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1. Introduction 

Nowadays, we observe still very rapid development in the field of telemetry, bi-

omedical analysis, text mining, data mining in general and many others. As a result 

of these studies we usually get very large and complex data sets. Classical approach-

es such as clustering, can extract only part of the relevant information. For example 

for gene expression data, which contain information about the expression of genes 

under different conditions, using simple clustering approach we are able to find 

groups of genes that reveals similar expression under all conditions. Figure 1 shows 

comparison between clustering (A) and bi-clustering (B). Even those techniques find 

the same cluster of genes, clustering technique lose information about conditions 

under which this group is co-expressed. 

 

Figure 1. Comparison between classical clustering approach versus bi-clustering. 

Bi-clustering is a technique that in two-dimensional data finds a subset of attrib-

utes from one dimension that reveals similar behavior only on subset of attributes 

from second dimension.  
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Figure 2. Simple visualization of bi-clustering. 

In a very simple words bi-clustering is about finding sub-matrices in data matrix 

or finding a bi-cliques in bipartite graphs (as it is shown on Figure 2). 

Bi-clustering is a data mining technique which allows simultaneous clustering of 

the rows and columns of a matrix. This technique belongs to the class of NP-hard 

problems, and was first presented by Morgan and Sonquist in 1963 [1], than by Har-

tigan [2](1972), and by Mirkin in 1996 [3]. In the context of bioinformatics prob-

lems, the first to use this technique was Cheng and Church [4]. They proposed bi-

clustering of result from microarray experiments, by introducing the mean square 

residue in bi-cluster. Representative of modern algorithms can be QUBIC, introduced 

by the Guojun Li, et al [5]. They proposed very efficient algorithm for bi-clustering of 

matrix with discretized expression data. Authors use graph representation of data, 

and like Cheng and Church, also find bi-clusters with low mean square residue. Over 

the years, since the publication of Morgan to this day, has raised a number of differ-

ent approaches to bi-clustering. The methods differ from each other both in the ap-

proach to modeling the input data (bipartite graph [5], discrete matrix [6] trees [7]), 

and also the way of obtaining the final results (exhaustive search [5], the decomposi-

tion of the matrix [8], the search graph [2]). 

  



13 
 

2. Aims 

As it is shown in more detail in chapter 3 we can distinguish multiple classifica-

tion of bi-clusters regarding to its structure or position in data matrix. Each case 

may need a different approach. The task of selecting the appropriate method re-

quires a very good understanding of the data to be analyzed. A very difficult task, as 

complex as the task of choosing the appropriate number of bi-clusters (the number 

of which is often the input parameter for many bi-clustering algorithms). The algo-

rithm of processing data in bi-clustering may look as presented on Figure 3. 

 

Figure 3. Bi-clustering analysis sample workflow. 

 

We are never able to say with absolute certainty that we have data containing bi-

clusters of a certain structure. Therefore, the process of obtaining bi-clusters is al-

ways an iterative process. Each iteration includes activities related to the selection 

of parameters, and very often an attempt to determine the number of bi-clusters. 

Each of these steps is usually performed manually by the scientist. He will be re-

sponsible for excellent knowledge of the analyzed data. 
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The aims of the thesis were: 

- To implement all major literature algorithms for data bi-clustering. 

- To apply implemented algorithms to both artificially created and real da-

tasets.  

- To develop methodologies for comparisons of different bi-clustering algo-

rithms and to draw conclusions stemming from using these methodologies 

for artificial and real datasets. 

-  To introduce improvements in bi-clustering ideas. The main improvement 

proposed in the thesis was an algorithm with can be applied to any type of 

data with any bi-cluster structure. The proposed algorithm is a meta-

algorithm, which uses the ensemble methodology ideas. Later in the thesis, it 

is proven that ensemble approaches relying on the combination of results of 

different algorithms (specialized for various applications) will make quality 

of outcome resistant to bi-cluster structure.  

The strategy of the performed research was oriented towards simplifying the 

analysis of bi-clustering to a pipeline as simple as possible: providing data on the 

input and getting the results on the output (Figure 4). The role of the user in this sys-

tem is limited to the loading on the input data. However, it may also adjust the pa-

rameters used in the analysis. 

Obtaining 
data

Research 
completed

Automatic analysis

 

Figure 4. Simplified bi-clustering analysis workflow. 

The key idea of proposed method is to computed large number of bi-clustering 

algorithms, each of which is specialized in different kinds of bi-clusters. Algorithms 

used in my analysis are described in Chapter 6. Then, the results of these methods 

are combined into one. For this purpose have been proposed similarity measure 

(Chapter 7.1) of single bi-clusters and modification of the Hungarian algorithm for 

pairing them (Chapter 7.3). 
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When paired, as the results we obtain set of sets of bi-clusters. Within a single set 

of bi-clusters, last step of algorithm is to connect bi-clusters composing it to a single 

one (Chapter 7.4). 

3. Theses 

On the basis of the research performed the following these are claimed: 

1. The elaborated methodology for comparisons of results of bi-clustering, 

based on generalized Munkres algorithm, is an efficient and flexible tool well 

suited for analyzes of real datasets. 

2. The elaborated meta – bi-clustering algorithm improves performance of bi-

clustering. 
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4. Main contribution and original elements of the thesis 

This work is development of the work carried out during last five years. First 

large scale analysis were performed in 2009 on data from tumor tissue bank of a 

patients receiving radiotherapy. Result of work was the system described and pub-

lished as a chapter in a monograph [9]. The project aimed at visualization of data, 

and carry out simple online statistical analyzes. The experience gained while work-

ing on this project allowed for analyze the more complex aspects of machine learn-

ing. Next research projects were related to clustering and classification issues in mi-

croarray data. It was system based on WEKA [10], which was designed to choose 

appropriate clustering or classification method for provided data. Second project 

was system for microarray re-annotation [11]. Microarray data consist of gene ex-

pressions values taken under different conditions. During the work on gene cluster-

ing it has become very clear that the key to success will be appropriate extraction 

attributes (conditions). Clusters of genes with good quality were obtained only after 

elimination of irrelevant one. It clearly pointed that those clusters reveals some sim-

ilarity and are recognizable as a group only on subset of conditions. This raised the 

issue of bi-clustering. 

First attempt for bi-clustering analysis was done in publication describing pro-

ject of dynamic clustering of document database [12]. System assumes that docu-

ment provided on the input were translated into word-occurrence matrices. Next on 

this basis system performs bi-clustering analysis and extract aspects which appears 

in document. Such information where further used for search proposes. Whole sys-

tem was based on non-negative matrix factorization algorithms described in chapter 

6.1. Last to projects were presented on conferences and was about comparisons of 

bi-clustering algorithms [13] and about distributed system for running bi-clustering 

experiments [14]. Those projects will be described later in this work. 
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5. Formulation of main problems 

5.1. Definition of bi-clusters 

 

Figure 5. Bi-cluster types: 1) Constant, 2) Constant on columns, 3) Constant on rows, 4) Coherent values 
(additive model), 5) and 6) Coherent values (multiplicative model) 7) Coherent evolutions 

Notation was taken from the paper by Madeira & Oliveira [15], where bi-cluster 

is defined by a subset of rows and subset of columns from data matrix. Given the da-

ta matrix 𝑉 with set of rows (𝑋), and set of columns (Y), a bi-cluster (B) is defined by 

a sub-matrix (𝐼, 𝐽), where 𝐼 is a subset of 𝑋, and 𝐽 is a subset of 𝑌.  

𝑉 =  (𝑋, 𝑌),  

𝑉 = [

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑁
⋯ 𝑎2𝑁

⋮ ⋮
𝑎𝑀1 𝑎𝑀2

⋮ ⋮
⋯ 𝑎𝑀𝑁

] , 𝑋𝑖 = [𝑎𝑖1 𝑎𝑖2 ⋯ 𝑎𝑖𝑁], 𝑌𝑖 = [

𝑎1𝑗
𝑎2𝑗
⋮
𝑎𝑀𝑗

] 

 𝐵 = (𝐼, 𝐽), 𝐼 ∈ 𝑋, 𝐽 ∈ 𝑌 

Single bi-clustering experiment (R) outputs K bi-clusters, where K is a num-

ber which, depending on the algorithm used, can be a parameter given by the user, 

or the number formed as a result of executing the selected method. 

𝑅 = {𝐵𝑖 = (𝐼𝑖 , 𝐽𝑖)} 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1…𝐾 𝑎𝑛𝑑 ∀𝑖: 𝐼𝑖 ∈ 𝑋, 𝐽𝑖 ∈ 𝑌 

Determining the exact number of clusters in data is a difficult task to perform. 

Usually user tries a range of values, so that some index function determining the 
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quality bi-clusters is maximized. Examples of quality indexes are described in the 

Chapter 5.2. 

We distinguish few classes of bi-clusters (Figure 5): 

 Bi-clusters with constant values (1). Perfect bi-cluster in this class is the one 

whose values match the following formula: 

𝑎𝑖𝑗 = 𝜇 

Where: 

o 𝜇 – is typical value within bi-cluster 

This is the easiest bi-cluster to find because it can be read directly from data 

matrix. Algorithms specialized in such task usually group similar rows and col-

umns, splits original matrix into smaller matrices in which it check variance 

within the bi-cluster. Such approach is able to find cluster with the same value 

over whole bi-cluster but is not very resistant to noise in the data.  

First attempt to finding constant bi-cluster was “Block Clustering” by Harti-

gan [2]. He implemented the approach described in the previous paragraph – 

splitting data matrix into smaller matrices and then computing variance over its 

elements: 

𝑉𝐴𝑅(𝐼, 𝐽) = ∑ (𝑎𝑖𝑗 − 𝑎𝐼𝐽)
2

𝑖∈𝐼,𝑗∈𝐽

 

Where 𝑎𝐼𝐽 is an average value in bi-cluster. 

 To avoid situation in which algorithm splits data matrix over sub-matrices 

containing only one element, author add stop criteria for maximum number of bi-

cluster: 

𝑉𝐴𝑅(𝐼, 𝐽)𝐾 = ∑ ∑ (𝑎𝑖𝑗
𝑘 − 𝑎𝐼𝐽

𝑘 )
2

𝑖∈𝐼𝑘 ,𝑗∈𝐽𝑘

𝐾

𝑘=1

 

Where 𝑎𝐼𝐽 is an average value in bi-cluster. 

Tibshirani et al. [16] propose another variance based algorithm by modification 

of Hartigan [2]. His modification was introducing backward pruning method to split-

ting and permutation based method for finding optimal number of bi-clusters. 

Another worth mentioning algorithm for finding constant bi-clusters is Double 

Conjugated Clustering by Busygin et al. [17]. Its two way clustering method which 
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perform simple clustering and next computes similarities between rows and col-

umns, which leads to finding constant bi-clusters. 

 Bi-clusters with constant values on rows or columns (3 or 2), Perfect bi-

cluster in this class is the one whose values match the following formula: 

𝑎𝑖𝑗 = 𝜇 + 𝛼𝑖  or 𝑎𝑖𝑗 = 𝜇 + 𝛽𝑗  

Where: 

o 𝜇 – is typical value within bi-cluster, 

o 𝛼𝑖  – is adjustment for row i, 

o 𝛽𝑗  – is adjustment for column j. 

The task of detecting clusters with constant rows or columns is very similar to 

the detection of constant clusters. It can be very easily brought to it by normalizing 

the rows or the columns by row or column mean respectively.  

 Bi-clusters with coherent values (additive model) (4). In literature also 

known as “shift bi-clusters”. Perfect matrix with coherent values in additive 

model follow given expression: 

𝑎𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 , 

Where: 

o 𝜇 – is typical value within bi-cluster, 

o 𝛼𝑖  – is adjustment for row i, 

o 𝛽𝑗  – is adjustment for column j. 

 Bi-clusters with coherent values (multiplicative model) (5,6). In literature al-

so known as “scale bi-clusters”. Perfect matrix with coherent values in multi-

plicative model follow given expression: 

𝑎𝑖𝑗 = 𝜇 ∗ 𝛼𝑖 ∗ 𝛽𝑗 , 

Where: 

o 𝜇 – is typical value within bi-cluster, 

o 𝛼𝑖  – is adjustment for row i, 

o 𝛽𝑗  – is adjustment for column j. 

 Bi-clusters with coherent evolutions (7). In literature also known as shift-

scale bi-clusters. Definitely the most difficult type of clusters to explore. This 
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point is proven by Kemal Eren [18] in his comparative analysis of bi-

clustering algorithms. Bi-clusters with coherent evolutions have made the 

difficulty for almost each of the analyzed algorithms. Only CPB algorithm [19] 

perform quite well on such type of data. In Chapter 7 I’m trying to reproduce 

and extend their results. Formula describing data in bi-clusters with coherent 

evolutions follow given expression: 

𝑎𝑖𝑗 = 𝜇 ∗ 𝛼𝑖 ∗ 𝛽𝑗  + 𝜌𝑖 + 𝛾𝑗  (scale-shift model) 

𝑎𝑖𝑗 = (𝜇 + 𝜌𝑖 + 𝛾𝑗) ∗ 𝛼𝑖 ∗ 𝛽𝑗   (shift-scale model) 

Where: 

o 𝜇 – is typical value within bi-cluster, 

o 𝛼𝑖  – is scaling parameter for row i, 

o 𝛽𝑗  – is scaling parameter for column j, 

o 𝜌𝑖  – is shifting parameter for row i, 

o 𝛾𝑗  – is shifting parameter for column j. 

 

 Plaid model bi-clusters (Not included in Figure 5). In literature also known as 

General Additive model. Algorithms specialized in this type of bi-clusters can 

be useful in case of data presented in Figure 6 (plot number 5).Plaid model 

consist of background layer and series of coherent layers.  

𝑎𝑖𝑗 = (𝜇0 + 𝛼𝑖0 + 𝛽𝑗0) +∑(𝜇𝑘 + 𝛼𝑖𝑘 + 𝛽𝑗𝑘) ∗ 𝛿𝑖𝑘 ∗ 𝜔𝑗𝑘

𝐾

𝑘=1

 

Where: 

o 𝜇0 – is typical value for background layer, 

o 𝜇𝑘  – is typical value within bi-cluster k, 

o 𝛼0 – is shifting parameter for background, 

o 𝛽0 – is shifting parameter for background, 

o 𝛼𝑖𝑘  – is shifting parameter for row i in bi-cluster k, 

o 𝛽𝑗𝑘  – is shifting parameter for column j in bi-cluster k, 

o 𝛿𝑖𝑘 – is binary indicator of membership i row in bi-cluster k, 

o 𝜔𝑗𝑘  – is binary indicator of membership j column in bi-cluster k. 
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Each of the above formulas that describe the data structure of the bi-clusters, 

relates to ideal case where data do not contain any noise. Unfortunately, real life is 

not perfect and data without noise does not exist. It should be taken into account in 

formulas: 

𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 휀𝑖𝑗  

Where 휀𝑖𝑗  is random noise in cell from 𝑖 row and 𝑗 column. 

 

Figure 6. Bi-cluster structures. 

Bi-clusters can also be divided according to the structure. Figure 6 shows an 

example structures. 1) a single cluster, 2) Bi-clusters exclusive on columns and rows. 

These two types, as a matter of fact, do not require the use of bi-clustering methods. 

To find them, is sufficient to use classic clustering approach. This is where bi-

clustering is most useful is more complex structures such as: 3) overlapping col-

umns, 4) overlapping rows, 5) overlapping in both dimensions. 
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5.2. Index functions for evaluating quality of bi-clustering systems 

5.2.1. Mean square residue (MSR) 

 This score was proposed by Cheng and Church [4] in 2001. It can be applied 

to results where bi-cluster structure is known, and it is constant (on whole bi-cluster 

or only constant columns/rows). If we have subsets 𝐼 and 𝐽, than we can compute 

residue for each element 𝑎𝑖𝑗(single element of matrix indicated by the subsets 𝐼 and 

𝐽): 

𝑎𝑖𝑗 − 𝑎𝑖𝐽 − 𝑎𝐼𝑗 + 𝑎𝐼𝐽 

Where: 

 𝑎𝑖𝑗  – value of element in i’th row and j’th column of bicluster, 

 𝑎𝑖𝐽 – mean of i’th row, 

 𝑎𝐼𝑗  – mean of j’th column, 

 𝑎𝐼𝐽 – mean of all elements in the bicluster. 

Formula for MSR is defined as follows: 

𝐻(𝐼, 𝐽) =
1

|𝐼||𝐽|
∑ (𝑎𝑖𝑗 − 𝑎𝑖𝐽 − 𝑎𝐼𝑗 + 𝑎𝐼𝐽)

2

𝑖∈𝐼,𝑗∈𝐽

 

where 

𝑎𝑖𝐽 =
1

|𝐽|
∑𝑎𝑖𝑗
𝑗∈𝐽

, 𝑎𝐼𝑗 =
1

|𝐼|
∑𝑎𝑖𝑗
𝑖∈𝐼

 

and 

𝑎𝐼𝐽 =
1

|𝐼||𝐽|
∑ 𝑎𝑖𝑗

𝑖∈𝐼,𝑗∈𝐽

=
1

|𝐼|
∑𝑎𝑖𝐽
𝑖∈𝐼

=
1

|𝐽|
∑𝑎𝐼𝑗
𝑗∈𝐽

 

The mean square residue is the variance of the set of all elements in the bi-

cluster. It should be zero or close to zero in constant bi-cluster, or below certain 

threshold in general. This method is suitable for bi-clusters with constant values 

or coherent values with additive model. 

