7. EVM's predecessor was masked out.
8. A new predecessor introduced himself.
9. EVM -RU  communication timed out
10. Automatically.
11. EVM received an 'underloaded' notification from its predecessor (the successor has been masked out).
12. Automatically
13. After receiving the 'dose' message from predecessor.
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The fault tolerance mechanism for an EVM failure is not yet fully implemented. Nevertheless, it 

is planned that the predecessor and successor will first detect the erroneous state using 

standard TCP features (Keep-Alive [75]), and subsequently they will close the connection. Then, 

the successor will start listening for a new predecessor. The predecessor, in turn, will introduce 

itself to the successor of its current, broken successor by sending a short message with its slice 

number. This way the broken DAQ Slice will be excluded from data taking.

The Readout Unit entity required no modifications, as the RU's communication protocol has not 

been changed. The load-data are multicasted directly to the FED-Builder Outputs which proved 

to be a more efficient solution.

5.3.5 Load-data transfer over the non-blocking network

The FED-Builder Outputs are responsible for passing the obtained load-data to the RISC 

processors on Myrinet NICs. The embedded RISC processors, in turn, are transmitting the data 

further to the destination Myrinet NICs on the FRL side, where the workload scheduling 

decision is taken. As previously mentioned, the load-data are sent using the same routs that are 

used to transfer event fragments up to the RU-Builder. The load-data will have to share the 

bandwidth with the acknowledgement packets that are sent to the event-fragment sources. 

Therefore, it has been decided to combine the load-data and the acknowledgements. The main 

advantage of this approach is that there is no need for additional acknowledgements in order 

to ensure reliable load-data transfer. Since the workload-data are sent together with the 

standard acknowledgement used by the event-fragment transmission protocol, in case of an 

acknowledgement loss, the event-fragment source will stop sending event-fragments as soon 

as it runs out of packet credits (previously described in section 3.1.1), and will resume the even- 

fragment transmission only if it receives a retransmitted acknowledgement (together with the 

load-data). This strategy implies of course that there is a small delay between receiving the 

load-data from the FBO and transferring them to FRLs. Although, the frequency of load-data- 

updates is much lower than the frequency with which the acknowledgements are sent, it has to 

be ensured that the FBO overwrites the load-data structure in the Myrinet RISC memory, only 

after the previous load-data have been transferred to all FRLs corresponding to the given RU.
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Otherwise, in case when one load-data-update is triggered immediately after another (which 

could happen because of some temporary network issues in one DAQ Slice) the load-data could 

be overwritten by their successors before they were actually transferred to the FRLs. As 

a result, a FRL could obtain event counters from different load-data updates, which would lead 

to stopping the whole data acquisition process.

Figure 5-13 FBO's Finale State Machine, the transition explanation is given below:
1. FBO received new load-data.
2. Some ACK were sent but not all FRLs of interest were served.
3. ACK were sent to all FRLs of interest.
4. Keep-alive timeout has been reached and keep-alive variable has been modified.
5. Keep-alive timeout has been reached and keep alive variable has been modified.
6. Automatically.

A second function of the protocol, besides transporting load-data, is to ensure that the data 

source will be able to detect failure of one of the corresponding Readout nodes. In order to

meet this requirement a heartbeat mechanism has to be applied. Since the acknowledgements 

are sent very often in respect to the frequency of load-data updates, they are strong candidates 

for also being used as the keepalive messages. However, if the efficiency of one DAQ Slice drops 

drastically, the ratio of the number of acknowledgements sent in this particular DAQ Slice to 

the number of load-data updates (which are triggered by fully operational DAQ Slices) will 

decrease as well. Therefore, a timeout should be added that triggers sending empty 

acknowledgements (no credits for new event fragments) to FRLs , if no acknowledgement has 

been send for longer than the minimum time that guaranties that the ACK packets can be used

as the keepalive message. On the other hand, since the timeout would be implemented inside
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of the Myrinet NIC's RISC processor, it would be insensitive to failures of other RU software or 

hardware components (it actually would cover only the power cat case). Therefore, in order to 

adapt this solution, another heartbeat layer is required. The second heartbeat can be realized in 

a very simple way, using the shared memory. Namely, the RU's software only has to modify 

(e.g. increment) periodically a keepalive variable in the shared memory. In turn, the timeout in 

the first heartbeat layer should only trigger sending empty acknowledgements, if the keepalive 

variable has been modified. This two layered heartbeat mechanism introduces only a very small 

overhead into the system and is sufficient enough for a FRL to detect failure of a Readout node. 

The behaviour of the FBO entity (Myrinet RISC processor part) has been illustrated in a 

simplified way using a finale state machine shown in Figure 5-13.

On the FRL site, each Myrinet NIC while receiving the acknowledge packages is updating its 

load-data. Moreover, when a data source NIC receives an acknowledgement, it resets the 

timeout variable associated with the sender DAQ Slice. The timeout variables (there is one 

corresponding to each filtering farm) are incremented continuously every 64 [is. If a variable 

reaches the threshold value it is assumed that the corresponding RU failed and therefore all 

pending packages that are queued, and were assigned to the particular DAQ. Slice containing 

the broken RU are discarded. Also from this moment on, all packages that will be assigned to 

the particular DAQ Slice will be discarded as well. This is a necessary loss, because in case of 

a Readout node failure, the packages assigned to it would dominate the ready-to-send queue, 

which would result in stopping the whole data taking process. It is also not possible to transfer 

the event fragments to other DAQ Slices, because until new load-data will arrive other data 

source will be transferring the corresponding event fragments to the broken DAQ Slice (only the 

data sources that are sending the event fragments to the broken RU are able to detect the 

malfunction), which would lead to a mismatch error. After receiving the load-data from 

a Readout Unit, firstly it is ensured that the sender's DAQ Slice is not masked out in the 

currently used slice mask. Although, the information concerning the sender slice itself cannot 

do any harm since the slice is masked out, it is important not to take the load-data into account 

because of the additional data about the predecessor slice. Secondly, the request number, 

which identifies each load-data update, is checked. This way it is ensured that the load-data are
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only used if they were received in the right sequence (the request number 2 should be received 

after 1, 3 after 2, and so on). If these two requirements have been met, the event counter of 

the sender slice is written into a circular buffer, also the slice mask that will be used with the 

newly obtained data is being updated (each set of event counters corresponding to each load- 

data update, has its own slice mask created using load-data only from this single update). 

Moreover, there is a second slice ready mask assigned to each update. Every time a counter is 

written into the buffer, the respective slice is market as ready. All DAQ Slices that have been 

masked out are considered as ready as well. Only if the given slice ready mask contains all DAQ 

Slices the corresponding set of counters is ready to be used (the scheduling decision must be 

based on counters from all filtering farms that are taking part in the data acquisition process). 

The predecessor's event counter that is also delivered in the load-data is processed exactly in 

the same way as the sender's event counter. If it has not been received earlier from the 

predecessor slice, it will be written into the circular buffer into the proper slot. It is important to 

note that after an event counter has been written into the circular buffer all other event 

counters corresponding to the same DAQ Slice and having the same request number will be 

ignored regardless of whether they have been received from the slice itself or from its 

successor.

