Silesian University of Technology

Faculty of Automatic Control, Electronics and Computer Science

Fault Tolerant Data Acquisition through
Dynamic Load Scheduling

PhD Thesis

MSc Eng. Michat Simon

Supervisor: Prof Stanistaw Kozielski

Geneva-Gliwice 2013

To my parents
and my loving wife Marta

who liked the idea of me being well educated

Fairy tales are more than true — not because they tell us dragons exist, but

because they tell us dragons can be beaten.

G. K. Chesterton

Acknowledgements

| would like to thank my supervisors Prof Stanistaw Kozielski and Dr Hannes Sakulin for
all their help and support during my PhD studies, for all the stimulating discussion and most

importantly for showing me what science is.

Special thanks go to whole CMS Data Acquisition group for both teaching me the secrets

of their DAQ. System and for sharing the infrastructure with me.

| am indebted to my doctor-wife Marta for her valuable feedback from a different (area

of science) perspective.

I would like to thank my parents and my sister Joasia for being such a great family and
(what has been essential for my PhD studies) for laying the foundations of my knowledge when

[was young.

And finally last but not least, | would like to thank my brother in law and his mother

(Dr Piotr Stec and Dr Krystyna Stec) for showing me that old-school scientists are really cool.

Table of Contents

1

INEFOTUCTION ...t re et r bt r e n et e e ren e 12
IO A o V0| T = oY (0 Y o) [12
1.1.1 Large Hadron COAET ... 13
1.1.2 Compact MUON SOIENOI.......ciiiiiieiece e 14
1.2 DAt@ ACQUISTTION ..ottt ettt 15
1.2.1 Data Acquisition in High Energy PRYSICS.......cccoiiiiiiiiiiie e 15
1.2.2 Drawbacks of static workload diStribUTION..........cccoiiiiiiiiiicic e 16
1.2.3 CMS Data ACQUISITION SYSTEIMoiiiieiiieieiieeee ettt nee s 17
1.3 FAUIE TOIBIANCE ...ttt 18
1.4 L0AA SCNEAUIING....ciiiiitieiee bbbt b et eb e 19
1.5 L0A BAIANCING. ...ttt ettt 20
1.6 Problem FOrmuUIBTION........ccoiiiiiic e 20
0 00 R @ o] = {77 21
1.6.2 HYPOTNESES ot be e be et s b e be e re e re e e 22
State of the Art - Dynamic Load Distribution and Fault Tolerance........cccocevevieviciievceevnee, 23
2.1 Load DiStriDUtiON STratEgIES.......cieiiriieieiieiise et 23
2 V1Yo (o Vo I | o [T =SSOSR 27
2.3 Dynamic Load SCREAUIINGcoiii et st nee s 28
2.4 L0AA BAIANCING.....itiiiieiiiii et et et 32
2.5 Data Acquisition in High ENergy PRYSICS......cccoiiiiiiiiiiiese e 35
2.5.1 LHCb experiment at CERN.......ccccoiiiiiiie e 35
25.2 ATLAS experiment at CERN ..ottt st s s 36

2.5.3 DZERO experiment at Fermilab ...t 37

2.6 FAUIE TOIBIANCE ...ttt b et nn e 38

3 Case Study: The Compact Muon Solenoid Data Acquisition SYSteMcccocevvieieiineicrienen 43
3.1 EVENT BUIAET .o 44
3.11 T = o 1 SR 45

3.1.2 R = TU] o = TSRS 54

3.2 EVBNE Rl T et 60

G G T 10T 0 0 - 72 OSSR 61

4 ReQUITEMENTS ANAIYSIS. ..ottt e et eb e 62

4.1 Lost luminosity analysis for CMS eXPeriment........cccooviiiiiieinienese s 62

4.2 BUSINESS USE CASES.....eviuieiieiietiite ittt sttt ettt b e et b et nn e 63

4.2.1 Ensure reliable data aCqUISITION..........ccooiiiiiiieie e 64

4.2.2 Increase efficient resource Utilization..........cccoviiiieiiiiincsceeee e 69

4.3 SYSEEIM USE CABSES..cuiiriiteiieiestisiee s sttt sttt r s n e n e ne e e s sr e aneen e e sneareeneen e nnenne s 72

5 Proposed workload scheduling Method..........ccooiiiiiiiie e 74

5.1 GENETAI TUEA ...ttt b bt b e et b et nn e nn e 74

ST W0 T=To [N Lo D TP P TSROSO 76

5.3 Load scheduling ProtOCOL. ... e e e 85

5.3.1 Collecting workload indices from Builder UnNitS.........ccccooeiiiiiniiineicccc e 85

5.3.2 Two-step load-data tranSfer.o s 86

5.3.3 Requirements for triggering load-data transfer..........ccccooe i 87

5.3.4 EVM's workload communication algorithm ... 91

5.3.5 Load-data transfer over the non-blocking NETWOTK........ccccoereiiiiniieic e 95

5.4 Event-fragment allocation algorithm........cccooov i 100

LI R T U £ TP 107

6.1 NetWOrk throUGNPUL.....oc e s e 107
6.2 Event building effiCiENCY OVET TIME.......coiiiiieice e 11
6.3 Event building efficiency per load-scheduling CycCle ... 115
6.4 The impact of the allocation procedure on the fluctuations............cccocvvvnencininnne. 120
6.4.1 Alternative allocation algorithm 1- reversed allocation order........ccccccevvvviiennnns 120
6.4.2 Alternative allocation algorithm 2 - intermediate solution..........ccccceevveiiviinennns 124

6.4.3 Comparison of the event building efficiency per load-scheduling cycle for different

event-fragment allocation MEthOUS.coviiiiiiiic e 126

6.5 FAUIT TOIEIANCE ...t 128
8.6 CONCIUSIONS. ..ottt ettt b bbbt ee e 131
B.6.1 FULUIE WOTK. ..ottt 133

T BIDIOGIAPNY .ot 135

Abbreviations

ARMOR
aTTsS
BCN
BDN
BM
BU
CMS
CORBA
csc
CSN
D2S
DAQ
DCN
DCS
DFM
DQM
DSN
DT
ECAL
EDF
EPR
ETL
EVM
FTM
FB
FBO
FEC
FED

Adaptive, Reconfigurable, and Mobile Objects for Reliability

asynchronous Trigger Throttle System

Builder Control Network
Builder Data Network
Builder Manager
Builder Units

Compact Muon Solenoid

Common Object Request Broker Architecture

Cathode Strip Chambers
Computing Service Network
Data to Surface

Data Acquisition

Detector Control Network
Detector Control System
Data Flow Manager

Data Quality Monitoring
DAQ Service Network

Drift Tubes

Electromagnetic Calorimeter
Earliest Deadline First

Equal Partitioning Rule
Extract, Transform, Load
Event Manager

Fault Tolerance Manager
FED Builder

FED-Builder Output
Front-End Controller

Front-End Driver

44
44
44
44
19
15
39
15
44
44
16
44
44
37
61
44
15
16
32
32
31
19
42
44
56
44
45

FES
FFN
FIFO
FRL
FS
FSM
FU
FU-EP
FU-RB
GTP
HCAL
HEP
LHC
LV1
MEP
MWDF
NIC
OPR
QCD
RCMS
RCN
RM
RPC
RTP
RU
SM
SPMD
STTS
TDAQ

Front-End System

Filter Farm Network

First In First Out

Front-End Readout Link

Filter Subfarm

Finite State Machines

Filter Units

Filter Unit Event Processor

Filter Unit Resource Broker

Global Trigger Processor

Hadron Calorimeter

High Energy Physics

Large Hadron Collider (LHC)

Level-1 Trigger Processor
Multi-Event Packets

Maximum Workload Derivative First
Network Interface Controller
Optimal Partitioning Rule

Quantum Chromodynamics

Run Control and Monitoring System
Readout Control Network

Readout Manager

Resistive Plate Chambers

Regional Trigger Processor

Readout Units

Storage Manager

Single Process, Multiple Data
synchronous Trigger Throttle System

Trigger and Data Acquisition System

44
44
32
45
44
59
19
61
61
44
16
13
13
44
36
32
46
32
14
45
44
44
15
44
18
19
18
44
37

Trigger Primitive Generator
Timing, Trigger and Control

Very Lightweight Agent

List of Figures

FIQUIE 11 LHC RINMQ vttt sttt ettt ettt en e 12
Figure 1-2 The Overall layout of CMS deTECTOT......cccoiiiiii e 14

Figure 1-3 Schematic view of the CMS DAQ System, described in more details in section 3.1... 17

Figure 1-4 Load Scheduling, ClasSiCal CASE......ccuiiiiiieiieiiiie et e 21
Figure 1-5 Load scheduling, iNVestigated CASE........cccooiiiiiiiiiiiseeee e 21
Figure 2-1 Taxonomy of dynamic load distribution algorithms...........cccccociiiiiiiiieics 24
Figure 2-2 Taxonomy of dynamic load distribution algorithms..........c.ccocoiiiiiiinncice 26
Figure 3-1 Functional decomposition of the CMS DAQ. SYSTEMeiiiiiiiiieicics e 43
Figure 3-2 Schematic view of the CMS DAQ SYSTEMoviiiiiiiiere e 46
Figure 3-3 The FED-Builder non-blocking NETWOTK.........ccooiiiiiiiieiiscce s 48
Figure 3-4 Event fragment polling algorithm used to receive fresh blocks pushed by FRL.......... 49
Figure 3-5 Acknowledge handling algorithm ... e 50
Figure 3-6 Super Fragment concatenation algorithm ... 51
Figure 3-7 DAQ SIliCe SCNEMALIC VIBWc.cuiiiieieiiieieiee ettt e 54
Figure 3-8 Builder Unit internal FIFOS. ...ttt b e 55
Figure 3-9 Event Manager internal FIFOS. ..ot 56
Figure 3-10 Readout Unit internal FIFOS. ...t 57
Figure 3-11 The event bUilding ProtOCOL. ... iciieeeeeeeceeec et 58
Figure 3-12 Finite State Machine of BU and EVM appliCations.........ccocoeeirininecinennieeeseeeeenene 59
Figure 3-13 Finite State Machine of the RU application.........ccccovreiiineeienennceseeeeeseee e 59
Figure 3-14 Architecture of the EVENt Filter........cccoiiiiiice s 60
Figure 4-1 Lost luminosity analysis for CMS eXperiment..........ccooiiiiineinccecse s 63
Figure 4-2 BUSINESS USE CASES TIAQIAIMcciiiviiieeiee e stiesiiesieesteesteesree e e sre e s e e taesae e sreesreesraesreereesreens 64
Figure 4-3 SM NOde failS SCENAKIO......ccciiiiciiee et re e e re e sreenree e 65
Figure 4-4 Network connection breaks SCENATIO........ocueiiirieeeeieie et e 66
Figure 4-5 RU NOE failS SCENAIIO.....ciiiiiiiiiiiiee e sne e ee e e s e e sneesnnas 67
Figure 4-6 EVM NOAE failS SCENATIO......cciveveeeeeteieeeee ettt ettt es et s seseseeas 68
Figure 4-7 Error deteCtiON SCEMAIIO......ciiiiieieiireeesieie ettt ettt ettt enes 69

Figure 4-8 Transient iMDalanCe SCENAIIO.........ccuireieiiiie e 70
Figure 4-9 Non-identical DAQSIICE SCENATIO.......ciiirieieiieieeiestee st 71
Figure 4-10 SyStem USE CASES QIAGTAMciiiiuiieieietisiet ettt sb e bbb 72
Figure 5-1 Schematic view of CMS DAQ components, along with the scheduling algorithm's
WOTKTIOW ..ttt st et s e s b e st e et e testease e e e s besbeeeeseenbeaneensesenne s 75
Figure 5-2 Time diagram for a not sufficient readout buffer case.........ccocovvineiiiiiiiicicn, 79
Figure 5-3 Time diagram for too few remaining events in respect to the load-data
COMMUINICATION TIME CASE.....vitiiieiiiteitete ittt b et b bttt b b n 80
Figure 5-4 Time diagram for an unsynchronized load measurement Case.......ccccocevvrivererrrenne 81
Figure 5-5 The Data acquisition rate depending on the underloaded threshold for various event-
L= 0 A= 0] N 4= RSP SSR 83

Figure 5-6 Builder Unit internal FIFOs, Event constructed notification message added, due to the

load scheduling @lgOrithmo e nee s 86
Figure 5-7 Load scheduling protocol - load-data redundancy...........ccoceoeiiiniiniieicieise e 87
Figure 5-8 Time diagram for triggering load-data update (expected case SCENArIO).........cccveuees 89
Figure 5-9 Time diagram for triggering load-data update (worst case scenario)..........cccceeuvruennen. 90

Figure 5-10 Event Manager internal FIFOs (Event Counter entity has been added, along with

corresponding notification messages, due to the load scheduling algorithm)...........ccococvvinnne 92
Figure 5-11 Exemplary multicast efficiency Measured.........ccoccoovieeenene e 93
Figure 5-12 EVM's Finale State MaChine. ... e 94
Figure 5-13 FBO's Finale State MacChine........c.cooiiiiie e e 96
Figure 5-14 FRL's Finale State@ MacChine.........coco it e 99
Figure 5-15 Circular buffer size - the worst case SCENAIiO......cccccvvcviiieie i 105

Figure 6-1 The available throughput in case of a fully operational network and in case of a
network-link failure in one of the readout nodes for the static and dynamic scheduling
mechanism, for constant event fragmMeNnt SIZE ... e 109
Figure 6-2 The available throughput in case of a fully operational network and in case of a
network-link failure in one of the readout nodes for the static and dynamic scheduling

mechanism, for variable event fragment size (StdeV = 0.5)....ccccceviiiiiiniiiiniee 109

Figure 6-3 The available throughput in case of a fully operational network and in case of a
network-link failure in one of the readout nodes for the static and dynamic scheduling
mechanism, for variable event fragment size (StdeV = 1.0)....cccccoviiiiinincinieneese e 110

Figure 6-4 Number of built events during a 200 s run for the static and dynamic scheduling
=0l o =Y £ 0SS 112

Figure 6-5 Aggregated data acquisition rate for constant and variable event fragment size for
1 hour data-taking FUN ...t e e sr e e ee e sre e s re e teenneenteeteereennas 112

Figure 6-6 Data acquisition rate per DAQ Slice for variable event fragment size (stdev = 0.5)

for 1 hour data-taking FUN ..ot re e sreesree s e e eree e 113

Figure 6-7 the 'big’ filtering farm USE CASE ..o 114

Figure 6-8 Number of events per cycle for DAQ.SHCE 1ccccovieiiiiiiciieieere e 116
Figure 6-9 Number of events per cycle for DAQ SHCE 3ooveeiiiiiiceie s 116
Figure 6-10 Number of events per cycle for DAQ SICE 0ooovviiiiiiiiieee e 116
Figure 6-11 Number of events per cycle for DAQ SHCE 2ccvevivvciieie e 116
Figure 6-12 Number of events per cycle for DAQ SlICE 5 ..cvviiviiii i 116
Figure 6-13 Number of events per cycle for DAQ SHCE 7 ..ooveieiiiiiee e 116
Figure 6-14 Number of events per cycle for DAQ SIICE 4ooiriiiiiiiieee e 117
Figure 6 15 Number of events per cycle for DAQ SHICE 6ccccovveiriririniiic e 117
Figure 6-17 Number of events per cycle forlOO last cycles intherun.........ccccocceviiiiniivcinenn, 118
Figure 6-19 Number of events per cycle forlOO last cycles intherun..........c.ccccoovieieniniinnn. 118
Figure 6-16 Number of events per cycle forlOO last cycles intherun ..., 118
Figure 6-18 Number of events per cycle forlOO last cycles intherun ..., 118
Figure 6-21 Number of events per cycle forlOO last cycles intherun..........ccccevvievicienn, 119
Figure 6-23 Number of events per cycle forlOO last cycles intherun ..., 119
Figure 6-20 Number of events per cycle forlOO last cycles intherun.........ccccvvvveniiciiennnnnn, 119
Figure 6-22 Number of events per cycle forlOO last cycles intherun ... 119
Figure 6-24 System response to failing BU-FU NOdES........ccoiiiiiiiiniiciceee e 129

Figure 6-25 System response to failing SM NOAES.........ccoceviiii i 130
Figure 6-26 System response to failing RU NOGE..........cooiiiieiiiieceeee e 130

List of Tables

Table 6-1 Summarized analysis of the studies on event building efficiency per load-scheduling

Table 6-2 Analysis of event building efficiency per load-scheduling cycle for the static allocation
T2l 0= ¥ T o SR 127

Table 6-3 Analysis of event building efficiency per load-scheduling cycle for the standard

dynamic allocation METNOU. ..o e 127
Table 6-4 Analysis of event building efficiency per load-scheduling cycle for
dynamic allocation algorithm L ... 127
Table 6-5 Analysis of event building efficiency per load-scheduling cycle for
dynamic allocation algorithm 2 ... et 128

10

List of Listings

LiSting 5-1 INItIAlIZATION STEPcuiiiiiiiieiece e 100
Listing 5-2 Workload alloCation STEPcvcci i 101
Listing 5-3 Swap eVent COUNTET SETS STEP ..iiiiiii et e e sneas 101
LiSting 6-1 INITIAHZATION STEP .viiiiiii i e e e s be st e s e ereeeeeeneesnnennneas 121
Listing 6-2 Workload alloCation STEP ...c.cviiii it 122
Listing 6-3 Swap eVent COUNTET SETS STEP . oouiiuiiieieieiiee ettt et ae e 123

11

1 Introduction

1.1 High Energy Physics

High Energy Physics (HEP) is a subfield of physics that investigates the elementary
particles of matter and the forces between them. The name, of the field is related to the fact
that many subatomic particles do not occur under ordinary conditions on Earth and can only be
obtained during high energy collisions of regular particles that can be found in nature. These
collisions are carried out in specialized instruments called particle accelerators. Currently, the
world largest and highest-energy particle accelerator is the Large Hadron Collider (LHC) at CERN

in Geneva, Switzerland (shown in Figure 1-1).