5.2.2. Average Correlation Value (ACV) 

 AVC property was proposed by Li Teng and Laiwn Chan [20] in 2007. Authors 

assume that bi-cluster should be a subset of attributes from both dimension that are 
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highly correlated. Based on this assumption AVC value of bi-cluster A is calculated 

using following formula: 

𝑅(𝐴) = 𝑚𝑎𝑥 {
∑ ∑ |𝑟_𝑟𝑜𝑤𝑖𝑗| − 𝑛

𝑛
𝑗=1

𝑛
𝑖=1

𝑛2 − 𝑛
,
∑ ∑ |𝑟_𝑐𝑜𝑙𝑘𝑙| − 𝑚

𝑚
𝑙=1

𝑚
𝑘=1

𝑚2 −𝑚
} 

𝑅(𝐴) ∈ [0,1] 

Where: 

 𝑟_𝑟𝑜𝑤𝑖𝑗 – is the correlation between the i’th and j’th rows, 

 𝑟_𝑐𝑜𝑙𝑘𝑙 – is the correlation between k’th and l’th columns. 

Large value of 𝑅(𝐴) means that rows and columns of bi-cluster A are highly 

correlated with each other. Measure is suitable for constant, additive and multiplica-

tive bi-clusters. 

5.2.3. Average Spearman's rho (ASR) 

 This measure was proposed by Wassim Ayadi et. al [21] in response to previ-

ous measure [20]. Authors introduce change in way how correlation is computed, in 

order to improve the results. The formula is as follows: 

𝐴𝑆𝑅(𝐴) = 2 ∗ 𝑚𝑎𝑥 {
∑ ∑ 𝑝𝑖𝑗

𝑛
𝑗=𝑖+1

𝑛
𝑖=1

|𝐼|(|𝐼| − 1)
,
∑ ∑ 𝑝𝑘𝑙

𝑚
𝑙=𝑘+1

𝑚
𝑘=1

|𝐽|(|𝐽| − 1)
} 

−1 ≤ 𝐴𝑆𝑅(𝐴) ≤ 1 

Where 𝑝𝑖𝑗  is Spearman’s rank correlation, and it’s used to expresses the correlation 

between two vectors (i.e. 𝑋𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑚
𝑖 ) and 𝑋𝑗 = (𝑥1

𝑗
, 𝑥2

𝑗
, … , 𝑥𝑚

𝑗 )) is defined as 

follows: 

𝑝𝑖𝑗 = 1 −
6∑ (𝑟𝑘

𝑖(𝑥𝑘
𝑖 ) − 𝑟𝑘

𝑗(𝑥𝑘
𝑗))

2
𝑚
𝑘=1

𝑚(𝑚2 − 1)
 

Where 𝑟𝑘
𝑖(𝑥𝑘

𝑖 ) (resp. 𝑟𝑘
𝑗(𝑥𝑘

𝑗)) is the rank of 𝑥𝑘
𝑖  (resp. 𝑥𝑘

𝑗
). 
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 Measure is suitable for bi-clusters of any type (Figure 5). And it results value 

of 1, which indicates that attributes within bi-cluster are highly correlated, and value 

of -1 if very weakly. 

The following table shows how these measures are useful depending on the 

type of bi-cluster (from Figure 5). As there is clearly see MSR measure is good only 

for constant bi-clusters or additive bi-clusters. ACV and ASR measures are suitable 

for all types of bi-clusters, but ASR is a little bit better than ACV in case of bi-clusters 

with coherent evolutions.  

Table 1. Comparison of evaluation functions on bi-clusters from Figure 1. 

                 Bi-

cluster 

Function 

Ex-

pected 

value 

1 1 2 3 4 5 6 7 

MSR 0 0 0 0 0 0 0.62 2.425 131.87 

ACV 1 1 1 1 1 1 1 1 0.84 

ASR 1 1 1 1 1 1 1 1 0.99 
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5.3. Stop criteria for bi-clustering algorithms 

There are many different methods with different approaches to the bi-

clustering task. Some of them are described in Chapter 6. After selecting the appro-

priate method and setting the parameters, the final decision of the user, prior to 

starting the experiment, is to decide how and when it is going to end. There is no 

problem if the chosen method is based on an exhaustive enumeration of columns 

and rows. Condition of end in them is natural and user cannot change it. But there 

are many methods where the end condition must be defined. Since the theoretical 

assumptions imply an infinite number of steps. Below is presented the most popular 

approaches to this issue. 

5.3.1. Mathematical convergence 

 

Figure 7. Sample function of change in distance function vs step number. 

Convergence is the most natural and intuitive condition for the end of the up-

date rule-based algorithms. Good example of such algorithms is those described in 

paper written by Sung and Lee [8]. Authors proposed two methods based on multi-

plicative update rules for minimizing distance functions which represent how data 

matrix differs from factor matrices. Their idea for bi-clustering is to provide a matrix 

factorization of data matrix A to product of factor matrices W and H. Bi-clusters are 
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extracted from factor matrices. Generally this approach of determining the end of 

the analysis is applicable for all methods based on distance or divergence functions. 

𝐴 = 𝑊𝐻 

First step of this algorithm is initialize matrices with random values. Then 

proper update rules are designed to minimize the distance from the factors to data 

matrix. Regarding to assumed distance function. 

The only drawback of this approach of determining the end of the analysis is 

time complexity. Like it is presented on Figure 7 the rate of change of the distance 

function in subsequent steps decreases very quickly but theoretically never reach 

zero. In real life this rate is limited by computer precision, but reaching it is imprac-

tical due to long time needed. As there is clearly shown in the attached picture, after 

a certain number of steps the change is imperceptible.  

5.3.2. Connectivity matrix 

 In the case of methods based on the decomposition of the matrix [8], more 

interested for as is order of the values than the exact values. For example in non-

negative matrix factorization algorithms described above single bi-cluster is obtain 

using single row vector from matrix W and single column vector from matrix H. Mul-

tiplication of those two vectors represent data matrix only with one selected bi-

cluster (Figure 8).  

 

Figure 8. Bi-cluster extraction in NMF algorithms. 
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 In the ideal case non-zero components of the first vector represent the rows 

of the data matrix involved in the bi-cluster. Subsequent non-zero components of the 

second vector represent the columns that are involved. Life is unfortunately not per-

fect and due to noise in both inside and outside of the bi-cluster, very often all values 

are not zero. But the attributes that actually take part in the resulting cluster should 

have significantly higher values that those attributes not involved. 

 The way to select only the relevant attributes can be normalization and to 

determining the cut-off threshold. One type of such a threshold is the threshold of 

the first n-elements. With such a defined task, we can assume that the order of the 

attributes is important more than exact values. The order we determined using ex-

act values. The greatest value is in the first place, the smallest on the last. Can then 

be assume that if within specific number of steps the order of attributes in all the 

vectors does not change, we achieved convergence. 

[

1
3
4
2

]

𝑆𝑡𝑒𝑝 1

=>
[

2
3
1
4

]

𝑆𝑡𝑒𝑝 2

=>
[

4
2
3
1

]

𝑆𝑡𝑒𝑝 3

=> ⋯ =>
[

4
1
2
3

]

𝑆𝑡𝑒𝑝 𝑛 − 2

=>
[

4
1
2
3

]

𝑆𝑡𝑒𝑝 𝑛 − 1

=>
[

4
1
2
3

]

𝑆𝑡𝑒𝑝 𝑛

 

The above example illustrates the way in which convergence is determined. 

After the first step, the sample vector of the analyzed matrix contains attributes or-

ganized in the following way: 

- attribute in the first place has a rank 1 because it has the greatest value. 

- attribute in the fourth place has a rank 2 because its value its less than at-

tribute with rank 1 and greater from the rest. 

- attribute in the second place has a rank 3 because its value is grater only 

from one attribute. 

- attribute in the third place has rank 4 because it has the lowest value. 

This order is calculated after each step. If he does not change for a specified 

number of steps for the calculation are considered to be terminated. 
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5.3.3. Conditions defined by the user. 

 The approaches described above, despite the fact that reducing the time from 

the infinite to the finite, have one drawback. Namely, although the exact definition of 

the conditions, it is impossible to clearly determine how long it will take to finish the 

experiment. In order to prevent too long waiting time the user typically specifies one 

or more of the following conditions: 

 maximum number of steps,  

 maximum duration of the experiment,  

 minimum value of the bi-clusters quality function. 
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6. An overview of bi-clustering methods 

6.1. Algorithms based on matrix decomposition 

A very wide range of algorithms are algorithms based on data matrix decom-

position. In such methods data matrix (A) is factorized into (usually) much smaller 

matrices. Such a distribution, because of the much smaller matrices is much easier to 

analyze, and the obtained matrices reveal previously hidden features. These algo-

rithms are often called NMF algorithms. NMF stands for non-negative matrix factori-

zation. Two efficient algorithms were introduced by Seung and Lee [8]. First mini-

mize conventional least square error distance function and second generalized Kull-

back–Leibler divergence. Third and last from this group is algorithm that slightly 

modify the second approach. Author [22] introduce smoothing matrix for achieving 

a high degree of sparseness, and better interpretability of the results. Data matrix in 

this techniques is factorized into (usually) two smaller matrices: 

𝐴 ≈ 𝑊𝐻 

Finding the exact solution is computationally very difficult task. Instead, the 

existing solutions focus on finding local extrema of the function describing the fit of 

the model to the data. Below some examples of such divergence functions. 

6.1.1. Based on LSE. 

Distance function: 

‖𝑉 −𝑊𝐻‖2 =  ∑ (𝑉𝑖𝑗 − (𝑊𝐻)𝑖𝑗)2
𝑖𝑗

 

Update rules: 

𝐻𝑖𝑗 =  𝐻𝑖𝑗
(𝑊𝑇𝑉)𝑖𝑗
(𝑊𝑇𝑊𝐻)𝑖𝑗

 

𝑊𝑖𝑗 =  𝑊𝑖𝑗

(𝑉𝐻𝑇)𝑖𝑗
(𝑊𝐻𝐻𝑇)𝑖𝑗
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6.1.2. Based on Kullback–Leibler divergence 

Divergence function: 

𝐷(𝑉||𝑊𝐻) =  ∑(𝑉𝑖𝑗 log
𝑉𝑖𝑗
𝑊𝐻𝑖𝑗

− 𝑉𝑖𝑗 +𝑊𝐻𝑖𝑗)

𝑖𝑗

 

Update rules: 

𝐻𝑖𝑗 = 𝐻𝑖𝑗
∑ 𝑊𝑘𝑖𝑉𝑘𝑗/(𝑊𝐻)𝑘𝑗𝑘

∑ 𝑊𝑙𝑖𝑙
 

𝑊𝑖𝑗 = 𝑊𝑖𝑗

∑ 𝐻𝑗𝑘𝑉𝑖𝑘/(𝑊𝐻)𝑖𝑘𝑘

∑ 𝐻𝑗𝑙𝑙
 

6.1.3. Based on non-smooth Kullback–Leibler divergence. 

Divergence function: 

𝐷(𝑉||𝑊𝑆𝐻) =  ∑(𝑉𝑖𝑗 log
𝑉𝑖𝑗

𝑊𝑆𝐻𝑖𝑗
− 𝑉𝑖𝑗 +𝑊𝑆𝐻𝑖𝑗)

𝑖𝑗

 

Update rules for this method is the same as in previews one, but instead W in 

update rule for H we substitute WS, and in update rule for W we substitute SH. 

Smoothing matrix S looks as follows:  

𝑆 = (1 − 𝜃)𝐼 +
𝜃

𝑞
11𝑇 

Where: 

I – Identity matrix, 1 – vector of ones and 𝜃 – should meet condition 0 ≤ 𝜃 ≤ 1. 

Another type of group NMF algorithms are algorithms based on the expectation-

maximization method. Because of the approach, the distance function replaces the 

likelihood function. Below the examples of such methods. 
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6.1.4. PLSA 

PLSA stands for Probabilistic Latent Semantic Analysis. Introduced by Thomas 

Hoffman [1], and based on maximizing log-likelihood function. For this purpose au-

thor use Expectation-Maximization algorithm [5]. Formulas for computing results: 

Log-likelihood function: 

𝐸[𝐿𝑐] =∑∑𝑛(𝑑𝑖 , 𝑤𝑗)∑𝑃(𝑧𝑘|𝑑𝑖, 𝑤𝑗)

𝐾

𝑘=1

log[𝑃(𝑤𝑗|𝑧𝑘)𝑃(𝑧𝑘|𝑑𝑖)]

𝑀

𝑗=1

𝑁

𝑖=1

 

E-step: 

𝑃(𝑧𝑘|𝑑𝑖 , 𝑤𝑗) =
𝑃(𝑤𝑗 , 𝑧𝑘)𝑃(𝑧𝑘, 𝑑𝑖)

∑ 𝑃(𝑤𝑗, 𝑧𝑙)𝑃(𝑧𝑙 , 𝑑𝑖)
𝐾
𝑙=1

 

M-step: 

𝑃(𝑤𝑗|𝑧𝑘) =
∑ 𝑛(𝑑𝑖 , 𝑤𝑗)𝑃(𝑧𝑘|𝑑𝑖, 𝑤𝑗)
𝑁
𝑖=1

∑ ∑ 𝑛(𝑑𝑖 , 𝑤𝑚)𝑃(𝑧𝑘|𝑑𝑖 , 𝑤𝑚)
𝑁
𝑖=1

𝑀
𝑚=1

 

𝑃(𝑧𝑘|𝑑𝑖) =
∑ 𝑛(𝑑𝑖 , 𝑤𝑗)𝑃(𝑧𝑘|𝑑𝑖 , 𝑤𝑗)
𝑁
𝑖=1

𝑛(𝑑𝑖)
 

The author explains the meaning of those formulas by using the example. Fac-

tor 𝑤𝑗  represent one word from vocabulary that contains M words. Factor 𝑑𝑖  repre-

sents one of N documents. And 𝑧𝑘 means aspect. Expression n(𝑑𝑖) denotes number 

of words in document i, and n(𝑑𝑖 , 𝑤𝑗) denotes number of occurrences of word j in 

document i. 

Translating the data generation process into a joint probability model results 

in the expression: 

𝑃(𝑤𝑗|𝑑𝑖) =  ∑𝑃(𝑤𝑗|𝑧𝑘)𝑃(𝑧𝑘|𝑑𝑖)

𝐾

𝑘=1

 

In above equation all possible probabilities 𝑃(𝑤𝑗|𝑑𝑖) form a data matrix (in 

our notation V) with M rows and N columns. Authors assume that this matrix con-

tains K bi-clusters. Data matrix is factorized into two smaller matrices. The first one 
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has M rows and K columns, and represents the probability of occurrence of a word 

in the context of aspect. The second consists of K rows and N columns, and repre-

sents probability of an aspect in the document. Single bi-cluster is in the matrix 

formed from the product of k-th column from first matrix and k-th row. 

6.1.5. FABIA 

FABIA stands for Factor Analysis for BIClustering Acquisition. Algorithm 

were introduced by Hochreiter [23] and based on Expectation-Maximization algo-

rithm. 

E-step 

𝐸(𝑧𝑗|𝑥𝑗) = (𝛬
𝑇𝛹−1𝛬 + 𝛯𝑗

−1)
−1
𝛬𝑇𝛹−1𝑥𝑗 and 

𝐸(𝑧𝑗𝑧𝑗
𝑇|𝑥𝑗) = (𝛬

𝑇𝛹−1𝛬 + 𝛯𝑗
−1)

−1
+ 𝐸(𝑧𝑗|𝑥𝑗)𝐸(𝑧𝑗|𝑥𝑗)

𝑇
 

Where 𝛯𝑗  stands for 𝑑𝑖𝑎𝑔(ξ𝑗), where update for ξ𝑗  is: 

ξ𝑗 = 𝑑𝑖𝑎𝑔(√ 𝐸(𝑧𝑗𝑧𝑗
𝑇|𝑥𝑗)) 

M-step: 

𝛬𝑛𝑒𝑤 =

1
𝑙
∑ 𝑥𝑗𝐸(𝑧𝑗|𝑥𝑗)

𝑇 −
𝛼
𝑙 𝛹𝑠𝑖𝑔𝑛(𝛬)

𝑙
𝑗=1

1
𝑙
∑ 𝐸(𝑧𝑗, 𝑧𝑗

𝑇|𝑥𝑗)
𝑙
𝑗=1

 

𝑑𝑖𝑎𝑔(𝛹𝑛𝑒𝑤) = 𝑑𝑖𝑎𝑔(
1

𝑙
∑𝑥𝑗𝑥𝑗

𝑇 − 𝛬𝑛𝑒𝑤
1

𝑙
∑𝐸(𝑧𝑗|𝑥𝑗)𝑥𝑗

𝑇

𝑙

𝑗=1

𝑙

𝑗=1

)

+ 𝑑𝑖𝑎𝑔 (
𝛼

𝑙
𝛹𝑠𝑖𝑔𝑛(𝛬) (Λ𝑛𝑒𝑤)𝑇) 

 

Where: 

 𝑧 – vector of factors, 
 𝑥 – sample from data matrix, 
 𝛬 – sparse prototype matrix, 
 𝛹- covariance matrix – expressing independent noise, 
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 ξ – variational parameter, 
 𝑙 – number of factors. 

Data initialization: 

1) vectors ξ𝑗  by ones 

2) 𝛬 randomly 

3) 𝛹 = 𝑑𝑖𝑎𝑔(max(𝛿, 𝑐𝑜𝑣𝑎𝑟(𝑥) − 𝛬𝛬𝑇)) 

Model likelihood is define as follows: 

𝑝(𝑥|𝛬,𝛹) = ∫𝑝(𝑥|𝑧, 𝛬, 𝛹)𝑝(𝑧) 𝑑𝑧 

Where: 

𝑝(𝑧) = (
1

√2
)
𝑝

∏𝑒−√2|𝑧𝑖|
𝑝

𝑖=1

 

Likelihood function introduce a model family that is parameterized by ξ, 

where the maximum over models in this family is the true likelihood: 

𝑎𝑟𝑔max
ξ
𝑝(𝑥|ξ) = 𝑝(𝑥) 
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6.2. Algorithms based on bipartite graphs 

6.2.1. QUBIC 

QUBIC stands for QUalitative BIClustering algorithm. It was proposed by Guojun 

Li, et al. [5] as very efficient algorithm for analysis of gene expression data. Authors 

proposed weighted graph representation of discretized expression data. The expres-

sion levels are discretized to the ranks. Their number is determined by the user 

through the parameters of the algorithm. Number of ranks is essential and strongly 

affects the results. The algorithm allows two types of ranks. The positive (for up-

regulating genes) and negative sign (for down-regulating genes). The vertices of the 

graph represent genes. The edges between them have weight to reflect the number 

of conditions for which they have the same rank. 