In parallel, the FRL is receiving event fragments in form of smaller packages from the Front End 

Drivers. Each time an event fragment is completed, it is pushed into a dedicated queue. The 

content of the queue is check periodically. First it is determined whether there are any free 

credits (the value of at least one event counter has to be greater than 0), if yes a slice is 

assigned to the event fragment that has been retrieved from the front of the queue (the event 

fragment allocation algorithms will be discussed in detail in the next section). In the case when 

the allocated DAQ Slice is marked as broken the event fragment is discarded, otherwise it is 

pushed into another (ready-to-send) queue where it awaits transferring to the respective 

filtering farm.

A new set of counters may be used if, and only if all the counters in the currently used set are 

equal to 0 and the slice ready mask of the set that is next in turn contains all DAQ Slices. 

Therefore, these two conditions must be check always after a filtering farm has been allocated
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to an event fragment or after new load-data have been received. In the case when the 

discussed conditions are fulfilled, all the event counters in the current set as well as the current 

slice mask are assigned with default values, and are marked as ready for reuse in the circular 

buffer. Afterwards, the next set of event counters becomes the current one, and is used by the 

allocation algorithm to assign event fragments to DAQ Slices.

The behaviour of the FRL entity (Myrinet RISC processor part) has been illustrated in a 

simplified way using a finale state machine shown in Figure 5-14.

Figure 5-14 FRL's Finale State Machine, the transition explanation is given below:

1. All event counters from the current set have been used, the new set of event counters is ready to use.
2. All event counters from the current set have been used, the new set of event counters is not yet ready.
3. Timeouted on slice's heartbeat.
4. All event counters from the current set have been used, the new set of event counters is not yet ready.
5. Received an ACK with piggybacked load-data.
6. Received an ACK with piggybacked load-data.
7. Automatically.
8. There are credits in current event counter set or the new event counter set is ready to use
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5.4 Event-fragment allocation algorithm

An event-fragment allocation algorithm is responsible for assigning an event fragment 

to a destination DAQ Slice. The algorithm is meant as a replacement for the currently used 

method (previously described in 3.1.1). Since the algorithm has to be implemented inside of the 

Myrinet NIC, and will be executed for each event fragment separately (on average once per 10 

Us), it is crucial to keep its computational complexity as low as possible. Moreover, in a case 

when all DAQ Slices reached the underloaded state at the same time, the algorithm should 

mimic round robin scheduling.

Basically, the idea is to distribute the event fragments to one DAQ Slice after another (round 

robin fashion) omitting only those slices which event counters are zero. After an event 

fragment is allocated to a slice, its counter is decremented.

f :  \ 1 
int alloc_slice;
for (alloc_sllice = 0; slice < NMB_S!LCE; alloc_slice++) { 

if ( ! isMaskedOut(alloc_slice) ) break;

V _______ i__________________________________________________________i_______________ i______________________J
Listing 5-1 Initialization step

In order to initialize the algorithm, before the data acquisition process will be started a filtering 

farm that will be allocated with the first event has to be determined. For this purpose the first 

slice that is not masked out is selected (Listing 5-1). Whenever the first event fragment is 

completed, it is assigned to the selected slice (as shown in Listing 5-2). Afterwards, the next 

slice is being checked: whether its value is greater than zero and if it is not masked out. If those 

two conditions are met the slice is being selected. Otherwise, the next slice in turn is being 

checked, and so on, until a slice that meets the selection conditions is found. This procedure is 

repeated for all upcoming event fragments until it is not possible to find a slice that fulfils the 

requirements. In this case the next DAQ Slice after currently selected slice that is not masked 

out (the one that would be normally used if the counters were not zeros) is being selected. This 

way it can be easily determined that all event counters in the currently used set are zeros (the
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selected counter is 0). Whenever the slice ready mask of the next set contains all slices, it will 

be used.

_ _ _ _ _  _ _ _ _  . -N

s lic e jn d e x  = a!loc_slice; 
z e ro e d _ c o u n te rs  = 0;
-e v t_ c o u n te r [a llo c _ s lic e ];
d o {

a lloc_slice  = a lloc_slice + 1 ==  N M B _S LIC E  ? 0 : a llo c_s lice  +  1;
} w h ile {

(e v t_ c o u n te r[a llo c _ s lic e ] <=  0  & &
+ + z e ro e d _ c o u n te rs  < N M B _SLIC E + 1) 11 
is M a s k e d O u tt(a llo c _ s lic e )

V . . . . . . ......... ...................... ........ .......................................... ............ ....... .................- ................ - ........................J

Listing 5-2 Workload allocation step

After the event counter sets have been swapped, it is important to double check whether the 

selected slice is not masked out or its value is not 0. The first slice in turn that meets those 

conditions is being selected (Listing 5-3).

for (int i = 0; i < NMB_SLICE; i++) {
alloc_slice = alloc_slice + i == NMB_SLICE ? 0 : alloc_slice + 1; 
if (evt_counter[alloc_s!ice] >0 && ! isMaskedOut(alloc_slice)) 

break;

Listing 5-3 Swap event counter sets step

Let us now consider the computational complexity of the algorithm 1. The 'initialization' step of 

the algorithm is executed only once before the data-taking process starts so it has no impact on 

the system capacity. The 'swap event counter' step is expected to be executed approximately 

once per 10 ms. The most expensive operations in this step are off course the 'for' and ' i f  

statements. Certainly, each of them will be executed at least once. Whether they will be 

executed more than once depends on whether the selected slice will send a zero-counter, or 

will be masked out. The probability of sending a zero-counter or masking out a DAQ Slice is very 

low since it is equal to the probability that the DAQ Slice in question is broken. Moreover, in the
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case when a DAQ Slice is faulty, the system running with workload scheduling significantly 

outperforms the standard system. As a result, the overhead introduced by the discussed step is 

negligible and therefore not worthy analysing. The 'workload allocation' step, however, will be 

executed at least once per 10 |is, and therefore it can have significant impact on the overall 

capacity. In this case, as well as in the previous one, the most expensive is the loop-related 

operation (the ‘while’ statement). It will be executed at least one time per allocation step. 

Whether it will be executed more times depends on values of the load data. Let us consider 

a DAQ System of m DAQ Slices and an initial number of events n, allocating events accordingly 

to the following set of counters:

c0 >  c1 >  c2 >  c3 >  c4 >  ••• >  cm_! 

and

n

The 'while' statement will be executed once per allocation step for the first m x cm- i  event- 

fragments (until cm- i  is greater than zero the loop's condition is never meet). Afterwards, it will 

be executed twice for event-fragments that will be assigned to the slice corresponding to Co 

counter, and once for other slice until cm- 2 reaches zero, and so on. Therefore, the sum S of all 

'while' statements executions during the given workload scheduling cycle can be written as:

m  x  cm_! +

( Ttl — 1 )  X  (c m _ 2 — Cm _ i )  +  1 X  (c m _ 2 C m - l)

(m -  2) x  (cm_3 -  cm_2) +  2 x  (cm_3 -  cm_2) +

...+

1 x  (c0 -  ct) +  ( m -  1) x  (c0 -  C i)

the above equation can be easily transformed into:

m  x  cm_x +  

m x  (cm-2 ~  cm-i)  +

™  x  ( c m - 3  -  c m _ 2 )  +
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m  x  (c0 — cx)

as a result:

5 =  m x  c0 

m  x  n

Thus, the sum S is constant and does not depend on the counter's values and the average 

number of 'while' operations per allocation step equals:

m x  n 
T  = -------------l avg  o

¿Z>i=o W

It can be easily noticed that in the worst case scenario (c0 ==~>c1 =  0,... , cm_! =  0):

Tw Tfl,

while in the best case scenario (c0 — ct — =  cm^t =  |):

Tb =  1

It is important to notice that the algorithm 1 distributes the event-fragments in round robin 

fashion between those DAQ Slices whose counter values are greater than zero. This means in 

practise that if one of the slices builds more events than the others, the surplus will be sent at 

the very end of the scheduling round and as a result the most efficient slice will be disfavoured. 