Figure 1-1 LHC Ring

12

Basically, two attributes characterize a particle collision: loss of energy by the particle and
a deflection of the particle from its original motion direction [1]. These attributes are often
registered for further analysis in order to extend the knowledge about the phenomena
occurring during collisions. Cross section is the basic concept used in particle physics for
evaluating the probability of interaction or collision between two particles. The second
important property describing the collisions is the luminosity which is determined by storage
ring operating conditions. By definition, the luminosity is the number of particles in the beam
per unit time and can be increased by increasing the beam intensity. The luminosity is
proportional to the number of particles of each of the two colliding beams and to the beam
revolution frequency. It is inversely proportional to the beam size in the collision point. The
luminosity multiplied by the cross-section gives the process collision rate. The two discussed
guantities essentially allow estimating how many particle collisions will occur per unit of time

and as a result, define the needed design data-taking rate.
1.1.1 Large Hadron Collider

The LHC is the largest circular accelerator with circumference length of 27 km, located
about 100 to 150 m underground. The LHC is designed to accelerate two beams of hadrons
(protons or lead ions) in opposite directions and then to collide them with energy of 7 TeV per
each beam (14 TeV in total) and with luminosity of 103 crrfV 1 (which corresponds to a bunch
crossing frequency of 40 MHz) [2]. The main goal of LHC is to study the electroweak symmetry
breaking for which the Higgs mechanism theory is supposed to be an explanation. These
experimental studies can also contribute to the mathematical consistency of the Standard
Model at energy scales above about 1 TeV. Moreover, the LHC opens up opportunities for
discoveries that could lead towards a unified theory such as extra dimensions or
supersymmetry theory. Furthermore, the heavy-ion collisions carried out at LHC allow for
conducting research on Quantum Chromodynamics (QCD) matter under extreme conditions of

temperature, density, and parton momentum fraction (low-x).

13

1.1.2 Compact Muon Solenoid

The Compact Muon Solenoid (CMS) is one of two large general-purpose experiments at
LHC for studying proton-proton and heavy ion collisions at TeV scale. In order to avoid mixing
asingle event of particles collision with other collisions from the same bunch crossing CMS has
been designed using high-granularity detectors with good time resolution (which results in low

occupancy) and equipped with millions of readout channels.

Figure 1-2 The Overall layout of CMS detector

As shown in Figure 1-2, the CMS detector has an onion-like structure. It is constructed of
multiple layers that are responsible for concurrent measurements of numerous parameters and
phenomena caused by hadron collisions. The magnetic field is provided by a4-T
superconducting solenoid. In order to guarantee reliability and full geometric coverage, four
muon stations have been installed, each of them composed of a number of layers of aluminum
drift tubes (DT), and cathode strip chambers (CSC), completed by resistive plate chambers

(RPC). The tracking volume consists of 10 layers of silicon microstrip detectors that ensure

14

desired granularity and accuracy. Moreover, 3 additional layers of silicon pixel detectors are
used to further enhance the observation quality of the impact parameter of charged-particle
tracks, along with the position of secondary vertices. The electromagnetic calorimeter (ECAL) is
made from lead tungstate (PbWO04) crystals and placed in the central barrel part, with
preshower detector in front. ECAL is encapsulated inside a hadron calorimeter (HCAL) that is a

brass scintillator sampling calorimeter.
1.2 Data Acquisition

The goal of data acquisition (DAQ) systems is to register conditions, parameters and
measurements describing some specific physical effects. [3] For example, the observed
phenomena could be the effects of a drug on an organism, seismic activities, collision of
elementary particles, and so on. Basically, any data acquisition system records only one thing,
which is the voltage (or eventually the electric current). Therefore, all data acquisition systems
require transducers that convert the phenomena of interest into voltage. For each data
acquisition system a proper sampling rate has to be chosen. Too low sampling rate will result in
inaccurate measurements that will not reflect the nature of the observed phenomena. Setting
the sampling rate too high will result in large amount of redundant data that require additional
resources for storage and analysis. In the case when at the time of measurement it is difficult to
estimate the measurement's significance the acquired data often need to be filtered. Any
detector used in data acquisition requires calibration, so the accuracy of the measurements is

known.
1.2.1 Data Acquisition in High Energy Physics

The modern detectors used in high energy physics (HEP) experiments are complex
instruments designed to register collisions of elementary particles at extremely high energies.
Only a small fraction of such collisions results in interesting, new phenomena. Therefore, in
order to maximize the probability of a discovery in particle physics, a collision rate in the MHz
range is needed. Data that correspond to a single collision of particles referred to as an event

are acquired from millions of readout channels. Those readout channels are merged into

15

several hundreds of detector front-ends. Each detector front-end serves as a source of event
fragments. The event fragments corresponding to a single event contain a common, unique ID,
so they can be combined into a whole event later. One of the major challenges that today's HEP
Data Acquisition Systems are facing is to process the huge amounts of data produced by the
detectors. Since it is not possible to send all collected events to persistent storage due to the
required space, a drastic event filtration has to be achieved. The goal is to select only those
events that describe the phenomena of interest (e.g. confirm the existence of Higgs Boson). The
filtration process has to begin as soon as possible and therefore the first selection decisions are
made based only on some partial event information (e.g. using an event fragment). Afterwards,
when an event has been fully reconstructed more sophisticated algorithms are used in order to
take the final selection decision. Depending on the filtering stage the selection algorithms are

implemented either in hardware (early stages) or in software.
1.2.2 Drawbacks of static workload distribution

After the first event selection step that is completely realized in hardware, the data
acquisition systems used in HEP experiments, acquire event fragments from numerous
sources. [4] Further filtering steps are implemented in software running on a set of computing
farms. In the very first software-selection step due to the still high rate (the order of 100 kHz),
the data are usually distributed in a static way between filtering nodes. In case of systems, with
only one stage of software filtration, this is also the final stage, where the event reconstruction
has to be done. In this case the static distribution determines strongly the system. The
processing power of the participating computing nodes and farms has to be easily measurable,
so that the distribution schema could be prepared precisely. Subsequently, it is difficult to
introduce heterogeneity to the discussed group of data acquisition systems. Moreover, static
data distribution decreases fault tolerance and introduces additional single points of failure.
The main goal of our research is to replace the static workload distribution policy with an
algorithm that allows for dynamic adjustment to the changes in the available processing power
and thereby increases the system's overall fault tolerance. The algorithm should also facilitate
measurements of load on the system, and evaluation of the available computing power so it

could be easily applied to heterogeneous systems.

16

1.2.3 CMS Data Acquisition System

The CMS is a multi-purpose detector for studying proton-proton and heavy ion collisions
at TeV scale [2]. CMS is designed to collect data at the LHC bunch crossing frequency of 40 MHz
(as described in subsection 1.1.1). The first level trigger pre-selects events with interesting
signatures reducing the incoming data rate to a maximum of 100 kHz. The DAQ System (shown
in Figure 1-3) acquires event fragments from about 500 sources and combines them into full
events. Each data source delivers event fragments of an average size of 2 kB at a rate of 100
kHz. Event fragments are transported by a non-blocking network [5] (based on Myrinet [6]
technology) to the surface and statically distributed (usually in round-robin fashion) amongst

several autonomous processing units called DAQ Slices.

Figure 1-3 Schematic view of the CMS DAQ System [2], described in more details in section 3.1

A DAQ Slice is a computing farm organized around a Terascale ForcelO switch, where
parallelization is achieved through SPMD (Single Process, Multiple Data [7]) technique. In the
first event building stage event fragments are received by a DAQ Slice through distributed
readout consisting of computing nodes called Readout Units (RU), and then assembled into

super-fragments inside these RUs. Subsequently, in the second stage, in each of the DAQ Slices,

17

an Event Manager (EVM) node assigns super-fragments to Builder Units (BU) that construct the
whole event. The complete events are then delivered to Filter Units (FU) that run the High Level
Trigger selection algorithm (BU and FU are hosted on the same node). Events accepted for
storage are transmitted to Storage Manager (SM) nodes connected to a Storage Area Network.
Currently when one DAO. Slice becomes less efficient, e.g. because of some fault like a failing
computing node it slows down other DAQ. Slices. Moreover, there are several potential single

points of failure like the EVM, SM and RU nodes.

1.3 Fault Tolerance

The most popular way of achieving reliable computing is to employ fault avoidance that
is most importantly about using the most reliable components and conducting comprehensive
and careful testing. [8] Rare and incidental system errors are accepted as a necessity and
require a manual intervention in order to recover from them (the probability of fault-free
execution in a completely fault intolerant system is equal to the probability of a correct
program operation). In some situations, the fault avoidance method is insufficient, in particular
when the frequency and duration of recovery are intolerable or when the system may be
unavailable to manual corrections and reparations. In these situations fault tolerance has to be

employed.

To achieve fault tolerance additional components (protective redundancy) and sophisticated
algorithms have to be integrated into the system. Their role is to ensure that an erroneous
event will not lead to failure of the system. The efficiency with which erroneous states
corresponding to faults are detected and diagnosed, and then successfully repaired defines the
degree of fault tolerance. After a fault occurrence, depending on the extent of fault tolerance,
and also on the complexity of the problem, the system may perform with its full efficiency, or
may provide only reduced performance or limited functionality (fail-soft capability). In order to
ensure reliability often many run time mechanisms have to be adopted and the system needs
to be kept as close as possible to the correct state. [9] Most common fault tolerance

mechanisms are:

18

e Error confinement: Each procedure has only least possible rights granted and
a minimum domain of access. Also no operations on incoherent data are allowed. This
policy limits error damage before detection.

= Detection and categorization: Each fault has to be detected and categorized in order to
trigger appropriate reaction.

e Reconfiguration: For example excluding a failed unit from the system (whether it is
hardware or software) or moving the system to a backup state.

e Restart: If the fault caused the system to stop a restart is needed.
1.4 Load Scheduling

The goal of load scheduling is to assign the incoming workload (data, calculations, etc.)
to available resources of a distributed computing system. [10] The workload is allocated only
once, at the point of load emergence in the system, before the actual processing of the
workload starts. The load should be distributed in such a way that the execution time would be
as short as possible and the available resources would be optimally utilized. Load scheduling
algorithms (as well as load balancing algorithms) aim to balance the load to prevent coexistence
of overloaded and idle resources, as well as to prevent from slowing down the more efficient
parts of the system by the slower parts. [11] Such scheduling is also important because it helps
to increase the fault tolerance of the whole system, amongst others, by removing single points
of failure. Load scheduling techniques can be divided into two categories. [12] Static load
scheduling allocates workload to computing nodes probabilistically or deterministically, without
carrying out any analysis of runtime events, and as a result reduces communication delays. This
method is lightweight, as well as efficient, as long as the workload is precisely identified, the
available computing power is constant and the load scheduler is pervasive, which means that it
is in charge of the whole incoming workload (or it is aware to a certain extent of the
background load of the system). Difficulties arise when it is hard to predict the workload of
incoming tasks, there are fluctuations in background load, or the computing power varies (e.g.
due to some fault occurrence). Dynamic load scheduling is a method for distributing the load

between available resources, based on the resources efficiency over the time. It is designed to

19

handle the problems of unknown or unidentified workloads and runtime variations. As a rule,
load indices are collected during workload processing, and then used in the load assignment
procedure in order to enhance resource utilization and minimize the overall processing time of

newly emerged workload.
1.5 Load Balancing

Load balancing also aims to enhance the performance of a distributed system, especially
in terms of resource availability. [10] [12] However, in this case, the workload (processes, data)
is being reassigned among a group of cooperating computing nodes during execution time.
Typically, workload indices are monitored and measured so appropriate action may be taken in
order to achieve exact load distribution. The concepts of dynamic load scheduling and load
balancing are closely intertwined by definition. Both may be classified based on the method
used for triggering load distributing and redistributing activities, load assigner location and
workload data exchange pattern. The advantage of load scheduling over load balancing is that
the overhead due to workload transfer from one computing node to another can be avoided.
On the other hand, load balancing can be far more effective in case of several, not equally time
consuming, interdependent tasks. Although, the main subject of this dissertation is dynamic

load scheduling, we will also discuss some aspects of load balancing because of the analogies.

1.6 Problem Formulation

In the classical load scheduling problem (Figure 1-4) a load scheduling algorithm aims to
distribute the incoming workload that is produced by one load source between available
computing nodes. In our case (Figure 1-5), the workload takes the form of a distributed stream
by which we mean that the stream consists of numerous sub-streams, each of them provided
by a separate load source. Such a single sub-stream by itself carries no information and
therefore cannot serve as the basis for any computations. However, all the sub-streams
together constitute a logical wholeness that outlines the hadron interactions that take place in
the LHC accelerator and were selected by the first level trigger. Furthermore, the workload

stream has another interesting property, namely it is divisible in the sense that it consists of a

20

sequence of independent data that may be processed individually. This independent data
correspond to single collisions of two bunches of particles and are referred to as events. Each
load source produces event fragments in the same sequence and with the same frequency. The
goal of the proposed load scheduling algorithm is to balance the incoming workload between
several computing farms that are carrying out the task of selecting events with interesting
signatures for persistent storage. The filtering farms are receiving the incoming events through
a distributed readout that consists of a set of readout nodes. Each readout node receives the
workload only from several load sources, and the workload transfer from load sources to
readout nodes is not synchronized. The workload allocation has to be done with a particular

emphasis on fluctuations in computing power of filtering farms that may be caused by faults.

Load source

Worker Distributed Distributed Distributed
worker worker worker
Figure 1-4 Load Scheduling, classical case Figure 1-5 Load scheduling, investigated case

1.6.1 Objectives

i. Investigating of the extent to which the load scheduling can increase the reliability of a
distributed data acquisition system.

ii. Providing dynamic load scheduling for heterogeneous computing farms, as well as,
homogeneous computing farms, where the imbalance could be caused by faults.

iii. Increasing the efficient utilization of available resources.

21

iv. Proposing a scalable load scheduling protocol along with a distributed asynchronous load

assignment policy and a robust load index.

1.6.2 Hypotheses

i. Dynamic load scheduling Increases the overall fault tolerance of adistributed data
acquisition system.

ii. Asynchronous, distributed load scheduling can be performed on workload fragments
(constituting coherent wholeness) produced by numerous load sources, provided that each

load source is producing the workload fragments in the same sequence.

22

2 State of the Art - Dynamic Load Distribution and Fault Tolerance

Although, the available literature discussing workload distribution (load scheduling and
load balancing), data acquisition and fault tolerance separately is very rich, the number of
papers dealing with the problem of workload scheduling and fault tolerance and at the same
time addressing requirements comparable to those of the Compact Muon Solenoid DAQ. system
is very modest. Even in High Energy Physics there are only several experiments that have

comparable data-taking and event size conditions to the CMS.