Algorithm starts with translating data matrix into new representation, which is a 

graph where vertex set is built from rows. An intermediate step is to create a matrix 

of integers. This matrix is the same size as original data matrix and its values are 

created as follows: 

1. For each row 𝑖 all values are sorted in increasing order: 

𝑎𝑖1…𝑎𝑖,𝑠−1𝑎𝑖𝑠…𝑎𝑖,𝑐−1𝑎𝑖,𝑐𝑎𝑖,𝑐+1…𝑎𝑖,𝑚−𝑠+1𝑎𝑖,𝑚−𝑠+2…𝑎𝑖𝑚 

Where: 

𝑚 – number of columns 

𝑐 =
𝑚

2
 – the median value in a row 

𝑠 = 𝑚 ∗ 𝑞 + 1 – number which determine how many values will be marked as 

zero. q is parameter selected by the user 

2. Values are marked as zero if 𝑎𝑖𝑗  belongs to interval (𝑎𝑖𝑐 − 𝑑𝑖, 𝑎𝑖𝑐 + 𝑑𝑖) where 

𝑑𝑖 = min (𝑎𝑖𝑐 − 𝑎𝑖𝑠, 𝑎𝑖,𝑚−𝑠+1 − 𝑎𝑖𝑐) 

3. Values are marked with positive ranks from range <1 , r> if 𝑎𝑖𝑗 > 𝑎𝑖𝑐 + 𝑑𝑖 

4. Values are marked with positive ranks from range <1 , r> if 𝑎𝑖𝑗 < 𝑎𝑖𝑐 − 𝑑𝑖 
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Figure 9. Sample QUBIC transformation from matrix of integers to final graph. 

 

Bi-clusters are find one-by-one. Starting from single heaviest and unused edge as 

seed, algorithm iteratively add additional edges until its violates pre-specified con-

sistency level. 
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6.3. Algorithms based on Iterative Row and Column search 

6.3.1. Coupled Two-Way Clustering (CTWC) 

 CTWC is a bi-clustering technique propose by Gad Getz et. al [7] in 2000. 

They deal with gene expression data from microarray experiments. The purpose of 

their work was to developed algorithm for identifying biologically relevant parti-

tions in data using unsupervised learning. 

 Authors present their work using gene expression matrices. Values in such 

data matrix represents expression value of a gene measured on some sample. Au-

thors use following notation: 

𝑔 – set of genes 

𝑠 – set of samples 

 First step of an algorithm is to perform standard two-way clustering on 

whole data matrix. It means that we start with 𝑔0 and 𝑠0 which represents respec-

tively whole set of genes and whole set of samples. The results of such will be clus-

ters 𝑔𝑖
1 and 𝑠𝑗

1, which are respectively subsets of genes and subsets of samples. 

 

Figure 10. Example of hierarchical clustering. 

 Next for every step k two-way clustering is performed between every pair of 

clusters (𝑔𝑖
𝑛 , 𝑠𝑗

𝑚) where 𝑛 and 𝑚 are from range 0 to k-1. Result after this step will be 

cluster denoted as 𝑔𝑙
𝑘 and 𝑠ℎ

𝑘 . Such process is visual 
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6.4. Algorithms based on Divide and Conquer approach 

6.4.1. Block clustering 

In 1972 Hartigan [2] proposed an algorithm known as “Block Clustering”. The 

idea is based on splitting original data matrix into sub-matrices and looking for 

those with smaller variance: 

𝑉𝐴𝑅(𝐼, 𝐽) = ∑ (𝑎𝑖𝑗 − 𝑎𝐼𝐽)
2

𝑖∈𝐼,𝑗∈𝐽

 

Where 𝑎𝐼𝐽 is bi-cluster mean value. 

Such define measure is designed for finding constant bi-clusters, because 

those have variances equal or close to zero. But also such a measure obviously likely 

to favor bi-clusters composed of only one column and one row. To avoid this, one of 

the input parameters, is the maximum number of clusters that we want to find. Due 

to the quality measure algorithm looks only for bi-clusters with constant values, but 

the author mentions about modifications in merit function which make it possible to 

find bi-cluster with constant row or columns or even coherent values. The idea of 

block pruning, proposed by Hartigan is visualized on Figure 11. 

 

Figure 11. Example of block clustering. Figure taken from original Hartigan publication [2]. 

In 1999  Tibshirani et al. [16] propose modifications in Hartigan method, 

which allows to induce the number of bi-clusters. Modifications were backward 

pruning method for block splitting, and permutation-based method for finding op-

timal number of clusters. However, the merit function remain the same, so algo-

rithms is still for constant bi-cluster only. 
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6.5. Algorithms based on Greedy iterative search 

6.5.1. δ-bi-clusters  

This algorithms is commonly referred by the names of its authors, Cheng and 

Church [4]. Authors in 2001 applied as first bi-clustering to microarray data. Their 

method still remains as important benchmark to every new data and method. Pro-

posed approach is based on measure how elements differs from row mean, column 

mean and overall mean: 

𝐻(𝐼, 𝐽) =
1

|𝐼||𝐽|
∑ (𝑎𝑖𝑗 − 𝑎𝑖𝐽 − 𝑎𝐼𝑗 + 𝑎𝐼𝐽)

2

𝑖∈𝐼,𝑗∈𝐽

 

where 

𝑎𝑖𝐽 =
1

|𝐽|
∑𝑎𝑖𝑗
𝑗∈𝐽

, 𝑎𝐼𝑗 =
1

|𝐼|
∑𝑎𝑖𝑗
𝑖∈𝐼

 

and 

𝑎𝐼𝐽 =
1

|𝐼||𝐽|
∑ 𝑎𝑖𝑗

𝑖∈𝐼,𝑗∈𝐽

=
1

|𝐼|
∑𝑎𝑖𝐽
𝑖∈𝐼

=
1

|𝐽|
∑𝑎𝐼𝑗
𝑗∈𝐽

 

Method aims at finding largest bi-clusters with respect to 𝐻(𝐼, 𝐽), which 

shouldn’t be above threshold δ. Algorithm start with largest possible bi-cluster and 

consistently removes columns and rows as long as the value of the quality function 

is below a certain level δ. Below algorithm for deleting rows or columns: 

Algorithm: node deletion 

input: matrix 𝐴 , row set 𝐼 , column set 𝐽 , 𝛿 >= 0 

output: row set 𝐼′ and column set 𝐽′ so that 𝐻(𝐼′, 𝐽′) <=  𝛿 

while 𝐻(𝐼, 𝐽) > 𝛿 : 

find the row 𝑟 = max𝑖∈𝐼 𝑑(𝑖) and the column 𝑐 = max𝑗∈𝐽 𝑑(𝑗) 

if 𝑑(𝑟) > 𝑑(𝑐) then remove r from 𝐼 else remove c from 𝐽 

return 𝐼 and 𝐽 

Where: 

 𝑑(𝑖) =
1

|𝐽|
∑ (𝑎𝑖𝑗 − 𝑎𝑖𝐽 − 𝑎𝐼𝑗 + 𝑎𝐼𝐽)

2

𝑗∈𝐽 𝑎𝑛𝑑 𝑑(𝑗) =
1

|𝐼|
∑ (𝑎𝑖𝑗 − 𝑎𝑖𝐽 − 𝑎𝐼𝑗 + 𝑎𝐼𝐽)

2

𝑖∈𝐼  
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6.6. Algorithms based on Exhaustive bi-cluster enumeration 

6.6.1. Statistical-Algorithmic Method for Bi-cluster Analysis (SAMBA) 

Algorithm is based on translating data into join probability model to identify 

subset of row that jointly respond across a subset of columns in data matrix [24]. 

Original data is modeled as bi-partite graph where rows and columns are respective-

ly two of its set. Vertex are weighted accordingly to probabilistic model, and bi-

clusters appears as heavy sub-graphs. Result bi-clusters are obtain by heuristic 

search, and reducing vertices. 

SAMBA model assume that data is represented as bi-partite graph 𝐺 = (𝑈,𝑉, 𝐸) 

where 𝑈 is a set of columns, 𝑉 is a set of rows and 𝐸 is a set of edges between them. 

Bi-clusters in such approach are represented by heavy sub-graphs 𝐵 = (𝑈′, 𝑉′, 𝐸′) 

where 𝑈′ and 𝑉′ are respectively subset of columns that reveals some similarity on a 

subset of rows. Method assumes that bi-clusters represent approximately uniform 

relations between their elements. It leads to conclusion that each edge of a bi-cluster 

occurs with constant high probability 𝑝𝑐 . The log likelihood for 𝐵 is define as follows: 

log𝐿(𝐵) = ∑ log
𝑝𝑐
𝑝𝑢,𝑣

(𝑢,𝑣)∈𝐸′

+ ∑ log
1 − 𝑝𝑐
1 − 𝑝𝑢,𝑣

(𝑢,𝑣)∈𝐸′

 

Where 𝐸′ = (𝑈′ × 𝑉′)\𝐸′ 
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6.7. Algorithms based on Distribution parameter identification 

6.7.1. Plaid Model 

Plaid model is modeling method proposed by Lazzeroni and Owen [25]. Ap-

proach is based on statistics and authors applies it to gene expression analysis. The 

key idea is to represent original matrix as a superposition of layers, which should 

correspond to bi-clusters. 

Model assumes that data matrix is a sum of uniform background and k bi-

clusters. Its described by following equation: 

𝑎𝑖𝑗 = 𝜇0 +∑(𝜇𝑘 + 𝛼𝑖𝑘 + 𝛽𝑗𝑘) ∗ 𝛿𝑖𝑘 ∗ 𝜔𝑗𝑘

𝐾

𝑘=1

 

Where: 

o 𝜇0 – is typical value for background layer, 

o 𝜇𝑘  – is typical value within bi-cluster k, 

o 𝛼𝑖𝑘  – is shifting parameter for row i in bi-cluster k, 

o 𝛽𝑗𝑘  – is shifting parameter for column j in bi-cluster k, 

o 𝛿𝑖𝑘 – is binary indicator of membership i row in bi-cluster k, 

o 𝜔𝑗𝑘  – is binary indicator of membership j column in bi-cluster k. 

Authors formulate problem as minimization of distance function between model 

and original data: 

∑(𝐴𝑖𝑗 +∑𝜃𝑖𝑗𝑘 ∗ 𝛿𝑖𝑘 ∗ 𝜔𝑗𝑘

𝐾

𝑘=1

)

2

𝑖𝑗

 

Lazzeroni and Owen propose an iterative heuristic to solve this problem of estimating 

parameters. At every single iteration only one layer is added. 
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7. Comparing the results 

7.1. Similarity measures 

7.1.1. Jaccard Index 

The easiest way to compare the two sets A and B is the Jaccard index (
𝐴∩𝐵

𝐴∪𝐵
). It 

provides a score of 1 if the sets are identical, and 0 if they are mutually exclusive. So 

defined index can be used to compare bi-clusters, if we take its constituent clusters 

individually. If a single bi-cluster 𝐵 = (𝐼, 𝐽), 𝑤ℎ𝑒𝑟𝑒 𝐼 ∈ 𝑋, 𝐽 ∈ 𝑌 treat as a set consist-

ing of the set of I and J, we can compute average Jaccard index over both clusters. 

 

Figure 12. Graphical representation of bi-cluster similarity. 

𝑆𝐽𝑎𝑐𝑐(𝐵1, 𝐵2) =

𝐼1 ∩ 𝐼2
𝐼1 ∪ 𝐼2

+
𝐽1 ∩ 𝐽2
𝐽1 ∪ 𝐽2

2
 

But if we do not want to lose the differences arising from the size of individu-

al clusters, then we can use a weighted average: 

𝑆𝐽𝑎𝑐𝑐_𝑤𝑒𝑖𝑔ℎ𝑡(𝐵1, 𝐵2) =
(𝐼1̅ + 𝐼2̅)

𝐼1 ∩ 𝐼2
𝐼1 ∪ 𝐼2

+ (𝐽1̅ + 𝐽2̅)
𝐽1 ∩ 𝐽2
𝐽1 ∪ 𝐽2

𝐼1̅ + 𝐼2̅ + 𝐽1̅ + 𝐽2̅
 

Where 𝐵1 = (𝐼1, 𝐽1) 𝑎𝑛𝑑 𝐵2 = (𝐼2, 𝐽2) 
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7.1.2. Relevance and recovery 

During comparing the obtain results with the expected one significant are 

two pieces of information: 

 Did we found all expected bi-clusters? 

 Did all founded bi-clusters were expected? 

Measure described first one is called recovery and second one is relevance. It can 

be computed using the same formula: 

𝑆𝑅(𝑅1, 𝑅2) =
1

|𝑅1|
∑ max

𝐵2∈𝑅2
𝑆𝐽𝑎𝑐𝑐(𝐵1, 𝐵2)

𝐵1∈𝑅1

 

Where: 

 𝑅1, 𝑅2- are two set of bi-clusters, coming from different experiments or 

expected and resulted set 

 𝐵1, 𝐵2-are single bi-clusters coming respectively from 𝑅1, 𝑅2 

 

Figure 13. Differences between relevance and recovery. 

 Similarity function 𝑆𝑅  measure how result 𝑅1 fits result 𝑅2. Figure 13 shows a 

simple example of how to interpret the results. Suppose that there are two sets of bi-

clusters. First (blue, marked with letter “E”) known in advance and describing the 

expected results. The second one (green, marked with letter “F”) is a set of bi-

clusters derived from the analysis. In the ideal case, the two sets should be identical. 
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In the example set obtained in experiment does not contain all desired bi-clusters. 

For reasons of simplification it is assumed that the bi-clusters that were obtained 

contains exact equivalents in the set expected (Jaccard index between connected bi-

clusters is equal one). If we check how the “founded set” fit the expected 𝑆𝑅(𝐹, 𝐸) it 

will be called relevance, because it check did all founded bi-clusters are expected. If 

we approach the task from the other side, that is, if we check how expected set fits 

founded bi-clusters 𝑆𝑅(𝐸, 𝐹) it will be called relevance. It is desirable that both of 

these measures are equal to one. 

7.1.3. Consensus score 

Jaccard Index can be applied to comparison of single bi-clusters. When com-

bined with the Hungarian algorithm (Munkres algorithm - described in more detail 

in Chapter 5.2) can be expanded to use for comparing different results or methods. 

This quality index called by author “consensus score” was proposed by S. Hochreiter 

et al. 2010 [23]. Algorithm is as follows: 

 Compute similarities between obtained bi-clusters and known bi-clusters from 

original set (assuming that the bi-clusters are known), or similarities between 

clusters from first and second result sets. 

 Using Munkers algorithm assign bi-clusters of the one set to the bi-clusters from 

the other one. 

 Divide  the sum of similarities of the assigned bi-clusters as emphasized number 

of bi-clusters of the larger set. 

 

Such approach finds assignments witch maximize following function S: 

𝑆(𝑅1, 𝑅2) = ∑𝑆𝐽𝑎𝑐𝑐(𝐵𝑙
1, 𝐵𝑙′

2 )

𝐾

𝑙=1

 

Where 𝑅1 𝑎𝑛𝑑 𝑅2 are two independent bi-clustering experiments and 

𝐵𝑙
1 𝑎𝑛𝑑 𝐵𝑙′

2  are pairs of bi-clusters such that 𝐵𝑙
1 is 𝑙’𝑡ℎ bi-cluster from result 𝑅1 and 

𝐵𝑙′
2  is bi-cluster corresponding to it from result 𝑅2. 
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As a  similarity index Jaccard index 𝑆𝐽𝑎𝑐𝑐  is used, and if outcome of function S is 

divided by number of bi-cluster (K) the similarity of two results expressed in per-

centages is obtained: 

0 ≤
𝑆(𝑅1, 𝑅2)

𝐾
≤ 1 

A single experiment gets the value 1 if the received bi-clusters are the same as 

expected, and the value 0 if they are completely different. 

 

Figure 14. Consensus score algorithm shown by bipartite graph. 

 This process can be also consider as a bipartite graph analysis. If so, two 

groups of vertices will be represented by two sets of bi-clusters (from two experi-

ments or the experiment and expected set). Initially, each two vertices from differ-

ent groups are connected by an edge. Each edge is described by weight, which de-

termines the similarity (𝑆𝐽𝑎𝑐𝑐_𝑤𝑒𝑖𝑔ℎ𝑡  or 𝑆𝐽𝑎𝑐𝑐) between two bi-clusters (vertices). Af-

ter the Hungarian algorithm, remains only those edges that form a unique pairs of 

bi-clusters between sets, and its weights form the largest sum. 
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7.2. Hungarian algorithm 

The algorithm was developed and published by Harold Kuhn [26] in 1955, who 

gave the name "Hungarian algorithm" because the algorithm was based on the earli-

er works of two Hungarian mathematicians: Dénes Kőnig [27] and Jenő Egerváry 

[28]. Munkres [29] reviewed the algorithm in 1957 and observed that it is indeed 

polytime. Since then the algorithm is also known as Kuhn-Munkres algorithm. Alt-

hough the Hungarian contains the basic idea of the primal-dual method, it solves the 

maximum weight bipartite matching problem directly without using any linear pro-

gramming (LP) machinery. Algorithm is based on König's theorem (1916): 

 

If the elements of a matrix are divided into two classes by a property R, than the 

minimum number of lines that contain all the elements with the property R is equal to 

the maximum number of elements with the property R, with no two elements on the 

same line. 

