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PREFACE

The aim of this book is to provide introductory, yet comprehensive, treatment of circuit
analysis and design, to lay down some important and necessary foundations for subsequent
use in later engineering courses, such as Signal Theory, Electronics Fundamentals and others.

Since this book is designated primarily for the first or the second year introductory
courses, the presentation is geared to students who are being exposed to the basic concepts of
electric circuits for the first time. However, it is assumed that students have possessed some
elementary knowledge of physics and have some understanding of freshman calculus, such as
differential-integral calculus and vector-matrix formulation and solution of linear systems of
equations. Other more complex mathematical topics, necessary to describe the considered
circuit theory problems, such as i) Laplace transform and singularity functions, ii) algebraic
manipulation of complex numbers, iii) solution of nonlinear systems of equations, are raised
in a limited and self-contained manner, and are not required as prerequisite background. The
first two are the subjects of appendices, the third is developed in the chapter in which it is
needed. The book does not contain proofs of theorems, as they can be found in commonly
available books dealing with the same subject. Resistance from expanding the length of the
book to the extremes sometimes found in current practice was Author’s motivation. On the
other hand all the theorems and definitions are illustrated by many practical examples. It
should be emphasized, that while presenting basic components of electric circuits and
introducing different techniques of circuit analysis, particular attention is given to the
practical aspects and the physical interpretation of results.

The main aim of the book is to provide students with essential tools of analysis of circuits
together with many important concepts underlying the theory of electronic circuits. Care has
been taken to fashion the selection and order of content to be of use to the electrical
engineering baccalaureate students, but also to students of other engineering disciplines, as
the analysis and design of electric circuits is a critical skill for all engineers. Nowadays,
English is the binding language in engineering world and the book provides complete
vocabulary of terms and concepts used in the Circuit Theory. They are collected in the
Appendix C glossary, together with Polish equivalents. This makes the book a very useful
educational aid, addressed not only to English speaking students, but also to Polish speaking
students having some minor fluency in written English — indispensable for today’s engineers.

The book consists of five basic parts — chapters and three appendices. The general order of
the content has been selected so that students may learn as many of the techniques of circuit
analysis and design as possible in the simplest context. These logically divide into i) real
numbers domain - dc analysis), ii) time-domain and Laplace transform domain - transient
analysis), iii) phasor or frequency domain - ac analysis. These analyses are discussed first for
circuits with lumped constants, next the transmission line transient and ac analyses are
considered.

In the brief introductory Chapter 1, the electric variables used to describe circuit elements
are revised and problems of circuit analysis and design are classified.

The second Chapter is intended to provide a thorough treatment of circuit analysis based
on direct current (dc) circuits. First, linear circuits are discussed. Then, nonlinear resistive
circuits and their network analogy (magnetic circuits) are studied. Many important definitions
and fundamental principles are given. Various computational techniques are presented with



numerous practical examples, such that the student is expected to be conversant with the
principles of circuits before entering the next Chapter 3.

The third Chapter and the fourth Chapter are intended to provide a thorough treatment of
transient analysis and alternate current (ac) analysis, respectively. Some of the concepts
taught in Chapter 1 are revised and extended to more useful and general practical application
in time domain and in frequency domain.

The fifth Chapter is intended to provide a thorough treatment of circuits with distributed
in place (not lumped) constants. Transmission line is discussed, first its transient response to
aperiodic input, then, steady-state sinusoidal response.

It is recommended to organize the material here into a two-semester introductory course,
with 30 hours in Semester 1 and 30-45 hours in Semester 2, and to proceed chapter by
chapter. Appendix A on Laplace transform and singularity functions should be reviewed
before studying Chapter 3, Appendix B on complex numbers should be reviewed before
studying Chapter 4, which relies heavily on complex and phasor algebra.

The major results of the theory may appear quite subtle or even abstract, and to make
them easy to comprehend numerous practical problems have been provided. The problems are
organized into: i) examples and ii) drill problems. Each section of each chapter has numerous
step-by-step solved examples and ends with drill problems which are designed to range over
all topics of the section and they are generally simple. They can be well used as the formative
assessment test or final examination test problems. In all there are near 80 exercises and near
300 drill problems.



1. INTRODUCTION to CIRCUIT THEORY

1.1 CIRCUIT VARIABLES - BASIC TERMS and DEFINITIONS

Our physical world may be interpreted in terms of matter and energy, both of which exist in a
variety of forms.

Matter has been defined as anything that occupies space and possesses mass.
Energy is the ability to do work.

In the 18™ Century, Benjamin Franklin introduced the term charge and Charles Coulomb his
law and terms: electricity, electric or electrostatic field.

Charge is the fundamental unit of matter responsible for electric phenomena.

There are two kinds of charge, positive and negative, Q denotes a positive and fixed charge,
while g or q(t) denotes a positive and time-varying charge.

Capital letters are used to denote constant (in time) variables, while small letters are used to
denote time-varying variables.

Coulomb [C] is the unit of charge, the accumulated charge on 6.24145-10" electrons equals
1[C].

Electricity are physical phenomena arising from the existence of interaction of charges.

Electric field is a region in space wherein a charge, a test charge Q, experiences an electric
force F, [N].

Electric field between two fixed unlike charges is presented in Fig. 1.1.1. Path along which a
test charge Q moves when attracted by one charge and repelled by the other is called the
electric line of force. Since a basic phenomenon of charge is that like charges repel and
unlike charges attract, then, the direction of lines of force is always from the positive charge
to the negative charge.

Electric field is uniquely defined in its every point by electric field intensity.




Electric field intensity is defined as the electric force per unit charge at a particular point of
space.

K=F/Q (1.1.2)
Its unit is [N/C]=[V/m].

Fig. 1.1.1 Electric field between two unlike charges with three electric lines of force denoted

Next, work required to move a test charge Q from point A to point B, as shown in Fig. 1.1.2,
will be considered.

C

D

Fig. 1.1.2 Two paths between points A and B located in an electric field

B B
W, = [F,dl =Q[KdI (1.1.2)
A A

Joule [J] is the unit of this work. The work performed along a closed path (loop) ACBDA is
equal zero.

Wacsoa =0 (1.1.3)

Then, work performed along the path ACB is equal to the work performed along the path
ADB. In other words, only location of terminal points designates the work performed, not the
path shape.

A work required to move a unit charge Q in an electric field is defined as a voltage.

B
U s =W, /Q = [Kd (1.1.4)
A




In the MKS system of units, a voltage of 1[J/C] is defined to be a volt [V].

If, in an electric field, the reference point P is chosen, then, voltage between this point (node)
and the other one A is called a potential or node voltage and will be denoted as

P
Va=U, = [Kdl (1.1.5)
A

Consider a work performed along a closed path PABP, as shown in Fig. 1.1.3.

P

Fig. 1.1.3 Closed path crossing points A, B and P located in an electric field

As

Wopgp =Wag +Wgp —W,, =0
then,

Wi =Wap =Wgp
and finally:

Upg =Va Ve (1.1.6)

Thus, a voltage between (across) A and B, or in other words a voltage drop from A to B is
also called a potential difference.

To define a flow of electric charge across any area, such as a cross-section of a wire, term of
electric current, or simply current is introduced.

A net flow of a charge past a given point, per unit time is defined as electric current. In the
MKS system, the unit of current is an ampere [A]=[C/s].

There are two important current types:
e direct current (dc),
e alternating current (ac).

If a force that moves a charge along a wire is constant, then, the rate of charge transferred is
constant and the direct current (dc) can be defined:

| = AQ/At (1.1.7a)
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If a rate of flow of charge is varying in time, then, the instantaneous current can be defined:
i(t)=i=dq/dt (1.1.7b)
Periodic current is the special case. In this case, the instantaneous value of a waveform

changes periodically, through negative and positive values. Sinusoidal current, so called
alternating current (ac) is the most important case.

Finally, electric power and electric energy delivered to/supplied by a single element or
whole (sub)circuit will be discussed.

Power is the time rate of expending or absorbing energy:
p=dw/dt, (1.1.8)

dw is the unit energy in joules and dt is the unit time in seconds. Then, p is the instantaneous
power measured in watts [W]=[J/s]. A power associated with a current flow through an
element/subcircuit is:

oo @ o _
dg dt
As can be seen, the instantaneous power absorbed/supplied by element/subcircuit is simply a

product of a voltage across this element/subcircuit and a current flowing through the
element/subcircuit.

ui (1.1.9a)

For the dc case:

P=UI (1.1.9b)
From (1.1.8), the unit energy:
dw= pdt (1.1.10)

Then, the total energy absorbed/supplied within a time interval from t, =0 to arbitrary time
instant t is:

t
w=[ pdt (11.11a)
0
For the particular t =T |, the total energy absorbed/supplied is:
T
W, =j pdt (1.1.11b)
0

Electric energy absorbed by an element/subcircuit is dissipated as a heat. Such thermal
energy w,,, in calories [cal], can be converted from electric energy:

w, =0.239w (1.1.12)

11




Drill problems 1.1

1.

A constant current of 2 A flows through an element. The energy to move the current for 1
second is 10 joules. Find the voltage across the element.

Find the energy required to move 2 coulombs of charge through 4 volts.

A constant current of 1=10 A is delivered to an element for 5 seconds. Find the energy
required to maintain a voltage of 10 V.

Voltage of energy absorbing element is constant, u=U =10V and its current rises

linearly from 0 to 2 mA within period of 2 s, and then, remains constant. Find the
absorbed energy during the period of 5 s.

When fully charged, a car 12 V battery stored charge is 56 A-h. How many times car can
be started if each attempt lasts 10 s and draws 30 A of current from the battery ?

The power absorbed by a circuit element is shown. At what time is the net energy absorbed a
maximum, at what time is the net energy supplied a maximum, at what time the net energy is
zero ? Is the total net energy (for the whole period of time) absorbed or supplied?

PaW
1

Fig. P.1.1.6

An element absorbs energy as shown. If the current entering its terminal is i =10t mA,
find the element voltage at t =1 msand t =5 ms.

W, mJ
15

10

2 6 ’T ms
Fig. P.1.1.7

A small 1.5-volt alkaline (AA) battery has a nominal life of 150 joules. For how many
minutes will it power a calculator that draws a 2 mA current ?

12



8. A CD player uses four AA batteries in series to provide 6 V to the player circuit. Each
battery stores 50 watt-seconds of energy. If the player is drawing a constant 10 mA from
the battery pack, how long will the player operate at nominal power ?

9. A circuit element with a constant voltage of 4 V across it dissipates 80 J of energy in 2
minutes. What is the current through the element ?

13



1.2 CLASSIFICATION of CIRCUIT THEORY PROBLEMS

In general, all Circuit Theory problems fall into two categories:
e analog circuit synthesis,
e analog circuit analysis.

Problems related with analog circuit analysis will be discussed. To start a circuit analysis
(simulation), its model should be designated by a design engineer. Problem of circuit
modeling, very important from a practical point of view, will be not discussed. A circuit
model is built of ideal elements, or simply elements, such as resistors, capacitors, coils, etc. -
practical elements are modeled by means of ideal elements. Before proceeding to circuit
analysis problems, the following basic terms have be introduced:

Circuit parameter or circuit constant, denoted by P: a constant describing an element, such
as resistance R, capacitance C, inductance L, etc.

Circuit input signal or circuit excitation, denoted by X: a source of signal, voltage or current
source.

Circuit output signal or circuit response Y: a circuit variable, such as voltage, current, gain,
etc.

Problem of circuit analysis can be expressed by means of block diagram, as presented in Fig.
1.2.1, for one-dimensional (Single Input Single Output — SISO) case.

X ANALOG Y
— ¥ CIRCUIT >

Fig. 1.2.1 Block diagram of SISO circuit

For multi-dimensional (Multiple Input Multiple Output — MIMO) case, X and Y are vectors.
According to a character of elements, circuits can be classified into:

a linear circuits,
o nonlinear circuits,
or
a circuits with lumped constants,
o circuits with distributed constants.

14




The meaning of the above terms will be explained in next chapters.

Then, two different problems of circuit analysis can be formulated:

PROBLEM 1. (Classical analysis)

Given: all circuit constants P.; i =1,...,L and input signal(s) X;;i=1...,.M.
Find: circuit response(s) Y;; i=1...,N.

PROBLEM 2. (Parameter identification)

Given: L, <L circuit constants (parameters) and/or M, <M input signals and N; <N
responses (measurements).
Find:
N, =N — N, other responses, L, +M, =N,

L, =L-L, unknown circuit constants and/or M, =M —M, input signals and

Both problems can be modeled by a system of algebraic equations. For P1 and linear circuit,
the system consists of linear equations. For P2, some constants became variables and the
system is nonlinear, even for linear circuit.

CIRCUIT ANALYSIS

l

1. Direct Current (DC)

2. Variable Current

Analysis Analysis
2.1. Transient 2.2. Steady State Analysis
Analysis
‘, ,, b l l
la 1.b 2.1a 2.1b 2.2.a 2.2.b
Linear Circuit | Nonlinear Step Other Sinusoidal Other
Analysis Circuit Analysis | Excitation | Aperiodic | Excitation — Periodic
Excitation | Alternate Current | Excitation
(AC) Analysis

Fig. 1.2.2 Classification of analyses

Classification of analyses, subject to a character of excitation is presented in Fig. 1.2.2. All
these analyses, except a steady-state analysis in arbitrary periodic excitation case, will be
discussed in next chapters.

15




2. DC ANALYSIS

2.1 CIRCUIT ELEMENTS

CLASSIFICATION

An electric circuit or electric network is an interconnection of elements linked together in a
closed path so that an electric current may continuously flow.

Generally, all elements can be classified into two categories:
e two-terminal elements,
e multi-terminal elements.

In further considerations, two-terminal elements are taken into account, while multi-terminal
elements are discussed in details in Chapter 2.9.

A general two-terminal element is presented in Fig. 2.1.1.

Fig. 2.1.1 General two-terminal element

By the convention, an element voltage is denoted by an arrow placed along an element.

Voltage arrowhead points terminal of a higher potential if its value is positive, or terminal of
a lower potential if its value is negative.

Quite often the double subscript notation is used. For the generalized element of Fig. 2.1.1:

U=U,, U=U,, 2.1.1)

Actual flow of free electrons is from negative to positive terminal and this is termed the
electron flow. The flow of current is conventionally represented as a flow of positive charges.
Current arrowhead indicates direction of the conventional flow if the current value is
positive, or direction opposite to the conventional flow if the current value is negative.

16




Example 2.1.1

The measured potentials (terminal voltages) of Fig. 2.1.1 general element are:
V, =10V, Vg =3V . Find its voltage and current.

The element voltage is:
U=U,,=7V,orU'=U,, =-7V,

The element current, both value and sign, are designated by the element | —U relationship.
.

Mutual position of voltage and current arrowheads together with their signs decide
whether an element absorbs or supplies energy. Two possible positions of arrows are
presented in Fig. 2.1.2.

a) b)
U U
- " | 1
A—— 1 —<—ep A——[  —<—ep

Fig. 2.1.2 Two possible mutual positions of voltage and current arrowheads

For the opposite position of Fig. 2.1.2 a, current and voltage are said to satisfy the passive
sign convention, and

an element absorbs power (energy) if P=Ul >0,

an element supplies power (energy) if P=Ul <0.

For the same position of Fig. 2.1.2 b,
an element absorbs power (energy) if, P=Ul <0,
an element supplies power (energy) if P=Ul >0,

According to the direction of energy flow, elements can be classified into two categories:

e passive elements,
e active elements.

An element is said to be passive if the total energy delivered to it from the rest of a circuit is
always nonnegative (zero or positive).

For a passive element, mutual position of voltage and current arrowheads has to be, by the
convention (passive sign convention) opposite, as shown in Fig. 2.1.2 a. Then, the total
energy delivered to passive element is:

t
w:jmmzo (2.1.2a)
0
For the dc case:

w=UlIt (2.1.2b)

17




An element is said to be active if the total energy delivered to it is not always nonnegative.

For an active element, mutual position of voltage and current arrowheads is arbitrary,
however, same position is preferred. Then, for active element and same mutual position of
arrowheads:

t
W:.[uidt<00r20 (2.1.3)
0

v

Fig. 2.1.3 Exemplary I-U relationships of passive elements

Passive or active two-terminal element is uniquely described by its | —U relationship:
I=fU)orU=f?1)=g(l) (2.1.4)

This relationship can be given by the manufacturer or it can be measured. Taking into account
character of 1 —U relationship, elements can be classified into two categories:

e linear elements,
e nonlinear elements.

Fig. 2.1.3 presents exemplary | —U relationships of passive elements:

1. linear element,
2. bilateral nonlinear element, f(U) =—f(-U),

3. unilateral nonlinear element, f(U)=—f(-U).

PASSIVE TWO-TERMINAL ELEMENTS
Linear elements, resistor and meters, voltmeter and ammeter, will be discussed.
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Resistor

Linear resistor graphic symbol is presented in Fig. 2.1.4 (mutual position of arrowheads is
always opposite).

N §

——[ | —<«—o
|

Fig. 2.1.4 Graphic symbol of a linear resistor

Its | -=U relationship (Fig. 2.1.3-1) is the well known Ohm’s law, satisfied also for
instantaneous values, in brackets.

U =R (u(t)=Ri(t)) (2.1.5a)
| =GU (i(t)=Gu(t)) (2.1.5b)
R and G are constants of proportionality, R=1/G .

R is called resistance, its unit is ohm [Q],
G is called conductance, its unit is siemens [S].

A resistor power absorbed is
P=1°R=U’G>0 (p=i’R=u’G) (2.1.6)

Voltmeter

A voltmeter graphic symbol is presented in Fig. 2.1.5 (mutual position of arrowheads is
always opposite).

Fig. 2.1.5 Graphic symbol of voltmeter

Its 1 —U relationship is presented in Fig. 2.1.6, for an ideal voltmeter (horizontal axis) and a
practical voltmeter (dashed line).

For an ideal voltmeter: G, =0 (R, =), I =0
For a practical voltmeter: G,, >0, | >0 and voltmeter is represented by the resistor

| =GU. 2.1.7)
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Fig. 2.1.6 I-U relationship of ideal and practical voltmeter

Ammeter

An ammeter graphic symbol is presented in Fig. 2.1.7 (mutual position of arrowheads is
always opposite).

Fig. 2.1.7 Graphic symbol of ammeter

Its I —U relationship is presented in Fig. 2.1.8, for ideal ammeter (vertical axis) and practical
voltmeter (dashed line).

VC

Fig. 2.1.8 I-U relationship of ideal and practical ammeter
For an ideal ammeter: R, =0 (G, =), U =0 and ammeter is the short-circuited branch.

For a practical voltmeter: R, >0, U >0 and ammeter is represented by the resistor

U=R,I (2.1.8)
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ACTIVE TWO-TERMINAL ELEMENTS

Linear ideal DC sources, a voltage source, so called electromotive force (emf), and a

current source. will be discussed in this Chapter, while practical sources will be discussed in
Chapter 2.5.

Voltage source

An ideal voltage source graphic symbol is presented in Fig. 2.1.9 (mutual position of

arrowheads is arbitrary). >

Fig. 2.1.9 Graphic symbol of ideal voltage source

Its I —=U relationship is:

U=E (2.1.9)
as presented in Fig. 2.1.10, and the power supplied/absorbed is:
P=EI>00r<0. (2.1.10)
I
A
»U
E

Fig. 2.1.10 1-U relationship of ideal voltage source

Current source

An ideal current source graphic symbol is presented in Fig. 2.1.11 (mutual position of
arrowheads is arbitrary).

U
—

—

J
Fig. 2.1.11 Graphic symbol of ideal current source

21



Its I —=U relationship is:
I=J (2.1.11)
as presented in Fig. 2.1.12.

»

U

Fig. 2.1.12 1-U relationship of ideal current source

A current source power is
P=UJ>0o0r<0 (2.1.12)

Drill problems 2.1

1. For the given currents that flow through 10 Q resistor, calculate the total energy absorbed
by the resistor.

i), A i(t) A A

v

Fig. P.2.1.1

2. The above given currents flows through 10 V emf. Assuming the same position of
arrowheads, find the total energy supplied.

3. A heater (resistor) rated 200 V and 100 W is connected to 100V dc supply. Find energy
absorbed in 5 hours. If electric energy costs 10 cents/kW-h, find the cost of heating during
the entire 5 hours ?
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4. A circuit element labeled with passive sign convention has the current and voltage
waveforms as graphed. Sketch the instantaneous power absorbed and the total energy
absorbed over the interval <0, 4> s.

iA A u,Vv
4
2 2
2 4 ts 2 4 ts
Fig. P.2.1.4

5. A certain element with i and u that satisfy the passive sign convention is described by the
relationship U = 2| i | . For the current shown, sketch the power p. Is this element active or
passive ?

v

Fig. P.2.1.5

6. Repeat Problem 2.1.5 for u =i°sgn(i) .

7. An automobile battery is charged with a constant current of 2 A for 5 hours. The terminal
voltage is u=10+0.5t for t>0, where t is in hours. Sketch w(t) and find the total

energy delivered to the battery during the entire 5 hours. If electric energy costs 10
cents/kW-h, find the total cost of charging the battery.

8. If the voltage across an element is 10 V and the current i entering the positive terminal is

as shown, find the power delivered to the element at t =4 s and the total energy delivered
between 0 and 5 s.

i 4 mA

v

2 5 ts
Fig. P.2.1.8
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10.

11.

12.

13.
14.

15.

If the function applied in Problem 2.1.8 is the voltage u in volts and the current entering
the positive terminal is 2 mA, find the power delivered to the element at t =4 s and the
total energy delivered between 0 and 15 s.

The current entering the positive terminal of a 10-volt battery rises linearly from 2 to 10
mA between t=0 and t=10 minutes. How much charge passes through the battery
during the first 5 minutes ? What is the power absorbed at t =5 minutes and t=10
minutes ? What is the energy supplied during the first 5 minutes and during the entire 10
minutes ?

An electric range has a dc of 10 A entering the positive terminal at a voltage drop of 100V
dc. The range is operated for 4 hours. Find the charge, in coulombs, that passes through
the range. Find the total power and the total energy absorbed.

The energy w absorbed by a two-terminal device is shown. If the voltage across the device
is u=10cos(zt)V, where t in ms, find the current entering the positive terminal at

t =1, 2, 3 ms (current and voltage satisfy the passive sign convention).

w, mJ

10

v

2 4 6 t ms
Fig. P.2.1.12

Sketch the power absorbed or delivered in Problem 2.1.12.

Repeat calculations in Problems 2.1.12 and 2.1.13, if the passive sign convention is not
satisfied.

The voltage across an element is a constant 15 V. The current leaving the positive
terminal is i =10—-10sin(27t) A. Find the instantaneous power p and sketch it in the

interval from 0 to 1 s. Is this element active or passive ? Calculate the energy received or
delivered by the element in the interval from 0.5t0 1 s.
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2.2 CIRCUIT DIAGRAM and KIRCHHOFF’s LAWS

Before starting a circuit analysis, its model has to be created and expressed in a form of
diagram. This term and other related terms will be defined at first.

CIRCUIT DIAGRAM

A drawing that shows schematically the interconnection of circuit elements, represented by
their graphic symbols, is called a circuit diagram.

A circuit structure (element interconnections) can be expressed by a circuit graph. Such
graph is built of branches connected in nodes.

A connection point between two or more elements/branches is called a circuit/graph node.
Number of circuit/graph nodes is denoted as n.

A circuit/graph branch is defined as an element or string of elements connected between two
nodes. Number of circuit/graph branches is denoted as b.

Then, terms of circuit/graph loop, mesh and cutset can be introduced.

Two or more branches that form a closed path is called a loop.

Cutset is a closed line around one or more nodes, crossing two or more branches, each branch
only once.

Planar circuit is a circuit whose graph can be drawn on a plane surface so that no branch
cross. Then, plane is divided by the circuit graph into distinct areas, windowpane areas.

The closed boundary of each windowpane area, a loop that does not contain any other loop
within it, is called a mesh.

An exemplary circuit is used to illustrate these terms.
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Example 2.2.1

Diagram of an exemplary circuit, built of five resistors, ammeter, voltmeter and two ideal
sources, is presented in Fig. 2.2.1. The circuit graph is presented in Fig. 2.2.2.

The graph is built of b =8 branches, numbered from 1 to 8, connected in n=5 nodes,
denoted by letters A, B, C, D, E.

Some finite number of loops can be found, e.g. loops built of the following branches:

I 2,3,4;
I: 3,6,5; (2.2.1)
I1: 2,6,5,4.

Loops I and Il are independent loops, while loop 111 is sum of I and II.

Fig. 2.2.1 Diagram of an exemplary circuit (Example 2.2.1)
C

A

Fig. 2.2.2 Graph of exemplary circuit (Example 2.2.1)
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Some finite number of cutsets can be found, e.g. cutsets around the following nodes:

1: E (crossing branches 5,6,7,8);
2: A (crossing branches 1,8,7); (2.2.2)
3: AE (crossing branches 1,5,6).

Cutsets 1 and 2 are independent cutsets, while cutset 3 is sum of 1 and 2.
.

KIRCHHOFF’S LAWS

Kirchhoff’s Current Law (KCL)

Fig. 2.2.3 Cutset around node i

Consider the cutset around a single node i, crossing branches 1,2,...,m, as presented in Fig.
2.2.3. Charge can not accumulate at the node. Then,

3 4Q=0. (22.3)

where Z denotes the algebraic sum of charges/currents entering or leaving the node i,

by the convention:

+, if current arrowhead is directed to the node/cutset, (2.2.4)
— , if current arrowhead is directed from the node/cutset.

After dividing (2.2.3) by At, the KCL can be formulated.

The algebraic sum of currents entering or leaving arbitrary node i equals zero.

ZI =0. (2.2.5)

The above KCL can be generalized into arbitrary cutset i crossing branches 12,...m, as
presented in Fig. 2.2.4.

27




Fig. 2.2.4 Arbitrary cutset i crossing branches 1,2,...,m

The algebraic sum of currents entering or leaving arbitrary cutset i equals zero, (2.2.5).

For the given circuit of b branches and n nodes, total of
t=n-1 (2.2.6)

independent KCL equations can be formulated, e.g. for all cutsets around individual nodes
except the reference one.

Example 2.2.1 cont.

For the three cutsets of (2.2.2), KCL equations are:
Llg+l,—-1,-1,=0;
2. =L +lg+1,=0; (2.2.7)
- +1,+1,=0.

Equation (2.2.7-3) is the algebraic sum of (2.2.7-1) and (2.2.7-2).

The total number of independent KCL equations is t =4, and they can be equations of any

four from the circuit five nodes.
.

Kirchhoff’s Voltage Law (KVL)

Consider the loop i, built of branches 1,2,...,m, as presented in Fig. 2.2.5. A work performed
along a loop is equal zero. Then, KVVC can be formulated.
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Fig. 2.2.5 Loop i built of m branches

The algebraic sum of voltages around arbitrary loop i equals zero,
Y U=0, (2.2.8)
Oi

where Z denotes the algebraic sum of voltages around the loop i,
Oi

by the convention:

+, if, voltage arrowhead has clockwise direction, (2.2.9)
—, iIf voltage arrowhead has anticlockwise direction.

The above KVL can be generalized into arbitrary closed path i, as presented in Fig. 2.2.6.

Fig. 2.2.6 Closed path i
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The algebraic sum of voltages around arbitrary closed path i equals zero, (2.2.8).

For the given circuit of b branches and n nodes, total of

l=b-n+1 (2.2.10)
independent KVL equations can be formulated, e.g. for all meshes.

Example 2.2.1 cont.

For the three loops of (2.2.1), KVL equations are:
I -U,-U,+U, =0,
I: U,-U, -U,-E, =0, (2.2.11)
n: -u, -U, -U, -E,+U, =0.

Equation (2.2.11-111) is the algebraic sum of equations (2.2.11-1) and (2.2.11-11).

The total number of independent KVL equations is | =4 and they can be equations of all
meshes:

I 2,3,4;

I: 3,6,5; (2.2.12)
I: 1,4,5,7;

IV:78.

Drill problems 2.2

1. Calculate voltage U »g .

] B

A
1ov SQ 1Q 20 9A
7v 40

Fig. P.2.2.1
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2. Find indication of an ideal ammeter.

25V

Fig. P.2.2.2

3. What should be the value of R so that current 1 =0.5A ?

2Q 602

(Dw |

Fig. P.2.2.3

4. Find E,, if the power supplied by E=10Vis10 Wand R=5Q, J =1A.

Fig. P.2.2.4

5. Find the value of R so that the power delivered by the source is 48 W.

Fig. P.2.2.5



6. Suppose the indicated voltage is 12 V. Find R.

40 1Q

4A R 3Q2

Fig. P.2.2.6

7. Find the power absorbed (supplied ?) by the current source.

2A

SVCT 7Q 6Q 4Q

Fig. P.2.2.7

8. Find the supply voltage of a ladder network shown, so that | =2A. Assume R=5Q .

U R/2 R/2 R/2
R R R/2
I
[ <

Fig. P.2.2.8

9. FindRif I =2A. Then, find all currents and voltages.

2Q
6A 4Q R

Fig. P.2.2.9

10. By what factor the 6 A current source in Problem 2.2.9 circuit should be increased to
double the power it supplies, by what factor it should be increased to double the current I.
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2.3 ANALYSIS of COMPLEX CIRCUITS

Resistor equations together with t =n—1 KCL equations and | =b—n+1 KVL equations
allow to formulate the well defined system of circuit equations. Two approaches will be
presented: the generalized Kirchhoff’s analysis and the commonly used nodal analysis.

GENERALIZED KIRCHHOFF’S ANALYSIS

o Branch Current Analysis

Algorithm 2.3.1 — Branch Current Analysis

1. Assume unknown currents in each branch, I,,...,1,. Indicate their directions by arrows
(direction is arbitrary).

2. For each element indicate, by an arrow, its voltage drop (passive elements) or rise (active
elements) that a particular current causes in passing the element.

3. Select the reference node (selection of the node is arbitrary). Write down KCL equations
at all other t =n—1 nodes.

4. Write down KVL equations for all | =b—n+1meshes.

5. Express resistor voltages by their currents, by means of Ohm’s law.

6. Solve the set of b equations with resistor currents and voltages of ideal current sources, if
present, as unknown variables.

7. Find circuit responses, if not found already.

Example 2.3.1

Diagram of an exemplary circuit, built of b =6 branches connected in n =4 nodes, is
presented in Fig. 2.3.1.

6 [§

—:l—»—@
4_
)\

A T\ l
£,

N 1@

D
Fig. 2.3.1 Diagram of exemplary circuit (Example 2.3.1)
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Node D is selected as the reference one. Then, t =3 KCL equations (2.3.1a) and | =3 KVL

equations (2.3.2a) can be formulated.

A -, +1; —lg =0

B: +1, -1, +1, =0

C: +1, =J, +1, =0

l: +E, +U,-E, -U, =
I -U, +U; -U,+E, =
n: -, +U, +E, U, =0

Resistor voltages can be expressed by their currents:
U =Rl,;i=2456

Then, KVL equations have the following form:

I: +E, +R,1,-E, —Rl; =
Il: ~R,l, +U, -R,l,+E, =
H:  —E,  +R,l, +E,—R, =0

(2.3.1a)

(2.3.2)

(2.3.2b)

Equations (2.3.1a) and (2.3.2b) form a system of b =6 linear equations with six unknowns,

currents: 1,,1,,1,,1,15 and voltage U, .

o Branch Voltage Analysis

Algorithm 2.3.2 — Branch Voltage Analysis

1. Assume unknown currents in each branch, 1,,...,1,. Indicate their directions by arrows

(direction is arbitrary).

2. For each element indicate, by an arrow, its voltage drop (passive elements) or rise (active

elements) that a particular current causes in passing the element.

3. Select the reference node (selection of the node is arbitrary). Write down KCL equations

at all other t =n—1 nodes.
4. Write down KVL equations for all | =b—n+1 meshes.
5. Express resistor currents by their voltages, by means of Ohm’s law.

6. Solve the set of b equations with resistor voltages and currents of ideal voltage sources, if

present, as unknown variables.
7. Find circuit responses, if not found already.
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Example 2.3.1 cont.

Resistor currents can be expressed by their voltages:
I, =G,U,;i=24,5,6

Then, KCL equations have the following form:

Al +GU, -GU, =0
B: +1, -GU, +G,U, =
C: +GU, -J, +GU, =0

(2.3.1b)

Equations (2.3.1b) and (2.3.2a) form a system of b =6 linear equations with six unknowns,

voltages: U,,U,,U,,U;,U, and current I,.

NODE VOLTAGE (NODAL) ANALYSIS

In branch voltage analysis, in KCL equations, resistor currents are expressed by
corresponding voltages. These voltages can be expressed by node voltages and that way a
system of t equations with t unknown node voltages is obtained. These equations, the so
called nodal equations, can be formulated straightforward from a circuit diagram. A general

branch, connected between nodes i and j, is presented in Fig. 2.3.2.

ls G,

ij 1)

ij

0

Fig. 2.3.2 General branch

From the branch KVL, the resistor voltage drop is
Ug, =U; +E; =V, -V, +E;

(2.3.4)
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Then, taking into account the branch KCL and the resistor Ohm’s law, the branch current can
be calculated,

=3 + IGU =J; +(V; -V, +E;)G; =V,G; -V,G; + 1, (2.3.5)
where,
Iy =3, +E;Gy (2.3.6)

is the total source current of the branch.
Next, the i-th node KCL can be formulated,

t t t
2N+ 2 VG =2 VG =0 (2.3.7)
=0 i=0 i=0
j#i j=i j#i

This equation can be formulated for all nodes, i=1....,t =n—1, except the reference one,
I =0. Then, the final version of nodal equations can be written,

t
ViGii _ZVjGij = Isi (2'3'8)
E
where,
t
G, = Y6, (2.3.92)
i=0

J#i
is the total conductance of the i-th node, sum of conductances of all branches incident with the
i-th node,

G, =G, (2.3.9b)

is the total conductance of branch(es) connected between nodes i and j,

t
li==> 1 (2.3.10)
E
is the total source current of the i-th node, sum of source currents of all branches incident with
the i-th node. These currents are

I, =+J, E,G; (23.11)

j —

+, if arrow of the ij-th branch source is directed to the i-th node,
— , if arrow of the ij-th branch source is directed from the i-th node.
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Nodal equations in the matrix form are:

GV=l, (2.3.12)
where,
_+ Gll Gli _Glt_
G —| — Gil + Gii _Git (2313)
__th _Gti + Gtt_

is a circuit conductance matrix, and

Vl Is,l
V=V, |, I,=]|I (2.3.14)
_Vt_ _Isvt_

are vectors of node voltages and node source currents.

Note:
If a branch resistance is zero (conductance is infinity), i.e. if ideal voltage source or ideal
ammeter is the branch only element, then branch current can not be expressed by node
voltages. This special case will be discussed further on.

Algorithm 2.3.3 — Nodal Analysis

1. Assume unknown currents in each branch, 1,,...,1,. Indicate their directions by arrows

(direction is arbitrary).

2. For each element indicate, by an arrow, its voltage drop (passive elements) or rise (active
elements) that a particular current causes in passing the element.

3. Select the reference node (selection of the node is arbitrary). Write down nodal equations
(2.3.8) for all other t =n—1 nodes.

4. Solve the set of t equations, with t node voltages as unknown variables.

Find a circuit response(s), if not found already.

o

Example 2.3.1a

Diagram of an exemplary circuit, built of b=6 branches connected in N=4 nodes, is
presented in Fig. 2.3.3. As can be observed, it is the circuit of Example 2.3.1 with resistor R,

added, such that the circuit does not contain resistiveless branches. Designation of all branch
currents is the task.

37




Fig. 2.3.3 Diagram of exemplary circuit (Example 2.3.1a)

Node D is selected as the reference one. Then, nodal equations are:

(2.3.15)
Al 4V, (G, +G. +G,) -V,G, ~V.G, =_E,G, —E,G,
B: -V,G +Vg (G, +G, +G,) -V.G, =+E,G, + E,G,
C: -V,G, ~V,G, +Vo (G, +G;) =-J,+E,G,

After solving this system, node voltages V,,Vg,V. are designated. Then, branch currents |
can be designated from (2.3.5), i and j are A, B or C.

= CD_‘]31
5 = DA__VAGS’

|
|

=l =(-V, +E,)G,, (2.3.16)
|
|

Special (resistiveless branch) case

In case of resistiveless branch, R; =0=G; =, its voltage is known (U; =E; or 0),

however the current |; can not be expressed by node voltages V;,V; and Algorithm 2.3.3
have to be modified. Two modifications solve the problem.
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Modification 1 of Algorithm 2.3.3

Do not consider the resistiveless branch at the left side of nodal equations (2.3.8). Set,

and add this current to source currents of the i-th node. That way, number of unknowns has
been increased by one variable, the resistiveless branch current.

Supplement the system of nodal equations (2.3.8) with one trivial equation:
V, =V, tE,

Modification 2 of Algorithm 2.3.3

Select node j as the reference one. Then,
V, =+E;.
Now, the i-th node voltage is not unknown and the i-th nodal equation can be disregarded. In

case more resistiveless branches exist, the modification can be applied only if they all have
one common node.

Example 2.3.1 — cont.

Branch 1, connected between nodes A and B, is the resistiveless branch (ideal voltage source).
Modification 1:

In nodal equations (2.3.15) conductance G, should be deleted and current I, should be

algebraically added to source currents of two nodes (A and B) of the branch. The following
system of nodal equations is obtained:

(2.3.162)
Al +V, (G +Gy) —-VcGs =—1, - EGs
B: +V5(G, +G,) -V.G, =+1,+E,G,
C: -V,G, -V;G, +V.(G, +G,) =-J,+EG,

This system is supplemented by the trivial equation:
Vg =V, +E, (2.3.16b)
Modification 2:

Node A is selected as the reference one. Then, V; = E, and a brand new system of two nodal
equations with two unknowns is formulated:

C: -EG, +V: (G, +Gy) =—J,+EG, (2.3.17)
D: -EG, +V, (G, +G;) =+J,-E,G,
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Drill Problems 2.3
1. Find the formula for U.

Fig. P.2.3.1

2. Find the formula for U.

Fig. P.2.3.2

3. Findthevalueof Rsothat | =1 A

R R R R
2A 20V 10V |

Fig. P.2.3.3

4. Draw a planar graph of a circuit shown. How many independent KVL equations can be
formulated ?

Fig. P.2.3.4
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5. Find U in the circuit shown, using nodal analysis. Assume C to be the reference node.

Al20 6V, B

80 1A
C
Fig. P.2.3.5
6. Find U in the circuit shown.
10 Vm
O U

50 3A 5Q I 2A

Fig. P.2.3.6

7. Find the voltage between node A and ground. All resistances are in ohms.

A
— = e
1 2 14
<D12v 7V
EO 7 * 20 CT 2A
3 6
3V

= Fig. P.2.3.7



2.4 ENERGY and POWER CONSERVATION PRINCIPLE

The law of energy conservation must be obeyed in any electric circuit. For this reason,

the algebraic sum of power in a circuit, at any instant of time, must be zero:

> p=0 (2.4.1)
for DC case
SP=0 (2.4.1a)

where Y means algebraic addition over all elements,

+, if power is supplied by an element,
— , if power is absorbed by an element.

In other words, the total power supplied to the circuit must balance the total power absorbed.

Power balance can be used to check correctness of results of the performed circuit analysis.

Example 2.4.1
For the circuit of Fig. 2.4.1 and the following values of parameters:

J=2AR=5Q, E=25V

find all powers and check the power balance.

Fig. 2.4.1 Circuit for Example 2.4.1

From KVL and Ohm’s law:

U,=U,-E=JR-E=-15V (2.4.2)
Then, taking into account the mutual position of arrowheads of the mesh current | =J and
element voltages:

P, =JU,; =-30W, power absorbed,

P. = J’R=+20W , power absorbed,
P. = JE =+50W, power supplied.
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The total power absorbed, P, =—-P, + P, =50W, equals the power supplied (delivered) by
the voltage source.
.

Drill problems 2.4

1. Find all powers and check the power balance.

L 4
5Q
20 CDl \Y; 2A
@
Fig. P.2.4.1

2. Calculate power dissipated on the most loaded resistor. Formulate the power balance.

o—{ |
16 kQ
(D av 6 k2 4kQ
Fig. P.2.4.2

3. An ideal current source J and an ideal voltage source E are connected back to back (“+”

with “+”). If J =2 mA, what would E be so that 72 J/h was being supplied by the
current source to the voltage source ?

4. Find the emf voltage E, so that the current | =1A. Other parameters are:
R=5Q, E=10V, J =1A. Check the power balance.

Fig. P.2.4.4

5. Calculate all dissipated and absorbed powers in Problem 2.3.2 circuit. Check the power
balance, if R=5Q, E=10V, J =1A.
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. Calculate all dissipated and absorbed powers in Problem 2.3.3 circuit. Check the power
balance.

. Calculate all dissipated and absorbed powers in circuits of Problems 2.3.5 and 2.3.6,
check the power balance.

If in Problem 2.4.2 circuit the maximum rated power of all resistors is 1 W, what is the
maximum acceptable emf value ?
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2.5 TWO-TERMINAL SUBCIRCUIT, THEVENIN’s/NORTON'’s
THEOREM

PASSIVE TWO-TERMINAL SUBCIRCUIT

A passive two-terminal subcircuit, a subcircuit built of resistors, connected with the rest of a
circuit in two terminal nodes is presented in Fig. 2.5.1.

*2 2

Fig. 2.5.1 Two-terminal subcircuit and its total (equivalent) resistance

It can be easily proved, that

for any linear passive two-terminal subcircuit its equivalent or total resistance R, can be
found. The subcircuit is characterized by the Ohm’s law:

U = RII’ I =GIU (2.5.1)

Series and parallel connection of resistors are the special cases.

Series connection of resistors, \Voltage divider

Consider arrangement of resistors so that the same current passes through each resistor, the so
called series connection, as depicted in Fig. 2.5.2.

| — «— «—
le>—"" "} | —1 1
R, R, R, |
=
U
U
2e 2

Fig. 2.5.2 Series connection of resistors
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From KVL and Ohm’s law,

N

U=Zui=|zN:Ri=|Rt
i=1

i=1

(2.5.2)
Then, the total resistance is
N
R =DR;. (2.5.3)
i=1
Circuit of series resistors divides the input voltage by the ratio of the resistance R to the total
resistance,
R.
U =U— (2.5.4)
t
Two-resistor voltage divider
Fig. 2.5.2a Series connection of two resistors
The total resistance and resistor voltages are as follows:
R, =R, +R, (2.5.5)
R
u,=uU 1 2.5.6a
' TR +R, ( )
R
U, = 2 2.5.6b
? TR +R, ( )

Parallel connection of resistors, Current divider

Consider arrangement of resistors so that each resistor has the same voltage, the so called
parallel connection, as depicted in Fig. 2.5.3.
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Fig. 2.5.3 Parallel connection of resistors

From KCL and Ohm’s law,
N N
1=>"1,=U> G, =UG,
i-1 i-1

Then, the total conductance is

i=1

(2.5.7)

(2.5.8)

Circuit of parallel resistors divides the input current by the ratio of the conductance G; to the

total conductance,

Fig. 2.5.3a Parallel connection of two resistors

The total resistance and resistor currents are as follows:
RiR,
‘R +R,
RZ
R, +R,
Rl
R, +R,

|, =1

|, =1

(2.5.9)

(2.5.10)

(2.5.11a)

(2.5.11h)
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For the given resistive two-terminal subcircuit the total resistance can be: a) calculated or b)
measured.

a) Subcircuit diagram should be given and the total resistance can be normally found by
parallel and series connections of resistors. In some cases, wye-delta or delta-wye
conversion of three resistors is necessary. This exceptional cases are not discussed.

b) Subcircuit diagram may not be given and the total resistance can be measured by
means of the external source. Fig. 2.5.4 presents two possible measurement circuits.

In case of ideal meters, their readings are the subcircuit current and voltage. Then,

R =U/l=U,/1l, (2.5.12)
In case of practical meters, their resistances R, or R, have to be taken into account, and
then, only current or only voltage is measured correctly. Thus, respectively:

U=U,—1,R,, I=1, (2.5.13a)
or

I=1,-U,/R,,U=U, (2.5.13b)
a) b)

mOIXCOWw
mOXTCOW

Fig. 2.5.4 Total resistance measurement circuits: a) correct current, b) voltage measurement

Example 2.5.1

R =100

R, =40 R, =6O

2e .

Fig. 2.5.5 Passive two-terminal subcircuit (Example 2.5.1)

Find the equivalent resistance of the subcircuit presented in Fig. 2.5.5.

At first, the total resistance of parallel resistors is found. Then, this resistance connected in
series with (added to) R, gives the following total resistance of the whole subcircuit:
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R,R;

R =R +
R, + R,

=10+24=124Q (2.5.14)

ACTIVE TWO-TERMINAL SUBCIRCUIT

An active linear two-terminal subcircuit, a practical linear source or subcircuit built of
resistors and linear source(s) is presented in Fig. 2.5.6. It can be proved that such subcircuit is
characterized by the |—U relationship depicted in Fig. 2.5.7. This relationship can by
described by any of the following two equations:

U=E, -R]I (2.5.15)
I=J,-GU (2.5.16)
where
J
G o LtoA_ 3
t AU 0
I
—>—0 1
A
U
<
—.2

Fig. 2.5.6 Active two-terminal subcircuit and its equivalent diagrams

| a

N

£ U

[

Fig. 2.5.7 | =U relationship of active linear two-terminal circuit
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These equations are KVL and KCL equations respectively. Then, the corresponding
equivalent circuits can be built, as presented in Fig. 2.5.6. Two theorems can be formulated.

Thevenin’s theorem

Any active linear two-terminal subcircuit can be replaced by the equivalent circuit that
consists of a series connection of an ideal voltage source E, and a resistance R, , where:

E
R, is the subcircuit equivalent (internal) resistance.

is the subcircuit open-circuit voltage, E, =U| 120 s (2.5.18a)

0

Norton’s theorem

Any active linear two-terminal subcircuit can be replaced by the equivalent circuit that
consists of a parallel connection of an ideal current source J, and a conductance G, , where:

Js
G, is the subcircuit equivalent (internal) conductance.

is the subcircuit short-circuit current, J; = 1]y _, (2.5.18b)

Applications of Thevenin’s/Norton’s theorem:

1. Linear dc circuit analysis: replacement of a complex two-terminal subcircuit by Thevenin
equivalent or Norton equivalent circuit, what simplifies calculations.

2. Designation of the maximum power transfer condition.

3. Nonlinear dc circuit analysis: replacement of a linear part by the Thevenin or Norton
equivalent.

4. Transient analysis of the 1% order circuit: replacement of a resistive part by the Thevenin
or Norton equivalent.

Parameters of Thevenin and Norton equivalent circuit can be: a) calculated or b) measured.
a) Itis assumed that subcircuit diagram is given.
e To find the open-circuit voltage, subcircuit analysis is performed.

e To find the equivalent resistance, subcircuit source(s) is(are) deactivated at first.
Deactivation (zeroing) of a voltage source means shorting of its terminals, deactivation
of a current source means opening of its terminals. Then, the equivalent resistance can
be found, the same way as for a passive subcircuit,

R ==/, (2.5.19)

b) A circuit is loaded by two different resistances and its current and voltage are measured,
as presented in Fig. 2.4.8 (correct current measurement is applied).

For two different values of the load resistance, R and R?, the current and the voltage are

measured. That way, coordinates of two points on | —=U line are given, as presented in
Fig. 2.5.7. These coordinates are set into equation (2.5.15) or (2.5.16), to form a system of
two equations. Then, E and R, or J,andG, are designated, respectively.
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Fig. 2.5.8 Measurement circuit for two-terminal element

In the special case: R/ can be an open-circuit and R/ can be a short-circuit.

For a practical ammeter, its internal resistance R, has to be taken into account. Then, the
subcircuit voltage U has to be corrected, the same way as for a passive subcircuit,
following equation (2.5.13a).

Example 2.5.2

The subcircuit built of two practical sources and one resistor is presented in Fig. 2.5.9 -
R, =3Q,R, =4Q,R, =7Q,E, =5V,J, =2A Find: a) Thevenin equivalent, b) Norton

equivalent.

’ — 1
R2 A
RI R3
]? Eu
El
S L L J

Fig. 2.5.9 Example 2.5.2 subcircuit

a)

To find E_, first, the Norton equivalent (J,,R,)can be converted into the Thevenin
equivalent (E;, R;), following equations (2.5.20).

= .0.2Va
E, =J.R (2.5.20a)
R =1/G, (2.5.20b)

Then, the source E; =14V, R, =7Q replaces the source J,,R;, as presented in Fig. 2.5.9a.
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’ I e

EI E3
® ®

Fig. 2.5.9a Example 2.5.2 subcircuit after Norton-Thevenin transformation

’ I e

Fig. 2.5.9b Example 2.5.2 subcircuit with sources zeroed

Finally, the subcircuit open-circuit voltage is:
E1 — E3

E,=U,=E,+ R,=7.7V (2.5.21a)

l+ 3
To find R,, both sources have to be zeroed, the passive subcircuit presented in Fig. 2.5.9b is
obtained. Then, the equivalent resistance is

RR,

R =R, + =6.1Q. (2.5.21b)

 +Ry

b)
For the calculated parameters of Thevenin equivalent circuit (2.5.21), parameters of Norton
equivalent circuit can be calculated from the following equations:

J.=E,/R,. (2.5.22a)
G, =1/R,, (2.5.22b)

Then, J, =1.26A, G, =0.16S.
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Practical sources

An | =U relationships of practical sources, a voltage source and a current source, are shown
in Fig. 2.5.10.

| a a) la b)

v

Fig. 2.5.10 1-U relationship of: a) practical voltage source, b) practical current source

Then, any of these sources can be described by any of equations (2.5.15) or (2.5.16) and
therefore, can modeled by the Thevenin or Norton equivalent circuit. A source-load single
loop circuits are presented in Fig. 2.5.11.

Now, the source voltage or current are not fixed at the values of U =E_  or | =J_, as for an

ideal voltage or current source, respectively. For the given practical source, they are functions
of the load resistance,

R
U=E, ! 2.5.23a
R, +R, ( )
R
I =J ! 2.5.23b
R +R, ( )
a) b)
SOURCE ° | > o LOAD SOURCE _ ° |= ° LOAD
R, R,
U R, CT) or U R,
Eu ']‘\ Gﬁ
® ® - @ o

Fig. 2.5.11 Source-load single loop circuits
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E,
E‘j ...................
2
R
H R" E
A e 1

Fig. 2.5.12 Graphs of a practical voltage source voltage and current source current versus
a load-to-source resistance ratio

Then, for a practical voltage source, to maintain the supply voltage at the fixed level of
U = E_, the load resistance has to be much greater than the source internal resistance,

R >R, (2.5.24a)

for a practical current source, to maintain the supply current at the fixed level of | = J, the
load resistance has to be much less than the source internal resistance,

R <<R,. (2.5.24b)

Example 2.5.3

Given an E, =9V battery, its internal resistance is . R, =3Q Draw the | —U relationship
and the Thevenin and Norton equivalent circuits.

The battery | —U relationship and equivalent circuits are presented in Fig. 2.5.13.

la a) b) C) A
us 1 | U

A 10 sa(D
g

9V

9V U

Fig. 2.5.13 Battery (Example 2.5.3): a) I-U relationship, b) Thevenin, ¢) Norton equivalent

*
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Example 2.5.3 cont.

Convert voltage source of Example 2.5.3 into 1 mA current source.

The conversion can be done by series connection of a resistance R, its resistance being much
greater than the load resistance R, . The internal resistance of the modified source is

R/ =R +R, =R, (2.5.25)
and its short-circuit current is
J.=E, IR =E,IR, (2.5.26)

a) > b) |

1 mA

U

9V

Fig. 2.5.14 Modified source (Example 2.4.3): a) source-load single loop circuit,
b) 1-U relationship.

Then, for J; =1mA and E, =9V the required series resistance is R, = 9kQ . The source-

load single loop circuit is presented in Fig. 2.5.14a, the modified source | —U relationship is
presented in Fig. 2.5.14b.
.

Drill problems 2.5

1. Two 1 W resistors: R, =100Q2, R, =502 are connected in series. What maximum
voltage can by safely supplied to such combination?

2. Two 1 W resistors: R, =100Q, R, =500 are connected in parallel. What maximum
current can by safely supplied to such combination?

3. Determine resistance of a resistor that must be placed in series with R=100 Q resistor
supplied by 120 V, in order to limit its power dissipation to 90 W.

4. Two heaters (resistors) are each rated 1 kW and 220 V. What is the total dissipated power
when they are connected in series across 220 V?
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10.

11.

12.

13.

14.

15.

16.

An electric meter of R =20 Q resistance produces a maximum needle deflection with 10
mA flowing through its terminals. What resistance must be connected in series with the
meter so that the maximum needle deflection occurs when series combination is
connected to 150 V?

What resistance must be connected in parallel with the meter of the preceding problem so
that the maximum needle deflection occurs when 100 mA current flows into the
combination?

Two resistors, R, =9.2kQ rated 1W and R, =5.1kQ rated 0.5 W are connected in
series. What maximum current can safely flow in the combination? What maximum
voltage can by safely supplied?

Resistors of Fig. 2.5.5 circuit are rated 1 W. What maximum voltage can by safely
supplied to such circuit?

Voltages and currents measured at terminals of a linear source at two different loads are:
(2V, 6A); (6V, 2A). Find the current drawn by the R =6 load.

Current entering the positive terminal of E =10V battery (ideal source) raises linearly
from 3 to 9 mA between t=0 and t=15 minutes. How much energy, in joules, is supplied to
the battery during the entire period of time?

Given a 1.5 V AA battery (ideal source) with a nominal life of 150 J. For how many days
will it power a calculator that draws 1 mA current?

A 12 V supply is used to charge 6 V battery of 0.8 Q internal resistance. What series
resistance is necessary to limit the charging current to 600 mA?

Two practical sources characterized by the following parameters: E; =10V, R, =2Q and
J, =5A,G, =1/3S are connected in parallel, “+” with “+”. Find the open-circuit voltage
and the short-circuit current of the obtained active circuit.