In this chapter our aim is to give a complex and most up to date overview of the state of the art
in the fields of workload distribution and fault tolerance. However, we will only focus on
research and methods that could be applied In our system. First we will discuss the taxonomy
and classification of load distribution algorithms and the possible workload indices.
Subsequently, we will present several load scheduling and balancing methods, as well as fault
tolerance strategies and designs that have some features essential for our research project.
Additionally, we will give an overview of dedicated load scheduling/balancing algorithms that
have been applied in other data acquisition systems of HEP experiments, which have similar

requirements to the CMS in terms of data taking.
2.1 Load Distribution Strategies

The following load distribution taxonomies will be the basis for classification of
algorithms mentioned latter in this dissertation. Figure 2-1 shows the taxonomy of dynamic
load distribution algorithms proposed by Osman and Amar in [13]. In the discussed
classification method, in order to specify a load distribution algorithm, four major sub-
strategies have been characterized: Initiation, Load Assigner Location, Information Exchange
and Load Selection. [13] The initiation method defines the procedure for invoking activities that
lead to exact load distribution. In the proposed classification two types of initiation may be

distinguish: periodic and event driven. The event driven initiation is usually based on local

23

e eokstiviec

(05035 5
essfaiex iNmsar lced
Wstsliwg
1
IC< Seteet

i r 1
Savfef Kssswer X . . * T3S

tteted SwdnadVE Avsyans Itieotos E&‘o/\ge

Figure 2-1 Taxonomy of dynamic load distribution algorithms [13]

workload observation and can be triggered either by sender or receiver. In general, event
driven policies are more sensitive to workload fluctuations, while periodic policies are easier to
implement. The Load Assigner Location policy defines the placement of the workload assigning
algorithm itself. If there is a single agent supervising and controlling the whole process of load
distribution the load distribution algorithm is classified as central. On the other hand, if each
workload source (whether it is the original point of load emergence in the system, or an
overloaded node) may decide about the load assignment independently the algorithm is said to
be distributed. The distributed strategy may be further characterized as synchronous or
asynchronous. The central policy introduces an additional single point of failure to the
distributed computing system, and may lead to a bottleneck. The distributed policy, in turn,
depends heavily on load indices propagation over the system, which may result in higher
communication cost. The workload and load indices flow through the system is defined by the
Information Exchange strategy. This policy specifies whether the information used by Load
Assigner is local or global. Furthermore, it characterizes the connection topology that is used

for information exchange and that in practise specifies the neighbourhood of each node (this

24

may be randomized or uniform). Finally, the communication strategy determines whether the
workload may be shared only inside a predefined group of computing nodes (local) or over the
whole system (global). The last sub-strategy, the Load selection is responsible for choosing
appropriate workload for transferring. The workload maybe selected based on the available
computing nodes (processor-matching) or based on its suitability for reallocation (load-

matching).

Although, the taxonomy proposed by Osman and Amar delves into the very technical detail of
algorithm architecture and implementation, it does not emphasize in particular on the load
assigner algorithm itself. As shown in Figure 2-2, Shirazi et al proposed a different scheduling
taxonomy that is focused more on task assigner characteristics. Two groups of dynamic load
distribution algorithms have been proposed: distributed and non-distributed. [10] An algorithm
is classified as distributed if the process of load allocation is carried out by a set of computing
nodes. On the other hand, if the assignment decision is taken by a single computing node the
algorithm is classified as non-distributed. The distributed algorithms are further divided into
cooperative and non-cooperative. In case of non-cooperative strategies, the scheduling
decision is carried out by each of the load scheduling nodes autonomously of the actions of
other nodes. In the cooperative case, each of the load scheduling nodes is responsible for
afraction of the workload, but yet they are pursuing a common, global goal. As a result, the
assignment decision is taken in the context of the whole system. The cooperative method may
be further characterized as optimal or suboptimal. It can be easily noticed that workload
scheduling is optimal if and only if all available computing nodes finish workload processing
exactly at the same time, and there were no interruptions and pauses during workload
processing. If this conditions are fulfilled it is guaranteed that the execution time is minimal.
Unfortunately, finding an optimal solution is an NP-complete problem [14] [15] [16]. Therefore
the suboptimal strategies are more common. In the discussed taxonomy two types of
suboptimal policies are distinguished. The approximate algorithms use identical computational
schema as the optimal algorithms, but rather than generating optimal schedules, they

terminate when a solution is obtained that is considered as 'good' enough. The evaluation

25

load

Optimat Sutoa’iroaii

HetwieHe

Figure 2-2 Taxonomy of dynamic load distribution algorithms [10]

method of the solution is a significant component of such algorithms, and its computational
complexity, along with its accuracy determines whether this approach is appropriate or not.
However, if such an easily computable method exists, the approximate policy can cut down the
time needed for finding sufficient schedule significantly. Heuristic methods, in turn, often make
use of some specific properties of the system that are rather easy to monitor and calculate and
influence the overall performance in an indirect way. Usually the heuristic strategy is the most
robust one in terms of time performance and resource utilization. However, it is not always
possible to prove a first-order correlation between the adopted heuristic solution and desired

outcomes.

All the workload distribution strategies discussed above employ a single stage decision
procedure. There are also load allocation methods that adopt multi-stage decision-making
procedures that are constructed like an OR-decision tree [17]. Such solutions are used to
process job consisting of a chain of tasks, which are dynamically created accordingly to tree-like

precedence constraints.

26

2.2 Workload Indices

Before the load scheduling can be performed and the load distributed between
available resources, first the workload of particular system parts, like computing nodes or
network connections, has to be determined [11]. In order to measure the load, a unified metric
for the whole system has to be established. A load index is an important and essential part of
every load scheduling algorithm and has to be carefully chosen as it has a significant impact on

the algorithm's overall efficiency.

Over the years many load indices were proposed. Theimer et al. [18] suggested a metric based
on the fastest response policy. To determine the load of particular load-balancing participant,
aload exchange request is multicast to all potential load receivers. It is assumed that the
response time is inversely proportional to the receiver's workload. Therefore, simply the first
receiver who responds is regarded as the least loaded. Borzemski et al. also investigated the
possibility of adopting the request response time as a load index in [19]. The studied algorithm
is based on a fuzzy-neural decision-making scheme, which allocates the workload (HTTP
requests) accordingly to the expected request response time. The request response time is
being estimated by a broker node, which is taking into account historical Ilatency
measurements, the class of the request and the current workload on a given worker node
(collected from local switches). More common load metrics usually explore the availability of
resources more directly. They take into account e.g. CPU queue length, 1/0 queue length,
memory utilization etc. Werstien et al. [20] presented a load metric reflecting CPU utilization,
memory utilization and network traffic. He proposed four-level-hierarchy for evaluating the
load of computing nodes: idle, low, normal and high. To assign a load-level to a particular
computing node, first the average workload in the cluster has to be estimated. Afterwards, the
load of the computing node is compared to the average value and on this basis a load-level is
assigned to the node. A different strategy has been introduced by Fonlupt et al. [21], in this
approach the load of a processor is measured by the data it owns. The total load of the system
is estimated as the sum of load of all processors participating in load-balancing (which in this

case are all data owned by participating processors). As previously reported by Regina et al. [22]

27

two groups of load metric can be distinguished: generic and specific ones. Discussed above
metrics were examples of generic load indices. Applying such a metric to the CMS data
acquisition system would not result in achieving desired objectives. Generic load metrics are
designed to rate a single computing node's performance, and not, as it is needed in case of CMS
experiment, to rate whole computing farm's performance. Nevertheless, there are some
analogies between above mentioned metric's requirements and those in CMS DAQ. system.
Those analogies may be used while creating a specific load-metric dedicated for the discussed

system (as described in section 5.1).
2.3 Dynamic Load Scheduling

There are numerous, both generic and dedicated strategies for scheduling the incoming
workload in distributed computer systems. A large fraction of the currently conducted research
concentrates on cluster based web-systems [23] [24] [25]. In this section we aim to focus on
generic algorithms that are most interesting from standpoint of our studies. Therefore, we

concentrate on scheduling multisource loads, divisible loads and distributed stream processing.

There are two main concepts for generating schedules for multisource workloads: a strategy
based on superposition and an approach referred to as network partitioning. [26] In the
superposition strategy all computing nodes are assigned with multiple fragments of workloads
from numerous load sources accordingly to their computing power. The main drawback of this
method is due to the need of additional communication between nodes, which as a result may
lead to large overheads and difficulties in exercising control. Network partitioning, in turn,
involves partitioning the whole network into disjoint areas, of equivalent computational power,
corresponding to each load source. The idea is that each source will only send its workload
through its own network area. This way a source node may dispatch the workload
independently of other sources. Unfortunately, solving the problem of partitioning the network
involves finding an optimal spanning tree of an arbitrary graph, which is proven to be NP-

hard [27].

Jia et al proposed in [26] a dynamic load scheduling algorithm for multisource loads that follows
the network partitioning concept. The algorithm is designed for a system of m load sources and

28

n processing nodes. Each of the load sources has an independent workload inflow, and also
participates in load processing. The partitioning mechanism takes into account the
communication time between source nodes and processing nodes. Each processing node is
assigned to the source for which the communication time is minimal. This way, m regions are
created, each of them being the shortest path spanning tree. Subsequently, the source with the
smallest workload processing time trmmis determined. The source nodes distribute the workload
fraction inside their regions, in such a way that the expected processing time in each region is
tmin. From that point on, all incoming workloads are queued in source's buffers. After the
distributed portion of workload has been processed new partitioning is carried out, and again
the source with lowest load processing time is being determined. This process is repeated until
the entire workload is consumed. Note that after a load processing cycle is finished the source
that has been previously recognized as the one with lowest processing time tmn not necessarily
needs to own any further workload. In this case, the resources assigned to this source, along
with this source node itself, will be reallocated to other regions. On the other hand, if an idle
source found itself in possession of new workload a new region will be created. As a result the
number of sources and regions may fluctuate. The discussed algorithm is difficult to apply for a
HEP data acquisition system because it assumes that the data inflowing in different sources are
not related. The algorithm also implies that the source nodes have unlimited buffers, which
could turn as a drawback due to the huge amount of data acquired at high rate by the HEP
experiments. Nonetheless, the discussed scheduling strategy has some properties and
mechanisms that are considered as desirable for our system. Moreover, the algorithm analysis

method presented in [26] is very interesting.

Yu and Robertazzi, in turn, proposed in [28] a dynamic load scheduling strategy for multisource
loads that follows the idea of superposition. Similarly as in electric circuit theory, they conduct
the workload distribution analysis for each load source separately, as if other sources would not
exist. Subsequently, the single-source workload has been assigned to available computing
nodes proportionally to their computing power. Since the Divisible Load Theory is linear [29],
and there is a pre-assumption made that the load is indeed arbitrary divisible, and that the

inflowing workload in different load sources is not related, the solutions obtained for each

29

source can be superimposed algebraically. As a result, the multi-source workloads have been
allocated to computing nodes proportionally to their computing power. What is more, the
amount of workload that has to be transferred between nodes is minimized. As already
mentioned, the discussed solution is unfortunately meant for load sources that deliver
unrelated workloads, and as a result cannot be directly applied to a HEP data acquisition

system.

Another branch of load scheduling, which is important for our research, is distributed stream
processing. A stream is a potentially unlimited set of continuously incoming data produced by
a data source [30]. In contrast to the other workload types, the stream data are produced in
real time. What is more, the stream data are feasible only at a given point, only for a short
moment, and as a result the stream itself as wholeness is not available. Broberg et al proposed
a set of three algorithms for addressing the problems of: feasibility, maximally proportional
throughput of output streams and best allocation of resources in [31]. The load scheduling
strategy for acontinuous flow of loads (feasibility) will be regarded as stable if the whole
number of loads staying in the system remains limited. In order to fulfil this condition, an
algorithm has been presented that depending on a potential function's outcome balances the
workload in a distributed way using backpressure. A potential function corresponding to each
queue is defined. The arguments for such a function are the heights of the queue. Each
computing node assigns the workload in such a way that the potential of its outgoing queues is
kept as low as possible. In order to find the maximally proportional throughput of output
streams, the maximum concurrent number of flows has to be found (the input load at
respective rate has to be feasible). The optimal value can be found by adding bisection search
to the original algorithm. To address the problem of best allocation of resources the algorithm
needs to be further extended by adding buffer control (maximum allowed queue height). Flows
that exceed this newly added restriction will be deleted and the optimal weighted throughput
will be obtained. Although the discussed multi-commodity flow algorithm has been extended
by an available computing power constraint, the main concern of multi-commodity flow
modelling is still to achieve maximal flow between sources and sinks. The issue of fault tolerant

stream processing has been addressed in [32] and [33] by Gorawski and Marks. The aim of their

30

research is to provide continuity and reliability of an ETL [34] process conducted on data
streams from multiple sources. The studied system remotely and automatically reads out media
consumption meters (electricity, water, gas). The data are first acquired by so called collecting
nodes, and then are passed further to telemetrie servers. Subsequently, in order to facilitate
the data analysis (e.g. predict media consumption), those data are transferred into a stream
data warehouse. To ensure that a stream has not been corrupted while being processed, it is
being replicated first (redundantly transmitted) and then processed in parallel on several
nodes. The obtained outcomes are then compared: the timestamp analysis allows to identify
missing tuples and the attribute analysis makes it possible to detect processing errors. A stream
is being considered as reliable if more than half of the analysed tuples were confirmed as
errorless by other replica streams. The parallel telemetrie data warehouse described in [35] is
asystem that handles the data incoming from the telemetrie servers. The warehouse is
composed of a set of computing nodes that do not share any resources and are not
homogeneous. Every query served by the system is passed further to each of the computing
nodes in an unchanged form. Subsequently, the nodes are carrying out the requested operation
on their subset of data. In order to achieve the optimal performance the data that are being
loaded from telemetrie servers are allocated in such a way that each worker node should finish

its part of a query-task at the same time.

Lin et al gave us in [36] an in-depth analysis of a few generic, real time load scheduling
strategies. The scope of their work concerns algorithms that are a combination of studied
scheduling, node assignment and task partitioning policies. When it comes to the scheduling
strategy, three possibilities are considered: First In First Out (FIFO), Earliest Deadline First (EDF)
and Maximum Workload Derivative First (MWDF). The FIFO method assumes that the loads will
be processed in the order of their arrival. The EDF algorithm, in turn, schedules loads by their
deadlines. The MWDF policy is meant for divisible loads and adopts the following rule: the
costliest workload is ordered first. As for node assignment, two strategies are analysed. The
first one allocates all available computing nodes to the scheduled workload in order to process
it as soon as possible. The second one allocates the minimum number of computing nodes

needed by the scheduled workload to meet its deadline. This way, other resources are saved

31

for new, incoming workloads. Likewise, two partitioning methods are studied. Optimal
Partitioning Rule (OPR) results from divisible load theory, and aims to ensure that all
computation finish at the same time. On the other hand, Equal Partitioning Rule (EPR)
addresses the partitioning problem by dividing the scheduled workload into n possibly equal
sub-loads, where n is the number of allocated computing nodes. The main conclusion of the
discussed research is that the algorithms adopting OPR strategy achieve lower load reject ratio
and therefore outperform the corresponding algorithms. This confirms the working hypothesis
that it is beneficial to adopt divisible load theory for real time scheduling in cluster

environment.
2.4 Load Balancing

Although load balancing is not the main topic of this thesis, it is closely related to load
scheduling, and therefore it is also crucial to present here a brief load balancing overview. In
the following section we focus on algorithms adopted for SPMD and distributed stream
processing, as well as on solution for achieving asynchronous, distributed load balancing. These

topics seem to be most analogous to the subject of this dissertation.

Thome et al [37] gave us a compact overview and comparison of load balancing strategies used
in a SPMD systems adopted for computing macroscopic thermal dispersion in porous media.
The discussed research focuses in particular on the mechanisms used for triggering load
balancing activities, as well as on workload indices communication. For us, the most important
outcome from the presented analysis concerns the approach for gathering internal load indices
and for workload redistribution. It has been shown that the global, collective load balancing led
to the best results. The global strategy implies that the load data should be gathered from the
whole system at once. The collective strategy in turn, implies that load balancing should lead to
exact workload redistribution in the whole system. Using these strategies provides the fastest
reaction to imbalance in the system. Another interesting fact is that algorithms using these

strategies obtained almost identical results for distributed and centralized load balancers.