Since the distribution of load-data counters has a serious impact on the algorithm's complexity, 

it is important to determine experimentally whether the algorithm 1 boosts the differentiation 

in the counter's values (significant variation of event counters' values may reduce the overall 

capacity of the DAQ System).

Let us now consider the size of the circular buffer. An event counter may be written into the 

buffer only if there is a free slot that has been marked as ready to reuse. If some load-data have 

been received but there is no free space for them, they will be ignored. Of course, as it has 

been described before, the load-data will be sent again to the data source together with all the 

upcoming acknowledgements. Therefore as soon as a slot is available the load-data will be 

written into the buffer. There is a risk however, that before there is a free slot another load- 

data update will be triggered. In this case, the new load-data will be transferred along with ACK
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packages and the previous load-data will be lost. The new load-data will not be accepted even if 

there is free space in the buffer because of its sequence number (only load-data that have been 

received in the right sequence are accepted). Therefore, it is crucial to ensure that there is 

always a free slot in the circular buffer for the upcoming load-data. Thus, let us analyse the 

worst case scenario (Figure 5-15). Suppose there is a DAQ System for which the initial number 

of events equals 2000 (n = 2000) and the underloaded state is reached if 1000 events have 

been built. The system consists of four DAQ. Slices and the state of the currently used set of 

event counters is 100, 200, 300 and 400 respectively for slice 0, slice 1, slice 2, and slice 3 (as 

shown in Figure 5-15, Step 1). The state of the next set of event counters that will be used is 

also known, it is 1000 for each of them. After distributing 100 event fragments to each slice 

(Figure 5-15, Step 2), there are 0 events in the current set of counters and 1000 events in the 

next set of counters corresponding to DAQ Slice 0. Since each slice is allocated with 2000 

events, it is clear that 1000 events have been already sent to the slice itself. As a result it is 

entirely possible that DAQ Slice 0 will reach the underloaded state and trigger a load-data 

update. Suppose now, that there is a network problem in other DAQ Slices and all event 

constructed notifications have been delayed and therefore Event Counters will state that no 

events have been built. As a result a third set of counters will be created: 1000, 0, 0 and 0. 

Afterwards next 100 events will be sent to each slice, beside slice 0 which will be omitted 

because the respective event counter is 0 (Figure 5-15, Step 3). At this point there will be 1000 

events inside of DAQ Slice 1, and if the network problem does not persist any longer in this 

slice, the underloaded state may be reached and a new load-data update will be triggered. In 

this case a fourth set of event counters will be created: 0, 1000, 0 and 0. Analogically, after 

sending further 100 events to slice 2 and 3 (Figure 5-15, Step 4), a fifth set of event counters 

will be composed: 0, 0, 1000 and 0. Let us now assume that transferring the final 100 events to 

slice 3 will result in another load-data update: 0, 0, 0 and 1000 (Figure 5-15, Step 5). At this
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Step 1)

Step 2)

Step 3)

Step 4)

Step 5)

DAQ Slice 0 

DAQ Slice 1 

DAQ Slice 2 

DAQ Slice 3

Current | 
inters

| Current 
vcountei

Current
‘scountery

[ Current 
ĉountei

awaiting
counters

100 1000

200 1000

300 1000

400 1000 awaiting
counters

DAQ Slice 0 0 1000 1000

DAQ Slice 1 100 1000 0

DAQ Slice 2 200 1000 0

DAQ Slice 3 300 1000 0 awaiting
counters
1

DAQ Slice 0 0 1 0 0 0 1 0 0 0 0

DAQ Slice 1 0 1 0 0 0 0 1 0 0 0

DAQ Slice 2 1 0 0 1 0 0 0 0 0

DAQ Slice 3 2 0 0 1 0 0 0 0 0 awaiting
counters

DAQ Slice 0 0 1 0 0 0 1 0 0 0 0 0

DAQ Slice 1 0 1 0 0 0 0 1 0 0 0 0

DAQ Slice 2 0 1 0 0 0 0 0 1 0 0 0

DAQ Slice 3 1 0 0 1 0 0 0 0 0 0

counters

Figure 5-15 Circular buffer size -  the worst case scenario
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point however, the currently used set of counters has no more credits (all counters are 0) and 

therefore the next set has to be used. As a result the first set of counters can be reused, and 

hence the circular buffer needs be able to accommodate only five event counters. It can be 

easily demonstrated in an analogical way that for a DAQ. System consisting of m DAQ Slices and 

for any initial number of events n, the buffer has to have a size of m +1.

At this point it is important to notice that the discussed delays led to a loss of synchronization in 

the system when it comes to the load-data update, which could led, in turn, to a capacity loss. 

This problem, however, will be considered separately.
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6 Results

The workload scheduling algorithm proposed in chapter 5 has been implemented in 

C/C++ and studied in the CMS testing environment as well as in the production Data Acquisition 

System. In this chapter we aim to give a complex overview of the conducted experiments and 

obtained results. First of all it will be measured how the algorithm affects the throughput of the 

FED-Builder network. The throughput of the standard system and the one running with the load 

scheduling algorithm will be compared. Also, the obtained results will help us to understand if 

a system that employs load balancing is meeting the CMS experiment's requirement, namely if 

it is able to sustain an average input of about 100 GB/s, which corresponds to 200 MB/s per 

single Readout Unit (RU). Then we will focus on the event building and reconstruction efficiency 

and the impact of the studied algorithm on this part of the data acquisition process. 

Afterwards, experiments on fault tolerance capabilities will be conducted and the respective 

results will be discussed. The behaviour of the system in case of software and hardware (both 

network links and computing nodes) failures will be studied. Finally, long data taking runs will 

be investigated in order to demonstrate the algorithms stability and robustness (in particular 

we will be investigating the system for run condition occurrences). During all those experiments 

we will be also monitoring whether the event allocation method assigns all the event fragments 

corresponding to a single event to the same filtering farm (DAQ Slice).

6.1 Network throughput

The prototype has been studied in the CMS DAQ production system during a technical 

stop in August 2011. Each of the computing farms participating in those tests was having 

1EVM, 63 RUs, 82 BU-FUs and 2 SMs. The goal of our experiments was to verify if the 

prototype meets the requirements of the CMS experiment and to investigate the overhead of 

the dynamic workload scheduling algorithm in respect to the standard static load allocation 

method. Moreover we studied the response of the system in case of network throughput 

degradation caused by a failure of a single network-link. The measurements have been carried 

out for a setup of 8 filtering farms (DAQ Slices). The throughput was measured for expected
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event fragment sizes in the range from 128 B to 10 kB. First, the firmware running in all the 

Front-Ends was set to emulation mode so the DAQ system would be provided with artificial 

event-fragments. Then the event-fragment size has been set manually first to 128 B, then 256 B 

and so on until 10 kB. For each event-fragment size a data-taking run has been started and the 

obtained data acquisition rate has been noted. Those values have been then used to calculate 

the system's throughput. All the data taking runs were configured to drop the event data when 

they reach Builder Units (the 'drop at BU’ option has been used), meaning that the network was 

the only limiting factor. As a result the maximum throughput for each event-fragment size has 

been reached. The measurements were carried out for constant and variable event fragment 

sizes from log-normal distribution (stdev = 0.5 and stdev = 1.0). The initial number of events n 

was set to 3000.