For the given U —1 relationship of a practical source that satisfies passive sign
convention find Norton and Thevenin equivalents.
ut 4A |
-5V
Fig. P.2.5.14

A source with open-circuit voltage of 50 V and short-circuit current of 25 A is connected
to 2 Q load. What resistance should be connected in series to limit the power absorbed by
the load to 50 W ?

A 6 V battery has an internal resistance of 0.1 Q. Find the load resistance which would
reduce its terminal voltage to 5 V.
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17. A linear circuit that satisfies passive sign convention is found experimentally to have the
I —U relationship shown. Find its Norton and Thevenin equivalents.

Iy [A]
U V]
2 »
-5
Fig. P.2.5.17
18. Find Thevenin and Norton equivalents.
] a
4 v 6Q
Noll
b
Fig. P.2.5.18

19. Find the Thevenin equivalents of the circuits shown.

®a * a
—> 2
3A
40 20 20
(T)?V 40 20
4v
.b * -.b
Fig. P.2.5.19

20. An alternator with o.c. (open-circuit) voltage of 20 V and s.c. current of 10 A dc is to be
used to charge car battery with o.c. voltage of 12 V and internal resistance ranging from 1
to 5 Q. What resistance should be connected in series to limit the charging currentto 2 A ?

21. Suppose that voltage u of a car battery varies linearly from 14 to 12V as t varies from 0 to
10 min, and the constant current | =0.5 A is entering the positive terminal. Find, a) the
total energy supplied, b) the total charge delivered to the battery.

22. If a current 1 =0.5 A is entering the positive terminal of E, =12 V, R, =2Q battery,
find the energy supplied to the battery in 2 h.

23. Find the voltage needed to charge the battery of Problem 2.5.25 with current of 0.5 A.
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24. Find the equivalent resistance R, if terminals a-b are: a) opened, b) shorted.

— 1
R, R,
R, |:> a} E b
R, R,
o1 T
Fig. P.2.5.24

25. Use a series of Norton-Thevenin and series/parallel transformations to reduce a circuit
shown into the single-loop circuit. Then, find current I.

Fig. P.2.5.25

26. Find the value of R for which the two circuits shown are equivalent.

6Q 4Q

12 Q 6Q = R

Fig. P.2.5.26

27. A source produces a terminal voltage of 10 V when supplying a current of 1 A. When the
current increased to 2 A the voltage falls to 8 V. Find the Norton equivalent of the source.

28. A current source is made by connecting a voltage source of 10 V and negligible internal
resistance in series with resistance of 100 Q. Find the allowed range of load resistance if
the current is to remain constant within 10% of its maximum value. For the calculated
range of load resistance, find the range of its voltage.
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2.6 MAXIMUM POWER TRANSFER THEOREM

Consider a source-load single loop circuit, as presented in Fig. 2.5.11a and the following
problem:

For the given source, characterized by parameters E_,R,, find the load resistance R, such
that the maximum power available from the source is transferred to this load.

The power absorbed by the load is:

onp | Eo i _
R =I"R _(R +R] R =f(R). (2.6.1)

t |

To find the value of R, that maximizes this power, the differential calculus to find where the
derivative dPR, /dR, equals zero can be used:

dP/dR, =0= R, =R, (2.6.2)

The maximum power delivered by a source represented by its Thevenin equivalent is attained
when the load resistance R, is equal to the internal resistance R, .

The normalized plot B /R™ = f(R, /R,) is presented in Fig. 2.6.1, together with the system
efficiency plot.

U%API /R’max
100 |1

50 1 \

—

5 R/R

1

Fig. 2.6.1 Plots of the transferred power (dashed curve) and power transfer efficiency
vs. load resistance
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Efficiency of power transfer is defined as ratio of the power delivered to a load from a
practical source to the power supplied by the emf.
2
n% = i100% = I'R R
P | E R +R,

E

100% =

100% (2.6.3)

0

At the maximum power transfer condition:

P—PmaX—Eff | = o (2.6.4a)
'Y 4R 2R, e

7% = 50% (2.6.4b)

As it is clear, at the maximum power transfer condition only 50% of the power supplied is
delivered to a load, the remaining 50% is lost on internal resistance. There is a tradeoff
between power company and power consumer goals. Power company tries to keep its losses
low by operating at high efficiency:

R
—1 551 (2.6.5)

t

The goal of high efficiency is normally more important! Power consumer (electronic system)
normaly wants to absorb the maximum power available from a source, i.e. wants to operate
under the maximum power transfer condition (2.6.2). In communications circuits, a strong
signal may be more important than a high percentage of efficiency.

The presented maximum power transfer theorem considers R, as the independent variable,

resistance of a single resistor. There is, however, an alternative approach. It is assumed that
the load is a general two-terminal linear subcircuit, active or passive, and it contains one
adjustable parameter, E, or J, or R, or G, , which varies the terminal voltage U. To find the

value of U that maximizes the transferred power

E,-U
P =Ul=U- (2.6.6)
Rt
the differential calculus to find where the derivative dP, /dU equals zero can be used:
dP,/dUzE"_ZU —0=>U=E,/2 (2.6.7)

t
which is the condition on U for the maximum power transfer. At this voltage, the
corresponding terminal current, the maximum power and the efficiency are given by
equations (2.6.4).

For the given terminal voltage and current, the value of adjustable parameter can be calculated
from subcircuit equations. Separation principle, discussed in Chapter 2.8, may be utilized.
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Example 2.6.1
For the active subcircuit of Example 2.6.2 (Fig. 2.5.9), find a load resistance R, such that
maximum power is dissipated in R, . Calculate the value of maximum power.

7.7°

R =R =6.1Q, P™ =
4.6.1

=243W

Example 2.6.2
In the circuit shown in Fig. 2.6.2, suppose E, is adjustable. Find its value such that the
maximum power is transferred from A to B. What is the value of B™ .

A 100 ©Q 50 Q B

20V 200 Q E

.

Fig. 2.6.2 Thevenin equivalent of A connected to loading subcircuit B with adjustable Ex

At the maximum power transfer condition, from (2.6.7), U =20/2=10V .
Then, from (2.6.4), the terminal currentis | =10/100=0.1A.
Applying KCL to the top terminal of B yields
01-0 10-E,
200
Finally, from (2.6.4), B™ =1W

—E,=75V.

Drill problems 2.6

1. What should be the load of a practical source J, =10A, G, =1S, such that the system
efficiency is 7% = 75% .

2. A practical linear source has been loaded, first by an ideal voltmeter, then, by ammeter of
R, =100Q2 . The indications are 15 V and 0.1 A, respectively. Draw | —U relationship,
find load resistance and the power transferred at the maximum power transfer condition.

3. A practical source E, =10V, R, =10Q has been loaded by a resistor of variable
resistance R €< 2,8 >Q . Find the minimum and the maximum power supplied.

4. A practical source E, =4V, R, =2 Q has been loaded by a resistor. Find range of its

resistance < R,;,, R, > S0 that the power transferred is 0.5 < P, <1Ww.

min !
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10.

11.

12.

13.

A battery has open-circuit voltage of 9 V and short-circuit current of 3 A. Find the load
resistance at 25% efficiency of the system.

Find the minimum and the maximum power transferred froma J, =15A, G, =0.25S

source to a variable load ranging from 4 to 6 Q.
Calculate the efficiency of the system presented in Fig. 2.5.14.

Find the maximum power absorbed by the load resistor.

<T>11 Y%

— ]
Fig. P.2.6.8

If a practical current source: J, =2A, G, =0.5S, and a voltage source: E, =?, R, =4Q
are connected back to back (“+” with “+”), is it a value of E, for which there is no power
transfer between them ? If so, find the voltage.

Find R such that maximum power is dissipated in R. Calculate its value.

] ]
5A10V
]

Fig. P.2.6.10

In a circuit of Problem 2.6.10, resistance R varies from 4 to 8 Q. Find the minimum and
the maximum power dissipated on this resistance.

Find an expression for the maximum power available from two identical sources, each
characterized by emf E_ and internal resistance R, , if they are connected: a) in series, b)
in parallel.

Two active subcircuits characterized by Thevenin equivalents are as shown. Suppose
E, =12V, R, =3Q, E, =2V and R,, adjustable. Find the value of R,, such that the

maximum power is transferred from subcircuit 1 to subcircuit 2. What is the value of this
power ?

Fig. P.2.6.13
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14. Two active subcircuits characterized by Thevenin equivalents are as shown in
Fig. P.2.6.13. Suppose R, =3Q, E, =2V, R, =2Q and E_, adjustable. Find the value

of E, such that the maximum power is transferred from subcircuit 2 to subcircuit 1. What
is the value of this power ?

15. A subcircuit characterized by the Thevenin equivalent: E, =10 V, R, =2.4 Q, is loaded
by two resistors R, R,, connected in parallel. Suppose R, =6Q and R,, adjustable.

Find the value of R,, such that the maximum power is transferred. What is the value of
this power ?
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2.7 TRANSFER FUNCTION, SUPERPOSITION THEOREM

TRANSFER FUNCTION

A circuit equations relate the circuit response(s) with its excitation(s),
for one-dimensional (SISO) case:

Y = f(X) (2.7.1a)
for multi-dimensional (MIMO) case:
Y =f(X) (2.7.1b)

For a linear circuit and the voltage or current output (response), this relationship is linear and
term of transfer function can be introduced.

One-dimensional case

Block diagram of a linear SISO circuit is presented in Fig. 1.2.1, Its input-output relationship
Y =KX (2.7.2)

is presented in Fig. 2.7.1, where X =EorJ, Y =U,Vorl and K is the so called transfer
function.

Y a

> X

Fig. 2.7.1 Linear circuit output-input relationship

Example 2.7.1

Find the transfer function of a two-resistor voltage divider (Fig. 2.5.2a), with U, as the
output.

For the two-resistor voltage divider, relationship between the input voltage and the output
voltage (2.5.6) can be expressed by means of transfer function, as presented in Fig. 2.7.2.
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u R U, =KU

Fig. 2.7.2 Block diagram of two-resistor voltage divider

¢

Multi-dimensional case

Block diagram of MIMO circuit is presented in Fig. 2.7.3, where X, =E,orJ;;i=1..,M
and Y; =U;,V,orl;; j=1..,N.

Fig. 2.7.3 Block diagram of MIMO circuit

A linear circuit of M inputs and N outputs is uniquely characterized by M-N transfer functions.

Transfer function
Y
L= = (2.7.3)

uniquely describes a linear circuit with respect to one input and one output signal, voltage or
current.

Then, the output-input relationship is
M M
Y= KX =2 Y j=1.N (2.7.4)
i=1 i=1

where the i-th component of the j-th output is:

65




Y5 =Y (2.7.5)
k=1,...M; k=i

Now, the superposition principle can be formulated.

SUPERPOSITION THEOREM

For a linear circuit excited from M independent sources, any voltage or current can be
obtained by adding all individual voltages or currents, each caused by one source acting alone
with all other sources set to zero. Zeroing of voltage source means shorting of its terminals,
while zeroing of current source means opening of its terminals.

Example 2.7.2
A two-loop circuit is presented in Fig. 2.7.4. Find voltage U, , by means of: a) nodal analysis,
b) superposition principle.

a)
Nodal equation:
1 1 1

U,| —+— |=E—+1J. 276

[Eri)-ed ar
Then,

R R.R
U,=E 42128 (2.7.7)

R+R, R +R,
Block diagram of the circuit is presented in Fig. 2.7.5.

Ry
S
e ——
J—» ............................... VRIR U,
R +R

Fig. 2.7.5 Block diagram for Example 2.7.2
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b)

Two auxiliary circuits obtained from the original one by zeroing one source are presented in
Fig. 2.7.6.

I [ 0
RI R2
®De =
L 0
Rl Rz
R, J

Fig. 2.7.6 Auxiliary circuits (Example 2.7.2) obtained by zeroing J or E

From analyses of Fig. 2.7.6 circuits:

E R3
;3 = R +R, (2.7.8a)
Ul = RR, (2.7.8b)
R, + R,
When adding these two components, the total voltage U, is obtained.
U,=U; +U} (2.7.9)

Applications of superposition theorem:

1. Replacement of a complex (multiple-input) circuit analysis by series of analyses of single
input circuits.

2. Incremental analysis — finding of increments of circuit responses resulting from an
increment of single excitation (source).

Incremental analysis — Problem 1

For the given increment of the i-th excitation:
AX, =X 2=X1, (2.7.10)
find the corresponding increment of the j-th response:

AY; =AY, (2.7.11a)
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Fig. 2.7.7 Increments of circuit excitation and response

Increments of circuit excitation and response are depicted in Fig. 2.7.7. Then, increment of a
circuit response is

AY, = K;AX, (2.7.11b)

Incremental analysis — Problem 2

For the given increment of the i-th excitation:

AX, =X 2-X1, (2.7.12a)
find increment of the k-th excitation:

AX, =X =X, (2.7.12b)
such that

AY; =AY +AY =0, (2.7.13a)

An increment of a circuit response resulting from increments of the i-th and the k-th excitation
has to be zero, i.e. no change in a circuit response should be observed:

AY, = K AX, +K,AX, =0 (2.7.13b)

Then, the k-th excitation increment, necessary to compensate the effect of the i-th excitation
increment, is
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K AX,

AX, = ——0270 (2.7.14)
k K ]

Positive value of the increment means increase of the excitation, negative value means its
decrease.

Example 2.7.2 — cont.

Find the increment of U, caused by the increment of E, if value of E increases three times.
Then, find the increment of J necessary to compensate this increment of E.

For the assumed increment of the voltage source:

AE=3E-E=2E (2.7.15)
the corresponding increment of the voltage U, (2.7.8a) is
R3
AU, = 2E (2.7.16)
R, + R,
The increment of J necessary to compensate this change is:
2E
A =——, (2.7.17)
Rl
sign “—” means that decrease of the current source value is necessary.

*

Drill problems 2.7

1. The emf has increased its value two times (up to 2E). Calculate the increment (value and
sign) of the current 1. Then, calculate the increment of the current source necessary to
compensate this change.

<
<

20 I

<} E=10V | |2Q 1Q C} 0A

Fig. P.2.7.1
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2. Find the gain K of the voltage adder, U = KU, +U,).

1
R I
A
U, R
A
X ?

Fig. P.2.7.2

3. All independent sources (circuit inputs) and a shorted branch with the current I, (circuit
output) are extracted from a linear circuit, as shown. With sources J and E, on and
E,=0:1,=20A,withJand E, onand E, =0: I ,=-5A, with all three sources on:
I, =12A . Find I, if, a) Jis doubled, b) E, is reversed.

—D
»

].\'

D
e

Fig. P.2.7.3

4. Use the superposition theorem to find the voltage in Problems 2.3.5 and 2.3.6.

5. All independent sources (circuit inputs) and a load branch with the current 1, (circuit

output) are extracted from a linear circuit, as shown. This current is measured for two
different values of E and J:

1. E=7V,J=3A:1 =1A,

2. E=9V,J=1A:1 =13A.

Find, a) transfer functions Ky, , K; , b) I, when E=15V, J =9A, c) increment of J
necessary to compensate increase of E from 7 to 9 V.
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1,{ R,

Fig. P.2.7.5

6. The circuit shown is driven by two independent sources. Find transfer functions in the
linear relationship: U =K E+K,,J.

2Q AU
2A
12912V 6Q
7Q
2Q)

Fig. P.2.7.6
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2.8 SUBSTITUTION THEOREM

Consider a circuit built of two subcircuits connected in m nodes, as presented in Fig. 2.8.1.
Then, the following substitution theorem, can be formulated.

Two subcircuits connected in m nodes can be isolated by means of m—1 pairs of voltage
and/or current sources connected between the m-th node (selected arbitrarily reference node)
and each of the other m—1 nodes. Value of such voltage source equals the voltage in original
circuit, U, . Value of such current source equals the current entering/leaving the node, 1, .

SUBCIRCUIT 1 ‘1 SUBCIRCUIT
1, %2
A > ® B
A
U, U,

\ 4

®
m

Fig. 2.8.1 A circuit built of two subcircuits connected in m nodes

SUBCIRCUIT I, 1 1 I, SUBCIRCUIT

A

Fig. 2.8.2 Isolated subcircuits, m=3
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For m =3, subcircuits can be isolated by means of two pairs of sources, as presented in Fig.
2.8.2 for voltage isolating sources. Then, for calculation of voltages and currents inside
subcircuit A, the subcircuit B may be replaced by two independent voltage sources and vice
versa.

Applications of substitution theorem:

1. Independent analyses of subcircuits, if isolating voltages/currents are given, measured or
pre-calculated or set by ideal sources.
2. Calculation or measurement of the power transferred from subcircuit A to subcircuit B.

For subcircuit A presented in Fig. 2.8.2, the power balance is:
Pa=R, +R, =1lU, +1,U,. (2.8.1)

If P, >0, then subcircuit A supplies power, subcircuit B absorbs.
If P, <0, then subcircuit A absorbs power, subcircuit B supplies.

In general,

If two subcircuits are connected in m nodes, then power transferred from one to the other can
be measured by m—1 wattmeters or calculated, through calculation of m—1 pairs 1,,U, .

Example 2.8.1
For subcircuits presented in Fig. 2.8.3 and the given measurements: 1, =0.5A,U,, =18V
(both meters are ideal), calculate the transferred power.

SUBCIRCUIT A 1 I, SUBCIRCUIT B
- ® — > ’
N7 4
50 | [16.5V 1.2A
2 I, 133A 6V
_: g 1 a
U, 30 | [1.5V
10Q2 12V
_. . 4 \ 4
3

Fig. 2.8.3 Circuit for Example 2.8.1

By alternate application of KCL, KVL and Ohm’s law, subcircuit B currents and voltages can
be calculated, as presented in Fig. 2.8.3. Then,
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I, =-33+0.5=-28A,U, =15V; (2.8.2)
l,=1.2+33=45A,U, =18V,

and the power supplied by subcircuit A is:
P, =—4.2+81=76.8W. (2.8.3)

Drill problems 2.8

1. Two subcircuits are modeled by Thevenin and Norton equivalents. Calculate the
transferred power, its value and direction of transfer.

A ® * B
3Q

SRV 20 S5A

Fig. P.2.8.1

2. Find the power transferred from subcircuit A to subcircuit B.

A B
—1e(ap

2A
5Q 2ov
50
@ L 3
Fig. P.2.8.2

3. Asubcircuit is separated from the rest of a circuit by entering/leaving currents, as shown.
Find I and the power produced (or absorbed) by the 1 A current source.

| 40 4A
]
4v 1A
1A 2 A
]
Fig. P.2.8.3
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4. Find the current of 4 Q resistor.

Q

Do)

0.8 Q
e}

Fig. P.2.8.4
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2.9 MULTI-TERMINAL ELEMENTS

A multi-terminal element is an element with m terminals available for external connections.
After general description of multi-terminal elements, three-terminal element and four-terminal
element are considered. Then, analysis of circuits containing multi-terminal elements is
discussed.

ELEMENT DESCRIPTION — CONDUCTANCE MATRIX

Passive multi-terminal element

A general passive m-terminal element is presented in Fig. 2.9.1, node m is the reference one
and the terminal currents and voltages satisfy the passive sign convention.

€01 LU,

Fig. 2.9.1 Passive m-terminal element
The element can be uniquely described by m-—1 equations relating external variables,

I,,U;;1=1..,n=m-1. These equations can be equations expressing current by voltages:

I1 Gll Gln U1
S A B I (2.9.1)

1=G-U (2.9.1a)
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Then, an element is described by the conductance matrix G. Its diagonal element
G,;i=1..,n ,is a conductance between the i-th node and the reference one with all other

nodes shorted to this m-th node:

Ii
G; = 0 : (2.9.2)

i
Uy =0;k=1,...n; k=i

The off-diagonal element G;; i, j=1,...,n;i= j, is the so called trans-conductance, ratio of

the i-th terminal current to the j-th terminal voltage, with all nodes except the j-th shorted to
the reference one:

l.
=1 2.9.3
] UJ ( )
U, =0; k=1,..n; k=]

For an m-terminal circuit of resistors, the conductance matrix is symmetrical, G; =G;;. Then,
the total number of its parameters (conductances) is:
m(m-1)

M=[(Mm-1)*-(Mm-1]/2+m-1= 5

(2.9.9)
These parameters can be

a) measured,

b) calculated, if a circuit structure is known.

Before discussing in details two, three and four-terminal element term of port will be
introduced.

Port is a pair of terminals at which same current may enter and leave an element.

Two-terminal element (one-port)

A general two terminal element with voltage and current that satisfy the passive sign
convention is presented in Fig. 2.1.2a. For this element: m=2, M =1 and the equation

relating external variables (2.9.1) is simply the Ohm’s law equation (2.1.5).

Three-terminal element

A general three terminal element is presented in Fig. 2.9.2. For this element: m=3, M =3
and equations relating external variables are:

I, =G U, +G,U, (2.9.5)
Iz :GZlul +Gzzuz

This element is characterized by three conductances: G,;,G,, =G,,,G,,.
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[I “Ul

——e
3

Fig. 2.9.2 Passive three-terminal element

Measurement circuits are presented in Fig. 2.9.3a and 2.9.3b, for G, and G,,, respectively.

a) b)

° .
3 3

Fig. 2.9.3 Measurement circuits for measurement of: a) G;1, b) G,;

The conductance G,; is
|
Gllzu—l; |1:|A’U1:UV_IARA (2963.)
1

The conductance G,, can be measured in the similar way, by shorting 1-3 and measuring
I,,U, . Finally, the conductance G, is

I, -G,U
G, =2 Uzz 2:1,=-1,,U,=1,R,,U, =U, (2.9.6b)
1

For an ideal ammeter, R, =0, and equations (2.9.6) can be simplified.
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Example 2.9.1
Consider three resistors circuit of the T-shape structure, as presented in Fig. 2.9.4a.

Fig. 2.9.4 T-shape circuit (Example 2.9.1) and circuit for calculation of G;; and G,

The conductances G,; and G,, can be designated from Fig. 2.9.4b circuit. The terminal
currents are

R,R
I, =U, /(R +—22), 2.9.7a
= U R+ ) (2.9.72)
R
I, =- 1, (2.9.7b)
R, + R,
then, the conductances are
| R, +R
G,=-—1+= 2 3 (2.9.8a)
U, RR,+RR;+R,R,
| R
G, ,=—2= 3 (2.9.8b)

U, RR,+RR,+R,R,
The conductance G,,, conductance seen from terminals 2-3 when 1-3 are shorted, can be

calculated from Fig. 2.9.4b subcircuit, with branches 1-3 and 2-3 swapped, and this
conductance is
I, R, +R,

G,=—= ) 2.9.8c
? U, RR,+RR,+R,R, ( )

Two-port

A general two-port, presented in Fig. 2.9.5, is the special case of four-terminal element. It is
described by the same set of equations as a three-terminal element (2.9.5). Port 1 between
nodes 1 and 3 is the input port, port 2 between nodes 2 and 4 is the output port.

1 I, 2
*—— ——<o
*— <« —>—o
3(1°) 1, I, 42

Fig. 2.9.5 Two-port
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Active multi-terminal element

For an active multi-terminal element, terminal short-circuit currents should be added to
equations (2.9.1).

I=GU+J (2.9.9)
Now, the conductances, short-circuit currents and the total number of parameters are
|
G =— , 2.9.10
T (2.9.10)

U, =0;k=1,...n; k=i
J=0
G, =— (2.9.11)

U, =0;k=1,..n;k#j
J=0

J, =1 . (2.9.12)
M::Tg%1944n—1 (2.9.13)

a)
To identify M parameters, no external source is necessary, M linearly independent
measurements have to be performed, five measurements for a three-terminal element.

b)

Example 2.9.1b

Consider three resistors active circuit of the T-shape structure, as presented in Fig. 2.9.6a.
After zeroing the voltage source, passive subcircuit of Fig. 2.9.4a is obtained and elements of

conductance matrix can be found (2.9.8).
Short-circuit currents can be designated from Fig. 2.9.4b circuit, and they are

ER
J, =- : (2.9.14a)
R,R, + RR, +R,R,
ER
J, = ! (2.9.14b)

"RR, +RR, +R,R,

a) ‘1_' |—02
Rl RZ
RB

3
Fig. 2.9.6 T-shape subcircuit (Example 2.9.1) and circuit for calculation of J

*
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OTHER MATRICES OF MULTI-TERMINAL ELEMENT

A multi-terminal element of m=n+1 terminals or a multi-port of n=m/2 ports can be
described by n=m-1 equations that express n external variables by other n external
variables. Than, total of

N = [an (2.9.15)

n

descriptions are possible.

The conductance matrix description, that expresses external currents by external voltages, has
been discussed already.

The resistance matrix description, that expresses external voltages by external currents, is the
other primary way of multi-terminal or multi-port description:

U=RI+E (2.9.16)
All other N —2 descriptions are the so called hybrid descriptions:
Y=HX+Z (2.9.17)
where,
1] U, | [, |
' H H :
I, .11 ' '1n U, J,
Y = yH=| o [ X= , Z = . (2.9.173)
U I.<+1 H " H - I k‘+l Elf+l
U, L] LE

For three-terminal or two-port element, four hybrid descriptions can be formulated. The so
called cascade matrix description (2.9.18), that expresses output variables by input variables,
is frequently used.

U C, C U E

I2 C21 CZZ Il ‘JZ
For a resistive m-terminal circuit, both conductance matrix and resistance matrix are
symmetrical. Hybrid matrix is non-symmetrical, however it also contains M (2.9.4) linearly
independent parameters. In general, having one matrix description the other one can be found.

The following relationships between the conductance matrix description and the resistance
matrix description can be given:

R=G! E=-GJ (2.9.19)
G=R*',J=-R'E (2.9.19h)
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Example 2.9.1a cont.

The circuit of Fig. 2.9.6a can be described by the resistance matrix:
U, =R, +R,l, +E; (2.9.20)
U, =R, I, +R,I, +E,

The parameters R;;, R,, can be designated from Fig. 2.9.7a circuit. They are

R =2 —R 4R (2.9.21a)
1 |1,=0
E=0
R,=02 _R =R, (2.9.21b)
1 |1,=0
E=0

Fig. 2.9.7 (Example 2.5.1) Circuits for calculation of: a) R11, Rz1, b) E

The resistance R,,, resistance seen from terminals 2-3 when 1-3 are opened, can be

calculated in the similar way as R;;:
U 2
R,,=—% =R, +R, (2.9.21c)
I, 1,=0
E=0
The open-circuit voltages can be designated from Fig. 2.9.7b circuit.

E,=E,=E (2.9.21d)

ANALYSIS OF CIRCUITS WITH MULTI-TERMINAL ELEMENT(S)

Consider a circuit built of two-terminal elements, with one three-terminal element extracted,
as presented in Fig. 2.9.8.
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SUBCIRCUIT

1 7, MULTI-
& —>TERMINAL

« A

io

Fig. 2.9.8 Circuit with three terminal element extracted

The circuit nodal equations are:
GV=I,-I (2.9.22)

where: G is the circuit conductance matrix,
I, is vector of the circuit source currents at its nodes, internal nodes and nodes 1,2,3
I is vector of the m-terminal element currents, supplemented by t —m zeroes:

I
0| » | .
I=p =] (2.9.223)
: 3
0
A general multi-terminal element equations (2.9.9) are
I"'=G'V'+J" . (2.9.23)
For m =3, taking into account that:
U, =V, -V,,U, =V, -V,,U; =V, I, =—1, -1, (2.9.24)

a three-terminal element equations are
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Il Gfl Gl*Z - (Gl*l + G;Z) Vl ‘]I

* * *

I, |= G, Gy, _((23;12"'6;2) |Va |+ J (2.9.25)
SR R o B RO I 35 M e/ AR S

i=1 j=1

Taking into account these equations in (2.9.22), the circuit nodal equations can be formulated.
The strategy can be generalized into arbitrary number of multi-terminal elements case and the
following algorithm can be formulated.

Algorithm 2.9.1 — Nodal analysis of circuits with m-terminal element(s)

1. Disconnect (extract) multi-terminal elements, find G and | of the obtained subcircuit.
2. Designate G' and J' of all multi-terminal elements; i =1,...,N .
3. Overlap matrices G' onto matrix G and vectors —J' onto vector I, for i =1...,N .

Example 2.9.2

All conductances and sources of the circuit presented in Fig. 2.9.9 are given, as well as the
conductance matrix and the short-circuit currents of the three-terminal active element — its
reference node is denoted by an asterisk. Find the circuit nodal equations.

Circuit nodes are numbered: 0,1,2,3,4 — node 0 is the reference one. Three-terminal element
nodes are numbered: (1), (2), (3). Then, nodal equations (2.9.26) can be formulated.

Fig. 2.9.9 Circuit for Example 2.9.2
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1(1) 2 3(2) 4 (3) (2.9.26)

G, +G, +G, +G,, -G, +Gy, ~(G;1+Gp) v, ] _GlEl _ Jl*_
-G, G, +G, +G, -G, 0 v, G.E,
G; _G4 G4 +Ge + ng - (G; + Gzz) . B *
V, -7,
X X . . 2. 2
- (Gll + Gzl) 0 o (Glz + GZZ) GS + ZZGH _V4_ ‘]1* + ‘];
L i=1 j=1 | - N
2

Drill problems 2.9
1. What is the total number of parameters that characterize an active four-terminal element.

2. Find matrix R and vector E.

le—{" 1+ o2

Fig. P.2.9.2

3. The three-terminal passive element is characterized by the following resistances:
R, =R,, =1Q, R, =R,, =0.5Q . Find an ideal voltmeter indication.

10

3
Fig. P.2.9.3
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4. A three-terminal element is characterized by the resistances R; =R, =R, =1Q,

R,, =2Q and the open-circuit voltages: E, =—1V, E, =2V . An ideal ammeter is

connected between terminals 1 and 3, an ideal voltmeter is connected between terminals 2
and 3. Find their indications.

5. Find matrix G and vector J for the subcircuits shown in Fig. P.2.9.1.

6. Find matrices R, G and C of the two-port shown. Find the expressions and values for
R, =5Q, R, =20Q, R, =10Q

Fig. P.2.9.6

1 2
7. Find matrix C of the passive two-port for which R = L 2} in Q.

10 -5] .
0 in mS, what are

8. If the passive two-port shown has the conductance matrix G ={

the indications of ideal meters ?

Lo
(D

Fig. P.2.9.8
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2.10 DEPENDENT (CONTROLLED) ELEMENTS

Arbitrary dependent element - description

Two-terminal elements are normally characterized by an analytic function, linear or nonlinear,
of one argument (2.1.4). Another category of elements can be distinguished, namely
dependent or controlled elements. A controlled element is described by the following
relationship:

I =fU,X)orU =g, X) (2.10.1)
Then, such element is described by a family of | —U characteristics, with X as the second

parameter, so called control variable, which can be: temperature t, lightning flux @ , other
voltage U_ or other current I, . The two latter elements are called the controlled sources and

they will be discussed in details.

Controlled sources - description

Controlled source is a source that provides a current or voltage that is dependent on other
current or voltage elsewhere in the circuit.

Four types of controlled sources can be distinguished:
a) Voltage Controlled Voltage Source (VCVS),
b) Current Controlled Voltage Source (CCVS),
c) Voltage Controlled Current Source (VCCS),
d) Current Controlled Current Source (CCCS).

Then, two branches are assigned to each controlled source: source branch and control variable
branch, as depicted in Fig. 2.7.1a, b, c, d, for ideal (resistiveless) sources. These elements
equations are:

VCVS: U =E =k .U, (2.10.2a)
CCVS: U =E =Kk, (2.10.2b)
VCCS: | =J =k,,U, (2.10.2¢)
CCCS: 1 =J =k, 1, (2.10.2d)

where, k. [VIV], kK [VIA] k, [AV], Kk, [A/A] are control coefficients, constants
characterizing corresponding sources.
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b)

d)

Fig. 2.10.1 a) VCVS, b) CCVS, ¢) VCCS, d) CCCS

Families of | —U relationships characterizing VCVS and CCCS are presented in Fig. 2.10.2a
and d.

ayal U, U, U, U, U, U, d) a4l
Kl I,
L,
L.
k}[,, I,
1 5 R ——————— kU ;U >

Fig. 2.10.2 Family of I-U relationships characterizing a) VCVS, d) CCCS

Use of controlled sources to element modeling

Controlled sources are used in modeling of circuit elements, such as transistor, operational
amplifier or any other multi-terminal element.

Transistor

A transistor circuit symbol and the simplified model, for the common emitter mode of
operation, are presented in Fig. 2.10.3. As can be seen, the CCCS is used. Then, after

linearization of a diode characteristic (2.12.1c), i.e. its replacement by the voltage source U,
the transistor equations are:

lg =@/Ry)Ug —U, /R, (2.10.3)
Ic :(ﬂ/RB)UBE _Ufﬂ/RB

| U

{ B}:c{ BE}J (2.10.3a)
IC UCE
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me

Fig. 2.10.3 Transistor a) circuit symbol, b) simplified model

For the assumed model, the transistor is characterized by the following conductance matrix
and short-circuit current vector:

o _[HRe 0] | [-Ui/Rs ) 103
"l pR, O T |-U,BIR, (2.10.32)

and then, practically by two parameters ( for a silicon transistor U; = 0.7 V):
e current gain S,
e Base resistance R;.

It should be observed, that resistance matrix R does not exist.

Operational amplifier

An operational amplifier (op-amp) circuit symbol and the model are presented in Fig. 2.10.4.
As can be seen, the VCVS is used.

1 Iﬂ'n an [nm‘ 2 b)
117, a) 1 F<—e
[ >
T 2 U, Uy
U, 4 Uou R, (T) kU,
3e =)
4
- : Te

Fig. 2.10.4 Op-amp a) circuit symbol, b) model

For the assumed model, an op-amp is characterized by equations (2.10.4), i.e. by two
resistances and one control coefficient.
.. =U. /R, (2.10.4)
o =—KU, /R, +U../R

out out out
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1/R,, 0
G = (2.10.4a)
-k/R,, 1/R,,

For an ideal op-amp: Rip=0—1i,=0; Roy=0—Uoy=KUjn; k=o0.

Arbitrary three-terminal or two-port element

An arbitrary linear active three-terminal element (Fig. 2.9.2) or two-port (Fig. 2.9.5) can be
described by equations (2.9.20). These equations are KVL equations and equivalent circuit
built of two-terminal elements can be constructed, as presented in Fig. 2.10.5. For a two-port
element, connection denoted by the bold line should be removed.

1 I,
tos (41— ()2
E, R, R, E,
. R,I 2<T> <T>R2|[ 1 :
3e e 3(4)

Fig. 2.10.5 Model of three-terminal or two-port element

Analysis of circuits containing controlled sources

If a circuit contains controlled source(s), then such circuit nodal equations should be
supplemented by equation(s) of controlled source(s), with controlling variable(s) expressed by
nodal voltages.
Example 2.10.1

Find nodal equations of the circuit presented in Fig. 2.10.6.

Fig. 2.10.6 Circuit for Example 2.10.1

For the assumed V. =0, the circuit nodal equations are:
V. (G, +G,)-V:G, =E,G, +J; (2.10.5)
-V,G, +V;(G, +G,+G,) =E,G,
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Equations of the controlled sources, with controlling variables expressed by nodal voltages
are:

Je =k U, =kVg (2.10.6)
E, = k4|1 = k4(E1 _VA)G:L

After setting equations (2.10.6) into (2.10.5) and reordering, the following system is obtained:
V,(G, +G,)-Vs(G, +k;) =E,G, (2.10.7)
_VA (Gz - G1(34k4) +VB (Gz + Gs + GA) = E16164k4

It should be observed, that the conductance matrix is not symmetrical, G,, # G,, . This is due
to the presence of the controlled sources.
.

The next example illustrates a strategy of determination of the Thevenin equivalent when
two-terminal circuit contains dependent sources.

Example 2.10.2

Find the circuit U — | relationship and then the Thevenin equivalent.

«— |

-
\\/kl R
1 2 U

ol

11
* L]

Fig. 2.10.7 Circuit for Example 2.10.2

By attaching a fictitious external current I, KVVL can be formulated

U=-IR, —kl, +R/I, (2.10.8a)
From KCL

l,=J—1 (2.10.8b)
and the circuit U — 1 relationship is

U=-IR,+(R -k)J-1(R,-k)=(R, -k)J - (R, +R, =Kk)I (2.10.9)
Then, the Thevenin equivalent parameters are:

E, =(R-k)J, R, =R +R, -k (2.10.10)

.

The next example illustrates the proper use of superposition when there are dependent sources
present in a circuit.
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Example 2.10.3

Two subcircuits are separated by an ideal voltage source as shown. Find |¢. The circuit
parameters are: J =5A, E=20V, k=2V/V, R, =3, R, =10Q,

1 I
UJ RI I.';‘ RQ
®:. e w, (D
1 ® I , I

M wi(D)

| |

Fig. 2.10.8 Circuit for Example 2.10.3 and its superposition components

An ideal voltage source isolates two subcircuits, however the substitution theorem can not be
applied as the controlling variable and the dependent source are located in different
subcircuits.

When superposition is applied, then only independent sources give the superposition
components. Thus, the example circuit can be divided into two subcircuits, as shown. The
computed components of the current are:

e kUJ—E KE-E

k J
R2 RZ RZ R2

10=J+ (2.10.11)

Then, the total currentis: 1. =1 +1F =9A

Drill problems 2.10

1. Find model of a three-terminal/two-port element, if the element is described by the
conductance matrix and short-current vector.

2. Draw | —U characteristic or a practical controlled source: a) VCCS, b) VCVS, c) CCCS,
d) CCVS, characterized by the following parameters: R, =10Q, k=2 [X/X], for the

controlling variable of 5 [X], where X means V or A.
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3. Model a passive two-port characterized by the following resistances:
R, =050Q,R, =R, =2Q, R,, =4Q . Use controlled sources and resistors.

4. Find the power absorbed by the load resistance R, =1Q.
I

4v | |20 2l R,

Fig. P.2.10.4

5. Find the mesh current.

Fig. P.2.10.5

6. Find the collector resistance R. that gives U, =5V . Assume a diode voltage drop of
0.7V . The supply voltages are E; =17V, E. =10V and the Base resistance is
Ry =100kQ.

Fig. P.2.10.6

7. A practical source of E, =1mV, R, =5Q is connected across the input terminals of an
op-amp and the load resistance of R, =1kQ is connected between the output and ground.
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Determine the load voltage U,. Use the idealized op-amp model, R, =x, R ,, =0, with
open-loop gain of k =10° V/V .

R 1
+ 2
Eu UnI Uf
o —
3 R,
4
i

Fig. P.2.10.7
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2.11 DESIGN TOLERANCES, SENSITIVITY ANALYSIS

A MIMO circuit of Fig. 2.7.3 is uniquely characterized by its L constants (primary
parameters) P,...,P_. Any transfer function K; (secondary parameter) is a function of these

constants, K; =K;(P,...,P), any output signal is a function of these constants and input
signals, Y; =Y,;(X,,... Xy,R,...,P). Both transfer functions and output signals can be
considered as circuit variables designated by circuit constants and/or circuit inputs

Fo=F Xy, Xp); Xy =R =1L (2.11.1)

Example 2.11.1

A voltage divider presented in Fig. 2.11.1 is characterized by two parameters, resistances
R,,R,. Then, two circuit variables, transfer functions are selected:

e inputresistance: F, =R,, =U, /I =R +R, (2.11.2a)

o gain: F, =K =Ug, /U, =2 (2.11.2b)
1 2

Fig. 2.11.1 Voltage divider
.

Then, ideal and practical circuits are distinguished.

Ideal circuit: All circuit parameters have nominal values:

X, =X"i=1..P (2.11.3)

Practical circuit: All circuit parameters are characterized by nominal values and design
tolerances, i.e. their values lay within tolerance margins:

X, e< X7, X >i=1..,P (2.11.4)
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Based on tests, made during the manufacturing process, the probability distribution for each
parameter can be found. Presented in Fig. 2.11.2 normal or Gauss distribution is the most
commonly used. This distribution is described by the following equation (index i has been
omitted for simplicity of description):

where o is the so called standard deviation.

p(X) =2 exp[—wj (2.115)

oN2r 20°

A p(X)

/
/11717177

X X

< Y

+

Fig. 2.11.2 Normal distribution of circuit (element) parameter

For the given standard deviation, tolerance margins are related with the probability
distribution by the following equation:

q= X rrx)(x)dx (2.11.6)

X"—AX
where q is the production yield, e.g. for q=0.95, 95% of the production is classified as
“healthy”.

For the assumed parameter deviation AX AX = X" — X" =X"—-X" >0, production yield g
can be calculated from (2.11.6). If g is assumed, then the acceptable deviation can be
calculated, practically deviation of

AX =(2+3)o (2.11.7)
is accepted.
An element is normally characterized by its parameter deviation to nominal value ratio, so
called parameter tolerance:
_AX
X n
For P parameters characterizing a circuit, its tolerance region can be defined.

tol, (2.11.8)
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Tolerance region (tolerance box) is a parallelepiped in the parameter space R” with planes
parallel with coordinate axes, and designated by tolerance margins of circuit parameters

X, Xop

Example 2.11.1 — cont.

The nominal values of resistances and their tolerances are: R =R, =1Q,
tol, =0.1 tol, =0.05. Graph the tolerance region.

The tolerance region is presented in Fig. 2.11.3, nominal point is denoted.

R

1.0SI 2

0.95

L 2 L 4 @ L 4 @ L 4 *—>
05 0.9 11 R

Fig. 2.11.3 Tolerance region for Example 2.11.1

L

Presence of design tolerances has to be taken into account at a circuit design stage. Two
approaches are possible:

1. Parameter design tolerances are given by the design-engineer. Finding of maximum
deviations of circuit variables, caused by these tolerances, is the task.

2. Design specifications, acceptable deviations of circuit variables, are given by the
design-engineer. Finding of parameter design tolerances is the task.

Designation of the maximum design deviation of circuit variable

For each circuit variable F (index has been omitted for simplicity of description), its
maximum deviations, due to design tolerances of circuit parameters, can be found. Two
different techniques are possible:

e worst case analysis,

e sensitivity analysis.
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Worst case analysis

It is assumed that within the tolerance region, first derivatives of a circuit variable function
(2.11.1) do not change sign:

sgn(oF /0X;) =const for X, e< X{, X" >;i=1..,P (2.11.9)

Then, the boundary values of a circuit variable, due to a presence of parameter design
tolerances, are calculated by setting in function (2.11.1) the boundary values of parameters:

F'=F(X;,..,Xp) (2.11.10a)
. X" if (oF/0X,)" >0
where, X, =<1 .
X if (OF/8X,)" <0
F = F(Xl*,...,X;) (2.11.10Db)
. [X7if (6F/aX,)" <0
where, X, =9 .
X, if (oF/0X,)" >0
and
(OF /oX;)" =Sy, (2.11.11)

is the 1% derivative calculated at the nominal point X", the so called sensitivity of a circuit
variable F with respect to small changes of parameter X, in a close neighborhood of the

nominal point, the 1% order sensitivity. For M circuit variables and P circuit parameters, the
M x P sensitivity matrix can be created

s)fll SQP

S=| : . (2.11.114)
S)EZA S)'zh:

Finally, the maximum deviation caused by parameter tolerances is

AF, =|F* —F"

=|F —F'

(2.11.12)

Example 2.11.1 — cont.

The boundary values of circuit variables are calculated from the following equations:
Ri =R, (R,R;) =R +R; =2.15Q (2.11.13a)

R, =R,(R,R;)=R, +R, =1.85Q

K*=K(R,R;)= R, — =0.5366 VIV (2.11.13b)
Rl + 2

K =K(R/,R;) = RZR_ = 0.4634 VIV

+
l+2

and the maximum deviations, caused by the design deviations of parameters are:
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AR, . =0.150, AK,_, =0.0366V/V (2.11.14)

in,max

Sensitivity analysis

Consider the 1% order approximation of the circuit variable function (2.11.1), its Taylor’s
series expansion around the nominal point:

F(X" +AX) = F(X")+ZP:(6F 16X,)" AX, (2.11.15)

Then, the deviation of a circuit variable can be expressed by the 1% order sensitivities and
parameter deviations:

P
AF = F(X" +AX) - F(X") = » 'S AX, (2.11.16)
i=1
The relative sensitivity can be introduced:
X!

Sr, = (OF 10X)" (R I X{) = S5 =5 (2.11.17)

and then, the relative deviation of a circuit variable is
P
AF/F" =" Sry tol, (2.11.18)
i=1
To find the maximum deviation, signs of sensitivities should be disregarded:
=]
AF . = Y"[SE|AX (2.11.19)
i=1
P
(AF/F") e =tol = Y"|Srf|tol (2.11.20)
i=1

Example 2.11.1 — cont.
Sensitivities of the selected circuit variables are:

Spr =Sg" =1Q/Q (2.11.21a)

SK = R . :_1 1/Q, SX = 1 R, > =l1/Q (2.11.21b)

' (R, +R,) 4 ? R +R, (R +R,) 4

Then, the maximum deviations are:

AR ., =0.15Q, AK _, =0.15/4=0.0375V/V .

As can be seen, these values are very close the exact values obtained from the worst case
analysis (2.11.14).
.
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Normally, an analytic form of a circuit variable function (2.11.1) is not known. Then, two
different methods of sensitivity calculations, other than the explicit one, are used.

e Adjoint Circuit method, based on Tellegen’s Theorem.

e Direct method.

In the Tellegen’s theorem based adjoint circuit method, an adjoint circuit is created. This
circuit is obtained from the original (nominal) one by zeroing all sources (shorting voltage
sources, opening current sources). Its excitation is designated by the considered circuit
variable. Next, based on analyses of two circuits, the adjoint and the original one, all
sensitivities of this variable, one row of the sensitivity matrix, are calculated, Tellegen’s
Theorem is applied. Details of this method are not discussed.

As M circuit variables are considered, then, to find all M - P sensitivities, M +1 analyses
have to be performed: original circuit analysis + M analyses of adjoint circuits.

In the direct method, two analyses are performed, the original (hominal) circuit analysis and
analysis of the nominal circuit with an increment added to one parameter:

X, = XM +AX,, X; =X j=1.,P; j#i (2.11.22)

From the results of analyses, increments of all circuit variables are designated and sensitivities
with respect to small increment of X, , one column of the sensitivity matrix, are calculated:

ARy,

Shv = 2.11.23
X TTAX ( )

As P circuit variables are considered, then, to find all M - P sensitivities, P +1 analyses have
to be performed: original circuit analysis + P analyses of circuits with one parameter
incremented.

Designation of parameter design tolerances

It is assumed that for the selected M circuit variables, design specifications are set by the
design-engineer:

F e< F™ F™ > j=1..,M (2.11.24)

That way, the acceptability region in the circuit variable space R is defined. Next, this
region is mapped into the parameter space. Finally, design centering and tolerancing is
performed. The greatest parallelepiped (tolerance box) that can be included in the obtained
region, for the assumed 100% production vyield, or the greatest parallelepiped that overlaps
this region and secures the yield less than 100% but greater than the assumed value, is
designated. Various methods of mapping and then design centering and tolerancing are used
and they are not discussed here.

Example 2.11.2

Voltage divider presented in Fig. 2.11.1 is considered and the following specifications are
assumed:

R, =2Q+10%, K =05V +10% (2.11.24)
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Then, the acceptability region in the parameter space is defined by the following inequalities:

18<R +R, <22 (2.11.25a)
RZ
0.45< <0.55 (2.11.25b)
R, +R,

From (2.11.25a) the following two boundary lines are designated:
R™:R,=-R +22 (2.11.26a)
R™:R,=-R, +1.8

From (2.11.25b) the other two boundary lines are designated:
K™ :R, =1.22R, (2.11.26b)
K™ : R, =0.82R,

This boundary lines and the obtained acceptability region are presented in Fig. 2.11.4.

Rz
2.2

2 .0' R _max

n

1.8

1.69 K™

1 .4. K min

1.2¢

1.0e

0.8¢

.
0.0 18 20 22 R

Fig. 2.11.4 Example 2.11.2 acceptability region with marked tolerance regions

Design centering and tolerancing is the next step. For this simple example, central location of
the nominal point can be easily deduced: R]' =R, =1Q, as marked by +++ lines. Then, for the

101



assumed 100% yield, the greatest tolerance box included in the acceptability region can be
found: AR, =AR, =0.1Q2, as marked by the dotted lines. Another tolerance box:

AR, = AR, =0.2Q, marked by the dashed lines, overlaps the acceptability region. For this
box, the production yield is less than 100%.

¢

Drill problems 2.11

1.
2.

Given the voltage divider: R, =10Q, R, =20Q, find all four voltage sensitivities

In the voltage divider of Problem 2.11.1, U;, =30V and resistors have 10% tolerance.

Find the design deviations of both voltages. Use both the worst case and sensitivity
approach.

Given the current divider: R, =10Q, R, =20Q, find all four current sensitivities.

In the current divider of Problem 2.11.3, I,, =30Aand resistors have 10% tolerance.
Find the design deviations of currents. Use both the worst case and sensitivity approach.
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2.12 ANALYSIS OF NONLINEAR CIRCUITS

Before discussing different approaches to analysis of nonlinear circuits, i.e. circuits that
contain at least one nonlinear element, two nonlinear elements commonly used in electronic
circuits are presented.

o SEMICONDUCTOR DIODE

A circuit symbol and | —U relationship of a semiconductor diode are presented in Fig.
2.12.1, for both ideal and practical diode.

U I

A

Y
T U, v

Fig. 2.12.1 Semiconductor diode circuit symbol and 1-U relationship

Ideal diode (bold line) I —U relationship:
| =0 for U <0 (inverse polarization), (2.12.1a)
U =0 for | >0 (forward polarization)

Then,
forward polarized ideal diode is a short-circuit,
inverse polarized diode is an open-circuit.

Practical diode (thin line) | —U relationship:

I =1,(exp"'Y 1) (2.12.1b)

where,
I, =107° +107** A (inverse current),

U,=25 mV.
The practical diode | —U relationship can be linearized, and then,
forward polarized diode is practically an ideal voltage source U ,
inverse polarized diode is practically an open-circuit:
| =0 for U <U, (inverse polarization), (2.12.1¢)
U =U, for | >0 (forward polarization).

For a silicon diode, its forward voltage is equal to U, =0.7 V.
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o SEMICONDUCTOR ZENER’S DIODE

A circuit symbol and | —U relationship of a semiconductor Zener’s diode are presented in
Fig. 2.12.2, for both ideal and practical diode.

AU

Fig. 2.12.2 Semiconductor Zener’s diode circuit symbol and 1-U relationship

Three different approaches to nonlinear circuit may be distinguished.
1. Graphical analysis.
2. Analysis based on Piece-Wise-Linear (PWL) approximation of nonlinearities.
3. Analysis based on the Newton-Raphson iteration technique.

GRAPHICAL ANALYSIS

A series and a parallel connection of elements is considered at first. Then, graphical analysis
of a single-loop circuit is discussed, and finally, analysis of a complex circuit with only one
nonlinear element is considered.

Series connection of elements

A A A T
U ;I _ | U ‘\.‘31()
1| & g:(D
1
[+ |
2 [’-I - -
L= e
é 05 1 2 253 U

Fig. 2.12.3 Two nonlinear elements connected in series, their 1-U relationships
(thin solid and dashed line) and total 1-U relationship (bold line)

104



Consider two bilateral nonlinear elements characterized by PWL | —-U relationships and
connected in series, as presented in Fig. 2.12.3. The element | —U relationships are

U, =9,(1), U, =9,(1) (2.12.2)
Then, taking into account KVL, characteristic of the equivalent element is
U =U,+U, =g,(1)+g,(1)=9(1) (2.12.2a)

The total |1 —U relationship for the series connection of nonlinear elements is obtained by
graphical adding the voltages of elements at various values of current.

For PWL relationships, these values are designated by the | —U tables of elements. For the
exemplary elements, given in Table 2.12.1 and in Fig. 2.12.3, the total | —U relationship is
presented in the same Fig. 2.12.3.

Table 2.12.1
Exemplary | —U relationships
I, [0]1]2 1, [0]2

u,|0]2]2| [u,|o0]1

Parallel connection of elements

Consider the same two bilateral nonlinear elements characterized by the PWL | -U
relationships, connected this time in parallel, as presented in Fig. 2.12.4.

»

>
»
>

Iy 1.1,

v

Fig. 2.12.4 Two nonlinear elements connected in parallel, their I-U relationships
(thin solid and dashed line) and total I-U relationship (bold line)

The element | —U relationships are

I,=fU), I,=1,U) (2.12.2)
Then, taking into account KCL, characteristic of the equivalent element is
=1, +1,=fU)+f,U)=fU) (2.12.2a)
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The total |1 —U relationship for the parallel connection of nonlinear elements is obtained by
graphical adding the currents of elements at various values of voltage.

For PWL relationships, these values are designated by the 1 —U tables of elements. For the

exemplary elements, given in Table 2.12.1 and in Fig. 2.12.4, the total | —U relationship is
presented in the same Fig. 2.12.4.

Single-loop circuit

A single-loop nonlinear circuit is presented in Fig. 2.12.5a. The nonlinear element | -U
relationship (2.12.3a) is presented in Fig. 2.12.5b.

| = f(U) (2.12.3a)

From the mesh KLV equation and the resistor Ohm’s law, its current can be expressed by the
nonlinear element voltage:
_E-U

|l =— 2.12.3b
- (21230)

b)

Ue E U

Fig. 2.12.5 a) Single-loop circuit, b) Nonlinear element I-U relationship and load line

The nonlinear element | —U relationship (2.12.3a) and the linear element equation (2.12.3b),
the so called load line equation, form a set of two equations describing the circuit. This set
can be solved graphically, coordinates of a crossing point designate the circuit operating
point, the so called Q (quiescent)-point.