Osman and Amar [38] also proposed a load balancing algorithm for the pipelined SPMD
computational model. Although, the discussed data processing model has many advantages,

32

especially when it comes to scientific applications, it also has a major drawback. Namely,
presence of a slower computing node in the system results in a slowdown of other computing
nodes. The load balancing strategy introduced in [38] is distributed by which we mean that
there is no central workload scheduler. Moreover, the algorithm is asynchronous in the sense
that the load balancing activities carried out in a computing node are autonomous and there is
no need for synchronization with other computing nodes. The initiation of load balancing
activities, in turn, is triggered by the overloaded node. The algorithm is design with a particular
emphasis on scalability, and therefore the decision process is performed based on exchange of
local workload indices. This way the communication overhead that usually increases with the
number of computing nodes in the system, is reduced. The load index is expressed in a unit
called data point. A data point is the smallest, distinguishable amount of data that can be
defined by requiring a given number of computational operations and storage space. Based on
the measurement of data points allocated to a computing node, the node is assigned to one of
the three categories: overloaded, normal and underloaded. When a computing node reaches
the overloaded state the load balancer is triggered. First, the load balancer queries its
neighbours to see how many data points can be accommodated before the underloaded
neighbours reach normal state. If the neighbour nodes can accept the extra workload without
reaching overloaded state the data are transferred. Otherwise, the overload is averaged
between all underloaded and normal computing nodes. In this case, calculation of the workload
to be exchange is crucial, because the overload transfer may result in bouncing-load effect: the
workload receiver becomes overloaded itself, and as a result it decides to transfer the load back
to the load originator, which in turn becomes overloaded and performs again the same load
balancing activities, and so on. The described bouncing-load effect generates a substantial
overhead and also prevents the system from reaching the balanced state. The discussed
distributed, asynchronous strategy is especially interesting from the standpoint of our research.
In case of a multi load source system applying such a strategy may result in substantial
reduction of the overhead of the workload distribution algorithm. Moreover, the proposed load

index (data point) seems to be a natural choice when it comes to SPMD computing model.

33

Cherniack et al [39] discuss two stream processing systems: Aurora* and Medusa. Both
architectures are designed to support large scale, distributed stream-based computations.
Aurora* provides infrastructure for a system where all computing nodes are subordinated to
a single administrative domain. On the other hand, Medusa assumes that there are several
administrative boundaries, and therefore supports federated operations. Nevertheless, both
architectures have to address the problem of workload management. The case of Medusa is
slightly more complicated since it implies that the computing nodes not necessarily need to be
under common control. In both cases, an overlay network is defined that is independent from
the physical network topology. Each event produced by a data source is labelled with a stream
name, and then transferred to one of the computing nodes in the overlay network. A load
balancing daemon is invoked periodically on each node. The daemon is responsible for
offloading its machine or accepting additional workload depending on its node state. Since in
case of stream processing, the workload is related to a constant and continues data flow, rather
than to some computational tasks running on single nodes, load sharing is achieved through
overlay network repartitioning. There are two main workload sharing policies: box sliding and
box splitting. Box splitting is a heavier and more complicated operation since it has to be
ensured that the result before and after splitting will be the same. It is crucial to choose
a suitable frequency of load balancing activities so that the daemon will be able to handle not
only the incoming workload changes, but also the changes in the overlay network topology. It is
also critical to take into account the bandwidth availability before repartitioning of the overlay
network takes place. Finally, it is important that a sub-network split has a long-lasting effect.
Besides load management the discussed architectures have also interesting fault tolerance
properties. There is a heartbeat mechanism implemented between neighbour nodes. If
a computing node timeouts on the heartbeat of its neighbour it triggers a recovery procedure.
The backup node starts to emulate the processing of the failed computing node. Subsequently,

the load balancing mechanism is used to offload the backup node.

34

2.5 Data Acquisition in High Energy Physics

It is not always possible to adopt the general workload balancing/scheduling strategies
discussed so far in the data acquisition systems of high energy physics experiments. In this
section dedicated algorithms are presented, together with a short introduction to the data

acquisition systems and experiments they are employed for.
2.5.1 LHCb experiment at CERN

LHCb is one of four experiments at CERN's new LHC. [40] It seeks to discover new
phenomena, in particular CP-violation in B-decay and other new rare decays. LHCb expects 10
MHz rate of visible interaction and 100 kHz of b-anti-b-pair production. LHCb employs two level
trigger selecting only the interesting events. The first level is a low-latency high-rate trigger
implemented in FPGAs and carrying out the task of reducing the incoming data taking rate from
40 MHz to 1 MHz. The second one, the software trigger (HLT) is implemented on a CPU filtering
farm and performs further reduction to 2 kHz. The LHCb readout consists of detector-specific
front-end electronic boards connected to a group of 320 Readout Boards (total bandwidth of
4Tb/s). A router with the strongest density of Gigabit Ethernet switching within reach
guarantees full connectivity with the filtering farm and a data throughput of 35 GB/s. A single
Readout Board holds only a fragment of data describing an event. Therefore, event building and
HLT selection is carried out by transferring all event fragments to the same filtering node in the
filtering farm. The expected event fragment size is 120 Bytes. In order to improve network
utilization a packing of event fragments into Multi-Event Packets (MEP) is performed (typical
packing factor is ten). The communication between Readout Boards and filtering farm is
provided by UDP protocol and the packet loss detection (very rare) is implemented on event
building level. The whole process of event building and filtering is supervised by a single entity
called Readout Supervisor (implemented in FPGAs). Among others, the Readout Supervisor
assigns beam-synchronous clocks and synchronous resets, and receives back-pressure from
Readout Boards. Although the Readout Supervisor is designed with a particular emphasis on
reliability, it appears to be a potential single point of failure. There are several spare Readout

Supervisors normally used for concurrent standalone runs with sub-detectors. In order to

35

activate adding event fragments to the current MEP the Readout Supervisor broadcasts a
Trigger Type command. The Destination command in turn, closes the MEP that is under
construction and also contains the IP address of the destination node in the filtering farm. The
destination node is assigned depending on a credit scheme. Credit corresponding to each
destination node acts as a counting semaphore. Initially, at the beginning of the run, as well as
after processing of each MEP, each filtering node asks for new events throughout sending a
MEP Request to the Readout Supervisor. The credits corresponding to a filtering node are
incremented based on the MEP Requests and decremented whenever the corresponding node
is used as the destination for the next MEP (push mode with passive pull mechanism). If a credit
is zero or negative the destination is skipped but the credit is still decremented. This way
dynamic load scheduling of the filtering farm has been obtained. This strategy is also very
convenient for detecting failing nodes because credit corresponding to such a node becomes

increasingly negative.

It can be noticed that the central agent policy that has been adopted for Readout Supervisor
increases the number of single points of failures rather than decreases it, which is our objective.
Moreover, LHCb data acquisitions system operates on much smaller event fragments than CMS
(more than ten times smaller) which allows for packaging during data transfer and results in
less time consuming filtering. There is also a possibility that the policy of requesting new events

only after the whole MEP is being processed will result in idleness.
2.5.2 ATLAS experiment at CERN

ATLAS is one of two general purpose experiments at CERN's new LHC. It is designed to
discover the same phenomena as CMS, and therefore it has to fulfil similar design conditions.
ATLAS is supported by a large, distributed trigger and data acquisition system (TDAQ.) that
employs three stages of event filtering to reduce the initial data acquisition rate of 40 MHz to a
rate of stored events of 200 Hz. [41] The first level trigger that is implemented in dedicated
custom hardware, is responsible for the first selection step whose output will be in the order of
100 kHz. Subsequently, the trigger information is built by the Region of Interest Builder, and

then assigned in round robin fashion and transmitted to one of the second-level trigger

36

supervisors. This entity acts as a central agent that performs the load scheduling of the
incoming events between processing applications running in the second level trigger sub-farm.
A processing unit requests partial event data from the Readout System, runs a filtering
algorithm, and passes the result back to the second-level trigger supervisor, which in turn sends
the information to the DataFlow Manager (DFM). The pre-filtering step done on the basis of
partial event information causes further data rate reduction down to 3 kHz. The DFM is also a
central load scheduling agent, who supervises the event reconstruction process. For each
accepted event the DFM allocates an event-building node according to the pull-requests
obtained from those nodes. This way, a demand driven load scheduling has been obtained.
Afterwards, the event-building node requests all event fragments, assembles the whole event
(expected event size is 1.5 MB) and transfers it to the Event Filter that performs the final
selection step and reduces the output rate to final 200 Hz. It can be easily noticed that it was
possible to adopt central agent policy only because an additional filtering step has been
introduced. However, applying this policy to the CMS data acquisition system would rather
increase the number of single points of failures than decrease it, which is our goal. Moreover, in

the very first step data distribution is done in a static way using a round robin algorithm.
2.5.3 DZERO experiment at Fermilab

The DZERO experiment at Fermilab's Tevatron is one of two experiments designed to
investigate high energy proton-antiproton collisions. The data acquisition system of the DZERO
experiment [42] (similar solutions are also used in Zeus [43] and CDF [44] experiments) handles
an incoming data rate of 2.5 MHz. The filtration of acquired data is carried out in three stages.
The first level trigger, implemented in custom high speed electronics, performs the filtration
based on simple criteria. As a result the first level trigger has an output rate of about 5 kHz. The
second level trigger, composed from custom electronics, as well as from generic processors,
assembles partial information from detector subsystems and executes more precise selection
algorithms to further reduce the rate to 1 kHz. The Level three data acquisition and trigger
system is built around a single CISCO 6509 switch. The data sources are connected to the
central switch through five CISCO 2948G switches (up to 20 data sources per switch). Each data

source provides event fragments containing up to 20 kB of data. The event building and filtering

37

is supervised by a single process called Routing Master running on a single board computer. The
Routing Master chooses the destination using a table containing the information about the
number of free buffers on each farm node. First, a set of the least loaded nodes is identified,
and then the destination node is chosen in round-robin manner. After assigning an event to
afarm node the corresponding entry in the table is decremented. Farm nodes update the table
entries periodically, through messages with the number of available buffers. The farm node
assembles the whole event (average event size is 250 kB) and then runs sophisticated filtering
algorithms in order to finally reduce the rate to 50 Hz. Potentially, the load scheduling solution
applied in DZERO level 3 data acquisition could be adopted for higher data taking rates
provided that the assignment decision would be made and distributed for bunches of events,
which is possible since the load scheduler is aware of the space available in farm node's buffers.

However, the Routing Master is an additional single point of failure.

2.6 Fault Tolerance

At this point we aim to focus on fault tolerance issues. We will discuss cluster
environments with self-stabilization properties and frameworks that combine their fault
tolerance features with workload scheduling/balancing utilities. Moreover, we will also consider
fault tolerance mechanisms employed in the data acquisition systems of high energy physics

experiments.

Sevilla et al analysed in [45] the impact of applying aspect oriented programing paradigm
(particular emphasis is laid on software modularity) to High Performance Computing. They
propose a framework for automated code generation called CORBA-LC that is an extension of
standard Common Object Request Broker Architecture (CORBA). The framework, amongst
others, facilitates implementing load balancing and fault tolerance. The fault tolerance, in
particular, is achieved by replicating a given component on a set of computing nodes. Every
time an action is called on the fault tolerant component, a set of threads (each of them
corresponding to one instance of the component) is used to communicate all component
replicas distributed over several nodes. Subsequently, failed nodes are detected and a voting is

performed in order to determine the computing node that will carry out the submitted task.

38

Load balancing is provided in a similar way, the module whose operations should be balanced
between several nodes in the cluster is replicated. In this case, however, the worker node is
chosen according to the least loaded policy. It can be easily noticed that the two discussed
attributes are implemented in a similar way, and therefore it is easy to provide components
that are both fault tolerant and load balanced, and that they performance will not differ
significantly from components that have only one of those attributes.

Another example of combining load balancing with fault tolerance was proposed in [46]. The
discussed strategy is designed for Peer-to-Peer (P2P) systems, which are mainly used for
sharing files, streaming multimedia and hosting social networks. The idea behind the P2P model
is to allow users for registering voluntarily their hosts as a P2P node. Once the machine
becomes a P2P node, it may use the facilities provided by the P2P system. The O-Ring
architecture introduced in [46] adopts the ring topology in order to enhance and facilitate load
balancing and reliability of the overall P2P system. The participating P2P nodes are organized in
an overlay ring network, each of the nodes in the network shares part of its load (e.g. data) with
its predecessor and its successor. A P2P node manages its own workload and also due to load
sharing it is assigned with replicas of partial workload of its neighbours. These replicas are used
in case of fault occurrence, but also they are used during load balancing. This way, the
overhead of load balancing due to load transferring has been reduced. Short term fluctuations,
in the workload of given a P2P node, are balanced by passing some of the node responsibilities
to its neighbours. This involves only some changes in the request routing and does not require
sending of data. A major advantage of this strategy is that it is easily reversible. Long-term, big
fluctuations, in turn, can be addressed by propagating the replicated data over the system. This
operation can be performed in the background without involving the overloaded P2P node
itself that is responsible for handling requests concerning the overload. On the other hand, in
the case of fault occurrence, the neighbour nodes can take over the responsibilities of the failed
P2P node. In order to do so, the neighbour nodes extend their own workload by the replicas of
the load of the faulty node. Subsequently, the newly obtained load needs to be replicated in
the successor/predecessor node of the neighbour nodes. If there is an idle, spare peer in the

ring it can be used as a replacement for the failed node in the ring. Otherwise, the ring has to

39

be closed by cross-replication of the data between the neighbour nodes themselves. In this
case, it is very likely that the neighbour nodes will be overloaded, and as result load balancing
actions will be necessary. This, in turn, confirms that combining load balancing and fault

tolerance mechanisms is advantageous.

As it has been shown in the above discussed examples fault tolerance and load
scheduling/balancing complement and enrich each other. Moreover, both fault tolerance and
load scheduling/balancing require similar resources, and therefore the overhead caused by
adding load scheduling/balancing features to a fault tolerant system (or vice versa) is relatively

small.

Flatebo et al observed in [47] that dynamic load scheduling algorithms have self-stabilizing
features. Self-stabilization, first introduced by Dijkstra in [48], is a system property such that
regardless of the system's initial state (in particular illegal state), the system will stabilize itself
to a legal state in finite number of steps. In the proposed algorithms the system is considered as
being in an illegal state if a new workload is received, processing of an old workload has been
completed or in case of error occurrence, i.e. node or link failure. [47] The algorithm 1 is
triggered only by newly received workload, the receiver node first checks its neighbours, and
then evaluates their workload. Subsequently the load is transferred to the least loaded
neighbour node. The scenario is repeated until the workload reaches the least loaded node in
the system. In case if the receiver node is one of the least loaded nodes, the workload is
processed on the receiver node. This is a potential drawback when it comes to systems where
one particular node is the only source of load. The second, more sophisticated, algorithm
assumes that each computing node has three variables used for monitoring the system and for
deciding about state changes and workload transfers. These variables are the lowest known
workload in the system L, id info of the node that has the most up to date information about L,
and the id P of the least loaded computing node. A node's state is being updated either because
of receiving new workload or because of processing of some part of current workload is
completed. In both cases this can lead to updates in state variables of neighbour nodes, which
is also considered as a state update. When a computing node receives new load, it is first tested

whether the receiver node itself is the least loaded node. In order to do so, the values of the

40

above mentioned variables are taken into account, as well as the states of the neighbour nodes.
If it is the case, the receiver node starts to process the newly assigned workload. Otherwise, the
workload is transferred to the computing node indicated by info variable, which subsequently
executes the algorithm again. This continues until the workload is transferred to the least
loaded computing node. When, in turn, a computing node finishes processing a workload and it
becomes the least loaded node the information is propagated over the system using the L
variable. The system is considered as being stable if the state variables of all the computing
nodes are set to the same value. Both algorithms 1 and 2 have a distributed workload
scheduler. It Is also worth mentioning that the algorithm 2 is an optimal self-stabilization

algorithm.

We will discuss a dedicated fault tolerance solution for a data acquisition system based on the
research presented in [49] and [50]. The proposed method is studied for the BTeV experiment,
which is a high energy physics experiment, and is meant for a Real Time Embedded System in
general. The data acquisition system and high-speed trigger of the BTeV experiment are
designed to collect data at 500 GB/s, and then, after the selection of interesting events is done,
to send data to mass storage at 200 MB/s. The idea is to create a subsystem that will be
responsible for handling faults and errors. This subsystem should carry out local actions that
correspond to asingle computing node or application, like changing thresholds, and global
actions related to the overall system such as load shifting. The two mainly employed
technologies in this project are ARMOR (Adaptive, Reconfigurable, and Mobile Objects for
Reliability [51]) and VLA (Very Lightweight Agent [50]). The ARMOR is a multithreaded, event
driven solution organized around objects that are being supervised. The ARMOUR approach
implies one Fault Tolerance Manager (FTM) per system that initializes the reliability features
and triggers the recovery procedure from faulty states (e.g. node failure). Robustness of the
FTM itself is provided by a heartbeat mechanism (heartbeat AMOR). Moreover, there is one
daemon per computing node responsible for inter ARMOR communication, and several objects
that provide monitoring services. The VLA method, on the other hand, follows the idea of
submission architecture [52] and highly supports reactive behaviour. The agents responsible for

fault tolerant features are organized in layers and their actions are determined by finite state

41

machines. The main advantage of this approach is that several rules can be triggered in parallel.
Potential conflicts between such concurrent activities are solved using a set of priorities. In
general the layer of the agent determines the priority of its actions (higher layer means higher
priority). Moreover, the lower the layer of the agent, the more lightweight the agent should be.
In order to provide reliability, a VLA agent may perform corrective and preventive actions,
request more data from agents within its layer, or pass the problem to higher layer. Conclusions
on the state of a computing node are made, amongst other, on the basis of the CPU workload,
e.g. a low load may indicate that there is a CPU or network problem, on the other hand, a high
load may indicate that the workload limits are badly evaluated. At this point it is important to
notice that workload measurements are a key even for a heavily integrated fault tolerance

solution.