The obtained results (shown in Figures 6-1, 6-2 and 6-3) confirm that the algorithm meets the 

design specifications of the CMS DAQ system, meaning that for 2 kB event fragments the 

throughput is greater than 200 MB/s (the CMS DAQ working point lays below the red curve). 

The CMS DAQ requirement is met for both the constant and the variable (stdev = 0.5 and 

stdev = 1.0) event fragment sizes. The actual conditions during a production data-taking run are 

most similar to those of Figure 6-2 where the standard deviation has been set to 0.5. 

Nevertheless, it is also important to prove that the system running with dynamic load 

scheduling can adapt to bigger or lower event size fluctuation as easily as the standard system 

and as a result that it can be also utilized if the experiment's nominal conditions change. 

Similarly, the expected event fragment size for CMS detector is 2 kB, however the 

measurements were carried out in the range from 128 B to 10 kB in order to demonstrate the 

flexibility of the algorithm (e.g. the expected event-fragment size in case heavy ion runs is much 

bigger than 2 kB). Although, the overhead of the scheduling mechanism is substantial, it is 

acceptable because during production data taking the limiting factor lies in the available 

computing power and not in the network throughput. The overhead is caused by the event 

allocation procedure (that is executed for each event fragment separately), which can be 

further optimized. The system running with dynamic workload scheduling similarly as the
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Figure 6-1 The available throughput in case of a fully operational network and in case of a network-link failure in 
one of the readout nodes for the static and dynamic scheduling mechanism, for constant event fragment size
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with load scheduling (fully 
operational network)

-----Current event building
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Figure 6-2 The available throughput in case of a fully operational network and in case of a network-link failure in 
one of the readout nodes for the static and dynamic scheduling mechanism, for variable event fragment size 
(stdev = 0.5)
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Variable event fragment size (stddev = 1.0)

-------- Current event building
algorithm (fully operational 
network)
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failure)
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with load scheduling 
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Figure 6-3 The available throughput in case of a fully operational network and in case of a network-link failure in 
one of the readout nodes for the static and dynamic scheduling mechanism, for variable event fragment size 
(stdev = 1.0)

one using the static allocation mechanism achieves better throughput for constant event- 

fragment sizes. Higher event-fragment fluctuations, in turn, are reflected in lower capacity.

Subsequently, the throughput has been measured in case of a network-link failure (one of the 

two) in one of the readout nodes. As shown in Figures 6-1, 6-2 and 6-3, regardless whether 

constant or variable event-fragment size was used, in the system employing the static 

scheduling mechanism (dashed blue curve), the discussed malfunction caused a drastic capacity 

loss below the compulsory threshold, meaning that the data acquisition rate of 100 kHz was no 

longer sustainable and had to be throttled (despite the fact that sufficient resources were still 

available). In order to recover from this type of failure a restart of the data taking process and 

reconfiguration of the DAQ system are required. On the other hand, the capacity of the system 

running with dynamic load scheduling (dashed red curve) remained above the required level 

(even for stdev = 1.0 it is still acceptable) and as a result the data taking run has been 

continued. It is important to notice that in contrary to the standard system, the data acquisition 

process was not interrupted and therefore it has been possible to avoid a downtime.
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6.2 Event build ing efficiency over tim e

The next set of experiments has been carried out for a setup of 5 filtering farms (only 5 

farms were available at that time because 2 others were used for sub-detectors' calibration and 

one was out of order), each of them having 1 EVM, 63 RUs, 82 BU-FUs and 2 SMs. All the 

employed computing nodes as well as network links were test before the experiments were 

conducted and were fully operational. The standard system has been tuned so the throughput 

limitation came from the event filter farms similarly as it is during a production data-taking (for 

each constructed event a CPU consuming calculations have been executed). The maximum 

possible data taking rate per farm was 12.5 kHz, which is the nominal speed during production 

data acquisition. Afterwards the same settings have been applied to a system employing 

dynamic scheduling method. The goal of the discussed studies was to compere the event 

building efficiency as well as the data acquisition rate for the standard system and the system 

running with dynamic workload scheduling algorithm. Moreover, we aimed to verify if in case 

of an unbalanced system an appropriate (proportional to the capacity) fraction of load is 

assigned to each filtering farm.

In the first experiment a short data taking runs have been started for 200 seconds each 

in order to verify which system builds more events in the same period of time. As shown in 

Figure 6-4 the system running with dynamic workload scheduling slightly outperformed the 

standard system, which means that most likely the resource utilization in case of dynamic 

scheduling is more efficient. In order to further study this problem, long (1 - 2 hour) data-taking 

runs were analysed. First, we focused on the aggregated data taking rate for all the filtering 

farms that were participating in those runs (Figure 6-5). This experiment confirmed that the 

resource utilization is more efficient in case of the system which is dynamically allocating the 

workload (the data acquisition rate is about 3.5% higher) for both constant and variable 

(stdev = 0.5 and stdev = 1.0) event fragment size. In contrary to the short runs from the 

previous experiment, in case of longer runs no differences in data taking rate has been 

observed between the runs that were made for constant and variable event fragment sizes. It
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Figure 6-5 Aggregated data acquisition rate for constant and variable event fragment size for 1 hour data-
taking run
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should be also noted that in case of the production workload the computing power required to 

filter an event is not constant (as it is in case of our experiment) and as a result the gain due to 

load balancing would be presumably higher.

The third experiment that has been conducted concentrates on the data taking rate 

distribution among the computing farms. Similarly as in case of the previous experiment 1 - 2  

hours runs were analysed. When it comes to the standard system (as shown in Figure 6-6) all 

the computing farms as expected achieved the same data acquisition rate (they were limited by 

the slowest one). On the other hand, in case of the load balanced system, it has been observed 

that the data taking rate varied, and the most capacious farm achieved about 7.5% higher rate 

than the slowest one. Surprisingly, the least capacious computing farm performed still slightly 

better than the filtering farms when static event allocation was employed. This means that 

there is an additional factor that limits the standard system. A further discussion and results on 

this topic will be presented in the following section.

Data acquisition rate per DAQ Slice

i Current event 
building algorithm

i Event building 
algorithm with load 
scheduling

1 6  4

Filtering farm index

Figure 6-6 Data acquisition rate per DAQ Slice for variable event fragment size (stdev = 0.5) for 1 hour data
taking run
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Subsequently, we conducted further studies to verify if the fraction of workload 

allocated to each filtering farm is proportional to its capacity. There is a particular use case that 

the dynamic load scheduling aims to address, namely a system consisting of a single filtering 

farm that can sustain the whole incoming workload with additional small computing farms that 

are used for monitoring purposes (real-time monitoring of the quality of the selected events). 

Moreover, the capacity of the monitoring farm should be reducible on demand (if the event 

quality is high only a very small fraction of the events should be consumed by the monitoring 

farms). In order to investigate the discussed use case as well as the general ability to allocate 

a correct fraction of load to filtering farms the following experiment has been conducted. 