Circuit with one nonlinear element

Consider a circuit built of two parts: a linear part and a nonlinear part, as presented in Fig.
2.12.6. It is assumed that the nonlinear part is built of few nonlinear elements. If so, its total
I —U relationship can be found by graphically adding of the component characteristics, as
discussed previously. The Thevenin equivalent of the linear part can be found and then, the
nonlinear circuit of Fig. 2.12.6 can be transformed into the single-loop circuit of Fig. 2.12.5a,
and next, the graphical method can be utilized to find the Q-point.
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LINEAR| | NON-
PART | » ¢ LINEAR
PART

U

L
(SOURCE) (LOAD)

Fig. 2.12.6 Nonlinear circuit separated intolinear and nonlinear part

Algorithm 2.12.1 — Graphical analysis of nonlinear circuit

Step 1. If nonlinear part consists of more than one element, find graphically the total 1 -U
relationship.

Step 2. Find the Thevenin equivalent of the linear part.

Step 3. Find, graphically the Q-point voltage U © of the obtained single-loop circuit.

Step 4. To find voltages and/or currents inside the linear part, separate this part by means of
the voltage source U ©, and perform analysis of the obtained linear circuit.

Example 2.12.1

A nonlinear circuit is shown in Fig. 2.12.7. For the given parameters of linear elements:
R, =10Q,R, =5Q,E, =12V | and nonlinear element | —U relationship presented in Table
2.12.2, find the power supplied by the voltage source.

Table 2.12.1

Example 2.12.2 | —U relationship
ITA] | 0.0 0.1 0.5 0.5
U[V] | 00 6 10 12

Fig. 2.12.7 Example 2.12.1 nonlinear circuit
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The linear part open-circuit voltage and total resistance are
Rl

= E,=8V, 2.12.4a

o] Rl + R2 2 ( )
R R 10

=12 = (2.12.4b)
R +R, 3

To draw the load line, voltage increment of 1 V has been assumed, as denoted in Fig. 2.12.8.
For this increment and the calculated resistance of 10/3 Q, the current increment is

Al =AU/R=03 A, (2.12.5)

From the graphical construction, as presented in Fig. 2.12.8, the Q-point coordinates are:
1?9 =0.225A,U° =7.25V .

10 12 U

Fig. 2.12.8 Graphical designation of Example 2.12.1 Q-point.

To find the power supplied by the source, a circuit shown in Fig. 2.12.9 is analyzed.

UQ

()
N

Fig. 2.12.9 Example 2.12.1 linear circuit after separation of nonlinear element
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The source current, calculated by means of the superposition principle, is:
E Q
I, :—Z—U—:0.95 A, (2.12.6)
RZ RZ
and then, the power supplied by E, is

P, =1,E, =114 W, (2.12.7)

ANALYSIS BASED ON PWL APPROXIMATION

A nonlinear element can be characterized by an analytic function (2.1.4) or by its tabularized
PWL approximation. Each linear segment is located on a straight line described by equation
(2.12.8a) or (2.12.8b).

U=E+Rl (2.12.8a)
l=J+GU (2.12.8b)

This means that a nonlinear element operating at the given linear segment can be replaced by
its Thevenin or Norton equivalent circuit depicted in Fig. 2.5.6 (for simplicity of description
indices in (2.12.8) have been omitted). Then, the PWL approximation based algorithm of
nonlinear circuit analysis can be formulated.

Algorithm 2.12.2 — PWL approximation based analysis of nonlinear circuit

Step 1. Perform PWL approximation of characteristics of all nonlinear elements.

Step 2. For each nonlinear element, assume location of the Q point, i.e. choose one segment of
each linearized characteristic and then, replace nonlinear element by its Thevenin or
Norton equivalent.

Step 3. Perform a linear circuit analysis, designate its Q-point.

Step 4. Compare the obtained location of the Q-point with the assumed one. If locations are
the same, save the obtained solution.

Step 5. Repeat Steps 2, 3 and 4, for all combinations of segments.

Remarks.

e Steps 2, 3 and 4 have to be repeated if a circuit has multiple solutions. If a circuit has only
one solution, then, the algorithm is terminated after finding it. The question of whether a
circuit has one solution or multiple solutions is not discussed.

e For circuits with multiple solutions, there are effective algorithms that allow significant
reduction of combinations of segments that have to be analyzed. This subject is not
discussed.

e The PWL approximation based analysis is allows to find all the solutions.
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Example 2.12.1 — cont.

The PWL approximation based analysis is applied. The tabularized |1 —U relationship (Table
2.12.1) has three segments. These segments are described by the following equations:

. U =60l (2.12.9-1)
1. U=5+10I (2.12.9-11)
. 1=05 (2.12.9-111)

Thevenin or Norton equivalents are presented in Fig. 2.12.10.

At first, location of the Q-point on the segment I is assumed,
o<uU <6V (2.12.10-1)

60Q2 1002
0.5

Fig. 2.12.10 Thevenin and Norton equivalents of Table 2.12.1 1-U relationship

Then, the circuit of Fig. 2.12.11-1 is analyzed. The obtained voltage is

RR,
R+R
U= E2—1:7.58V (2.12.11-1)
RR,
R, +
R+R,
. I R=60Q 1. I R=10Q) =5V
U< U‘
——1 +—= —— |—o
Rl Rl
(e (e
— P+ — -
NI \_/
E, R, E, R,

Fig. 2.12.11 Example 2.12.1 linear circuits for the first two segments of nonlinear element
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The voltage is located outside the assumed range (2.12.10-1) and the next segment has to be
assumed,

6<U <10V (2.12.10-11)
Then, circuit presented in Fig. 2.12.11-11 is analyzed. The obtained voltage is
RR,; R.R,
U-g,— "R g RFR g 05_ 705V (2.12.11-11)
RR,; RR,
R, + R+ ——
R+R, R, +R,

That way, the solution has been found. This solution is consistent with the solution obtained
by means of the graphical method.
.

ANALYSIS BASED ON NEWTON-RAPHSON ITERATION SCHEME
It is assumed that all nonlinear elements are characterized by analytic functions (2.1.4). In a

close neighborhood of the Q-point nonlinear characteristic can be linearized, by means of
Taylor’s expansion (2.12.12), as presented in Fig. 2.12.12.

I =19 +(dl/dU)°U -U®)=J°+GU (2.12.12)
where

(d1/dU)® =G° (2.12.12a)
is called the dynamic conductance at the Q-point and

Je=1°-GU® (2.12.12b)

is the short-circuit current at the Q-point. Then, for the given Q-point, Norton (or Thevenin)
equivalent of each element can be found, as depicted in Fig. 6.12.13.

| a

U® U

Fig. 2.12.12 Nonlinear characteristic linearized at the Q-point
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®© .

JY

Fig. 2.12.13 Norton equivalent at the Q-point

Newton-Raphson iteration scheme will be formulated, first, for one-dimensional case, then for
multi-dimensional case.

Algorithm 2.12.3a — Newton-Raphson iteration scheme, one-dimensional case

Step 1. Set i =0 . Assume a trial solution U’
Step 2. Linearize |1 = f(U) at U', find the Norton equivalent.
Step 3. Find solution of the obtained linear circuit, U" .

Step 4. Check a distance between the assumed U' and the obtained U " :

ur-u’| (2.12.13)
If this distance is greater than the assumed ¢ , then set i =1+1,
U=yt (2.12.14)

and GO TO Step 2, end the algorithm otherwise.

Example 2.12.2

Find the Q-point of the single-loop circuit presented in Fig. 2.12.14 - diode is characterized by
equation (2.12.1b).

®e &

Fig. 2.12.14 Single-loop circuit of Example 2.12.2
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At each iteration (1=0,1,2,...,n), for the given coordinates of the i-th iteration starting-point
(1',U"), parameters of the diode Norton equivalent (J',G') are designated and system of the
following linear equations is solved:
|=J'+G'U (2.12.15)
E-U

R

The obtained solution: U™ designates location of the next iteration starting-point (2.12.14).
The graphical construction of the first two iterations is presented in Fig. 2.12.15.

For the assumed trial solution denoted by 0, solution denoted by 0" is obtained. This solution
designates starring point of the 1% iteration, denoted by 1. Then, next solution, denoted by 1"
is obtained and the process repeats. As can be observed, iterations converge to the circuit Q-
point, denoted by n. Practically, this point is reached after the 3" iteration.

¢ P >
v v v »

ue Uz ut=u” e U

Fig. 2.12.15 Example 2.12.2 — Graphical construction of the first two iterations

*

In multi-dimensional case, after linearization of nonlinearities by means of Taylor’s
expansion, i.e. after replacement of nonlinear elements by their Norton equivalents, nodal
equations are formulated and solved, to find the new solution.

Algorithm 2.12.3a — Newton-Raphson iteration scheme, multi-dimensional case
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Step 1. Set i =0 . Assume a trial solution V°.

Step 2. Linearize nonlinear characteristics at V', find Norton equivalents.
Step 3. Find solution of the obtained linear circuit, V" .

Step 4. Check the distance between the assumed V' and the obtained V' :

[vi-vr© (2.12.13a)
If this distance is greater than the assumed ¢, then, set i =i+1,
\VAEAVAL (2.12.144)

and GO TO Step 2, end the algorithm otherwise.

Remarks

e Simple iteration scheme (2.12.14) can be replaced by the more complex one, where the
new starting point V'is calculated from the previous one V'™ and the last obtained
solution V™",

e |terations may diverge and assumption of the maximum number of iterations is necessary.
These problems are beyond the scope of this book.

Drill problems 2.12

1. Calculate the power supplied by the ideal current source J =2.7mA, and powers
absorbed by the resistor R =1kQ and diode given by the | —U characteristic.

IA

1 mA

v

Fig. P.2.12.1

2. Calculate mesh currents - diode | —U characteristic is the same as in Problem 2.12.1.

kQ

Do

Fig. P.2.12.2
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3. Find Thevenin and Norton equivalents for both segments of practical sources given by the
presented | —U relationships.

I 4 [A
IA [A] 4 A [ ]
10 )
> U >
20 40 [V] 6 UVl
Fig. P.2.12.3

4. Practical sources of Problem 2.12.3 are loaded by a R=2Q resistor. Find the power
absorbed.

5. Draw the total | —U relationships for: a) ideal (2.12.1a), b) practical (2.12.1c) diodes.

|
I | | I |
) L C N
) 1

| e
-
/

A
v

A

<
<

Fig. P.2.12.5

6. Find the series resistance R, so that 10V Zener’s diode operates at 10 mA current. Supply
voltage is 12.5 V, load resistance is 1000 Q.

R
i
U VA R,
@
Fig. P.2.12.6

7. In Problem 2.12.6 circuit, find the acceptable range of load resistance so that the diode
current ranges from 5 to 15 mA.
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8. Find the coordinates of the nonlinear element Q point.

| A [A]

2

Fig. P.2.12.8

10

20 U [V]

9. Find the acceptable range of the load resistance, if the acceptable range of its voltage is
5+ 0.5V and the supply voltage may deviate from the nominal value of 12 VV by £1 V.

—{ |
R=1000Q
U R,
[ ? 3
Fig. P.2.12.9

' [mA]

10. Resistor R=2Q and the nonlinear element, characterized by the given Table, are
connected in series. Find the range of current that flows through the combination if the

supply voltage ranges from 7 to 13 V.

Table P.2.12.10
I —U relationship of P.2.12.10

| [A]

0

0.25

1

3

U [V]

0

5

8

10
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2.13 NETWORK ANALOGIES — MAGNETIC CIRCUITS

The presented laws, principles and theorems of dc circuits can be applied to circuits and
networks other than electric (electronic), such as pneumatic network, hydraulic network or
magnetic circuit. Table 2.13.1 presents analogies between electric circuit variables and non-
electric circuit/network variables. Such circuit/network is described by nonlinear equations
and can be analyzed by means of methods presented in Chapter 2.12.

Table 2.13.1 Analogous electrical and pneumatic/hydraulic or magnetic circuit quantities

Electric circuit Pneumatlc Magnetic circuit
or hydraulic network
voltage drop U pressure difference AP magnetic voltage U .
potential V pressureP | e
electromotive force E pump capacity AP, magnetomotive force F
current | flow @ magnetic flux @
resistanceR | = - magnetic resistance R,

Magnetic circuits will be discussed in details.

Magnetic field is a region in space wherein a magnetic body (pole) M [Wb] experiences a
magnetic force F, [N].

Magnetic field is uniquely defined in its every point by the magnetic field intensity or
magnetizing force.

Magnetic field intensity is defined as the magnetic force per unit magnetic body at a particular
point of space.

H=F /M (2.13.1)

Its unit is newton per weber or ampere-turn per meter, [N/Wb] =[At/m]

Magnetic line of force is the path along which an isolated magnetic pole moves within a
magnetic field. It is considered that magnetic lines of force are passing perpendicularly
through the given magnetic element, as presented in Fig. 2.13.1 — South and North poles are
denoted. Magnetic flux and magnetic flux density can be defined.

Y.

A

Fig. 2.13.1 Magnetic element with denoted poles and magnetic lines of force
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Magnetic flux @ is total number of lines passing through an area S. Its unit is weber
[Wb]=[Vs].

Magnetic flux density B is defined as number of lines passing perpendicularly through an
area of 1 m?:

B=&/S (2.13.2)
Its unit is tesla, [T]=[V-s/m?].

Magnetic element material is characterized by its magnetization curve or B—H curve:
B=f(H) (2.13.3)
In case of diamagnetics, B—H relationship is linear:
B = uH=pH (2.13.33)

where,  u, - dimensionless relative magnetic permeability of the material,

B[T]

U, =47107" [V-s/A-m] - magnetic permeability of the free space,
1.6 I

14 e

sheet steel

®
1.1 |-
106

Cast steel

08e /

06¢

cast iron

7

®
250 1000

L @ @ *——»
3000 5500 7000 H [At/m]
Fig. 2.13.2 B—H curve of sheet steel, cast steel and cast iron

In case of ferromagnetics, B—H relationship is nonlinear. Magnetization curves of three
most common ferromagnetics are presented in Fig. 2.13.2. Operating point should be located
on the steepest segment, not on the saturation part of the characteristic. The higher is material
permeability, designated by the steepest segment, the better are its magnetic properties. Then,
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sheet steel reveals the best magnetic properties. Its relative permeability is 3500 and it is
seven times greater than the cast iron permeability, which equals 480. For comparison, an air
core relative permeability is 1.

For the given magnetic flux flowing through an element its magnetic voltage can be defined:
U, =HIl (2.13.4)

Its unit is ampere-turn [At].

Then, a magnetic element of Fig 2.13.1 can be modeled by a nonlinear resistor, as presented
in Fig. 2.13.3. Its @—-U __ relationship can be found by rescaling the material B—H curve,

taking into account the element dimensions, cross section area S and mean magnetic length 1,
as shown in Fig. 2.13.1 and Fig. 2.13.6 for different cores.

7)) -
o—>— |—o

d
<«

U

m

Fig. 2.13.3 Electrical model of magnetic element
For a linear (diamagnetic) element, from (2.13.3a):
HI
BS=¢=”I—S=$Um. (2.13.5)

Then, magnetic element Ohm’s law can be formulated:

where,
R, = ! (2.13.7)
,Ur/JOS

is the so called magnetic resistance or reluctance, in [At/Wb].

Magnetic field induced around a current carrying conductor is further considered. Fig. 2.13.4
presents such conductor perpendicularly crossing the plane, with conventional current
direction, a) from the plane, b) to the plane. Direction of the magnetic field can be specified
by the right hand rule.

a) b)

Fig. 2.13.4 Current carrying conductor perpendicularly crossing the plane
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If a current carrying conductor is grasped in the right hand, with the thumb pointing in the
direction of the conventional current, the fingers will then point in the direction of the
magnetic lines of force.

T TTITF
= [T

Fig. 2.13.5 Solenoid coil

Fig. 2.13.5 presents electromagnet or solenoid coil or simply coil, a wire wound around a
core, with the total number of z turns. Such coil exhibits the magnetic field when energized.
The value of flux that develops in a coil depends on the current | and the number of turns z.

The product of I and z is called the magnetomotive force (mmf):
F=1Iz (2.13.8)
Its unit is ampere-turn, [At] and it is an analog to emf.

A coil as an element of electric circuit is considered in next chapters. In this chapter analysis
of magnetic circuit is considered. Electric model of such circuit is built of nonlinear resistors,
mmf and eventually a linear resistor, if an air gap is present. A nonlinear resistor is described
by an element @ —U, relationship, a linear resistor is described by Ohm’s law (2.13.6),

fluxes are related by KCL (2.13.9) and magnetic voltages are related by KVL (2.13.10).

The algebraic sum of magnetic fluxes entering or leaving arbitrary node i equals zero.
Y d=0 (2.13.9)

where, Z denotes algebraic sum of fluxes entering or leaving the node i.

The algebraic sum of magnetic voltages around arbitrary loop i equals zero,
Zum =0, (2.13.10)

where, Z denotes algebraic sum of magnetic voltages around the loop i.
Oi
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Then, methods of nonlinear circuit analysis, presented in Chapter 2.12, can be applied.
Graphical method is preferred, due to simplicity of magnetic circuit, which is practically
always a single-loop circuit or eventually two-loop circuit. Toroidal-core single-loop circuit
and exemplary rectangular-core single-loop circuit and two-loop circuit are presented in Fig.
2.13.6a, b and c, respectively, together with their equivalent diagrams.

b) S,
< i [ >
A" 2 |V A
I .—P—\Il S T
T — —— .
] S o
S >§§ Z
! E\ A A
\ H
\ / ) R ly
c) < —>
3 34 4 D, D,
o> lg UM Utnl
§ | S
- \ 7 CD ‘ Uml qI)Z ‘
3 F=1I

Fig. 2.13.6 Exemplary magnetic circuits and their electric models, a) toroidal core circuit,
b) single-loop circuit, ¢) two-loop circuit

Drill problems 2.13

1. A coil of 200 turns is wrapped on a homogenous sheet-steel core having a cross section of
2cm? and mean length of 20 cm. If a flux of 2.5-10™* Wb is developed in the core, what

current must flow in a coil of z=100 turns.
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2. A cast iron core has a cross section of 0.5cm? and mean length of 10 cm. If a coil placed
on the core develops 100 At, determine the flux produced in the core.
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3. TRANSIENT ANALYSIS

Transient analysis is unsettled or temporary state of a circuit after throwing a switch or
change in the applied voltage or current excitation.

Transient analysis is considered in the time period starting from the initial time, taken as
t, =0, =0, and ending at the steady state time t,. Then, any transient response (circuit
variable in a transient state) is characterized by time-domain function y = y(t) . Its boundary
values are:

e initial value, y(0) =Y,,
e steady state value, y(o)=Y,_ .

A circuit transient analysis equations are integro-differential equations. These equations can
be solved in the original time-domain or in operator-domain, after Laplace transformation.
Definition and properties of the Laplace transform, together with transforms of the selected
singularity functions and ordinary functions that describe circuit excitations and responses are
presented in Appendix A.

At first, analysis of a transient state caused by changing topology of a circuit with time-

invariant (dc) excitation, by opening or closing a switch or simply moving it from one
position to the other, will be considered.

Then, methods of transient analysis in circuits with arbitrary aperiodic excitation will be
discussed.

Before presenting methods of transient analysis, i-u relationships of circuit elements and
Kirchhoff’s laws in time-domain and operator-domain are presented.

3.1 KIRCHHOFF’S LAWS and PASSIVE ELEMENT LAWS

KIRCHHOFF’S LAWS

Kirchhoff’s laws, discussed in Chapter 2.2 for constant values of currents and voltages, can be
generalized into time-varying values.

Kirchhoff’s Current Law

At any instant of time, the algebraic sum of currents entering or leaving arbitrary node or
cutset equals zero:

Zi =0. (3.1.1)
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where,

Z denotes algebraic sum of instantaneous currents entering or leaving the j-th node
.
(cutset), by the convention:

+, if current arrowhead is directed to the node (cutset),
— , if current arrowhead is directed from the node (cutset).

Using the linearity rule (A3), in the s-domain KCL law becomes

Zl(s) =0. (3.1.1a)

Kirchhoff’s Voltage Law

At any instant of time, the algebraic sum of voltages around arbitrary loop or closed path
equals zero,

Su=o0, (31.2)

where,

Z denotes algebraic sum of voltages around the j-th loop (closed path), by the

0j
convention:

+, if, voltage arrowhead has clockwise direction,
— , if voltage arrowhead has anticlockwise direction.

Using the linearity rule (A3), in the s-domain KCL law becomes

Zu (s)=0, (3.1.2a)

PASSIVE ELEMENT LAWS

Ideal passive circuit elements are considered. These elements can be divided into two classes:
e Energy dissipating elements: resistors.
e Energy storage elements: capacitors and coils.

Resistor

A linear resistor presented in Fig. 3.1.1 is characterized by Ohm’s law (3.1.3):
u=Ri (3.1.33)
I=Gu (3.1.3h)
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u

i
(S I —
R

Fig. 3.1.1 Circuit symbol for a linear resistor

A resistor is uniquely characterized by its resistance R, in ohms [QQ]=[V/A], or conductance G,
in siemens [S]=[A/V]. Resistance (conductance) is a circuit constant, constant of
proportionality relating the current and the voltage.

u, Vv a)

A

2

ts

v

-2
iA A b)
2
2 4 6 7
-2
R W c)
4
y US
2 4 6 7

Fig. 3.1.2 Voltage, current and instantaneous power waveforms in a 1Q resistor.
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The resistor instantaneous power is:
p=i’*R=u’G=>0 (3.1.4)
Then, energy dissipated between the initial time t, =0 and arbitrary time t <oo is always
nonnegative
t t
w(t) =w=R[i’dt =G [u’dt (3.1.5)
0 0
The total energy dissipated is

W, = Rjizdt = Gjuzdt (3.1.53)
0 0

Fig. 3.1.2 presents exemplary plots of u, i and p in 1Q resistor - the total energy dissipated is
equal to the hatched area, W =38/3 J.

Transforming both sides of Ohm’s law (3.1.3) (linearity rule (A3) is utilized), yields
U(s) =RI(s) (3.1.6a)
1(s) =GU(s) (3.1.6b)

The s-domain equivalent of a resistor is presented in Fig. 3.1.3

U(s)
o—>—{ |—o0
I(s) R

Fig. 3.1.3 s-domain equivalent of a resistor

Capacitor

A capacitor is an element that consists of two conducting bodies (plates) that are separated by
a dielectric. A linear capacitor presented in Fig. 3.1.4 is characterized by q—u relationship

(3.1.7):

&
<

R .
i llc

Fig. 3.1.4 Circuit symbol for a capacitor

q=Cu (3.1.7)

A capacitor is uniquely characterized by its capacitance C, in farads [F]=[C/V]=[A-sec/V].
Capacitance is a circuit constant, constant of proportionality relating the charge and the
voltage.
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Differentiating (3.1.7), a capacitor i —u relationship can be found:

) du
i=C— 3.1.8
dt (3-1.82)
The voltage in terms of the current can be found by integrating both sides of (3.1.8a) between

times t, =0 and t:

15,
u=2 ! idt +U, (3.1.8b)
where
U, =u(0) =q(0)/C (3.1.8c)

is the voltage on C at time t, =0, the capacitor initial condition. The integral term in (3.1.8b)
represents the voltage that accumulates on the capacitor in the interval from t, =0 to t,
whereas U, is that, which accumulates from t =—oo to t,. The voltage u(—) is taken to be
zero.

The principle of conservation of charge implies that the voltage on a capacitor is always
continuous, may not change abruptly, even though the current may be discontinuous.

In particular, the voltage on a capacitor may not change abruptly at the inception of transient
state, at t =t, =0. If t=0_ is an instant of time just before t =0, then

U,=u(0) (3.1.8d)
what means that a capacitor initial condition is designated by its voltage just before inception

of the transient state.

Capacitor is the energy storage element. The energy stored in the electric field between
t = —oo and arbitrary time t <o is

t t 2 t
w=jiudt=cjudu=% (3.1.9)

— 0
As u(—) =0, then,
Cu?
W=
2

It should be observed, that energy stored at time t is always nonnegative and it is designated
by the capacitor constant and instantaneous value of voltage, the way of reaching this value is
meaningless. Energy stored at the steady state condition is:

(3.1.9)

2

W = CLZJ“’ = const (3.1.9b)
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This energy can be fully recovered. Assume that voltage across a 1 F capacitor changes as
presented in Fig. 3.1.2a. Then, the current and power waveforms are as presented in Fig.
3.1.5b and c.

The capacitor stores energy ( p > 0), then gives it back ( p <0), stores again and gives back.

In Fig. 3.1.5, energy stored is denoted by “+”, energy given back is denoted by

t=0:
te(0,2):
t=2:
te(2,4):
t=4:
te(4,5) :
t=5:
te(5,6):
t=6:
te(6,7):
t>7:

no energy is stored, W, =0 J,
capacitor is charged, energy is absorbed,

W, =2,
no flow of energy, w = const =2,
W, =2],

discharging of capacitor, energy is given back,

no energy is stored, W, =0 J,

capacitor is charged, energy is absorbed,

W, =21,

discharging of capacitor, energy is given back,

no energy is stored, w=0 J.

i, A b)

A

Fig. 3.1.5 Current and power waveforms in a 1 F capacitor for Fig. 3.1.2a voltage waveform
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Transforming both sides of capacitor law (3.1.8a) (linearity rule (A3) and differentiation rule
(Ab) are utilized), yields

I(s) =sCU(s)-CU, (3.1.10a)
Solving this equation for U(s) or applying integration rule (A4) to (3.1.8b), yields

Yo

tJ@)=§%|@)+ : (3.1.10b)

Then, based on Kirchhoff’s equations, capacitor s-domain equivalents can be found. They are
presented in Fig. 3.1.6.

AU T U(s),
4 (s)'
1
sC —T— o
%__ CUUCLD

5
I(s)
®

Fig. 3.1.6 s-domain equivalents of a capacitor

Coil (Inductor)

A coil or inductor is an element that consists of a coiled conducting wire around a core. A
coil with toroidal core is presented in Fig. 3.1.7, together with its electric analog.

Fig. 3.1.7 Toroidal core coil and its electric analog

A current flowing through the coil produces a magnetic flux ¢. The total flux linked by the z
turns of the coil, denoted by ¢, , is

Py (3.1.11)

This total flux is commonly referred to as the flux linkage.
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A linear core characterized by the linear B—H relationship (2.13.3a) is considered. Then, for
the given dimensions, the core magnetic resistance (2.13.7) can be designated. Finally, taking
into account electric analogies, Ohm’s law and KVL, the total flux can be expressed by the
coil current. For the core presented in Fig. 3.1.7, this flux is

in2

2
4 ='RZ—= j 2 Hoto> ”;“OS (3.1.12)

m

Then, constant of proportionality relating the total flux and the current, a circuit constant
characterizing uniquely the coil, can be introduced. This constant L is called the inductance.
Its unit is henry [H]=[Wb/A]=[V-s/A].

é = Li (3.1.13)

In general, inductance is directly proportional to the square of the number of turns and core
permeability, then it is proportional to the core dimensions. For the core presented in Fig.
3.1.7, the inductance is

2
L = % (3.1.14)

u

d
<

0—_»—@—0

Fig. 3.1.8 Circuit symbol for a coil

Circuit symbol for a coil is presented in Fig. 3.1.8. To find a coil i—u relationship,
Faraday’s law should be recalled.

When the magnetic flux linking a coil changes, a voltage directly proportional to the rate of
flux change is induced in a coil:

dg _d4
U=2——=—— 3.1.15
dt dt ( )
Faraday’s law (3.1.15) with (3.1.13) yields a coil i1—u relationship:
di
u=L— 3.1.16a
at ( )

The current in terms of the voltage can be found by integrating both sides of (3.1.16a)
between times t, =0 and t:

1§
|=I£udt+ I, (3.1.16h)

where
I, =1(0)=¢,(0)/L (3.1.16¢)

is the current at time t, =0, the coil initial condition.
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The principle of conservation of flux implies that the current through a coil is always
continuous, may not change abruptly, even though the voltage may be discontinuous.

In particular, the current may not change abruptly at the inception of transient state, at
t=t,=0.If t=0_ isan instant of time just before t =0, then

1, =i(0.) (3.1.16d)

what means that a coil initial condition is designated by its current just before inception of the
transient state.

Coil is the energy storage element. The energy stored in the magnetic field between t =—co
and arbitrary time t <oo is

t ‘ Li?| t
w= |iudt=L|idi=— 1.
jw jw 2 (3.1.17)
As i(—0) =0, then,
=2
w=Ll (3.1.17a)
2
u, vV a)
2
1
4 g
2 6 7 S
_2
P W c)
4
2
+ &
2 4 6 7 ts
—4

Fig. 3.1.9 Voltage and power waveforms in a 1 H coil and Fig. 3.1.2b current waveform
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It should be observed, that energy stored at time t is always nonnegative and it is designated
by the coil constant and instantaneous value of current, the way of reaching this value is
meaningless. Energy stored at the steady state condition is:

2

W, = L;“’ = const (3.1.17b)

o0

This energy can be fully recovered. Assume that the current through a 1 H coil changes as
presented in Fig. 3.1.2b. Then, the voltage and power waveforms are as presented in Fig.
3.1.9aand c.

The coil stores energy ( p > 0), then gives it back ( p <0), stores again and gives back. In

Fig. 3.1.9, energy stored is denoted by “+”, energy given back is denoted by “-”.
o t=0: no energy is stored, W, =0 J,

e te(0,2): energy is absorbed,

o t=2: W2 =2 J,

e te(2,4): noflow of energy, w=const =2,
o 1=4: W, =2,

e te(4,5): energy is given back,

o t=5: no energy is stored, W, =0 J,

e te(56): energy is absorbed,

o t=6: W, =2,

e te(6,7): energy is given back,

o t2>7: no energy is stored, w=0 J.

Transforming both sides of coil law (3.1.16a) (linearity rule (A3) and differentiation rule (A5)
are utilized), yields

U(s) =sLI(s)— LI, (3.1.18q)
Solving this equation for 1(s) or applying integration rule (A4) to (3.1.16b), yields

I(s) = S—lLu (s) +'?° (3.1.18D)

Then, based on Kirchhoff’s equations, capacitor s-domain equivalents can be found. They are
presented in Fig. 3.1.10.

L) T AU (5)
I(s) 1

‘3 O

A)

1(s) }

Fig. 3.1.10 s-domain equivalents of a coil

L,
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Passive elements — Summary

The three passive elements: resistor, capacitor and coil, are characterized by three circuit
constants: resistance R, capacitance C and inductance L, and described by four circuit
variables: voltage, current, charge and total flux. Graph depicted in Fig. 3.1.11 presents
relationships between these variables. As should be observed, only total flux and charge are
not related.

u=Ri

P>

qg=Cu

Fig. 3.1.11 Graph representation of relationships between four circuit variables

It has been assumed that all elements are ideal. Practical capacitor and coil are discussed in
Chapter 4, their circuit models built of ideal elements are presented.

Coil and Capacitor boundary behavior

Taking into account i—u relationships of energy storage elements and flux or charge
conservation principle, their boundary behavior can be analyzed.

e At the initial time, t=t, =0, the capacitor voltage is equal to the initial condition
(3.1.8c), the coil current is equal to the initial condition (3.1.16c), what results from the
charge or flux preservation principle. Then, at this instant of time, capacitor may be
replaced by the dc voltage source U, coil may be replaced by the dc current source 1,
and the dc analysis can be performed, to find all other circuit variables.

e At the steady state, at t=0_ or t =00, all circuit variables are constant, including coil

currents and capacitor voltages. Then, the coil voltage is zero and it can be replaced by the
short circuit, the capacitor current is zero and it can be replaced by the open circuit.

Table 3.1.1
Capacitor and coil models at boundary conditions
Element t=0_ t=0 t=c0

u U,
4+

| 0 ()

U 0
IO
i l,
o YV _o |o > ° 0—@—0 o , o
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Coil and capacitor models at boundary conditions are presented in Table 3.1.1.

Knowledge of the circuit order and the response boundary values allow to predict the general
form of the response. In the 1% order circuit this knowledge, together with knowledge of the
time constant, allows to give the exact solution. This approach is discussed in the next section
of this Chapter.

All three s-domain element equations, (3.1.6), (3.1.10) and (3.1.18), contain a term that relates
the voltage U (s) and the current 1(s) . Energy storage element equations also contain a term
designated by the element initial condition. The factor of proportionality between the voltage
and the current in the first term is the element impedance Z(s) . Impedance is defined as the

ratio of U(s) to 1(s) when initial condition X, =U,or 1, is zero.

Z(s)=U(s)/1(s)| ‘st (3.1.19a)
The reciprocal of the impedance is called the admittance Y (S)

Y(s)=1/Z(s) = 1(s)/U (S)|x0:0 (3.1.19b)

Impedances and admittances of the three elements are presented in Table 3.1.2

Table 3.1.2 Impedances and admittances of passive elements

Element Impedance Z(s) Admittance Y (s)
Resistor R G=1/R
Capacitor 1/sC sC

Coil sL 1/sL

A resistor equivalent consists only of the impedance R. The energy storage element equivalent
consists of a pure impedance connected in series with an initial condition designated voltage
source or a pure admittance connected in parallel with an initial condition designated current
source.

For zero initial conditions and the introduced term of impedance/admittance, an element
equations in the s-domain can be presented in the generalized form

Uu(s) =2Z(s)I(s) (3.1.20a)
1(s) =Y (s)U(s) (3.1.20b)

also called Ohm’s low in s-domain.

Term of impedance/admittance can be generalized on arbitrary two-terminal passive circuit.
Its equivalent impedance or admittance can be found, in the same way as equivalent resistance
or conductance in the dc circuit. Such impedance or admittance is a complex function of s.
Homogenous circuits are exceptions — any combination of resistors can be replaced by a
single resistor, any combination of capacitors can be replaced by a single capacitor and any
combination of inductors can be replaced by a single inductor.
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Drill problems 3.1

1.
2.

10.
11.

12.

13.

Find equivalent capacitance of two capacitors connected in series (parallel).

Write down (with reasoning) the dc voltage divider equations for two capacitors
connected in series.

Find equivalent inductance of two coils connected in series (parallel).

Write down (with reasoning) the dc current divider equations for two inductors connected
in parallel.

A coil of 200 turns of wire is wound on a steel core having a mean length of 0.1 m and a
cross section of 4 10 m?. The relative permeability at the rated current of the coil is
1000. Determine the inductance of the coil.

Constant current of 5 mA produces flux of 2.5-10™Wb in a coil of 200 turns. What
energy is stored in this coil.

Constant current of 5 mA charges 1uF capacitor for 10 seconds. What energy is stored
after this period of time (energy initially stored is zero).

A coil of 200 turns is wrapped on a sheet-steel core (B —H curve - Fig. 2.9.2) having a
cross section of 2 cm? and a mean length of 20 cm. If a flux of 2.5-107 Wb is developed
in a core, what current must flow in the coil ?

A cast iron-core (B—H curve - Fig. 2.9.2) has a cross section of 0.5 cm? and a mean
length of 10 cm. If a coil placed on the core develops 100 A;, determine the flux produced
in the core. Find cast iron permeabilities and inductances for z=10* turns (1=10 mA).

What constant current is required to charge a 2pF from0to 5V in 2 ms.

A constant current of 10 mA is charging a 2 uF capacitor. If the capacitor initial voltage is
zero, find the charge, voltage and energy stored after 10 ms.

Two capacitors, 10 and 40uF , are connected in series to a 100 V source. What energy is
stored in each ? What charge is stored in each ?

The given current flows through 1F capacitor. Calculate the maximum energy stored and
the total energy stored, if the initially stored energy is zero.
i, A
Fig. P.3.1.13
2
1 2 ts
-1

135



14. If the voltage across an 1uF capacitor changes as shown, plot its current, designate the
maximum energy stored.
u,V

A

Fig. P.3.1.14

v

-3

15. For the given current that flows through an 1uF capacitor, plot the corresponding voltage

(assume U, =0). 4

2

A

Fig. P.3.1.15

-1

16. If the current in an 0.1 H coil changes as shown, plot voltage across the coil and designate

the maximum energy stored.

. i=1,sin2x/TA()-1(t-T))
I, A y

A

Fig. P.3.1.16 L

-2

17. Find the current i in a 0.5 H inductor if i1(0) =0 and the voltage is as shown. What is the

maximum energy stored and at what time ? u, V
Fig. P.3.1.17 4
2 4 ts
-2
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18. The voltage across a 1pF capacitor is the triangular waveform. Draw the current

waveform. What is the maximum energy stored and at what times ? Assume: T =2ms,
U, =10V.

uA

Fig. P.3.1.18

max

T 2T "t

20. Given a coil of 10 turns and 0.5 mH. Find the inductance after adding/subtracting of 5
turns.
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3.2 TRANSIENT ANALYSIS in CIRCUITS with STEP EXCITATION

The transient response caused by changing topology of a circuit with time-invariant (dc)
excitation, by moving a switch at t =0, is considered at first. It is generally assumed that at
t =0_, all circuit variables (currents and voltages) are zero or/and constant.

In general, such response may be sum of two components:
e natural response or zero-input response,
o forced response or zero-state response.

Natural response or zero-input response
Y. =y, (3.2.1a)

is the result of initial capacitive and/or inductive energy stored within a circuit.

Forced response or Zero-state response
ye® =y, (3.2.1b)

is the result of excitation, independent sources acting within a circuit.

Then, the total response, so called complete response
Y=YatY; (3.2.1)

is a superposition of the initial condition response with all independent sources zeroed and the
response to independent sources with the initial conditions zeroed. Block diagram
interpretation of this strategy is presented in Fig. 3.2.1, where X is the excitation, X, is the

initial condition.

X
— | LINEAR PASSIVE
y
CIRCUIT - >
X, with no energy stored
—>

Fig. 3.2.1 Block diagram of single output (transient response) double input (excitation +
initial condition) circuit

A forced response with zero initial conditions will be considered at first, x, =0 . Analysis of
the 1% order circuits, and then, analysis of the 2" order circuits will be discussed in details.
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Next, natural response with excitation being switched off, i.e. no forced response case, X=0,
will be considered.

Finally, the general case, with both responses present will be discussed.

It is assumed, that a circuit to be analyzed is modeled by its diagram, built of ideal elements.
Then, taking into account element i —u relationships (3.1.3), (3.1.8), (3.1.16) and Kirchhoff’s
laws (3.1.1), (3.1.2), the circuit can be described by the system of differential or integro-
differential equations. This system may be solved

e intime-domain or
e Laplace transforms may be used.

In the latter case, the equation or equations are first Laplace transformed, and then, solved by
straightforward algebraic means. The inverse transform of the solution is the last step of
circuit transient analysis.

The order of the highest-order derivative of differential equations describing a circuit, denoted
by n, determines the circuit order. The n-th order circuit can be also identified by the
presence of n energy storage elements (after series-parallel simplification of homogeneous
two-terminal subcircuit(s) built of coils or capacitors, if present).

FORCED RESPONSE
After throwing a switch, the dc voltage source E may be described by the unit step function
(3.2.3a) and the current source J may be described by the unit step function (3.2.3b).
e(t) =e = E1(t) (3.2.33)
J®=j=311) (3.2.3b)
Three different methods of transient analysis can be distinguished:
e Time-domain method,
e Laplace Transform or Operator method,

e Method based on boundary values determination.

First two are applicable to both 1% order circuit and higher-order circuit, the last one is
applicable only to the 1% order circuit. Use of all three methods will be presented on
exemplary circuits.

1% order circuit — time-domain method

Example 3.2.1

The simple one-loop RL circuit is presented in Fig. 3.2.2. Find the coil current and voltage
after closing the switch, by means of the time-domain method.

There is no energy initially stored in the coil, I, =0. Then, only forced response should be

considered. The dc circuits at boundary, initial and steady state, conditions are presented in
Fig. 3.2.3. The boundary values of the circuit responses are collected in Table 3.2.1.
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R
(e ]

Fig. 3.2.2 RL circuit for Example 3.2.1

® ® A ® ® :—. A
R I, U, R 1,y |U

(O O

Fig. 3.2.3 Example 3.2.1 circuit at boundary conditions

o—o
[

Table 3.2.1
Boundary conditions for Example 3.2.1
t=0 t=00
I, 0 E/R
U, E 0
For t >0, the circuit equations are
u+u, =E (3.2.43)
di
u=L— 3.2.4b
at ( )
Ug =Ri (3.2.4c)

From these equations, the circuit equation (KVL equation) can be formulated

L—+Ri=E 3.25
" (3.2.5)

The 1% order equation has been obtained, its solution consists of two components:
e Particular solution, the steady state response (3.2.6a)
I, =E/R. (3.2.6a)

e Solution of the homogeneous equation (3.2.5a), the transient exponential response
(3.2.6b).

Shaiz0  a=RIL-YT (3.2.50)
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i. =Bexp(—at) =Bexp(-t/T) (3.2.6b)
Then, the total solution is

i=1_+i.=E/R+Bexp(-t/T) (3.2.6¢)
Constant B can be calculated from the second boundary condition

l,=E/R+B=B=-E/R (3.2.6d)

and the final obtained solution of (3.2.5) is

_ E E
- — _ —exp(—t/T 3.2.7
=3 R><|o( ) (3.2.7)

where,

T=L/R (3.2.8)
is the time constant for the RL circuit.

The coil voltage can be calculated from (3.2.4b)
u=Eexqp(-t/T) (3.2.9)

Please note, that both responses (3.2.7) and (3.2.9) start at t =0. They are not multiplied by
the unit step for simplicity of description. The responses are graphed in Fig. 3.2.4.

A ! Au
£ E
R /-_
T t T t
Fig. 3.2.4 Responses for Example 3.2.1
From (3.1.17b), the total energy stored is
2

W, = @ (3.2.10a)

The total energy supplied/dissipated at t >t_ is
2
W= %t (3.2.10b)
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1% order circuit — s-domain method

The following algorithm of the s-domain method can be formulated.

Algorithm 3.2.1 — s-domain method

Step 1. Predict the response(s):
a) evaluate the circuit order,
b) designate initial condition(s), if present,
c) designate boundary values Y,, Y .
To find initial condition(s) and boundary values, perform dc analysis three times with
each energy storage element replaced by a short-circuit or an open-circuit or an ideal
source, as presented in Table 3.1.1.
In the zero initial condition case:
dc analysis at t =0_ is omitted,

at t =0, coil is replaced by an open-circuit and capacitor by a short-circuit.

Step 2. Build the circuit diagram at s-domain, formulate the analysis equations — generalized
Kirchhoff’s analysis or nodal analysis can be utilized.

Step 3. Solve the equations to find the response in s-domain, Y (S) .
Step 4 Find the inverse transformation y(t)=Yy - dictionary approach or Heaviside’s
formula can be utilized.

Step 5. Plot the response(s). Check whether the obtained boundary values match the predicted
ones.

Example 3.2.2

The simple one-loop RC circuit is presented in Fig. 3.2.5. Find the capacitor current and
voltage after closing the switch, by means of the s-domain method. Then, find total energy
supplied, stored and dissipated.

There is no energy initially stored in the capacitor, U, = 0. Then, only forced response should

be considered. The dc circuits at boundary, initial and steady state, conditions are presented in
Fig. 3.2.6. The boundary values of the circuit responses are collected in Table 3.2.2.

R R

. . \
@) REGY :jT

Fig. 3.2.5 RC circuit for Example 3.2.2 in time-domain and s-domain
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® ® :|—. A ® ® A
R I,y |U, . U,
(BF F
L ] I
Fig. 3.2.6 Example 3.2.2 circuit at boundary conditions
Table 3.2.2
Boundary conditions for Example 3.2.2
t=0 t=w
I, E/R 0
From Fig. 3.2.5 circuit, the mesh current is
E
E T
I(s)=—2 —=— (3.2.11)
R+ 1 RI1+4sT
sC

The current inverse transform can be found in the dictionary (A10a):

. E

= Eexp(—t/T) (3.2.12)
where

T=RC (3.2.13)
is the time constant for the RC circuit.
The capacitor voltage is

1 t
u=6jidt: E—Eexp(-t/T) (3.2.14)
0

After closing the switch, the capacitor is charged, through the resistance R, the value equal to
the source value of E is reached after t, =5T =5RC . The smaller is the resistance, the

shorter is the charging period t e<0,t, >, the larger is the current initial value 1, =E/R.

Large resistance case and small resistance case, at C = const , are depicted in Fig. 3.2.7.
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t t

» »
> >

Fig. 3.2.7 RC circuit response, large resistance and small resistance case

In the ideal case, when R =0, then

E
1(s) = % - EC (3.2.11a)
sC
and the time-domain response is the impulse
i = ECS(t), (3.2.12a)

an infinitely tall and infinitely narrow pulse of EC area.

Regardless the value of resistance, total charge that flows in the circuit (hatched area) is the
same

Q= [idt = EC = const (3.2.15)
0
Total energy supplied by the source is:
W, =E[idt=E*C (3.2.16)
0

Half of this energy, total energy stored on the capacitor, can be fully recovered. From
(3.1.9b), this energy is:

2
W, = CE (3.2.16a)
2
The other half is dissipated as a heat, on the resistor:
T CE?
W, =R[i*dt= : (3.2.16h)
0
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1% order circuit — boundary values based method

Single energy storage element may be extracted from the 1% order circuit, and then such
circuit can be considered as a resistive subcircuit loaded with an energy storage element.
Thevenin’s theorem can be utilized and an arbitrary 1% order circuit can be reduced to the
one-loop RL or RC circuit. The circuits described in the s-domain are presented in Fig. 3.2.8,
where, R, is the Thevenin resistance - the resistance seen from terminals of the energy

storage element after deactivating all sources.

D=

A

I(s)

sL

Fig. 3.2.8 The 1% order circuit reduced to one-loop circuit

U(s)

|(s)f
1

sC

U(s)

The obtained circuits have been already considered (Examples 3.2.1 and 3.2.2).Their time
constants are given by equations (3.2.8) and (3.2.13).

y

0

A

v

Fig. 3.2.9 Decaying and rising exponential responses

v
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The 1% order circuit arbitrary response Yy(t)=Y, voltage or current, is the exponential
function (A7b) uniquely described by the time constant T and boundary values Y,, Y., :

y=Y,+(Y, =Y, )exp(-t/T), t=0 (3.2.17)

., the rising one, as presented in Fig.
3.2.9. The special case, Y_ =Y, is not considered. Then, algorithm of the boundary values
method can be formulated.

For Y, >Y_, decaying function is obtained, for Y, <Y

Algorithm 3.2.2 - Boundary values based method

Step 1. Predict the response(s):
a) evaluate the circuit order,
b) designate initial condition(s), if present,
c) designate boundary values Y,, Y .
To find initial condition(s) and boundary values, perform dc analysis three times with
energy storage element replaced by a short-circuit or an open-circuit or an ideal
source, as presented in Table 3.1.1.

In the zero initial condition case:
dc analysis at t =0_ is omitted,

at t =0, coil is replaced by an open-circuit and capacitor by a short-circuit.
Step 2. Find R, , equivalent resistance of the resistive part, with all sources deactivated. Then,

the time constant is given by (3.2.8) or (3.2.13).

Step 3. Plot the response — connect the boundary values Y,, Y, by the exponential curve with
time constant T (Fig.3.2.9).

Step 4. Express the response algebraically (3.2.17).

Example 3.2.3

The circuit, presented in Fig. 3.2.10, consists of the series connection of a dc practical voltage
source that is switched at time t =0 across a practical coil. Find the response, voltage u
across the practical coil.

Fig. 3.2.10 Circuit for Example 3.2.3

It is the 1% order circuit with no energy initially stored. The dc circuits at boundary, initial and
steady state, conditions are presented in Fig. 3.2.11. Then, the response boundary values are:
RL

U,=E, U, =
R+R,

(3.2.18)
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Fig. 3.2.11 Example 3.2.3 circuit at boundary conditions

The total resistance, seen from the ideal coil terminals is
R =R+R, (3.2.19)
and the circuit time constant is
L L

= — = (3.2.20)
R, R+R,
The response is presented in Fig. 3.2.12.
u A
E
RL E
R+R,
T Tt
Fig. 3.2.12 Example 3.2.3 response, practical coil voltage
Its algebraic expression is
R
u L Eexp(-t/T) (3.2.21)

= E+
R+R, R+R,
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Example 3.2.4

Find the source current i and the capacitor current i, for t>0.

R/2

R/2

Fig. 3.2.13 Circuit for Example 3.2.4

R/2

R/2

Fig. 3.2.14 Example 3.2.4 circuit at boundary conditions

It is the 1% order circuit with no energy initially stored. The dc circuits at boundary conditions
are presented in Fig. 3.2.14. From dc analyses of these circuits the boundary values are
designated. They are collected in Table 3.2.3.

Table 3.2.3
Boundary conditions for Example 3.2.4
t=0 t=o0
E E O5E E E 3E
It —_—t = —— —_—t—=——
R 15R 3R R 2R 2R
E
I — 0
Ct 3R

Equivalent (Thevenin) resistance the resistive part is:

R =((R/2+R/2)|R)+R=15R

Then, the time constant is:

(3.2.22)
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T =15RC (3.2.23)

and responses can be plotted and expressed algebraically.

o
10E/6R1
9E/6R

—~+V

R /

T

Fig. 3.2.15 Example 3.4.4 responses

. 3E 1E

i=——+=—exp(-t/T 2.24
2R+6R><|O( ) (3.2.24a)

. 1E

i.=——exn(-t/T 3.2.24b

c =5 g @R (3.2.24b)

2" order circuit — s-domain method

The 2" order circuit contains two energy storage elements, after an optional series-parallel
simplification of homogeneous two-terminal circuit(s). Such circuit, in time-domain is
described by the 2" order differential equations. In the s-domain, denominator of the obtained
solution is of the 2" order. Use of Algorithm 3.2.1 to series RLC circuit analysis will be
discussed in details.
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Example 3.2.5

Series RLC circuit is presented in Fig. 3.2.16a. Find the capacitor voltage and current after
closing the switchat t =0

U ..

Fig. 3.2.16a Series RLC circuit (Example 3.2.5)

There is no energy stored initially in the circuit, 1,=0,U., =0. At t=0 coil is an open-

circuit, at t =00 capacitor is an open-circuit. The boundary values of the responses are
collected in Table 3.2.4.

Table 3.2.4
Boundary conditions for Example 3.2.4
t=0 t=00
I 0 0
Ug 0 E

The circuit s-domain diagram is presented in Fig. 3.2.16b. From element equations and KVL
equation, the mesh current is

E
S EC E 1 1
)= = crsR Lo R 1N (3.2.25)
R+sL+— TS E-*S 2y Ngp v (5=8)(5-sy)
sC L™ LC
o — — o ] o m A
R sL U, (s)
(DE/S 1/sC
I(s)

Fig. 3.2.16b Series RLC circuit (Example 3.2.5) in Laplace-domain
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The current gain is

K=—
L

and its poles are

R R? 1
S, =——F, | =—a*
oo V42 Le p
where,
R
a=—
2L

is the so called damping coefficient,

,B:\/az—a)oz = j\/a)g—az = jo

and

27 1 2
D=0y =—, @ =—

T e T,

(3.2.25)

(3.2.25h)

(3.2.25¢)

(3.2.25d)

are the so called damped resonant frequency and undamped resonant frequency or natural

frequency, respectively.

The inverse transform of this function is discussed in Appendix A - equations (Al5) and
(A16). Three different cases have to be considered, subjected by the character of poles.

1. two simple real poles - response with two terms exponentially decaying to zero, the so

called overdamped response,

2. simple pair of complex conjugate poles — damping is accompanied by oscillations, the

so called underdamped response,

3. two repeated poles — dividing line between overdamped and underdamped case, the so

called critically-damped response.
1. Overdamped response
05>1/LER>2\/E=RC , p>0
LC C
where, R, is called the critical resistance. Then,
i = K%[exp(—t/Tl) —e(-t/T,)]; T,=-1/s, T, =—1/s,
2. Underdamped response

1 L .
—ER 2—:R , =
a<‘/LC < ‘/C o, f=lo

Then,

i=K iexp (—at)sin wt
w

(3.2.264)

(3.2.27a)

(3.2.26h)

(3.2.27h)
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2a. Undamped response

. [
a=0=R=0, f=jo, = j,|-— 2.
joy = 1§\ T e (3.2.26¢)

Then,

. C .
= E\/Esm w,t (3.2.27¢)

3. Critically-damped response

1 L
a ’/LC 1/0 o B (3.2.26d)

Then,
I = Ktexp(—at) (3.2.27d)

The nonoscillatory, overdamped and critically-damped responses are presented in Fig. 3.2.17a
and b. The oscillatory, underdamped and undamped responses are presented in Fig. 3.2.17¢
and d.

n

Tt

Fig. 3.2.17 Nonoscillatory responses in the series RLC circuit
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C
L

Fig. 3.2.17 cont. Oscillatory responses in the series RLC circuit

The capacitor voltage can be found from the integral formula (3.1.8b). The overdamped,
critically-damped and undamped voltages are presented in Fig. 3.2.18.

For the undamped case (R =0), the mesh current and the capacitor voltage are oscillating
with the constant amplitude. Period of this oscillations T, is given by (3.2.25d) and the

maximum values reached are

C
| = E\/E, U, =2E (3.2.28)

The energy is oscillating between the source and energy storage elements.
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To. . 12 L E’C
. Att:(2n+1)I°, n=12... W, = = =W, .
T 2 2
o Att=(2n +1)?°; Nn=12,.... W, = UC”;XC :4E2C , W, =0,

o After t=nT,; n=12,...: total energy supplied=total energy stored=zero.

A
Uce

2E

T, t

Fig. 3.2.18 Transient capacitor voltage in the series RLC circuit; overdapmed, critically-
damped (bold curve) and undamped case

It should be observed, that the critically-damped circuit demonstrates the fastest convergence
to the steady state. Assume L =1H,C =1/4F and consider overdamped case, critically-

damped case, underdamped case and undamped case.

e Overdamped case, R=1.25R, =5Q:

T, =1s,T, =1/4s and the steady state time t, =5T, =5s.
e Critically-damped case, R=R, =4Q:

1/ =1/ 2s and the steady state time t, =5/ = 2.5s,
e Underdamped case,R=0.5R, =2Q:

1/a=1s, @=+/3=17rad/s and the steady state time t, =5T, =5s.
e Undamped case, R=0Q:
a =0, w, =2rad/s and oscillations are not vanishing.