Our goal and priority is to provide fault tolerance in such a way that the number of additional
components and their impact on the system is minimized as much as possible. Therefore, only
some specific attributes that will allow for concluding about the entire system, have to be
monitored. Also, the additional components have to be as lightweight as possible. As a result, in
our case, it is not possible to apply fault tolerance mechanism that requires detailed monitoring

of the system at several levels.

42

3 Case Study: The Compact Muon Solenoid Data Acquisition System

As a case study we consider the Data Acquisition (DAQ) System of the Compact Muon
Solenoid (CMS) experiment at CERN [53] [54], The discussed DAQ. system is designed to sustain
a maximum data taking rate of 100 kHz of 1 MB zero-supressed events coming from
approximately 512 sources that corresponds to an average input of about 100 GB/s. Each data
source is expected to deliver event fragments of average size of 2 kB (in some case two sources
are merged so that the nominal size is obtained). The system has to carry out software filtration
of the incoming events to reduce the rate of stored events by a factor of 1000. In order to reach
the desired rejection factor substantial computing power is needed that corresponds to
thousands of computing nodes. The configuration of the CMS Data Acquisition cluster is carried
out dynamically at run-time so the DAQ System may adapt to required performance and also

can be partitioned in order host concurrent test- and data-taking runs [55].

Triggers DAQ Control
Data Flow Control column column

Figure 3-1 Functional decomposition of the CMS DAQ System {for clarity, multiplicity of each entity is not
shown). [2]

43

The component architecture of the CMS DAQ system, along with the data flow is shown in
Figure 3-1. The sub-detector front-end systems store data constantly in 40 MHz pipelined
buffers. For accepted events, a LI trigger signal is delivered through the Timing, Trigger and
Control (TTC) system. The data of selected events are transferred from buffers to the Front-End
Drivers (FEDs), and then are read into the Front-End Readout Links (FRLs) that, as previously
mentioned, are able to combine data from two FEDs and act as the data sources for the CMS
DAQ system. Afterwards, the data fragments provided by FRLs are assembled to whole events
by the Event Builder, and then are passed to the Event Filter for further processing. The Event
Builder is composed of a so-called FED-Builder and RU-Builder, which, in turn, is divided into
several autonomous computing farms called DAQ Slices (the RU-Builder can be deployed in up
to 8 DAQ Slices). [11] In case of congestion, back-pressure is propagated from the RUs to the
FRLs and then to the FEDs. FEDs in turn, in order to avoid buffer overflows, may throttle the

trigger rate through the Trigger Throttling System (TTS).

The whole process of data acquisition is started, configured and supervised by the Run Control
and Monitoring System (RCMS) [56] [57]. The RCMS is a distributed system based on Java and
Web Services technology running in a set of Apache Tomcat servers. Its structure is organized

into several subsystems corresponding to sub-detectors and self-contained components.

From our standpoint the Event Builder is the most important part of the system, and therefore
we will describe the FED-Builder and RU-Builder in a more detailed way in the following

sections.

3.1 Event Builder

The goal of the Event Builder (shown in Figure 3-2, also previously shown in Figure 1-3) is to
acquire event fragments from about 500 data sources at a rate of 100 kHz, and to construct
whole events. Event fragments are transported by a non-blocking network [5] (based on
Myrinet [6] technology) to the surface and statically distributed amongst several autonomous
computing farms called DAQ Slices. A DAQ Slice is a computing farm organized around a
Terascale ForcelO switch, where parallelization is achieved through the SPMD (Single Process,
Multiple Data [7]) technique. In the first event building stage (FED-Builder level) event
44

fragments are received by a DAQ Slice through distributed readout consisting of computing
nodes called Readout Units (RU), and then assembled into super-fragments inside RUs.
Subsequently, in the second stage (RU-Builder level), in each of the DAQ Slices, an Event
Manager (EVM) node assigns super-fragments to Builder Units (BU) that construct the whole
event. It has to be ensured that all data fragments corresponding to one event are sent to one
and only one DAQ Slice, and then after assembling to super fragments go into one BU. Since it is
assumed that each event requires similar computing power in order to be processed, the
events are usually distributed in round robin fashion between DAQ Slices, which are identical in
the sense that they consist of the same number of identical computing nodes. For this reason
a non-blocking network has been employed, so the transfer of event fragments to one DAQ
Slice is non-blocking in respect to other DAQ Slices. This way, each DAQ Slice has not only the
same computing power, but also access to the same bandwidth. Furthermore, the round robin
assignment policy can be carried out in constant time, which is undoubtedly an important asset,
since DAQ Slice allocation has to be done at least once per 10 us on a RISC processor with clock

speed in order of 10 MHz.
3.1.1 FED-Builder

The FED-Builder is composed of multiple N x M networks that carry out the task of building
super fragments from event fragments obtained from N sources and distributing them between
M DAQ Slices. [58] For the standard system N < 8, and M = 8. Physically the FED-Builder
network takes form of a non-blocking network based on Myrinet [6] technology. Myrinet is a
network solution composed of Network Interface Cards, containing user-programmable RISC
processors (NICs) and cross-bar switches interconnected with bidirectional fiber-optic links. In
order to guarantee lossless packet transfer two mechanisms are adopted: wormhole routing
and flow control. The wormhole routing [59] [60], also called wormhole switching is a technique

that allows for dividing larger network packets into smaller parts, which are then sent using

45

™

TR

5

g & 88X
|3

SOON 8.0 Lo
B3 <RIBS

I° R Sg§8cco 8 ovsES3

[N
1

[—

oW OO
T
NEIOAS wyE
03 & Brathgfvi@r 0 N8 RNGS yEmm

o

m @
A
M
-O-
® D - 3
Xr- m %

common routing. The first fragment of the network packet, a so-cal ed header contains the
information about the route (namely the destination address). The routing decision is taken
only once while the header is passing through the network. This way atemporary circuit is
created via which the subsequent packet parts flow (therefore it may be considered as dynamic
circuit switching [61]). It is worth noticing that the transmission of a given packet may be
pipelined across series of devices, and as a result the destination node may receive the header
before the source node finishes sending the whole packet. The last packet part, called tail is
responsible for closing the connection between the sender and receiver nodes. This method
successfully minimizes the latency in the message transmission and is independent of the
package length. The flow control [60], in turn, aims to ensure that no buffers are overwritten at
any of the stages of package forwarding and receiving. This means that in the case when it is

not possible for a packet to proceed, the data source may continue to transfer data only until

46

all buffers are full all the way to the congestion point (this way lossless transmission is
guaranteed). It is assumed that this mechanism is performed on packet fragments and

therefore, similarly as the wormhole routing, is independent of the packet size.

Each Myrinet NIC is connected to two independent, but identical Myrinet switch fabrics (two-
rail configuration) using two bi-directional optical data ports. [58] This way the bandwidth is
doubled and redundancy is provided. Moreover, adopting a large switch fabric per rail instead
of using an individual N x M switch per super fragment facilitates reconfiguration of
composition of super fragments, which in turn helps to balance super-fragment size and route
avoiding erroneous hardware. In order to facilitate the use of the bandwidth barrel-shifter [62]

traffic shaping has been employed.

As shown in Figure 3-3, there are four stages of 16x16 crossbar switches organized as
a reconfigurable Clos network [5], the first two layers are placed in the underground counting
room, while the other two layers are located on the surface. The first three layers of the

network provide a completely independent path for each data packet. The fourth layer, in turn,

carries out the task of constructing super-fragments (two super fragments per 16x16 switch) by
sending respective event fragments to a Readout Unit. This however, entails throughput

reduction due to head-of-line blocking [63] [64].

47

Readout Unit host Ry
with Myrinet NIC oIl

16x16
cross-bar switch
(depicted as 4x4)

,,Clos256+256"
Myrinet Enclosure

Frontend Readout Link
with Myrinet NIC

Surface Event Builder/
Filter Farm

Underground Counting Room

Figure 3-3 The FED-Builder non-blocking network (only one rail shown), the four stages of the Clos network
correspond to LI, L2, L3 and L4. The number of crossbar switches in each layer and the number of input/output
per crossbar have been scaled down by a factor of 4 for clarity. [58]

48

The custom firmware running on the Myrinet NICs has been implemented in C programming
language. [58] The Myrinet NICs on the FRLs are programmed to receive the event fragments
from FRLs, assign a destination to each event fragment based on the event number and a look-
up-table (the algorithm is illustrated in Figure 3-4) and then subsequently to send the data to
the selected receiver according to a credit schema (the algorithm is illustrated in Figure 3-5).
Moreover, the discussed software provides load balancing over the two rails (if one rail fails the
whole traffic is redirected to the other one), as well as carries out the task of re-transmission in

the rare case of transmission failure caused by fibres or hardware errors.

Figure 3-4 Event fragment polling algorithm used to receive fresh blocks pushed by FRL

49

Start

Figure 3-5 Acknowledge handling algorithm

The Myrinet NICs on the RUs side, in turn, are concatenating event fragments corresponding to
the same event in order to construct super fragments (the algorithm is illustrated in Figure 3-6).
Each of the currently built super fragments is assigned with one entry in the super fragment
array. The super fragment array consists of 32 super fragment records, and therefore up to 32
super fragments may be built in parallel. An event fragment is assigned to an appropriate array
entry based on a hash function result. The hash function employs the same look-up-table that is

used to assign the event fragments to their receivers.

50

Start

Event Fragment
received

Determine index in
Super Fragment Array

Concatenate Event
Fragment

Push the Super Fragment
to the RU

Create new empty Super
Fragment with an expected
event number in Super

Fragment Array_

Figure 3-6 Super Fragment concatenation algorithm

51

ERROR

It is worth noticing that the discussed strategy is meant for destination computing farms with
exactly the same capacity. As a result, the look-up-table is set to distribute the events in round
robin fashion between the filtering farms. It is also possible to serve computing farms with
diverse capacity, but the fraction of workload assigned to each farm is still constant for the
duration of the whole data-taking run. This approach has a major drawback when one filtering
farm loses part of its original capacity for example due to afault. In this case, the event
fragments corresponding to the erroneous farm will dominate the buffers in each Myrinet NIC.
This, in turn will lead to data acquisition rate throttling, because the degraded filtering farm
cannot handle the nominal data-taking rate and the system has to adapt to its new capacity.
Since the fraction of workload assigned to each farm is predefined, also the fully operational
farms will be processing events at lower rate (in case of round robin event distribution all farms
will be processing events at the same rate), which means that the available resources are not

fully utilized.

Since there is no risk of congestions in the FED-Builder network (the network is exclusively used
for transferring the data from CMS detector) no congestion avoidance mechanism [65] [66] has
been implemented. The employed data transmission protocol is based on the sliding window
protocol [67]. An analytical description of the sliding window mechanism has been given in [68].
The main difference in respect to the TCP protocol [69] is that the discussed protocol's basic
transmission unit is a packet instead of a byte. Moreover, two credit schemas are adopted, one
corresponding to the available buffer space, and an additional one that corresponds to
available entries in the super fragment array. The sliding window protocol implies that each
packet is assigned with a sequence number that is used to place packets in correct order, detect
lost packets and discard duplicates (reliable, in-order packet delivery). [67] Both the sender and
the receiver have to use three dedicated variables for the sliding window protocol. In case of
the sender these are: the number of unacknowledged packets that the sender may transmit,
also called sender window size sw, the sequence number of last acknowledged packet received
sm, and the sequence number of the last packet that has been send s”~. The relationship

between these variables is determined by the following invariant:

Sls- Sla”™ Sw

52

A packet is retransmitted if it timeout before an acknowledgement is received which means
that the sender may have to buffer up to sw packets. When an in order acknowledgement
arrives Sla is incremented, allowing the sender to transmit more packets. The Sia variable is
possibly further incremented for each out of order previously received acknowledgement
provided that all packets with lower sequence number are now acknowledged. For example, let
us assume that sM =5, and that the acknowledgement is received first for packet 7, and then
for packet 6. At the point when packet 6 acknowledgement arrives the Sla is incremented, but it
is also incremented for packet 7 since its acknowledgement is now also in order, and as a result
Sla = 7. The receiver, in turn, keeps track of the number of packets that can be received out of
order, which is called receiver window size rw, the highest acceptable sequence number rHA
and the last packet sequence number received rlR The relationship between these variables is

determined by the following invariant:
fHA~ i'w

When a packet arrives the receiver checks its sequence number. If it is within the receiver's
window it is accepted, otherwise it is discarded. An acknowledgement is not sent if the
accepted packet is received out of order. However if the packet is received in order, the
acknowledgement is sent for the -currently highest, in order packet (cumulative
acknowledgement). For example, suppose that rlR=5, and that the packet 7 is received first,
and then the packet 6 (let us assume both packets are within the receiver's window). At the
point when packet 6 is received an acknowledgement is sent, but since the highest in order
packet is 7, it is the one that will be acknowledged. After an acknowledgement is sent, riRis set

to the sequence number of the recently acknowledged packet, and rHA = I'm+ rw. This way the

receiver is allowed to accommodate more packets.

53

3.1.2 RU-Builder

As previously mentioned, the RU-Builder is composed of up to 8 autonomous computing
farms called DAQ Slices. Each DAQ Slice (shown on Figure 3-7) is assigned with equal workload,
which means that at the nominal data acquisition rate of 100 kHz it is building events at a rate
of 12.5 kHz. The network of a DAQ. Slice is implemented by one switch (Terascale ForcelO
switch). The super fragments are received by RU applications (there are about 72 RU nodes per
DAQ Slice), and then assigned by an EVM supervisor to a BU processes (there are about 126 BU

nodes per DAQ Slice), which carries out the task of constructing the whole events.

Glgkr)gégsrls%?er e Detector Front-Ends FED

DAQ links
M M FED Builders

Readout

RU. Units

Event N

Manager Readout Builder Network

Bunder
BU, ___25_3_ Units

FU I __. ' Z Fitter
! I 1 1 1 Units

Figure 3-7 DAQ Slice schematic view [2]

At this point we would like to focus on RU-Builder applications (EVM, RU, BU), with the
particular emphasis on the employed communication protocol and FIFO queues. First we will
discuss the BU application, which carries out the task of building events. An event consists of
one trigger super fragment (obtained from an EVM) and n RU super fragments, where n is the
number of RUs. Afterwards we will present the EVM application, which supervises the event
flow inside a DAQ Slice of the RU-Builder. In the end we will give a short overview of the RU

application, which carries out the task of buffering super fragments until they are allocated

54

to a BU. The EVM and RUs are communicating with the FED-Builder via FED-Builder Output
(FBO) application.

Send Request RU Super Fragment

blockFIFO
Confirm Resource
Table LSP®2.-
E [M(.Stepa.
Allocate new and/or
clear previous
discardFIFO fullResourceFIFO
requestFIFOs
Allocate FU
. X
m'rVoi b*r
Take

Discard FU

Figure 3-8 Builder Unit internal FIFOs [70]

A schematic view of the BU component is shown in Figure 3-8. If a BU is able to accommodate
new events it notifies the EVM (step 1). [70] The EVM assigns the event by transferring a super
fragment (trigger data), along with the event ID to the BU (step 2). Subsequently, the BU asks
the RUs to transfer it the remaining super fragments of the event (step 3). The BU constructs an
entire event from the received super fragments (step 4) using the Resource Table (step 5). The
built events, in turn, are reserved by FUs (step 6). The BU handles the allocation request by
making the recently built event available to the FU (step 7). As soon as the FU executes the

filtering algorithms it sends a discard message to the BU (step 8).

55

FBO

Trigger

EVM

triggerFIFQ

clearedEventldFIFO

-H

Allocate and/or clear

Figure 3-9 Event Manager internal FIFOs [70]

A schematic view of the EVM component is shown in Figure 3-9. The trigger data of an event
are transferred to the EVM via the FBO application (step 1). [70] The received trigger data are
assigned with free event IDs (step 2). Subsequently, the EVM requests RUs to readout super
fragments that correspond to the recently received trigger data (step 3). A BU with free
capacity available will send a request to the EVM to allocate an event to it (step 4). Within such
a request, an ID of an event will be returned to the EVM in order to be cleared. Each cleared

event ID will become a free event ID (step 5). The EVM allocates an event to the BU by

freeEventldFIFO

Readout™

pairFIFQ

transferring the trigger data of the assigned event, along with the event ID (step 6).