 

Figure 15. Comparison between Munkres algorithm and classical linear programming approach. 

This algorithm is widely used for solving assignment problems in two-

dimensional data because of its simplicity and speed. Figure 15 shows comparison 

between time consumption of Munkres algorithm and classical linear programming 

algorithm. It has been choosen matlab build-in function “binprog” witch solves bina-

ry integer programming problem, and implementation of Hungarian algorithm by 

Alexander Melin downloaded from MathWorks web site. As it is clearly see in the 
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attached picture Hungarian algorithm is much faster than the traditional approach, 

and it is characterized by linear complexity. 

Pseudo code algorithm is as follows: 

 Step 1:  For each row, subtract the minimum number 
in that row from all numbers in that row. 

 Step 2:  For each column, subtract the minimum num-

ber in that column from all numbers in that column.      

 Step 3:  Draw the minimum number of lines to cover 
all zeroes.  If this number = m, STOP — an assign-

ment can be made. 

 Step 4:  Determine the minimum uncovered number  

(call it Θ). 

 Subtract Θ from uncovered numbers. 

 Add d to numbers covered by two lines. 

 Numbers covered by one line remain the 
same. 

 Then, GO TO STEP 3. 

 

And pseudo code for resolving problem in Step 3: 
 

 Finding the Minimum Number of Lines and Determining 
the Optimal Solution 

 Step 1:  Find a row or column with only one 

unlined zero and circle it.  (If all 

rows/columns have two or more unlined ze-

roes choose an arbitrary zero.) 

 Step 2:  If the circle is in a row with one 

zero, draw a line through its column.  If 

the circle is in a column with one zero, 

draw a line through its row.  One approach, 

when all rows and columns have two or more 

zeroes, is to draw a line through one with 

the most zeroes, breaking ties arbitrarily. 

 Step 3:  Repeat step 2 until all circles 

are lined.  If this minimum number of lines 

equals m, the circles provide the optimal 
assignment. 

Example: 

Let’s consider task in which we have to assign four workers to four jobs. Each 

job can be perform only by one worker, and each worker can perform only one job. 

In addition cost of final assignment should be minimal. In classical linear program-

ming approach this task leads to minimization of following function: 
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min
𝑖𝑗
∑∑𝑐𝑖𝑗𝑥𝑖𝑗  

Under following conditions: 

∑𝑥𝑖𝑗 = 1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟𝑜𝑤

𝑗

, 

∑𝑥𝑖𝑗 = 1

𝑖

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑜𝑙𝑢𝑚𝑛, 

𝑥𝑖𝑗 = 0 𝑜𝑟 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗. 

Where 𝑥𝑖𝑗 is an element of binary matrix representing assignments (contains 

1 if worker is assign to the job or 0 id not). 

Table 2. Example assignment task. 

 Job 1 Job 2 Job 3 Job 4 

Worker 1 20 22 14 24 

Worker 2 20 19 12 20 

Worker 3 13 10 18 16 

Worker 4 22 23 9 28 

 

In linear programming this problem can be represented by following system 

of equations: 

Min z = 20x11 + 22x12 + 14x13 + 24x14 + 20x21 + 19x22 + 12x23 + 20x24 + 13x31 + 10x32 

+ 18x33 + 16x34 + 22x41 + 23x42 + 9x43 + 28x44  

s.t. 

x11 + x12 + x13 + x14 = 1 (row 1) 

x21 + x22 + x23 + x24 = 1 (row 2) 

x31 + x32 + x33 + x34 = 1 (row 3) 

x41 + x42 + x43 + x44 = 1 (row 4) 

x11 + x21 + x31 + x41 = 1 (column 1) 

x12 + x22 + x32 + x42 = 1 (column 2) 

x13 + x23 + x33 + x43 = 1  (column 3) 

x14 + x24 + x34 + x44 = 1  (column 4) 
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xij >= 0 for i = 1, 2, 3, 4 and j = 1, 2, 3, 4 (nonnegativity) 

 

Solving that equations leads to solution: x11 = 1, x24 = 1, x32 = 1, x43 = 1 

 

Hungarian algorithm changes a little the function that minimizes: 

𝑐𝑖𝑗
′ = 𝑐𝑖𝑗 − (𝑢𝑖 + 𝑣𝑗) ≥ 0 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑𝑢𝑖

𝑚

𝑖=1

+∑𝑣𝑗

𝑚

𝑗=1

 

So back to our example: 

Step 1: Find minimum values in rows and subtract it within each row. 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 
1 

20 22 14 24 

Worker 
2 

20 19 12 20 

Worker 
3 

13 10 18 16 

Worker 
4 

22 23 9 28 

 

 

 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 
1 

6 8 0 10 

Worker 
2 

8 7 0 8 

Worker 
3 

3 0 8 6 

Worker 
4 

13 14 0 19 
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Step 2: Find minimum values in columns and subtract it within each column. 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 1 6 8 0 10 

Worker 2 8 7 0 8 

Worker 3 3 0 8 6 

Worker 4 13 14 0 19 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 1 3 8 0 4 

Worker 2 5 7 0 2 

Worker 3 0 0 8 0 

Worker 4 10 14 0 13 

 

 

Step 3: Find minimum number of lines that covers all zeros. 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 1 3 8 0 4 

Worker 2 5 7 0 2 

Worker 3 0 0 8 0 

Worker 4 10 14 0 13 

 

Step 4: Two lines. Find minimum uncovered (Θ). 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 1 3- 8- 0 4- 

Worker 2 5- 7- 0 2- 

Worker 3 0 0 8+ 0 

Worker 4 10- 14- 0 13- 
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 Job 1 Job 2 Job 3 Job 4 

Worker 1 1 6 0 2 

Worker 2 3 5 0 0 

Worker 3 0 0 10 0 

Worker 4 8 12 0 11 

 

Step 5: Find minimum number of lines that covers all zeros. 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 1 1 6 0 2 

Worker 2 3 5 0 0 

Worker 3 0 0 10 0 

Worker 4 8 12 0 11 

 

 

 

 

 

Step 6: Three lines. Find minimum uncovered (Θ). 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 1 1- 6- 0 2 

Worker 2 3- 5- 0 0 

Worker 3 0 0 10+ 0+ 

Worker 4 8- 12- 0 11 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 1 0 5 0 2 

Worker 2 2 4 0 0 

Worker 3 0 0 11 1 

Worker 4 7 11 0 11 
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Step 7: Find minimum number of lines that covers all zeros. 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 1 0 5 0 2 

Worker 2 2 4 0 0 

Worker 3 0 0 11 1 

Worker 4 7 11 0 11 

 

Step 8: Four lines – stop the algorithm. 

 

 Job 1 Job 2 Job 3 Job 4 

Worker 1 0 5 0 2 

Worker 2 2 4 0 0 

Worker 3 0 0 11 1 

Worker 4 7 11 0 11 

 

 Using the algorithm described above, it is possible to find an optimal assign-

ment in any two-dimensional matrix. But if the problem cannot be described by a 

square matrix, there is need to add the missing attributes so it will be possible. The 

values for these attributes are set so as not to distort the solution. Usually, these are 

the values for which not worth to do the assignments. This was done so that they are 

matched last. If we are looking for the maximum cost, then it will be zero. If we are 

looking for the minimum cost then they are the "infinity".  
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7.3. Generalized Hungarian algorithm 

7.3.1. Problem formulation 

The task is to solve the problem of multidimensional assignment. In contrast 

to problem described above, where there is an assignment only between workers 

and jobs, we want to add extra dimensions. Such as for example tools. It is possible 

to solve such problem by reducing it to series of two dimensional problems. For ex-

ample first resolve assignment problem between workers and job, and next between 

jobs and tools. But what if we change the order of assignments? For example based 

on cost matrix how each worker is predisposed to each tool, make assignments be-

tween tools and workers, and only then the assignment between workers and jobs. 

We can get different results, and there is no direct method to determine which one 

will be better. 

We therefore present a problem as the cost matrix, but as a cost cube (Figure 

16). Three dimensions represent jobs, workers and tools. Cells of such structure con-

tains combined cost of hiring a worker at particular job using particular tool. For a 

cube of size N, the result will be a set of N cells (unique in each dimension), which 

gives the smallest cost. Adding another dimension analogously, we can generalize 

the problem definition. 

 

Figure 16. Example of multidimensional assignment problem. 

 Multi-dimensional assignment problem (MAP) is sometimes referred as mul-

ti-index assignment problem can be defined as natural extension of linear assign-

ment problem with minimization of cost function or problem of finding cliques in d-
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partite graphs. In very simple words MAP is a higher dimensional version of linear 

assignment problem, which is defined as follows: 

{
 
 
 
 
 

 
 
 
 
 

𝑚𝑖𝑛∑∑𝑐𝑖𝑗𝑥𝑖𝑗

𝑛2

𝑗=1

𝑛1

𝑖=1

𝑠. 𝑡.∑𝑥𝑖𝑗 = 1

𝑛1

𝑖=1

, 𝑖 = 1,2,… , 𝑛1

        ∑𝑥𝑖𝑗 = 1

𝑛𝑗

𝑗=1

, 𝑗 = 1,2,… , 𝑛2

𝑥𝑖𝑗 ∈ {0,1}

 

Where 𝑥𝑖𝑗 is a decision variable and is defined as: 

𝑥𝑖𝑗 = {
1 𝑖𝑓 𝑤𝑜𝑟𝑘𝑒𝑟 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑗𝑜𝑏 𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Multidimensional assignment problem as extension of linear assignment 

problem is defined as follows: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑚𝑖𝑛 ∑ …∑ 𝑐𝑖1…𝑖𝑑𝑥𝑖1…𝑖𝑑

𝑛𝑑

𝑖𝑑=1

𝑛1

𝑖1=1

𝑠. 𝑡. ∑ …∑ 𝑥𝑖1…𝑖𝑑 = 1, 𝑖1 = 1,2,… , 𝑛1

𝑛𝑑

𝑖𝑑=1

𝑛2

𝑖2=1

∑… ∑ ∑ …

𝑛𝑘+1

𝑖𝑘+1=1

𝑛𝑘−1

𝑖𝑘−1=1

∑ 𝑥𝑖1…𝑖𝑑 = 1,

𝑛𝑑

𝑖𝑑=1

𝑛1

𝑖1=1

𝑖𝑘 = 1,2,… , 𝑛𝑘, 𝑘 = 2,… , 𝑑 − 1

∑ … ∑ 𝑥𝑖1…𝑖𝑑 = 1, 𝑖𝑑 = 1,2,… , 𝑛𝑑

𝑛𝑑−1

𝑖𝑑−1=1

𝑛1

𝑖1=1

𝑥𝑖1…𝑖𝑑 ∈ {0,1}

 

Where: 

 𝑑 – is a number of dimension 

 𝑛𝑘- is a number of attributes in dimension k 

 𝑛1 ≤ 𝑛𝑘 , 𝑘 = 2, … , 𝑑 
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In contrast to LAP witch is solvable in polynomial time, MAP is known to be 

NP-hard problem. This is caused by total number of coefficient: 

∏𝑛𝑘

𝑑

𝑘=1

 

As well as number of feasible solutions: 

∏
𝑛𝑘!

(𝑛𝑘 − 𝑛1)

𝑑

𝑘=2

 

7.3.2. Related work 

 Multidimensional assignment problem is first mentioned in literature in 1968 

by William Pierskalla [30]. Author define problem using tree where possible solu-

tions are representing by paths in it. Algorithms iterates over all feasible paths and 

finds an optimal solution. The most interesting thing in the article is that despite the 

very early years, the algorithm has been implemented and tested on a Univac 1107 

computer. 

 After Pierskalla work there was vast number of application of MAP in litera-

ture. In 1994 Poore [31] and four years later Murphey et al. [32] used it for multi-

sensor multitarget tracking. In 1996 Pusztaszeri et al. [33] found it useful in tracking 

of elementary particles. In 1998 Veenman et al. [34] used it in image recognition. For 

now there is a lot of algorithms and application of MAP, and its survey [35, 36, 37]. 

7.3.3. Hungarian algorithm 

Hungarian algorithm solves the problem of matching in two-dimensional ma-

trix or bi-partite graph. Such approach allows to assign bi-clusters from the two 

methods or two different experiments under the same method. However, if there are 

N results for which we want to fit bi-clusters, the cost matrix is transformed into a 

hypercube with N dimensions. If we want to find corresponding bi-cluster between 

two independent experiments we want to maximize the following function: 

𝑆(𝑅1, 𝑅2) = ∑𝑆𝐽𝑎𝑐𝑐(𝐵𝑙
1, 𝐵𝑙′

2 )

𝐾

𝑙=1
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Where 𝑅1 𝑎𝑛𝑑 𝑅2 are two independent bi-clustering experiments and 

𝐵𝑙
1 𝑎𝑛𝑑 𝐵𝑙′

2  are pairs of bi-clusters such that 𝐵𝑙
1 is 𝑙’𝑡ℎ bi-cluster from result 𝑅1 and 

𝐵𝑙′
2  is bi-cluster corresponding to it from result 𝑅2. 

We want to marge N number of bi-clustering results, so there is need find an 

assignment such that the following function is maximized: 

𝑆(𝑅1, … , 𝑅𝑁) =∑∑∑𝑆𝐽𝑎𝑐𝑐(𝐵𝑙
𝑖 , 𝐵

𝑙′
𝑗
)

𝑁

𝑗>𝑖

𝑁−1

𝑖=1

𝐾

𝑙=1

 

In other words, to form one of K group, we want to choose from every result 

one bi-cluster, in such a way that all were so similar as possible within a group. The 

formula 

∑∑𝑆𝐽𝑎𝑐𝑐(𝐵𝑙
𝑖 , 𝐵

𝑙′
𝑗
)

𝑁

𝑗>𝑖

𝑁−1

𝑖=1

 

represent similarity between all pairs of bi-clusters within 𝑙’𝑡ℎ group. I we 

have N bi-clustering experiments each of witch with K bi-cluster, the value of func-

tion 𝑆(𝑅1, … , 𝑅𝑁) is from range: 

0 ≤  𝑆(𝑅1, … , 𝑅𝑁) ≤ 𝐾 ∗ (
𝑁

2
) = 𝐾 ∗

𝑁!

2(𝑁 − 2)
 

This means that if output is equal 0, than there are N completely different re-

sults.  And if output is equal to 𝐾 ∗ (𝑁
2
), then all N results are identical. 
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7.3.4. Two-dimensional approach 

Finding an optimal solution in matching N solution comes down to the analy-

sis of in N-dimensional space. But it can be safely assumed that bi-clustering exper-

iments which are carried out on the same data with the same number of bi-clusters 

should be similar to each other. Therefore, in order to minimize the computational 

complexity, the problem can be reduced to a two dimensional space. Rather than 

representing the cost matrix as a cube in three dimensional space (R3) or hypercube 

in general case in n-dimensional space (Rn) more reasonable from complexity points 

of view will be putting results in a series. In this method, data is presented as N-1 

connected bipartite graphs (Figure 17), and N-1 Munkres assignments are per-

formed. Function which it minimizes simplifies a little and looks like this: 

𝑆2𝐷(𝑅1, … , 𝑅𝑁) =∑(𝑆𝐽𝑎𝑐𝑐(𝐵𝑙
1, 𝐵𝑙′

2) + 𝑆𝐽𝑎𝑐𝑐(𝐵𝑙′
2 , 𝐵𝑙′′

3 ) +⋯+ 𝑆𝐽𝑎𝑐𝑐(𝐵𝑙(𝑁−2)
𝑁−1 , 𝐵

𝑙(𝑁−1)
𝑁 ))

𝐾

𝑙=1

 

Where 𝐵𝑙
1 is 𝑙’𝑡ℎ bi-cluster from result 𝑅1 and 𝐵𝑙′

2  is bi-cluster corresponding 

to it from result 𝑅2. Next 𝐵𝑙′′
3  is a bi-cluster from result 𝑅3 corresponding to bi-

cluster 𝐵𝑙′
2  . And so on. Figure 6 illustrates this algorithm. Hungarian algorithm is 

performed on first pair of results. Then, the third result is added, and Hungarian al-

gorithm is performed between the second and third. The procedure is repeated until 

all the results will be added. 

Function 𝑆2𝐷(𝑅1, … , 𝑅𝑁) is from range: 

0 ≤  𝑆2𝐷(𝑅1, … , 𝑅𝑁) ≤ 𝐾 ∗ (𝑁 − 1) 

The upper values the functions S and 𝑆2𝐷  denote the number of assignments 

(execution of the Hungarian algorithm) that should be done to assess the quality of 

the overall fit. Value of 𝐾 ∗ (𝑁 − 1) (bi-clusters are compared only within neighbor-

ing results) is usually much smaller than 𝐾 ∗ (𝑁
2
) (all bi-clusters in the group are 

compared with each other), and the quality of this approach can be a bit lower than 

the general approach because it search a local minimum. 
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Figure 17. The combination of n independent bi-clustering results with k clusters. 

 After performing Hungarian algorithm on each pair of neighboring results, K 

“chains” of bi-clusters are obtained. Each consisting of N bi-clusters derived from the 

one of N results. This final assignment is influenced mainly by placement of results - 

the sequence is crucial, but not always. If all the results are very much similar to 

each other - then the order may not be relevant, and the solution is then optimal. 

Example: 

 

Figure 18. Graphical representation of initial graph with results. 

Let’s consider three results, each derived from experiments carried out on 

the same data with the same number of bi-clusters. There are three results: 

𝑅1 (green), 𝑅2 (blue) and 𝑅3 (red). First step of algorithm is to form two bi-partite 

graphs. First graph  is made by connecting every bi-cluster 𝐵𝑙
1 from result 𝑅1 with 

every bi-cluster 𝐵𝑙
2 from result 𝑅2. In the next step add to this second bi-partite 

graph by connecting every bi-cluster 𝐵𝑙
2 from result 𝑅2 with every bi-cluster 𝐵𝑙

3 from 
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result 𝑅3 (𝑙 ∈ {1,2,3,4,5}). The end result is shown in Figure 19. Number of connec-

tion (similarities to compute for cost matrices) will amount to 50. 