As can be observed, for two resistances, R=5Q and R =2Q, the steady state condition is
reached after the same period of time, however in the latter case the transient is oscillatory.

*
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NATURAL RESPONSE

The transient state after switching off all the excitations is considered. Then, the energy
initially stored is dissipated on resistors, as a heat. All the circuit variables decay to zero, i.e.
all steady state values are zero. Two exemplary circuits, source free RC circuit and source free
RL circuit, will be considered.

Example 3.2.6
Find the mesh current after throwing the switch.
1 ® ] | ®
— & ——= —<—o—{ |—o I R
N\ 2 R ()

Fig. 3.2.19 Circuit for Example 3.2.6 in time-domain and in s-domain

The dc circuits for t =0_ and t =0 are presented in Fig. 3.2.19a.

S > ——>— |
I, R I, R

(e l o (D)

Fig. 3.2.19a Example 3.2.6 dc circuitsat t=0_and t=0

The energy initially stored is
E’C
2

After changing position of the switch, this energy is dissipated on the resistor, as a heat. The
mesh current initial value is

E

W, = (3.2.29)

I, = R (3.2.30)
Its steady state value is zero and the transient response is

. E

i= —Eexp(—t/T), T=RC (3.2.31)
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This transient response is presented in Fig. 3.2.20, for small and large value of resistance R (
E =const, C =const ).

“Ta “Ia

Q=EC

» { »t

Fig. 3.2.20 Example 3.2.6 mesh current, large resistance and small resistance case

From the s-domain circuit (Fig. 3.2.19) analysis, the mesh current for the resistanceless case,
R =0, can be found

E
ug:-{%z—EC (3.2.31a)
sC
and the time-domain response is the impulse
i =—ECS(t), (3.2.31b)

an infinitely tall and infinitely narrow pulse of EC area. In practice, if resistance is very small,
then the absolute initial value of the current is very large. For example:

if C=1pF, E=10V, R=0.1Q, then |l,|=100A 111, T =0.1ps.

This phenomenon, called overcurrent, can be utilized in welding of thin wires. In an electric
(electronic) circuit, when short-circuiting the charged capacitor by a switch (relay), its
terminals can be welded !!! .

Example 3.2.6 — cont.

Find the mesh current after changing position of the switch, taking into account the capacitor
residual inductance L. .

——1 +—=
1(s) R

. =@
W I J S A 0 AW

Fig. 3.2.21 Circuit for Example 3.2.6, after taking into account the residual inductance

o
i%
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The initial conditions are: 1,,=1,=0, U., =E. Then, the s-domain circuit presented in

Fig. 3.2.21 is obtained. This circuit is identical with the circuit of Example 3.2.5, presented in
Fig. 3.2.16b, the source arrowhead direction is the only difference. Then, for a very small
resistance (underdamped case), from (3.2.27b), the mesh current is

i:—£exp(—at)sina)t (3.2.31¢)
ol

:_,CO:CUO— i
2L LC

~

o

This current (multiplied by —1) is presented in Fig. 3.2.17d. Its value starts from zero, as the
coil current may not change abruptly. After t=T,/4, the maximum current, given by

(3.2.28), is reached. For the same exemplary values of E,C,R and the residual inductance of
L = 0.1 mH, the maximum current and the time constant are

x| Z1A, L/ =2 ms.

In the practical circuit, the overcurrent is much less than in the ideal circuit, however it is still
not acceptable for electric (electronic) circuit. The overcurrent can be limited by series
connection of resistance.

.
Example 3.2.7
Find the coil voltage after moving the switch, the circuit is presented in Fig. 3.2.22
N
— e ®
R, u4 U(s) 4
I
CD E R sL % —UCD R
8
L
l .

—{ 1+ ’
t Uu 4

® o)

Fig. 3.2.22a Example 3.2.7 dc circuits for t =0_and t =0
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The dc circuits for t=0_ and t=0 are presented in Fig. 3.2.22a. The coil current initial
value is

o =1, "R (3.2.32a)
The coil voltage initial value is
ER
U,=-1,R=—— (3.2.32b)

t

Its steady state value is zero and the transient response is

u= —§exp(-t/T), T=L/R (3.2.33)

t

\ t t

Fig. 3.2.23 Example 3.2.7 mesh current, large resistance and small resistance case

v
v

This transient response is presented in Fig. 3.2.23, for small and large value of resistance R (
E =const, R, =const, L =const).

From the s-domain circuit (Fig. 3.2.22) analysis, the coil voltage at conductanceless case,
G =1/R =0, can be found

I E
U(s)=-sL-2=——1L 3.2.34a
(s) s R ( )
and the time-domain response is the impulse
E
u= R Lo(t), (3.2.34b)

t

an infinitely tall and infinitely narrow pulse. In practice, if resistance is very large, then the
absolute initial value of voltage is very large. For example:

if L=100mH, E =10V, R, =100, R =100k, then |U,| =10kV 11, T =0.1psec..

This phenomenon, called overvoltage, may cause damage to the coil loading circuit
represented by the resistance R. Methods of overvoltage protection will be presented further
on.

.

158



Example 3.2.7 — cont.

Find the coil voltage after moving the switch, taking into account the coil residual capacitance
(the circuit is presented in Fig. 3.2.24).

~
L @
R, ua U(s) 4
E R - sL C) G
® O}
¢, =C__ L sC s
L J l @ @

Fig. 3.2.24 Circuit for Example 3.2.7, after taking into account the residual capacitance

The initial conditions are: I ,=1,=E/R,, U,,=U,=0. Then, the s-domain circuit
presented in Fig. 3.2.24 is obtained. The coil voltage is

I 1 1
u@g)=—2-——"—=-K—-——
C 52+93+i (5_51)(5_52)
C LC
This equation is identical as equation (3.2.25), with R replaced by G, E replaced by

I, = E/R, and L swapped with C. Then, for a very small conductance (the underdamped case
- equation (3.2.27b)) the coil time-voltage is

E .
u=-— exp (—at) sin wt 3.2.35b
RCar Xp (—at) sin ( )

(3.2.35)

G 1
a=——=, O=W, =,——=
2C LC
This curve (multiplied by —1) is presented in Fig. 3.2.17c. The voltage value starts from zero,
as the capacitor voltage may not change abruptly. After t=T,/4, the maximum, given by
(3.2.28) with E replaced by 1, is reached. For the same exemplary values of E,R,,L,R and

the residual capacitance of C =100 nF the maximum voltage and the time constant are
U | =100V, 1/x =20 ms

| 2

In the practical circuit of Fig. 3.2.24, the overvoltage is much less than in the ideal circuit of
Fig. 3.2.22, however its value is still not acceptable for electric (electronic) circuit. The
overvoltage can be limited by parallel connection (to the coil) of capacitance C, . Then, total

capacitance C, =C +C_ . Even better effect can be achieved by connecting a diode in parallel

to the coil, as presented in Fig. 3.2.25. For the position 1 of the switch, the diode is inversely
polarized and can be replaced by an open-circuit. After changing the switch position, from 1
to 2, energy stored in the coil is dissipated through a diode, practically immediately.
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Ol R
f

Fig. 3.2.25 Example 3.2.7, overvoltage protection
.

COMPLETE RESPONSE: NATURAL RESPONSE + FORCED RESPONSE

In general (complete response) case, superposition principle can be utilized. However, for the
1% order circuit analysis, boundary values based approach is suggested. Use of Algorithm
3.2.2 to a general case will be illustrated by two examples.

Example 3.2.8
Find currents i, and i after closing the switch.

Fig. 3.2.26 S
Circuit for Example 3.2.8 C —

Following Step 1 of Algorithm 3.2.2, three dc circuits are constructed, as presented in Fig.
3.2.27. The calculated boundary values are collected in Table 3.2.5.

Table 3.2.5
Boundary values for Example 3.2.8
t=0_ t=0 t=w
U E/2 E/2 E/3
E E/2 E
I == __=
© 0 2R 2R/3 4R 0
E E
| — —
0 2R 3R
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A U(.O l l
IR R 2R R
]0_ Ur'o 10
P .
E [(D{ R E I R
+— . "

:

Fig. 3.2.27 dc circuits for Example 3.2.8

Then, the total resistance of the resistive part is
2

R =2R|R= 3 R (3.2.36)
and the time constant is
ngRc (32.37)
Finally, the following algebraic form of transient responses is obtained:
E E
Uc :§+Eexp(—t/T) (3.2.38a)
i = exp(—t/T) (3.2.38b)
© 4R -
. E E
i=—+—exp(-t/T 3.2.38c
3R 6R P ) ( )
A lUc
E/2
E/3
T t

Fig. 3.2.28 Capacitor voltage in Example 3.2.8
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The capacitor is discharging from E/2 to E/3, as presented in Fig. 3.2.28. The lost energy is
equal to AW = S g .
72

Example 3.2.9
Find voltage across the switch, after its opening.

Fig. 3.2.29 Circuit for Example 3.2.9 R L R

The circuit initial condition is 1, =E/R. The dc circuits at boundary conditions are
presented in Fig. 3.2.30.

R E/R R R R
E E
®

Fig. 3.2.30 The dc circuits for Example 3.2.9

Then,
U, =E+(E/R)R=2E (3.2.39)
U,=E
and the voltage across the switch, for t >0, is
u=E+Eexp(-t/T), T=L/R (3.2.39b)
.
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Drill problems 3.2

1. For the step input u, =E-1(t) of two-port and the given output voltage (exponential
function), draw its simplest structure.

u, a) u, b)

E E ................
Fig. P.3.2.1 K
E/2 E/2

v
—
v
—

2. Sketch voltage across the switch after its opening. Assume: a) overdamped, b)
underdamped case.

a) x

Fig. P. 3.2.2

3. Plot voltage across the switch after its opening.

) . b) .
Fig. P.3.2.3 - 7 e
100 200 1H ke k[ ] 1pF T
10V 200 12V zkgﬂ

4. Plot current that flows through the switch after its closing.

a) b)
A A
J IR R L§ CT)E R R c__
R R
| |
Fig. P.3.2.4
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10.

Plot the capacitor voltage after closing the switch

Fig. P.3.2.5

Find resistance R such that no transient response is present in the source current. Plot this
current.

_ i R 1H %
Fig. P.3.2.6

1 pF 2 kQ

In a circuit of Fig 3.2.24 the switch is thrown at t =0 . Sketch the element currents and the
voltage if R=00, L=4mH, C, =1pF. Find the maximum energy stored in each element.

In a circuit of Fig. 3.2.10 the practical coil voltage reaches the steady state value of
U, =U,/2 after t =5T =10 ms. Find the values of L and R, .

Sketch i(t) and u. (t) for the excitation graphed: e(t) = f(t); A=E.
VAON
Fig. P.3.2.9
—A

A/2

In a circuit of Fig. 3.2.16 the switch closes at t =0. Sketch the element voltages and the
mesh current if R=0, L=4mH, C =1pF . Find the maximum energy stored in C.
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11. Sketch, with no calculations, voltage u and current i after closing the switch. Assume:
a) underdamped case, b) overdamped case.

d) \

My [k =

A o

Fig. P.3.2.11

12. In Problem 3.2.9 circuit, sketch i(t) and u.(t), for the new excitation graphed:
e(t)=f(t); A=E. N

Fig. P.3.2.12 A

—A/2

13. Sketch i, (t) and u(t), for a circuit shown and the excitations graphed in Problems 3.2.9
and 3.2.12: j(t)= f(t); A=J .

Fig. P.3.2.13
J(t)
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14. The switch opens at t=0. Sketch the
voltage u.

Fig. P.3.2.14

15. The switch is thrown at t=0. Compute the energy stored in each capacitor at t =oo.
Sketch uc (t).

.—./\‘ R=10Q
Fig. P.3.2.15 4
<T>E12V C3=6MF::
C, =4pF| |

16. The switch is thrown at t=0. Compute the energy stored in each inductor at t =co.
Sketch i (t).

Fig. P.3.2.16

(T)Ezlzv L, =6mH

17. Find i(t) after the switch opensat t=0.

3/—:\
10 Q
Fig. P.3.2.17 ()4
40
10V 05H %
5Q i(r)
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18. Find u(t) after the switch opensat t=0.

u(t)
Fig. P.3.2.18 <
N 4Q
Q—o—/o—( ;: H e
20
10 V: 6Q

19. The switch opens at t=0. Sketch u(t) and u.(t) for J=2A, C=1pF, L=05 H,
and:a) R, =R=1kQ,b) R, =2R .

Fig. P.3.2.19

20. The switch is moved from 1 to 2 at t=0. Sketch u. (t) for E, =2E, =20 V, R=6Q,
R, =4Q and two values of R,,a) 4 Q, b) 14 Q.

Fig. P.3.2.20 R

21. The switch is moved from 1 to 2 at t=0. Sketch i(t), uc (), uc, (t) if R, =R, =2kQ,
E=10V, C, =4puF, C, =6pF .

Fig. P.3.2.21
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22. An approximate sawtooth waveform is produced by charging and discharging a capacitor
with widely different time constants. Select the value of R, such that charging lasts one

time constant T, =2 ms, and the value of R, such that discharging lasts 5T, = 0.1T, .

Fig. P.3.2.22 R ] A S S
(T)Elzv R, ——C=IyF
L J

23. Find u(0_) and sketch u(t) after the switch opensat t=0. Assume E =10V, R =1kQ,
C=1uF, L=0.5H.

Fig. P.3.2.23 R L

24. Sketch u(t) after the switch opensat t=0. Assume E=10V, R=1kQ, C =1pF .

Fig. P.3.2.24
u 1\

R
c_1_

D T -
|

R |
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3.3 TRANSIENT ANALYSIS in CIRCUITS with ARBITRARY
EXCITATION

Transient response caused by arbitrary aperiodic excitation will be considered. In most cases,
circuit analysis is much more narrowly defined than that of finding all responses to all
excitations. Very often it is limited to Single-Input-Single-Output (SISO) analysis. Then,
transfer function approach is preferred, as presented in Chapter 2.7 for dc circuits. The same
approach is preferred in transient analysis in circuits with arbitrary aperiodic excitation.
Transfer function in s-domain will be defined at first. Then, its use to circuit transient analysis
will be presented.

TRANSFER FUNCTION - PROPERTIES and SELECTED EXAMPLES

Transient response may be considered as sum of two components: natural response and forced
response, as presented in Fig. 3.2.1 for time-domain signals. After setting initial conditions to
zero and t-domain to s-domain transformation, the SISO system described in the s-domain is
obtained, as presented in Fig. 3.3.1.

X(s) K(s) Y(s)
—_— P —p oo —

Fig. 3.3.1 SISO linear passive s-domain circuit

In the s-domain, a linear circuit input-output pair is related by the system of linear equations.
Then, transfer function in the s-domain can be defined.

Laplace transfer function of a circuit is defined as the ratio of the response of the circuit to
its excitation, expressed in the s-domain, with the assumption that all initial conditions are set
to zero:

Y (s)

Thus, problem of finding the transient response can be solved using the concept of Laplace
transfer function, the algorithm is as follows.

Algorithm 3.3.1 — Laplace transfer function method of transient analysis

Step 1. Predict the response:
a) evaluate the circuit order,

b) designate boundary values Y,, Y_,
c) predict shape of the response, if possible.
Step 2. Find algebraic expression of the excitation, if given by a graph, X = x(t) .
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Step 3. Find the Laplace transform of excitation, X(s) .
Step 4. Find the circuit transfer function, K(s).
Step 5. Find the response in the s-domain,

Y (s) = K(s)X(s) (3.3.1a)

Step 6. Find the inverse transformation y(t) =y .
Step 7. Plot the response. Check whether the obtained solution matches the predicted one.

In the MIMO system, arbitrary forced s-domain output (response) due to all excitations
(sources) is the superposition of the separate transfer functions for this output and each input
times the corresponding s-domain inputs:

Y, (5)=iKu (9)X,(s); j=1..,N (3.3.1b)

Transfer function K;(s) uniquely defines a circuit (system) with respect to one input signal

X, (s) and one output signal Y;(s), impedance and admittance are the special cases. Before

presenting use of this Laplace transfer function approach to exemplary circuit analysis,
properties of the function will be discussed. Then, circuits that perform basic signal
transformations in time-domain, integration and differentiation, will be studied.

Properties

1. Transfer function is the ratio of two polynomials:
|

| 1-1 H(S_qj)
K=K Lo B TS (332)
(s) s" +bs" +---+Db, ,S+b, H(S_Sk)
k=1

where,
d;, Sk are roots of numerator and denominator polynomials,
zeroes and poles of K(s), respectively
K =const is gain.

Roots and poles can be real or complex numbers and they may be expressed graphically,
in the complex plane (s-plane), as the pole-zero plot, where the zeros are flagged by e and
the poles by o.

For practical circuits:
a) poles lie in the left half of the complex plane,
b) degree of the numerator polynomial can not be greater than degree of the
denominator polynomial (I <m).

Degree of the denominator polynomial designates the circuit order, n=m,

2. Inverse transform of the Laplace transfer function, transfer function in the t-domain,
k(t) = L{K(s)}, is the unit impulse response.

If X(s)=L{o(t)}=1, then Y(s) =K(s) and y(t) =k(t) (3.3.3)

3. The step response is the integral of the impulse response:
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If X(s)= L{l(t)}:é ,then Y(s) = % K(s) and y(t) = jk(t)dt

(3.3.4)

where, T is the integration constant.

4. Time-domain response equals the convolution of the impulse response and the input:
y(t) = k(t) = x(t) = jk(r)x(t —7)dr (3.3.5)
where, k(t) *x(t) = L{K(s)- X(s)} (3.3.53)
is the so called convolution of two time functions.

Transfer functions of selected circuits

Integrator

1 1
X0, y0=— j x(di | y( X(s) Ks)=— Y(s)
Fig. 3.3.2 Block diagram of an ideal integrator
Following Property 2 of the Laplace transformation (A4)
Laplace transfer function of the ideal integrator is:
1
K(s)=— 3.3.6
() =7 (3.3.6)

RC circuit realization of voltage integrator

o—{ |—+v——o

R
u,
@

>

C— L[Z

T R— 1%
. ——
U, (s)I — T TUz(S)
. sC o

Fig. 3.3.2a RC voltage integrator
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The RC integrator output voltage is

1
<C 1
U,(s)=—5C U (s)=——U.(s 3.
2(8) 1 A)Hglw (3.3.7)
+7
sC
Then, its transfer function is
1
K(s)=———, T=RC 3.3.7a
(5) 1+sT ( )

The pole-zero plots of the transfer function, for the ideal and the practical RC integrators are
presented in Fig. 3.3.2b.

a) Im b) Im

»Re * »Re
-1/T |
Fig. 3.3.2b Pole-zero plot of integrator transfer function, a) ideal, b) RC

The unit step input, u, =U,1(t), will be used to compare responses of the ideal and the
practical integrators. The integrator input in the s-domain:

U

W@=m»m»>§ (3.3.8)
Then, the outputs are given by equations (3.3.9) and they are graphed in Fig. 3.3.3
e ideal integrator:
1U, U1 U
U,(s)=——Lt="L"2zu,(t) =2t 3.3.9
(0= =T = (3:3.92)
e RC integrator:
1 U 1
U,(s)= L= 2u, (t) =U [1—exp(-t/T)] (3.3.9b)

1+sT s ‘sl+sT)

Uy A Uy

Ul Ul /“

»
»

T t T
Fig. 3.3.3 Step input response of ideal and RC integrator

—~V
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As can be observed,

e the ideal integrator step response never attains steady state (the response pole is located in
the origin of the complex plane),

e the RC integrator exhibits “good” integration for t<T , then the integration decays to
zero, steady state is reached after t, =5T .

Differentiator

x(1) () = T% w(t) X(s) K(s)=sT Y(s)
—> dt — —> —>

>

Fig. 3.3.4 Block diagram of an ideal differentiator

Following Property 3 of Laplace transformation (A5)

Laplace transfer function of the ideal differentiator is:
K(s)=sT (3.3.10)

where, T is the differentiation constant.

RC circuit realization of voltage differentiator

C i .
u, I R Iug Y (q)T sC TUJ (s)
R
@ * ® @ o ®

Fig. 3.3.4a The RC voltage differentiator

The RC differentiator output voltage is

R ST

U, (s) 1 (8) oot (8) (3.3.11)

+7

sC

Then, its transfer function is
sT

K(s) = , T=RC 3.3.11a
(5) 1+sT ( )
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The unit step input, u, =U, -1(t), will be used to compare responses of the ideal and the

practical differentiator. The differentiator input in the s-domain is given by equation (3.3.8).
Then, the output are given by equations (3.3.12) and they are graphed in Fig. 3.3.5.

e ideal differentiator:

U
U,(s)=sT ?1 =U,T=u,(t) =U,Ts(t) (3.3.12a)

e RC differentiator:

T
U,(s)=U,——zu,(t)=U, exp(~t/T 3.3.12b
»(8) 1 eT () =U, exp( ) ( )
Uy a Uy, o
Ul
t T t

Fig. 3.3.5 Step input response of ideal and RC differentiator

As can be observed,
e the ideal integrator step response is an infinitely tall and infinitely narrow pulse of the
TU, area,

e the RC integrator step response is the exponential decay that starts at the step value and
lasts after t, =5T .

TRANSFER FUNCTION BASED TRANSIENT ANALYSIS - EXAMPLES

Transfer function approach to transient analysis will be illustrated by exemplary circuits. Use
of Algorithm 3.3.1 and its modification will be presented. In this modification, input signal is
divided into linear segments, each segment described by step or/and ramp function, and
sequence of analyses is performed.
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Algorithm 3.3.1a — Laplace transfer function method of transient analysis — sequence of
analyses

Step 1. Predict the response, if possible.
Step 2. Divide the input signal into linear segments: x*,...,x" = X*(s),..., X" (s) .

1 X' =X"1

uti].l(ti) = Xi(S)=i[Xi°g+ 2 (3.3.13)

X' =4[X" + i
s

where, 7' - duration of the i-th segment, as presented in Fig. 3.3.6,
X% X' -initial and terminal values of the i-th segment,
t'=t—> 7! 2% =0 - time that starts at the beginning of the i-th segment.
j=L
Seti=1.
Step 3. Find the circuit transfer functions K(s) and K,(s), where
K(s) is transfer function for the input signal, X'(s),
K,(s) is transfer function for the initial condition (designated by the preceding
segment), Xo(s) =X} /s.
Step 4. For the i-th segment, find the output signal: y' =y} + Yy, = L™{Y{(s) +Y, ()}, where
y} is the forced response, caused by X',

y! is the natural response, caused by the i-th segment initial condition X .
Step5.1f i<N,
then set i =i+1, find initial condition for the next segment, X and GO TO Step 3,

GO TO Step 5, otherwise.
Step 6. Plot the total response. Check whether the obtained solution matches the predicted

one.
Xy
X
Fig. 3.3.6
The i-th segment of the input signal X e
0 7’ gl

In Steps 2 and 3 of the non-modified Algorithm 3.3.1, the algebraic expression of the input
signal (normally given by a graph) is designated and transformed into the s-domain. Step and
pulse are the most common input signals. Laplace transforms of ideal signals are presented in
Appendix A, practical step and practical pulse will be discussed hereafter.
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Practical step

A practical step, i.e. step with nonzero rise timez,, can be considered as addition of two
ramps, as presented in Fig. 3.3.7. Then, the practical step Laplace transform is

X (s) = X*(s)+ X?(s) =1%—£%exp(—31r) (3.3.14)
T, .S
:XIA /
X
X =
A
X
. t
+ 2t T, 27, t
T, t
-X

Fig. 3.3.7 Practical step as addition of two ramps

Practical pulse

A practical pulse, i.e. pulse with nonzero rise and fall times,z, =7, 7y =7, —17,, can be

considered as addition of four ramps, two of them are presented in Fig. 3.3.7, two other in Fig.
3.3.8.

— 1 2 3
=X +xT+x,

t
v

X A=
X -X
+x4A
» t X

»

Ty Ty+7,

Fig. 3.3.8 Practical pulse as addition of four ramps
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Then, the practical pulse Laplace transform is

‘o 1 1 1 1
X(s)=> X (5):XS—Z—XS—Zexp(—SZ'l)—XS—zexp(—ST2)+XS—28Xp(—ST3) (3.3.15)
i=1

Example 3.3.1

Find a practical step response of the RC differentiator.
Algorithm 3.3.1

The input voltage is described by equation (3.3.14), transfer function by equation (3.3.11a).
Then, the output voltage is

T 1 T 1
U,(s)=U, — -U, — exp(—st
2(8) Y7, sA+sT) 'z, s(l+sT) Xp(=s7.)

(3.3.161a)
T T
u, =U, —[l-exp(-t/T)]-1(t) U, —(A—exp[(t —7,)/T])- 1t —7,) (3.3.16h)
T, T,
This time-voltage, for the assumed T =7, , is presented in Fig. 3.3.9.
A U
U,
0.37U;
T=
7 2T >t
—0.63U;
_Ul
Fig. 3.3.9 Output voltage of RC differentiator for practical step inputand T =7,
Algorithm 3.3.1a
The input voltage is divided into two segments:
i=1: 0<t<r,
U U, 1
th=t, u =—Ltl(t), Uj(s)=—2—=, U =0 (3.3.17a)
T, T, S
i=2: t=r,
1
t’ =t—z,, u? =U1(t%), Uf(s):Ulg (3.3.17b)
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Transfer function for the initial condition (capacitor voltage) can be designated from Fig.
3.3.10.

Un(s)=Ugy /s

Fig. 3.3.10 Circuit for calculation of K (s) in RC differentiator

The output voltage, and then, the transfer function are

R sT
U,(s)=- Uco(8) = Ko(s) =~ (3.3.18)
R 1 1+sT
_l_i
sC
where the initial condition is calculated from equation (3.3.19)
Uc =U, —U, (3.3.19)
Fori=1
T 1 T
Ui(s)=U,——————— 2u; =U, —[l—exp(-t/T 3.3.20
(O =Us i S Ui et (3:320)
1 Ul T 1 2 T
Ug =—t-U,—[I-exp(-t/T)] =uc(z,) =U;, =U, -U, —[1-exp(-7, /T)]
T, T, T,
(3.3.20a)
For i=2
T .
Uz(8)=U;-Ug)——= = u; =(U, ~Ug,)exp(—t*/T) (33.21)
1+sT
NE Al
U,
0.37U,
T=r 2T _t
I:
—0.63U,

Fig. 3.3.11 Output voltage of RC differentiator for practical step inputand T =7,

178



For the assumed T =17,, UZ, =0.37U, . The output voltage is presented in Fig. 3.3.11.

.
Example 3.3.2
Find ideal pulse response of the RC integrator.
Algorithm 3.3.1

The input voltage is described by equation (A.12a), transfer function by equation (3.3.7a).
Then, the output voltage is

1 1
U,(s)=U, St sT) -U, S(1+ST)EXD(—SZ') (3.3.22a)
u, =U,[1-exp(~t/T)]-1(t) -U,(1—exp[-(t —7)/T])- 1(t - 7) (3.3.22b)

This time-voltage, for the assumed T =7, is presented in Fig. 3.3.12.

AU

UI

i

\

_UI

Fig. 3.3.12 Output voltage of RC integrator for practical step inputand T =7

Algorithm 3.3.1a
The input voltage is divided into two segments:

i=1: 0<t<~
1
t'=t, Ull =U,1(t), Ull(S) :Ulg’ Uéo =0 (3.3.233)
i=2: t>7
t’=t—7r, U12 =0 (3.3.23b)
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Transfer function for the initial condition (capacitor voltage) can be designated from Fig.

3.3.13.
R
—{ ——+—o
1 —L
? U,(s)
U{-O(S)=U;‘” T
[ i * @

Fig. 3.3.13 Circuit for calculation of K, (s), in RC integrator

The output voltage, and then, the transfer function are

R sT

—1Uco(5) = Ky (s) =
R4 — 1+sT
sC

where the initial condition is calculated from equation (3.3.25)

Uz(s):

Uc =u,
Fori=1
1

U, (s) =Ulm =U;, =U[1-ep(-t/T)]

Ug (7) =U¢&, =U [1-exp(—2T)]
For i=2

! Au; =Uq eXp(_tZ/T)

U,(s)=U? —— =
,(8) CO1L oT

This voltage, for the assumed T =7, is presented in Fig. 3.3.14.
A ”]2 A sz

U]
0.63U,

7=r 2T t ¢’

Fig. 3.3.14 Output voltage of RC integrator for practical step inputand T =7,

*

(3.3.24)

(3.3.25)

(3.3.26)

(3.3.264)

(3.3.27)
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Drill problems 3.3

1.

10.

11.
12.

13.

For the E =1V step input, draw the RC differentiator (integrator) output, for
R =1kQ; C =1pF . Assume a) the ideal step, b) the practical step of 7, =1s.

For the ideal pulse input of E=1V; v =1s, draw the RC differentiator (integrator)
output, for R=1kQ; C =1puF .

For the practical step input of E=10V; 7z, =10ms, draw the ideal differentiator

(integrator) output Assume the differentiation (integration) constant T =7, .

For the ideal pulse input: E=10V; z=10ms, draw the ideal integrator output. Assume
the integration constant T =7,

For the practical pulse input of E=10V; 7 =10m; 7, =2ms; 7, =1ms, draw the ideal
differentiator output. Assume the differentiation constant T = 7.

Find the ideal integrator (T =2 ms) output, U,(5ms), if 20 V step is inputted.

For the given voltage waveform of the RC integrator input, plot the output voltage.
Assume: RC <<

U, A U 4

»
=

2E

E E

27 3r

v

Y.
o
m

i 4

-E -E T 27

Fig. P.3.3.7

Repeat Problem 3.3.7 for the RC differentiator.

For the circuit shown, compute the transfer function K(s)=U_,(s)/U, (s). Sketch
uout(t) If uin (t) = El(t) .

_ ’ °
Fig. P.3.3.9 s
u, 2R R |C—— |u,,
Piy,
Y ' 3 . * o

Find the current response of the series combination of R and L to an applied voltage
impulse of 2 Vs.

Repeat Problem 3.3.10 for the series combination of R and C.

Draw the pole-zero plot of differentiator transfer function, for both the ideal and RC
differentiators.

Draw the pole-zero plot of admittance of the series connection of R, L and C. Assume:
C=1uF, L=1H, R=2a)1kQ, b)2kQ, c) 3kQ.
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14. Draw the pole-zero plot of impedance of the parallel connection of G, L and C. Assume:
C=1uF, L=1H, G=a)1mS, b)2mS,c)3mS.

15. The pole-zero plots of two transfer functions are shown. If their gain is K =2, find K(s) .
Which function has the greater dumping coefficient, which has the greater damped
resonant frequency ?

Fig. P.3.3.15 Im glIm
A .
3
j2
-4 ﬁe —i2 ;Re
_]3
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4. AC STEADY-STATE ANALYSIS

4.1 ALTERNATING CURRENT = RMS VALUE, PHASOR NOTATION

An alternating current, ac in short, is by definition a sinusoidal current:

i=1,sin(et+¢a,) (4.1.2)
where,

I, is the amplitude, in [A]

2T oo (4.1.1a)

is the radian or angular frequency, in [rad/s],
T is the period, in [s]; f is the frequency, in hertz [HZ],

a; is the initial phase angle, or simply the phase, in radians.

Two sinusoidal currents with different phases are presented in Fig. 4.1.1

-1

m

Fig. 4.1.1 Two sinusoids with different phase

The solid curve phase is zero while the dashed curve phase is ¢; radians. It can be said, that

the dashed sinusoid leads the solid one by the angle of «; radians, or the solid one lags the

dashed one by the same angle.
To describe the energy delivered by a periodic current or voltage to a resistive load, its root-
mean-square value, rms in short, or effective value is defined.
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The rms value of a periodic current (voltage) is a constant that is equal to the dc current
(voltage) that delivers the same power to a resistance R.

The energy delivered by the dc current within the time of one complete cycle T should be
equal to the energy delivered by a periodic current during the same time:

)
17, RT = [i*Radt (4.1.2)
0

Then, the rms current is

| == 1]#m (4.1.3)
ms T . e B

In a similar manner, the rms voltage is

1%,
U, =U=_|=|u"dt 4.1.
m=U=7] (4.1.30)

For a sinusoidal current (voltage), rms value is equal to

l=—;U=-1L 4.1.4

7 (4.1.4)

Thus, for a sinusoidal waveform, the effective or rms value is 0.707 times the maximum

value. For example, the household ac voltage is 230 V, with a maximum voltage of 325 V.

Any sinusoidal current or voltage, at a given radian frequency @ is uniquely characterized by
its effective value and phase, so called phasor, as described in Appendix B.

I(jo)=l(w)expljo,(@)] =i = | (w)~/2 sin[at + o, (w)] (4.1.53)
U(jo)=U(ow)exp[jo,(@)]=u=U ()2 sin[et + a,(o)] (4.1.5b)

Then, element equations and Kirchhhoff’s laws can be transformed from the time-domain into
the frequency (phasor)-domain and the problem of ac steady-state analysis can be carried out,
as presented in the next Chapter. For simplicity of notation, if the frequency is fixed, i.e.
circuit frequency characteristics are not considered, then: (o) =1, ¢, () = ¢, , etc.

Drill problems 4.1

1. Find the effective value of periodic current for sawtooth, triangular and rectangular
waveforms. Repeat calculations for i” =i+1,, as denoted by the dotted time axis.
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21,
Fig. P.4.1.1 I, / >
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21,
I >
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4.2 PHASOR ANALYSIS

KIRCHHOFF’S LAWS

Kirchhoff’s Current Law

If sinusoidal excitation is applied to a circuit, then sinusoidal currents (4.1.1) flow through the
elements. If cosinusoidal excitation is applied to a circuit, then cosinusoidal currents, say

= I\/§cos(a)t +¢a;), flow through the elements. KCL holds for both excitations, then it also
holds for the complex excitation (defined in Appendix B):

2O+ iiO]1=211) = 2. V21(jo)ep(jet) =0

Dividing out the common factor \/Eexp(ja)t) , KCL for phasors is obtained.

The phasor algebraic sum of all currents at a node (cutset) is equal to zero

Zl(ja)) =0 (4.2.1)

Kirchhoff’s Voltage Law
A similar development will also establish KVL.

The phasor algebraic sum of all voltages around a loop (closed path) is equal to zero
D U(jw)=0 (4.2.2)
Oi

ELEMENT LAWS

Resistor
Setting sinusoids into the Ohm’s law, the following equation is obtained:

U~/2sin(at +a,) = RIV2sin(et + o) (4.2.3)

Thus, the resistor rms voltage may be expressed by its rms current, the voltage phase by the
current phase

U=RI (4.2.43)
a, =a, (4.2.4b)

Setting these equations in the voltage phasor (4.1.5b), the following equation is obtained
U(jo) =Uexp(ja,)=Rlexp(jo;)

Finally, current-voltage law for phasors can be formulated.
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U(jo)=RI(jo) (4.2.5q)
I(jo)=GU(jw) (4.2.5b)

Circuit symbols for a resistor described in time and frequency domains are presented in Fig.
4.2.1.

A A
iy |u 1Go)Y | UGjo)

Fig. 4.2.1 Circuit symbols for a resistor described in time and frequency domain

Inductor
Setting sinusoids into the inductor law (3.1.16a)

U~/2sin(at + a,) = oL 1N2sin(et + o, +90°) (4.2.6)
Then,

U =Ll (4.2.73)

a, =a, +90° (4.2.7b)
Next,

U(jo) =Uexp(ja,) = allexp(jo;)exp(j90°)

Finally, current-voltage law for phasors can be formulated.

U(jo) = jolLl(jo) (4.2.8a)

I(jo) =.LU(jw) (4.2.8b)
joL

Circuit symbols for a coil described in time and frequency domains are presented in Fig.
4.2.2.
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i1 tu 1(jo) | YU(jo)

L = JjoL

Fig. 4.2.2 Circuit symbols for a coil described in time and frequency domain

Capacitor
Setting sinusoids into the capacitor law (3.1.8a), the following equation is obtained:
12 sin(et + ;) = @CU 2 sin(eot + ez, +90°) (4.2.9)
Thus,
| = wCU (4.2.10a)
a, =a, +90° (4.2.10b)
Next,

I(jo)=1exp(jo;) = oCU exp(ja,)exp(j90°)

Finally, current-voltage law for phasors can be formulated.

I (jo) = jaCU (jo) (4.2.11a)

. 1 .
U(Jw)=ﬁl(1w) (4.2.11b)

Circuit symbols for a capacitor described in time and frequency domains are shown in Fig.
4.2.3.

il tu I(joy | % U(jow)

Fig. 4.2.3 Circuit symbols for a capacitor described in time and frequency domains
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GENERAL TWO-TERMINAL PHASOR CIRCUIT, PHASOR IMPEDANCE

Element equations (4.2.5), (4.2.8) and (4.2.11) can be expressed in the general form
U(jo)=2(jo)!(jo) (4.2.123)
I1(jo) =Y (jo)J(jo) (4.2.12b)

where

R resistor impedance
Z(jw)=1/Y(jw) =4 joL inductorimpedance (4.2.13)
1/ joC capacitor impedance

is called the element complex impedance, Y (j®) is called the complex admittance. As can

be observed, these impedances (admittances) are the s-domain impedances (admittances),
collected in Table 3.1.2, with s = jw.

Consider a general phasor subcircuit with two accessible terminals, as presented in Fig. 4.2.4.

I(jo)
«—e U(jo) ;I(jw) I(jw) U(jo)
U(ja))“ A A
General R
phasor G
circuit < L <
X
L e Py

Fig. 4.2.4 General phasor two-terminal subcircuit and its equivalents

The equivalent impedance of such subcircuit can be defined, as the ratio of the phasor voltage
to the phasor current:

. U(jo . .
2(10)=20),.,, =5 1) = Z@ewlio()] = R@) + ) () (42.142)
The reciprocal of impedance, the ratio of the phasor current to the phasor voltage is the
equivalent admittance:

= 1U9) _y (myex[= jo(e)] = (o) + jB(w) (4.2.143)
U(jo)

It is important to stress that impedance (admittance) is a complex number that scales one

phasor to produce another, but it is not a phasor. The modulus (magnitude) of impedance is

the ratio of effective values of the voltage and the current and the angle is the difference of the

voltage and the current angles, as presented in equations (4.2.15) — for simplicity of

description argument @ is omitted (fixed frequency is assumed).

Y(jw)=Y(s)

189



Z =UT, p=a,—q, (4.2.15)

The impedance (admittance) can be expressed in a rectangular form, as presented in equations
(4.2.14), where:

e R=Re{Z(jw)} is the resistive component of Z, or simply resistance,

e X =Im{Z(jw)} is the reactive component of Z, or simply reactance,

e G =Re{Y(jw)} is the conductive component of Y, or simply conductance,
e B=Im{Y(jw)} is the susceptive component of Y, or simply susceptance.

For the given components of impedance (admittance) its magnitude and angle can be
determined, or vice-versa:

Z=+R*+X?, p= arctan% (4.2.16a)
R=Zcosp, X =Zsing (4.2.16b)

These relationships are graphically expressed in Fig. 4.2.5.

Alm{Z(jw)}

Fig. 4.2.5 Graphical representation of
impedance

iX
Z

»\

»

R Re{Z(_,:a))}

For the given components of impedance, components of admittance can be determined, or
vice-versa:

Y:G+jB:R 1x :RRZ_J;((Z:G:ﬁ’B:_ﬁ (42173.)
+] + + +

G B
R=Gr+e "~ o m? (4.2.17b)

For the fixed frequency , taking into account rectangular form of the impedance, its series
equivalent circuit can be found, taking into account rectangular form of the admittance, its
parallel equivalent circuit can be found, as presented in Fig. 4.2.4.

The resistance is always nonnegative while reactance can be positive (inductive) or negative
(capacitive), and correspondingly the impedance angel can be positive or negative

@ e<—90°,+90° > (4.2.18)

All possible cases are considered next.
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¢ =90°
The voltage leads the current by 90 degrees, as presented in Fig. 4.2.6 (1(j®) is assumed
as the reference phasor, ; =0°). The resistance is equal to zero and subcircuit has pure

inductive character, its equivalent consists of one element, inductor, as presented in the
same Fig. 4.2.6.

4 U(jo) A
I(jw) U(jow)

I(jo) i

Fig. 4.2.6 Voltage and current phasors and circuit equivalent,

JX(@) = joL

0° <@ <90°
The voltage leads the current by the angle less than 90 degrees, as presented in Fig. 4.2.7 (
a; =0°). The resistance is greater than zero, reactance is positive, X = wlL,. Then, the

circuit has inductive character. Its equivalent consists of two elements, resistor and
inductor, as presented in the same Fig. 4.2.7.

U(j) A
I(jo) U(jo)

JoL,

, 1(jo) R

Fig. 4.2.7 Voltage and current phasors and circuit equivalent, 0°< ¢ < 90°

p=0°

There is no shift between the voltage and the current, as presented in Fig. 4.2.8 («; =0°).
The resistance is greater than zero, reactance is equal to zero. Then, the subcircuit has
resistive character, its equivalent consists of one element, resistor, as presented in the
same Fig. 4.2.8.

A

I(jo)Y |U(j@)

R

1(jo) U(jo)
> .

»

Fig. 4.2.8 Voltage and current phasors and circuit equivalent, ¢ = 0°
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o -90°<p<0°
The current leads the voltage by the angle less than 90 degrees, as presented in Fig. 4.2.9 (
a; =0°%). The resistance is greater than zero, reactance is negative, X =-1/@C, . Then,
the circuit has capacitive character. Its equivalent consists of two elements, resistor and
capacitor, as presented in the same Fig. 4.2.9.

n A
I(jo) 1Go)Y |U(jo)

_i L
/ aC
U(jo) R,

Fig. 4.2.9 Voltage and current phasors and circuit equivalent, —90°< ¢ < 0°

o ¢p=-90°
The current leads the voltage by the angle of 90 degrees, as presented in Fig. 4.2.10 (
a; =0%). The resistance is equal to zero, reactance is negative, X =—-1/@C . Then, the
subcircuit has pure capacitive character, its equivalent consists of one element, capacitor,
as presented in the same Fig. 4.2.10.

> | (jo) A
1(jo)] |U(jo)

e

1U(io) .

Fig. 4.2.10 Voltage and current phasors and circuit equivalent

Example 4.2.1
Find the series and parallel equivalents of the circuit presented in Fig. 4.2.11,
R, =50, R, =10Q, oL =150, 1/ &C =100, @ =1000 rad/s.

/N,

cC_

°
Fig. 4.2.11 Circuit for Example 4.2.1
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The subcircuit impedance is

(4.2.19)
e al)c 10(-j10
Z(jo)=R, + joL + J :5+j15+(_—1_):5+j15+5—j5:10+leQ
R 1 10- j10
2t
JaC

As can be observed, for the given frequency of 1000 rad/s, the subcircuit has inductive
character.

The series equivalent consists of R, =10Q resistance and X =L, =10Q reactance. Then,
the series inductance is L, =10 mH.

From (4.2.17a), parameters of the parallel equivalent can be calculated: G =0.05S,
B=-1/wlL, =-0.05S. Then, the parallel resistance is equal to R, =1/G =20Q and the

parallel inductance is equal to L, =20mH.

Both equivalent circuits are presented in Fig. 4.2.12.

a) b)

<:>ZOQ 20 mH

|

Fig. 4.2.12 Equivalent circuits for Example 4.2.1

ALGORITHM OF AC STEADY-STATE ANALYSIS

The Kirchhoff’s laws (4.2.1) and (4.2.2), together with element laws (4.2.5), (4.2.8) and
(4.2.11), can be used to formulate circuit equations in the phasor-domain. The analysis is
therefore identical to the resistive circuit analysis, with impedances replacing resistances and
phasors replacing dc currents and voltages, nodal analysis can be applied. Then, algorithm of
ac steady-state analysis can be formulated.

Algorithm 4.2.1 Phasor method of ac steady-state analysis

Step 1. Built a phasor circuit.

Step 2. Formulate phasor equations, nodal method can be applied.

Step 3. Solve the equations to find phasors describing currents and voltages.
Step 4. Express the solution graphically, by means of the phasor diagram.
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Transformation of the solution to the time-domain is trivial. Once phasors are found, they can
be converted immediately to the time-domain sinusoidal answers. Phasor diagram is helpful in
checking correctness of the solution, also allows to read phase shifts between phasors.

Example 4.2.2
Find the mesh current, element voltages and voltage U, (jw) ; draw the phasor diagram:
e =10sin(314t +45°) V, X =al =20Q, |X.|=1/aC =10Q, R=10Q.

Fig. 4.2.13 Phasor circuit of Example 4.2.2

The mesh current is:
(o) = E(jw) _10/+2exp(j45°)
R+ j(wL -1/ aC) 10+ j10

=0.5exp(j0°)=0.5A (4.2.20)

It lags the supply voltage, what means that, for @ =314rad/s, RLC series circuit has inductive
character.
Next, element voltages can be calculated

Ugr(jo) =5exp(j0°) =5V (4.2.21a)
U, (jw) =10exp(j90°) = jlOV (4.2.21a)
Uc (jo) =5exp(—j90°) =—j5V (4.2.21a)

These voltages satisfy KVVL equation

U(jo) =U_(jo)+Ug(jo)+Uc (jo) (4.2.22)
This solution can be expressed graphically. Fig. 4.2.14 presents three phasor diagrams:
a) all phasors are anchored in the origin of the complex plane,

b) voltage phasors are shifted, following KVL equation,

c) voltage phasors are shifted, following KVL equation, such that the circuit topology is
mapped.

In this latter case, location of the circuit nodes is uniquely defined and thus, all other voltages
may be read directly from the diagram. The voltage between nodes C and A is

Uca(jo) =10/+2exp(— j45°) V= u,., =10sin(314t —45°) v (4.2.23)
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) 4 U, (o) o £ U,Go) )

E(jo)

1(jo)
Up(jo)

vUc (jo)

Fig. 4.2.14 Phasor diagrams for RLC series circuit (Example 4.2.2)

L

Drill problems 4.2

1. What reactance of: a) inductive character, b) capacitive character, should be connected in
series with j100 Q coil such that at U =200V supply, coil voltage drops by 50%, i.e.
down to 100 V?

JX(jo)  j100

4—
U =200 U, =100

2. Sketch the phasor diagram and read the voltage Ug, (jo): R, =R, = X =|X;|=10Q,
E(jw) =10 V. Repeat calculations (drawing) for:a) R, =0,b) R, =0,

ce ?

A

Fig. P.4.2.2 E(jo) R, R,
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10.

Find the effective value of the mesh current and the coil voltage.

E=10V R=10Q

Fig. P.4.23 ezloxﬁsml()()lv wl =100 %

For the parallel RL circuit, find the total rms current if rms currents of elements are:
I, =4A, 1 =3A.

For the series RL circuit, find the total rms voltage if rms voltages of elements are:
U, =4V,U =3V.

Repeat Problems 4.2.4 and 4.2.5 with L replaced by C.
Find the effective value of the mesh current and the capacitor voltage.

E=10V R=10Q

o =10+/2 sin 1007 V C=01S |
Fig. P.4.2.7 e=10y2sin @

The rms voltages of the RLC series circuit are: U, =10V, U, =4V, U, =3V. Find the
supply rms voltage.

A two-terminal circuit is a series connection of resistor and energy storage element.
Identify character of this element and find both constants R and C or L if the circuit

voltage and current are: u =12/2sin100t V, i =3sin(100t + 45°) A.
Sketch the phasor diagram mapping the topology. Assume: E(jow)=E, X =R, |X;|=
a) X ,b)2X,c)05X,. | |

Fig. P.4.2.10 —JXc
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11.

12.

13.

14.

15.

16.

At o, =100 rad/s the rms currents are: | (@) =16A, I.(w)=4A. Find the rms
currents 1(jkey), 1, (jk®,), 1. (jke,) for:a) k=2,b) k=1/2 and U (w) = const .

I(jow)
[ >
A 4
Fig. P.4.2.11 UGjo)| —-j—T  joL
@C
[

Find the coil ammeter indication, if the capacitor ammeter indication is 2 A and

ol =R=1/0C =10Q.

Fig. P.4.2.12

Find the capacitor ammeter indication, if the coil ammeter indication is 2 A and
wL=R=1/aC =10Q.

Fig. P.4.2.13

Find resistance and reactance of the series equivalent at @=5000 rad/s, for
R=10Q, L=1mH, C =20puF.

o—{ |

Fig. P.4.2.14 — %

The rms current taken from a voltage source € = 204/2sin10t Vv by a series combination
of R=3Q and L="? is4 A. Find the inductance.

Find the rms current taken from a voltage source €= 20~/25in10°t Vv by a capacitor of
100 nF in series with a resistance of 10 kQ.
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17.

18.

19.

20.

21.

Find the Thevenin equivalent, € =10+/2sin100t V, R=1kQ, C =0.1pF .

Fig. P.4.2.17 —o

°
If the current that flows through the RLC branch is i =10v/2sin10t Vv and
R=2Q, L=0.6H, C=0.05F, find the branch voltage.

In the circuit of Problem 4.2.12 parameters are not known but it is known that the resistor
rms current is 6 A and the capacitor rms current is 8 A. Find the coil rms current.

It is known that the resistor rms voltage is 8 V and the capacitor rms voltage is 4 V. Find
the coil rms voltage.

Fig. P.4.2.20

A series combination of a resistance and a capacitance produces a 2 A rms current that

leads the applied voltage by 45°. If the amplitude of this voltage is 200 V (50 Hz), what
are the resistance and capacitance ?
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4.3 AC STEADY-STATE POWER

Few different measures of ac steady-state power are used, and they all are presented. The
special attention is laid on the average power. Methods of its calculation and maximum power
transfer condition are discussed.

MEASURES OF POWER

Instantaneous power

In a linear circuit with periodic excitation, the steady-state currents and voltages are also
periodic, each having identical period. Then, instantaneous power absorbed by two-terminal
element (subcircuit) is also periodic. For the considered sinusoidal excitation, instantaneous
power is also a sinusoid.

(4.3.1)
p=ui :U\/Esin(ai+au)lx/§sin(a)t+ai) =Ul cos(a, — ;) —Ul cos2at + o, + ;)
The first term in this equation is independent of time, the second term varies periodically over
time at twice the angular frequency. Proper operation of electrical devices limits the

maximum instantaneous power. This power, the so called peak power, is a commonly used
specification for characterizing elements or devices.

P.. =Ulcos(a, —«;)+UlI (4.3.1a)

peak

Average or real power

Mathematically, the first term of instantaneous power is its average value. This term is called
the average power or real power, and it represents the power delivered by a source or
absorbed by a two-terminal element or device (subcircuit).

to+T

! jpdt=UIcos(ozu —a;) =Ulcos ¢ (4.3.2)
to

p==
=

The average power, in watts [W], is always nonnegative and satisfies the power balance
principle. It is the product of the rms voltage, the rms current and the cosine of the angle
between them. This cosine is called the power factor, pf.

pf =cos(e, — ;) =cos ¢ (4.3.2a)
If a two-terminal element is a resistor R, then ¢ =0°, pf =1, and the real power absorbed is
LJ 2
"R

For capacitor or coil pf =0, because the angle between the voltage and the current is
@ =-90° or ¢ =90°, respectively. Consequently, the capacitor or coil real power is equal to
zero,

P.=P =0 (4.3.2¢)

P, =I°R (4.3.2b)
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In identifying a load character, the pf is characterized as leading or lagging by the phase of
current with respect to that of the voltage. Then, a capacitive load has a leading pf and an
inductive load has a lagging pf.

The average power designates the energy absorbed by two-terminal element or subcircuit. The
energy absorbed in time interval from t=0 to t=nT 6 where n is a positive integer, is
designated by the following equation:

nT nT nT
W, = [pdt= [Pdt— [Ulcos(2ot+a, +a)dt =nTP (4.3.3)
0 0 0

Consider the circuit of Fig. 4.3.1, consisting of a practical source (sinusoidal generator),
modeled by the Thevenin equivalent, connected to a load subcircuit.

L —>- L 4

I(jo) 4

Z,(jo)
U(jw)
CT Z,(jw)
E,(jo)
L 2 L 4
SOURCE LOAD

Fig. 4.3.1 Load impedance connected to a source

The real power transferred from the generator to the load can be designated in three different
ways.

1. Phasors U(jw) and I(jw) are designated at first, then equation (4.3.2) is utilized to find
the real power transferred.

2. Effective currents of load resistors are calculated at first. Then, the power balance
principle (4.3.4) is utilized, where N is number of load resistors.

N N
P= Z P, = Z | ;i R (4.3.4)
i=1

i=1

3. The effective current | and the equivalent series resistance of the load R, are calculated at
first, then the real power transferred is designated from equation (4.3.2b).

Example 4.3.1
Find the real power transferred to the subcircuit presented in Fig. 4.2.11, if the voltage on its
terminals is U(jow) =10V.

1. Z,(jw)=10+ j10 O (4.3.53)
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10 11

(o) = -t eoiss) A 4.3.5b
(Jo) 10+j10 1+] 2 P14 (4.3.50)
1
P=10—cos45° =5W 4.3.5C
NG (4.3.5)
1 2
2. 1, =1, PR1=(E] 5-25W (4.3.6a)

- .= X 1 -j10 : 2
| = - =—j0.5A, P, =(05)?10=25W (4.3.
R, (10) (Jw)Rz_ch 1+ ]10- j10 ] , P, =(0.9) (4.3.6b)

P=P, +P, =5W (4.3.6c)

3. P=I%R, :(%j 10=5W (4.3.7)

Apparent power

For the given line voltage U (jw), the real power consumed by the load is strongly related to
its power factor. It may vary from 0 to the maximum of

s=P ,=Ul (4.3.8)

This product is called the apparent power. To avoid confusing with the unit of average power,
the watt, the apparent power unit is volt-ampere [VA] and obviously, the apparent power
does not satisfy the power balance principle. It simply defines the maximum capacity of a
source (power plant).