A similar setup of 5 filtering farms as in previous experiments has been used, and the system 

has been also tuned so the maximum possible data taking rate per farm was 12.5 kHz. 

However, in 4 of them a substantial number of BU-FU nodes have been switched off (55 of 82, 

around 67%). Afterwards a data taking run has been started. As shown in Figure 6-7, in the first 

step, the 'big' computing farm reach 100% of its capacity (12.5 kHz). The smaller farms, in turn, 

correctly achieved around 33% of the rate of the 'big' farm. Subsequently, in the second step,

Figure 6-7 the 'big' filtering farm use case 
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two thirds of the BU-FU nodes in the monitoring farms were switched off. This action, which is 

very important, had no impact on the data taking rate of the 'big' farm. The data acquisition 

rate of the monitoring farms as expected has been reduced by two thirds. Finally, in the third 

step, again two thirds of the remaining BU-FU nodes in the small farms were switched off, and 

again positive results were obtained. There was no impact on the 'big' farm and the data 

acquisition rate of the other computing farms dropped as expected by 66%. This way it has 

been demonstrated that the algorithm can cope with a heavily unbalanced system and that it 

allocates the workload proportionally to the capacity of the consumers.

6.3 Event building efficiency per load-scheduling cycle

In order to understand better the nature of the network throughput overhead as well as 

to further analyse the reason for the increased data acquisition rate, which can be reached, the 

event building efficiency per load-scheduling cycle has been studied. Again the production 

system (a setup of 8 filtering farms) has been used. One of the participating computing farms 

(DAQ Slices) was experiencing problems at that time and therefore its capacity was significantly 

smaller. Each farm was having 1 EVM, 63 RUs, 82 BU-FUs and 2 SMs (same configuration is used 

for production load). The goal of the experiment was to measure how many events are built in 

each computing farm per load-scheduling cycle. It should be noted that due to the chosen 

workload index (described previously in section 5.2) this corresponds to the number of events 

that have been requested by each filtering farm at the end of each load-scheduling cycle. The 

measurements have been carried out for 25 minute (this is sufficient to achieve stable data 

acquisition rate and corresponds to about 10000 load scheduling cycles) data-taking runs. The 

initial number of events n (details were given in section 5.2) that has been assigned to each 

filtering farm at the beginning of each run has been set to 4000. The outcomes of those studies 

for a representative run has been shown in Figures 6-8, 6-9, 6-10, 6-11, 6-12, 6-13, 6-14 

and 6-15.
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It has been observed that there are fluctuations in the event building efficiency per load- 

scheduling cycle in each of the participating computing farms. Moreover, it has been noticed 

that it happens very rarely (almost never) that more than one filtering farm reaches the 

expected 2000 events in the same cycle. The fluctuations are bigger at the beginning of the run 

and are getting more stable after about 1500 cycles. In order to analyse the fluctuations the 

average (avg.) and standard deviation (stdevl and stdev2) have been calculated (as shown in 

Table 6-1). In case of standard deviation (1) for the purpose of calculation it has been assumed 

that the expected value is the average. In case of standard deviation (2), in turn, it has been 

assumed that the expected value is 2000. Last row gives us the number of load-data transfers 

that were triggered (trg.) by the given DAQ Slice. It can be easily noticed that DAQ Slices 1, 2, 3, 

5, 6 and 7 have almost the same capacity. Although, Slice 4 is just slightly less efficient 

(around 1%), it triggers significantly less load-data transfers (about 23%). This behaviour is 

understandable because in order to trigger load-data transfer a filtering farm has to build 

exactly 2000 events. Therefore, a small decrease in the capacity will result in a drastic reduction 

in the number of load-data transfer that a DAQ Slice triggers. The malfunction of DAQ Slice 0 is 

reflected in the considerably smaller capacity of the farm.

Table 6-1 Summarized analysis of the studies on event building efficiency per load-scheduling cycle

Slice 0 Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7

avg. 1479 1870 1872 1875 1857 1877 1872 1872

stdev (1) 135.58 133.3 133.71 135.25 132.92 129.17 135.66 133.85
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stdev (2) 537.95 186.12 184.94 183.92 194.5 177.75 185.91 185.2

trg. 14 1611 1670 1700 1292 1687 1717 1663

If we study closer a set of 100 load-scheduling cycles (shown in Figures 6-16, 6-17, 6-18, 

6-19, 6-20, 6-21, 6-22 and 6-23), we can observe that a farm never reaches 2000 events twice in 

a row. Instead, they are rather swapping with each other. The peak that happens in the 74th 

cycle for all the DAQ Slices is purely related to the fact that it is the end of a data-taking run 

(these are actually the last 100 cycles of a run) and that the DAQ Slice 0 is out of sync with other 

computing farms.
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We believe that the above discussed fluctuations are responsible for the network 

overhead of the workload scheduling algorithm. Since the computational complexity of the 

event-fragment allocation procedure is constant and does not depend on the number of 

requested events (as previously proven in section 5.4), the time required to distribute the 

events will be the same for a load-scheduling cycle in which all the DAQ Slices reach 2000 

events as well as for a load-scheduling cycle in which just one DAQ Slice reach 2000 events. 

Therefore, in the second case fewer events will be allocated in exactly the same time (which 

results in an overhead).

The computing farm's event building efficiency varies depending on the workload- 

scheduling cycle, as a result also the index of the slowest farm is not constant. For example in 

the first load-scheduling cycle the DAQ Slice 0 might be the slowest one, in the subsequent 

cycle DAQ Slice 4 might by the slowest one, and so on. Of course the DAQ Slice 0, which has the
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lowest, average capacity, will be most often the slowest one. However, it will also happen that 

another farm will be the least efficient one, and in this case the DAQ Slice 0 will benefit from 

the dynamic workload scheduling policy (in case of the static allocation mechanism it would be 

limited by the slowest farm). This explains the behaviour that we observed in section 6.2, 

namely that even for the least capacious computing farm a slight increase in the data 

acquisition rare has been noted, when the dynamic workload scheduling was employed.

6.4 The impact of the allocation procedure on the fluctuations

The load allocation procedure employed during the previously discussed experiments 

favours the slower DAQ Slices. The events are distributed in round robin fashion and only if 

a computing farm runs out of credits it is omitted (more details can be found in section 5.4). 

This actually means that the surplus will be distributed only at the end of the load-scheduling 

cycle to more efficient farms. Therefore it has been necessary to verify if the observed 

fluctuations are caused by the workload scheduling algorithm or if they are independent of the 

algorithm. In order to do so, alternative load allocation procedures have been studied.

6.4.1 Alternative allocation algorithm 1 -  reversed allocation order

The algorithm 1 aims to distribute the event-fragments in a reverse order than the 

previously employed algorithm (described in section 5.4). Thus, the first event fragment is 

allocated to a DAQ Slice with the highest event counter (event counters are populated with 

values obtained from requests received from respective filtering farms, as previously described 

in subsection 5.3.5), and then the counter is decremented. The second event is allocated once 

more to a slice whose counter has currently the highest value, and again the counter is 

decremented. This decision process is repeated afterwards for all subsequent event fragments. 