56

80

Data ready
blockFIFO
pairFIFO
EVM &y A
(Stepl)
! f
Fragment
lookup

requestFIFOs
rm - Send Request

BU

Super Fragmen”

(Steps..-
Figure 3-10 Readout Unit internal FIFOs [70]

A schematic view of the RU component is shown in Figure 3-10. The EVM requests the RU to
read out an event fragment by sending the trigger event number, along with the assigned event
ID (step 1). Simultaneously, the FBO notifies the RU about super fragments that are completed
and available for processing (step 2). Each super fragment for which a RU received an event ID -
event number pair is positioned in the super fragment lookup table (step 3). BUs are requesting
super fragments of the events that they are constructing (step 4). The RU is handling those
requests by retrieving appropriate super fragments from the lookup table and then transferring

them to respective BUs for further processing (step 5).

57

Figure 3-11 The event building protocol (for clarity, multiplicity of each entity is not shown) [70]

Summarizing, the event building protocol (shown in Figure 3-11) operates as follows: FBOs are
serving trigger super fragments to the EVM and data super fragments to the RUs (data ready
message). Simultaneously, whenever a BU has free capacity to accommodate an event, it
requests the EVM to allocate it an event (allocate new and/or clear previous message).
Subsequently, the EVM assigns the BU with an event by sending it the trigger super fragment,
along with the event ID (confirm message). The trigger event number, along with the event ID,
is also sent to all RUs (readout message). After receiving a send request a RU is transferring an
appropriate super fragment to the BU. The BU is constructing entire events and then assigning
them to FUs (take message), accordingly to allocate requests received from them. The event is
stored in shared memory, and is only discarded after a FU finishes executing the selection
algorithms (discard message). Therefore, the BU may request a new event only after a

previously built event had been processed by a FU.

The behaviour of BU, RU and EVM applications is determined by respective finite state

machines (FSM). [70] Those FSM share several common characteristics. The Configured state is

58

used for reading and acting upon configuration parameters. The enabled state indicates that an
application is ready to participate in event building activities. The halted state is used to clean
all Internal data, and also indicates that an application will not respond to any incoming
messages (except control messages). Finally, the Failed state means that an application
encountered an fatal error state (currently once an application entered the Failed state it

cannot be recovered). The EVM and BU application share the same FSM shown in Figure 3-12.

Figure 3-12 Finite State Machine of BU and EVM applications [70]

As shown in Figure 3-13 there are two additional states in the RU application. In both cases the

RU is back pressuring the Global Trigger Processor. The Timed Out state indicates that the FBO

Figure 3-13 Finite State Machine of the RU application [70]

59

stopped sending super fragments. Mismatch Detected, in turn, indicates that some event

fragments were assigned to a wrong DAQ Slice.

3.2 Event Filter

The Event Filter aims to reduce the nominal input rate of accepted events so the output
stream is manageable for mass storage and offline processing. Moreover, it has to ensure that
all interesting physic events are preserved and that no additional dead-time due to event
reconstruction and processing is introduced into the overall system. Besides running
reconstruction and filtration algorithms the Event Filter generates, collects and distributes Data
Quality Monitoring (DQM) information as well as, supervises transferring the selected events to

local storage.

N EVB network (Force 10)
RU
| / BU-FU PC
; BU
N Event Builder A)
64 xN fsAFh i1
FU-RB IES 1 COR
AN 3
e 1 5] i
Raw Rec. DQM
\ * I I
FU-EP ESP —Hgpn

H Control network (CN)

Figure 3-14 Architecture of the Event Filter [2]

As shown on Figure 3-14 the same computing nodes that are hosting the Builder Units (BU) are
also hosting several instances of Event Filter Units. When an event is constructed the BU is
passing it to one of several copies of Filter Unit Event Processor (FU-EP) through the Filter Unit
Resource Broker (FU-RB). The RB carries out the task of managing memory resources, and takes
care of exchanging data with the Event Builder and the Storage Managers (SM). There are
several EP processes that are requesting and then processing built events. The selection
algorithms are chosen and configured at the start of each data-taking run. When an event is
select for offline analysis it is passed via RB to a SM node. The SM computing nodes are

60

connected to a Fibre-Channel SAN that has a throughput of 1 GB/s and a capacity of several

hundred TBytes.
3.3 Summary

The research goal of this PhD thesis is to study whether it is possible to enhance the
current CMS Data Acquisition System so the static event-fragment distribution can be replaced
with a more fault-tolerant dynamic workload scheduling mechanism. The proposed solution has
to meet the CMS experiment requirements. Foremost, the system has to be able to sustain an
average input of about 100 GB/s, and it has to be guaranteed that all event-fragments will end
up in same filtering farm (DAQ Slice). Also, the scheduling mechanism should be lightweight so
the current Myrinet network topology, component hierarchy and the two-step event building
algorithm remains unchanged (as described in section 3.1). However, new functionalities can be
added to existing components, e. g. to the Event Manager, Readout Unit and Builder Unit.
Likewise, the network can be expanded to some extent, e. g. a dedicated network for EVMs
could be easily added to the system. The custom Myrinet protocol and driver can be also
modified, especially in terms of RU - FRL communication where a high bandwidth is being
unutilized. However, it is important to keep in mind that any changes that will lead to
interference of the non-blocking properties of the network are unwanted. In particular, it is not
possible to implement the multicast operation in the Myrinet network using a multicast
tree [71], because this would require sending packages (or package acknowledgements) from

one source to two or more different destinations.

In parallel other kinds of research is conducted on the CMS DAQ. System, including studies on
possible replacement of a current electrical extension the S-LINK64 (Simple Link Interface 64
bit) [72] for reading out the detector front-ends. A solution based on 10 Gigabit Ethernet that
would allow for larger throughput and for simplification of the architecture is under

consideration [73].

61

4 Requirements analysis

In this chapter we consider the requirements and present use cases of the proposed
load scheduling method. We aim to indicate that there is aclear need for a dynamic load
scheduling algorithm in the CMS DAQ system, and that such an algorithm enhances the system

and facilitates the data acquisition.
4.1 Lost luminosity analysis for CMS experiment

The luminosity loss gives us the information about the amount of potentially useful data
that have been lost during the data acquisition process (the concept of luminosity has been
described in more details in subsection 1.1.1). Around 10% ofthe luminosity during stable
beam is lost due to various types of malfunctions and general human errors. The luminosity
loss, as shown in Figure 4-1, is caused by many factors, amongst others by errors in the sub-
detectors and the data acquisition system's hardware and software. In order to reduce the
downtime it is necessary to increase the reliability of all components that are subject to faults.
The downtime due to both the hardware and software problems in the CMS DAQ system
(CDAQJHW and CDAQ_SW, shown in Figure 4-1) corresponds to 5% of the total downtime.
Potentially, the problems causing up to 43% ofthe CMS DAQ downtime (1 hour, 7 minutes and
43 seconds) could be addressed and solved by the dynamic workload scheduling algorithm,
meaning that in the discussed period of 7.5 months additional 387.5 TB of data could be
acquired for the online filtering and then approximately 0.4 TB of selected events could be sent

to persistent storage for further offline analysis.

62

JUNDECIDED : UNDECIDED - Oxj-

GENERAL: HUMAN.ERROR - 2X

Lumi lost by categories

LHC :STUDIES - 0«)
4 HC : LOSSES - OST

INFRA: NETWORK - 6Xi |,
liFfRA : COOUNG - 22X1___
* PWR SUPPLY :JtCALFfIR]; O!
iPWLsUPPIV : ESPWR 1'ix | ~
. PWR SUPPLY : TRK PWR- Ix|
J PWR SUPPLY : FIX TOR - 1X[
B TRIGGER: LI DTTF - Q X (~
I TRIGGER : LIIcSCTF - 1X1
TRIGGER: LI RCT - OX
TRIGGER: LI GCT - 1t
TRIGGER :tI_G T- ix|
TRIGGER: CONFIG-0X
ﬁf_lTRIGGER “HLT SW- OX1
/

DAQ: CONFIG - OXL
|DAQ: CDAQ.HW- IX
DAQ:CDACLSW-4X

|PAQ : CDACLRCMS - IX

|PAQ: ECALDAQ- 10xf

|DAQ: HCALDAQ- S%Y

TRIGGER ; Lt_DT_TPG.- 2X[
/TRIGGER : L1ECAL.TPG - IX
{{.TRIGGER: LI RPC-OX t~
. DAQ : HFLUMI DAQ - Oxl
<, DAQ : DQM_DAQ-0X|
— DAQ: BRM - 1X|
DAQ : TRIG DAO - OXI
AOAQ:TRK.DAQ- 19X[

e LHC : STUDIES - 747.15 »LHC: LOSSES - 174.64 »INFRA: NETWORK- 15895.92 ©INFRA: COOUNG - 63345.33

* PWR.SUPPLY : HCAL.PWR- 805.32 »PWR.SUPPLY: ES.PWR - 2147.13 » PWR.SUPPLY : TRK.PWR-'3329.54

* PWR.SUPPLY: PIX.PWR- 3292.71 OTRIGGER : LI.DTTF - 1343.30 ®TRIGGER : LI.CSCTF - 1800.29

e TRIGGER: LI.LRCT - 1203.86 »TRIGGER : LI.GCT - 1867.49 « TRIGGER: LI.GT - 3962.40 »TRIGGER: CONFIG - 911.31
* TRIGGER: HLT.5W- 142.83 »TRIGGER: LL.DT.TPG - 5876.92 »TRIGGER: L1.ECAL.TPG- 1950.27

QTRIGGER : LL.LRPC - 239.63 = DAQ : HFLUMI.DAQ - 74.28 = DAQ : DQM.DAQ - 348.90 ODAQ : BRM - 2732.89

9 DAQ : TRIG.DAQ - 318.42 = DAQ : TRK.DAQ - 53882.94 ©DAQ : PIX.DAQ - 21766.36 »DAQ : DT.DAQ - 1293.18
©DAQ: RPC.DAQ- 52.28 »DAQ: CSC.DAQ - 19739.50 »DAQ: HCAL.DAQ - 13236.73 »DAQ: ECAL.DAQ - 29567.97

* DAQ: CDAQ.RCMS - 2400.75 DAQ : CDAQ.SW - 11321.89 «DAQ : CDAQ.HW - 3685.80 « DAQ : CONFIG - 291.30

* GENERAL : TEST - 5555.85 »GENERAL : HUMAN.ERROR - 6800.17 »UNDECIDED : UNDECIDED - 162.27

Figure 4-1 Lost luminosity analysis for CMS experiment (measured in the periods form
01/03/2011 to 12/10/2011)

4.2 Business Use Cases
The two most important business use cases for the dynamic workload scheduling
algorithm (presented in Figure 4-2) are: ensuring reliable data acquisition and providing more

efficient resource utilization. Both business use cases are described and analysed in a more

detailed way below.

63

CMS DAQ

Figure 4-2 Business use cases diagram

4.2.1 Ensure reliable data acquisition

The proposed algorithm should ensure reliable data acquisition by which we mean that
in case of some fault that is critical and reduces heavily the capacity of a processing farm the
congestion that will appear in this farm should not affect other fully functional filtering farms,
and in particular should not cause a data taking run to stop. This is especially important for all
single points of failure that are local to a single processing farm (DAQ Slice), but because of the
currently used, static event fragment distribution they are becoming global and affect the

whole system.

Use case main flow:
1. There is afault occurrence in the DAQ system
2. The fault is detected by the algorithm
3. The capacity of the damaged filter farm is estimated

4. The workload flow adopts to the new conditions dynamically

Sample use case scenarios corresponding to the discussed use case and illustrating how the

proposed algorithm should work have been given below.

64

4.2.1.1 Storage Manager node fails

The scenario (shown in Figure 4-3) starts when an SM node fails. Subsequently, the
monitoring tool detects the fault while measuring the event building efficiency of the damaged
DAQ Slice. The erroneous DAQ Slice may accommodate at most as many events as can fit into
its readout buffers. Therefore, the data sources have to be informed about the new capacity of
the damaged DAQ Slice before it runs out of buffers. This way it is ensured that the data

acquisition rate will be decreased respectively to the capacity loss in one DAQ Slice.

65

4.2.1.2 A network connection of the multiple rail configuration breaks

The scenario (shown in Figure 4-4) starts when one network connection of a multi-rail
configuration breaks. Subsequently, the monitoring tool detects the fault while measuring the
event building efficiency of the damaged DAQ Slice. The erroneous DAQ Slice may
accommodate at most as many events as can fit into its readout buffers. Therefore, the data
sources have to be informed about the new capacity of the damaged DAQ Slice before it runs
out of buffers. This way it is ensured that the data acquisition rate will be decreased

respectively to the capacity loss in one DAQ Slice.

Figure 4-4 Network connection breaks scenario

66

4.2.1.3 Readout node fails

The scenario (shown in Figure 4-5) starts when a RU node fails. Subsequently, the
respective data sources detect the fault using a heartbeat mechanism. Also, the monitoring tool
detects the error during measurements of the event building efficiency of the damaged DAQ
Slice. Since a Readout node is alocal single point of failure, the erroneous DAQ. Slice will be
excluded from the data taking run. The corrupted DAQ Slice may accommodate at most as
many events as can fit into its readout buffers, excluding the event fragments that correspond
to the failed RU (those have to be discarded if necessary).Therefore, the data sources have to
be informed about the exclusion of the damaged DAQ Slice before it runs out of buffers. This

way it is ensured that the data acquisition is not stopped.

67

4.2.1.4 Event Manager node fails

The scenario (shown in Figure 4-6) starts when an EVM node fails. Subsequently, the
respective data source, as well as the monitoring tool detects the fault using a heartbeat
mechanism (measurements of the event building efficiency are no longer possible because the
EVM is the supervising node). Since an EVM node is a local single point of failure, the erroneous
DAQ. Slice will be excluded from the data taking run. The corrupted DAQ Slice may
accommodate at most as many events as can fit into its readout buffers, excluding trigger super
fragments, which correspond to the failed EVM (those have to be discarded if
necessary).Therefore, the data sources have to be informed about the exclusion of the

damaged DAQ Slice before it runs out of buffers.

68

4.2.1.5 Detectproblems in anindividual DAQ Slice

The scenario (shown in Figure 4-7) starts with a failure in a DAQ Slice that reduces its
capacity. The load scheduling algorithm starts to assign fewer events to the damaged DAQ Slice.

DAQ shifter notices in the DAQ View monitoring page that the erroneous DAQ Slice collect data

at lower rate than expected.

Figure 4-7 Error detection scenario

4.2.2 Increase efficient resource utilization

The presented load scheduling method should enhance the resource utilization, which is
aclassical use case for this type of algorithms. The workload flow should adapt to the new
conditions (throughput, computing power, nature of registered events) dynamically. As a result,

higher data event building and filtering rate should be achieved.

69

Use case main flow:

1. There is an imbalance in the DAQ system
2. The imbalance is detected during routine measurements of the workload on DAQ Slices

3. The workload flow is balanced between DAQ Slices dynamically

Sample use case scenarios corresponding to the proposed use case have been presented below.
4.2.2.1 Transientimbalance

The scenario (shown in Figure 4-8) starts when a transient imbalance is introduced into
the system. The imbalance may be cased either by some non-persistent behaviour of the
hardware (fluctuations in network link or computing node performance over the time) or by the
variations in the nature of the registered events (the event selection is not a constant time
process and depends on the event type). In the first stage, the algorithm detects the imbalance
during routine measurements of the workload on the filtering farms. In the second stage, the
measurements are communicated to the data sources so they can dynamically balance the

workload between DAQ Slices.

70

4.2.2.2 Non-identical DAQ Slices

The scenario (shown in Figure 4-9) starts when an additional DAQ. Slice is introduced
into the DAQ system. The new DAQ Slice is non-identical in respect to other DAQ Slices. It could
be either a test farm running experimental algorithms on a small fraction of incoming events, or
a powerful farm realized in a completely new technology. The algorithm will have to estimate
the capacity of the new DAQ Slice and pass the measurements to the data sources.
Subsequently, the data source will have to assign the recently introduced DAQ Slice with a

fraction of the workload that corresponds to its capacity in order to fully utilize its resources.