The power factor of a load has a very important practical meaning. Power company is very
interested in having customer keep this factor as close to unity as possible, to minimize the

power line losses
I:)Iine = IZRIine (439)

Example 4.3.2
Suppose, that a mill consumes P =1kW from a U =200 V line at a lagging power factor of
pf =cos60° =1/2. Then, the required current is

P 1000
Ucosep 200cos60°

| =10A (4.3.10)

For pf =1, the required current would be only 5 A. As can be seen, the power plant must
generate a larger current in the case of lower pf and it causes larger line losses. For instance, if
the transmission line resistance is R,., =5, then the line losses increase from 125 to 500 W!

*

line

Most industrial and many residential loads are inductive (lagging power factor). Although it is
not possible to change the inductive nature of a load itself, it is possible to connect a
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capacitive load in parallel with this load, and correct the power factor to unity that way. The
circuit for power factor correction is presented in Fig. 4.3.2, together with the phasor diagram.

o> l 1jo) Ujo)
A >
JjoL | 1 @ f [.(jo)
o
R
° I, (jo)

Fig. 4.3.2 Circuit for power factor correction and corresponding phasor diagram

Example 4.3.3

A load operating at a lagging power factor of pf =cos45° =0.7 dissipates 2 kW when

connected to a 220 V, 50 Hz power line. What value of capacitance is needed to correct the
power factor to unity?

The inductive load rms current is:

| =T (4.3.11a)
U cos ¢
From the current triangle (Fig. 4.3.2), the capacitor rms current is
. P
I. = ILsmgo=Utango (4.3.11Db)
Then, the capacitance is:
I Ptan 2000
C=—c ="2%_ 31.6yF (4.3.11c)

U Ulw 220°-314
¢*

Reactive power

Energy storage elements, capacitors and coils, neither supply nor dissipate power on average,
but rather exchange it back and forth with the rest of the circuit. To measure the amount of
periodic energy exchange taking place between a given subcircuit and the rest of the circuit,
reactive power Q is introduced.

Q=Ulsing

The sign of Q is positive for inductive loads and negative for capacitive ones. For the pure
capacitive or pure inductive load, Q =-UIl or Q =UI , respectively. For pure resistive load,

Q=0.

The unit of reactive power is var or volt-ampere reactive, [ VAr]. The reactive power
satisfies the power balance principle.
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Example 4.3.1 — cont.

Find the reactive power transferred to the subcircuit.

From (4.3.5) repeated

Z,(jw) =10+ j10 Q, 1(jw) =1/2exp(—j45°) A (4.3.12)
Then, the reactive power is
Q=12X, =5 VAr (4.3.13)
.

Complex power
To extend phasor analysis to the study of power in ac steady-state circuits, a new complex
quantity, the complex power S(jw) is defined (4.3.14). For simplicity of description

argument @ is omitted at the right side of the equation.
S(jo) =P+ jQ=Sexp(jo) (4.3.14)

The real part of the complex power is the average power, the imaginary part is the reactive
power, its modulus is the apparent power. Graphical interpretation in the complex plane is
presented in Fig. 4.3.3, an inductive load is assumed. The complex power satisfies the power
balance principle, as its both terms satisfy this principle.

ImA

Fig. 4.3.3 Graphical interpretation of iQ * S(jo)
complex power and its components

v

MAXIMUM POWER TRANSFER

Same as in dc circuits, when designing ac circuit, it is frequently desirable to arrange for the
maximum real power transfer to the load from the rest of the circuit. The whole circuit is
divided into two parts (Fig. 4.3.1):

1. source, active subcircuit modeled by its Thevenin equivalent:

E,(jw), Z,(jo) =R (@) + jX,(®) (4.3.15a)
2. load, passive subcircuit modeled by its impedance

Z,(jo) =R (@) + jX,(w) (4.3.15b)
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Specifying Z,(jw), so that the average power absorbed by this impedance from the given

active subcircuit is a maximum, is the task. Power absorbed by the load is a function of two

arguments:
2

E, R =P(R,X,) (4.3.16)
JR R+ (X, +X,)?

The values of R,, X, that maximize P are calculated from the following equations:

P=I°R =

P o, P g (4.3.17)
oR, oX,

These values are:
R =R,, X, ==X, (4.3.18)

and the maximum power transfer condition can be formulated.

The maximum power is transferred to the load of Z,(jw) from the source with Thevenin
equivalent impedance of Z, (jw), if these impedances are complex conjugates:

Z(jo)=Z/(jo) = Z,(0) =Z, (@), ¢,(@) =9, (») (4.3.18a)

Drill problems 4.3

1. A load has the inductive impedance Z(jw)=100+ j100 Q. Find the parallel impedance
required to correct the power factor to 1.0 for @ =500 rad/s.

2. Find the real power absorbed by the subcircuit:
U(jw) =20 v, [Xc|= X, =R =100Q.
o——4

Fig. P.4.3.2

3. The parallel LC circuit voltage is u=U_sinwt. Sketch (on one drawing) the
instantaneous power of L and C, for X, =|X|.

4. The series LC circuit current is i =1 sinat . Sketch (on one drawing) the instantaneous
power of L and C, for X, =|X,].

5. The current i =10\/§sin(314t+45°) mA flows through Z(jw) =3+ j4 KQ load. What

real, apparent and reactive power absorbs the load? What energy is dissipated in one
period?
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10.

11.

12.

13.

14.

15.

The voltage across Z(jw) =3+ j4 kQ2 load is u =10\/§sin(314t+45°) V. What real,
apparent and reactive power absorbs the load? What energy is dissipated in one period?
The inductive impedance Z(jw) =6+ j8Q is connected to 220 V line. Find the energy
dissipated in 1 hour.

Find the load impedance Z,(jw) =R, + jX, that will absorb the maximum power. What
would be the value of that maximum ?

Fig. P.4.3.8 0 lo5pF
202 sin 10007 VCD 100 Z,(jo)
® L 2 L

The inductive load absorbs 270 W of real power at a pf of 0.75 lagging and its voltage is
120 V rms. Find the real power absorbed by the transmission line resistance of
Ri. =10Q.

line

At what frequency would the capacitive load receive maximum power and what would be
the value of that maximum.

Fig. P.4.3.10 1 kO 1H

(T ZO\ESin ot V 1 kQ

—1— 1uF

A practical coil has inductance 4 mH and resistance 8 Q. Find the power dissipated in the
coil when it is connected to 20 V source at: a) dc, b) @ =1000 rad/s, c) @ =1500 rad/s.

The power delivered to a capacitor is p =10sin2t mW, its voltage is u = 5J2sint V .

Find the current entering the positive terminal, the charge between times 0 and a) 7/4 s,
b) 7 s, and energy delivered within this time.

A resistive load consumes 400 W at 100 V, 60 Hz supply. Find a capacitor that should be
connected in series, if the combination is supplied from 200 V, 50 Hz line and load
consumes the same energy.

The series RLC circuit is connected to e =20sin10°t V source. Find the instantaneous
energy stored W, and W, at the moment when the source voltage is zero. Find the
instantaneous energy stored W, at the moment when W, is zero. Find the instantaneous
energy stored W, at the moment when W__ is zero.

A single-phase motor is supplied with 1200 W from 240 V, 50 Hz line. The motor
operates at a pf of 0.8. What current flows to the motor ? What is the apparent power ?
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4.4 FREQUENCY CHARACTERISTICS OF TWO-TERMINAL
SUBCIRCUIT

In ac steady-state circuit, all circuit responses are functions of the generator frequency @.
Response variations with this frequency form the frequency response of the circuit.

Summary of ideal elements, resistor, capacitor and coil, is presented at first. Then, use of
these elements to model a practical capacitor and a practical coil is discussed.

Next, frequency response of resonant circuits, circuits that contain both capacitors and coils is
investigated. Simple circuits, series RLC circuit and parallel GLC circuit are considered at
first. Then, complex two-terminal circuits are discussed.

IDEAL ELEMENTS - SUMMARY

Resistor
1. Time-domain description

u=Ri =U+2sin(wt+a,) = RIV2sin(wt +o,) =>U =RI, a, = ¢, (4.4.1)

There is no phase shift between the voltage and the current. Fig. 4.4.1 presents a single
period of resistor waveforms - current is denoted by the bold line, «; =0° is assumed.

A

U2
/

N2

0.5T 0.75T T

V —

0.25T

Fig. 4.4.1 Voltage and current waveforms for a resistor

2. Phasor-domain description
U(jo)=RI(jo) (4.4.2)

Phasor diagram is presented in Fig. 4.4.2

Fig. 4.4.2 Phasor diagram for a resistor I(jo) U(jo)
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3. Impedance
Z(jo)=R=>Z(w) =R, p=0° (4.4.3)

Fig. 4.4.3 presents modulus (magnitude) and phase frequency characteristics.

A Z(w) A P(w)

[0 [0

v

v

Fig. 4.4.3 Magnitude and phase frequency characteristics for a resistor

4. Power
Instantaneous power: p = ui = 2Ul sin® ot =UI —UI cos 2wt (4.4.4)

as presented in Fig. 4.4.4 - the dissipated energy is denoted by the shaded area.

AP
2UI
+ +
P=UI
» t
T 2T
Fig. 4.4.4 Resistor instantaneous power
Average power, power factor: P =1°R, pf =1 (4.4.5)
Reactive power: Q=0 (4.4.6)
Energy dissipated in one period: W, = I*RT (4.4.7)

Inductor
1. Time-domain description

u= L%:U\/Esin(a)t+au) = wL14/2sin(at + o, +90°) = U = oL, a, = a; +90°
(4.4.8)
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The voltage leads the current by 90°. Fig. 4.4.5 presents a single period of inductor
waveforms - current is denoted by the bold line, % =% js assumed.

A

U~2
\

12

0.5T

0.25T

Fig. 4.4.5 Voltage and current waveforms for a coil

2. Phasor-domain description
U(jo) = jolLl(jo) (4.4.9)
Phasor diagram is presented in Fig. 4.4.6

tugo

Fig. 4.4.6 Phasor diagram for a coil

> I(jw)

3. Impedance
Z(jo)= joL = Z(w) = al, ¢ =90° (4.4.10)
Fig. 4.4.7 presents modulus (magnitude) and phase frequency characteristics.
A Z(w) A p(o)
90°
> @ #0)

Fig. 4.4.7 Magnitude and phase frequency characteristics for a coil
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In dc steady-state (@ =0), coil is a short-circuit. For @ — oo, coil is an open-circuit.

4. Power

Instantaneous power: p ==UI cos(2at +90°) = Ul sin 2at (4.4.11)
as presented in Fig. 4.4.8.

AD
Ul
+ +
2T
7 T X

Fig. 4.4.8 Coil or capacitor instantaneous power
Average power, power factor: P=0, pf =0 (4.4.12)
Reactive power: Q =UI (4.4.13)
Energy absorbed in one period: W; =0 (4.4.14)

Inductor exchanges energy back and forth with the rest of the circuit - in Fig. 4.4.8 the
exchanged energy is denoted by the shaded area.

t=0 W, =0,
te(0,T/4) energy is stored,
. 2
LaT/4) _ |
2
te(T/4,T/2) energy is given back to the rest of the circuit,

t=T/4 maximum energy stored: W;,, = (4.4.14a)

t=T/2 W;,, =0 and the process of energy exchange repeats.
Capacitor
1. Time-domain description
du

i=C = |V2sin(at + ;) = @CU2sin(at + , +90°) = | = wCU, a, = a, +90°

(4.4.15)

The current leads the voltage by 90°. Fig. 4.4.9 presents a single period of inductor
waveforms - current is denoted by the bold line, &, =0° is assumed.
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U~N2

0.5T 57 T -
0.25T >

~I\2

Fig. 4.4.9 Voltage and current waveforms for a capacitor

2. Phasor-domain description
I(jow) = joCU (jo) (4.4.16)
Phasor diagram is presented in Fig. 4.4.10

A (o)
Fig. 4.4.10 Phasor diagram for a capacitor
U(jo)
3. Impedance
Z(jw)—i:Z(w)—i =-90° (4.4.17)
jaC oc'? -

Fig. 4.4.11 presents modulus (magnitude) and phase frequency characteristics.

A Z(o) 4 p(o)

)

v

> O -90°

Fig. 4.4.11 Magnitude and phase frequency characteristics for a capacitor

In dc steady-state (@ =0), capacitor is an open-circuit. For @ — oo, capacitor is a short-
circuit.
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4. Power

Instantaneous power: p = Ul cos(2at +90°) =Ul sin 2at (4.4.18)
as presented in Fig. 4.4.8.

Average power, power factor: P=0, pf =0 (4.4.19)
Reactive power: Q =-UlI (4.4.20)
Energy absorbed in one period: W; =0 (4.4.21)

Capacitor exchanges energy back and forth with the rest of the circuit - in Fig. 4.4.7 the
exchanged energy is denoted by the hatched area.

t=0 W, =0,
te(0,T/4) energy is stored (charging),

=CU?, (4.4.21a)

: C(u(T /4)y’
t=T/4 maximum energy stored: W;,, = M

te(T/4,T/2) energy is given back to the rest of the circuit (discharging),

t=T/2 W;,, =0 and the process of energy exchange repeats.

PRACTICAL COIL and PRACTICAL CAPACITOR

A practical (nonideal) inductor or a practical capacitor is modeled by an ideal inductor or
capacitor, together with some other parasitic elements to account for losses and coupling.

For a practical inductor, first of all, a winding resistance R, = R, (resistance in copper)

has to be taken into account. This resistance may be modeled by inserting a series resistor into
the circuit model for a practical inductor, as presented in Fig. 4.4.12.

U, (jo) Uy(jo)

Fig. 4.4.12 Circuit model for a practical coil I(jo): joL

At first, model taking into account only this winding resistance is considered. From KVL.:
U(jw)=U (jo)+U.(jo) (4.4.22)

The phasor diagram is presented in Fig. 4.4.13a (¢; =0° is assumed).
A practical coil equivalent impedance is

Z (jo)=R, + joL=Z (w) =R} +(aL)’ (4.4.23)

Frequency characteristic of the magnitude is presented in Fig. 4.4.13b (solid line).
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a) Z, (a b)
U,(jo) U(jo)

Ay

@
R,

> 1 g

U,(jo) I(jo) . [0}

Fig. 4.4.13 Practical coil: a) phasor diagram, b) magnitude as a function of frequency

If a practical inductor or -capacitor is described by the equivalent impedance,

Z(jow) =R(w)+ jX(w) , then the reactance X (w) is the primary parameter of concern, and

the resistance R(w) represents the parasitic effect. The magnitude of X (@) is usually much

greater than the magnitude of R(®) . The ratio, called the quality factor of practical element
X ()|

@) =2 (4.4.24)

provides a measure of how close the practical element is to an ideal element. The inclusion of
@ in equation (4.4.24) is to emphasize the fact that the quality factor depends on the
frequency.

For an inductor, modeled as shown in Fig 4.4.12 — solid lines, the quality factor is designated
by the following equation:

ol
Qu(w)=— (4.4.25)
RL
For an exemplary coil characterized by the following parameters: L=0.1H, R, =10Q, at
the audio frequency of f =1000 Hz the quality factor is equal to 62.8.

A coil model denoted in Fig. 4.4.12 by solid lines is valid for low and medium frequencies of
up to few megahertz. For high frequencies the parasitic capacitance between a coil terminals

C_, the so called stray capacitance, has to be taken into account, as denoted in Fig. 4.4.12 by

the dashed line. A practical coil equivalent circuit has inductive character up to some
frequency, called the resonant frequency (meaning of this notion is explained in the next
section of this Chapter):

1
T JLC,
Above the resonant frequency the equivalent circuit reveals the capacitive character! For the
exemplary coil and stray capacitance of C, =0.1pF, the resonant frequency is equal to
o, =10"rad/s= f, =1.6 MHz.

I

® (4.4.26)
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For a practical capacitor, first of all, a leakage resistance R. =R, has to be taken into
account. This resistance may be modeled by inserting a parallel resistor into the circuit model

for a practical capacitor, as presented in Fig. 4.4.14.
[.(jo) - jloC
L APLe
3 q

Fig. 4.4.14 Circuit model for a practical ®-- >
capacitor I(jo)
I,(jo) R,
U(ja)*

At first, model taking into account only this leakage resistance is considered. From KCL.:
I(jo)=1c(jo)+ 1z (jo) (4.4.27)

The phasor diagram is presented in Fig. 4.3.15a (¢, =0° is assumed).

A practical coil equivalent impedance is

1 1 G, — jaC 1

(jo) = = —— = =>7Z.(0) =—F———— (4.4.28)
¢ Y.(jo) G.+joC G2+(aC)? ¢ [GZ 1 (wC)?
Frequency characteristic of the magnitude is presented in Fig. 4.3.15b (solid line).
a) AZ. () b)

. (jo) "U(jo)

Fig. 4.4.15 Practical coil: a) phasor diagram, b) magnitude as a function of frequency

For a capacitor, modeled as shown in Fig 4.4.14 — solid lines, the quality factor is designated
by the following equation:

_[B(e) _eC
Qc (w) = G) G, (4.4.29)

A capacitor quality factor is usually much greater than a coil quality factor, it is often assumed
to be infinite. The reciprocal of Q. (@) is called the dissipation factor d. (@) :

de (@) =1/Q, (@) (4.3.30)
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For an exemplary capacitor characterized by the following parameters: C=1uF, R. =5MQ,
at the audio frequency of f =1000 Hz, the quality factor is equal to 31400.

A capacitor model denoted in Fig. 4.4.14 by solid lines is valid for low and medium
frequencies. For high frequencies the parasitic inductance of connecting wires L. has to be

taken into account, as denoted in Fig. 4.4.14 by dashed connections. A practical capacitor
equivalent circuit has capacitive character up to some frequency, called the resonant
frequency (meaning of this notion is explained in the following section):

1
" JL.C
Above the resonant frequency the equivalent circuit reveals the inductive character! For the
exemplary capacitor and parasitic inductance of L. =10 nH, the resonant frequency is equal
to w, =10"rad/s= f, =1.6 MHz.

I

® (4.4.31)

A circuit design should take this phenomenon into account and resonant frequencies of all
used reactive elements, capacitors and coils, should be greater than the maximum operating
frequency.

RESONANT CIRCUITS
Consider the two-terminal passive circuit that contains at least one inductor and at least one

capacitor, connected to a sinusoidal generator of variable frequency, as presented in Fig.
4.4.16.

I(jw)
2 U(jo)

Fig. 4.4.16 Two-terminal RLC circuit

|==—=—===n

Frequency characteristics will be investigated, first for simple two-terminal RLC circuits built
of three elements in series or parallel configuration, then for complex circuits. Phenomenon of
resonance will be discussed.

The term resonance reflects the condition that the source voltage U (j®) and current |(jw)
are in phase, (o) =, (v)—«,(w) =0°. The frequency at which this phenomenon occurs is
called the resonant frequency @, . If @, exists, then the circuit is a resonant circuit.
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Series-resonant circuit RLC
The series RLC circuit is presented in Fig. 4.4.17. The circuit impedance

. . 1 i
Z(jo) =R+ j(wL———) =R+ X (w) (4.4.32)
aC
consists of the fixed real part (resistance) and imaginary part (reactance) that varies with
frequency. The frequency at which reactance vanishes and the impedance is at a minimum
magnitude, the resonant frequency, is
O, = —F— (4.4.33)
It is worth to observe, that this frequency coincides with the undamped resonant frequency

(3.2.26¢) of natural response. The reactance frequency characteristic is presented in Fig.
4.4.18.

Fig. 4.4.17 Series RLC circuit

X(a))“
ol
. .. . L
Fig. 4.4.18 Frequency characteristic of 4
reactance in RLC series circuit
o, g @
1
,C
b
wC

e for dc input voltage @ =0, reactance is an open-circuit,
o for low frequencies @ € (0,w,) , reactance is negative (capacitive),

1 _ -1 (4.4.34a)
aC, () wC

X(w) =—

where C,(w) is the equivalent series capacitance,

e for the resonant frequency o, ,
reactance is zero (short-circuit) — circuit has resistive character,
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o for high frequencies, @ € (@,,®), reactance is positive (inductive),
1
X(w) = ol (w) =l ——— 4.4.34b
(0) = ol (w) v ( )
where L (w) is the equivalent series inductance,
e for w=o0, reactance is an open-circuit.

The magnitude and phase characteristics of impedance are presented in Fig. 4.4.19.

Z(w
90°
, =a)
R
: > -90°
@, 1)

Fig, 4.4.19 Magnitude and phase characteristics of impedance of the series RLC circuit

Consider the input to this circuit to be its voltage U(jw) =U =const, @ e< 0,00> and its
output to be its current 1(j®) . Magnitude of the current,

U U

| () = = 4.4.35
(@) Z(w) 1\ ( )
R2+(wL—)
C
is normally plotted in relation to the resonant current
U

|r=|0u)=;5 (4.4.36)
The obtained gain curve:

I 1

@) _ (4.4.37)

L1 Qi 1)
is called the resonant curve and it is depicted in Fig. 4.4.20, for two values of Q, where

n is the normalized frequency and Q is the quality factor of the series RLC circuit:

n=owlo, (4.3.38)
1 /L
Q= ~c (4.4.39)
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This curve can be also considered as the ratio of admittances.
Y(w) Ul(w) 1
Yo UL 1+Q%(n-1/7)?

(4.4.37a)

2 [(0) _Y(o)
I Y

I r

1/42 -'

o, 0 o 0]

v

Fig. 4.4.20 Resonant curve of series RLC circuit for two values of Q

As can be observed, a phenomenon of resonance makes a circuit frequency selective. To have
a good measure of this selectivity, to measure sharpness of the resonant curve, term of quality
factor (4.4.39) is used. Circuits with high quality factors are very frequency selective, and this
implies low values of resistance R. Since practical inductors include significant winding
resistance R.,, it is difficult and expensive to design high-Q resonant circuits passively, that
is, solely with RLC elements (active resonant circuits are not discussed).

In essence, Q is a measure of the energy storage property of a circuit in relation to its energy
dissipation property. It can be easily proved that

Q=2r maximum energy stored (4.4.39)
totalenergy dissipated per cycle o

To measure the width of the frequency band within which the circuit is behaving in near-
resonant fashion, the term of bandwidth A® is defined.

The circuit bandwidth is the range of frequencies that lie between two frequencies o, ®,
where the magnitude of the gain is /2.

The gain of 1/ J2 corresponds to the power ratio of 1/2
2
P(w) _ I (®w)°R —13 | (@) _ 1

—— 4.4.40
P IR 2 | J2 ( )

r

Boundary frequencies, the upper half-power frequency @, and the lower half-power
frequency o, are calculated from the following equation:
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i: 1
V2 1+Q(-1/n)’

(4.4.41)

Leaving the algebra, after subtraction of the two frequencies, the bandwidth for the series
RLC is simply

_ O (4.4.42)

It is worth to emphasize, that at the resonant frequency magnitude of the coil and the capacitor
voltages is the same
1
U, =o,Ll, =U, =——1, (4.4.43)
o, C

r

Then, another expression for the quality factor can be formulated

o_Yu Vo ol 1
U U R oCR

(4.3.44)

The frequency characteristics of magnitudes of coil and capacitor voltages are presented in
Fig. 4.4.21.

max

U;'.r = U( r

-

-—

v

Fig. 4.4.21 Frequency characteristics of coil (bold) and capacitor voltage

For low values of Q, the voltages do not exceed the supply voltage. For larger values, the
voltages exceed the supply voltage, as presented in Fig. 4.4.21. For even larger values of Q,
practically for Q>10, @, =®, . =@, and U_, =U , =U, =UQ! The coil or
capacitor resonant voltage significantly exceeds the supply voltage and this effect is called the
resonance overvoltage.

Phasor diagrams for three frequencies: o, =0.5w,, ®, = ®,, ®; =20m, and Q=2/3 are
presented in Fig. 4.4.22.
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[(jo,) = U I(\2R)exp(j45°)

Uy (jo)=U /2 exp(j45°)

U, (jo,)=U /(3v2)exp(j135°)
D* U, (jo,) =4U /(3J2) exp(- j45°)

A I(jo,)=U/R B
C1 i S Up(jo,)=U

U, (jo,) 42U /3exp(j90°)

D¥ Uc(jo,)=2U/3exp(-j90")

U, (jo,)=4U /(3J2)exp(j45") C

U,(jo,) =U /2 exp(~j45°)

U B

= U /(3v/2) exp(~j135°)
I(jo,)=U (N2R)exp(- j45°)

Fig. 4.4.22 Phasor diagrams for three frequencies: w1=0.5wy, w=wy, w3=2wr, Q=2/3
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Example 4.4.1
For the given parameters of RLC series circuit: R=10Q, L=1H,C =1puF and the input
voltage of U =1 V, find magnitude of the coil/capacitor voltage at the resonant frequency.

The resonant frequency is @, =1000 rad/sec, the quality factor is Q =100. For these values,
the resonant current is |, =0.1A and the maximum rms coil/capacitor voltage is
U, =100V

Parallel-resonant circuit RLC
The parallel RLC circuit is presented in Fig. 4.4.23. The circuit admittance

Y(jw)=G+j(a)C—i)=G+jB(a)) (4.4.45)
ol

consists of the fixed real part (conductance) and imaginary part (susceptance) that varies with
frequency. The frequency at which susceptance vanishes and the admittance is at a minimum
magnitude, the resonant frequency is the same as in the series circuit (4.4.33). The
susceptance frequency characteristic is presented in Fig. 4.4.24.

U(jw) ’ ’
JoL
1Go) | |R e
Fig. 4.4.23 Parallel RLC circuit Jo-
B(w)}
oC
Fig. 4.4.24 Frequency characteristic of o,C
susceptance in RLC series circuit
o, o
_1
o, L
b
L

o for dc voltage @ =0, susceptance is a short-circuit,
o for low frequencies @ € (0, @,) , susceptance is negative (inductive),
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! -t (4.4.46a)

oL, (v) - wL

B(w) =-—

where L, () is the equivalent parallel inductance,

e for the resonant frequency o,
susceptance is zero (open-circuit) — circuit has resistive character,
o for high frequencies, @ € (®,,), reactance is positive (capacitive),
B(w) = C, () = C —iL (4.4.46b)
[0,

where C (@) is the equivalent parallel capacitance,

e for w=o00, susceptance is a short-circuit.

Magnitude and phase characteristics of admittance are presented in Fig. 4.4.25.

Y(o) _
y “wm

90°

v

-90°

(0] (0]

r

Fig, 4.4.25 Magnitude and phase characteristics of admittance of the parallel RLC circuit

Magnitude of the voltage is normally plotted in relation to the resonant voltage
U =U(w)= é (4.4.47)
The obtained gain curve,
U(w) 1
U 1+ Q¥ -1/n)?

is called the resonant curve and it is depicted in Fig. 4.4.26, for two values of Q, where: 7 is
the normalized frequency (4.4.38) and Q is the circuit quality factor
C

1
Q=57 (4.4.49)

(4.4.48)
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ZWUiw)  Z(o)
U V4

r r

1/42

»
>

0, o o @

r u

Fig. 4.4.26 Resonant curve of parallel RLC circuit for two values of Q

As can be observed, the parallel resonant circuit can be studied by repeating the results noted
for the series RLC case while making substitution of I(jw) for U(jw) and vice-versa, L for

C and vice-versa, and G for R. For large values of Q, the effect of the resonance overcurrent
can be observed.

Example 4.4.2

For the given parameters of RLC parallel circuit: R=10kQ, L =1H, C =1pF and the input
current of 1 =10 mA, find magnitude of the coil/capacitor current at the resonant frequency.

The resonant frequency is @, =1000 rad/s, the quality factor is Q =100. For these values,

the resonant voltage is U, =10V and the maximum rms coil/capacitor current is
I, =IQ=1A!

Complex-resonant circuit

In complex-resonant circuits more than one resonance may occur. The analysis of such
circuits is generally laborious and not especially illuminating. At the resonant frequency, the
terminal voltage U (jw) and current 1(jw) are in phase, and this is achieved when reactance
is equal to zero (susceptance is equal to infinity) or reactance is equal to infinity (susceptance
is equal to zero). Then, in a complex circuit resonant frequencies may be calculated from the
following equations:

X(®) =0 or B(w) = (4.4.50a)
and
X(w) = or B(w) =0 (4.4.50b)

Resonant frequencies designated from (4.4.50a) are alternating with frequencies designated
from (4.4.50b) and

dX (@)/dw >0, (4.4.51)
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Example 4.4.3
Plot the frequency characteristic X (w) and calculate the resonant frequencies.

Fig. 4.4.27 Circuit for Example 4.4.3

Two resonant frequencies are expected.
e For w=0 the circuit is a short-circuit.

e For low frequencies the reactance is positive (circuit has inductive character), up to the
frequency of the first resonance designated from (4.4.53b). At this frequency parallel

connection of L, and C gives an open-circuit.

e For medium frequencies the reactance is negative (circuit has capacitive character), up to
the frequency of the second resonance designated from (4.4.53a). At this frequency all
three elements give a short-circuit.

e For high frequencies the reactance is positive (circuit has inductive character) again.
e For @ =0 the reactance is an open-circuit.
The frequency characteristic is plotted in Fig. 4.4.28.

X(w)a

L
sV

Fig. 4.4.28 Frequency characteristic for Example 4.4.3

The circuit impedance is

Z(jo) = joL, +

joL, —
JaC . ol,
—=J a)l_l_z—
o°L,C-1

J = X (w) (4.4.52)
joL, +——
JaC
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Then, the resonant frequencies calculated from (4.4.50) are:

L L +L
ol ——2 0=, = 2 (4.4.53a)
»*L,C -1 LL,C

ol, 1
oL, —————=0=>w, =
o°L,C-1 L,C

(4.4.53b)

Drill problems 4.4
1. Draw the frequency characteristic Z(w) . Assume: R=100Q, L =1H, C =1pF.

Fig. P.4.4.1 o N

2 Draw the frequency characteristic Z(@) . Assume: L =1H, C =1pF .

C L
_N ‘_fW\_
Fig. P.4.4.2

o —— —

2C 7

H—

3. The series resonant circuit has L=1 mH and C=10 pF. Find the required Q and R when it is
desired that the bandwidth be 16 Hz.

4. Make sketches of Z(w), R(w), X (w) if the series element Z,(jw) is R, L or C and the
parallel combination Z,(jw)| Z,(jw) is RL, RC or LC.

Z,(jo)

Fig. P.4.4.4 4 (e Z;(jo)

5. Rework Problem 4.4.4 if the parallel element is R, L or C and the series combination is
RL, RC or LC.

Fig. P.4.4.5
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6. The series RLC circuit, R=10Q; L=1 H; C =1uF, is connected to U =1 V source.

Calculate element voltages at the resonant frequency. Draw frequency characteristics of
all voltages.

7. Draw the frequency characteristic Z(w) for Fig. 4.2.11 circuit.

8. The parallel RLC circuit, R=100k; L =1 H, C =1pF is connected to | =1 mA source.

Calculate element currents at the resonant frequency. Draw frequency characteristics of
all currents.
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4.5 TRANSFER FUNCTION IN FREQUENCY DOMAIN-FREQUENCY
RESPONSE

In most cases, ac steady-state analysis is much narrowly defined than that of finding all
responses (amplitudes and phases) at single frequency excitation. A convenient way to test a
linear circuit is to inject a sinusoid as the input and observe the sinusoidal steady-state output
(amplitude and/or phase) at different frequencies. In many practical circuits, observation of
response variations with frequency, the so called frequency response, is the fundamental part
of ac analysis. In such case, the analysis is limited to the SISO analysis and the transfer
function approach is utilized. The SISO circuit described in the frequency domain is presented
in Fig. 4.5.1 — to avoid collision of notations, frequency-domain signals are denoted F, (jw)

and F, (jo) ,while the s-domain signals have been denoted X(s) and Y (s).

Fig. 4.5.1 SISO linear circuit described
in frequency domain F.(jo) K(jo) F (jo)

¥

The frequency response function K(j) , the transfer function K(s) with s replaced by jw
, scales the input phasor to yield the output phasor.

. (o) |
K(jo)=K(s) =———~=K(o)ep[jp(w)] (45.1)
s=lo Fx(Ja))
K(w)= @) 45.1
= (4512
p(0) = a,(0) - a,(v) (4.5.1b)

The curves for gain K(w) versus @ and phase shift ¢(w) versus @ are called the
magnitude or amplitude (frequency) response and phase response, respectively.

The SISO circuit gain K(@) and phase shift ¢(®) completely describe of how the circuit
responds to inputs at any frequency.

For the two-terminal circuit, if F,(jew) isits current 1(jw) and F,(jo) isits voltage U (jw)

, or vice-versa, then K(jo)=Z(jw) orK(jo) =Y (jw), respectively, and this case has been
already discussed in the preceding Chapter. In electronics, in most practical applications two-
port is considered, as shown in Fig. 4.5.2. Then, the frequency response function (magnitude
response) is the ratio of two voltages:

U,(] U
(i) =5 . K="

4.5.2
U (jo) 452
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Fig. 4.5.2 Two-port linear circuit

described by frequency response U (jo) K(jw) U (jo)
function ' g

The circuit frequency response can be expressed graphically. The locus of the frequency
response function can be plotted in the complex plan, or separate curves for phase shift and
magnitude versus @ can be graphed. The latter one is normally graphed in logarithmic scale,
as described in the next section of this Chapter.

Example 4.5.1

Plot the locus of the frequency response function, the phase response and the magnitude
response of the two-port RC circuit shown in Fig. 4.5.3.

Fig. 4.5.3 Circuit for Example 4.5.1 . 1 )
g P U (jo) ————— U, (jo)

The circuit is the practical integrator considered already in Chapter 3.3. From its transfer
function (3.3.7a) the frequency response function is obtained, with s replaced by jw.

1

1 .
®) 1+sT = K{o) 1+ joT ( )
Then, the magnitude and phase responses are
K(®) =~ p(e) = —arctan(aT) (4.5.3a)

1+ (@T)?

The frequency response function, gain and phase shift, are collected in Table 4.5.1, for three
characteristic frequencies.

Table 5.5.1
Example 4.5.1 frequency response at selected frequencies
@ 0 o, =1/T 0
K(jw) 1 1/2—-j1/2 0
K(w) 1 1/~2 0
9() 0° —45° ~90°
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It can be proved that locus described by the function (4.5.3) is a semicircle, as shown in Fig.
4.5.4. The amplitude response (gain curve) and phase response (phase shift curve) are
presented in Fig. 4.5.5.

Im K (jw)

Fig. 4.5.4 Locus of K(jw) for Example
45.1

w=1/T

AK (o)

Ve

o _90°

C

Fig. 4.5.5 Amplitude response and phase response for Example 4.5.1

¢

BODE (LOGARITHMIC) PLOT

The use of linear scale to measure gain has its limitations. Small dynamic range it makes
available for graphing is the most important drawback of such scale. It is desirable to have
equal ratios mapped into equal displacements and this can be achieved by using a logarithmic
scale.

On a logarithmic scale, equal intervals represent a certain multiple, an increase of unity in the
common logarithm, log,,(x) = log(X) , represents multiplication by ten:

0, =100, = Iog& =logl0=1 (4.5.4)
0,
Fig. 4.5.6 Frequency axis in _0-.1_%_1.%”
logarithmic scale -1 0 1 2 3 logw
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In case of frequency such an interval is called a decade. In case of magnitude such an interval
is called bell. For some practical reasons 10-bel =decibel[dB] was adopted, first for the
power ratio

P, (®)
10log (4.5.5)
P, ()
From this ratio, the voltage gain in logarithmic scale is obtained
P(w) UZX(w)G
(@) _U, (@) = Kz (@) =20log K(®) (4.5.53)

P(@) U (@G
Then, for voltages (or currents) the gain is measured in decibels by twenty times its common
logarithm. Table 4.5.1 presents the common decibel conversion table.

Table 4.5.1
Decibel conversion table

K(w) 0.1 |1/J2=0707| 1 J2 2 3 4 5 10 | 100

Keg(@) | —20 | -301=—3 | 0 | ~3 | ~6 | ~10 | ~12 | ~14 | 20 | 40

An exact plot of gain versus frequency (logarithmic plot) is somewhat tedious to produce. In
the 1930s the German-born engineer Hendrick Bode devised a simple method for graphing
the logarithmic plot, it bears his name Bode gain plot.

Consider a transfer function (3.3.2) with s replaced by jo

L(i H(ja)_qj) H(1+ ja)TLj)
K(jo) =K —U2 _y n -c2 (4.5.6)
MU2) TTGe-s0)  Ta+ieTw)

where,
d;,S, are roots of polynomials L(s), M(s), zeroes and poles of K(s),

K =const is gain,

1 1 .
Ti=——"Tw= S are time constants.
j k
Then, the logarithmic plot is given by the following equation:

| m
Kge (@) = 20l0gC + > 20log 1+ (aT,;)* = > 20log 1+ (@T,, )’ (4.5.7)
j=1 k=1

The strategy for plotting the gain in decibels will be to plot each term of (4.5.7) separately and
then add these component plots graphically.

The graph of the first term clearly is a flat straight line at the level of 20logC .

The graph of a term f (@) = 20log+/1+ (@T)* can be approximated by two linear segments:
. ol <<l=w<<w, =1/T = f(w)=0 (4.5.8a)
Il ol >1l=0>>0, =1/T = f(w) =20log(wT) (4.5.8b)

as presented in Fig. 4.5.7.
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f(o)

A

40 dB /
20 dB/dec
20dB
Corrected .,
_7/Uncorrected
3dB s
0.0le, 0.1, o, 10w, 100w, o

Fig. 4.5.7 Bode plot for f(w) = 20log/1+ (wT)?

Such plot of PWL approximation, a pair of lines meeting at the break frequency or cut-off
frequency ., is called the uncorrected Bode plot. It is worth to observe that slope of the

second segment (4.5.8b) is equal to 20 dB/decade. The true or corrected Bode plot is denoted
by the dashed curve. Note that the maximum error occurs at the break frequency and it is
equal to 3 dB. Far from this frequency the uncorrected and corrected plots merge smoothly.
The technique for using component graphs to generate Bode plot will be illustrated in
Example 4.5.2.

Example 4.5.2
Find Bode plot of the following transfer function
1+s
K(s)=10 45.9
®) 1+ 510 (4.5.9)
K (0}
/l
20log10 “ y
20dBf———m—m—m———— - --——----~- — -t --
//
7 20legT+ 0’
0.01 0.1+, 1 10 )
AN
N
\\ —20log+/1+ (@10)"
-20dB ¥'¢
N

Fig. 4.5.8 Bode plot (uncorrected) for Example 4.5.2
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The corresponding Bode plot

K5 (@) = 2010910 + 20log v1+ w* — 20log /1 + (10)*

has three terms, denoted in Fig. 4.5.8. by the dashed lines. These terms generate Bode plot,
denoted by the solid line.

(4.5.10)

*

Example 4.5.1 — cont.

Draw Bode gain plot for T =1s .

For the gain expressed in linear scale by equation (4.5.3a), the corresponding Bode plot is

K5 (@) = —20log 1+ (wT)?

Values of the gain for o =ka,; k=0, 0.1, 1, 10, 100, in linear and decibel scale, are collected
in Table 4.5.2. Bode plot is presented in Fig. 4.5.9.

(4.5.11)

Table 4.5.2
Gain in linear and decibel scale for Example 4.5.1
® 0 0.1 1 10 100
K(w) 1 0.995 0.707 0.099 0.01
Kge () 0 —0.04 -3.01 ~20.04 ~40.00
K (oft 0.1 1 10 100 o
Fig. 4.5.9 Bode plot for
Example 4.5.1
—20dB
—-40 dB
.
FILTERS

Filters are among the most common two-ports found in general circuit design. Every practical
electronic circuit of any complexity contains at least one filter.

An electrical filter is a (two-port) circuit, as presented in Fig. 4.5.2, that is designated to
introduce amplitude gain or loss over a predefined range of frequencies, impedes the passage
of signals whose frequencies fall within a band called the stopband, while permitting those in
another band, called the passband, to pass relatively unchanged.
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Ideal filters block stopband signals completely while passing passband signals without any
change. For nonideal filters the band-limiting frequency(ies) are defined as the half-power
frequency(ies). In other words, the band-limiting frequency is the frequency at which the gain
is 3 dB below its maximum value. The location of the pass(stop)band designates character of
a filter, and four types of filters can be distinguished.

Low-Pass Filter - L PF
The magnitude response of a low-pass filter with band-limiting frequency, so called cutoff
frequency @, is presented in Fig. 4.5.10, for both ideal (solid) and nonideal (dashed) case.

K(o),

Fig. 4.5.10 Low-pass filter gain curve 1

1/42

The two-port RC circuit of Example. 4.5.1 can be considered as the simplest low-pass filter.
Its gain curve is the dashed curve of Fig. 4.5.10 and its Bode plot is presented in Fig. 4.5.9
(o, =1 radls).

High-Pass Filter - HPF
The magnitude response of a high-pass filter with cutoff frequency o, is presented in Fig.
4.5.11, for both ideal (solid) and nonideal (dashed) case.

K@),
Fig. 4.5.11 High-pass filter gain curve 1 I
/ 77
/
/
/
/
_ /
i @ - w

C

The simplest, RC circuit realization is presented in Fig. 4.5.12. This circuit is the simplest
differentiator considered in Chapter 3.3. Its transfer function is described by equation
(3.3.11a).
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joC
Fig. 4.5.12 RC high-pass filter I
°

Then, the frequency response function is

ol
— Kys(®) = 20log(wT) —20log 1+ (wT)? (4.5.12)
J1+ (wT)?

The linear-scale gain is denoted in Fig. 4.5.11 by the dashed curve. The corresponding Bode
plot is presented in Fig. 4.5.13.

K(w) =

K (@)
Fig. 4.5.13 Bode plot 0'01(‘% 0.10. /ﬁ’ __ Qo Q. @
of RC high-pass filter _3dB /5/
4
(4
—-20 dB®

—40 dB

Band-Pass Filter - BPF
The magnitude response of a band-pass filter with lower and upper boundary frequencies

w, , o, is presented in Fig. 4.5.14, for both ideal case (solid) and nonideal case (dashed). The
simplest, RLC circuit realizations are presented in Fig. 4.5.15.

K(a))A
1 ——
7z ~
7 \
y
1/42
/ ‘\
/ \
/ \
’ N\
4 ~
_/’ S~
_—
@, ® @

Fig. 4.5.14 Magnitude response of a band-pass filter
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Band-Stop Filter - BSF

1

Fig. 4.5.15 RLC realizations of band-pass filter

The magnitude response of a band-stop filter with lower and upper boundary frequencies
, ,o, is presented in Fig. 4.5.16, for both ideal case (solid) and nonideal case (dashed). The

simplest, RLC circuit realizations are presented in Fig. 4.5.17.

K(o),

~ -
S ’
1/42 %
A Y ~ ,/
a)l' wu
Fig. 4.5.16 Band-stop filter gain curve
[ ¢ YN

L .

Drill problems 4.5

1.

!

Fig. 4.5.17 RLC realizations of band-stop filter

Draw the amplitude response in logarithmic scale (Bode plot) for the transfer function
K(s) = (A+Bs)/(C + Ds) and the following combinations of its coefficients:
a) A=0.1, B=0, C=1, D=10; b) A=1, B=0.1, C=0, D=1, ¢) A=0, B=10, C=1, D=10.

Draw the logarithmic plot of the RC high(low)-pass filter, R =10kQ, C =1uF .

Draw the logarithmic plot of the ideal integrator (differentiator) characterized by the
integration (differentiation) constant T=10 s.
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4. What is the simplest structure of a filter giving the following amplitude response?

4 K (o) a) 4 K(w) b) 4 K(w) C)

1 1
R
>, > >
Fig. P.4.5.4
5. Sketch amplitude response K(w) of the given filters.
Q) e— | . ° b) e Y\, °
lc L
L L
__C ___ cC
Fig. P.4.5.5 . . . .
0 el o O o /YN, .
cll L !
L __C L§ C
@ . L J ([ 4 l L J
e) f)
— e
L Il L

@
C §L C —c

® l L ® L

6. Sketch amplitude response K(w) of the given loaded filter.

e
C —

Fig. P.4.5.6 — R
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7. Calculate the frequency response function K(jw) of the RC filter. Sketch Bode plot of

this filter.

—
9R

c— | IR
Fig. P.4.5.7
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4.6 ANALYSIS OF CIRCUIT RESPONSE WHEN ONE CIRCUIT
CONSTANT VARIES

In some practical applications study of a circuit behavior when its one constant (parameter) g,
such as: resistance R, inductance L or capacitance C, varies from Q;, to Q,. 1S necessary at

the design stage. A locus of circuit phasor response when q varies is plotted in the complex
plane and its two shapes will be discussed:

a) (half)line,
b) (semi)circle.
The technique for plotting such loci will be illustrated in Example 4.6.1.

Example 4.6.1a — straight line example

For the input voltage U (jw) =U = 10/~2 v plot locus of the input current phasor, if C varies
from O to infinity. Other circuit constants are: oL =R =10Q, o = J2 radss,

o U
Fig. 4.6.1 Circuit for Example 4.6.1 il jol
U(jo) _ |
— 1
joC
R
Y *®
The circuit current is
I(ja) = —+ jUaC (4.6.1)
R+ jolL
and its locus for g =C €< 0,00 > is a half-line.
In general, a straight line locus is described by the following equation
F(jg)=A+Bq (4.6.2)

where, A and B are complex numbers. For exemplary vectors: A=1-j, B=1+2j and
g €< 0,00 > a half-line locus shown in Fig. 4.6.2 is obtained.

For the phasor described by (4.6.1) and g =C (0, ) :

v
R+ jolL

B=jUw=jl0 (4.6.2b)

_5- 5 (4.6.2a)

and a half-line locus is obtained, as shown in Fig. 4.6.3.
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Fig. 4.6.2 Exemplary line-shape locus

Fig. 4.6.3 Locus of Example 4.6.1a

Example 4.6.1b — semicircle example

|m A
2j ............................. B g=
qg=1

1 >

Re
= [ g=0
|m A
IOJ'AB C=w

C=1

5 | -

" Re

_5j M=o

For the circuit of Fig. 4.6.1 and the input voltage U(jow) =U =10//2, plot locus of the input
current phasor, if L varies from 0 to infinity. Other circuit constants are:

1

— =4R,R=10Q), w=A2 radls.
wC

Locus of the coil current described by the following equation

U
R+ joL

I (L) =

(4.6.3)

for Le <0, oo> is a semicircle with the center coordinates of [Im=0, Re=U/2R] and the
radius of U /2R . Following equation (4.6.1), this locus is added to the fixed capacitor current

I.(jL) = joCU = jU /4R

and the total locus is obtained, as shown in Fig. 4.6.4

(4.6.3b)
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jU /4R

— jU/4R

Fig. 4.6.4 Locus of Example 4.6.1b

The circuit behavior as L varies from 0 to o can be studied:
e for Le(0,L,) inductive character, 1(jL)],_, =U/R+ jU/4R
e forL=L resistive character (1% resonance)

o for Le(Ly,L,) capacitive character, I(jL) =U/2R-jU/4R

L=R/w
o forL=1L, resistive character (2" resonance)
e forLe (Lz,oo> inductive character, I(jL)|L:w =1.(jL)=jU /4R

*

Drill problems 4.6

1. Plot in the complex plane a locus of current 1(jw) that flows through: a) RC parallel
circuit R=10 Q, Ce(0,0), b) RL series circuit R=10 Q, L (0,%0), supplied from
U(jw) =U =10 V source.

2. Plot in the complex plane a locus of voltage U(j®) at terminals of: a) RC series circuit
R=10 Q, Ce(0,0), b) RL series circuit R=10 Q, Le&(0,00), supplied from
I(jow)=1=10A source.

3. For the RC high-pass filter (Fig. 4.5.12) find the gain K =U, /U, in terms of R and C.

239



4.7 MUTUAL INDUCTANCE AND TRANSFORMERS

The previous analysis of a coil assumed that the only flux linking a coil was that due to its
own current, and consequently, the only voltage induced was that due to this current. In this
Chapter coupled coils and phenomenon of mutual inductance will be discussed. A two-port
equations expressing voltages by currents, both in time-domain and frequency-domain, will
be considered. Then, the most practical use of this phenomenon in transformers will be
studied. Basic transformer built of practical coils will be considered at first, next an ideal
transformer. Finally the ideal transformer based model of practical transformer will be
described.

MUTUAL INDUCTANCE - BASIC TRANSFORMER

Consider two coupled coils, as shown in Fig. 4.7.1.

¢II

Fig. 4.7.1 Pair of coupled coils

The current i, produces in coil 1 flux ¢,,. Part of this flux threads coil 2, the remainder is coil
1 leakage flux. They are denoted ¢,, and ¢,,, respectively. Similarly, i, produces in coil 2
flux ¢,, that is split into two fluxes, ¢, and ¢, .

P =P+ (4.7.1a)

P22 = P2 + P12 (4.7.1b)
Electric analog of this magnetic circuit is presented in Fig. 4.7.2

Fig. 4.7.2 Electric analog of magnetic ¢
circuit !

m

¢II +¢12 ¢22 +¢2I
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where R, R, are magnetic resistances of leakages, R, is a core magnetic resistance.

Superposition principle can be applied and a circuit of Fig. 4.7.2 can be split into two
subcircuits, as presented in Fig. 4.7.2a.

L 4
# ¢| | R, ‘”"’"21
Ry, Lz, R, |:
@

Fig. 4.7.2a Electric analog of magnetic circuit split into two subcircuits

The total flux threading coil 1 is the sum of two components:

Lz, i,z 4 . .
by =20 =14, 2,0, = Zl(# +#J tz % =L, = Mi, (4.7.2a)
11 m m
Similarly, the total flux threading coil 2
1,2, 1,2, 1,2, . .
bo =20, = 1,0, £ 7,0, = 2, R +R_ tz, R_ =L,1, £ Mj, (4.7.2b)
12 m m

Constant of proportionality between one coil current and a flux that is produces in the coupled
coil is called the mutual inductance M. This constant can be expressed by self inductances of
individual coils

M =k, /L,L, (4.7.3)

where, k e< 01> is the coefficient of coupling, a measure of the degree to which the flux
produced by one coil threads another. If there is no coupling then, k=0=M =0. For
tightly coupled coils, which is the most desirable situation, k=1=M =,/L L, . From
(4.7.2), two-port equations can be obtained

o B Gy e
Lot Ldt T dt

(4.7.43)

_ O | diy gy O

dt dt dt
The reason for + sign in the coil equation is that the flux produced by the coupled coil may
be in the same or opposite direction as the produced by the coil itself. For Fig. 4.7.1 coupling,

sign + should be used. For unique denotation of the coupling sign, the so called dot
convention is used.

u,
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Dot convention

Currents entering the dotted ends are creating additive fluxes. Dotted ends have a positive
voltage at the same time.

A circuit symbol of coupled coils is presented in Fig. 4.7.3.

i M i i M Iy
— ' » N [ —» N [
(d [ ) (d
u, L, % g L, u, u, L, % g L, u,
[ ]
o~ e S o

Fig. 4.7.3 Circuit symbol for coupled coils for positive and negative coupling

Using the phasor notation, coupled coils equations are
U (jo) = joL 1, (jo) = joMI,(jo) (4.7.4b)
U,(jo) = jol,1,(jo) + joMI, (jo)

Example 4.7.1
Consider two practical coupled coils connected in series, as shown in Fig. 4.7.4. Find the

circuit equivalent.

1
1 /(o) joM I, (jw) I(jw) A |
¥ U(jo)
(4 ° ja)Ls
U,(jo) JjoL, joL, =
R, |
R
r:r ,
2

Fig. 4.7.4 Two coupled coils connected in series

The total voltage expressed by the currents is
U(jo) =U(jo)+U,(jo) = 1(jo)[R, + jo(Ly + M)+ R, + jo(L, + M)] (4.7.59)

U(jo)=I1(jo)[R, + joL,] (4.7.5b)
From (4.7.5), the series equivalent resistance and inductance are

R, =R +R, (4.7.6a)

L =L +L,+2M (4.7.6b)
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The equivalent series inductance of two coupled coils is sum of self inductances plus the
doubled mutual inductance. For negative coupling the doubled mutual inductance should be
subtracted.

.

Example 4.7.2

A coil of z=100 turns connected to U =100 V, @ =1000 rad/s supply has the following
parameters: L=1H, R=10Q. Consider a short-circuit of one turn. Study the effect of such

failure. -

A coil with one turn shorted can be considered as pair of coupled coils, as presented in Fig.
4.7.5.

M (jo) R,
U(jo) JoL,
joM
[ ]
JoL,
12 (Ja)) v]\‘c (ja))
R:
@ ?

Fig. 4.7.5 Coil with one turn shorted

It can be assumed that L, =L =1H, R, =R=10Q and L, =0.1mH, R, =0.1Q, M =0.01
H. Two cases are studied.

I. Before shorting
Z(jw) =R+ jolL =10+ j1000 = Z =1000Q2 (4.7.7)
l=U/Z=z=01A
and the dissipated power is
P=1°R=0.1W
[1. After shorting
The circuit is described by the following KVL equations

RiI(jo)+ jol 1 (jo) + joMI, (jo) =U
R,1,(Jo) + job,1,(jw) + joMI(jw) =0

From these equations, the circuit impedance is
(4.7.8b)

2 2
Z(ja)):U+:R1+M+ja) Ll—% ~1010+ j2=Z =1000Q2
I(jo) R; +(al,) R; +(al;)
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| =0.1 A, and the dissipated power is P = 1°R(w) =10W.

The impedance magnitude practically has not changed, and consequently rms current remains
unchanged, however the resistance and then dissipated power has increased 100 times !!! This
causes rapid increase of temperature, an isolation melts and next turns are shorted, what
completely destroys (burns) the coil.

.

Basic transformer, an air-core (liear) transformer built of two coupled coils is considered
next.

A transformer is an electronic device that uses magnetically coupled coils to transfer energy
from one circuit to another. This device has two ports available for connection to external
circuitry. One of this ports is called the primary port and usually it is connected to an
external source. The other port is called the secondary port and usually it is connected to a
load. Then, terms primary/secondary circuit, winding, voltage or current are used. The
primary circuit has been simplified to its Thevenin equivalent, the load has been reduced to its
equivalent impedance. It should be emphasized, that the primary and the secondary circuit are
electrically isolated. Basic transformer circuit described in phasor domain is presented in Fig.
4.7.6. For simplicity of further derivations, it has been assumed that coils are resistanceless.