 

Figure 19. Graphical representation of graph after analysis. 

 After building bi-partite graphs, third step of this algorithm will be perform-

ing Hungarian algorithm two times. First execution will remove unnecessary edges 

between the results 𝑅1 and 𝑅2, leaving only those that represent best assignments 

between bi-clusters from this results. Second execution will remove unnecessary 

edges between the results 𝑅2 and 𝑅3, leaving only those that represent best assign-

ments between bi-clusters from this results. 

The remaining edges form the following solution: 

𝐺1 = {𝐵1
1, 𝐵1′

2 = 𝐵3
2, 𝐵1′′

3 = 𝐵1
3},  

𝐺2 = {𝐵2
1, 𝐵2′

2 = 𝐵5
2, 𝐵2′′

3 = 𝐵2
3},  

𝐺3 = {𝐵3
1, 𝐵3′

2 = 𝐵2
2, 𝐵3′′

3 = 𝐵4
3},  

𝐺4 = {𝐵4
1, 𝐵4′

2 = 𝐵1
2, 𝐵4′′

3 = 𝐵3
3},  

𝐺5 = {𝐵5
1, 𝐵5′

2 = 𝐵4
2, 𝐵5′′

3 = 𝐵5
3},  

Not always, however, the user has such a comfortable situation. Individual 

results may vary in terms of the number of returned bi-clusters. Such a situation is 

shown in Figure 20. Each 𝑖′𝑡ℎ result consists of exactly 𝑘𝑖 bi-clusters. Where 

𝑖 ∈ 〈1, 𝑁〉. 



59 
 

 

Figure 20. The symbolic diagram showing connected results (with various sizes). 

To effectively analyze such data must use the following pre-processing: 

1. Sort the results by number of bi-clusters (descending). 

2. For each result 𝑖, add the following number of empty clusters: 

𝑘𝑚𝑎𝑥 − 𝑘𝑖  

Where: 

𝑘𝑚𝑎𝑥  – the maximum number of bi-clusters in a single result 

𝑘𝑖 – number of bi-clusters in 𝑖′𝑡ℎ result where 𝑖 ∈ 〈1, 𝑁〉 

3. Perform a standard analysis, as described above. 

 

Figure 21. Graphical representation of graph (with empty clusters) after analysis. 

Sorting as a way to maximize the number of bi-clusters between "neighbor-

ing" results. Additional clusters are empty so that the 𝑆𝐽𝑎𝑐𝑐  between it and any non-

empty bi-cluster was equal 0. This will allow to combine them with others only 

when it is absolutely necessary due to lack of other options. 
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Figure 21 shows an example of matching the unbalanced results. First result 

consist of five bi-clusters, second result consist of four and last result of only three. 

They are already sorted. Empty clusters are marked in gray and deliberately left un-

connected because it would not affect the resulting set anyway. 

The biggest drawback of the algorithm described in this subsection is suscep-

tible to changes resulting from the change in order. Poorly matched neighboring ex-

periments (if they are located not at the end) can completely spoils the final assign-

ments. One can protect against this by computing consensus score (chapter 7.4) be-

tween each pair of experiments. And then sort experiments by this measure. Be-

cause pairs with higher similarity measures should less impair final result. 
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7.3.5. Multidimensional approach 

 Two dimensional approach focus on finding some local minimum. But if data 

are more demanding we have to try little bit harder in terms of time and memory 

complexity. To find optimal solution we have to find such assignment in witch simi-

larity between all bi-clusters in group is optimal (not only similarity between 

“neighboring” results like in two-dimensional approach). 

 Our goal is to find K groups consisting of N bi-clusters, each coming from dif-

ferent result (bi-clustering experiment). All possible combinations of such groups is 

therefore 𝐾𝑁. We can present a data matrix as a hypercube in N-dimensional space – 

“cost hypercube”. Each element of that hypercube has a value equal to average simi-

larity of bi-cluster over the group that it represent: 

𝑆𝐽𝑎𝑐𝑐̅̅ ̅̅ ̅̅
𝑎
=
∑ ∑ 𝑆𝐽𝑎𝑐𝑐(𝐵𝑎

𝑖 , 𝐵𝑎
𝑗
)𝑁−1

𝑗=𝑖+1,𝑗≠𝑖
𝑁
𝑖=1

(𝐾
2
)

 

Where: 

 𝑎 is single element from “cost hypercube” consisting of N bi-clusters 

𝐵𝑎
𝑖 , where 𝑖 =  1,…𝑁, 

 𝐵𝑎
𝑖  – is bi-cluster coming from result 𝑖’𝑡ℎ, and being part of element 𝑎  

 𝑆𝐽𝑎𝑐𝑐̅̅ ̅̅ ̅̅
𝑎

  is average Jacard similarity in group 𝑎 

Assignment should be unique in this respect that no bi-cluster can participate 

in more than one resulting group. The solution will therefore consist of the K ele-

ments, and number of all possible solutions will be 𝑁!𝐾 . It is far beyond naive meth-

od. 

 This multidimensional approach of Hungarian algorithm is based on translat-

ing König's theorem from two dimensional space to n-dimensional space. And on 

that basis the pseudo-code of translated Hungarian algorithm is as follows: 

 Step 1 and 2 become Step 1, 2, 3, …, N 

In every Step i (where i = 1,…,N) From cost martix in 

hyperplane formed after deduction of dimension „i” we 

subtract its minimum value 
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 Step N+1:  Choose the minimum number of hyperplanes to 

cover all zeroes.  If this number = N, STOP — an as-

signment can be made. 

 Step N+2:  Determine the minimum uncovered number (of 

numbers that do not lie on any hyperplane.) 

(call it Θ). 

o Subtract Θ from uncovered numbers. 

o Add d to numbers covered by two lines. 

o Numbers covered by one line remain the same. 

o Then, GO TO STEP N+1. 

 

And pseudo code for resolving problem in Step N+1: 
 

 Finding the Minimum Number of Lines and Determining 

the Optimal Solution 

 Step 1:  Find a dimension with only one un-

lined zero and circle it.  (If all dimen-

sions have two or more unlined zeroes 

choose an arbitrary zero.) 

 Step 2:  If the circle is in a row with one 

zero, draw a line through its column.  If 

the circle is in a column with one zero, 

draw a line through its row.  One approach, 

when all rows and columns have two or more 

zeroes, is to draw a line through one with 

the most zeroes, breaking ties arbitrarily. 

 Step 3:  Repeat step 2 until all circles 

are lined.  If this minimum number of lines 

equals m, the circles provide the optimal 

assignment. 

 

Example: 

Let’s consider three results, each derived from experiments carried out on 

the same data with the same number of bi-clusters. There are three results: 

𝑅1 (green), 𝑅2 (blue) and 𝑅3 (red). The first step of the algorithm is connect all the 

bi-clusters between methods - each with each. In Figure 9 is an example of the three 

methods, and 15 bi-clusters as a whole, so the number of connections in this case 

will amount to 75. What we really look at is the triangles formed by the vertices 
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coming from different results. All combinations of such triangles is 125, and they 

form a cube with dimensions 5x5x5. 

 

Figure 22. Visualization of original data before analysis. 

After building cost hypercube, next step of this algorithm will be performing 

Hungarian algorithm on it. The result will be 5 groups, each consisting of 3 bi-

clusters. In Figure 10 the solution appears as 5 independent triangles. 

 

Figure 23. Visualization of original data after analysis. 
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7.4. Consensus algorithm 

A single experiment may give unsatisfactory results due to the fact that chosen 

method is designed for different bi-cluster structure, or strongly depend on initial 

conditions and provide not optimal solutions. To find the best solution for the input 

data, there is need either fully understand the structure of data, or perform many 

different experiments using as many methods as possible to choose an appropriate. 

Even the best method, suitable for data structure, in addition to the relevant data 

may contain noise, or contain incomplete data. 

In contrast to relying on single experiments or single methods, this thesis pro-

pose a solution focuses on integrating the results into one general and more reliable 

solution. Each result will contain the correct data (such that should be part of the bi-

cluster), and some data which were in it because of the noise in the data, due to the 

local minimum or other errors. Algorithms assumes that the experiment is per-

formed repeatedly (using different initial conditions and/or different methods), and 

then the results are combined, with should filter out unwanted data. The final result 

should consist of K bi-clusters. K may be a number specified by the user or obtained 

as a result of the calculations. If this number is known, results with less bi-clusters 

are complemented by empty one, and the results with more bi-clusters are reduced 

by removing bi-clusters with the lowest quality. Finally each i’th results is looks as 

follows: 

𝑅𝑖 = {𝐵1
𝑖 , 𝐵2

𝑖 , … , 𝐵𝐾
𝑖 }, where 𝐵𝑙

𝑖 = (𝐼𝑙
𝑖, 𝐽𝑙

𝑖), and 𝑙 ∈  1,… ,𝐾 

Where 𝑅𝑖  means i’th result where 𝑖 ∈  1,… , 𝑁 

Following the experiments, bi-cluster should be grouped to K groups, such that  

none of the bi-cluster within the group does not come from the same experiment: 

𝐺𝑙 = {𝐵𝑙′
1 , 𝐵𝑙′

2, … , 𝐵𝑙′
𝑁}, where 𝐵𝑙′

𝑖 = (𝐼𝑙′
𝑖 , 𝐽𝑙′

𝑖 ), and 𝑖 ∈  1,… , 𝑁 

Where 𝐺𝑙 means 𝑙′𝑡ℎ group where 𝑙 ∈ 1,… , 𝐾. Bi-clusters {𝐵𝑙′
1 , 𝐵𝑙′

2 , … , 𝐵𝑙′
𝑁}, are 

chosen to maximize the following function: 
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∑∑ ∑ 𝑆𝐽𝑎𝑐𝑐(𝐵𝑙
𝑖 , 𝐵𝑙

𝑗
)

𝑁−1

𝑗=𝑖+1,𝑗≠𝑖

𝑁

𝑖=1

𝐾

𝑙=1

 

Following the grouping, within each group 𝐺𝑙 we merge its bi-clusters to one bi-

cluster 

𝐵𝑙 = (𝐼𝑙, 𝐽𝑙) 

In such a way that the vectors 𝐼𝑙 𝑎𝑛𝑑 𝐽𝑙  were formed from the attributes included 

in as many bi-clusters from group l as possible. In the most restrictive form in all: 

𝐼𝑙 = {𝑥𝑙 ∈ 𝑋 ∶ 𝑥𝑙 ∈ 𝐼𝑙
1, 𝑥𝑙 ∈ 𝐼𝑙

2, … , 𝑥𝑙 ∈ 𝐼𝑙
𝑁} 

𝐽𝑙 = {𝑦𝑙 ∈ 𝑌 ∶ 𝑦𝑙 ∈ 𝐽𝑙
1, 𝑦𝑙 ∈ 𝐽𝑙

2, … , 𝑦𝑙 ∈ 𝐽𝑙
𝑁} 

This condition can be relaxed by allowing the absence of an attribute in a given 

number of bi-clusters (This may be a threshold, set as a parameter of the algorithm). 

 Proposed method assumes a solution in which that threshold is adjusted during 

the algorithm, to meet parameter MinC (minimum number of attributes in bi-

cluster) or MinQ (minimum quality of resulting bi-cluster). This parameter may be a 

number specified by the user or obtained as a result of the calculations 

To summarize the whole process: we have a set of N results, where each is the 

result of an experiment conducted on the same data matrix with the same number of 

bi-clusters (k). Algorithm is as follows: 

 Using a generalized Hungarian algorithm assign bi-clusters from all methods 

so as to form K sets, each consisting of N bi-clusters, 

 Compute for each bi-cluster one of quality index described in Chapter 5.2. 

 In each 𝑘’𝑡ℎ set, remove bi-clusters with quality index below certain thresh-

old 𝑇1 (parameter set by the user or computed automatically). 

 For each 𝑘’𝑡ℎ set compute average quality index, and remove whole set if its 

value is below certain threshold 𝑇2 (optional parameter set by the user or 

computed automatically). 

 For each 𝑘’𝑡ℎ set compute average 𝑛𝑖,𝑘 (number for 𝑖’𝑡ℎ attribute, denotes the 

number of bi-clusters in set k, in which attribute is present), and remove 
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whole set if its value is below certain threshold 𝑇3 (optional parameter set by 

the user or computed automatically). 

 Match the weight to each attribute 𝑖 from bi-cluster 𝑗 taken from set 𝑘, such 

that: 

𝑊𝑖,𝑘 =

𝑛𝑖,𝑘 +
𝑄𝑖,𝑘 −min

𝑘
𝑄𝑘

max
𝑘
𝑄𝑘 −min

𝑘
𝑄𝑘
∗ 𝑁

2
 

Where: 

o 𝑛𝑖,𝑘 – number for each 𝑖’𝑡ℎ attribute, denotes the number of bi-clusters 

in set k, in which attribute is present. 

o 𝑄𝑖,𝑘  – average value of quality index of bi-clusters in 𝑘’𝑡ℎ set, which 

contains attribute 𝑖’𝑡ℎ. 

o min𝑘 𝑄𝑘  – minimum value of quality index in 𝑘’𝑡ℎ set. 

o max𝑘 𝑄𝑘  – maximum value of quality index in 𝑘’𝑡ℎ set 

o 𝑁 – number of results/elements in sets. 

 Set P = N, 

 For every set representing single bi-cluster: 

1. Select only those attributes, for witch value of 𝑊𝑖,𝑘  is equal or greater 

than P. 

2. If number of attributes in bi-cluster are equal or greater than MinC 

and/or quality of bi-cluster is equal or greater than MinQ, than stop, 

otherwise go to 3. 

3. Decrease P, and go to step 1.  
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8. Graphical presentation of results 

8.1. Presenting bi-clusters 

 

Figure 24. Real data from Monica Chagoyen paper [38]. 

 Real data, regardless of origin (micro-array experiments, document-term fre-

quencies, general text mining data, etc.), at first glance may appear to be random and 

devoid of any structure. Figure 11 shows a visualization of the data matrix contain-

ing the relationship between words and genes. The vertical dimension represent 

genes, and horizontal dimension the words. At the intersection of these two dimen-

sions is a value denoting number of occurrences of a word in the context of a given 

gene. Brighter values mean fewer occurrences, while the darker more. The data has 

been very carefully chosen to contain eight bi-clusters. 

 

Figure 25. BiVoC algorithm sample result. 

 To reveal hidden structure it is necessary to reorder rows and columns. The 

literature contains many examples of algorithms for implementing this task. 

8.1.1. BiVoC 

 BiVoC stands for Bi-dimensional Visualization of Clustering and it is a part of 

package Biorithm [39]. It is a set of tools written in C++ designed to analyze data 

mainly in molecular systems biology. This software is developed by T.M. Murali’s 
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research group and is created for a several years. BiVoC is a part of this work, and it 

is an algorithm for laying out bi-clusters in two-dimensional matrix. It takes on input 

data matrix and information about computed bi-clusters. As the very first step algo-

rithm removes from data matrix all irrelevant rows and columns (those not involved 

to any bi-cluster). After filtering attributes method perform reordering to group 

rows and columns, so that those who are involved in the same bi-cluster appeared 

next to each other. Example result is shown on Figure 25. 

8.1.2. BicOverlapper 

BicOverlapper is visualization tool introduced by Rodrigo Santamaria, et al. [40] 

in 2008. They proposed approach based on undirected graph, where bi-clusters are 

plotted as complete sub-graphs (Figure 26). Edges consist of rows and columns from 

original data matrix. 

 

Figure 26. BicOverlapper graph representation. 

For clarity, the edges of the graph are not drawn. Nodes belonging to bi-clusters 

are gathered into rounded shapes. Each pair of nodes from the . The main advantage 

of this tool is that visualization is not static. User can interact with it, and change pa-

rameters of a model, BicOverlapepr layout, etc. 

8.1.3. BiCluster Viewer 

 In 2011 Julian Heinrich et al. [41] proposed tool for visualizing bi-clustering 

results from gene expression data analysis. Authors draw bi-clusters using heat 

maps representation, and what is very interesting, allow for duplicate columns and 

rows. Heat maps data values mapped to grayscale values using linear interpolation 
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between smallest and largest value of the original data matrix. The algorithm allows 

the duplication of rows and columns to make sure that all of them are located in con-

tiguous regions. 

 

Figure 27. Example of BiCluster Viewer, taken from original publication [41]. 

Figure 27 shows en example of presenting toy example in four different repre-

sentations. First view (a) is default and represent each bi-cluster by its major rec-

tangle only. In second mode (b) all bi-clusters are represented. In third (c) view is 

with tree highlighted bi-clusters, and last (d) with permanently highlighted bi-

clusters 
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8.2. Presenting the results of domain 

Sometimes determining the bi-clusters is not enough, the need is to deter-

mine their quality also. For this purpose it is necessary to interpret the obtained 

clusters, and to determine their quality according to the field to which they be-

long. 

8.2.1. Clusters containing genes 

 

Figure 28. Gene ontology tree composed with gene ontology terms. 

 To asses quality of gene cluster we use gene ontology database. Genes clus-

ters are connected with gene ontology terms. Next step is to using those term build 

network (Figure 28). For this purpose Cytoscape program [42] with Bingo plugin 

[43] is used. Assumption is that genes strongly correlated with each other, will lead 

to small and dense trees, because they shouldn’t be associated with very diversified 

group of terms.  

In Figure 28, only colored terms are the result of the analysis. White one are used 

only for visualization purposes, to connect resulted terms with root. 
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8.3. Presenting the results from different experiments. 

It’s very useful to compare result coming from different experiments performed 

within the same or different method. This is especially useful when there is need to 

examine how repeatable methods are or merge different results. 