Since the scheduling decision has to be taken for each event fragment separately (once per 10 

\is) it is crucial to keep the computational complexity of this step as low as possible. As a result, 

most of the logic has to be moved to the step preceding the workload scheduling where an 

appropriate data structure has to be prepared. It has been decided that the slices' indexes will 

be stored in a two dimensional M x M (where M is the number of DAQ Slices) array called
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'slices'. The currently used row of the table will be pointed by ‘curr_arr' variable. An array 

'slices_len' of length M will store in each row the number of slices' indexes that are stored in 

a respective row in the 'slices' array. Similarly, an array ‘slices_credits’ will store number of 

event fragments that will be allocated using a respective row in the 'slices' array. A variable 

‘arr_counf will have the information about how many rows in the 'slices' array are in use. 

Finally, a variable ‘currjndex’ will point at the next slices' index in the current row of ‘slices' 

array that will be used.

In the initialization step (Listing 6-1) ‘cur^arr1 and ’currjn dex’ are set to zero (the event 

fragment allocation will start with first column of first row of the ‘slices’ array). ‘arr_coun1f is set 

to 1, which means that only the first row of the ‘slices' array will be used. The first rows of 

's licesjen ' and 'slices_credis' are set respectively to M and M x  n (where n is the initial number 

of events assigned to each slice), thus the first row of ‘slices' will be responsible for distributing 

all the initial events between all DAQ Slices. Finally, the first row of ‘slices' is initialized with 

slices' indexes in such a way that the initial events will be allocated in round-robin fashion. The 

first event fragment (Listing 6-2) is assigned to a slice whose index is stored in the first column

curr_arr = 0; 
arr_count = 1; 
currjndex = 0; 
slices_len[0] = 0;
slices_credits[0] = NMB_SLICE x n/2; 

int index = 0;
for (int i = 0; i < NMB_SLICE; i++) { 

if (!isMaskedOut(i) {
++slices_len[0]; 
slices[0][index] = i; 
++index;

}
}

Listing 6-1 Initialization step
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of the first row of the 'slices' array (according to the initialization step it will be the first slice

that was not masked out) The second event fragment is assigned to a slice whose index is 

stored in the second column, and so on. After assigning an event fragment to a slice whose 

index is in the last column, again the first column is used, then the second, then the third and so 

on. Whenever en event fragment is assigned using the currently used row a corresponding row 

in the 'slices_credis’ is decremented. When the currently used row runs out of credits, the 

'curr_arr' index is incremented, and the subsequent event fragments are distributed using next 

row. If all event fragments that were allocated for the given workload scheduling round have 

been distributed {'curr_arr' equals to 'arr_count) the next event counter set (if available) has to 

be utilized.

Listing 6-2 Workload allocation step

Before the used set of counters can be swapped with a new set of counters, the 'slices' array 

has to be prepared for another workload scheduling round (Listing 6-3). First, it has to be 

established how many distinct event counters values are there { 'a rrje ri). Next, all the distinct

&
int slice_index = slices [curr_arr][curr_index];
currjndex = (currjndex == slices lenfcurr arrl) ? 0 : curr index+ 1;
~evt_counter[index][curr
--slices_credits[curr_arr];
if (credits[curr_arr] == 0) -

counter values have to be sorted in descending order. Due to the fact that the standard system
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int counter_vals[9] = {0}; 
a rrje n  = 0; 
for (int i = 0; i < NMB_SLICE; i++) {

if (evt_counter[i][next] == 0) continue; 
recur = FALSE;
for (int j = 0; j < arrjen ; j++) {

if (counter_vals[j] == evt_counter[i][next]) { 
recur = TRUE; 
break;

}

if(!recur){
counter_vals[arr_len] = evt_counter[i][next]; 
arr_len++;

sort (counter_vals);

zero (slicesjen);
for (i = 0; i < NMB_SLICE; i++) {

for (j = 0; j < arrjen ; j++) {
if (evt_counter[i][next] >= counter_vals[j]) { 

slices[j][slicesjen[j]] = i; 
slicesjen[j]++;

for (i = 0; i < arrjen ; i++) {
slices_credits[i] = slicesjen[i] * (counter_vals[i] - counter_vals[i+l]);

Listing 6-3 Swap event counter sets step

consists of 8 DAQ. Slices at maximum, in the worst case there will be 8 distinct counter values. 

Since the number of elements is limited to 8, and also to keep the implementation simple, the 

bobble sort [76] algorithm has been used. Afterwards, the 'slices' array has to be filled with 

respective slice's indexes. The first row will be populated with slice's indexes, whose event
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counters are greater or equal to the first (the highest) of the sorted counters. Then, the second 

row will be populated with slice's indexes, whose event counters are greater or equal to the 

second of the sorted values, and so on. In the last step, each row in the 'slices_credits' array has 

to be assigned with a number of credits that corresponds to the number of event-fragments, 

which will be distributed using respective row in the 'slices' array.

Let us now consider the computational complexity of the alternative algorithm 1. The 

'initialization' step of the algorithm lis  executed only once before the data-taking process starts 

and as a result it has no impact on the system capacity. The 'workload allocation' step, will be 

executed at least once per 10 ps and therefore it is the most crucial part of the algorithm. The 

most expensive operation is the 'if  statement, which will be executed only once per allocation 

step. On the contrary to the standard allocation algorithm (described in section 5.4), this does 

not dependent on the values of event counters, which is a desirable property. Most of the logic 

has been moved to the ‘swap event counter’ step, which is expected to be executed 

approximately once per 10 ms. The most expensive operations in this step are off course the 

'for' and 'if' statements. Certainly, each of them will be executed at least once. Whether they 

will be executed more than once depends on whether the selected slice (the one that has been 

selected to be the next destination) will send a zero-counter, or will be masked out. The 

probability of sending a zero-counter or masking out a DAQ Slice is very low since it is equal to 

the probability that the DAQ Slice in question is broken. Moreover, in the case when a DAQ 

Slice is faulty, the system running with workload scheduling significantly outperforms the 

standard system. As a result, the overhead introduced by the discussed step is negligible and 

therefore not worthy analysing.

6.4.2 Alternative allocation algorithm 2 -  intermediate solution

The alternative algorithm 2 is an intermediate solution between the standard dynamic 

allocation procedure and the alternative algorithm 1. At the beginning of a load-scheduling 

cycle the computing farm that requested the highest number of events is fount. Subsequently, 

in the first round each DAQ Slice is assigned with one event, in addition the farm that requested 

the highest number of events is allocated with an extra event. This way, the most capacious
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slice gets more events. It can be noted, however, that the event counter (event counters were 

previously described in subsection 5.3.5) corresponding to the most efficient slice will be 

decreasing much faster than the other counters. Whenever, another counter starts being equal 

to the counter of the most capacious filtering farm, it will be also getting an additional event 

(similarly as the most efficient farm) per round. In order to illustrate how the algorithm works, 

let us suppose that the algorithm is distributing the load between 3 filtering farms, and that it 

received the following set of counters: DAQ Slice 0 - 6 ,  DAO. Slice 1 - 5  and DAQ Slice 2 -  4. In 

the first round slice 0 will be allocated with 2 events (it is the most efficient farm), slices 1 

and 2, in turn, will be allocated with 1 event each. After the first round the state of event 

counters will be as follows: DAQ Slice 0 - 4 ,  DAQ Slice 1 - 4  and DAQ Slice 2 -  3. In the 

subsequent round slice 0 will be again allocated with 2 events, this time, however, also slice 1 

will be allocated with 2 events (its counter has the same value as the counter of the most 

efficient farm). Slice 2 will be allocated with 1 event. After the second round the state of event 

counters will be as follows: DAQ Slice 0 - 2 ,  DAQ Slice 1 - 2  and DAQ Slice 2 -  2. In the third and 

also the last round all the DAQ Slices will be allocated with 2 events, because all the counters 

have the same value as the one corresponding to the most capacious farm.