71

4.3 System Use Cases

The following system use cases (Figure 4-10) were developed based on business use
cases and scenarios presented in previous section. The Monitor DAQ Slices use case covers
workload measurements, as well as detecting the failure of critical nodes, which in turn is also
a use case for the data sources that have to detect the failure independently. The Exclude DAQ
Slice use case fulfils the need for masking out a computing farm during data taking run. The
workload measurements and exclusion decisions have to be communicated with data sources
(Communicate measurements with data sources use case). Finally, the most important use

case, and also our main goal, is to balance the event flow between available computing farms.

Figure 4-10 System use cases diagram

72

It is important to notice that our aim is to enhance the system so it is more reliable and the
resources are utilized in more efficient way. Several system use cases have been identified that
have to be implemented in order to achieve these goals. A monitoring utility is needed so
workload measurement can be conducted and computing node failures can be detected. Those
measurements need to be communicated to the data sources that in turn will use them to
make the event fragment assignment decision. In the worst case scenario, when a critical node

fails a DAQ. Slice has to be excluded from the on-going data-taking run.

73

5 Proposed workload scheduling method

In this chapter we will propose a dynamic load scheduling algorithm for a distributed
data stream, which allocates the workload between several autonomous computing farms. As
previously mentioned the processing farms are accommodating the load through distributed
readout. The proposed method employs event driven initiation of load scheduling activities,
which is considered as very sensitive to fluctuations and therefore allows for detecting and
adapting to faults. Since the algorithm should be as lightweight as possible, and most
importantly should not introduce additional bottlenecks and single points of failure into the
system, we decided to employ a distributed and asynchronous load assigner. The algorithm is
also cooperative in the sense that all load assignees instances pursue to a common, global goal.
Finally, the load assignment method is suboptimal and the monitoring of the workload on the

filtering farms is heuristic.
5.1 General idea

In this section we aim to give a brief overview of the proposed workload scheduling
method. A schematic view of all important components (computing nodes, networks, etc.),
along with the scheduling algorithm's workflow, has been presented in Figure 5-1. Firstly, the

capacity of DAQ. Slices and their workload have to be estimated. All Builder Units (BUs) in

74

Figure 5-1 Schematic view of CMS DAQ components, along with the scheduling algorithm's workflow [74]

75

agiven DAQ Slice are passing the information about their capacity and occupancy (Figure 5-1,
step 1) to the Event Manager. More details about the adopted load index will be given in the
following section. The EVM is merging those data in order to have a unified view of the
workload and performance of the filtering farm (DAQ Slice) that it is supervising. Afterwards,
the EVMs are exchanging with each other the measurements of the workload in each filtering
farm (load data) in order to achieve redundancy (step 2). In the next step, the redundant load
data are sent to FRLs (step 3, part 1 and 2). A more specific description of the load scheduling
protocol (including the communication between EVMs, the two-step load-data transfer to FRLs
and fault tolerance mechanisms) can be found in section 5.3. Based on the load data received
from all EVMs the data sources (FRLs) are scheduling the event fragments and in case of serious
malfunctions are taking the decision of masking out a filtering farm (step 4). The proposed
event fragment allocation algorithm will be described in section 5.4. There are two more
components (shown in Figure 5-1) that were not discussed yet, namely Filter Units (FUs) and
Storage Managers (SMs). Although, they are not directly involved in load scheduling activities,
they are important components of the CMS DAQ system, and likewise have a crucial impact on
data taking rate (in the production system, usually the FUs are the limiting factor). Their
performance is reflected in the workload and capacity measurements done by BUs because of

the employed queuing mechanism, which will be explained in more details in section 5.3.

It is important to notice at this point that the goal of the proposed workload scheduling
algorithm is not only increasing the capacity of the system by more efficient utilization of
available resources, but also increasing the fault tolerance of the system and minimizing the
number of lost events in case of some software or hardware error occurrence (event loss is

tolerated to a certain extent, but it should be minimized).

5.2 Load index

Before the load-scheduling activities can be performed and the load distributed
between available resources, first the workload on particular system parts, like computing
nodes, network connections, or entire computing farms has to be determined. In order to

measure the load a unified metric for the whole system has to be established. A load index is an

76

important and essential part of every load scheduling algorithm and has to be carefully chosen

as it has a significant impact on the algorithm’s overall efficiency.

FRLs deliver data with 100 kHz frequency, which means that approximately every 10 us there
are about 500 new event fragments that need to be assigned to a DAQ Slice. Sending a single
message between computing nodes in the discussed system, depending on the network type
takes about 10 to 100 [is. The latest networking technologies are an order of magnitude faster,
however adopting them for the CMS DAQ system is only in an experimental stage [73]. As
aresult, currently it is not possible to calculate the workload and exchange the load-data
separately for every event [11]. This operation has to be rather made for bigger groups of
events in advance. However, it has to be guaranteed that a DAQ Slice can accommodate the
assigned group of events. Otherwise, congestion in one DAQ Slice may result with idleness of
other DAQ Slices. For this reason, it is desirable that the load index carries the information
about the occupancy of the readout buffers in the readout nodes. Furthermore, the available
processing power of each DAQ Slice, as well as the workload on the DAQ Slices has to be
estimated in order to assign them with an appropriate fraction of the incoming workload. On
the other hand, accurate monitoring of all computing nodes in terms of workload, processing
power and buffers availability is very resource consuming and thus in case of the discussed
system not acceptable. Therefore, a more general way of determining the properties of interest
is needed. Since the parallelism inside of a DAQ Slice is achieved by SPMD [7] technique, the
workload on a DAQ Slice is directly proportional to the size of data that it has to process.
Therefore, the best solution in the discussed case is to measure the workload on a DAQ Slice by
the size of the data it owns (as proposed by Fonlupt et al. [21]). The capacity of a DAQ Slice, in
turn, can be estimated as the number of events built in a given period of time. Taking into
account the structure of the employed FIFO queues and the event building protocol, described
previously in chapter 3, it can be noticed that the estimated capacity also reflects the efficiency
of event filtration and the transmission rate to persistent storage. The workload and capacity
measurements can be easily combined by assigning an initial number of events n to each DAQ
Slice, and then, after a given period of time, by checking the numbers of events nOthat still have

to be built in each DAQ Slice (an EVM, as it supervises its DAQ Slice, keeps track of how many

7

events were built, which carries the information about the number of events under
construction as long as the original number of events allocated to the DAQ Slice is known). This
way, both the workload (nOevents) and the capacity (n - taevents per measurement time) have
been estimated. Determining the occupancy of all readout buffers at once is currently not
possible because the addressed system is a distributed real-time system. Nonetheless, the
proposed measurement gives us the information about worst case readout buffer occupancy.
Since the received super fragments that were not yet assembled into whole events are stored
in the buffers of Readout Units, the highest possible occupancy is na super fragments. The
occupancy might be lower because not necessarily all super fragments that were assigned to
a DAQ Slice have been already sent. The information about the available space in the readout
buffers is inaccurate because the event size is variable. Nevertheless it is sufficient because the
average event size, as well as the event size distribution is known. When it comes to the initial
number of events n it cannot be greater than the readout buffer size divided by the average
super-fragment size. This way, it is guaranteed that all events assigned to a DAQ Slice will be
accommodated regardless of its capacity, which is crucial in order to avoid idleness periods. For
example let us consider a DAQ System consisting of two DAQ Slices (Slice 0 and Slice 1). Let us
assume, for simplicity, that there are no queues on the data sources' side, and that each data
source provides 1 event per time t {1 evt/ 1). Moreover, suppose that an event is transmitted
exactly after time t from the previous event transmission, and that the transmission time from
the data source to the Readout Unit is negligible. If an event is considered as constructed, all
respective super fragments are removed from readout buffers. If a Slice's readout buffers are
empty the DAQ Slice is considered as idle since there are no events to build. The data sources
are distributing the event fragments in round robin fashion for the initial group of events, and
will start to send the next group only after receiving the information about the workload
measurements. An event may only be send if there is space for it in the receiver's readout
buffers. Slice 0 is building 1 event in time 3 t (1 evt/3 t) while Slice 1 in time 2 t (1 evt/ 2 t),
both DAQ Slices have readout buffers for 3 events. Initially each DAQ Slice is assigned with n =
12 events (24 events in total), and the workload measurement will be performed after time 211

(from receiving the first event). As shown in Figure 5-2, Slice 1 is building and receiving events

78

at the same rate and for this reason there is never more than one event in its readout buffers.
On the other' hand, after time 10 t (from receiving the first event), the readout buffers from
Slice 0 are completely filled in, and as a result receiving of the next event fragment is delayed
by t This, in turn, delays sending the next event fragment to Slice 1, and results in idleness
periods. Of course if the initial event group would be smaller, the workload measurement
would be carried out earlier and communicated fast enough to the data sources, the system
could start sending less events to Slice 0 than to Slice 1 and avoid idleness in Slice 1.
Nevertheless, this example helps to understand that a Slice has to be able to accommodate all
the incoming events in the readout buffers. This property is especially crucial when a fault leads
to loss of entire capacity of a DAQ Slice. In practise, in order to minimize the probability that the
assigned group of n events will not fit into the readout buffers, the buffer space needs to be n x

(average superfragment size) plus some additional reserve due to the variable even size.

Buffer occupancy
(event)

Idleness periods
Figure 5-2 Time diagram for a not sufficient readout buffer case

Now let us assume that the load-data communication time is 18 t. As shown in the Figure 5-3

(continuation from Slice 0 time diagram shown in Figure 5-2), after the workload

79

measurements were triggered 3 more events were received. Also, there are 2 additional events
in the readout buffers. In total the time needed for processing these 5 events is 15 t. This, in
turn, results in 3 ttime idleness until the load-data reach data sources and new events are sent.
This leads us to the conclusion that the approximate processing time needed for the remaining
events (the events that were assigned to a Slice but were not yet build) has to be higher than
the time needed for transferring the load-data to the data sources. Therefore, the workload has
to be measured when the number of events assigned to a DAQ Slice for building reaches a
minimum (an event driven approach) that allows for sending the obtained load-data to the data
sources without an idleness period. When a DAQ Slice reaches this minimal number of events it
is considered as underloaded. An advantage, of the event driven strategy is that the frequency
of the workload measurements depends on event building efficiency of DAQ Slices, and as a

result it depends automatically on the data acquisition rate.

Buffer occupancy
(event)

Figure 5-3 Time diagram for too few remaining events in respect to the load-data communication time case

The load assignment algorithm (located in each data source) makes the allocation decision only
if the load-data corresponding to measurements in all DAQ Slices are available. Otherwise, if
the allocation decision in each data source would be made based on the actually available load-
data, the load assignment algorithm would be non-deterministic (possible race conditions).
This, in turn, would lead to mixing the event fragments corresponding to one event between
several DAQ Slices, which is unacceptable. Since, on the one hand, the measurements are

triggered autonomously in each DAQ Slice, but on the other hand the data sources need the

80

load-data from all DAQ Slices to allocate them with new blocks of events, an idleness period is
still possible. Let us consider a DAQ system exactly the same as the one described in the
previous examples, except that now both Slices initially are assigned with 8 events (16 events in
total) and have enough buffers to accommodate them. Let us also assume that a DAQ Slice is
considered as underloaded if less than 4 events are allocated to it for constructing, and that
measuring the workload and sending the load-data to data sources takes 8 t. As shown in
Figure 5-4, Slice 1 reaches the underloaded state after time 8 t (from receiving the first event).
The load-data, in turn, reach the data-sources after another 8 t. At that point the Slice 1
processed all events that where assigned to it. However, since the load-data from Slice 0 did
not reach the data sources yet (they were sent later because it is building the events slower),

new block of events cannot be allocated to the Slice 1. As a result, there is an idleness period in

Buffer occupancy

(event)
Slice 0
Received \
1 3 11 13 15 17 19 21 23 event number’
It 4t Tt 0t 13t 16t 19t 22t 25t 28t Time (t)
t
Slice 1 Load measurement Load-data reach
in Slice 0 data sources Received \
mvent number!
2 4 10 12 14....16 18 20 22 240
—i - F F .
2t 4t 6t 8t IOt 12t 14t 16t Time (t)
Load measurement Load-data reach

in Slice 1 data sources

Idleness period
Figure 5-4 Time diagram for an unsynchronized load measurement case

Slice 1. In order to solve this problem, the workload measurement and load-data transfer has to

be triggered at once in all participating DAQ Slices. Therefore, the DAQ Slice that becomes

81

underloaded has to notify other DAQ Slices. This way, the workload estimation and load-data
update will be carried out in parallel in all DAQ Slices. Subsequently, the data sources will
allocate new blocks of events to all DAQ Slices, which will be distributed after the currently
used blocks are all sent. Now, let us consider how to determine the initial number of events
that will be assigned to each DAQ Slice. Suppose that the underloaded state is reached after
building / events. It is desirable to keep / as small as possible to achieve more accurate load
scheduling. On the other hand, the time needed for processing n - /events has to be higher
than or equal to the transmission time of load-data from EVM to FRLs (as shown above, this is a
necessary condition that has to be fulfilled in order to avoid lowering the data taking rate). The
second set of load-data may be sent to the data sources only after the first one has been
received, so n - 1lis actually the smallest possible number of events after the construction of
which the underloaded state can be reached for the second time. Since, the underloaded
threshold has to be constant, it can be concluded that | =n - 1 As a result, n = 2 |, and so the
underloaded state is reached when n/2 events are constructed. The time needed for processing

the initial number of events n has to be twice as big as the load-data transmission time.

In order to determine the optimal initial number of events n, a series of experiments has been
conducted during the LHC Winter Technical Stop on the CMS DAQ production system (8 DAQ
Slice setup with 1 EVM, 63 RUs and 82 Bus per each slice) using a prototype workload
scheduling algorithm. As shown in Figure 5-5, the data acquisition rate has been measured for
different values of the n parameter. The experiment has been repeated, in turn, for different
event-fragment sizes. The system was running with the 'Drop at BU’ option, which means that
the only limitation of the data-taking rate came from the network. It can be easily noticed that
if the underloaded threshold is to low (the load-data update is triggered to late), the workload
scheduling algorithm slows down the system due to an idleness period. The idleness starts
when all events that have been allocated to DAQ Slices in the given scheduling round have been
sent, and continues until new load-data from all DAQ Slices are received. For 2 KB event-
fragments (the expected event fragment size for the CMS experiment) the data-taking rate

stops being limited by the scheduling algorithm (becomes constant) for7/” greater than 1200

events. The curve corresponding to the 3 KB event-fragment reaches its maximum at the latest

82

(n/2 value equals to 2000 events). Hence, the underloaded threshold, including a reserve due

to the variable fragment size, should take a value in the range from 1500 to 2000 events.

Underloaded threshold, n/2 (events)

Figure 5-5 The Data acquisition rate depending on the underloaded threshold for various event-fragment sizes

So far, it has been defined how to conduct the workload measurement but the number of
events that each DAQ Slice should request by sending the load-data still has be considered. It
has been determined that when the load-data update is triggered each DAQ Slice has
constructed mj events, where /is the index of a given DAQ Slice. It is also known that the Slicej is
still assigned with n - mj events, where n is the number of initially assigned events. Moreover,
n- mj is the maximal possible occupancy of the readout buffers and so m- is the number of
available buffers, in the respective DAQ Slice. The maximal workload that can be requested in

total (for k DAQ Slices) is:

mO+ mL+ m2H--—- T rak

83

Since, the number of requested events cannot adversely affect the frequency of workload
measurements (it depends only on the load-data transmission time) it is desirable to ask for as
many events as possible. In order the request the maximum, each filtering farm has to request
mj events, where m;j corresponds to the number available buffers in this farm. For example, if at
the point when the load-data update was triggered, the SliceO built 1500 events and the Slicei
1000 events, the slices should request respectively 1500 and 1000 new events. This strategy
intuitively seems to be right since the faster Slice requests more events, and the slower less.
Now it has to be proven that the proposed event distribution is proportional to the measured
capacity of the DAQ Slices. Let us assume that the workload measurement was triggered after
time t, this way DAQ. Slices were building events respectively at:

mo % m2 rnjc

t' ot ot t
Therefore, they should request respectively the following fraction of the workload:

mO mt mk
mO+m 1+ —mic mOo+ml+—mk ™ mO+m 1+---+mic

Hence:
SliceO: T I ek X (m(u) +mx+ —+mj = mo
SIICEI’TI’Q"“L’\-\-",WTH]'{ X (m0+ mx+ - + mk) = ml
Slicek: :I.ij'('j_:l:r“—_l_;,'_;ﬁﬂ'c X (m0+ ml+ —+ mk) = mk

This proves that the requests for new events are proportional to the estimated event building
efficiency of DAQ Slices. Moreover, after triggering the load-data update each DAQ Slice is again
assigned with the initial number of events n (n - m;j + mj). This is an important property of the
proposed load index because it makes the discussed procedure repeatable, by which we mean

that the upcoming workload measurements can be done exactly in the same way as the first

84

one. Whenever a DAQ Slices reaches the underloaded state the workload calculation and the

load-data update are triggered.
5.3 Load scheduling protocol

The load scheduling protocol is responsible for transferring the load-data from DAQ.
Slices to the data sources and gathering the workload indexes. Key features of such a protocol,
in case of the discussed DAQ system, are efficiency and scalability. It is also crucial that the
protocol is as lightweight as possible so it does not decrease the available processing power and
bandwidth. In case of an asynchronous, distributed algorithm, the load scheduling protocol is
also responsible for ensuring coherency of the allocation process that is made in numerous data

sources concurrently.
5.3.1 Collecting workload indices from Builder Units

As it has been said in previous section, each DAQ Slices is assigned with an initial group
of events for building. When the number of these events drops to a certain level the DAQ Slice
is considered as underloaded. Therefore, the number of constructed events has to be
monitored. Since an EVM is a central point of each DAQ Slice that supervises its activities, it

seems to be a natural choice for collecting the workload indices from BUs.