 

Figure 29. Venn Diagram with visualization of merge of different results. Computed using VennMaster 
tool [44]. 

To begin any analysis first should single bi-clusters between the methods be as-

sociated. Wide description of how this can be done is presented in chapter 7.4. As a 

result there are sets of bi-clusters, which should have a high level of similarity. Men-

tioned in this paragraph analysis is intended to visualize this similarity, so that it 

was easily evaluable by the user.  

Similarity between set can be easily visualized by plotting paired sets on Venn 

diagrams. Example of such visualization is presented on Figure 29. There are four 

different bi-clusters set from six different experiments. From such analysis be done 

conclude similarity level with respect to size. 
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9. Computational experiments 

9.1. Environment for data generation and evaluation 

For the purpose of this PhD thesis was created software named AspectAna-

lyzer. Its distributed system written in C# programming language and .NET 

Framework. It has implemented several algorithms taken from literature and 

consensus methods described in this thesis. Graphical user interface is based on 

Windows Presentation Foundation. Communication within program and within 

different instances of AspectAnalyzer on different nodes is based on Microsoft 

MSMQ queues and all mathematical computation are done using ILNumerics. 

 

Figure 30. AspectAnalyzer main window. 

ILNumerics is a high performance math library available on GPL Public li-

cense. Library extends .NET Framework with tools for scientific computing, provides 

simplified and optimize code for matrix operations. Below table (Table 3) shows dif-

ferences between standard C# implementation and analogous implementation using 

ILNumerics. Tests were done using AspectAnalyzer program and presented times 

are for execution of one pass of the loop. In some cases dedicated library was twenty 

times faster than regular implementation. 



73 
 

Table 3. Comparison of standard C# implementation and ILNumerics. 

Method C# [s] ILNumerisc [s] 

PLSA 14 2 

Kullback-Liebler 12 0.7 

Least Square Error 7 0.5 

NonSmooth Kullback-Liebler 24 0.9 
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9.1.1. Data 

Due to the distributed nature of the system, data is stored in Microsof SQL da-

tabase. Figure 31 shows diagram of AspectAnalyzer database, and data is divided 

into two groups – data related to matrices and data related to results. In first group 

we can find matrices with its data and all description such as matrix noise level, bi-

cluster numbers, etc. All matrices comes also with type which can be set to V matrix 

(orginal data matrix) and optionally (is algorithm perform matrix factorization) W 

matrix (left matrix from factorization) and H matrix (right matrix from factoriza-

tion). There is no limit on number of different properties. To add one there is only 

need to add its description to PropertiesTypes table. 

 

Figure 31. AspectAnalyzer data diagram. 

 Schema related to results contains a little bit more information’s. Table “Re-

sults” contain detailed data about single experiment (such as number of steps, value 

of distance function, etc.). With results there is also a room for features computed 

after experiments using for example factorized matrices. Such can be estimated bi-
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clusters, values of quality indexes, etc. Data was tested on version 2008 R2 and 2012 

of SQL Server in Express Edition. In such configuration program and all its features 

is free and available for all operating system using .NET Framework and MSMQ 

queues. However in free version of SQL server Express only limitation for user, that 

is important from AspectAnalyzer point of view, is that database size is limited to 

10GB. For comparison, commercial versions have the limit set to 524PB. But free 

version is sufficient for many application of AspectAnalyzer, and if not there is a 

possibility to divide large database into smaller parts to omit restrictions. 

9.1.2. Distributed computing 

Thanks to the use of the database not integrated with the program, there is 

an opportunity to build a distributed system. It is possible to run many instances of 

AspectAnalyzer on a different nodes, different location etc. All instances can be set to 

master-slave model in which one instance is master node, and all others should be in 

slave mode. All nodes report to master every 5 seconds with information about cur-

rent load, completeness of current tasks etc. Master node can manage remotely by 

sending specific instructions to slave-node using its IP address. 

 

Figure 32. Node Manager window from AspectAnalyzer. 
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Using Node Manager panel shown on Figure 32 user can specify tasks, define 

experiments and system will automatically balance those jobs over running instanc-

es taking into account current load, number of cores, etc. Remote steering has the 

same abilities as normal one, and whole communication is done using MSMQ, so on-

ly one limitation is that ports on nodes IP should by open between every slave node 

and master node. 

Besides defining tasks and balancing it on all connected nodes, Node manager 

can also change all possible settings of every connected slave (Figure 33). 

 

              Figure 33. Slave settings window for node manager. 

9.1.3. Defining own synthetic matrix 

User can define its own synthetic matrix with its all relevant properties. Pro-

cedure starts with defining size of data. After this, on a screen appears black border 

which limits data matrix. Within those borders it is possible to place bi-clusters as 

colored squares. For each there is an option which allows to defined data structure 

inside bi-cluster. User can choose one of predefined settings or load sample bi-

cluster from text file.  
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Figure 34. Painter window from AspectAnalyzer. 

 After defining bi-cluster position, structure and size there is also possibility 

to introduce noise to data matrix. Noise level can be generated inside and/or outside 

of bi-cluster automatically, by defining its level and characteristic. And there is also 

possibility to generate noise manually by printing it using special “spray” control. 

Level is generated manually in this mode, but user is able to define noise character-

istics such as average value, distribution, etc. 

9.1.4. Browsing data and results 

Using form presented on Figure 35 user is able to browse over results stored 

in database. Main window shows only general view with list of data matrices and 

summary number of results for it. Double click on matrix results with loading it to 

main screen and options with defining bi-clustering experiments. Other way is to 

clicking “chart and notes” icon which for the selected matrix displays in the table a 

more detailed summary. It contains results grouped by method and number of bi-

clusters with average, minimum and maximum value of divergence function (if such 

function exist for selected method). The third level of nesting, available under an 

icon mentioning above, is a view of the individual results. 
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Figure 35. Data window from AspectAnalyzer. 

 On detailed window with list of single results last available option is calling 

window with result description. On such window user can draw chart with diver-

gence function (Figure 36), extract customized bi-clusters from result or compute 

quality indexes for it. 

 

Figure 36. Sample chart with changes in divergence function values. 
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9.1.5. Update functionality 

 

Figure 37. Aspect Analyzer Update Window. 

Since program is available public, and hosted on dedicated website, there is pos-

sibility of fully automated update process. Feature is available only if currently in-

stalled version is lower that this posted on project site. 

9.1.6. Program availability  

 

Figure 38. About window from AspectAnalyzer. 

 Whole system is based on free and widely available components as ready to 

use installer posted public on dedicated website http://AspectAnalyzer.foszner.pl/ 

(Figure 39). Project site in addition to the installation version of the program itself 

http://aspectanalyzer.foszner.pl/
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also contains a comprehensive description and user manuals. Is organized in the 

form of a blog on which are published up to date information about changes and 

new versions. 

 

Figure 39. Aspect Analyzer official website. 
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9.2. Third-party software 

During work on this thesis several third-party software were used. 

 Bi-Bench [18] – Bi-clustering package consist of 3 important layers: 

o User API – written in python set of functions for running all features of 

package 

o R-CRAN package – for functionalities related with biological data 

o Bi-clustering algorithms package installed separately in the operating 

system 

 COLASCE [45] 

 CPB [19] 

 BBC [46] 

 QUBIC [5] 

 VennMaster [44] 

 BicOverlapper [40] 

 Cytoscape [42] 

 Bingo [43] 

 ILnumerics [47] 

 BiCluster Viewer [41] 
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9.3. Data 

9.3.1. Synthetic data 

 There is a large number of data structures, and very often algorithms from 

literature specialized only in specific one. In more details all possible structures are 

described in chapter 5.1 and small survey of bi-clustering algorithms in chapter 6. 

The main characteristic of synthetic data is its diversity. They contain every im-

portant combinations of bi-cluster structures, and the degree to which overlap the 

rows and columns. Data consist of matrices with one of six major structure each. 

Additionally every matrix represents single structure appears in one of nine variants 

regarding to bi-clusters overlapping over rows and columns. That gives 56 matrices 

in . Figure 40 shows examples from that set. 

 

Figure 40. Samples of synthetic data. 

Regarding to level of overlapping test set consist of various number for matri-

ces with different variants of bi-clusters positions in data matrix. We distinguish da-

ta matrices with: 

 Single bi-cluster, 

 Bi-clusters with exclusive rows and columns, 

 Bi-clusters exclusive on rows and overlapping on columns (25%), 

 Bi-clusters exclusive on rows and overlapping on columns (50%), 

 Bi-clusters exclusive on rows and overlapping on columns (75%), 

 Bi-clusters exclusive on columns and overlapping on rows (25%), 

 Bi-clusters exclusive on columns and overlapping on rows (50%), 

 Bi-clusters exclusive on columns and overlapping on rows (75%), 

 Bi-clusters overlapping on both dimensions (up to 100% of overlap) 
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Each structure described above appears in six different variants of bi-clusters 

values. Regarding to bi-clusters structure we distinguish data with (every single ma-

trix contains only one of the following): 

 Constant data 

 Constant data up-regulated 

 Plaid data 

 Shifted data 

 Scaled data 

 Shift and scale data 

To sum this up we have nine different data sets regarding to bi-cluster position 

and six regarding to bi-cluster structure. The final set of the consisting of 56 matri-

ces, each having a different structure and distribution of the bi-clusters. 

9.3.2. Real data 

9.3.2.1. Text mining data 

Real data come from article by Monica Chagoyen, et al [38]. Data were restored 

based on the informations and the sources from the article. It was a matrix contain-

ing the number of occurrences of words in the context of genes. Genes were selected 

from SGD8 database (Saccharomyces cerevisiae genome) and each associated with 

one of eight broad biological processes (each of which described by GO Ontology 

term): 

 cell cycle (GO:0007049), 

 cell wall organization and biogenesis (GO:0007047), 

 DNA metabolism (GO:0006259), 

 lipid metabolism (GO:0006629), 

 protein biosynthesis (GO:0042158), 

 response to stress (GO:0006950), 

 signal transduction (GO:0007165), 

 transport (GO:0006810). 

All genes were annotated by the experts with 7080 articles. At least one arti-

cle with one gene. We download all documents listed in article from PubMed da-



84 
 

tabase. Single document is constructed by concatenating the titles and the ab-

stracts. After removing very frequent terms (appears in more than 80% of 

genes), and very rare terms (less than 4%), we obtain 3031 words. Term fre-

quencies were weighted by IDF measure [48], which stands for inverse document 

frequency: 

𝐼𝐷𝐹𝑗 = log(
𝑇

𝑡𝑗
) 

Where  

𝐼𝐷𝐹𝑗 – is inverse document frequency for term j, 

𝑇 – total  number of documents in set 

𝑡𝑗  – number of documents that contains document j 

 

Than final value of balanced term frequency of term j in document I, can be 

defined as: 

𝐷𝑖𝑗 = 𝑡𝑓𝑖𝑗 ∗ 𝐼𝐷𝐹𝑗 

9.3.2.2. Microarray data 

 

Figure 41. Gene expression data from Eng-Juh Yeoh, at el. [49] presented as heatmap. 

Data were taken from Eng-Juh Yeoh, at el. [49] publication is gene expression 

matrix consist of 360 microarray experiments. Each experiment is taken from differ-

ent leukemia patient. Each patient in test group has one of six subtype of leukemia. 

Such define data set could have been consist of six bi-clusters, each associated with a 

different kind of disease.   
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9.4. Computational results 

9.4.1. Synthetic data 

 For each matrix described in chapter 9.3.1 were performed 100 experiment – 

each time with different initial conditions for non-deterministic algorithms and one 

experiment for deterministic algorithms.  

 BBC  

 Cheng-Church  

 BiMax  

 CPB  

 FABIA  

 XMotifs  

 Plaid  

 ISA   

 Qubic  

Each algorithm was run on all the data a hundred times. This gives a total 

number of few thousands of experiments, shown below, by the kind of data.  

For each data, after all analysis, meta-algorithm was performed using results 

of above nine algorithms. This is denoted on charts by . As clearly seen in the fol-

lowing figures, the algorithm proposed in Chapter 7.4, proved to be the best in most 

cases on synthetic data. 

 Results are presented in Appendix A Synthetic data. Outcome from each data 

matrix are presented graphically in the chart and in the form of a numerical table. 

The graph in the vertical axis has “Relevance” while on the horizontal “Recovery”. It 

is desirable that the result which is considered the best was in the upper right cor-

ner (1,1), and the worst at the bottom left (0,0). 
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9.4.2. Real data 

 For the purpose of this analysis two different data sets were chosen. First set 

resulted from text mining analysis of publication dataset. Data matrix was the matrix 

of occurrences of words in the context of genes. Documents describe one of the eight 

subjects. It is therefore expected eight bi-clusters composed of a set of genes and 

with a set of words. Second data set was gene-expression matrix coming from mi-

croarray experiments performed on patients with leukemia. Each of the patients be-

longed to one of the six independent groups. The analysis should result with six bi-

clusters composed of groups of genes and groups of conditions. Both data sets are 

described in Chapter 9.3.2.  

 At the beginning of the experiments are performed by known algorithms. De-

terministic algorithms, the result of which is repeatable and does not depend on the 

initial conditions, are performed once. Analyses using non-deterministic algorithms, 

or such that the result depends on the initial conditions are repeated a hundred 

times. 

9.4.2.1. Results repeatability 

At the beginning the repeatability of results over the experiment are exam-

ined. To visualize this bi-clusters from different experiments were assigned to itself 

by the method described in section 5.4. For this second group additional analysis has 

been performed in order to filter out algorithms that are not suitable. For such we 

consider algorithms that return a bi-clusters of a quality below a certain threshold 

and its results are not repeatable. To visualize this bi-clusters from different exper-

iments were assigned to itself by the method described in section 7.4. Then, using 

software VennMaster [44] for each bi-cluster there is a diagram that shows how dif-

ferent clusters are between different experiments. In brackets, after the name its 

name for each bi-cluster is presented the average AVC index value (described in sec-

tion 5.2.2). The average sizes of a single bi-cluster is represented by two numbers in 

angle brackets under the diagrams. They represent respectively the cardinality of 

the first and second cluster (components of the resulting bi-cluster). 

For our example visualizing such analysis were selected four non-

deterministic algorithms based on the nonnegative matrix factorization. Algorithms 
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were described in chapter 6.1 and they consist in factorizing the data matrix as the 

product of two other matrices (denoted by matrix W and matrix H): 

𝐴 ≈ 𝑊 ∗ 𝐻 

Bi-clusters are read directly from those matrices. Where chosen PLSA by 

Hoffman [50] and three NMFs based on three different distance functions: Least 

Square Error [8], Kullback-Liebler [8], and nonSmooth Kullback-Liebler [22]. Those 

algorithms are strongly depend on initial conditions which are randomly generated 

matrices W and H. For this reason, each experiment was repeated ten times, each 

time with a randomly filled matrices W and H. Below examples from that analysis: 

 

Figure 42. Probabilistic Latent Semantic Analysis. 

Average size of single bi-cluster in method on Figure 42 is <34, 38>, and av-

erage value for AVC index is 0,138. As there is shown results are moderately good. 

Only bi-cluster 3 is fully repeatable, and other bi-clusters have different results close 

enough but not always at the same spot. 
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Figure 43. NMF based on Kullback-Liebler divergence function. 

 Average size of single bi-cluster in method on Figure 43 is <25, 20>, and av-

erage value for AVC index is 0,129. Conclusions are very similar to those on pre-

views figure. 

 

Figure 44. NMF based on Least Square Error distance function. 

Average size of single bi-cluster in method on Figure 44 is <69, 75>, and av-

erage value for AVC index is 0,211. Above example can be consider as very good, be-

cause all bi-cluster at almost every result looks the same. Only exception is at bi-

cluster 2 where three results are different. 
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Figure 45. NMF based on non-smooth Kullback-Liebler divergence function. 

 Average size of single bi-cluster in method on Figure 45 is <46, 39>, and av-

erage value for AVC index is 0,253. In this example only half of bi-cluster produce 

repeatable clusters over results.  

9.4.2.2. Consensus algorithm comparison 

 Table 4 and Table 5 presents differences between normal algorithms from 

literature and approach based on merging results. For each method bi-clustering 

experiment were carried out one hundred times for nondeterministic methods, and 

one for deterministic method . Then using method described in chapter 5.3 For each 

method separately connection between bi-clusters have been made. This results 

with eight set consisting of one hundred corresponding bi-clusters. After this, con-

sensus result is creating as follows: 

Such algorithms results with eight bi-clusters, each with size < |𝐼𝑖|, |𝐽𝑖| >, 

where |𝐼𝑖|, |𝐽𝑖| are cardinalities of clusters belonging to the i’th bi-cluster. Average 

AVC index is computed over all eight bi-cluster and its value is presented in table in 

rows marked as “Consensus” in “Type” column. For each method there is a corre-

sponding row marked as “Normal”. It contains average and best AVC value taken 

from all results of single method. To make a reliable comparison, “Normal” values 

has fixed cluster sizes set respectively to 𝐼 ̅𝑎𝑛𝑑 𝐽 .̅ 
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Table 4. Summary with average bi-cluster quality for text mining data [38]. 

Method Type Average AVC Best AVC 

PLSA 
Normal 0.118 0.138 

Consensus 0.304 

K-L 
Normal 0.129 0.147 

Consensus 0.297 

LSE 
Normal 0.211 0.245 

Consensus 0.274 

nsK-L 
Normal 0.140 0.154 

Consensus 0.253 

Cheng-Church 
Normal 0,201 0,201 

Consensus 0,201 

BiMax 
Normal 0,281 0,298 

Consensus 0,304 

CPB 
Normal 0,164 0,187 

Consensus 0,192 

FABIA 
Normal 0,288 0,299 

Consensus 0,320 

XMotifs 
Normal 0,312 0,315 

Consensus 0,325 

ISA 
Normal 0,402 0,421 

Consensus 0,452 

Qubic 
Normal 0,187 0,207 

Consensus 0,159 

All results 
Normal 0,221 0,421 

Consensus 0.385 
 

 

Table 5. Summary with average bi-cluster quality for microarray data [49]. 