A circular doubly linked list has been employed to store data that are used to evaluate 

which farm will be chosen as the next destination. The maximum number of events that can be 

requested by a filtering farm is equal to n/ 2, where n is the initial number of events assigned to 

each farm (see section 5.2 for more details). At the beginning of a load-scheduling cycle, all the 

DAQ Slices that requested n/2  events are being found. Then, each farm's index is being added 

to the linked list -  the indexes of DAQ Slices that requested the maximum are added twice 

while the indexes corresponding to the other slices are added once. A marker will be used to 

store the current position in the list and initially it will be set to the head. The first event- 

fragment will be allocated to the farm that is pointed by the marker (the first index in the list), 

the respective event counter will be decremented and the marker will be moved to the next 

element in the list. Whenever, an event counter becomes equal to those that were set to n/2  at 

the beginning of the cycle, the respective index is being added to the linked list for a second 

time. On the other hand, whenever a counter becomes equal to 0, all the respective indexes are
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removed from the list. When the list becomes empty, a new set of event counters has to be 

utilized if available. Since adding and removing an element from a doubly linked list are trivial 

operations the overhead of the algorithm is negligible.

6.4.3 Comparison of the event building efficiency per load-scheduling cycle for

different event-fragment allocation methods

In order to compare the different event-fragment allocation methods, the event 

building efficiency per load-scheduling cycle for each of them have been studied. For the 

purpose of these experiments the CMS DAQ test environment has been used. At that time the 

CMS DAQ production system has not been available, and it has been found out that it is also 

possible to observe and study the fluctuations in the CMS DAQ test system. A four DAQ Slice 

setup with 1 EVM, 3 RUs and 4 BU-FUs per DAQ Slice have been used. One of the computing 

nodes in the DAQ Slice 0 was experiencing problems at that time and therefore the capacity of 

the farm was reduced in respect to the three other farms. The system was tuned so that the 

throughput limitation would come from event filter farm and the maximum data taking rate 

would be 50 kHz (12.5 kHz per DAQ Slice, which is the nominal speed for the production 

system). The initial trigger rate was set to 50 kHz. The measurements have been carried out for 

50 minute (since we had a much smaller system available for this set experiments longer runs 

were studied) data-taking runs. The initial number of events n (see section 5.2 for more details) 

that has been assigned to each filtering farm at the beginning of each run has been set to 4000 

(similarly as in case of the production system). The outcomes of those studies for 

representative runs have been summarized in Tables 6-2, 6-3, 6-4 and 6-5. It should be noted 

the results obtained for the standard dynamic load allocation method in the CMS DAQ test 

system converge with the results that were obtained for the CMS DAQ production system 

(presented in section 6.3). In case of the system running with the static allocation mechanism 

the average number of events built per load-scheduling cycle is much closer to the expected 

2000 events. This behaviour, however, is caused by the static allocation mechanism, which 

enforces synchronisation between the filtering farms. A similar property was observed in the 

first cycles of the load balanced runs where the synchronization was enforced by the 

initialization step of the dynamic workload scheduling algorithm. Although in case of the static
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allocation policy the synchronization between computing farms is much stronger (which results 

in equal event building efficiency), the farms still almost never reach the expected 2000 events 

in the same load-scheduling cycle. When it comes to the experiments conducted with the 

dynamic allocation policies, the differences between the outcomes obtained for the standard 

dynamic allocation algorithm and the alternative algorithms are negligible. This leads as, in 

turn, to the conclusion that the fluctuations in the event building efficiency per load-scheduling 

cycle are not related to the event-fragment allocation method.

Table 6-2 Analysis of event building efficiency per load-scheduling cycle for the static allocation mechanism

DAQ Slice 0 DAQ Slice 1 DAQ Slice 2 DAQ Slice 3

avg. 1957.35 1957.37 1957.37 1957.37

stdev (1) 73 75 74 74

stdev (2) 85 86 86 85

trg. 2730 3007 2986 2966

Table 6-3 Analysis of event building efficiency per load-scheduling cycle for the standard dynamic allocation
method

DAQ Slice 0 DAQ Slice 1 DAQ Slice 2 DAQ Slice 3

avg. 1584 1866 1890 1995

stdev (1) 158 142 129 137

stdev (2) 445 195 169 179

trg. 42 3264 4223 4029

Table 6-4 Analysis of event building efficiency per load-scheduling cycle for the alternative dynamic allocation
algorithm 1

DAQ Slice 0 DAQ Slice 1 DAQ Slice 2 DAQ Slice 3

avg. 1590 1876 1891 1882

stdev (1) 153 133 133 138

stdev (2) 437 182 172 181

trg. 63 5685 7267 181

127



Table 6-5 Analysis of event building efficiency per load-scheduling cycle for the alternative dynamic allocation
algorithm 2

DAQ Slice 0 DAQ Slice 1 DAQ Slice 2 DAQ Slice 3

avg. 1583 1875 1888 1871

stdev (1) 154 136 138 147

stdev (2) 444 185 177 195

trg. 32 2781 3465 2907

6.5 Fault tolerance

The response of the system to a fault occurrence in a particular filtering farm has been 

studied first in the CMS DAQ test environment and then in the CMS DAQ production system. 

The goal of those experiments was to verify if the fault tolerance of the system has been 

enhanced through the dynamic load scheduling. First, we conducted our research on a 4 DAQ 

Slice setup with 1 EVM, 3 RUs and 4 BU-FUs per DAQ Slice (as previously described in [11] 

and [4]). The system has been tuned so the throughput limitation would come from event filter 

farm and the maximum possible data taking rate would be 50 kHz (12.5 kHz per DAQ Slice, 

which is the nominal speed for the production system). The initial data acquisition rate was set 

to maximum (50 kHz). As shown in the Figure 6-24, after a certain period of time BU-FU nodes 

were killed one after another. It can be easily noticed that the capacity loss in the standard 

system was significantly greater. Moreover, loss of the entire processing power in one DAQ 

Slice stopped the data acquisition process. On the other hand, in case of the system running 

with dynamic load scheduling algorithm, data were distributed proportionally to the efficiency 

of the computing farms, and as a result the erroneous DAQ Slice has been excluded from the 

data taking run. This experiment was afterwards repeated, except that the faults were 

introduced to more than one filtering farm, and gave also positive outcomes.

In case of the production system a failure of a BU-FU node does not result in such 

a drastic capacity loss of the respective computing farm (a farm contains more than 80 BU-FU 

nodes). Nevertheless, even in this case the dynamic load scheduling algorithm will save some
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computing power. Moreover, it is possible that a whole rack of BU-FU nodes fails due to 

a network problem and this case is fully comparable to the one described above.