In the standard system the only message that a BU is sending to the EVM is Allocate new and/or
clear previous. This message is sent each time the BU receives a discard message, which, in
turn, is sent by a Filter Unit after running the HLT selection algorithms. As a result, monitoring
of this message would give us the information about the number of built and filtered events in
a given period of time, and the information about the number of not yet filtered events. Since
the filtration time is match longer than the event construction time, the estimation about the
(worst case) readout buffer occupancy would be very inaccurate (large fraction of the unfiltered
events would be actually stored in BUFU's buffers rather than in RUs' buffers). Therefore, as
shown in Figure 5-6, the Builder Unit has to be modified so it sends an additional Event

constructed notification message (step 6) each time a new event had been assembled.

85

Send Request RU Super Fragment

BU

blockFIFO

Confirm Resource

vSteaa) Table

EVM

Event constructed
notification

Allocate new and/or 1
clear previous
fullResourceFIFO

discardFIFO
requestFIFOs

Allocate FU
L0

Take

Discard FU

Figure 5-6 Builder Unit internal FIFOs, Event constructed notification message added, due to the load scheduling
algorithm

5.3.2 Two-step load-data transfer

After reaching the underloaded state, the EVM needs to send the load-data to the FRLs.
An EVM is directly connected to all FRLs through the non-blocking Myrinet [6] network.
Unfortunately, the Myrinet network does not support multicasting, and implementing it using
a multicast tree would interfere with the non-blocking properties of the network, and as
a result would decrease the available throughput. On the other hand, the Terascale ForcelO
switch, which lies at the heart of each DAO Slice, supports multicast data delivery. Moreover,
the multicast facility is implemented in a very efficient way and scales very well. Therefore, the
ForcelO switch can be used for transferring the load-data to the readout nodes (shown in
Figure 5-7, step 1). Since the readout nodes are receiving the event fragments from FRLs, each

RU can transmit further the load-data to a subset of FRLs using the same non-blocking routs

86

that are used for event fragment transfer (shown in Figure 5-7, step 2). In practise this means
that RUs will be sending the load-data fully in parallel to different FRLs without interfering with
each other. This way the sequential communication has been significantly reduced, which is
important to achieve good scalability and efficiency. What is even more important, the load-
data transfer will not interfere with the adopted non-blocking topology, and will not reduce the

available bandwidth.
5.3.3 Requirements for triggering load-data transfer

As discussed in previous section, there are two events that may trigger a load-data
transfer: a DAQ Slice reaches the underloaded state itself, or receives a notification that
another DAQ Slice reached underloaded state. Therefore, before focusing on the load-data

transfer protocol, first the communication mechanism that triggers the load-data update has to

DAQ Slice 0 DAQ Slice 1

FRLo FRIt FRL2 FRLj FRL, FRLs

Figure 5-7 Load scheduling protocol - load-data redundancy. Step 0: EVMs exchange load-data. Step 1. EVMs
multicast the redundant load-data to RUs (RUu is faulty). Step 2: RUs transfer the load-data to FRLs via non-
blocking network (FRLgand FRL, receive the load-data from DAQ Slice 1 via RUQO)

87

be discussed (shown in Figure 5-7, step 0). For the purpose of this intercommunication a DAQ
Slice is represented by its EVM, as it is its central point. The notification protocol has to be
designed having in mind the essential system attributes, as well as that the subsequent load-

data transfer will be carried out in two stages.

Firstly, in the standard production system all DAQ Slices have equal capacity (assuming that
there were no fault occurrences), and are assigned with equal number of events for processing.
Therefore, statistically the workload on each computing farm should be the same, and as
a result, it is very likely that all DAQ Slices will be reaching the underloaded state in the same
time. Secondly, since the load-data update is realized in two steps, it is sensitive to failures in
readout nodes (they are responsible for passing the load-data further to FRLs). Therefore, there
has to be a redundancy in the load-data, which means that in practise an EVM has to transfer
load-data not only from its own DAQ Slice, but also from another DAQ Slice. This way, in case of
a RU failure in one computing farm the respective node in another farm will pass the load-data
to the appropriate subset of FRLs (as illustrated in Figure 5-7). For this reason, the notification
protocol has to be additionally responsible for load-data exchange between EVMs. And thirdly,
the notification protocol has to able to detect failure of an EVM, as the algorithm is also
sensitive to this kind of faults. In this case, another EVM should transfer fully-loaded message to

the FRLs, on behalf of the broken DAQ Slice (this way, it will be not assigned with new events).

Having in mind the discussed particularities, one-directional ring topology has been
studied [11]. In the considered case each DAQ Slice, represented by its EVM, has only one
successor: EVMi is the successor of EVMOQ, EVM2 of EVMi, and so on until the last EVM whose
successor is EVMO. When a DAQ Slice becomes underloaded it notifies its successor by
transferring its load-data. Each load-data update is identified by a unique sequence number.
When an EVM receives the notification from its predecessor it checks whether the load-data
update was already served using the sequence number. If no, the newly notified EVM notifies
its successor, and so on, until the ring is closed. Each DAQ Slice may inform its successor about
a given load-data update only once. If a DAQ Slice already triggered load-data update, because
it became underloaded itself, and then was notified by its predecessor it will not pass this

notification further. Transferring of the load-data to FRLs via RUs can only begin after receiving

88

the notification from the predecessor, as only then the EVM has the complete information
about its and its predecessor workload. This way the necessary redundancy has been achieved
by transferring load-data concerning each DAQ Slice to FRLs twice: firstly by the DAQ Slice itself,
and secondly by its successor. As previously mentioned, this strategy has been designed
keeping in mind that in the production system the DAQ Slices have the same capacity.
Therefore, all DAQ Slices are expected to reach the underloaded state and send the notification
to their successors at the same time. It can be also noticed that this strategy is convenient for
detecting DAQ Slices that for some reason became slower, or excluding a broken processing

farm from a data-taking run, at a very low network-traffic cost.

Let us consider an exemplary DAQ System of 3 DAQ Slices (Slice 0, Slice land Slice 2), and let us
assume that the notification message is sent exactly after reaching underloaded state and is
delivered in time tn. The load-data transfer to FRLs starts immediately after the notification has

been received. The remaining assumptions from the previous examples remain unchanged. As

Slice 0
Slice 0 reaches Notification from EVM2
underloaded state reaches EVMO
N _nme (1)
Slice 1 Xt xtttn
Slice 1 reaches Notification from EVMO
underloaded state reaches EVMj
n Time (t)
Slice 2 xt+tn
Slice 2 reaches Notification from EVMi
underloaded state reaches EVM2
tn Tjme (1)
xt xt +tn

Figure 5-8 Time diagram for triggering load-data update (expected case scenario)

shown in Figure 5-8, in the expected case (all filtering farms are reaching the underloaded

threshold at the same time), the load-data transfer to FRLs is only delayed by tntime in all DAQ

89

Slice. At this point, it can be noticed that adding an additional DAQ Slice to the system does not
introduce additional delay (good scalability). On the other hand, in the worst case, the load-
data transfer to the data sources is delayed by t,, * k, where k is the number of DAQ Slices (as
shown in Figure 5-9). In this case, the time & after which the load-data are sent to FRLs grows
linearly with the number of DAQ Slices (t; = thx k). Such behaviour is expected in a DAQ System
where the processing farms have different or varying computing power. It is especially likely if
there is one filtering farm that outperforms significantly the others. In this case, the more
capacious slice will be the only one that reaches the underloaded state. The other slices will be

only passing the underloaded notification further through the adopted ring network.

Slice 0
Slice 0 reaches Notification from jEVM2
underloaded state reaches EVMO
3tn
' tn /
Slice 1 xt Xt + t., xt + 2tn xt +.3tn
Notification from EVMO
reaches EVMXx
tn Time (t)
Slice 2 X Xt + tn xt + 2t, xt + 3tn
Notification from EVMi
reaches EVM2
0 Time (t)
xt xt+tn Xt + 2tn xt + 3tn

Figure 5-9 Time diagram fortriggering load-data update (worst case scenario)

90

5.3.4 EVM's workload communication algorithm

In order to introduce the proposed method the Event Manager entity has been modified
in respect to the standard system as shown in Figure 5-10. Firstly, the ability to process the
event constructed notification send from BUs has been added (step 4). The notification is
passed to Event Counter, which keeps track of the number of built events. Moreover, also the
notifications from the EVM's predecessor have to be handled (step 5'). The underloaded
notification consists of a load-data, request number and the slice mask triplet. The EVM
updates its own slice mask accordingly to the one received in the triplet. The request number,
similarly as the event constructed notification is passed to the Event Counter (step 6'). Based on
those two values the Event Counter decides when to send an underloaded notification to the
EVM's successor (step 7'). After receiving the load-data from the predecessor EVM, a load-data
quadruplet is multicast to all FBOs. The load-data quadruplet contains information about the
number of built events in the given workload scheduling round (worst case buffer occupancy) in
the given DAQ Slice and in its predecessor Slice, along with a unique request number and the
slice mask. After sending the load-data quadruplet a new workload scheduling round starts: the
DAQ Slice counts as being assigned with the initial number of events n and the Event Counter
resets the built event counter. The multicasting itself is based on UDP protocol; only a simple
software acknowledgement has been added. If the multicasting algorithm timeouts before
receiving acknowledgements from all FBOs the quadruplet is being multicast again. If a given
FBO continuously fails to send the acknowledgement and the DAQ Slice did not build any
events in the given workload scheduling round, the host RU is being considered as faulty and
the EVM masks its own Slice in the DAQ Slice Mask, which will be propagated over the system

during the next workload scheduling rounds, and will result in excluding the broken DAQ Slice.

91

EVM s EVM p

Figure 5-10 Event Manager internal FIFOs (Event Counter entity has been added, along with corresponding
notification messages, due to the load scheduling algorithm)

The value of the timeout as well as the number of retries must be determined experimentally.
Therefore, the distribution of round trip time has been studied (shown in figure 5-11). In this

context by round trip time we mean the time from the point of multicasting the load-data until

92

the moment when the last ACK has being received. For the purpose of this experiment the
timeout has been switched off. At this point it is important to note that although only UDP
protocol has been used, no package loss has been observed. Accordingly to the obtained results

an optimal timeout should be in the range from 12 msto 15 ms.

mSlice 1
mSlice 2
«Slice 3
-Slice 4
-Slice 5
-Slice 6
«Slice 7

PEORINT Uf)f[‘n&‘bo”é"ét’r? g iPr's n\”’llr[‘ru%afwﬁ"f hQG b r BN rr5‘ 9N

rHrSrt<HtHiHIi-I THtHrN<N(NCN

Round trip time (100x, jis)

Figure 5-11 Exemplary multicast efficiency measured. The experiment has been carried out during 30 minutes of
a data taking run with a DAQ System consisting 7 slices, which corresponds to about 10000 load-data updates.

The fault tolerance mechanism embedded in the EVM entity has been illustrated using a finite
state machine and shown in figure 5-12. It is important to notice how the exclusion of a DAQ
Slice happens in case a RU failure. First, the EVM supervising the erroneous RU masks out its
own DAQ Slice in its own slice mask. Subsequently, the slice mask is sent as a part of the
underloaded notification to the successor EVM during the next round. If the successor EVM did
not send the underloaded notification to its successor yet, the slice mask will reach its
successor in the same round. However, if the notification has been sent already the slice mask
will be propagate further in the subsequent round, and so on. After receiving the slice mask the
successor EVM will close the connection to the broken slice. It will however leave the respective
port open. Until the slice mask reaches the predecessor of the broken slice, it will keep sending

the underloaded notifications to the broken slice, which in turn will pass the notification further

93

(the connection will be reopened and then accordingly to the above described procedure
closed again). When the mask will reach the predecessor EVM, it will close the connection to its
broken successor, which will be effectively excluded from data-taking. Then a new successor
will be resolved (the successor of the faulty slice) and an introduction message containing the

predecessor slice number will be send, which will end the recovery procedure.

Figure 5-12 EVM's Finale State Machine, the transition explanation is given below:
EVM received an ‘underloaded’ notification from its predecessor.
EVM became underloaded itself.
Automatically.
Automatically.
EVM received an 'underloaded' notification from its predecessor.
If requirements '7' and '9" are not met.
EVM's predecessor was masked out.
A new predecessor introduced himself.
EVM-RU communication timed out
. Automatically.
. EVM received an 'underloaded' notification from its predecessor (the successor has been masked out).
. Automatically
After receiving the 'dose’ message from predecessor.

© O N R WN PR

e
= o

B
w N

94

The fault tolerance mechanism for an EVM failure is not yet fully implemented. Nevertheless, it
is planned that the predecessor and successor will first detect the erroneous state using
standard TCP features (Keep-Alive [75]), and subsequently they will close the connection. Then,
the successor will start listening for a new predecessor. The predecessor, in turn, will introduce
itself to the successor of its current, broken successor by sending a short message with its slice

number. This way the broken DAQ Slice will be excluded from data taking.

The Readout Unit entity required no modifications, as the RU's communication protocol has not
been changed. The load-data are multicasted directly to the FED-Builder Outputs which proved

to be a more efficient solution.
535 Load-data transfer over the non-blocking network

The FED-Builder Outputs are responsible for passing the obtained load-data to the RISC
processors on Myrinet NICs. The embedded RISC processors, in turn, are transmitting the data
further to the destination Myrinet NICs on the FRL side, where the workload scheduling
decision is taken. As previously mentioned, the load-data are sent using the same routs that are
used to transfer event fragments up to the RU-Builder. The load-data will have to share the
bandwidth with the acknowledgement packets that are sent to the event-fragment sources.
Therefore, it has been decided to combine the load-data and the acknowledgements. The main
advantage of this approach is that there is no need for additional acknowledgements in order
to ensure reliable load-data transfer. Since the workload-data are sent together with the
standard acknowledgement used by the event-fragment transmission protocol, in case of an
acknowledgement loss, the event-fragment source will stop sending event-fragments as soon
as it runs out of packet credits (previously described in section 3.1.1), and will resume the even-
fragment transmission only if it receives a retransmitted acknowledgement (together with the
load-data). This strategy implies of course that there is a small delay between receiving the
load-data from the FBO and transferring them to FRLs. Although, the frequency of load-data-
updates is much lower than the frequency with which the acknowledgements are sent, it has to
be ensured that the FBO overwrites the load-data structure in the Myrinet RISC memory, only

after the previous load-data have been transferred to all FRLs corresponding to the given RU.

95

Otherwise, in case when one load-data-update is triggered immediately after another (which
could happen because of some temporary network issues in one DAQ Slice) the load-data could
be overwritten by their successors before they were actually transferred to the FRLs. As
aresult, a FRL could obtain event counters from different load-data updates, which would lead

to stopping the whole data acquisition process.

Figure 5-13 FBO's Finale State Machine, the transition explanation is given below:
FBO received new load-data.
Some ACK were sent but not all FRLs of interest were served.
ACK were sent to all FRLs of interest.
Keep-alive timeout has been reached and keep-alive variable has been modified.
Keep-alive timeout has been reached and keep alive variable has been modified.
Automatically.

ok wbdE

A second function of the protocol, besides transporting load-data, is to ensure that the data
source will be able to detect failure of one of the corresponding Readout nodes.In order to
meet this requirement a heartbeat mechanism has to be applied. Since the acknowledgements
are sent very often in respect to the frequency of load-data updates, they are strong candidates
for also being used as the keepalive messages. However, if the efficiency of one DAQ Slice drops
drastically, the ratio of the number of acknowledgements sent in this particular DAQ Slice to
the number of load-data updates (which are triggered by fully operational DAQ Slices)