Method Type Average AVC Best AVC 

PLSA 
Normal 0.118 0.138 

Consensus 0.304 

K-L 
Normal 0.129 0.147 

Consensus 0.297 

LSE 
Normal 0.211 0.245 

Consensus 0.274 

nsK-L 
Normal 0.140 0.154 

Consensus 0.253 

Cheng-Church 
Normal 0,198 0,198 

Consensus 0,198 

BiMax 
Normal 0,305 0,337 

Consensus 0,541 

CPB 
Normal 0,158 0,185 

Consensus 0,198 
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FABIA 
Normal 0,327 0,363 

Consensus 0,429 

XMotifs 
Normal 0,352 0,402 

Consensus 0,452 

ISA 
Normal 0,502 0,596 

Consensus 0,602 

Qubic 
Normal 0,187 0,207 

Consensus 0,228 

All results 
Normal 0,238 0,402 

Consensus 0,391 
 

As clearly shown in the tables above, the algorithm based on combining the 

results of a wide variety of methods give much better results than individual algo-

rithms. Resulting bi-cluster set, computed on all available data is in both cases al-

most twice time better than average score. 

9.4.2.3. Other ways to determine the result quality. 

In the case of real data, we do not know exactly what to expect. We do not 

have the expected bi-clusters, so we cannot use the same algorithm as in the case of 

synthetic data. Instead, we will analyze the results in terms of their meaningfulness.  

Data contains genes annotated to one of eight gene ontology term from bio-

logical process ontology. Using Cytoscape program with its plugin BiNGO, we create 

a term ontology network based on a set of genes from every bi-cluster. In addition, 

check how found sets of genes are associated with the expected terms. In order to 

link set of terms with set of genes we using hypergeometric test with a significance 

level of 0.05. 
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Figure 46. Sample network for gene cluster. 

Figure 46 shows an example of a network generated for a single gene cluster 

by Kullback–Leibler algorithm. It consists of the terms that have been associated 

with this cluster using the BiNGO program (colored) and terms between them and 

the root (white). Terms are colored from yellow (the largest p-values) to the color 

orange (the smallest p-values). The attached image shows that terms for that cluster 

of genes are detected correctly because the terms are found mainly in the branch 

containing the expected term (with in this case is GO:0006950 “response to stress”). 

To assess the quality of a single cluster, I chose two values. (1) The network den-

sity (higher means better). (2) Number of nodes in network - the lower means bet-

ter. The data has been constructed in such a way that it contains eight bi-clusters, 

each of them described by one ontology term. Therefore, I decided that the best out-

come is the one which creates a dense network focusing on that term. 

Table 6. Comparison of gene ontology trees based on gene clusters. 

Method Network density Numbers of nodes 

PLSA 0,066 55,875 

K-L 0,093 60,125 

LSE 0,090 53,375 

nsK-L 0,080 60,125 

Consensus algorithm 0,139 34,375 
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10. Conclusions and summary 

The aim of this thesis was to develop a universal approach to the analysis of 

bi-clustering  and method that is resistant on the structure of the data. For this pur-

pose, the synthetic dataset that covered almost all relevant data variants was creat-

ed. Obtained on their basis results showed that the approach proposed in the disser-

tation is clearly better than the available methods or no worse than the three best 

algorithms (for this specific data). A measure of the quality of the synthetic data was 

the arithmetic mean of the measure defining the coverage obtained bi-clusters in a 

set of expected bi-clusters and measures of determining the coverage of expected bi-

clusters in a set of found bi-clusters. In other words arithmetic mean of relevance 

and recovery. 

The proposed method has also shown that it can improve performance for 

real data. For this purpose, analyzed two completely different sets of data available 

in the literature. It has been shown that this approach significantly improves the 

quality of the bi-clusters. 

 To confirm the described above thesis, were created synthetic data (de-

scribed in Chapter 9.3.1) and selected from the literature, two sets of real data (de-

scribed in Chapter 9.3.2). For this data set analysis were performed and discussed 

consecutively in Chapter 9.4.1, and 9.4.2. Both studies showed significant improve-

ment in the quality of the results after applying the proposed method. 

 The result of work on the algorithm was universal and expanded software for 

analysis of bi-clustering. The software has been released to the public on the Inter-

net, along with extensive service organized in the form of a blog. At the address 

http://aspectanalyzer.foszner.pl was posted ready to use installer, along with a 

complete user manual. In addition, the portal allows report bugs, new features, and 

questions about the software. Will be published also detailed information about cur-

rent and planned versions. All software is provided free of charge and will include a 

complete, ready-to-run package. 
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Original added values of dissertation are: 

 Developed similarity measures between bi-clusters 

 The methodology of combining bi-clustering results based on generalized 

Hungarian algorithm, 

 Meta-algorithm of bi-clustering combining the results of different meth-

ods 

 The publicly available software with friendly graphical user interface 
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Single bi-cluster 

Constant data Constant data up-regulated 

  

Plaid data Shift-Scale data 

  

Shift data Scale data 
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Table 7. Numeric results for single bi-cluster data with constant values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,385 0,385 0,385 1 
Cheng-Church  0,926 0,926 0,926 1 

BiMax  - - - - 
CPB  0,994 0,071 0,533 14,61 

FABIA  - - - - 
XMotifs  0,966 0,966 0,966 1 

Plaid  - - - - 
ISA  0,099 0,077 0,088 1,577 

Qubic  0,133 0,008 0,071 16,83 
Consensus  1 1 1 1 

Table 8. Numeric results for single bi-cluster data with constant up-regulated values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,553 0,553 0,553 1 
Cheng-Church  0,011 0,011 0,011 1 

BiMax  0,788 0,009 0,398 86,5 
CPB  0,623 0,516 0,57 75,86 

FABIA  0,651 0,651 0,651 1 
XMotifs  0,85 0,85 0,85 1 

Plaid  1 1 1 1 
ISA  - - - - 

Qubic  0,723 0,085 0,404 17,37 
Consensus  1 1 1 1 

Table 9. Numeric results for single bi-cluster data with plaid values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,983 0,983 0,983 1 
Cheng-Church  0,083 0,083 0,083 1 

BiMax  0,519 0,003 0,261 185 
CPB  0,501 0,098 0,299 5,84 

FABIA  0,558 0,558 0,558 1 
XMotifs  0,133 0,133 0,133 1 

Plaid  0,868 0,868 0,868 1 
ISA  0,438 0,438 0,438 1 

Qubic  0,302 0,014 0,158 23,67 
Consensus  1 1 1 1 
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Table 10. Numeric results for single bi-cluster data with shift and scale values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,594 0,594 0,594 1 
Cheng-Church  0,669 0,669 0,669 1 

BiMax  0,131 0,013 0,072 10 
CPB  0,994 0,312 0,653 1 

FABIA  0,41 0,41 0,41 4,12 
XMotifs  0,214 0,214 0,214 1 

Plaid  0,519 0,519 0,519 1 
ISA  0,409 0,091 0,25 4,57 

Qubic  0,266 0,011 0,138 25,49 
Consensus  1 1 1 1 

Table 11. Numeric results for single bi-cluster data with shift values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,633 0,633 0,633 1 
Cheng-Church  0,744 0,744 0,744 1 

BiMax  0,381 0,032 0,206 25,96 
CPB  1 0,912 0,956 1,19 

FABIA  0,506 0,506 0,506 1 
XMotifs  0,2 0,2 0,2 1 

Plaid  0,914 0,914 0,914 1 
ISA  0,399 0,191 0,295 2,12 

Qubic  0,342 0,015 0,179 22,15 
Consensus  0,941 0,941 0,941 1 

Table 12. Numeric results for single bi-cluster data with scaled values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,425 0,425 0,425 1 
Cheng-Church  0,719 0,719 0,719 1 

BiMax  0,137 0,015 0,076 8,969 
CPB  1 0,277 0,638 4,39 

FABIA  0,314 0,314 0,314 1 
XMotifs  0,399 0,399 0,399 1 

Plaid  0,314 0,314 0,314 1 
ISA  0,406 0,365 0,385 1,24 

Qubic  0,266 0,011 0,138 24,43 
Consensus  1 1 1 1 
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Bi-clusters with exclusive rows and columns 

Constant data Constant data up-regulated 

  

Plaid data Shift-Scale data 

  

Shift data Scale data 
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Table 13. Numeric results for exclusive row and columns data with constant values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,693 0,693 0,693 4 
Cheng-Church  0,182 0,727 0,454 4 

BiMax  - - - - 
CPB  0,706 0,623 0,665 5,4 

FABIA  - - - - 
XMotifs  0,645 0,645 0,645 4 

Plaid  - - - - 
ISA  0,024 0,069 0,047 4,078 

Qubic  0,092 0,022 0,057 17,57 
Consensus  0,8 0,8 0,8 4 

Table 14. Numeric results for exclusive row and columns data with constant up-regulated values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,902 0,906 0,904 1 
Cheng-Church  0,008 0,032 0,02 1 

BiMax  0,891 0,056 0,473 64 
CPB  0,224 0,342 0,283 125,36 

FABIA  0,951 0,953 0,952 4 
XMotifs  0,187 0,548 0,367 4 

Plaid  0,493 0,997 0,745 4 
ISA  0,628 0,198 0,413 12,89 

Qubic  0,797 0,396 0,596 8,83 
Consensus  1 1 1 4 

Table 15. Numeric results for exclusive row and columns data with plaid values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,981 0,981 0,981 4 
Cheng-Church  0,027 0,108 0,067 4 

BiMax  0,431 0,051 0,241 52,18 
CPB  0,496 0,14 0,318 14,72 

FABIA  0,316 0,386 0,351 4 
XMotifs  0,109 0,227 0,168 4 

Plaid  0,468 0,48 0,474 4 
ISA  0,726 0,342 0,534 8,56 

Qubic  0,267 0,03 0,148 40,3 
Consensus  1 1 1 4 
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Table 16. Numeric results for exclusive row and columns data with shift and scale values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,638 0,638 0,638 4 
Cheng-Church  0,072 0,289 0,181 4 

BiMax  0,134 0,092 0,113 5,92 
CPB  0,846 0,549 0,698 6,53 

FABIA  0,313 0,319 0,316 4 
XMotifs  0,149 0,267 0,208 4 

Plaid  0,135 0,399 0,267 4 
ISA  0,525 0,178 0,351 11,92 

Qubic  0,135 0,033 0,084 16,39 
Consensus  0,675 0,675 0,675 4 

Table 17. Numeric results for exclusive row and columns data with shift values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,843 0,843 0,843 4 
Cheng-Church  0,073 0,291 0,182 4 

BiMax  0,261 0,057 0,159 18,68 
CPB  0,989 0,622 0,806 6,71 

FABIA  0,349 0,357 0,353 4 
XMotifs  0,079 0,081 0,08 4 

Plaid  0,446 0,746 0,596 4 
ISA  0,548 0,266 0,407 8,34 

Qubic  0,215 0,035 0,125 24,77 
Consensus  0,676 0,676 0,676 0,676 

Table 18. Numeric results for exclusive row and columns data with scaled values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,501 0,501 0,501 4 
Cheng-Church  0,104 0,415 0,259 4 

BiMax  0,038 0,077 0,057 4 
CPB  0,916 0,604 0,76 6,3 

FABIA  0,213 0,225 0,219 4 
XMotifs  0,249 0,454 0,351 4 

Plaid  0,093 0,371 0,232 4 
ISA  0,518 0,495 0,506 4,24 

Qubic  0,157 0,028 0,093 22,68 
Consensus  0,547 0,547 0,547 4 
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Exclusive on rows and overlapping on columns (25%) 

Constant data Constant data up-regulated 

  

Plaid data Shift-Scale data 

  

Shift data Scale data 
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Table 19. Numeric results for single bi-cluster data with constant values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,663 0,669 0,666 4 
Cheng-Church  0,175 0,699 0,437 4 

BiMax  - - - - 
CPB  0,878 0,367 0,622 10,4 

FABIA  - - - - 
XMotifs  0,628 0,628 0,628 4 

Plaid  - - - - 
ISA  0,026 0,064 0,04 4,057 

Qubic  0,108 0,022 0,065 19,86 
Consensus  0,678 0,678 0,678 4 

Table 20. Numeric results for single bi-cluster data with constant up-regulated values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,85 0,852 0,851 4 
Cheng-Church  0,005 0,021 0,013 4 

BiMax  0,816 0,021 0,419 154 
CPB  0,205 0,39 0,297 66,08 

FABIA  0,947 0,947 0,947 4 
XMotifs  0,161 0,452 0,30 4 

Plaid  0,478 0,974 0,726 4 
ISA  0,577 0,03 0,304 76,48 

Qubic  0,779 0,322 0,55 10,62 
Consensus  1 1 1 4 

Table 21. Numeric results for single bi-cluster data with plaid values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,993 0,993 0,993 4 
Cheng-Church  0,022 0,09 0,056 4 

BiMax  0,346 0,088 0,217 90 
CPB  0,495 0,13 0,313 16,01 

FABIA  0,35 0,39 0,37 4 
XMotifs  0,032 0,093 0,063 4 

Plaid  0,581 0,595 0,588 4 
ISA  0,674 0,248 0,461 10,91 

Qubic  0,34 0,055 0,198 28,42 
Consensus  1 1 1 4 
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Table 22. Numeric results for single bi-cluster data with shift and scale values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,62 0,62 0,62 4 
Cheng-Church  0,046 0,183 0,114 4 

BiMax  0,208 0,058 0,133 14,5 
CPB  0,819 0,579 0,699 6,07 

FABIA  0,273 0,298 0,286 4 
XMotifs  0,062 0,11 0,086 4 

Plaid  0,123 0,417 0,27 4 
ISA  0,52 0,273 0,396 7,68 

Qubic  0,158 0,039 0,098 16,52 
Consensus  0,783 0,783 0,783 4 

 

Table 23. Numeric results for single bi-cluster data with shift values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,976 0,976 0,976 4 
Cheng-Church  0,054 0,216 0,135 4 

BiMax  0,248 0,058 0,153 18,24 
CPB  0,995 0,557 0,776 7,44 

FABIA  0,37 0,385 0,377 4 
XMotifs  0,091 0,107 0,099 4 

Plaid  0,487 0,783 0,635 4 
ISA  0,502 0,253 0,378 8,03 

Qubic  0,227 0,034 0,13 27,88 
Consensus  0,943 0,943 0,943 4 

 

Table 24. Numeric results for single bi-cluster data with scaled values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,502 0,503 0,503 4 
Cheng-Church  0,157 0,626 0,391 4 

BiMax  0,041 0,162 0,102 4 
CPB  0,832 0,714 0,773 5,1 

FABIA  0,144 0,289 0,217 4 
XMotifs  0,132 0,258 0,195 4 

Plaid  0,088 0,353 0,221 4 
ISA  0,436 0,424 0,43 4,14 

Qubic  0,145 0,024 0,085 24,65 
Consensus  0,898 0,898 0,898 4 
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Exclusive on rows and overlapping on columns (50%) 

Constant data Constant data up-regulated 

  

Plaid data Shift-Scale data 

  

Shift data Scale data 
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Table 25. Numeric results for single bi-cluster data with constant values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,518 0,547 0,532 4 
Cheng-Church  0,205 0,819 0,512 4 

BiMax  - - - - 
CPB  0,895 0,386 0,64 10,02 

FABIA  - - - - 
XMotifs  0,557 0,557 0,557 4 

Plaid  - - - - 
ISA  0,022 0,066 0,044 4,018 

Qubic  0,093 0,019 0,056 20,17 
Consensus  0,6 0,6 0,6 4 

Table 26. Numeric results for single bi-cluster data with constant up-regulated values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,766 0,768 0,767 4 
Cheng-Church  0,008 0,032 0,02 4 

BiMax  0,938 0,022 0,48 167 
CPB  0,292 0,511 0,401 57,33 

FABIA  0,885 0,888 0,886 4 
XMotifs  0,175 0,514 0,344 4 

Plaid  0,621 0,725 0,673 4 
ISA  0,337 0,024 0,18 57,14 

Qubic  0,759 0,291 0,525 10,96 
Consensus  0,884 0,884 0,884 4 

Table 27. Numeric results for single bi-cluster data with plaid values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,997 0,997 0,997 4 
Cheng-Church  0,024 0,098 0,061 4 

BiMax  0,484 0,009 0,246 206 
CPB  0,494 0,134 0,314 15,37 

FABIA  0,378 0,426 0,402 4 
XMotifs  0,017 0,067 0,042 4 

Plaid  0,689 0,696 0,692 4 
ISA  0,677 0,291 0,484 9,32 

Qubic  0,267 0,048 0,157 26,51 
Consensus  1 1 1 4 
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Table 28. Numeric results for single bi-cluster data with shift and scale values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,647 0,648 0,648 4 
Cheng-Church  0,091 0,365 0,228 4 

BiMax  0,167 0,067 0,117 10,58 
CPB  0,743 0,578 0,66 5,63 

FABIA  0,29 0,301 0,295 4 
XMotifs  0,122 0,237 0,179 4 

Plaid  0,145 0,462 0,304 4 
ISA  0,5 0,157 0,328 12,84 

Qubic  0,255 0,054 0,154 19,18 
Consensus  0,599 0,599 0,599 4 

 

Table 29. Numeric results for single bi-cluster data with shift values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,975 0,975 0,975 4 
Cheng-Church  0,148 0,591 0,369 4 

BiMax  0,206 0,036 0,121 23,2 
CPB  0,991 0,557 0,774 7,46 

FABIA  0,347 0,406 0,377 4 
XMotifs  0,085 0,096 0,091 4 

Plaid  0,41 0,72 0,565 4 
ISA  0,503 0,253 0,378 8,09 

Qubic  0,198 0,039 0,118 20,98 
Consensus  0,97 0,97 0,97 4 

 