Z,(jo) l,(jo) joM ]2(10))
; ¥ X
® .
E,(jw) joL, § g joL, U,(jo)| |Z,(jo)
. .
Primary Secondary

Fig. 4.7.6 Basic transformer circuit

Transformer itself is described in phasor domain by equations (4.7.4b). The secondary circuit
(load) is described by the following equation

U,(jo)=-Z,(jo)l,(jo) (4.7.9)

The load current and voltage do not satisfy the passive sign convention, and for that reason
sign minus appears at the rights side of equation (4.7.9). It is interesting to study the
impedance looking into the primary port

Z,(jo)=U,(jo)/1,(jo) (4.7.10)
Combining equations (4.7.4b), (4.7.9) and (4.7.10), the following impedance is obtained
2 2
Z,(jo)= job, + o M (4.7.10a)

Z,(jo) + jaL,

The first term depends on the primary coil while the second term is due to the coupling, so
called the reflected impedance
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w’M?

Z,(jo) = =R, + X,

R + (X, +wL,)

1, (jo)

Z,(jo)

(T E (jo)

e

JoL,
U (jo)

Z,.(jo)

Fig. 4.7.7 Secondary Winding inductance and load reflected into primary

(4.7.10D)

Then, the transformer together with its load can be replaced by series connection of two
impedances. The obtained one-loop circuit, presented in Fig. 4.7.7, is often used to simplify

analysis of the basic transformer circuit of Fig. 4.7.6.

IDEAL TRANSFORMER

A transformer scales, or transforms, the voltage, current and impedance levels of the circuit.
The secondary-to-primary current and voltage ratios will be discussed for an ideal transformer
that may be thought of as the first-order model of an iron-core transformer (complex model
will be discussed in the next section of this Chapter). An ideal transformer satisfies the

following three assumptions.

1. Windings are resistanceless: R, =R, =0.

2. Leakage fluxes are zero: ¢, =¢, =0=k =1 .

3. The core magnetic material has unboundedly large permeability:

u, =o=R =0= L, L, are unboundedly large, however their ratio is finite,

L, /L, =(z,/2, )’ =n? (see equations (4.7.2)).

An ideal transformer electric analog is presented in Fig. 4.7.8.

(D

=0

=0

¢

(D,

Fig. 4.7.8 Electric analog of ideal transformer

As windings are resistanceless (assumption 1) and same flux flows through both coils

(assumption 2), then their voltages are

dg d¢

U =2 U, =2,

(4.7.11)
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As the core magnetic resistance (voltage) is zero (assumption 3), then the currents are related
by the following KVL equation

Lz, +i,z, =R, ¢=0 (4.7.12)
From these equations, secondary-to-primary current and voltage ratios are

u, I, 1

Yo 2 4.7.13
u, i n ( )
where
Z
n=-2% (4.7.14)
Zl

is the only parameter that characterizes an ideal transformer, so called turns ratio. Its value
defines the transformer character:

e n>1: step-up transformer,

e n<1l: step-down transformer,

e n=1: Iisolating transformer.

It is worth to observe, that an ideal transformer secondary-to-primary current and voltage
ratios are fixed, independent of load and frequency. An ideal transformer phasor equations are

U,(jo) =nU,(jo) (4.7.15)

.30 =~ 1,(jo)

The circuit symbol for an ideal transformer is similar to that for nonideal transformer (Fig.
4.6.6) except that the turns ratio is specified rather than inductances (all three are infinitely
large) and pair of parallel lines is drawn. An ideal transformer with primary source and
secondary load is presented in Fig. 4.7.9.

Z,(jo) [(jo) 1:n RAGQ)
. .
Primary Secondary

Fig. 4.7.9 Ideal transformer with primary source and secondary load

The impedance looking into the primary port is

Uy(j®) _ 1 U,(je) _ 1

Z(jo)= n—zzl (jo) (4.7.16)

L(jo)  n® 1,(jo)

Thus, an ideal transformer together with its secondary load Z,(jw) is equivalent to an

impedance of value Z,(jw)/n? reflected into the primary circuit. Then, apart of previously

discussed uses to isolate two circuits and step-up or step down a voltage level, an ideal
transformer can be used to impedance scale a load such that maximum power transfer
condition is achieved. The latter use will be illustrated in the next example.
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Example 4.7.3

An audio amplifier produces the Thevenin equivalent voltage phasor E (jw) through
Z,(jo) =R, =72Q impedance (resistance). The produced power is to be delivered to a load,
Z,(jo) =R, =8Q speaker, through an ideal transformer. Determination of the turns ratio n

to maximize the power supplied by the source (absorbed by the speaker) is the task.
Amplifier-transformer-speaker circuit is presented in Fig. 4.7.9.

For the maximum power transfer, the load (speaker) impedance Z,(jw) seen by the source

should be equal to the complex conjugate of the source impedance, which is purely real
Z(jo)=R, =72Q. Thus, for the maximum power supplied to the speaker from the

amplifier

. 1
Z,(jo)=R =R =>n= |- == (4.7.17)

n R, 3

what means that 1:3 step-down transformer should be used to impedance match to the given
load.
.

In some practical applications, transformer is replaced by an autotransformer.
Autotransformer is built of a single winding with the tap point. Then, it can be considered as
two coupled coils connected in series. Primary circuit is connected between the tap point and
one terminal of the winding, secondary circuit is connected to winding terminals, as presented
in Fig. 4.7.10a. Same effect can be obtained by series connection of two-winding transformer
coils, as presented in Fig. 4.7.10b.

Fig. 4.7.10a Autotransformer circuit

% g U,Go)|| |2,Go)

Priﬁ]ary Secondary

A

E o) () U, (o)

Fig. 4.7.10b Autotransformer obtained from two-winding transformer
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An autotransformer KVL equation is
U, (jo) =U,(jo) +nU,(jo) = (n+ DU, (jo) (4.7.18)

Then, the turns ratio is
Z,+1
n,=—-—=2=1+n (4.7.19)
Zl
It should be emphasized, that autotransformer couples primary and secondary circuit both
electrically and magnetically (no electrical isolation between circuits).

Example 4.6.4

A 2300/230 V two-winding transformer is connected as an autotransformer. Determine the
voltage rating.

U, = 2300 1+ 20 | 2530V, n, = 220 _1401-1.1 (4.7.20)
2300 0
¢

Example 4.7.4 — cont.

Determine the new secondary voltage and turns ratio after reversing the low-voltage winding.

U, =2300 1—ﬂ =2070V, n, _ 2070 =1-0.1=0.9 (4.7.20a)
2300 2300
L4

PRACTICAL IRON-CORE TRANSFORMER

In a practical iron-core transformer all three nonidealities: leakage fluxes, winding losses and
nonideality of magnetic material have to be taken into account. One model of a practical
transformer has been already discussed. The other, commonly used model consists of an ideal
transformer supplemented by elements representing nonidealities. Leakage fluxes and
winding losses are taken into account by series connection of the leakage inductance L, (L;,)
and winding resistance R; (R,) in series with the primary (secondary) winding of an ideal
transformer. Nonideality of a magnetic material (non-infinite inductances L,,L,,M ) is taken
into account by parallel connection of inductance L (magnetization inductance of a core)

with the primary winding. The obtained practical transformer circuit is presented in Fig.
4.7.11.
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33 "

Fig. 4.7.11 Practical transformer circuit for medium frequencies

This circuit is used for medium frequencies. For low frequencies leakage inductances may be
disregarded, nonideality of magnetic core is prevailing. Then, magnetization inductance shorts
primary winding what makes transformation difficult, even impossible - the circuit presented
in Fig. 4.7.11a is obtained.

l:n
R, |' ® R,
-3 38
. [ ] .

Fig. 4.7.11a Practical transformer circuit for low frequencies

For high frequencies leakage inductances prevail, winding resistances and magnetization may
be disregarded. Moreover, shunting capacitances have to be taken into account, as presented
in Fig. 4.7.11b.

C12
| "N 1o "N |
L, °*l|e L,
—_ G % g G——
@ @

Fig. 4.7.11b Practical transformer circuit for high frequencies

Drill problems 4.7

1. Find equivalent inductance of two ideal coupled coils connected in parallel.

2. A low-frequency amplifier has an output impedance of 5 kQ. It is to supply a maximum
amount of power to an 8 Q load (speaker). What should be the turns ratio of the matching
transformer.
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. For an ideal transformer of z, =20, z, =100 and j1000 Q2 load impedance, find u, if
i, =50+/25in314t mA.

. An ideal transformer of n =1 is loaded by a) 1H inductance, b) 1 uF capacitance. For the
measured input voltage u, =100~/2sin1000t V, find i,.

. An ideal transformer of n=1 is loaded by Z,(jw) =10+ j10 Q. For the measured input
current: i, = 2sin314t A, find the real power supplied to the load.

. The impedance Z,(jw)=10- j10 Q2 loads an ideal isolating transformer (n=1). Find the
real power supplied by U, =6 V ac primary source.

. An ideal isolating transformer primary voltage is 10exp(j0°)V, the secondary load
impedance is Z,(jow) =12 — j16 Q. Find the rms primary current.

The primary terminals of a basic transformer of L, =L, =1 H; k=0.5, are connected to a
voltage source u, =10+/25in10t V. An ideal rms a) ammeter, b) voltmeter is connected to
the secondary terminals. Calculate its indication and the reflected inductance.

Two tightly coupled (k=1) coils have been connected as shown and the following total
inductances have been measured: L, =40 mH, L, =60mH. If 1a is the dotted terminal,
which terminal of the second coil is the dotted one ? Calculate the mutual inductance.

Fig. P.4.7.9 |
la 1b,2a 2b
/_\
1
R N 02 .
la 1b,2b 2a
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4.8 THREE-PHASE CIRCUITS

One very important use of ac steady-state analysis is its application to power systems.
Alternating voltage can be stepped up for transmission and stepped down for distribution with
transformers, and this subject is not discussed. For reason of economics and performance,
almost all electric power systems are three-phase systems. In such system, the source is the
three-phase balanced generator. Such generator produces a balanced set of voltages, the
voltages having the same amplitude and frequency but displaced in phase by 120°. For the
conventionally assumed zero initial phase angle of the 1 phase and the phase sequence, that
is the sequence in which phase voltages reach a positive peak, 123 or ABC, these voltages are

E,(jw) =Eexp(j0°) between terminals 1 and 1’ or A anda,  (4.8.1)
E,(jw) = Eexp(j—120°) between terminals 2 and 2’ or B and b,
E,(jow) = Eexp(j120°) between terminals 3 and 3° or C and c,

as presented in Fig. 4.8.1 phasor diagram.

3(C)

Fig. 4.8.1 Phasor diagram
of three-phase voltages

2(B)

For the assumed sequence, instead of specifying three balanced sources, it is sufficient to
specify one, e.g. E;(j®). Then

E,(jo) =E,(jo)exp(-j120°), E;(jo) = E,(jow)exp(j120°) (4.8.2)
The sum of any balanced set of three-phase voltages is always zero

iEi (jo)=0 (4.8.3)
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The three-phase generator is equivalent to three single-phase generators and individual
generators may be connected to individual loads, to produce three single-phase circuits.
However, for reason of economics, individual generators and individual loads are connected
into one three-phase circuit, and three methods of connecting three-phase circuit are possible:

1. wye-wye or Y=Y or star-star connection,

2. delta-delta or A—A or mesh-mesh connection,
3. mixed, Y—-A or A-Y connection.

WYE-WYE SYSTEMS

Consider the three-phase source that has line terminals 1, 2 and 3 and a neutral terminal 0, in
which terminals 1°, 2’ and 3’ are connected. In this case the source is said to be wye(Y)-
connected or star-connected, as shown in Fig. 4.8.2 for two representations: wye-shape
representation and somewhat easier to draw equivalent representation. Line terminals are
normally denoted by letters A, B, C and neutral by N. However, for compliance with
description of dc multi-terminal circuits, these terminals are denoted by numbers 1, 2, 3 and 0.

ol Q ol
UEI (jo)

E (jo) 2 @ o2
W(m) E,(jo)

37 ®0
o0
Ei(jo)

E;(jo)

Fig. 4.8.2 Two representations of wye connected three-phase source

Same connection may be applied to a load, and then, three single-phase circuits are connected
in a wye-wye three-phase four wire system, as shown in Fig. 4.8.3. For the assumed
resistanceless lines, voltages between line terminals and the neutral terminal of three-phase
load are source voltages

V=E, V(jo)=E(jow); 1=123 (4.8.4)
They are called phase voltages and are the same as load voltages of three single-phase

circuits. These voltages are denoted in Fig. 4.8.1 phasor diagram (bold), together with line-to-
line voltages or simply line voltages

U (jo) =V;(jo) -V, (jo) =U exp(j150°) (4.8.5)
U,s(J0) =V, (jo) =V, (jw) =U exp(j270°)
U, (jo) =Vi(jw) -V, (jw) =U exp(j30°)
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where magnitude of line voltage is:
U =43V =+/3E (4.8.6)

For a phase rms voltage of 230 V, line rms voltage is equal to ~400 V.

~ Vi(jo)
L o ——
O ] * :
E\(jo) Z,(jo)
U,(jo)| |U;(jo) V,(jo)
R N
) . > 11
E,(jo) 2 2 Z,(jo)
9 0. ) 1,(jo)
Uy, (jo)
/’\E_z (Jo) .v Z,(jo)
o> |
\/ 3 3
Vi(jo)

Fig. 4.8.3 Wye-wye three-phase four wire system

Phase currents I,(jw), line currents J,(jw) at the same time, are designated by load
impedances of individual phases

| (jo) =3, (jo) = Z((‘JZ)) i-123 (4.8.7)
The neutral line current is

(i) = 3 1,(j) “88)
For a balanceollzlload:

Z,(jo) =Z,(jo) = Z;(jw) = Z(jo) (4.8.9)

the neutral line current is zero
o(Ja’)—TZV(JCU) 0 (4.8.10)

and this line can be omitted to form three-phase three-wire system, as shown in Fig. 4.8.4.

In a four-wire unbalanced system, the load neutral point is fixed in potential by connection to

the source neutral. If the neutral wire is removed, the load neutral, denoted by 0”, is no longer
fixed but is free to float, its potential is determined by the values of load impedances. For a
balanced load, still V,(jw)=0. If for some reasons, such as short-circuit or open-circuit in

one phase, three-wire system becomes unbalanced, then significant deviations of phase
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voltages should be expected, in both magnitude and phase. These cases will be illustrated by
the next two examples.

Vi(jo)
) 1 L «————
) [}
E(jo) Z(jw)
Uy(jo)| [Us(jo) V,(jo)
Og— () . o> 1 o0
UEa(ja)) 2 2 Z(jo) *
e | hUe
Uy, (jo)
QEa (Jo) . v Z(jw)
o> |
_/ 3 3
Vi(jw)

Fig. 4.8.4 Wye-wye three-phase three wire system

Example 4.8.1

Consider a three-wire wye-wye balanced system with an open-circuit in phase 3, as shown in
Fig. 4.8.5. Draw the phasor diagram and calculate phase voltages.

Vi(jo)
o e
o> |
U 1I(jo) Z(jo)

V,(jo)
Fig. 4.8.5 Three-wire wye-wye system with an open-circuit in phase 2

A three-phase circuit degenerates to two-phase (one-loop) circuit. Its mesh current is

uum=—uuw=%§%g- (4.8.11)
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The phase voltages are

Uy, (jo) _ EV3
2 2
U, (jo) _ EV3

2 2
The phasor diagram is shown in Fig. 4.8.6. The effect of an open-circuit in one phase is

voltage drop in two other phases, from E to =~ 0.86E . For 230 V generator, phase voltage
drops to 199 V.

V,(jw) = exp(j30°) (4.8.12)

V,(jo) = - exp(j210°)

Fig. 4.8.6 Phasor diagram of a three-wire wye-wye system with an open-circuit in phase 2
.

Example 4.8.2

Consider a three-wire wye-wye balanced system with a short-circuit in phase 3, as shown in
Fig. 4.8.7. Draw the phasor diagram and calculate the phase voltages.

A system remains three-phase system, however now voltages of “healthy” phases are line
voltages

Vi(jo) =U;(jo) (4.8.13)
V,(jo) =U ,(jo)

The load neutral 0 has floated from source neutral 0 to line terminal 2, as presented in Fig.
4.8.8 phasor diagram. The effect of a short-circuit in one phase is voltage jump in other

phases by V3. For 230 V generator, phase voltage jumps to = 400 V and this may evidently
cause damage of load device.
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1 1 «&—
——) — o> |
E (jo) Z(jw)
Un(]'w)v Us(jo)
0 —> ° o> o0
E,(jo) 2 2 /,’
\\\ ______________ ) _________Kn_(i(i)_) _____ e
Uy (jo)
L (jo) v Z(jo)
L {(—) °
3 3 —

Vi(jo)

Fig. 4.8.7 Three-wire wye-wye system with a short-circuit in phase 2

V,(jo)

2 0

Fig. 4.8.8 Phasor diagram of a three-wire wye-wye system with a short-circuit in phase 2

*
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DELTA-DELTA and WYE-DELTA SYSTEMS

Consider the three-phase source connected as shown in Fig. 4.8.9 for two representations:
delta-shape representation and somewhat easier to draw equivalent representation. In this case
the source is said to be delta( A )-connected or mesh-connected. Same connection may be
applied to load impedances, and then, delta-delta three-phase system is obtained, as presented
in Fig. 4.8.10.

lorA

E(jo)

@ * ®20rB
E,(jo)
°
3orC

Fig. 4.8.9 Two representations of delta connected three-phase source
1 A
@ > L4
Ji(jo) 4

E (jo) Z,(jo)
Vi(jo)

L

1 (jo) Zy(jo)

(l) ° > ®
E (jo) J,(jo) 4B Vi(jo)

V,(jo) Z,(jo)
E,(jo) 1,(jo)

N

‘r I;(jo)

° > o o
3 Ji(jo) C

Fig. 4.8.10 Delta-delta three-phase system

Obviously, systems with delta-connected loads are three-wire system, since there is no neutral
connection. Phase voltages are at the same time line voltages. Each line current is the
difference of two phase currents (4.8.14) and clearly, for the balanced load magnitude of line
current is related to that of phase current by equation (4.8.15).
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Ji(jo) =1,(jo) = 1;(jo) (4.8.14)
J,(Jo) =1, (jo) =1, (jo)
J3(jo) =15(jo) - 1,(jo)

J =43 (4.8.15)

Sources are rarely delta-connected, however wye-delta connections are frequently used. In
case of such connection, phase voltages are voltages between three-phase source terminals

(4.8.5), they are V3 times higher than those of the wye connection of a load.

COMBINATIONAL SYSTEMS

In case many loads are connected to three-phase lines, some of them may be wye-connected,
some others delta-connected. Then, the combinational system is created. An exemplary
combinational system is presented in Fig. 4.8.11.

1
4 & & & Py
Three-phase
voltage 2
source ¢
(A orY)
3
— ® L 3 @
A load Y load single phase

Fig. 4.8.11 Exemplary combinational three-phase system

POWER IN THREE-PHASE SYSTEMS

The total real power P transferred in the three-phase n-wire system, n=3 or 4, can be
measured by n-1 wattmeters or calculated, through calculation of n—1 pairs J,(jw),

U, (jw), where J,(jw) are line currents and U, (jw) are line voltages. For n=4 and neutral
as the reference, line voltages are phase voltages: U, (jo) =V, (jw); i=12,3. For n=3, one
line, say C=3, is taken as the reference, and then line voltages are:
U,(jo) =U,;(jw); i=12. From the power balance, the total power is equal to the sum of
powers supplied to individual phases
P=P +P,+P, (4.8.16)
P =V,l,cose,; 1=123
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For a balanced system, both three-wire and four-wire, P, = P, = P, and the total power is:
P =3VI cos ¢

Then, in 4-wire balanced system the total power may be measured by one wattmeter. Same
strategy may be applied in 3-wire balanced system after creation of the artificial neutral
point, as presented in Fig. 4.8.12, where R>>Z(w) .

le

2@

3e ’

art

Fig. 4.8.12 Three-wire system with artificial neutral point

The following benefits of three-phase power systems can be enlisted.
1. Savings in copper, four or three wires instead of six wires.

2. Auvailability of two different voltages, line and phase voltage, in case of four-wire
(wye-wye) system.

3. Awvailability of the rotating field, which can be used to energize electric motors.

Drill problems 4.8

1. Sketch the phasor diagram for a three-phase 3-wire unbalanced Y —Y system:
Z(jo)=o, Z,(jo)=Z,(jw) =100+ j100 Q.

2. The total power of a three-phase balanced wye load is 6 kW. What is the power factor of
each phase load, if the line voltage is 400 V and the line current is 10 A?

3. A balanced delta load with phase impedance of 10exp(j30) is connected to 230 V lines.
Determine the total real power supplied.

4. A balanced wye load with phase impedance of 100 Q is connected to 230 V lines.
Determine the total real power delivered to the load.

5. For the balanced wye-delta system: E =100V, Z(jw)=100¢, find rms value of a line
current.
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10.

A 230 V/100 W heater is connected to line terminals of 3x230 V generator. What energy
is supplied in 1 hour?

For the three-phase 4-wire balanced system: E =100 V, Z(jw)=100Q, find the total
power supplied after opening phase 1, draw the phasor diagram.

For the three-phase 3-wire balanced system in Y —Y configuration: E=100 YV,
Z(jw)=100Q, find the total power supplied after shorting phase 1, draw the phasor
diagram.

Find the total power supplied: E =100V, R=100Q.

1
° 1 ’
Three-phase 3R
voltage 2 R T
source ¢ —T R
3R
. { !
0 ................................................................................................
@
Fig. P.4.8.9

Three adjacent houses take electricity from the three successive phases of a 230 V supply.
Find the resultant neutral current when they consume, in order of phase sequence, 1 A at

unity power factor, 2 A at 0.75 lagging and 2A at leading. What is the total power
absorbed ?
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5 TRANSMISSION LINE

5.1 INTRODUCTION

Transmission line commonly used to carry electrical energy and/or information over a
distance is considered. It is assumed that a transmission line is any arrangement of two
continuous conductors having the required length | and a uniform cross-section. In general,
transmission line connects two circuits built of lumped components, each of which is usually
designated to have one parameter dominant: inductance, capacitance, resistance or
conductance which are lumped constants (parameters). Transmission system built of input
circuit, the transmitter or source, transmission line and output circuit, the receiver or load, is
shown in Fig. 5.1.1.

(1,0 i(t,x i(z,/
SOURCE (¢,0) (“2) t.)]  LOAD
w00t uent  wen?
L L L
X a
al g I | -

Fig. 5.1.1 Transmission system

Like any device that carries current and sustains a voltage, the transmission line must
inevitably have some inductance, capacitance, resistance and conductance. The values of all
four parameters (constants) increase with the line length. Thus, an axially uniform
transmission line is characterized by its length | and distributed constants (parameters). They
are called per unit length parameters or primary parameters:

e inductance per unit length L, =L [H/m], (5.1.1)

e capacitance per unit length C,, =C [F/m],

e resistance per unit length R, =R [Q/m],

e conductance per unit length G,, =G [S/m].
Inductance and resistance must act like series elements, since they each are additive when in
series, while capacitance and conductance, which are each additive when in parallel, are shunt
elements. Transmission line of any length can therefore be represented by dividing the line

into small elements of length AXx—0, each of which is a two-port section having
infinitesimally small components, as shown in Fig. 5.1.2.
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it,x i(t,x + Ax)

o> S AR s >0

4  RAx LAx A u(t,x+ Ax)
u(t,x)

CAx GAx

[ . ]
Ax

> »
< P

Fig. 5.1.2 An elementary section of transmission line

Then, it is obvious that current or voltage at any distance x is function of two arguments, time
and distance:

i(t,x) =i (t) (5.1.2)
u(t,x) =u,(t)

Applying KVL to Fig. 5.1.2 two-port
u(t, x) — RAXi(t, X) — LAX%—U(L X+AX) =0 (5.1.3a)
which leads to

Ut x+Ax)-u(t,x) _ Au(t,x)
AX -

= Ri(t, x) + L%. (5.1.3b)

On the limit as Ax — 0, equation (5.1.3b) becomes

SO _pir x4 LG (5.1.3)
OX
Similarly, applying KCL, equation (5.1.4) is obtained
_A) _ gy 0+ ¢ HEX) (5.1.4)
OX ot

Differential equations (5.1.3) and (5.1.4) are the general transmission line equations, so
called telegraphist’s equations. Solution of these equations, designation of the current and/or
voltage (5.1.2), for the given source and load, is the task of transmission line analysis. Two
types of analyses are discussed: transient analysis for aperiodic input signal and ac-steady
state analysis.
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5.2 TRANSIENT ANALYSIS

Differential equations (5.1.3) and (5.1.4) can be solved using Laplace transformation. Zero

initial conditions are assumed
i(0,x)=1i,(0)=0
u@,x)=u,(0)=0

Transmission system described in the s-domain is presented in Fig. 5.2.1.

SOURCE I, (:')‘ I, ('s.‘) . 1, (i) LOAD
A A A
U,(s) U.(s) U,(s)
Z,(s)
CT) Z,(s)
E, (s)
L L 4 L 4
X U [—x
gl

Fig. 5.2.1 Transmission system described in s-domain

Skipping the mathematics, the following solution in s-domain is obtained:

U, (s) =U,(s) cosh[y(s)x] - I, (s)Z(s)sinh[y(s)x]

1,(5) = 1 (s) coshl(s)x] — 2 sinh[ (5)x]
2(s)
U, (8) =U, () cosh[7(8)(1 — )] + 1, (5)Z () sinh(s)(1 — )]
1,(8) = 1,(8) cosh[(s)(1 — )] + 2 sinh [ ()1 - )]
2(5)
where

R+sL

2=\ G 1sC

7(s) = /(R +5L)(G +sC)

(5.2.1)

(5.2.2a)

(5.2.2b)

(5.2.3)

(5.2.4)

are the line secondary parameters, so called the characteristic impedance and the

propagation constant.

That way, the voltage and the current at a distance x are expressed in terms of the input
voltage and current (5.2.2a) or the output voltage and current (5.2.2b).
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The line input and output equations are
Uo(s) =E,(8) — 15(s)Z.(s) (5.2.5)
U (s)=1,(8)Z,(s)

From equations (5.2.2) and (5.2.5), equations that express the voltage and the current at a
distance x by line secondary parameters and parameters of input and output circuits are

Z(s)  exp[-y(s)x]-N(s)exp[=r(s)(2l - x)]

PR e -MENGepl 2O (629
| (s)=E,(s) 1 exp [y (s)XI+ N(s)exp[—y(s)(21 — x)]
Z(s)+Z,(s) 1-M(s)N(s)exp[-2y(s)l]
where
_Z(s)-Z,(s)
M(s) = 2542, (5) (5.2.7)
N (S) — Z(S) - ZI (S)
Z(s)+Z,(s)
are reflection coefficients, for the line input and output, respectively.
Applying the following series expansion
1 STV
T Aoo () g(; A* exp (kB) (5.2.8)
the final voltage and current waveforms in the s-domain are sum of traveling waves
U, (s)=U, (5)+U,(s) (5.2.9)
1,(8) =1, () +1,(5)
where
Ul (s)= E(s)i(M (SIN(S)) exp[—7(s)(2KI + x)] (5.2.92)

/(9= 3O (MEN() ep[-7(s)(2K+ )]

are forward traveling waves, for k =0 the first incident wave, for k =1,2,... waves
reflected from the line input, and

U2 (s) =—E(s)N(s)i(M (SIN(s)) exp (= y(s)[2(k +1) — X]) (5.2.9b)

12(6) = IONOXMEONE) op (- 7S)[2(k+D - )

are backward traveling waves, waves reflected from the line output.
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The introduced equivalent voltage E(s) and current J(s) are

_ Z(s)
E(s)=E,(s) 26+ 2.6) (5.2.9¢)
- EO) ___E®

S Z(s) Z(5)+Z,(9)

The inverse transformation of waveforms expressed by equations (5.2.9) is the next step. The
general expressions are relatively complicated. The following limiting cases have special
significance, are of practical meaning.

1. Distortionless line
A distortionless line satisfies the following condition:

% = % (5.2.10)
If the condition is satisfied, then expressions for both y(s) and Z(s) simplify.
Characteristic impedance

Z(s)= \/g = p = const (5.2.11)
Propagation constant

y(S)=a+slv (5.2.12)
where

a =+/RG (5.2.12a)
is the attenuation constant in [1/m]

Ve % (5.2.12b)

is the propagation velocity, in [m/s].

2. Lossless line

A lossless line is the special case of a distortionless line and it satisfies the following
condition:

R=0,G=0 (5.213)

Thus, exept for a vanishing attenuation constant, o =0, the characteristics of a lossless line
are the same as those of a distortionless line.
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For a distortionless line, equations (5.2.9) simplify.
(5.2.14)

U, () = E(s) exp(-an) exp(-s) ~ E(SIN(s) exp(- (2! - x))exp(—s Z'JX) ¥

+E(s)M (s)N(s)exp(— a(2l +x)) — E(s)M (s)N(s)® exp (— cx(4l - X))exp(— s 4'V‘ Xj P

1.(s)= EE(s)eXp(—ax)exp(—sf) 1 E(s)N(s)ep (— (2! —x))exp(—s 2l - x] .
P \; yo) v

+ LE©MENE) op(-a@ +x) + S EEM(EIN(S)? exp(— a4l - X))exp(—s 4'V‘XJ ‘-
p p

For lines with resistive source and termination: Z,(s) =R,, Z,(S) = R,, reflection coefficients
are real numbers M(s) =M, N(s) = N, and then, after inverse transformation, the following

waveforms in the time-domain are obtained
(5.2.14a)

2l —x

u, (t) :e(t—éjexp(—ax) —e[t— jN exp(—a(2l —x)) +

_4I—x

+e(t - ZIJX)MN exp(— (2l +x)) - e(t jMN Zexp(— (4l = x)) + ---

2l —x

i () zie(t—fjexp(—ax) +1e[t— jN exp(— (2l — X)) +
p L v p

1 [t_2I+x

+=e
Yo,

where: e(t) = L {E(s)}1(t) =u,(0).

jMN exp(— a2l +x)) + 1e(t— 4'\/_)(jMN2 exp(— a4l —x)) + -
o)

In case of step excitation e, (t) = E,1(t) and e(t) = E1(t); E=E, fR
P t
Then, the waveforms become
X 2l —x
u,(t)=E1t—= |exp(-ax) —E1 t— N exp (- a(2l - X)) + (5.2.14b)
v

2l + X 4] — x

+El[t— jMNexp(—a(zler))— El(t— JMNZexp(—a(4l—x))+~--

i (t) =1E1(t—5jexp(—ax) +lE1(t— 2 _XJN exp(— (2l - X)) +
ye, v e, v

1 (t_2I+x 4] — x

+—E1
\Y;

)MN2 exp(—a(4l —x)) + ---
P

jMN exp(—a(21 +x)) + 1 El(t -
Yo,
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For a lossless line, attenuation constant vanishes and all exponentials are equal to 1. Then, the
steady-state values are
R, E

E,, L(o)=1_= o 5.2.15
R +R, (=) R +R, ( )

u,(0)=U_ =

Graphical description of traveling waves

For a lossless line, the algebraic description of waveforms (5.2.14) can be represented
graphically, as shown in Fig. 5.2.2.

a) 1/2 I x b) 1/2 1l x

L > L >

0 0
1
- N N

%‘ MN

3r ¢ 3r ¢ >
— MN? MN*
47 < 4r <
M?N?

57 S5t I
t t

Fig. 5.2.2 Graphical representation of traveling waves, a) voltage, b) current

This representation is very useful in finding gain and delay time of consecutive traveling
waves

Example 5.2.1

Find input, half-length and output voltage waveforms of the matched load line, after
switching on the following source: E, =10V, R, =100Q. Line length is 1 =10 m and its

secondary parameters are: p=50Q, a =10" 1/m, v=10° m/s.

For the matched load line

R=p=N=0 (5.2.16)
and there are no reflected waves. The only present 1% incident wave is
u, (t) = Eexp(—ax)1(t — x/v) (5.2.17)
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Voltage waveformsat x=0, 1/2, | are

U, (t) = EL(t), (5.2.18)

u,,, () =Eexp(-ar/2)L(t—-17/2)

u,(t) = Eexp(—ar) 1t —7)
where

r=I/v=IJLC (5.2.19)
is time of propagation from the line input to the output or vice-versa. For the assumed source
and line parameters: 7 =0.1 ms, E = E, /3. The waveforms (5.2.18) are shown in Fig. 5.2.3,
together with waveforms for the lossless line, denoted dashed.

Allo(l)
E /3

[

Auy (1)

/2 t

Allo(l)

T t
Fig. 5.2.3 Voltage waveforms for Example 5.2.1

*
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Example 5.2.2
Find input, half-length and output voltage waveforms of the lossless matched generator line,
after switching on the following source: E, =10V, R, = p=50Q. Line length is | =10 m,

propagation velocity is v =10° m/s and line is: a) open-circuited, b) short-circuited.

For the matched generator line
R=p=>M=0, E=E,/2 (5.2.20)

and there are only two traveling waves: the 1% forward (incident) wave and the 1% backward
(reflected) wave, as expressed graphically in Fig. 5.2.4, for both loads.

R =0c=>N=-1 (5.2.21a)
R=0=N=1 (5.2.21b)
a) /2 I x b) [/2 I x
0 ® o—» 0 ® o—»
1 : 1 :
T o T o
1 -1
23’ 22.
t V t ‘7

Fig. 5.2.4 Voltage traveling waves for matched generator line, a) opened, b) shorted

u.\' (I)A a)
E“ e r ________ -y s o
E, /2 i ;
"""" /2 1 37/2 2r t
u (1) b)
E, /2 ,
/2 3r/2 2r t

Fig. 5.2.5 Voltage waveforms for matched generator line, a) opened, b) shorted
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a) For the opened line, voltage waveformsat x=0, 1/2, | are

U (t) = E, /2-1(t) + E, /2-1(t — 27) , (5.2.22a)
u,,(t)=E,/2-Ut—7/2)+E,/2-1(t—3¢/2)
u,(t) =E1(t—7)

b) For the shorted line, voltage waveforms at x=0, 1/2, | are

Up(t)=E,/2-1(t)-E,/2-1(t-27) , (5.2.22b)
u,,t)=E,/2-1(t—7z/2)—-E,/2-1(t—3z/2)
u,(t)=0

The waveforms (5.2.22a) and (5.2.22b) are shown in Fig. 5.2.5aand b, x=0- solid, x=1/2 -

dashed, X =1 - dot and dash.
.

Example 5.2.3

Find input, half-length and output voltage waveforms of the lossless line, after switching on
the following source: E, =30V, R, =p/2=25Q. Line length is | =10 m, propagation

velocity is v=10° m/s and line load is R, = p/2=25Q.

For the given source and load resistances: E =2E_ /3=20V, reflection coefficients are
M = N =1/3. Graphical representation of voltage traveling waves is shown in Fig. 5.2.6.

0 1/2 X
L 2 >

|

Fig. 5.2.6 Graphical representation of 0

voltage traveling waves for Example 5.2.3 1\~
T

-1/3

27
1/9

\

I

3r
-1/27
4r
1/81

5t

1)

Voltage waveforms at x=0,1/2, | are
(5.2.23)

uo(t)= E1(t)+E(_%+%)1(t—2T)+E(—2—17—|—éL)1(t—4f)+:

2 4 4
=ZE, 1) - —E, -1(t—27) ———E, -1(t — 47) —--
3 B0 M- By Ut =20) — 2 B, - 1(t - 47)
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2

2 T 2 3 5 2
U,,z(t)=§E0 '1(t—§)—§Eo ’1(t_ET)+§EO -1(t—Er)—

7
—E 1(t —— EN
g1 oo ( 27)

LMDZHL%)M—&+E%—%}KD&ﬂ+m:g&4ﬂ—ﬂ+%EVM—%Mm~

and they are depicted in Fig. 5.2.7

uy (1)
2y I '
3

E /29 1
° 4
27 ¢
[ J
® ® ® ® >
R 27 4t t

u.’ﬂ'2 (I)I
2p !

3 0 l
E /2e¢
O %
27
@
72 * 15c ¢ 25: ¥ 350 >t

E /2
4 ¢ ¢
_EU T
9 o
4
'y 81 °
° o ° >
B T 3r t

Fig. 5.2.7 Voltage waveforms for Example 5.2.3
.
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Example 5.2.4
A pulse generator is the lossless line source, a pulse counter is the load. Calculate and sketch

the output voltage. Define the counter threshold necessary for its proper operation. It is
assumed that the subsequent pulse is generated after reaching the steady-state of the previous

one. The generator parameters are: pulse magnitude E, =8.1 V, width z, =2 ms, resistance
R, =500Q. The counter internal resistance is R, =500Q. Line parameters are: | =400 m,
L =0.01 H/m, C =0.01pF/m.

The line secondary parameters are:

r=4ms=27,, p=1000Q =2R, =2R, .
Then, the reflection coefficients are:

M=N=1/3
The generator open-circuit voltage is:

eo (t) = Eo 1(t) - Eo 1(t - TW)

2
and e(t) = geo (t).
Graphical representation of traveling waves is identical as in Example 5.2.3, as presented in
Fig. 5.2.3. Then, the output voltage is
U () = g E,(1(t—7)—1(t—7 - rw))+8i1 E, (1(t—37) —1(t =37 —7,))4--- = (5.2.24)
=36(Lt-7)-1(t—7—7,))+04(1t—-3c) -1t -3c—7,))+--- V

as depicted in Fig. 5.2.8 — solid.

u, (1),[V]
3.6 SRR

O O Y SOMSp SOy U

4 6 12 14 t ms
Fig. 5.2.8 Output voltage waveform for Example 5.2.4

Thus, the counter threshold should fall within a range
04<U,, <36V (5.2.25)
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Next, consider that pulse width is equal two line propagation times, z, =27 =8ms. The

obtained output waveform is depicted in Fig. 5.2.8 - dashed. As can be observed, gap between
the original pulse and the 1% reflected has vanished, and therefore no lower boundary of the
threshold is necessary for proper counting of pulses.

.

Arbitrary termination results in appearance of the reflected waves added to the original
incident wave. Therefore, a signal that reaches output device may be significantly distorted,
what may cause its malfunctioning. The following general conclusion can be drawn.

For an arbitrary termination of transmission line, the effect of reflected waves can be
disregarded if time parameter(s) of the transmitted signal is(are) much greater than the line
propagation time 7 .

In Example 5.2.4, the effect of reflected waves may be disregarded if 7z, >2z. The next
example discusses transmission of the practical step for different values of its time parameter,
namely the rise time 7, .

Example 5.2.5

Sketch the output voltage waveform of the lossless line characterized by its length I,
propagation time 7 and characteristic resistance p, for the practical step input given by its

magnitude E_, rise time 7, and resistance R, =0, and for the load resistance R, =p/3.
Assume three different values of the rise time: a) 7, =0.1z,b) 7, =27, c) 7, =107

For the given resistances, the reflection coefficients are
M=1 N=1/2 (5.2.26)

Graphical representation of voltage traveling waves is shown in Fig. 5.2.9.

0 1/2 I X
L 4

>

0

|

-1/2
27
1/2

I

3r
-1/4
4t
1/4

5t

1]

t

Fig. 5.2.9 Graphical representation of voltage traveling waves for Example 5.2.5
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The equivalent voltage is

e(t) =, (t) = ot 1(t) - 2 (t—7.)-1(t -7, (5.2.27)
T

TI’ r

The output waveforms are presented in Fig. 5.2.10 a, b and ¢ - the matched load output is
denoted dashed. To compare all three cases, 87.5% of the magnitude has been taken as the

reference. For the matched load, this reference level is obviously reached after t = 7 +0.875z,

) u, (1)
A

El... o .
1 l_,—
:: I A

EU E

2
‘ 0.875E,

v o

T 3r 5t Tt Or 117 t

Fig. 5.2.10a Example 5.2.5 output waveform for z, =0.1¢

1. Rise is of a step character.
2. 87.5% of the magnitude is reached after t =7+ (4r+7,) =7 +41r, .

b) u, (1)
A
E, e
II /—_’
! A
Eo ’II
2 /’
;' 0i875E,
/ v R
T 3r 5t ks Or 117 t

Fig. 5.2.10b Example 5.2.5 output waveform for 7, =2z
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1. Rise is of a PWL character. Steps disappear, rising of one wave ends exactly when the
next wave appears.

2. 87.5% of the magnitude is reached after t =7 +67 =7 +37, .

c)

u, (1)

A
E!) CETTTTTTTT S

A el
0.875E,: .-~
En ,,’
2 et
T 3r S5t Uks Or 11r t

Fig. 5.2.10c Example 5.2.5 output waveform for t, =10t

1. Rise is of a PWL character, practically straight line after t =37 . At the end of rising of the
matched load output, for t =11z, five rising waves add up - first two of them are denoted
by thin lines.

2. 87.5% of the magnitude is reached after t =7 +10.57 =7 +1.05z, , the effect of reflected
waves is practically unnoticeable.

.

The reactive load case will be illustrated by the next example.

Example 5.2.6
Find input and output voltage waveforms of the lossless matched generator line, after

switching on the following source: E, =10V, R, = p. Line primary parameters are: L =2.5
mH/m, C =10 nF/m, its length is | =100 m and line has capacitive load of C, = 0.5yuF.

The line reflection coefficients are:

1
p———
sC, sT-1
M =0, N(s)= L = ;T =pC 5.2.28
(s) =1 =PC (5.2.28)
P+
sC,
The equivalent voltage is
E, 1
E(s)=—= 5.2.29
()= S ( )

Then, from equation (5.2.14), setting o =0
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U,(s)= —exp(— 5j—lz—wexp(—sm_sz (5.2.30)
v) 2s sT+1 Vv

Bexp(—szj—iexp[—sm_x}r E, exp(—SZI_Xj
2S v) 2s Vv s(@+sT) Vv

After inverse transformation

(5.2.31)
u(t) = E 1(t——)—E— (t— 21~ Xj+ Eo{l—exp{—(t— 2l - XJ/T}}{t _2- Xj
Vv 2 Vv Vv Vv
at x=0
E t—2r
U, (t) = ° 1(t) ——°1(t -27)+E {1 exp[ = ﬂl(t —27) (5.2.31a)
at x=1
u,(t) = {1 exp(— ?ﬂl(t 7) (5.2.31b)
A (D)
E” r
E, /2
2t 2r+T :t
Fig. 5.2.11a Input waveform for Example 5.2.6
A Up(0)
E

| —

v

T t+T t
Fig. 5.2.11b Output waveform for Example 5.2.6

For the assumed line and load:
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£ =500Q,v=02-10°m/s, =05ms, T =0.25ms =7/2

the waveforms are shown in Fig. 5.2.11a and b.

*

Drill problems 5.2

1.

Example 5.2.6 line has inductive load of L =125 mH. Sketch the input and output voltage
and current waveforms.

Outline voltages u, (t); x=0, 1/2, | of the opened lossless line after inputting a practical

source given by the Norton equivalent: J, =1 mA, G, =1/p=10"°S. Other line
parameters are: | =10m, C =1pF/m .

Outline voltages u, (t); x=0, 1/2, | of Problem 5.2.2 line after changing its termination
to a short-circuit.

A lossless matched generator line of R, = p, has a resistive load of R, =3p=150Q2.

Sketch the input and output voltages and currents after inputting the step voltage
e, (t) =10-1(t) V. Other line parameters are: | =10m, C =1pF/m .

Sketch the input and output voltage and current waveforms after connecting an ideal
voltage source e, (t) =10-1(t)VV to an open-circuited line. Its parameters are: | =10m,

C =1pF/m, L=1mH/m.

Sketch the input and output voltage and current waveforms after connecting an ideal
current source j (t) =10-1(t)mA to a short-circuited line of Problem 5.2.5.

For the given input voltage waveform find source and load parameters: E_,R,,R,. The
line characteristic resistance is p =75Q.

»

Fig. P.5.2.7 ty (1) 4
6V

3V,

2us t;

For the matched generator lossless line: E; =6V, R, = p=50Q, and the given voltage
waveform at Xx=1/2, choose the true relationship: a) R, >p, b) R <p/2,
C) R=pl2,d) p/2<R, <p.

"’uz(f)A
Fig. P.5.2.8
3V
15V
=t
5 15 ms
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5.3 AC ANALYSIS — STANDING WAVES

A transmission line connected to the sinusoidal source and described in the phasor-domain is
shown in Fig. 5.3.1.

SOURCE [,(jow) [ (jo) /,(jo)| LOAD
—5e »e *—»
A Ul A Ui A
® @
7 (o) o (Jj@) (o)
U, (jo) Z,(jo)

CTQ (Jo)

X y=l-x

A 4

»

<
< »

Fig. 5.3.1 Transmission system described in phasor-domain

For the given length | and per-unit-length parameters R, G, L, C, the line secondary
parameters can be designated from the s-domain equations, substituting s = jw.

Characteristic impedance

. R+ jolL
Z(jo)= | ——— 531
(9 =[5 e (531)
For distortionless (lossless) line:
. L
Z(jw) = \/; = p = const (5.3.1a)
Propagation constant
7(jo) =R+ jaL)(G + jeC) (5.3.2)
For distortionless line
r(jo)=a+ jp (5.3.2a)
where
a =~/RG (5.3.3)
is the attenuation constant in [Np/m], for a lossless line it is equal zero,
B=aVLC :% (5.3.4)
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is the phase shift per distance, a linear function of @, and

V= —— (5.3.5)
is the propagation (phase) velocity, in [m/s].

Equations describing line voltage and current in the phasor-domain are obtained from
equations (5.2.6) with s replaced by jw.

e iy 2i0)  emly(j0)- N(j0)epl-#(j)@ - X)]
S B0 2 Ge -MaN(oeel 2o oY

1 exp[—y(jo)x]+ N(jo)exp[-y(jo)(2l = X)]
Z(jo)+Z,(jo) 1-M(jo)N(jo)exp[-2y(jo)l]

where M (jw), N(jw) are the reflection coefficients, described by equations (5.2.7) with s
replaced by jw. For the considered distortionless line, the propagation constant is described

by (5.3.2a). The matched load line is discussed at first, then line with arbitrary resistive
termination. The equivalent voltage E(j®) can be introduced (5.2.9¢) and, for simplicity of

description, it is assumed that

. _ . Yo _
E(Jw)—Eo(Ja))—erZt(ja)) E (5.3.7)

I, (jo) =E,(jo)

MATCHED LOAD LINE

For the matched load line, reflection coefficient is N(jw) =0 and E =U, . Then the phasor
line voltage and current are

U, (jo) =U, exp[-y(jo)x] =U, exp(-a x)exp(-jS X) (5.3.8)
. U,(jo

(i) = 202
The line voltage in the time-domain is:

U, (t) =U,~2 exp(—a x)sin(wt — £ X) (5.3.82)
For a lossless line:

U (t) =U,~2sin(wt —a ) (5.3.8b)
At a distance x, the voltage magnitude and phase shift are:

U,~2 =U,v2exp(-ax) (5.3.8¢)

LX=wVLC X (5.3.8d)

Attenuation at a distance x is designated by the product

ax= In%, (5.3.9)

X
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Its unit is neper [Np]. Distribution of the voltage magnitude along a line is presented in Fig.
5.3.2, for both lossy line (continuous) and lossless line (dashed). These waves are called the
standing waves.

U x A

»
»

1/ | X

Fig. 5.3.2 Voltage standing waves for matched load lossy and lossless (dashed) line

ARBITRARY TERMINATION

To study an arbitrary resistive load termination, instead of phasor equations (5.3.6), it is more
convenient to use equations that express line voltage and current by its output voltage and
current, and these equations are obtained from equations (5.2.2b) with s replaced by jo.

U, (o) =U, (jo) coshly (jo)(I =x)]+ 1, (J@)Z(jw)sinh[y (jo)(I - X)] (5.3.10a)

1, (jo) = 1, (jo)coshly (jeo)(1 — )]+ LJZ'((j“’)) Sinh[ (je)(1 - )]

jo
For a lossless line, Z(jw)=p, y(jo)= jf . Then, with y=1-x, taking into account

cosh(jpy) =cos(By), sinh(jgy) = jsin(Sy), the following equations describe the line
phasor voltage and current:

U, (jo) =U,(jo)cos(BY) + jI, (jw) psin(BY) (5.3.10b)
1, (o) =1, Geeos(ay) + | 219 sincy)

Next, taking into account the load eqﬁation
U (jo)=1,(i®)Z,(jo) =1, (jo)R, (5.3.11)

and expressing sin and cos by exponential functions, the following equations are obtained

U, (jo) =%I.(jw)(p+ R)ep(iBy)L-Nexp(-j28Y)] (5.3.12)

1, (jo) =$ 1L (jo)(p+R)ep(iBY)L+ Nexp(—j28y)]
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Plots of U, =|U, (j@)| and 1, =|I, (jo)| are standing waves with their maxima and minima

occurring at fixed locations along the line. As two subscripts, x and y =1 — X, have been used,
the meaning of subscripts 0 and | should be clarified:

Up=U,[,,=U,| . ete, U =U,|  =U,| et

For N>0=R, <p
U,m, and I, occur together when exp(—j2py)=1, i.e. for 28y=2nxz. Then,

minima of the voltage standing wave, so called nodes of standing wave (maxima or
arrows of the current standing wave) are located at y =ni/2;n=0,1,2,...

where

2 2 1
J=ir_ Al (5.3.13)

B wJlC fJLC f
is the wavelength.

U, and I, occur together when exp(—j28y)=-1, ie. for 28y =2(n+1)z. Then,
maxima of the voltage standing wave, so called arrows (minima or nodes of the current
standing wave) are located at y =(2n+1)A/4;n=012,... .

An exemplary voltage and current standing waves, for the single-wave line, | =4, are
shown in Fig. 5.3.3.

U.\' A 1 ‘[,\' U,\'

ymax

 min

U

ymin

» X

A

y |2 3/42 1/22 1/424 0

Fig. 5.3.3 Voltage (solid) and current (dashed) standing waves on resistance
terminated lossless line, Rj<p

For N<O0=R, >p
the roles of the voltage and current standing waves are interchanged from those for the
case of R, < p.
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For resistive termination, Z,(jw)=R,, voltage maximum (current minimum) or minimum
(current maximum) occurs at the terminating resistance. If the terminating impedance Z,(jo)

IS not a pure resistance, then a voltage maximum or minimum does not occur at the
termination, both are shifted away from termination, however periodic character of standing
waves is maintained. The ratio of the maximum to minimum voltages along a line is defined
as the standing wave ratio, S:
S_Umw_lﬂNUwﬂ

U, 1-N(j0)

y min

(5.3.14)

It is clear that for the special cases:
a) matched load line: N =0=S=1, (5.3.15)
b) open-circuited line: N=-1=5=0,
c) short-circuited line: N=+1=S=0.

The matched load line has been discussed in the preceding section of this Chapter. For short-
circuited or open-circuited lines all the minima (nodes) go to zero. These two special cases
will be discussed next.

Open-circuited line

From (5.3.10b), for I, (jw) =0, the voltage and current standing waves are
U, (jw) =U, (jo)cos(fy) =U, =U, [cos(sy)| (5.3.16)

|(J o)

Iy (jo) = j———=sin(By) =1, = '|Sin(ﬂy)|

and they are shown in Fig. 5.3.4, nodes and arrows of the voltage wave are denoted.

A
U

x A T x ¥ ¥

4 AU,-

¥ max

A
v

y A 3/44 1/24 1/44 0

Fig. 5.3.4 Voltage and current (dashed) standing waves on open-circuited line
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Short-circuited line

From (5.3.10b), for U, (jw) =0, the voltage and current standing waves are
U, (j@) = jl, (j)psin(By) = U, = 1,[sin(3 ) (53.17)

l,(j@) =1, (jo)cos(By) =1, =1, [cos(BY)|
and they are shown in Fig. 5.3.5, nodes and arrows of the voltage wave are denoted.

A
(],\' A [.\' ]_\‘ U

¥ max

3/44 1/24

Fig. 5.3.5 Voltage and current (dashed) standing waves on short-circuited line

TRANSMISSION LINE as CIRCUIT ELEMENT, INPUT IMPEDANCE

Not only can transmission line be used as wave-guiding structure for transferring power or
information, but it may serve as a circuit element. At ultrahigh frequencies (UHF), ranging
from 300 MHz to 3 GHz — wavelength ranging from 1 m to 0.1 m, ordinary lumped elements
are difficult to manufacture (see Chapter 4.3). Section of transmission line can be designed to
give a pure inductive or capacitive impedance or may be used to match an arbitrary load to the
internal impedance of a generator for maximum power transfer.

A transmission line segment can be considered lossless, and then, from equations (5.3.10Db),
(5.3.11), the input impedance of a lossless line of length | terminated in Z, (jw) is

U (o) _Y,a9) 2, (j)+ jptan(s)
L ()|, 1,(e)| " p+ iz (jo)tan(s1)

Three special cases (5.3.15), quarter-wave line and half-wave line will be considered next.

Z(jo) = (5.3.18)

Matched-load line
For the matched-load line, the input impedance is obviously fixed

Zin(jo)=p (5.3.18a)
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Open-circuited line

For Z,(jw) = o, the formula in equation (5.3.18) becomes
Ziy (i) =—L—— = j[-peot(B)] = X, (@)  (5.3.18b)

jtan(g1)

As can be seen, the segment impedance can be either capacitive or inductive. Fig. 5.3.6 is a
plot of X,, versus |, for I ranging from0to 4.

.

10

1 3741 727 744

Fig. 5.3.6 Input reactance of open-circuited transmission line

When the length of a short-circuited line is very short in comparison with a wavelength,
Pl <<2rx, then tan(fl)= £l and a very simple formula for its capacitive reactance is
obtained

. . _JL/C o1
Zo(jo) = -2 =—j =—j—= (5.3.18b")
yii @+/LC | @Cl

That way capacitance of Cl farads is obtained.