System response to BU-FU failure

------Current event
i------------ 1________  building algorithm

-------------------------------------------------------------------- --------- Event Building
--------------'........ ........................................................  algorithm with
________________ —— —— i_________________  load balancing

-i------------------------------ 1------------------------------ 1....................................... .........................................i------------------------------- 1

1 2 3 4 5 6

Time unit (minutes)

Figure 6-24 System response to failing BU-FU nodes

Subsequently, we continued our studies in the CMS DAQ production system (as 

previously described in [74]). A setup of 8 filtering farms has been used. Each of the computing 

farms participating in those tests was having 1 EVM, 63 RUs, 82 BU-FUs and 2 SMs. Both for the 

static and dynamic scheduling, the system was tuned so that the throughput limitation would 

come from event filter farms and the maximum possible data taking rate would be 100 kHz 

(12.5 kHz per farm). The initial data acquisition rate was set to maximum (100 kHz). In the first 

experiment shown in Figure 6-25, after a certain period of time SM nodes were powered off 

one after another. It can be noticed that the standard system lost 50% of its original capacity 

after switching off the first SM. Then, after the second one was turned off the whole data 

acquisition process was stopped. On the other hand, the system running with dynamic 

workload scheduling algorithm lost, as expected, only 6.25% of its capacity per SM node. In the 

second experiment shown in Figure 6-26, a RU node (which is a single point of failure for 

a computing farm) was powered off. In case of the standard system, the experiment resulted in 

an immediate termination of data taking. The system employing dynamic scheduling however 

lost only 12.5% of its capacity (which corresponds to one computing farm).
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Figure 6-25 System response to failing SM nodes
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Figure 6-26 System response to failing RU node

The above discussed experiments were repeated with faults introduced into more than 

one filtering farm, and also gave positive outcomes and likewise confirmed the robustness of 

the dynamic load scheduling. During the course of our studies, it has been proven that the 

performance of the system has been improved in case of degradation of one (or more) of the 

computing farms participating in a data taking run. It has been also possible to decouple the 

farms from each other and as a result to limit the effects of some fault occurrences just to the

130



concerned farm. This feature, in turn, is especially important when it comes to single points of 

failure of an individual farm, which otherwise would became critical for the whole DAQ system.

6.6 Conclusions

During the course of our research it has been proven that a dynamic workload 

scheduling algorithm can increase the overall fault tolerance of the system. The performance of 

the system has been improved in case of degradations in the available computing power (failing 

computing nodes) as well as in the network throughput (failing network connections). 

Although, the algorithm introduces some network throughput overhead, the DAQ system 

running with dynamic load scheduling can easily sustain the requirements of CMS experiment, 

namely the nominal data taking rate of 100 kHz and the expected event size of about 1 MB. 

Moreover, there is a slight increase (about 3.5%) in the capacity of the system due to more 

efficient resource utilization. In case of a fault occurrence, no matter whether it is a failing 

network connection or a failing computing node, the system employing dynamic load 

scheduling (as previously discussed in section 6.1 and 6.4) significantly outperforms the 

standard system, which uses the static allocation mechanism.

It has been possible to adopt the asynchronous, distributed load scheduling policy, 

meaning that each data source (in case of CMS DAQ a FRL) is taking the allocation decision 

autonomously without any need to communicate with other data sources (this kind of 

synchronization would not be feasible because of the overheat it would introduce into the 

system). Long data acquisition runs (12 hours) have been studied in order to verify that no 

event mismatch errors occur (this type of error could be caused by a run condition). We 

obtained positive results concerning the correctness of the event allocation process. Due to the 

employed scheduling strategy, it has been possible to avoid introducing an additional single 

point of failure into the system, which was also crucial. Since the proposed method relays on 

the fact that each data source is producing the event-fragments in the same sequence, before 

the algorithm can become a part of the production system it has to support the 'out of sync' 

use case. In the production system it can happen that the data sources run out of sync for 

example because one of them skipped a single event fragment. The system has to be able to
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recover automatically from this type of error. This actually means that the algorithm has to 

monitor that the event-fragments are provided in the right sequence and in case if a fragment 

is missing the allocation decision has to be made for the not-existing fragment in order to set 

the allocation procedure in the right state. It can also happen that the synchronisation is 

enforced by an operator, which means that the event-fragments will be indexed again from 0. 

In this case, a data source may skip more than one event-fragment before the zero-event- 

fragment arrives (depends on how many event-fragments were already in the buffers of a data 

source before the synchronization has been enforced). In order to avoid event mismatch error, 

when the zero-event-fragment arrives, each data source has to be reset to the initial conditions 

that are used at the beginning of each data taking run (each filtering farm is assigned with n 

events).

It has been demonstrated that the proposed method scales well. It was used in the 

small CMS DAQ. test setup, as well as in the big CMS DAQ production system (about 1500 

computing nodes) and in both cases all our experiments were likewise successful. The proposed 

load index and load-data communication pattern are robust, accurate and do not introduce 

additional overhead into the system. An obvious weakness of the proposed method is the EVM- 

EVM communication procedure (one directional ring topology, described previously in 

subsection 5.3.4). Due to the behaviour described in section 6.3 (filtering farms are never 

reaching the under-loaded state at once), the communication will be always sequential. 

However, if the algorithm would become part of the production system most likely a dedicated 

network for the EVM-EVM communication would be added (so far we had to use the control 

network), which would give us much more flexibility in developing a robust and scalable 

communication solution (e.g. multicasting could be utilized). Also, the system is not yet fully 

tolerant to failing EVM nodes and there are plans to employ the Keep-Alive mechanism of the 

TCP protocol [75] in order to address this shortcoming.

Another weakness of the studied workload scheduling algorithm is the computational 

complexity of the allocation procedure (described in 5.4), which is the reason for the network 

throughput overhead that has been discussed in section 6.1. This, however, could be easily 

improved by using a circular doubly linked list similarly as in the alternative algorithm 2

132



(described in 6.4.2). Unfortunately, we had not enough time to conduct respective experiments 

on the production system. The time when the studies can be carried out on the CMS DAQ 

production system is limited only to the technical stops of LHC.

The work discussed in this thesis was conducted as a prove of concept in order to 

demonstrate that the CMS online DAQ system running with dynamic load scheduling can 

sustain the production workload of CMS experiment, is more robust and more reliable in case 

of software and hardware failures. Whether the dynamic workload scheduling algorithm will be 

integrated into the CMS online DAQ production system depends on the changes that will be 

introduced into the system during the upcoming upgrade (mainly, it depends on how will the 

network evolve). However, some concepts contained in this thesis have been already 

implemented at a different level and included in the current CMS Run Control and Monitoring 

system.

6.6.1 Future work

In the future we intend to replace the one-directional ring topology with a more 

efficient solution, which would allow us to parallelize the communication process between 

EVMs and thus speed it up. We are planning to evaluate multicasting solutions. The switch, 

which will be used to implement the dedicated EVM -  EVM network, will presumably support 

multicasting. If we decide to take advantage of this feature however, we will be forced to use 

UDP protocol. This, in turn, would mean that we could not benefit from the built-in TCP Keep- 

Alive. In order to address the failing EVM use case we would need to provide our own 

implementation of this mechanism. On the other hand, the EVM -  EVM communication could 

be implement using a multicast tree. In this case we could fully benefit from all the TCP features 

including reliable in-order packet delivery and Keep-Alive.

Further research will be conducted on the event-fragment allocation procedure. We are 

planning to reduce its complexity by employing a circular doubly linked list similarly as 

proposed in the alternative algorithm 2 (more details can be found in subsection 6.4.2). Also, 

we are planning to study the possibility of increasing the synchronization between filtering 

farms by adding up all the sets of counters that have been already received from computing
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farms and are not currently in use (more details can be found in section 5.4). This topic has to 

be carefully investigated since there is a possibility of introducing a run condition into the 

system.
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