Table 30. Numeric results for single bi-cluster data with scaled values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,44 0,443 0,441 4 
Cheng-Church  0,154 0,617 0,385 4 

BiMax  0,052 0,105 0,078 4 
CPB  0,952 0,632 0,792 6,39 

FABIA  0,204 0,273 0,238 4 
XMotifs  0,184 0,208 0,196 4 

Plaid  0,061 0,227 0,144 4 
ISA  0,529 0,519 0,524 4,09 

Qubic  0,133 0,032 0,082 16,84 
Consensus  0,571 0,571 0,571 4 
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Exclusive on rows and overlapping on columns (75%) 

Constant data Constant data up-regulated 

  

Plaid data Shift-Scale data 

  

Shift data Scale data 
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Table 31. Numeric results for single bi-cluster data with constant values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,335 0,335 0,335 4 
Cheng-Church  0,141 0,565 0,353 4 

BiMax  - - - - 
CPB  0,907 0,207 0,557 18,44 

FABIA  - - - - 
XMotifs  0,46 0,46 0,46 4 

Plaid  - - - - 
ISA  0,022 0,062 0,042 4,047 

Qubic  0,112 0,021 0,067 21,25 
Consensus  0,495 0,495 0,495 4 

 

Table 32. Numeric results for single bi-cluster data with constant up-regulated values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,72 0,767 0,743 4 
Cheng-Church  0,005 0,021 0,013 4 

BiMax  0,722 0,013 0,368 225 
CPB  0,363 0,559 0,461 30,69 

FABIA  0,729 0,881 0,805 4 
XMotifs  0,175 0,524 0,35 4 

Plaid  0,515 0,628 0,571 4 
ISA  0,212 0,062 0,137 14,52 

Qubic  0,193 0,081 0,137 11,32 
Consensus  0,858 0,858 0,858 4 

 

Table 33. Numeric results for single bi-cluster data with plaid values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,926 0,926 0,926 4 
Cheng-Church  0,019 0,075 0,047 4 

BiMax  0,382 0,006 0,194 240 
CPB  0,467 0,181 0,324 10,79 

FABIA  0,407 0,478 0,442 4 
XMotifs  0,017 0,067 0,042 4 

Plaid  0,826 0,846 0,836 4 
ISA  0,591 0,262 0,427 9,06 

Qubic  0,23 0,046 0,138 24,02 
Consensus  1 1 1 4 

 



122 
 

Table 34. Numeric results for single bi-cluster data with shift and scale values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,515 0,515 0,515 4 
Cheng-Church  0,073 0,293 0,183 4 

BiMax  0,191 0,038 0,115 24 
CPB  0,827 0,437 0,632 8,18 

FABIA  0,278 0,361 0,319 4 
XMotifs  0,157 0,309 0,233 4 

Plaid  0,13 0,433 0,282 4 
ISA  0,501 0,202 0,351 10,12 

Qubic  0,238 0,036 0,137 27,23 
Consensus  0,606 0,606 0,606 4 

 

Table 35. Numeric results for single bi-cluster data with shift values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,85 0,85 0,85 4 
Cheng-Church  0,077 0,309 0,193 4 

BiMax  0,284 0,014 0,149 85,5 
CPB  0,987 0,575 0,781 7,28 

FABIA  0,33 0,431 0,381 4 
XMotifs  0,084 0,084 0,084 4 

Plaid  0,145 0,436 0,291 4 
ISA  0,453 0,123 0,288 15,03 

Qubic  0,204 0,043 0,124 19,45 
Consensus  0,903 0,903 0,903 4 

 

Table 36. Numeric results for single bi-cluster data with scaled values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,414 0,414 0,414 4 
Cheng-Church  0,113 0,452 0,282 4 

BiMax  0,041 0,162 0,102 4 
CPB  0,955 0,643 0,799 6,28 

FABIA  0,273 0,277 0,275 4 
XMotifs  0,181 0,232 0,206 4 

Plaid  0,044 0,177 0,111 4 
ISA  0,521 0,512 0,517 4,08 

Qubic  0,13 0,026 0,078 20,24 
Consensus  0,57 0,57 0,57 4 
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Exclusive on columns and overlapping on rows (25%) 

Constant data Constant data up-regulated 

  

Plaid data Shift-Scale data 

  

Shift data Scale data 
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Table 37. Numeric results for single bi-cluster data with constant values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,638 0,64 0,639 4 
Cheng-Church  0,183 0,732 0,458 4 

BiMax  - - - - 
CPB  0,858 0,417 0,637 8,86 

FABIA  - - - - 
XMotifs  0,606 0,608 0,607 4 

Plaid  - - - - 
ISA  0,022 0,066 0,044 4 

Qubic  0,099 0,018 0,059 22,43 
Consensus  0,578 0,578 0,578 4 

Table 38. Numeric results for single bi-cluster data with constant up-regulated values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,69 0,69 0,69 4 
Cheng-Church  0,005 0,022 0,014 4 

BiMax  0,789 0,02 0,404 159 
CPB  0,392 0,492 0,442 7,24 

FABIA  0,812 0,812 0,812 4 
XMotifs  0,358 0,463 0,41 4 

Plaid  0,495 0,851 0,673 4 
ISA  0,812 0,464 0,638 7 

Qubic  0,787 0,221 0,504 14,54 
Consensus  1 1 1 4 

Table 39. Numeric results for single bi-cluster data with plaid values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,601 0,601 0,601 4 
Cheng-Church  0,024 0,096 0,06 4 

BiMax  0,484 0,015 0,249 133 
CPB  0,44 0,126 0,283 14,88 

FABIA  0,328 0,363 0,345 4 
XMotifs  0,094 0,2 0,147 4 

Plaid  0,562 0,564 0,563 4 
ISA  0,708 0,282 0,495 10,12 

Qubic  0,296 0,033 0,165 39,05 
Consensus  0,526 0,526 0,526 4 
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Table 40. Numeric results for single bi-cluster data with shift and scale values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,637 0,637 0,637 4 
Cheng-Church  0,013 0,053 0,033 4 

BiMax  0,126 0,052 0,089 9,65 
CPB  0,667 0,572 0,619 5,2 

FABIA  0,297 0,3 0,298 4 
XMotifs  0,114 0,23 0,172 4 

Plaid  0,144 0,408 0,276 4 
ISA  0,544 0,213 0,379 10,26 

Qubic  0,181 0,064 0,123 11,95 
Consensus  0,557 0,557 0,557 4 

Table 41. Numeric results for single bi-cluster data with shift values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,797 0,801 0,799 4 
Cheng-Church  0,046 0,184 0,115 4 

BiMax  0,219 0,069 0,144 13,22 
CPB  0,977 0,722 0,849 5,63 

FABIA  0,331 0,36 0,346 4 
XMotifs  0,061 0,093 0,077 4 

Plaid  0,629 0,823 0,726 4 
ISA  0,459 0,188 0,324 9,92 

Qubic  0,223 0,041 0,132 22,5 
Consensus  0,934 0,934 0,934 4 

Table 42. Numeric results for single bi-cluster data with scaled values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,439 0,441 0,44 4 
Cheng-Church  0,127 0,506 0,316 4 

BiMax  0,041 0,162 0,102 4 
CPB  0,964 0,652 0,808 6,17 

FABIA  0,198 0,265 0,231 4 
XMotifs  0,281 0,439 0,36 4 

Plaid  0,073 0,294 0,184 4 
ISA  0,498 0,476 0,487 4,24 

Qubic  0,142 0,026 0,084 21,93 
Consensus  0,492 0,492 0,492 4 
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Exclusive on columns and overlapping on rows (50%) 

Constant data Constant data up-regulated 

  

Plaid data Shift-Scale data 

  

Shift data Scale data 
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Table 43. Numeric results for single bi-cluster data with constant values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,529 0,529 0,529 4 
Cheng-Church  0,21 0,839 0,524 4 

BiMax  - - - - 
CPB  0,8 0,349 0,574 9,7 

FABIA  - - - - 
XMotifs  0,561 0,587 0,574 4 

Plaid  - - - - 
ISA  0,026 0,071 0,048 4 

Qubic  0,095 0,02 0,057 19,63 
Consensus  0,508 0,508 0,508 4 

Table 44. Numeric results for single bi-cluster data with constant up-regulated values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,55 0,552 0,551 4 
Cheng-Church  0,005 0,022 0,014 4 

BiMax  0,72 0,017 0,369 165 
CPB  0,328 0,583 0,455 15,88 

FABIA  0,625 0,625 0,625 4 
XMotifs  0,388 0,503 0,446 4 

Plaid  0,484 0,76 0,622 4 
ISA  0,625 0,5 0,562 5 

Qubic  0,586 0,488 0,537 5,36 
Consensus  0,568 0,568 0,568 4 

Table 45. Numeric results for single bi-cluster data with plaid values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,6 0,6 0,6 4 
Cheng-Church  0,02 0,081 0,05 4 

BiMax  0,487 0,014 0,251 138 
CPB  0,419 0,207 0,313 8,77 

FABIA  0,368 0,425 0,397 4 
XMotifs  0,094 0,197 0,145 4 

Plaid  0,623 0,624 0,623 4 
ISA  0,584 0,271 0,427 8,69 

Qubic  0,368 0,063 0,216 24 
Consensus  0,535 0,535 0,535 4 
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Table 46. Numeric results for single bi-cluster data with shift and scale values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,591 0,591 0,591 4 
Cheng-Church  0,033 0,133 0,083 4 

BiMax  0,118 0,097 0,108 4,98 
CPB  0,702 0,65 0,676 4,93 

FABIA  0,378 0,398 0,388 4 
XMotifs  0,113 0,24 0,176 4 

Plaid  0,174 0,495 0,335 4 
ISA  0,515 0,157 0,336 13,3 

Qubic  0,295 0,059 0,177 20,29 
Consensus  0,721 0,721 0,721 4 

Table 47. Numeric results for single bi-cluster data with shift values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,602 0,602 0,602 4 
Cheng-Church  0,036 0,143 0,089 4 

BiMax  0,197 0,05 0,123 15,91 
CPB  0,941 0,546 0,744 7,26 

FABIA  0,425 0,431 0,428 4 
XMotifs  0,068 0,075 0,071 4 

Plaid  0,428 0,55 0,489 4 
ISA  0,476 0,288 0,382 6,76 

Qubic  0,251 0,039 0,145 26,19 
Consensus  0,608 0,608 0,608 4 

Table 48. Numeric results for single bi-cluster data with scaled values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,389 0,392 0,39 4 
Cheng-Church  0,153 0,612 0,383 4 

BiMax  0,044 0,175 0,109 4 
CPB  0,852 0,7 0,776 5,31 

FABIA  0,179 0,255 0,217 4 
XMotifs  0,02 0,08 0,05 4 

Plaid  0,056 0,224 0,14 4 
ISA  0,474 0,457 0,465 4,18 

Qubic  0,172 0,029 0,1 24,71 
Consensus  0,485 0,485 0,485 4 
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Exclusive on columns and overlapping on rows (75%) 

Constant data Constant data up-regulated 

  

Plaid data Shift-Scale data 

  

Shift data Scale data 
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Table 49. Numeric results for single bi-cluster data with constant values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,414 0,415 0,414 4 
Cheng-Church  0,151 0,606 0,379 4 

BiMax  - - - - 
CPB  0,69 0,145 0,417 19,78 

FABIA  - - - - 
XMotifs  0,391 0,554 0,472 4 

Plaid  - - - - 
ISA  0,03 0,067 0,048 4,107 

Qubic  0,097 0,02 0,059 19,76 
Consensus  0,666 0,666 0,666 4 

Table 50. Numeric results for single bi-cluster data with constant up-regulated values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,403 0,412 0,407 4 
Cheng-Church  0,005 0,021 0,013 4 

BiMax  0,58 0,013 0,296 184 
CPB  0,268 0,366 0,317 36,63 

FABIA  0,39 0,392 0,391 4 
XMotifs  0,325 0,452 0,388 4 

Plaid  0,36 0,47 0,415 4 
ISA  0,507 0,305 0,406 6,82 

Qubic  0,575 0,125 0,35 18,74 
Consensus  0,674 0,674 0,674 4 

Table 51. Numeric results for single bi-cluster data with plaid values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,482 0,482 0,482 4 
Cheng-Church  0,02 0,081 0,051 4 

BiMax  0,392 0,01 0,201 159 
CPB  0,416 0,164 0,29 10,82 

FABIA  0,273 0,33 0,301 4 
XMotifs  0,097 0,202 0,149 4 

Plaid  0,55 0,558 0,554 4 
ISA  0,533 0,207 0,37 10,43 

Qubic  0,292 0,051 0,171 24,81 
Consensus  0,7 0,7 0,7 4 
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Table 52. Numeric results for single bi-cluster data with shift and scale values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,429 0,429 0,429 4 
Cheng-Church  0,09 0,358 0,224 4 

BiMax  0,114 0,091 0,103 5 
CPB  0,558 0,439 0,498 8,62 

FABIA  0,211 0,244 0,228 4 
XMotifs  0,073 0,099 0,086 4 

Plaid  0,127 0,398 0,262 4 
ISA  0,45 0,157 0,304 11,65 

Qubic  0,254 0,046 0,15 22,72 
Consensus  0,455 0,455 0,455 4 

Table 53. Numeric results for single bi-cluster data with shift values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,481 0,482 0,481 4 
Cheng-Church  0,069 0,276 0,172 4 

BiMax  0,223 0,029 0,126 31,78 
CPB  0,803 0,477 0,64 7,19 

FABIA  0,324 0,341 0,333 4 
XMotifs  0,086 0,097 0,092 4 

Plaid  0,474 0,582 0,528 4 
ISA  0,411 0,117 0,264 14,21 

Qubic  0,26 0,047 0,153 22,37 
Consensus  0,473 0,473 0,473 4 

Table 54. Numeric results for single bi-cluster data with scaled values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,279 0,281 0,28 4 
Cheng-Church  0,123 0,494 0,309 4 

BiMax  0,125 0,126 0,126 4 
CPB  0,943 0,612 0,777 6,5 

FABIA  0,255 0,255 0,255 4 
XMotifs  0,113 0,224 0,168 4 

Plaid  0,072 0,265 0,168 4 
ISA  0,492 0,389 0,44 5,24 

Qubic  0,177 0,042 0,11 17,58 
Consensus  0,317 0,317 0,317 4 
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Overlapping on both (up to 100% of overlap) 

Constant data Constant data up-regulated 

  

Plaid data Shift-Scale data 

  

Shift data Scale data 
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Table 55. Numeric results for single bi-cluster data with constant values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,377 0,545 0,461 4 
Cheng-Church  0,222 0,886 0,554 4 

BiMax  - - - - 
CPB  0,392 0,784 0,588 54,16 

FABIA  - - - - 
XMotifs  0,402 0,623 0,513 4 

Plaid  - - - - 
ISA  0,02 0,059 0,04 4,02 

Qubic  0,091 0,029 0,06 13,69 
Consensus  0,721 0,721 0,721 4 

Table 56. Numeric results for single bi-cluster data with constant up-regulated values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,456 0,467 0,462 4 
Cheng-Church  0,005 0,022 0,014 4 

BiMax  0,694 0,089 0,391 31,34 
CPB  0,168 0,126 0,147 243,76 

FABIA  0,25 1 0,625 4 
XMotifs  0,08 0,216 0,148 4 

Plaid  0,25 1 0,625 4 
ISA  0,206 0,821 0,514 4 

Qubic  0,563 0,148 0,355 17,31 
Consensus  0,485 0,485 0,485 4 

Table 57. Numeric results for single bi-cluster data with plaid values 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,369 0,379 0,374 4 
Cheng-Church  0,017 0,067 0,042 4 

BiMax  0,572 0,093 0,333 36,19 
CPB  0,385 0,445 0,415 7,55 

FABIA  0,437 0,645 0,541 4 
XMotifs  0,037 0,101 0,069 4 

Plaid  0,464 0,472 0,468 4 
ISA  0,499 0,641 0,57 4 

Qubic  0,293 0,056 0,174 21,47 
Consensus  0,615 0,615 0,615 4 
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Table 58. Numeric results for single bi-cluster data with shift and scale values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,248 0,417 0,332 4 
Cheng-Church  0,063 0,25 0,157 4 

BiMax  0,09 0,181 0,136 4 
CPB  0,241 0,627 0,434 63,2 

FABIA  0,106 0,422 0,264 4 
XMotifs  0,115 0,201 0,158 4 

Plaid  0,195 0,411 0,303 4 
ISA  0,15 0,467 0,308 4,01 

Qubic  0,215 0,061 0,138 14,39 
Consensus  0,496 0,496 0,496 4 

Table 59. Numeric results for single bi-cluster data with shift values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,248 0,483 0,365 4 
Cheng-Church  0,079 0,314 0,196 4 

BiMax  0,202 0,167 0,184 4,97 
CPB  0,404 0,861 0,633 4,01 

FABIA  0,107 0,429 0,268 4 
XMotifs  0,049 0,049 0,049 4 

Plaid  0,163 0,65 0,406 4 
ISA  0,213 0,358 0,285 4,02 

Qubic  0,364 0,068 0,216 22,03 
Consensus  0,276 0,276 0,276 4 

Table 60. Numeric results for single bi-cluster data with scaled values. 

Method name Chart 
symbol 

Recovery Relevance Score Average Num. 
of bi-clusters 

BBC  0,204 0,331 0,267 4 
Cheng-Church  0,165 0,659 0,412 4 

BiMax  0,056 0,225 0,141 4 
CPB  0,321 0,637 0,479 18,85 

FABIA  0,073 0,293 0,183 4 
XMotifs  0,195 0,226 0,211 4 

Plaid  0,081 0,325 0,203 4 
ISA  0,131 0,458 0,294 4 

Qubic  0,25 0,057 0,153 18,21 
Consensus  0,534 0,534 0,534 4 

  

 

 