Short-circuited line

For Z,(jw) =0, the formula in equation (5.3.18) becomes

Z,(jo) = iptan(BN)] = iX . (@) (5.3.18¢)

As can be seen, the segment impedance can be either capacitive or inductive and it is worth to
note that in the range where X,, is capacitive X is inductive, and vice versa. Fig. 5.3.7 is a

plot of X versus I, for | ranging from0to 4.
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When the length of a short-circuited line is very short in comparison with a wavelength,
| << A=271p= pl <<2r, then tan(B1) = £l and a very simple formula for its inductive
reactance is obtained

When the length of a short-circuited line is very short in comparison with a wavelength,
Pl <<2r, then tan(Bl)= g1 and a very simple formula for its inductive reactance is
obtained

Z.(jo)=jppl = ]WL/ICoVLC =jall (5.3.18¢”)

That way inductance of LI henries is obtained.

A

A 3/44 1/24 1/44

Fig. 5.3.7 Input reactance of short-circuited transmission line

Short-circuit and open circuit are easy provided on a transmission line. By measuring
corresponding input impedances, the characteristic impedance and phase constant of the line
can be determined. From (5.3.18b) and (5.3.18c), the characteristic impedance of a lossless
line is

pP= Ziozis , Zio :|Xio|’ Zis :|Xis| (53193.)
and its phase constant is

1 Z.
p= I—tan’1 = (5.3.19b)

io
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Quarter-wave line

For line arbitrary termination Z,(jw) and its length being a quarter-wave or an odd multiple
of 1/44

Bl :%(Zn—l)%: (2n—1)%:>tan(ﬂl) — +o0

and equation (5.3.18) reduces to
2

- P
Z,(jo) == (5.3.20)
Z (jw)
A quarter-wave lossless line transforms the load impedance to input terminals as its inverse
scaled by the square of the characteristic resistance.

Half-wave line

For line arbitrary termination Z, (jw) and its length being a half-wave or a multiple of 1/2 4

2r A
l=—n—-=nz=tan(Bl)=0
pl=—rno=nx B1)

and equation (5.3.18) reduces to
Zi(jo)=2,(jo) (5.3.21)

A half-wave lossless line transfers the load impedance to input terminals without change.

Example 5.3.1

Consider a lossless line characterized by the following parameters:
| =100 km, L =5 mH/m, C =5 nF/m.

For the given input voltage: u,(t) = 503in%t V,

find phasors of the input current, output voltage, output current and input impedance for three
terminations: a) matched-load, b) open-circuit, ¢) short circuit.

-3
The characteristic resistance is: p = 1/% =10°Q.

The phase constant (phase shift per distance) is: g = % 5.10°5.10° = 5% 10 °rad/m.

The line phase shift is: A :% rad.

The wavelength is: 4 = 2—”45 =800 km=1= i.
2.57-10 8
a)
Zim(ja)) :/021039
U,(jo) =U,(jo)=50/~2 v

I,(ja)):lo(ja)):@:w/ﬁ mA
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b)
i i103 4 . 2. 3
Z,,(jw)=-]j10 COtZZ—JIO Q=C,=—10"F
V4

) U, (jo) .
| =0 = j50/+/2 mA
U =7 Gay 102
Equation (5.3.10b), for y =1 (x=0) becomes

Uy(jw)\y:I =U,(jo) =U, (Jo)cos(B1) + jI, (jw) psin(£1) (5.3.22)

From this equation, taking into account that I, (j@) =0, the output voltage is
U,(jw) 50/2
cos(A) 2/2

The voltage standing wave and the input reactance are shown in Fig. 5.3.8

U, (jo) =

<

A4 A/8 X,

-10°Q

YIS
Fig. 5.3.8 Voltage standing wave and input reactance of Example 5.3.1 - open-circuited line

c)

- - 3 7Z- - 3 2 3

Z. (jo)=j10 tanZ: j10° Q= L, =—10" H

T

. U, (jw) .

| =0 __j50/v2 mA

=7 oy~ 102

From equation (5.3.22), taking into account that U, (jw) =0, the output current is
. U,(] .

l (jo) =~ °.(J”) = _5()3/& =—j50 mA

jpsin(Bl)  j10°42/2

The voltage standing wave and input reactance are shown in Fig. 5.3.9
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AX,
AU,
=TT 50V
\\E ............................ 50/\/5 ___________________________ ].OBQ
y /4 /8 YT TR

Fig. 5.3.9 Voltage standing wave and input reactance of Example 5.3.1 - short-circuited line
.

Drill problems 5.3

1. Plot the voltage standing wave U, (jw) for a shorted lossless: a) quarter-wave, b) half-

wave, c) single-wave, d) double-wave line. A source voltage is €, (t) :10\/§sin(100t)v,
its resistance is R, =100Q and line parameters are: | =4 =10m, o =50Q, C =5uF/m.
Calculate the standing wave ratio S and the rms input current.

2. Outline the input reactance of Problem 5.3.1 line, for its length | ranging from 0 to 24.

3. Sketch the current standing wave for Problem 5.3.1 line and a source given by the
Thevenin equivalent: ¢, (t) =10+/25in(1007 t) V, R =p.

4. Repeat calculations and plots of Problems 5.3.1-3, after changing the line termination to
an open-circuit.

5. Find the rms voltage at a distance of x=1/2 of a quarter-wave shorted line if the input
voltage is U, (t) = 20+/2sin(314t) V. Sketch the voltage standing wave and find its ratio S.

6. Sketch the current standing wave in a shorted half-wave line of primary parameters:
L=1mH/m, C=1nF/m. Calculate the output current if the input current is

i, (t) = 5+/25in(1000t) mA.

7. Find the input impedance of an open-circuited lossless line. Its parameters are:
L=1mH/m, C=1nF/m, | =1/8=10 m.

8. Find the input impedance of a short-circuited lossless line. Its parameters are: L =1mH/m
, C=1nF/m, 1=1/8=10 m.

9. Find the input impedance of a lossless line. Its parameters are: L =1mH/m, C =1nF/m,
| =1/4=10 m, and a load impedance is Z,(jw) =10+ j10 Q.
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APPENDIX A - LAPLACE TRANSFORM

Laplace transform allows to transform the time-domain function f(t) into the Laplace-
domain function F(s):

F(s)=L{f@®)}= (1) (A1)

where s is the Laplace operator. Then, terms Laplace-domain, operator-domain or simply s-
domain are used alternately. The Laplace transformation is the integral transformation defined
by equation (A2).

DEFINITION

0

F(s) = | f(t)exp(-st)dt (A2)

0

Together, f(t) and F(s) are called the Laplace transform pair, while F(s) is called the
Laplace transform of f(t) - the image, and f(t) is called the inverse Laplace transform of
F(s) - the original.

The Laplace transform is utilized in Circuit Theory to solve circuit transient analysis
equations containing time integrals and derivatives, the so called integro-differential
equations. After the Laplace transformation, system of linear equations in the s-domain is

obtained. Then, its solution, operator response Y (s) or responses Y, (S),Y,(S).... are searched
for. Inverse transformation is the final step of transient analysis.

When transforming time-domain equations (element i —u relationships and Kirchhoff’s laws)
into the s-domain equations, the following properties of the Laplace transformation are
utilized.

PROPERTIES
P1l. Linearity

L{C1 f(t)+c,f, (t)} =¢,F () +¢,F,(9) (A3)

where C,,C, are real numbers

P2. Integration

L{j f (t)dt} _FE (A4)

0 S
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P3. Differentiation

L{% f (t)} =sF(s) - f(0) (A5)
P4. Time-Shift
L{f(t—2)1(t—17)}=F(s)exp(-s7), >0 (A6)

INVERSE TRANSFORMATION - HEAVISIDE’S FORMULA

To find the inverse transform

e integral formula (not presented here), or

e Partial Fraction Expansion (PFE) based, Heaviside’s formula (A7)
can be utilized.

If
|
[ -1 H(S_qj)
F(s) = k/l(s) _ sm+zlsm_1+ +<'E_ls+ag _ ,:; (A7a)
sM(s) s(s"+bs"™ +---+b, ;5+Db,) sTT(s—s,)
k=1
where,
q;,S¢ are roots of numerator and denominator polynomial, zeroes and poles of
F(s)
a;,b, arereal numbers; j=1..,Lk=1...m;I<m
then
_LO) < L)
s, t ATb
- M(0) kzsk M'(s,) exp(s,t) (ATb)
where,
d m
M'(s,)=—M(s = S, —S; ATc
6= gsMO)_ =116 =s) (ATo)

i=k

The first component of f (t), the time-invariant component, is the steady state value F, .

The second component is the transient component decaying exponentially to zero. This
component is the sum of m terms, each term is designated by one pole. Three different types
of poles can be distinguished:

1. simple real pole: s, =-1/T,, (A8a)
2. simple pair of complex conjugate poles: s, =—«, + j®o, (A8b)
Sk = S: =—a, — o,

3. repeated (multiple) poles, for two poles: s, =s,,, =—«, . (A8c)
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It should be emphasized, that in a stable circuit all poles lie in the left side of the complex
plane. In a stable circuit steady state is always reached, all transients decay to zero and only
such circuits are considered. Step response of the ideal integrator, discussed in Chapter 3.3, is
the only exception.

For each simple pole (A8a), there will be a term

A BP(-t/T,). (A9)
For each simple pair of complex conjugate poles (A8b), there will be a term
A exp(—a t)sin(ot+,) (A9Db)

where, ¢, = Z(s—s)F(s)|_,
For two repeated poles (A8c), there will be a term

Atexp(-ta,) (A9c)

LAPLACE TRANSFORM DICTIONARY

Based on the Laplace transform definition (A2) or Heaviside’s formula (A7), dictionary of
Laplace transform pairs can be constructed. Four singularity functions, used to describe
transient excitation:

e unit step,

e pulse,

e unit impulse,

e unit ramp,
and two ordinary functions, used to describe transient response

e exponential (1* order response),

e 2" order response,
are discussed.

1. Unit step

in time domain is the function that is equal zero for all negative values of time and that is
equal to one for all non-negative values. This dimensionless function is denoted by the bold
one:

0, t<0
1(t):{1 :O (A8)

1(7)
Fig. AL 1I

Graph of the unit step function

v

The Laplace transform of the unit step function is

L{(t)} = (A8a)

w |k
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la. Time-shifted unit step
in time domain is the function that is equal zero for all values of time less than 7 and that is

equal to one for all values greater than or equal 7 :

0 t<r
Wit-7)= A9
(t-7) {1, o (A9)
N 1(r—1)
Fig. Al 1
Graph of the time-shifted
unit step function t
- >
The Laplace transform of the time-shifted unit step is
1
L{lt—7)}= gexp(—s 7) (A9a)
2. Exponential decay
exp(-t/T), t>0
Ft) = esp(-t/T)a(t) =1 P (A10)
0, t<0
*— >
5T t

Fig. A2 Graph of the exponentially decaying function

This dimensionless function is defined by one parameter, time-constant T. Each time-constant
the function is reduced by a factor of 1/e relative to its value at the beginning of that one-time-
constant interval. Discrete values of the function at multiples of T are presented in Table Al.
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Discrete values of exponential decay at multiples of T

Table A1

t

T

2T

3T

4T

ST

exp(—t/T)

e =0.368

e? =0.135

e =0.050

e =0.018

e =0.007

The exponential decay has the following properties:

1. After five time constants, the function value is less than 1% of its initial value, it is
essentially zero.

2. Subtangent at any instance of time is equal to the time-constant T. In particular, a tangent
to the curve at t =0 intersects the time axis at t =T , what can be utilized when sketching

the curve.

The Laplace transform of the exponential decline is

T
L{exp(~t/T)1(t)} = oo (A10a)
2a. Exponential rise
f(t) =[1—exp(—t/T)]1(t)={1_eXp(_t/T)’ t=0 (A11)

y

0, t<0

—e

Fig. A2 Graph of the exponentially rising function

.
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The Laplace transform of the exponential rise is

1

Lil—exp(—t/T)A(t) ;= Alla
-eptTIOI= 7 (Alla)
3. Pulse
1,0<t<
F(t)=1(t) —L(t—7) = ’ (A12)
0, te<0,7>
)
Fig. A3 Graph of the pulse
T Vt
The Laplace transform of the pulse is
11
L) -1t —7)}= R (-s7) (A12a)

4. Unit impulse or Dirac delta
Consider a pulse d(t) with height 1/27 and base 27 centered at t =0, as presented in Fig.

A4,
a) Ad(l) b) A0(0)

1/27

—~v
v
~—+

Fig. A4 Graph of a pulse and unit impulse, both of unit area

Area of this pulse is equal to one. Then, unit impulse, the so called Dirac delta, is the limit of
d(t) as ¢ goes to zero:

o, t=0
5(t):{ 0 tt;tO (A13)
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The unit impulse can be considered as the first derivative of the unit step. Its unit is [1/s] and
its area is equal to 1.

j Stydt =1 (Al33)
The Laplace transform of the unit impulse is

L{5@t)} =1 (A13b)
5. Unit ramp
The first integral of the unit step is referred to as the unit ramp function r(t):

t, t>0
r(t) =tl(t) = Al4d
(t) =t1(t) {01 (<0 (Al4)

This function is used to model slope(s) of a practical step(pulse). Its unit is [s] and its graph is
presented in Fig. A5

4 1)
Fig. A5 Graph of the unit ramp 1
1 "t
The Laplace transform of the unit ramp is
1

L{r(t)}= 3 (Al4a)
6. 2" order response
The following 2" order function in the s-domain is considered:

1 1 S
F(s) = (A15)

sZrbs+c (s—s,)(s-s,) - s(s—s,)(s—5s,)

where poles are:
2
S, :—gi,/%—c:—aiﬂ (Al5a)

The Heaviside’s formula (A7) is utilized to find the inverse transform. Its elements are:

L(S) =S5, I—(O) =0, M (S) = (S - Sl)(S _Sz)’ M '(Sl) = (51 _32)1 M '(32) = (32 _Sl) (A15b)
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Then,

ft)=—

1 2

[exp(s,t) —exp(s,t)] = i exp(—at)[exp () —exp(-A1)] (A16)

Three different cases have to be considered, subjected by the character of poles (A8):

1. two simple real poles,
2. simple pair of complex conjugate poles,
3. two repeated poles.

2

1. For b? >c: 8 =-1/T,s, =-1/T,

Location of poles in the complex plane is presented in Fig. A6a.

Fig. A6a
Complex plane location
of two simple real poles

& o

T, -UT, Re

v

Then,
ft)= % [exp(—t/T,) —exp(-t/T,)] (Al6a)

2 2
2. For T<c: SS=—a+jo, S, =—a—-jo; o= (;_I

Location of poles in the complex plane is presented in Fig. A6b.

jo
Fig. A6b

Complex plane location
of pair of complex conjugate poles ¢ Re

v

_jw

Then,

f(t)= 2Jflwexp (—at)[exp(jart) —exp(— jart)] = éexp (—at)sin wt (A16Db)

2
3. For —=c: 8 =5,=—a

Location of poles in the complex plane is presented in Fig. A6c.
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Fig. A6c
Complex plane location of
two repeated poles .
-a
Then,

f(t) = L@O% exp(—at)[exp(t) —exp(—pt/)] = texp(-at)

v

Re

(A16c)
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APPENDIX B - COMPLEX NUMBERS

The complex number can be expressed in rectangular form as
F=x+]y (B1)
and presented in the complex plane, as shown in Fig. B1, where

e = V=1 isthe complex number of unit length along the imaginary axis,

e xis the real part of F, denoted X =ReF,
e yisthe imaginary part of F, denoted y = ImF .

The same complex number F may be represented in polar form as
F=F Za (B2)

where F_, the magnitude or modulus of F, and £« , the angle of F, are given by

F,o=x*+y? (B2a)

a = arctan Y (B2b)

X

The angle is positive when taken in the counterclockwise direction and negative when taken
in the clockwise direction.

Im
A
Jy _F
E?J
a \
. Re
X
_a/
—Jy “F

Fig. B1 Graphical representation ot the complex number in the complex plane

From Euler’s formula or Euler identity
exp(ja)=cosa+ jsina=1/a (B3)

a useful alternative way to write complex numbers in the exponential polar form, or simply
exponential form is obtained
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F=F,ep(ja) (B4)
The conjugate of the complex number F is defined to be

F=x-jy=F,Z-a=F, ep(-ja) (B5)
as presented in Fig. B1. Consider four unity length complex numbers along both axes in the

complex plane, in both directions, as shown in Fig. B2.

AIm

»

J =exp(j90°)4

—1=exp(j180%) I =exp(j0")

> Re

Y- J=exp(=/j90%)

Fig. B2 Unity length complex numbers along both axes in the complex plane

The operations of addition, subtraction, multiplication and division apply to complex numbers
exactly as they apply to real numbers, and they will discussed next.

Addition/subtraction

Consider two complex numbers, F =F, exp(jey) and F,=F, ep(ja,). Their
sum/difference is calculated in the following way
F=F tF, =F,cose, + jF, sina, £(F,, cose, + JF,, Sina,) =
=x+Jy=F,ep(ja) (B6)
where
x=F,cosa, +F,, cosa, (B6a)
y=F,sing, £F, sina,

and the rectangular-to-exponential conversion is described by equations (B2). These
operations may be carried out geometrically. The result is equivalent to completing the
parallelogram or to connecting both vectors in head-to-tail manner, as shown in Fig. B3.
Vector subtraction may be considered as vector addition with the subtracted vector shifted by
180 degrees (multiplied by —1).
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A A
Fl
FZ
F, +F,
» Re
A Im A Im
F,—F, &1~ =F,
,',/ 2 F,
F -F, F,
~F, s
» Re »Re
Fz Fz
Fig. B3 Two methods of graphical addition/subtraction
Multiplication
Multiplication is normally performed using the exponential form (B4) of complex numbers
F=FF, =F,F,ep(ja)exp(ja,) (B7)

Thus, two complex numbers may be multiplied by multiplying their magnitudes and adding
their angles

I:m = Flm I:2m (B7a)
a=ao,+ta, (B7b)
In particular,

e multiplication by j rotates vector in counterclockwise direction by 90°,
JF=F,exp[j(e+90°)]
e multiplication by — j rotates vector in clockwise direction by 90°,
— jJF=F,ep[j(a—90°)],
e multiplication by — 1 rotates vector by 180°,
-F=F,ep[j(ax+180°)],
Alternatively, complex numbers may be multiplied in rectangular form

F= (X1 + jyl)(xz + jyz) = (X1X2 - ylyz) + j(xlyz + ylxz) =X+ jy (B7C)
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Division
Division can be performed using both rectangular and exponential form.
F, R, .
F=—t=—"ep[jley—a,)] (B8)
FZ I:2m
Thus, magnitude of the quotient is quotient of magnitudes, angle of the quotient is difference
of angles

F

F = _im B8a
F, (B8a)
a=a,—-a, (B8b)

In particular,

e division by j, equivalent to multiplication by — j, rotates vector in clockwise direction

by 90°, © = _jF = F_exp[j(e-90°)].
j

Sometimes, it is more practical to divide two complex numbers in rectangular form. Then, to
obtain the quotient in rectangular form, both numerator and denominator are multiplied by
denominator conjugate

X 0y _ (YD) —0Y2) _ XX+ ViYe L YiXe — XY :

F=1 -l: 1 -1 2 -2:1i 122+Jl§ 122=X+Jy (Bg)

X, + 1Y, (Xz + Jyz)(xz - JYZ) X Y X; tY;
Evidently, it is easier to add and subtract complex numbers in rectangular form and to
multiply and divide them in exponential form.

Next, consider the complex exponential function
o (jot) =1Lt (B10a)

Examining this function, its magnitude is always unity, while its angle increases uniformly at
the rate of @ radians per second. Thus, the complex exponential function traces out unit
circles in the complex plane, beginning on the positive real axis at t=0 and moving
counterclockwise, completing one full circle every T =27/® seconds, as shown in Fig. B4,

together with a general, scaled and phase-shifted, complex exponential f (B10Db).

Im Im
A A

N\ \

o\

m

Fig. B4 Complex exponential exp(jew?) and general complex exponential Fnexp[j(wt+a)]
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f =F_ exp[j(at+a)]=F, (ot +a) (B10b)

This general complex exponential is similar to the (simple) complex exponential, except that
at t=0 its initial phase is a radians and it traces out circles of radius F,. By vertical

projection

f =Imf =F_sin(et+a) (Bl1la)
and by horizontal projection

f'=Re f = F_cos(at +a) (B11b)
The general complex exponential can be rewritten in the following form

f=f4jf =F exp[j(at+a)]= FV2exp(jat)exp(ja) (Bllc)

Then, for the given angular frequency @, the sinusoidal function is uniquely characterized by
the following complex number

F.(jo) =F,exp(ja) (B12)
or, more often
F(jw) =Fex(ja) (B12a)

This number is called phasor.

Any sinusoidal current or voltage, at a distinct frequency @ is uniquely characterized by its
phasor (4.1.5). The rms value of the sinusoid is the magnitude of the phasor, and the phase
angle of the sinusoid is the angle of the phasor.

In case frequency characteristics of magnitude and phase are considered
F(jo) =F(o)exp[ja(w)] (B12a)

Since phasors are complex numbers, they may be represented by vectors in the complex plane
also called Argand diagram, where addition or subtraction may be carried out geometrically.
This representation is called the phasor diagram and may be helpful in analyzing ac steady-
state circuits. When two sinusoids are represented as phasors on the same diagram, their phase
difference is simply an angle between them, a leading phase angle corresponds to a
counterclockwise rotation, according to the usual convention.
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APPENDIX C — TERMS AND CONCEPTS

Polish English Description (opis)
) ) Admittance )
Admitancja in s-domain Reciprocal of Z(s).
operatorowa Y (s) Odwrotnos¢ impedancji.
o Admittance
Admlta}nqa in phasor-domain | Reciprocal of Z(jw), Y (jo)=G(®)+ jB(®)
symboliczna Y(jo)
Ampere
Amper X See Current
. Ampere-turns .
Amperozwoje A See Magnetomotive force
t
tud Amplitude
Amplit .
r’n’p Ituda (peak value) | see Alternating current
(wartos¢ szczytowa) | U

Analysis of a circuit behavior for a period of time
immediately after independent source or sources have
been turned on or turned off, at t = 0. In stable circuits,
transient state vanishes after 5T _, , where T isthe

przejéciowych Transient analysis | maximum time constant.

(nieustalonych) (state) Analiza zachowania obwodu od momentu powstania
zaburzenia do momentu ustalenia si¢ odpowiedzi. W

Analiza stanow max ?

obwodzie stabilnym, czas osiagnigcia stanu ustalonego
wyznacza pigciokrotno$¢ najwickszej statej czasowej

odpowiedzi.
Analysis of a circuit behavior resulting after have been
Analiza w stanie Steady-state on for a long time.
ustalonym analysis Analiza w stanie, w ktorym wszystkie przebiegi osiagaja

wartosci stale, niezmienne w czasie.

Approximation of the nonlinear | —U characteristic by
linear segments. For each segment its Thevenin or
Norton equivalent can be found.

Aproksymacja odcinkowa charakterystyki nieliniowej.
Kazdy segment mozna zamodelowa¢ schematem
Thevenina lub Nortona.

Piecewise-Linear
Approximation
(PWLA):

Aproksymacja
odcinkowo-liniowa

Transformer that has windings both magnetically and
electrically interconnected.

Autotransformator | Autotransformer . ) ) o
Transformator, w ktorym jest tylko jedno uzwojenie,

spetniajace jednoczesnie role pierwotnego i wtdrnego.
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Polish

English

Description (opis)

Poles of transfer

Roots of the denominator polynomial of the transfer

Bieguny function function K(s).
transmitancji s Pierwiastki wielomianu mianownika operatorowej
“ funkcji przejscia.
CewKki sprzezone Coupled coils | See Mutual inductance
The | —U characteristic for a parallel connection of
Charakterystyka Equivalent elements can be obtained by graphically adding the
zastepcza — q - currents of elements at various values of voltage.
olaczenie characteristic — Charak . | cw nielin n
Zenl .
p’ a parallel connection arakterysty ’c; zastepcza € emer}tow ‘nle 1n1owyc
rownolegle polaczonych rownolegle otrzyma¢ mozna sumujac prady
w punktach zatamania charakterystyk tych elementow.
The | —U characteristic for a series connection of
elements can be obtained by graphically adding the
Charakterystyka . y grap y g
sastencza Equivalent voltages of elements at various values of current.
pol:ffzenie characteristic — | Charakterystyke zastepcza elementéw nieliniowych
series connection ¢ Moz i
szeregowe polaczonych szeregowo otrzymaé mozna sumujgc

napigcia w punktach zatamania charakterystyk tych
elementow.

Ciaglos¢ napiecia na

Continuity of

Voltage on a capacitor is always continuous, even though
the current may be discontinuous.
Napigcie na kondensatorze jest ciggta funkcja czasu, prad

kondensatorze capacitor voltage moze by¢ funkcja nieciagla. W szczegdlnosci:
In particular: u.(0_)=u.(0,)=U,,.
Current through a coil is always continuous, even though
the voltage may be discontinuous.
Ciaglos¢ pradu na Continuity of Prad cewki jest ciaggla funkcja czasu, napigcie moze by¢
cewce inductor current

funkcja nieciagla. W szczegolnosci:

In particular: i, (0_ ) =i, (0,)=1,.

Czas propagacji

Line propagation
time
T

Time of propagation of a signal from the line input to the
output or in the reverse direction, 7=1/v.

Czas propagacji sygnatu od wejscia do wyjscia linii.

Czestotliwos¢

Frequency
f,o

Frequency of oscillations in a periodic (sinusoidal)
waveform,
Czgstotliwos¢ fali sinusoidalnej,
f=1/T
Its unit is hertz [Hz] =[1/s].
Radian (angular) frequency,
Czestotliwos¢ katowa,
w =27
Its unit is [rad/s].

Czestotliwos¢ drgan
wlasnych

Undamped natural
frequency

See Resonant frequency
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Polish English Description (opis)
The point where the asymptotic curve for its logarithmic
o Cut-off or break or | gain exhibits a sharp change in a slope.
Czerjr(])it(lzlzwn(;sc corner frequency | punkt, w ktorym nastepuje nagla zmiana nachylenia
g o, charakterystyki amplitudowej w skali logarytmicznej.
See High/Law Pass Filter
Half-power Frequency at which the magnitude response is 1/~/2
Czestotliwosé frequency times the maximum.
graniczna o, o, Czestotliwosé, dla ktérej wzmocnienie wynosi 1/+/2
warto$ci maksymalnej.
Frequency at which a two-terminal circuit becomes
purely resistive. In the series or parallel RLC circuit, also
Czestotliwosé f?:;ﬁzzg; frequency of the undamped transient response:
rezonansowa » w, =1/-/LC.
' Czestotliwos¢ dla ktorej dwojnik znajduje sie w
rezonansie.
Frequency dependent relation, in both gain and phase,
Frequency b_etween the input pha}sor_signal and the outp_ut phasor
Czestotliwo$ciowa Response signal - transf?r.functlon in Tr(.equency—.domaln
funkcja przejscia K(jo) Funkcja przejscia dla wartos$ci symbolicznych

skutecznych
K(jo) = K(o)exp[jp(@)] =Y (jo)/ X(j).

Transfer function

Czestotliwosciowa in frequgncy See Frequenc
funkcja przejscia domain quency response
K(jw)
Four terminal element identified by two distinct pairs of
Czwoérnik Two-port terminals - ports.
Element o dwoch wrotach.
. log-based measure of gain.
Decybel Decibel g g
dB See Logarithmic gain
Frequency band whose endpoint is a factor of 10 larger
Dekada Decade than |t§ begmnlng. p0|,nt.. , ’ B
dec Przedziat czestotliwosci, ktorego gorna wartosé
graniczna jest 10 razy wigksza od warto$ci dolne;j.
Dirac delta
Delta Diraca function See Unit Impulse function
5(t)
Line length Distance from the line input to its output.

Dhugos$¢ linii

Odlegtos¢ od poczatku do konca linii.
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Polish English Description (opis)
Measure of the circuit energy storage property in relation
to its energy dissipation property.
Miara zdolno$ci obwodu do gromadzenia energii w
relacji do zdolnosci do jej rozpraszania.
Dobroé Quality factor Capacitor: Q. (w) =R.aC.
kondensatora, of Inductor: Q, (@) =wlL/R,.
cewki lub obwodu o | practical capacitor | Bandpass circuit:
wlasnosciach practical coil | Obwod o whagciwosciach selektywnych:

selektywnych

bandpass circuit

maximum energy stored
totalenergy dissipated percycle

Series RLC circuit: Q=1/R+/L/C
Parallel RLC circuit: Q =1/G~/C/L

Q=2x

Element/circuit connected at a pair of terminals,

Dwéinik Two-terminal | described by a single | —U relationship.
ni . .
wal element or circuit | Element/obwdd dwuzaciskowy.
See Element law...
Mathematical domain where the set of possible values of
. AC variable (current or voltage) is expressed in terms of
Dziedzina Frequency ( ge) P
. . |frequency.
czestotliwosciowa | (phasor) domain

Dziedzina, w ktorej prady i napigcia wyrazane sg w
funkcji czgstotliwoscei.

Dzielnik napiecia

Voltage divider

Circuit of a series of resistors that divides the input
voltage U by the ratio of the R; to the total series
resistance

Obwod zbudowany z n opornikow potaczonych
szeregowo, dzielacy napigcie jak ponizej:

R => R, U =UR/R,.

i=1

Circuit of n parallel resistors that divides the input
current | so that
Obwod zbudowany z n opornikow potaczonych

Dzielnik pradow Current divider rownolegle, dzielacy prad jak ponizej:
I, =1-G, /Zn:Gi
i=1
Dzul J(?]ul See Energy
Artificial or

Elektromagnes

temporary magnet

See Electromagnet or solenoid coil
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Polish English Description (opis)

Wire wound around the soft steel alloy core with the total
number of z turns. It exhibits the magnetic field of the
permanent magnet when energized, i.e. can be called the

Electromagnet or o
temporary or artificial magnet.

Elektromagnes

solenoid coll Cewka 0 z zwojach, nawinig¢ta na rdzen stalowy —
zachowuje si¢ jak magnes staty gdy plynie przez nig
prad.
Physical phenomena arising from the existence of
.. . interaction of electric charges.
Elektrycznosé¢ Electricity

Zjawiska jakie wystepuja w wyniku oddziatywania na
siebie tadunkow.

Element that may deliver energy to a circuit.

Element aktywn Active element
ywny Element, ktory jest zrodtem energii.

Total energy supplied to it from the rest of the circuit is
always nonnegative. Such element cannot deliver net
Element pasywny Passive element | power to a circuit.

Element, ktory rozprasza lub magazynuje energie, nie
zasila obwodu.

Ability to perform work.
Zdolno$¢ do wykonania pracy.
Units: joul [J]; wattsecond [W -s] ; [cal] calory,

YJ]=1[W -s] =0.239 [cal].
Instantaneous energy dissipated/supplied:
Energia chwilowa dostarczana/pobierana:

t
e ) Energy W= I p dt
nergia W or w 5
Instantaneous energy stored:
Energia chwilowa zmagazynowana w cewce,
kondensatorze:
. Li?
coil: w, =—5,
2

cul

capacitor: W, =

Waves traveling from the line input to its output.

Fale postepujace Forward waves
posteptia Fale wedrujace od poczatku linii do jej konca.

Reflected waves traveling from the line output to its
Fale powrotne Backward waves | input.
Fala odbita od konca linii.

_ _ Plots of |U, (jw)| and |1, (j| with their maxima and
Fale stojace Standing waves

minima occurring at fixed locations along the line.
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Polish

English

Description (opis)

Fale wedrujace

Traveling waves

Initial and reflected waves traveling from the line input
to its output — forward waves and reflected waves
traveling in the opposite direction — backward waves.
Fala pierwotna i fale odbite, od poczatku i od konca linii.
The reflected waves interference can be disregarded if
time parameter(s) of a transmitted signal is(are) much
greater than the line propagation time 7 .

Efekt naktadania sie fal odbitych na fale pierwotna
mozna pomingc¢ jesli czas charakterystyczny
trsansmitowanego sygnatu jest znacznie wiekszy od
Czasu propagacji z.

Farad

Farad
F

See Capacitance

Faza poczatkowa

Initial phase angle

a;, O,

See Alternating current

Filtr dolno-
prezepustowy

Low-Pass Filter
(LPF)

Filter that passes all frequencies up to the cut-off
frequency @, and rejects all frequencies above it.

Filtr przepuszczajacy wszystkie czestotliwosci az do
czestotliwos$ci graniczne;.

Filtr elektryczny

Electric Filter

Circuit designated to provide a magnitude gain or loss
over a predefined range of frequencies.

Obwod (czwornik) przepuszczajacy lub thumigcy sygnat
wejsciowy w zadanym pasmie czgstotliwosci.

Filtr gérno-
przepustowy

High-Pass Filter
(HPF)

Filter that passes all frequencies above the cut-off
frequency @, and rejects all frequencies below the cut-
off frequency.

Filtr, ktory przepuszcza wszystkie czgstotliwosci
powyzej czestotliwosci graniczne;j.

Filtr pasmowo-
przepustowy

Band-Pass Filter
(BPF)

Circuit that passes unimpeded all frequencies in a
selected range of frequencies and rejects all frequencies
outside this range.

Obwod (czwornik), ktory przepuszcza czestotliwosci z
zadanego pasma a hie przepuszcza wszystkich
pozostatych.

Filtr pasmowo-
zaporowy

Band-Stop Filter
(BSF)

Circuit that rejects all frequencies in a selected range of
frequencies and passes unimpeded all frequencies outside
this range.

Obwod (czwornik), ktory nie przepuszcza czgstotliwosci
z zadanego pasma a przepuszcza wszystkie pozostate.
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Polish English Description (opis)
Unit Impulse Infinit.ely short pulse of i_nfi_ni_tely large magnit_ude - itsj
o (Dirac delta) value is zero fgr t#0,infinityat t =0 and its area is
Funkcja impulsowa function equal to 1. Unit: [1/s].
5(t) Nieskonczenie krotki impuls o nieskonczonej
amplitudzie i polu jednostkowym.
Funkcja liniowo Ufr::lg;nr:p r(t) =tl(t), an integral of the unit step function.
narastajaca r(t) calka skoku jednostkowego.
Element or string of two-terminal elements connected
between two nodes.
i Number of circuit branches is denoted as b.
Galaz Branch ) i
Element dwuzaciskowy lub kilka potaczonych w szereg,
wlaczony miedzy dwa wezty. Liczba wszystkich gatezi:
b.
Three voltage sources of the same frequency and
magnitude, and the phase shift or 120° between any two
Generator Three-phase | of them, connected in the form of Y or A.
trojfazowy source Trzy zrédia napiecia sinusoidalnego o tej samej

czestotliwos$ci, amplitudzie i przesunigciem 120° migdzy
kazda para.

Graf obwodu

Circuit graph

Graphical representation of the circuit structure
(component interconnections).

Graph consists of branches connected in nodes.
Graficzne zobrazowanie struktury obwodu (bez wnikania
w rodzaj elementow) — b gatezi potgczonych w n
weztach.

Tolerance margins

Margins specifying the allowed (by the design) variation
of parameter X from its nominal value X" :

Granice obszaru of circuit Marginesy odchytek parametru (gornej i dolnej) od
tolerancji parameter wartosci nominalnej, dopuszczalnych tolerancjami
X7, X7 projektowymi:
X"=X"-AX X"=X"+AX.
Henr
Henr 4 Y See Inductance
Hertz
Hertz Ly See Frequency
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Polish English Description (opis)
The algebraic sum of currents (constant or varying in
time, in the s-domain or in the phasor-domain) entering
and leaving the node (cutset) equals zero,
) “+” 1f current arrowhead is directed to the node,
Kirchhoff’s «_» otherwi
I prawo Kirchhoffa | Current Law — © e_rWISC' ) )
KCL Algebraiczna suma pradow (stalych, zmiennych,

operatorowych, symbolicznych) wptywajacych do
odciecia jest rowna zero,

1T jesli strzatka pradu do odciecia, ,,— gdy od
odcigcia.

Idealne (niezalezne)
zrodlo napieciowe

Independent ideal
voltage source

E ore

Source that provides a voltage independent of other
circuit variables, (electromotive force — emf).
Zrédto wymuszajace napiecie niezalezne od reszty
obwodu, do ktorego zostato dotaczone (sita
elektromotoryczna — SEM).

Idealne (niezalezne)
zr6dlo pradowe

Independent ideal
current source

Source that provides a current independent of other
circuit variables.
Zrédlo wymuszajace przeptyw pradu niezaleznego od

Jor j reszty obwodu, do ktérego zostato dotgczone (sita
pradomotoryczna — SPM).
The algebraic sum of voltages (constant or varying in
time, in the s-domain or in the phasor-domain) around a
loop (any closed path) equals zero,
“+” if voltage arrowhead is directed clockwise,
Kirchhoff’s « » .
Il prawo Kirchhoffa| Voltage Law — B Othe.rwme' ) )
KVL Algebraiczna suma napie¢ (statych, zmiennych,

operatorowych, symbolicznych) zamknigtej $ciezki
(oczka) jest rowna zero,

1+ jesli strzatka zgodna z ruchem wskazowek zegara,
. gdy przeciwna.

Impedancja falowa

Characteristic
impedance
(resistance)

Z(s)or Z(jw)

(0)

Z(s) =/(R+sL) /(G +5sC)
For a distortionless line:
Dla linii bezstratnej:

Z(s)=p=+L/C =const, in [Q].

Impedancja
operatorowa

Impedance in s-
domain

Z(s)

Ratio of the voltage U (S) at a pair of element terminals
to the current 1(s) flowing into the positive voltage
terminal.

Stosunek operatorowej warto$ci napigcia na zaciskach
dwdjnika do pradu,
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Polish English Description (opis)

Ratio of the phasor voltage U (jw) at a pair of element
Impedance terminals to the phasor current 1(jw) flowing into the

Impedancja in phasor-domain positive voltage terminal,
symboliczna Z(jo) Stosunek warto$ci symbolicznej skutecznej napiecia na
zaciskach dwojnika do pradu,

Z(jo) = R(w) + X (@) = Z(w)exp ¢p(®) .

Impedance seen at port 1 (input) of a possibly terminated

Impedancja Input impedance | two-port.
wejSciowa Z, (jo) Impedancja widziana z zaciskow wejsciowych
czwornika.

Impedance of the two-terminal circuit when internal
Equivalentor | independent source is deactivated,

Impedancja total or Thevenin | a|so impedance that appears in the Thevenin equivalent
zastepcza lub or internal of a practical source
wewnetrzna impedance Impedancja widziana z zaciskow obwodu
Z,(jo) dwuzaciskowego po wyzerowaniu jego zrodet,

rezystancja schematu zastgpczego Thevenina.

Function of time, built of step functions, that is zero for

t <0, has magnitude 1 for 0 <t <7, and is equal to

Impuls prostokatny Pulse
zerofor t> 7.

Funkcja r6zna od zera w przedziale od 0 do .

Ratio of the magnetic flux that passes perpendicularly

Magnetic flux through an area S to this area.
Indukcja

density Stosunek strumienia przenikajacego prostopadle dany
magnetyczna B przekrdj do tego przekroju.
Unit: tesla [T]=[V -s/m?].
Indukcyjnosé Stray or parasitic | Unwanted inductance of element connections.
doprowadzen inductance Pasozytnicza indukcyjnos$¢ doprowadzen elementu.
Coefficient of proportionality relating current passing
through one coil and flux caused by this current in the
second (coupled) coil:
Indukeyjnosé Mutual inductance | Wspotczynnik proporcjonalnosci migdzy pradem jedne;j
wzajemna M cewki a strumieniem jaki ten prad wywoluje w cewce
sprzgzone;j:
M =k,LL,

k — coupling coefficient (wspotczynnik sprzgzenia)
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Constant of proportionality interrelating current passing a
coil and the total flux:
Wspodtezynnik proporcjonalnosci pomiedzy pradem
Induktancja Inductance ptynacym przez cewke a strumieniem catkowitym jaki
L ten prad wywoluje:
¢, =Li;L=2"/R,
Unit: henry [H] =[V s/A].
Two-terminal energy storage element, described by the
equation: Q =CU .
Kond c . Element dwuzaciskowy magazynujacy energi¢ (tadunek).
ondensator apacitor Jego rownanie i-u oraz energia:
Its law and energy stored are:
i=Cdu/dt, w=Cu?®/2.
Conductance
Konduktancja in phasor-domain | See Admittance in phasor-domain
G(w)
For ferromagnetic materials, B= f (H).
For diamagnetic or after linearization of the curve:
Dla diamagnetyka po linearyzacji krzywej
Magnetization or | B = x, 1,H
Krzywa B-H . - .
. -A curve Uy - magnetic permeability of the material,
magnesowania i .
B=1f(H) przenikalno$¢ magnetyczna materiatu
Ly = 47107 [V -sIA-m]
magnetic permeability of the free space.
przenikalno$¢ magnetyczna w prozni
Coulomb
kulomb c See Charge
Fundamental unit of matter responsible for electric
phenomena, Q = Q" is the positive charge, Q™ is the
negative charge.
FEadunek Charge Like charges repel and unlike charges attract each other.
Qorq Podstawowa jednostka materii odpowiedzialna za
zjawiska elektryczne. Mamy tadunki dodatnie i ujemne:
roznoimienne odpychaja si¢, jednoimienne przyciagaja.
Units: coulomb [C] =[A-s].
o . Line with no energy loss, R=0, G=0.
Linia bezstratna Loss-less line

Linia, w ktorej nie ma strat energetycznych.

Linia dluga

Transmission line

Two-wire line connecting the input circuit with the
output circuit.
Linia dwuprzewodowa taczaca zrodlo z obcigzeniem.
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Linia dopasowana
na wej$ciu

Matched generator
line

Line with the generator (input) resistance equal to the
characteristic resistance, for such line M=0.

Linia, ktdrej oporno$¢ charakterystyczna rowna jest
opornosci wewnetrznej generatora.

Linia dopasowana
na wyjsciu

Matched load line

Line with the load (output) resistance equal to the
characteristic resistance, for such line N=0.

Linia, ktdrej oporno$¢ charakterystyczna rowna jest
opornos$ci obcigzenia.

Linia
nieznieksztalcajaca

Distortionless line

Line with parameters that satisfy
Linia, ktorej parametry spetniaja zaleznosé¢

R/L=G/C.

Liniowos$¢

Linearity

When responses to inputs X,, X, , each acting alone, are
Y,,Y,, then the response to the scaled inputs

K, X;, K, X, applied simultaneously is
Jesli odpowiedzi na wejsciowe sygnaly X, X, dziatajace
niezaleznie sg Yy, Y,, t0 po ich przeskalowaniu i podaniu
na wejscie jednoczesnie

Y=Y +Y, =K X, +K,X,.

Linearity implies both superposition and proportionality.
Liniowo$¢ implikuje tak superpozycje jak i
proporcjonalnos$¢.

Liniowy obwod

Linear resistive

Circuit consisting of only linear resistors and
independent sources. Such circuit is a reciprocal circuit.
Obwod zbudowany z liniowych opornikdéw i zrodet

rezystorow circuit i X ,
y y niezaleznych. Taki obwod podlega zasadzie
wzajemnosci.
Macierz Conductance
. matrix See Nodal analysis
konduktancyjna G
Maci Conductance Matrix that relates the terminal currents with the terminal
aclerz matrix of m- | voltages:
konduktancyjna . : . . S . .
. . . terminal element | Macierz wigzaca pracy zaciskowe i napigcia zaciskowe:
wielobiegunnika
G 1=G-U.
Permanent Magnet made of the iron compound magnetite (Fe;O,).

Magnes trwaly

(natural) magnet

Magnes zbudowany z magnetytu.
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Metoda potencjalow
wezlowych

Nodal analysis

KCL equations with currents expressed by node voltages
and branch parameters:

Roéwnania [ prawa Kircchoffa, w ktorych prady
wyrazono przez potencjaty wezlowe i parametry uktadu:

GV =1,
G — conductance matrix (macierz konduktancyjna)
I, - vector of source currents of individual nodes

wektor pradow zrodtowych poszczegolych weztow.

Moc

Power
Porp

Energy per unit period of time,
Energia przypadajaca na jednostke czasu,

t
p=dw/dt; w=[ pdt.
0

Inthe DCcase: P=UIl; w=UI-t.
Unit: watt [W] =[J/s].

Moc bierna

Reactive power

Q

Power oscillating between the circuit reactive elements
(capacitors and inductors) and the power source,
Q=Ulsing.

Moc oscylujaca migdzy reaktancjami (cewka,
kondensator) a zrodiem.

Unit: var, volt-ampere-reactive [VAr].

Moc chwilowa

Instantaneous
power

p

Product of the voltage u and the current i flowing into the
positive voltage terminal of two-terminal element,
p=ui.

lloczyn wartosci chwilowych pradu i napigcia dwojnika.

Moc czynna

Average or real
power
P

Average value of the instantaneous power in the AC
circuit. Represents the power delivered by the source or
absorbed by the circuit. Unit: watt [W].

Wartos¢ srednia mocy chwilowej. Moc, ktéra odbiornik
pobiera ze zrodta i zamienia na pracg lub ciepto.

}
P :1/Tj pdt =Ul cos g,
0

cos @ = pf is the so called power factor.

Moc pozorna

Apparent power
S

Power that defines the maximum capacity of the

sinusoidal source, S =P =Ul .

|pf=1
Moc okreslajaca wydajno$¢ zrodta (moc znamionowa).
Unit: volt-ampere [V -A].
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Moc zespolona

Complex power

Sum of the average power and the reactive power
expressed as a complex number,
Suma mocy czynnej i biernej, przedstawiona jako liczba

S(jw) zespolona.
S(jw) = P(@) + JQ(@) = S(w)exp[ jp(w)]
Approximation of a real circuit, interconnection of ideal
elements (practical elements are modeled by ideal
Model obwodu Circuit model elements).

Aproksymacja obwodu rzeczywistego, w ktorym
elementy rzeczywiste reprezentuja modele zbudowane z
elementow idealnych.

Magnitude or

Magnitude (modulus) F of a complex number:

Modut Modut liczby zepolone;j:
modulus .
F=Fe'.
Case when deviation of circuit variable, caused by the
] design tolerances, reaches its maximum AF__, .
Najgorszy Worst Case Wi ; ; o’ ;
przypadek Przypadek najwigkszej odchytki funkcji uktadowej od
warto$ci nominalnej, spowodowanej tolerancjami
projektowymi parametréw obwodu.
Work required to move a unit charge Q =1 [C] from
Voltage one point A to another B,
Napigcie (potential Praca niezb¢dna do przemieszczenia fadunku
(roznica difference) jednostkowego z punktu A do punktu B,
potencjalow) U. =W
Uoru AB AB‘ 0’
Unit: volt [V].
Nabiccie bi Open-circuit Voltage that appears between two terminals of a circuit
apllzczl:mleg“ voltage or element in the open-circuit condition.
E Napigcie na zaciskach dwdjnika dla biegu luzem.

0

Napiecie fazowe

Phase voltage
V.

Voltage appearing at a phase impedance. For the four-
wire system, the voltage between line 1 or 2 or 3 and the
neutral.

Napigcie na impedancji fazowej. Dla uktadu cztero-
przewodowego, napi¢cie mi¢dzy przewodem fazowym a
przewodem zerowym.

Napiecie lub prad
symboliczny

Phasor voltage or
current

U(jo) or 1(jo)

Complex number associated with sinusoidal voltage or
current,

Liczba zespolona opisujaca sinusoidalny prad lub
napigcie.

U(jo) =U(w)exp a, (w) or
I(jo) = (@) exp o (w)
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Line (-to-line) | Voltage between any two lines i and j, except the neutral
Napiecie miedzy- .
pie eczy voltage one. For wye connection: U = +/3E .
przewodowe U
ij Napigcie migdzy przewodami fazowymi.
Vector uniquely defining the electric field in its every
o o point,
Natezenie pola EI?Ct”C _ﬁeld Wektor jednoznacznie okreslajacy pole elektryczne w
elektrycznego intensity

kazdym jego punkcie,
K =F/Q.Unit: [N/C]=[V/m].

Magnetic field

Force per unit pole (magnetic body), number of ampere-
turns per length of magnetic element
Sita dziatajaca na dipol jednostkowy, stosunek

L. intensity
Natezenie pola (magnetizing amperozwojow do dtugosci elementu obwodu
magnetycznego force) magnetycznego
H H=F /IM=12z/l
Unit: [N/Wb] =[At/m].
Neper .
Neper Nl;) See Propagation constant

Nieliniowy obwod

Noninear resistive

Circuit that contains at least one nonlinear resistor.
Obwadd zawierajacy przynajmniej jeden element

rezystorowy circuit nieliniowy.

Load that has three identical impedances connected in a
Obciazenie Balanced load | Y or A configuration.
symetryczne (circuit) Obciazenie sktadajgce si¢ z trzech identycznych

impedancji skojarzonych w gwiazde lub trojkat.

Obszar sprawnoSci

Acceptability
region

Region in the parameter space R" with boundaries

designated by the design constraints on circuit variables:
min max

FL R

Region w przestrzeni parametréw, ktorego ograniczenia

Wwyznaczone sg specyfikacjami projektowymi.

Obszar tolerancji

Tolerance region
(box)

Parallelepiped in the parameter space R° with planes
parallel with the coordinate axes, designated by the
tolerance margins of all circuit parameters.
Rownolegloscian w przestrzeni parametrow wyznaczony
tolerancjami projektowymi.

Circuit that contains at least one active element,
independent source.

Obwod aktywny Active circuit . L o o .
Obwod zawierajacy przynajmniej jedno zrodto energii
(niesterowang SEM i/lub SPM)
Circuit built of elements as given by the design and
Ly - nominal values of parameters.
Obwéd idealny Ideal circuit

Obwadd podany w projekcie o nominalnych warto$ciach
parametrow.
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Circuit consisting of resistors, capacitors and inductors,
, L that can only store and/or dissipate energy.
Obwod pasywny Passive circuit

Obwod zbudowany z elementéw RLC, ktory moze tylko
rozprasza¢ energie lub/i ja magazynowac.

Obwéd pierwszego
rzedu

First-order circuit

Circuit that contains only one energy storage element,
either capacitor or inductor.

Obwadd zawierajacy tylko jeden element magazynujacy
energie, cewke lub kondensator.

Obwad planarny

Planar circuit

Circuit whose diagram (graph) can be drawn on a plane
without branches crossing each other.

Obwad, ktorego graf mozna tak narysowaé by gatezie sig
nie przecinaty.

Obwod podlegajacy
zasadzie
wzajemnoSci

Reciprocal circuit

Circuit whose node equations have symmetric
conductance matrix, G; =G;.

Obwadd o symetrycznej macierzy konduktancyjne;j.
See Linear resistive circuit.

Obwéd rzeczywisty

Practical circuit

Circuit built of practical elements, with parameters given
by the design tolerances.

Obwadd uwzgledniajacy modele elementow o
parametrach zadanych tolerancjami projektowymi.

Obwéd ttumiony
krytycznie

Critically damped
response

Nonoscillatory response of the RLC circuit, but on the
verge of becoming oscillatory — condition that exists
when two poles of the response are identical.
Aperiodyczna odpowiedZ obwodu RLC, na granicy
odpowiedzi periodycznej — pierwiastek podwojny
odpowiedzi.

Obwod zastepczy

Equivalent circuit

Circuit whose terminal characteristics remain identical to
those of the original circuit. The original circuit can be
substituted by the equivalent without affecting the
voltages and the currents in any attached circuit.

Obwod, dwuzaciskowy, ktorego charakterystyka 1-U jest
identyczna z charakterystykg obwodu oryginalnego. Jego
zastgpienie obwodem zastgpczym nie wptywa na prace
reszty obwodu.

Oczko

Mesh

Loop that does not contain any other loop within it.
Petla, ktora nie zawiera wewnatrz zadnej innej petli.

Odciecie

Cutset

Closed line around one or more nodes, crossing two or
more branches, each branch only once.

Linia zamknigta okalajgca jeden lub wigcej weztow,
przecinajgca dwie lub wigcej gatezi, kazdg tylko raz.
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. Frequency characteristic — ratio of effective values of the
Magnitude . .
output to the input phasor signals,
Odpowiedz response S L
. . . Charakterystyka czestotliwosciowa — stosunek wartos$ci
amplitudowa (gain ratio) . s o
K () symbolicznych sygnatu wyjsciowego do wejsciowego
w
K(w) =Y (w)! X(w)
Inverse transform of the transfer function K(s), output
Odpowied? Impulse response signal of a circuit when the input is the unit impulse, with
. _ no initial stored energy in a circuit.
impulsowa k =k(t) _ - o
Transformata odwrotna operatorowej funkcji przejscia,
odpowiedz uktadu na jednostkowy impuls Dirac’a.
Response to the initial condition, when all source
L Natural or N
Odpowiedz Serodinput excitations are set to zero.
naturalna P Odpowiedz na warunek(ki) poczatkowe, po odtaczeniu
response .
zrodta(et).
Odpowiedz nie Undamped Transient response in LC (resistiveless) circuit.
tlumiona response Odpowied obwodu LC (bezoporowego).
Nonoscillatory response of the RLC - circuit condition
that exists when all poles of the response are real and
Odpowiedz silnie Overdamped distinct.
tlumiona response Aperiodyczna odpowiedz uktadu RLC — warunek
spetniony gdy oba bieguny odpowiedzi sa rzeczywiste i
rozne od siebie.
Periodic response of the 2™ order circuit — condition that
exists when two poles of the response are complex
Odpowiedz stabo Underdamped | conjugates.
tlumiona response Odpowiedz periodyczna obwodu stabo ttumionego, ma
miejsce gdy w odpowiedzi wystepuja dwa bieguny
zespolone sprzezone.
Response to the source excitation, when all initial
Odpowiedz Forced or conditions are set to zero.
wymuszona zero-state response | Odpowiedz obwodu z zerowymi warunkami

poczatkowymi po dotaczeniu zrodta.

Odpowiedz zupelna

Complete response

Sum of natural and forced responses.
Suma odpowiedzi naturalnej i wymuszonej.

Okres oscylacji

Period of
oscillations
T

Time between two subsequent maximum points of a
periodic (sinusoidal) waveform.
Czas pomigdzy kolejnymi maksimami fali sinusoidalne;.

Opor
(przewodnos¢)
krytyczny (a)

Critical resistance
(conductance)

R:(G;)

Resistance (conductance) of the critically damped series
(parallel) RLC circuit:

Opornosc¢ (przewodno$é) krytycznie thumionego
szeregowego (rownolegtego) obwodu RLC:

R, =2JL/C (G, =2JC/L).
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Reluctance or

Parameter describing linear magnetic element, ratio of
the magnetic voltage drop to the flux flowing

] magnetic Parametr opisujacy liniowy element magnetyczny
Opor magnetyczny resistance R =1/ 1,5)
Ry | - mean length of a core, S - its cross-section area.
srednia droga magnetyczna, pole przekroju
Element whose primary purpose is to introduce
Opornik Resistor 'resistan'ce, i_.e. to _impede current f|OVY and voltf?lge drop
into a circuit. Resistor converts electric energy into heat.
Element zamieniajacy energi¢ elektryczng na ciepto.
Coefficient of proportionality between the voltage and
Resistance the current of linear resistor. Unit: ohm [Q]=[V/A].
Opornosé (opor) , . . L
R Wspodtezynnik proporcjonalnosci miedzy pradem a

napig¢ciem na liniowym oporniku.

Opornosé zastepcza
lub wewnetrzna

Equivalent or
total or Thevenin
or internal
resistance

Rt

Resistance of the two-terminal circuit when all internal
independent sources are deactivated,

also resistance that appears in the Thevenin equivalent of
a practical source

Opornos¢ widziana z zaciskow obwodu dwuzaciskowego
po wyzerowaniu jego zrodet, rezystancja schematu
zastgpczego Thevenina.

Parametr (stala)

Circuit parameter

Parameter that defines the circuit element, such as
resistance R, capacitance C, inductance L, etc.

(constant) .. X
obwodu P or X Parametr definiujacy element, np. rezystancja,
pojemnos¢, itd.
b X Ui . Per unit length parameters:
. arame ry_ .. Ine primary Parametry na jednostke dtugosci:
jednostkowe linii parameters

R [Q/m], G [S/m], L [H/m], C [F/m].

Parametry wtérne
linii

Line secondary
parameters

Functions of primary parameters, such as: characteristic
impedance, propagation constant, etc.

Parametry charakterystyczne linii, wyrazone przez
parametry jednostkowe.

Pasmo
czestotliwosci

Bandwidth
Ao

Range of frequencies that lie between the two
frequencies where the magnitude of the gain is equal to
1/~/2 of the maximum.

Pasmo czgstotliwosci wyznaczone czgstotliwos$ciami, dla

ktorych wzmocnienie czwoérnika wynosi 1/+/2
maksimum.

Petla

Loop

Closed path formed by two or more branches.
Sciezka zamknigta zbudowana z dwoch lub wiecej
galezi.
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Constant of proportionality between the capacitor charge
) and the voltage: Q=CU .
] ., Capacitance ) i _ L .
Pojemnosé c Wspolczynnik proporcjonalnosci migdzy tadunkiem
zgromadzonym w kondensatorze a napigciem na nim.
Unit: farad [F]=[A-s/V].
. L Stray or parasitic | Unwanted capacitance that exists between element
Pojemnosé . . .
. or shunting terminals or between a terminal and ground.
bocznikujaca

capacitance

Pasozytnicza pojemnos¢ migdzy zaciskami elementu.

Pojemnos$é miedzy
wezlem a masg

Stray capacitance

Unwanted capacitance between a circuit node (element
terminal) and ground.

Pasozytnicza pojemnos¢ miedzy zaciskiem elementu a
masg uktadu.

Arrangement of elements so that each element has the

Polaczenie .| same voltage appearing across it.
i Parallel connection ) , .

rownolegle Potaczenie, dla ktorego wszystkie elementy podtaczone
$g na to samo napigcie.
Circuit of a series of elements connected so that the same

Polaczenie . . current passes through each element.

Series connection ) )
szeregowe Obwadd zbudowany z elementow polaczonych tak by

ptynat przez nie ten sam prad.

Pole elektryczne

Electric field

Region in space wherein a test charge Q experiences an
electric force F,.

Przestrzen, w ktorej na umieszczony tadunek dziata sita.

Pole magnetyczne

Magnetic field

Region in space where a force F acts upon a magnetic
body M.

Przestrzen, w ktoérej na umieszczone dipole magnetyczne
dziatajq sity.

Voltage between the reference point P and the other one

Potential A
Potencjal (nO(\j/e voltage) Napigcie migdzy weztem odniesienia a danym weztem.
orv
Va=Up:i Upg =V,y = Ve
Rate of flow of charge, | = AQ/At or i =dq/dt.
Current ., .
Prad Lori Szybkos¢ przeptywu tadunkow.
Units: ampere [A]=[C/s].
Prad Conventional Flow of positive charges.

konwencjonalny

current flow

Przeptyw tadunkéw dodatnich.

Prad sinusoidalny

Alternating current
i

Sinusoidal time-varying current
I=1,sin(et +¢;),

|, - amplitude or peak value,

m

@ -angular frequency, «; - initial phase angle.
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Direct current Current constant in time.
Prad staly (BC)

Prad nie zmieniajacy si¢ w czasie.

Prad zwarcia

Short-circuit
current

J

S

Current passing an active element (practical source) in
the short-circuit condition.
Prad ptynacy przez zaciski dwojnika w stanie zwarcia.

Prawo Faradaya

Faraday’s law

When the magnetic flux linking a coil changes, a voltage
proportional to the rate of flux change is induced in the
coil:

Zmiana strumienia magnetycznego przenikajacego
cewke powoduje wyindukowanie napigcia
proporcjonalnego do szybkosci zmian:

u=zdg/dt=dg /dt.

The voltage across the terminals of a resistor is related to
the current flowing into the positive terminal as:

Prawo Ohma Ohm’s Law U=RI.
Napigcie na zaciskach opornika proporcjonalne jest do
pradu, ze wspotczynnikiem R.
. Propagation
Predkos¢ . . .
o . velocity See Propagation function
rozchodzenia sig¢ fali v

When an input to a linear resistive circuit is acting alone,
then scaling the input by a constant K implies that the
response is also scaled by K.

Proporcjonalnos$é¢ Proportionality | Dla pojedynczego pobudzenia ukadu, jego przemnozenie
przez stata K powoduje przemnozenie odpowiedzi przez
tg sama stala.

See Linearity
Ratio n =2, /z,, where z, and z, are turns in
Turns ratio i i i
Przekladnia secondary and primary coil of an ideal transformer.
n Stosunek liczby zwojow uzwojenia wtdrnego do liczby
ZWO0jOW uzwojenia pierwotnego.
) Magnetic
Przenikalnosc permeability | See Magnetization curve
magnetyczna
Hy
Phase angle between an element voltage and its current,
e Phase shift with current as the reference, ¢ = o, — ¢; .
Przesuniecie fazowe @

Przesunigcie fazowe miedzy napigciem na elemencie a
pradem, liczone od pradu.

Przesuniecie fazowe

Phase shift per
distance

B

See Propagation constant
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For a star connection, line connecting a common junction
, . point of a generator and a load star.
Przewéd zerowy Neutral line . . . _ ,
Dla skojarzenia gwiazda-gwiazda, przewdd taczacy
srodki gwiazd.
Reciprocal of the resistance, G =1/R..
Przewodnosé Conductance . , .
(konduktancja) G Odwrotnos$¢ opornosci.
u N
) Unit: siemens [S] =[A/V].
Pulsacja Angular (radian)
(czestotliwo$¢ frequency See Alternating current, Frequency
katowa) w
The point on an element | —U characteristic at which
. the circuit Kirchhoff’s laws are satisfied. The coordinates
Operating or t this point are th ti ltage U ? and th
. at this point are the operating voltage and the
Punkt pracy Q-point .p Qp g g
(Quiescent point) operating current |~ .
Punkt na charakterystyce elementu, dla ktérego spelnione
sg w obwodzie prawa Kircchoffa.
. Reactance . )
Reaktancja X () See Impedance in phasor-domain

Regula prawej dloni

Right hand rule

If a current-carrying conductor is grasped in the right
hand with the thumb pointing in the direction of the
conventional current, the fingers will then point in the
direction of the magnetic lines of flux.

Jesli obja¢ przewdd prawa dionig tak by kciuk
wskazywat przeplyw pradu, to pozostate palce wskaza
kierunek wytworzonego strumienia magnetycznego.

Condition in a two-terminal circuit, occurring at the
resonant frequency, when the equivalent impedance
Z(jw) or admittance Y (jw) becomes a real number

Rezonans Resonance (circuit becomes non-reactive).
Stan pracy dwdjnika, w ktorym impedancja zastepcza
posiada tylko czes$¢ rzeczywista (urojona jest rowna
Zero).
Resistance
Rezystancja in phasor-domain | See Impedance in phasor-domain
R(w)

Rownanie elementu

Element law or
i—u
relationship

Graphical or functional representation of a two-terminal
element:

Graficzny lub algebraiczny opis element
dwuzaciskowego.

i=f(u),u="f"().
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i , Circuit with a resistor, capacitor and inductor in parallel.
Roéwnlegly obwod | Parallel resonant , , .
L Obwadd, w ktorym element R,L i C potaczone sa
rezonansowy circuit

rownolegle.

Rozwarcie, bieg

Open-circuit (oc)

Condition that exists when the current between two
terminals is zero, irrespective of the voltage across the
terminals.

luzem
Stan pracy, przy ktérym zaciski dwdjnika sa rozwarte =
nie ptynie przezen prad.
Drawing that shows schematically the inter-connection
of circuit components represented by their graphic
Schemat obwodu Circuit diagram | standard symbols.
Schemat potgczen elementéw obwodu, z zachowaniem
standardowych oznaczen.
Independent current source J, or J,(jw) in parallel
Schenl\llat tzastepczy Norton equivalent with a conductance G, or admittance Y, (j®) .
ortona Zrédto pradowe (prad zwarcia) potaczone rownolegle z
oporno$cig wewnetrzna.
Independent voltage source E, or E (jw) in series
Schemat zastepezy Thevenin with a resistance R, or impedance Z,(jw)
Thevenina equivalent Schemat zastepczy powstaly z szeregowego potaczenia
SEM biegu luzem z opornosciag wewnetrzng dwojnika.
Siemens
Siemens S See Conductance
Sita Electromotive

elektromotoryczna

force (emf)

See Independent ideal voltage source

Magnetomotive

Product of the current | passing through a coil and

Sita number of itsturns: F=1-z.
force (MMF) - .,
magnetomotoryczna E lloczyn pradu ptynacego przez cewke i liczby zwojow.
Unit: ampere-turns [At].
Individual phase windings/loads are joined in a common
Skojarzenie w Star or wye (YY) |junction point. Wye (YY) connection in case of a three-
gwiazde connection phase system.

Wszystkie fazy majg wspolny zacisk.

Skojarzenie w

Mesh or delta

Individual phase windings/loads are connected to form a
closed path. Delta (A) connection in case of a three-phase

trojkat ( A) connection | system.
Wszystkie fazy tworza oczko.
Dimensionless function of time that is zero for t <0
Unit Step function | 5n4 unity for t>0.
Skok jednostkowy 1(t) Bezwymiarowa funkcja przyjmujaca wartos¢ 1 dla

czasoOw wigkszych od 0, warto$¢ 0 dla pozostatych
cZasow.
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Ratio of the power delivered to the load P, to the power
supplied by the source Py :
S;l)’;zvkv;nzoéc’ ;:.Zg Efficiency of Sto;::vzi?ozezo;iszgej przez odbiornik do mocy
P YW power transfer WY 1P ’

mocy

n=R/P. =R /(R +R,).
At the maximum power transfer: 7% =50% .
50% w warunkach dopasowania energetycznego.

Sprzezenie idealne

Unity coupling

Coupling with k =1.
Sprzgzenie ze wspoczynnikiem jednostkowym.
See Mutual inductance

Stala czasowa

Time constant
T

Parameter of exponentially decaying or rising response.
After one time constant the response drops to ~ 38% of
its initial value or rises to =~ 62% of its end value,
Parametr krzywej wykladniczej. Po uptywie jednej stalej
czasowe] krzywa zanika do 38% wartosci poczatkowe;j
lub narasta do 62% warto$ci koncowe;.

for RL circuit: T=L/R,,
for RC circuit: T =R,C.

Stala propagacji

Propagation
constant

y(s)or y(jo)

7(s) = /(R +5L)(G +sC)

For the distortionless line:

Dla linii bezstratnej:

y(S)=a+s/vor y(jo)=a+ |f

a =+/RG - attenuation constant
thumiennosé

in [1/m] or neper per meter [Np/m],

v =1/+/LC - propagation (phase) velocity
szybkos$¢ propagacji

in [m/s],

L =~ LC =@/ v - phase shift per distance

przesunigcie fazowe.

Strumien calkowity Flux linkage See Total flux
The total flux linked by the z turns of the cail,
Total flux or L .
) Iloczyn strumienia i liczby zwojow,
Strumien calkowity flux linkage
o b, =1P.
t

See Magnetic flux
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Total number of lines of magnetic force
®=B-S

Strumien Magnetic flux Unit: weber [Wb] =[V -s].

magnetyczny D or ¢
See Magpnetic flux density
When a number of inputs are applied simultaneously to a
linear circuit, the response is the sum of responses due to
each input acting alone.

Superpozycja Superposition | W liniowym uktadzie o wielu pobudzeniach odpowiedz
mozna wyznaczy¢ sumujac odpowiedzi na kazde z
pobudzen z osobna, przy pozostatych wyzerowanych.
See Linearity

Susceptance
Susceptancja B(w) see Admittance in phasor-domain
Voltage or current varying in time in a manner that
Sygnal elektryczny Electric signal | conveys information.
ulubi uori Napigcie lub prad zmienny w czasie, niosacy pewna
informacjg.
Input signal o
X or X or Excitation of a system.

Sygnal wejsciowy

X(s)or X(jw)

Pobudzenie uktadu.

Output signal

Response of a system.

Sygnal wyjsciow Y or yor
yenal wylsclowy . | Odpowiedz uktadu.
Y(s)or Y(jw)
Svenal zmi Signal variable in | Real valued function of time; waveform that conveys
ygnal zimenny w time information, denoted by a small letter.
czasie . .
f)="f Funkcja czasu, oznaczana mata litera.
Interconnection of electrical elements and circuits to
achieve a desired objective.
System System

Potaczenie elementéw i obwodow dla uzyskania
pozadanego celu.

Szeregowy obwod

Series Resonant

Circuit with a series connection of a resistor, capacitor
and inductor.

rezonansow Circuit
y Szeregowy obwod RLC.
Tesla . .
Tesla T See Magnetic flux density
Attenuation
Thumiennos$¢ constant See Propagation constant
a
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Tlumiona Damped resonant | Frequency of oscillation of the underdamped response:
czestotliwos¢ drgan frequency Czgstotliwos¢ oscylacji odpowiedzi stabo ttumione;j:
wlasnych Wy Wy = ,/(grz —a?.
Ratio of the parameter design deviation to its nominal
) Parameter value:

Tolerancja tolerance Stosunek odchytki projektowej parametru do wartosci
parametru tol . nominalnej:

tol, =AX/X".

Tozsamos$¢ Eulera

Euler identity

el =cosa+ jsina

Conversion of a set of equations from one domain to
another, e.g. from the t-domain to the s-domain.

Transformacja Transformation o : Lo L
Konwersja rownan z dziedziny czasu w dziedzing
operatorowa
When the secondary of an ideal transformer is terminated
in an impedance Z, (jw), the input impedance across

Transformacja Impedance the primary is

impedancji transformation | Impedancja wej$ciowa transformatora idealnego
obcigzonego impedancja Z(jew) Wynosi
Z, (i) =Z,(jw)In’.
Transform of f (t) into its s-domain form

Transformata | Laplace transform N .

Transformata funkcji czasowej
Laplace’a F(s)
F(s)=L{f (1)}
Magnetic circuit with two or more multi-turn coils

Transformator Transformer wound on a common core.

Obwadd magnetyczny o dwoch uzwojeniach.

Model of a transformer with i) resistiveless windings, ii)
unity coupling, iii) primary and secondary reactances
infinitely large compared to impedances connected to the

Transformator .

. Ideal transformer | transformer terminals.
idealny . )
Transformator o bezoporowych uzwojeniach, idealnym
sprzgzeniu i nieskonczenie duzych reaktancjach
(przenikalno$ci magnetyczne;j).
Transformator Step-down Transformer of the turns ratio less than one.
obnizajacy transformer Transformator o przektadni mniejszej od 1.
Transformator Step-up Transformer of the turns ratio greater than one.
podwyzszajacy transformer Transformator o przektadni wigkszej od 1.
Transfer function . . L
(gain) for DC Ratio of the response (output signal) of a circuit to an
Transmitancja g signals excitation (input signal)
K Stosunek odpowiedzi uktadu do pobudzenia DC.
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Transmitancja
operatorowa

Transfer function
in s-domain
K(s)

Ratio of the response (output signal) of a circuit to an
excitation (input signal) expressed as a function of s
(initial conditions are assumed to be zero).

Stosunek operatorowej postaci sygnatu wejsciowego do
sygnalu wejsciowego.

Twierdzenie
Nortona

Norton’s theorem

For any linear active two-terminal circuit its linear
equivalent circuit can be found. This circuit consists of
the parallel connection of a current source and total
(equivalent) conductance (admittance),

the current source is the short circuit current of the
circuit,

the conductance (admittance) is the conductance
(admittance) at the terminals when all the independent
sources are deactivated.

Liniowy dwojnik aktywny zastgpi¢ mozna schematem
zastgpczym Nortona: réwnolegltym potaczeniem SPM
zwarcia 1 oporno$ci widzianej z zaciskow po
wyzerowaniu zrodet.

See Deactivation of independent source, Norton
equivalent

Twierdzenie o
splocie

Convolution
theorem

Convolution of the impulse response and the input
signal:
Splot odpowiedzi impulsowej oraz sygnatu wejsciowego.

K(t) = x(t) = Tk(t —7)X(r)dz = L{K(s)- X(s)}

Twierdzenie
Thevenina

Thevenin’s
theorem

For any linear active two-terminal subcircuit its linear
equivalent circuit can be found. This circuit consists of
the series connection of a voltage source and total
(equivalent) resistance (impedance):

the voltage source is the open-circuit voltage of the
subcircuit

the resistance (impedance) is the resistance (impedance)
at the terminals when all the independent sources are
deactivated.

Liniowy dwdjnik aktywny zastapi¢ mozna schematem
zastgpczym Thevenina: szeregowym potaczeniem SEM
biegu luzem i oporno$ci widzianej z zaciskow po
wyzerowaniu zrodet.

See Deactivation of independent source

Uklad bez strat

Lossless device

Device, such as ideal coil or capacitor or lossless line, in
which energy can only be stored and never dissipated.
Uktad/element, ktory nie rozprasza energii, moze ja tylko

magazynowac, taki jak idealna cewka lub kondensator.
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Uklad catkujacy

Integrator

Circuit (system) that provides integration of the input
voltage (signal). Transfer function of an ideal integrator
IS

Uktad catkujacy sygnal wejsciowy. Funkcja przejs$cia
idealnego uktadu catkujacego:

K(s) =1/sT
T is the integration constant.
T jest stalg catkowania.

Uklad
rozniczkujacy

Differentiator

Circuit (system) that provides differentiation of the input
voltage (signal). Transfer function of an ideal
differentiator is:

Uktad rozniczkujacy sygnat wejsciowy. Funkcja
przejscia idealnego uktadu rézniczkujacego:

K(s) =sT

T is the differentiation constant

T jest stalg r6zniczkowania

Uklad ze stratami

Lossy device

Device that dissipates energy, such as resistor or lossy
two-port (line).

Uktad/element, ktory rozprasza energig, taki jak rezystor,
linia ze stratami.

Coil shown on the left-hand side of the model of a

Uzwojenie Primary coil transformer. Winding connected to a source.
pierwotne (winding) Cewka z lewej strony modelu transformatora — jej
uzwojenie podtaczone jest do zrodta.
Coil shown on the right-hand side of the model of a
L. . Secondary coil | transformer. Winding connected to a load.
Uzwojenie wtorne - . .
(winding) Cewka z prawej strony modelu transformatora. Jej
uzwojenie polaczone jest z obcigzeniem.
Var Var See Reactive power

Wartos¢ skuteczna

Effective or rms
(root-mean-
square) value of
voltage or current
loruU

The DC voltage or current that delivers the same energy
as the periodically varying voltage or current, a value for
periodic waveform relating its heating effect to the DC
value.

Prad (napiecie) staly, ktory powoduje wydzielanie tej
samej energii jakg wydziela prad periodyczny.

g
F= /1/ij(t)2dt; F=Uorl, f=uori.
0

Warunek
poczatkowy

Initial condition
iL (0) = ILO
Uc (O) = Uco

Current that flows through a coilat t =0.
Voltage drop across a capacitorat t = 0.

Prad cewki (napiecie kondensatora) w chwili rozpoczecia
stanu nieustalonego.
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The maximum power delivered by a source represented
by its Thevenin equivalent is attained when the load

Warunek resistance R, is equal to the Thevenin (equivalent)

przekazywania
maksymalnej mocy

Maximum power

transfer — DC case resistance R .

Dla zrédta opisanego schematem Thevenina, w
warunkach dopasowania energetycznego opornosc
obciazenia jest rdwna oporno$ci wewnetrznej zrodta.

If the source has the Thevenin equivalent impedance

Warunek Z,(jw), then the maximum power is delivered to the

przekazywania Maximum power | load when its impedance is
maksymalnej mocy | transfer — AC case | Dla zrodta opisanego schamatem Thevenina warunek
czynnej dopasowania energetycznego

Z,(jo)=2,(jo)*

Weber

Weber See Magnetic flux
Wh g
Connection point between two or more branches.
Number of circuit nodes is denotes as n.
Wezel Node . , . -
Punkt potaczenia dwoch lub wiecej gatezi. Liczba
wszystkich weztdw: n.
. . Element or circuit with m terminals available for external
. . . Multi-terminal .
Wielobiegunnik connections.

element or circuit _
Element lub obwdd o m zaciskach zewngtrznych.

Sensitivity of | sensitivity of F with respect to X:

Wrazliwo$¢ funkeji | Gjreyit variable . y P
ukladowej SF Sx =(oF/ 8X)‘ X=X

X

Wrazliwosé Relative sensitivity | Sty = (6F /ax)‘xzxn I(F"1X")

led - . o
wagledna S See Sensitivity of circuit variable

Pair of circuit terminals to which another subcircuit may
be attached. Current entering one terminal is equal to the
Wrota Port current leaving the other.

Para zaciskow — prad wptywajacy do jednego z nich
wyptywa z drugiego.

Ratio of the maximum to the minimum rms voltages

Wspolczynnik fali Standing wave thong 2 line - . - .
A ratio osunek maksymalnej amplitudy do minimalnej
stojace] S amplitudy fali stojace;j.
S =U, e /U, = (L+[N])/L—|N|)
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Ratio of an average power to an apparent power:
. fact Stosunek mocy czynnej do mocy pozornej:
i i ower factor
Wspolczynnll_ﬁ mocy of —cosp=P/S
czynnej pf
See Average power, Apparent power
Wsnil ik Coupling
Spo C,Zyn,m coefficient See Mutual inductance
sprz¢zenia K
Coefficient that designates the rapidity of decay of the
. ) Daroi series (parallel) RLC circuit response,
Wspélczynnik am_pl_ng Wspotczynnik okreslajacy szybkos¢ zanikania sktadowe;j
tlumienia coefficient . ) e ]
. . zaburzeniowej odpowiedzi szeregowego (rownoleglego)
(ttumiennos¢) o obwodu RLC,
a=R/2L (a=G/2C).
f Coefficients of the incident and reflected waves,
Reflection . c o _
Wspélezynniki coefficients Wspotezynniki, z jakimi odbijg si¢ fale wedrujace,
ici Z(s)—Z,(s Z(s)—Z,(s
odbicia ME. NG | M) = 20720 o ZEO-2()
Z(s)-Z(s) Z(s)+Z,(s)
Plot of logarithmic-gain values in dB on a log-frequency
. base.
Wykres Bodego Bode (gain) plot . L L
Logarytmiczna zalezno$¢ wzmocnienia uktadu
(czwornika) od czgstotliwosci.
Phasors expressed graphically in a complex plane.
Wykres wektorowy | Phasor diagram | Warto$ci symboliczne skuteczne zobrazowane graficznie
na plaszczyznie fazowe;j.
L Zeroing of asource, E=0 or J =0:
L Deactivation of L
Wylaczenie zrodel . short-circuiting the voltage source,
. . independent o
niezaleznych source open-circuiting the current source.

Wyzerowanie zrodta: zwarcie SEM, rozwarcie SPM.

Wzmochienie w

skali logarytmicznej

Logarithmic gain
K. (@)

Gain in the logarithmic scale:
Kge (@) =20l0g,, K(®).
Unit: decibel [dB].

See Bode plot.

Zaciski
jednoimienne

Dot Convention

Currents entering the dotted ends are creating additive
fluxes. Dotted ends have a positive voltage at the same
time.

Prady wplywajace do zaciskow jednoimiennych
powoduja powstanie zgodnych strumieni. Napigcia
zastrzatkowane sg do tych zaciskow.
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Zasada
superpozycji

Superposition
principle

For a linear circuit containing independent sources, the
voltage across (or the current through) any element may
be obtained by adding algebraically all the individual
voltages (or currents) caused by each independent source
acting alone with all other sources deactivated.

Remark: Power can’t be found by superposing power
losses.

W obwodzie liniowym, w ktérym dziata wiele zrodet
niezaleznych, dowolny prad lub napigcie wyznaczy¢
mozna sumujgc sktadowe wywotane przez kazde ze
zrddet z osobna, przy pozostatych wyzerowanych. Dla
mocy zasada superpozycji nie obowigzuje.

See Deactivation of independent source

Zasada
wyodrebnienia

Separation
(voltage/current
substitution)
principle

Two subcircuits connected in m nodes can be separated
by means of m—1 pairs of voltage or current sources
connected between the arbitrarily selected reference node
and each of other m—1 nodes. Value of the voltage
source connected between two nodes is equal to the
original circuit voltage. Value of the current source
equals the total current entering/leaving the node from/to
one of the subcircuits.

Dwa obwody potaczone w m weztach mozna
odseparowac od siebie wiaczajac m—1 par sit
elektromotorycznych migdzy kolejne wezly a m-ty wezet
odniesienia, o warto$ciach jak przed wyodrgbnieniem.

Zasada zachowania
mocy/energii

Energy/power
conservation
principle

In any circuit the algebraic sum of DC powers, or
instantaneous powers,

in any linear circuit the algebraic sum of average powers,
or reactive powers, or complex powers absorbed by all
elements,

is zero (negative power absorbed is equivalent to positive
power supplied).

W liniowym obwodzie algebraiczna suma mocy DC,
mocy chwilowych, mocy czynnych, mocy biernych jest
réwna zero (ujemna moc pobierana jest dodatnig moca

wydawang).
Zbiér oczek Set of independent | All meshes of a circuit. Their number: | =b—n+1
niezaleznych loops Zbiodr wszystkich oczek.

Cutsets around all individual nodes except the reference
Zbior odcieé Set of independent | one, their number: t=n-1
niezaleznych cutsets Zbior odcie¢ wokot wszystkich weztow za wyjatkiem

wezta odniesienia.
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Zera transmitancji

Zeros of transfer
function

Qy

Roots of the numerator polynomial of the transfer
function K(s).

Pierwiastki wielomianu licznika operatorowej funkcji
przejscia.

See Transfer function in s-domain

Zmienna obwodowa

Circuit variable
F

Any voltage, current, power, gain, etc. - a honlinear
function of circuit parameters.

Napigcie, prad, moc, etc. — nieliniowa funkcja
parametrow obwodu.

Zmodyfikowana
metoda potencjatow
wezlowych

Modified nodal
analysis

Modification in which the unknowns are not only the
usual nodal voltages but also currents of resistiveless
branches (ideal voltage sources and short-circuit
elements).

Modyfikacja polegajaca na pozostawieniu w réwnaniach
pradow gatezi bezoporowych (SEM, amperomierz
idealny).

Zrodla sterowane

Dependent or
controlled source

Current or voltage source that provides a current or
voltage that depends on another voltage or current
elsewhere in the circuit,

Zrédto pradowe lub napieciowe, ktorego wartos¢ zalezy
od innego pradu lub napigcia,

Voltage Controlled Voltage Source — VCVS

Current Controlled Voltage Source — CCVS

Voltage Controlled Current Source — VCCS

Current Controlled Current Source — CCCS.

Condition that exists when the voltage across two
terminals is zero, irrespective of the current between the

Zwarcie Short-circuit (sc) |two terminals.
Stan pracy, przy ktérym zaciski dwojnika sg zwarte =
napigcie miedzy nimi jest rowne zero..

English Polish Description (opis)

Acceptability
region

Obszar sprawnosci

Region in the parameter space R” with boundaries

designated by the design constraints on circuit variables:
min max

F R

Region w przestrzeni parametrow, ktérego ograniczenia

wyznaczone sg specyfikacjami projektowymi.

Active circuit

Obwod aktywny

Circuit that contains at least one active element,
independent source.

Obwod zawierajacy przynajmniej jedno zrodto energii
(niesterowang SEM i/lub SPM)
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Active element

Element aktywny

Element that may deliver energy to a circuit.
Element, ktory jest zrodtem energii.

Admittance o .
in s-domain Admitancja Reciprocal of Z(s) .
Y(s) operatorowa Odwrotnos¢ impedancji
Admittance .
in phasor-domain AdmltgnCJa Reciprocal of Z(jw), Y (jw) =G(w)+ jB(w)
Y (jo) symboliczna
Sinusoidal time-varying current

Alternating i=1,sin(et+¢;),

current P i idal .

: rad sinusoidalny I, - amplitude or peak value,
o -angular frequency, «; - initial phase angle.
Ampere
E Amper See Current
Ampere-turns . .
A Amperozwoje See Magnetomotive force
t
Amplitude Amolitud
mplituda .

(peak value) ) ’p See Alternating current

| U (warto$¢ szczytowa)

Angular (radian)
frequency
w

Pulsacja
(czgstotliwose
katowa)

See Alternating current, Frequency

Apparent power

Moc pozorna

Power that defines the maximum capacity of the

sinusoidal source, S =P, =Ul.

S Moc okreslajaca wydajnos¢ zrodta (moc znamionowa).
Unit: volt-ampere [V -A].
Artificial or
temporary Elektromagnes See Electromagnet or solenoid coil
magnet

Attenuation

constant Ttumiennos¢ See Propagation constant
a
Transformer that has windings both magnetically and
electrically interconnected.
Autotransformer | Autotransformator

Transformator, w ktorym jest tylko jedno uzwojenie,
spetniajace jednoczesnie role pierwotnego i wtdrnego.
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Average or real
power
P

Moc czynna

Average value of the instantaneous power in the AC
circuit. Represents the power delivered by the source or
absorbed by the circuit. Unit: watt [W].

Wartos¢ $rednia mocy chwilowej. Moc, ktorg odbiornik
pobiera ze zrddta i zamienia na prace lub ciepto.

;
p =1/Tj pdt = Ul cos g,
0

cos o = pf is the so called power factor.

Backward waves

Fale powrotne

Reflected waves traveling from the line output to its input.
Fala odbita od konca linii.

Balanced load
(circuit)

Obciazenie
symetryczne

Load that has three identical impedances connected ina Y
or A configuration.

Obciazenie sktadajace si¢ z trzech identycznych
impedancji skojarzonych w gwiazde lub trojkat.

Band-Pass Filter
(BPF)

Filtr pasmowo-
przepustowy

Circuit that passes unimpeded all frequencies in a selected
range of frequencies and rejects all frequencies outside
this range.

Obwadd (czwornik), ktory przepuszcza czgstotliwoscei z
zadanego pasma a nie przepuszcza wszystkich
pozostatych.

Band-Stop Filter
(BSF)

Filtr pasmowo-
zaporowy

Circuit that rejects all frequencies in a selected range of
frequencies and passes unimpeded all frequencies outside
this range.

Obwad (czwornik), ktory nie przepuszcza czgstotliwosci z
zadanego pasma a przepuszcza wszystkie pozostate.

Bandwidth
Aw

Pasmo
czestotliwosci

Range of frequencies that lie between the two frequencies
where the magnitude of the gain is equal to 1/2 of the
maximum.

Pasmo czgstotliwosci wyznaczone czestotliwosciami, dla

ktorych wzmocnienie czwornika wynosi 1/+/2 maksimum.

Bode (gain) plot

Wykres Bodego

Plot of logarithmic-gain values in dB on a log-frequency
base.

Logarytmiczna zalezno$¢ wzmocnienia uktadu
(czwornika) od czestotliwosci.

Branch

Galaz

Element or string of two-terminal elements connected
between two nodes.

Number of circuit branches is denoted as b.

Element dwuzaciskowy lub kilka polgczonych w szereg,
wilaczony miedzy dwa wezty. Liczba wszystkich gatezi: b.
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Constant of proportionality between the capacitor charge

) and the voltage: Q =CU .

Capacitance . ., , . . L. .
C Pojemnos¢ Wspotczynnik proporcjonalnosci miedzy tadunkiem
zgromadzonym w kondensatorze a napi¢ciem na nim.
Unit: farad [F]=[A-s/V].
Two-terminal energy storage element, described by the
equation: Q=CU .
. Element dwuzaciskowy magazynujacy energi¢ (fadunek).
Capacitor Kondensator

Jego rownanie i-U oraz energia:
Its law and energy stored are:

i=Cdu/dt, w=Cu?/2.

Characteristic
impedance
(resistance)

Z(s)or Z(jw)

Impedancja falowa

Z(s) =/(R+sL) /(G +5sC)
For a distortionless line:
Dla linii bezstratnej:

Z(s)=p=+L/IC =const, in [Q].

(p)
Fundamental unit of matter responsible for electric
phenomena, Q = Q" is the positive charge, Q" is the
negative charge.
Charge Fadunck Like charges repel and unlike charges attract each other.
Qorq Podstawowa jednostka materii odpowiedzialna za

zjawiska elektryczne. Mamy tadunki dodatnie i ujemne:
réznoimienne odpychajg sie, jednoimienne przyciagaja.
Units: coulomb [C] =[A-s].

Circuit diagram

Schemat obwodu

Drawing that shows schematically the inter-connection of
circuit components represented by their graphic standard
symbols.

Schemat potaczen elementow obwodu, z zachowaniem
standardowych oznaczen.

Circuit graph

Graf obwodu

Graphical representation of the circuit structure
(component interconnections).

Graph consists of branches connected in nodes.

Graficzne zobrazowanie struktury obwodu (bez wnikania
w rodzaj elementow) — b galtezi potaczonych w n weztach.

Circuit model

Model obwodu

Approximation of a real circuit, interconnection of ideal
elements (practical elements are modeled by ideal
elements).

Aproksymacja obwodu rzeczywistego, w ktorym elementy
rzeczywiste reprezentuja modele zbudowane z elementéw
idealnych.
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Circuit parameter
(constant)
PorX

Parametr (stata)
obwodu

Parameter that defines the circuit element, such as
resistance R, capacitance C, inductance L, etc.

Parametr definiujacy element, np. rezystancja, pojemnos¢,
itd.

Circuit variable

Zmienna obwodowa

Any voltage, current, power, gain, etc. - a nonlinear
function of circuit parameters.

F Napigcie, prad, moc, etc. — nieliniowa funkcja parametrow
obwodu.
Complete L Sum of natural and forced responses.
Odpowiedz zupetna . .. .
response Suma odpowiedzi naturalnej i wymuszonej.

Complex power

Moc zespolona

Sum of the average power and the reactive power
expressed as a complex number,
Suma mocy czynnej i biernej, przedstawiona jako liczba

S(jo) zespolona.
S(jw) = P(@)+ jQ(@) = S(w)exp[ jo(w)]
Conductance
in phasor-domain Konduktancja See Admittance in phasor-domain
G(w)
Reciprocal of the resistance, G =1/R..
Conductance Przewodnos¢ . .
G (konduktancja) Odwrotnos$¢ opornosci.
) Unit: siemens [S] =[A/V].
Conductance .
. Macierz .
matrix . See Nodal analysis
G konduktancyjna
Conductance . Matrix that relates the terminal currents with the terminal
. Macierz .
matrix of m- . voltages:
. konduktancyjna . . . S .
terminal element . . . Macierz wigzaca pracy zaciskowe 1 napiecia zaciskowe:
G wielobiegunnika 1-G.U

Continuity of

Ciaglos¢ napigcia na

Voltage on a capacitor is always continuous, even though
the current may be discontinuous.
Napigcie na kondensatorze jest ciggla funkcja czasu, prad

capacitor voltage kondensatorze moze by¢ funkcja nieciagta. W szczegdlnosci:
In particular: u.(0_)=u.(0,)=U,,.
Current through a coil is always continuous, even though
o ' the voltage may be discontinuous.
) Continuity of Ciaglos¢ pradu na Prad cewki jest ciagla funkcjg czasu, napigcie moze by¢
inductor current cewce funkcjg nieciagla. W szczegolnosci:
In particular: i, (0_)=i,(0,)=1,.
Conventional Prad Flow of positive charges.

current flow

konwencjonalny

Przeptyw tadunkéw dodatnich.
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Convolution of the impulse response and the input signal:
Convolution Twierdzenie o Splot odpowiedzi impulsowej oraz sygnatu wejsciowego.
theorem splocie T
P k(t) *x() = [k(t - D)x(z)dz = L{K(5)- X (5)}
0
Coulomb
uC kulomb See Charge
Coupled coils Cewki sprzgzone | See Mutual inductance
Coupling , .
coefficient WSpOlC,Zyn.mk See Mutual inductance
K sprzezenia

Critical resistance

Opdr (przewodnos¢)

Resistance (conductance) of the critically damped series
(parallel) RLC circuit:

(conductance) Opornos¢ (przewodno$¢) krytycznie thumionego
R (G.) krytyczny (a) szeregowego (rownolegtego) obwodu RLC:
C C
R, =2JL/C (G, =2JC/L).
Nonoscillatory response of the RLC circuit, but on the
verge of becoming oscillatory — condition that exists when
Critically damped | Obwod ttumiony | two poles of the response are identical.
response krytycznie Aperiodyczna odpowiedz obwodu RLC, na granicy
odpowiedzi periodycznej — pierwiastek podwojny
odpowiedzi.
Rate of flow of charge, | = AQ/At or i =dqg/dt.
Current
Lori Prad Szybkos¢ przeptywu tadunkow.
Units: ampere [A]=[C/s].
Circuit of n parallel resistors that divides the input current
I so that
o o ) Obwod zbudowany z n opornikow potaczonych
Current divider Dzielnik pradow rownolegle, dzielacy prad jak ponizej:
l,=1-G;/>.G,
i=1
Cut-off or break Th_e p0|r:1_th¥herehthe asa/mpto_tlc culrve for its logarithmic
ain exhibits a sharp change in a slope.
or corner Czestotliwos¢ g ) P .g p )
frequency graniczna Punkt, w ktorym nastepuje nagta zmiana nachylenia
o charakterystyki amplitudowej w skali logarytmicznej.
¢ See High/Law Pass Filter
Closed line around one or more nodes, crossing two or
L more branches, each branch only once.
Cutset Odcigcie

Linia zamknigta okalajaca jeden lub wigcej weztow,
przecinajaca dwie lub wigcej gatezi, kazda tylko raz.
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Damped resonant

Ttumiona

Frequency of oscillation of the underdamped response:

frequency czestotliwosé drgan Czgstotliwos¢ oscylacji odpowiedzi stabo thumionej:
Wy wlasnych oy =\ —a’ .
Coefficient that designates the rapidity of decay of the
) ) . series (parallel) RLC circuit response,
Dam_p_lng Wspoic'zyr}mk Wspotczynnik okreslajacy szybkos$¢ zanikania sktadowe;j
coefficient tlumienia L L. ,
rum . zaburzeniowej odpowiedzi szeregowego (réwnoleglego)
a (thumienno$¢) obwodu RLC,
a=R/2L (a=G/2C).
L Zeroing of asource, E=0 or J =0:
Deactivation of L, L
independent Wylaczenie zrodet | short-circuiting the voltage source,
source niezaleznych open-circuiting the current source.
Wyzerowanie zrodta: zwarcie SEM, rozwarcie SPM.
Frequency band whose endpoint is a factor of 10 larger
Decade than its beginning point.
Dekada ) g g.p s . . :
dec Przedzial czgstotliwosci, ktdrego gorna wartos¢ graniczna
jest 10 razy wicksza od wartosci dolne;j.
log-based measure of gain.
Decibel i g
4B Decybel
See Logarithmic gain
Current or voltage source that provides a current or
voltage that depends on another voltage or current
elsewhere in the circuit,
Zroédto pradowe lub napieciowe, ktorego wartos¢ zalezy
Dependent or

controlled source

Zrodta sterowane

od innego pradu lub napigcia,

Voltage Controlled Voltage Source — VCVS
Current Controlled Voltage Source — CCVS
Voltage Controlled Current Source — VCCS
Current Controlled Current Source — CCCS.

Circuit (system) that provides differentiation of the input
voltage (signal). Transfer function of an ideal
differentiator is:

Uktad rézniczkujacy sygnal wejsciowy. Funkcja przejscia

Differentiator | Uktad rozniczkujacy |;jeaine g0 ukladu rézniczkujacego:
K(s)=sT
T is the differentiation constant
T jest statg rozniczkowania
Dirac delta
function Delta Diraca See Unit Impulse function
5(t)
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Direct current Current constant in time.
(DC) Prad staty ) L i )
| Prad nie zmieniajacy si¢ w czasie.
. Line with parameters that satisfy
. . . Linia - .. . .
Distortionless line | . . Ksptatcas Linia, ktorej parametry spetniaja zaleznos¢
niezniekKsztaicajaca
1 RIL=GIC.
Currents entering the dotted ends are creating additive
fluxes. Dotted ends have a positive voltage at the same
Zaciski time.

Dot Convention

jednoimienne

Prady wptywajace do zaciskow jednoimiennych powoduja
powstanie zgodnych strumieni. Napigcia zastrzatkowane
sa do tych zaciskow.

Effective or rms
(root-mean-
square) value of
voltage or current
loruU

Wartos¢ skuteczna

The DC voltage or current that delivers the same energy as
the periodically varying voltage or current, a value for
periodic waveform relating its heating effect to the DC
value.

Prad (napigcie) staty, ktoéry powoduje wydzielanie tej
samej energii jakg wydziela prad periodyczny.

g
F= /1/ij(t)2dt; F=Uorl, f=uori.
0

Efficiency of
power transfer

Sprawnos¢ przy
przekazywaniu
mocy

Ratio of the power delivered to the load P, to the power

supplied by the source P::

Stosunek mocy pobieranej przez odbiornik do mocy
wydawanej przez zrodto:

n=R/P. =R /(R +R,)).
At the maximum power transfer: 7% =50% .
50% w warunkach dopasowania energetycznego.

Region in space wherein a test charge Q experiences an

Electric field Pole elektryczne | electric force F,.
Przestrzen, w ktorej na umieszczony tadunek dziata sita.
Vector uniquely defining the electric field in its every
point,
El_ectric _field Natezenie pola Wektor jednoznacznie okre$lajacy pole elektryczne w
intensity elektrycznego

kazdym jego punkcie,
K =F/Q.Unit: [N/C]=[V/m].

Electric Filter

Filtr elektryczny

Circuit designated to provide a magnitude gain or loss
over a predefined range of frequencies.

Obwod (czwornik) przepuszczajacy lub thumigcy sygnat
wejsciowy w zadanym pasmie czestotliwosci.
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Voltage or current varying in time in a manner that

Electric signal Sygnat elektryczny | conveys information.
uori ulubi Napiecie lub prad zmienny w czasie, niosgcy pewna
informacje.
Physical phenomena arising from the existence of
. ., interaction of electric charges.
Electricity Elektrycznosé¢

Zjawiska jakie wystepuja w wyniku oddzialywania na
siebie tadunkow.

Electromagnet or
solenoid coil

Elektromagnes

Wire wound around the soft steel alloy core with the total
number of z turns. It exhibits the magnetic field of the
permanent magnet when energized, i.e. can be called the
temporary or artificial magnet.

Cewka 0 z zwojach, nawinigta na rdzen stalowy —
zachowuje si¢ jak magnes staty gdy ptynie przez nig prad.

Electromotive
force (emf)

Sita
elektromotoryczna

See Independent ideal voltage source

Element law or
i—u
relationship

Rownanie elementu

Graphical or functional representation of a two-terminal
element:

Graficzny lub algebraiczny opis element
dwuzaciskowego.

i=f(u),u="f"'().

Energy
W or w

Energia

Ability to perform work.
Zdolno$¢ do wykonania pracy.
Units: joul [J]; wattsecond [W -s] ; [cal] calory,

YJ]=1[W-s] =0.239 [cal].
Instantaneous energy dissipated/supplied:
Energia chwilowa dostarczana/pobierana:

W:jpm
0

Instantaneous energy stored:
Energia chwilowa zmagazynowana w cewce,
kondensatorze:
£ 2
Li;
2

coil: w, =

capacitor: W, =
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Energy/power
conservation
principle

Zasada zachowania
mocy/energii

In any circuit the algebraic sum of DC powers, or
instantaneous powers,

in any linear circuit the algebraic sum of average powers,
or reactive powers, or complex powers absorbed by all
elements,

is zero (negative power absorbed is equivalent to positive
power supplied).

W liniowym obwodzie algebraiczna suma mocy DC,
mocy chwilowych, mocy czynnych, mocy biernych jest
réwna zero (ujemna moc pobierana jest dodatnig moca
wydawana).

Equivalent
characteristic —
parallel
connection

Charakterystyka
zastepcza —
potaczenie
rownolegte

The | —U characteristic for a parallel connection of
elements can be obtained by graphically adding the
currents of elements at various values of voltage.
Charakterystyke zastgpcza elementdw nieliniowych
potaczonych réwnolegle otrzyma¢ mozna sumujgc prady
w punktach zatamania charakterystyk tych elementow.

Equivalent
characteristic —
series connection

Charakterystyka
zastepcza —
potaczenie
szeregowe

The | —U characteristic for a series connection of
elements can be obtained by graphically adding the
voltages of elements at various values of current.
Charakterystyke zastepcza elementow nieliniowych
potaczonych szeregowo otrzymaé¢ mozna sumujac
napiecia w punktach zatamania charakterystyk tych
elementow.

Equivalent circuit

Obwad zastepczy

Circuit whose terminal characteristics remain identical to
those of the original circuit. The original circuit can be
substituted by the equivalent without affecting the
voltages and the currents in any attached circuit.

Obwod, dwuzaciskowy, ktorego charakterystyka I-U jest
identyczna z charakterystyka obwodu oryginalnego. Jego
zastgpienie obwodem zastgpczym nie wptywa na prace
reszty obwodu.

Equivalent or
total or Thevenin
or internal
resistance

R

t

Oporno$¢ zastepcza
lub wewnetrzna

Resistance of the two-terminal circuit when all internal
independent sources are deactivated,

also resistance that appears in the Thevenin equivalent of a
practical source

Opornos¢ widziana z zaciskow obwodu dwuzaciskowego
po wyzerowaniu jego zrodel, rezystancja schematu
zastepczego Thevenina.
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Impedance of the two-terminal circuit when internal
Equivalent or independent source is deactivated,
total or Thevenin Impedancja also impedance that appears in the Thevenin equivalent of

or internal
impedance

Z(jo)

zastepcza lub
wewngtrzna

a practical source

Impedancja widziana z zaciskow obwodu
dwuzaciskowego po wyzerowaniu jego zrodel, rezystancja
schematu zastepczego Thevenina.

Euler identity

Tozsamo$¢ Eulera

el =cosa + jsina

Farad
F

Farad

See Capacitance

Faraday’s law

Prawo Faradaya

When the magnetic flux linking a coil changes, a voltage
proportional to the rate of flux change is induced in the
coil:

Zmiana strumienia magnetycznego przenikajacego cewke
powoduje wyindukowanie napigcia proporcjonalnego do
szybkos$ci zmian:

u=zdg/dt=dg /dt.

First-order circuit

Obwad pierwszego
rzedu

Circuit that contains only one energy storage element,
either capacitor or inductor.

Obwod zawierajacy tylko jeden element magazynujacy
energie, cewke lub kondensator.

Flux linkage Strumien catkowity | See Total flux

Response to the source excitation, when all initial

Forced or ., .

Odpowiedz conditions are set to zero.
zero-state . . .
FesponSe wymuszona Odpowiedz obwodu z zerowymi warunkami
P poczatkowymi po dotaczeniu zrédta.
i Waves traveling from the line input to its output.
Forward waves Fale postepujace ) e
Fale wedrujace od poczatku linii do jej konca.
Frequency of oscillations in a periodic (sinusoidal)
waveform,
Czgstotliwos¢ fali sinusoidalnej,
f=1T
Frequenc -
? Y Czestotliwoéé Its unit is hertz [Hz] = [1/s].
y @ )
Radian (angular) frequency,
Czgstotliwos¢ katowa,
w =21
Its unit is [rad/s].
Mathematical domain where the set of possible values of
s AC variable (current or voltage) is expressed in terms of
Frequency Dziedzina frequency
(phasor) domain | czestotliwo$ciowa '

Dziedzina, w ktorej prady i napigcia wyrazane sg w
funkcji czgstotliwoscei.
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Frequency dependent relation, in both gain and phase,
Fr 0 between the input phasor signal and the output phasor
R:S;c?nscg Czestotliwosciowa | Signal - transfer function in frequency-domain
K(jo) funkcja przejécia | Funkcja przejscia dla wartosci symbolicznych
Jo skutecznych
K(jw) =K(o)exp[je(o)]l =Y (jo)/ X(ja).
Half-power Frequency at which the magnitude response is 1/2
frequency Czgstotliwos¢ times the maximum.
o, @ graniczna Czestotliwo$é, dla ktérej wzmocnienie wynosi 1/+/2
4 u
warto$ci maksymalne;.
Henr
H y Henr See Inductance
Hertz
4y Hertz See Frequency
Filter that passes all frequencies above the cut-off
. . L frequency e, and rejects all frequencies below the cut-off
High-Pass Filter Filtr gérno-
(HPF) przepustowy frequency.
Filtr, ktory przepuszcza wszystkie czgstotliwosci powyzej
czestotliwos$ci granicznej.
Circuit built of elements as given by the design and
nominal values of parameters.

Ideal circuit Obwdd idealny ) P L . .
Obwoad podany w projekcie o nominalnych warto$ciach
parametrow.

Model of a transformer with i) resistiveless windings, ii)
unity coupling, iii) primary and secondary reactances
Transformator infinitely large compared to impedances connected to the
Ideal transformer ) transformer terminals.
idealny . .
Transformator o bezoporowych uzwojeniach, idealnym
sprzezeniu i nieskonczenie duzych reaktancjach
(przenikalnos$ci magnetycznej).
Ratio of the phasor voltage U (jw) at a pair of element
Impedance terminals to the phasor current 1(jw) flowing into the
in phasor-domain Impedancja positive voltage terminal,
Z(jo) symboliczna Stosunek warto$ci symbolicznej skutecznej napigcia na
zaciskach dwojnika do pradu,
Z(jo) = R(@)+ X (@) = Z(e) exp p(a) .
Ratio of the voltage U (S) at a pair of element terminals
Impedance in s- . to the current |(s) flowing into the positive voltage
domain Impedancja )
operatorowa | terminal.
Z(s) p . S .
Stosunek operatorowej wartosci napigcia na zaciskach

dwdjnika do pradu,
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When the secondary of an ideal transformer is terminated
in an impedance Z,(j®), the input impedance across the

Impedance Transformacja primary is
transformation impedancji Impedancja wejsciowa transformatora idealnego
obcigzonego impedancjg Z,(jw) Wynosi
Z,(jo)=Z,(jw)/n’.
Inverse transform of the transfer function K(s), output
Impulse response Odpowiedz signal of a circuit when the input is the unit impulse, with
k =k(t) impulsowa no initial stored energy in a circuit.

Transformata odwrotna operatorowej funkcji przejscia,
odpowiedz uktadu na jednostkowy impuls Dirac’a.

Independent ideal
current source

Jor j

Idealne (niezalezne)
zrédto pradowe

Source that provides a current independent of other circuit
variables.

Zrédto wymuszajace przeptyw pradu niezaleznego od
reszty obwodu, do ktérego zostato dotaczone (sita
pradomotoryczna — SPM).

Independent ideal
voltage source

Idealne (niezalezne)
zrodto napigciowe

Source that provides a voltage independent of other circuit
variables, (electromotive force — emf).
Zrédto wymuszajace napiecie niezalezne od reszty

Eore obwodu, do ktoérego zostato dotaczone (sita

elektromotoryczna — SEM).
Constant of proportionality interrelating current passing a
coil and the total flux:
Wspolczynnik proporcjonalnosci pomigdzy pradem

Inductance Induktancja plynacym przez cewke a strumieniem catkowitym jaki ten

L prad wywotuje:
¢, =Li;L=2"/R,
Unit: henry [H] =[Vs/A].
Initial condition Current that flows through a coil at t =0,
i (0)=1, Warunek Voltage drop across a capacitorat t =0.
u.(0)=U poczatkowy Prad cewki (napigcie kondensatora) w chwili rozpoczgcia
cAE o stanu nieustalonego.
Initial phase angle )
Faza poczatkowa | See Alternating current
o, o,
Input impedance Impedancja Impedance seen at port 1 (input) of a possibly terminated
: . two-port.
Z. (jo) wejsciowa o o s -

Impedancja widziana z zaciskow wejsciowych czwornika.

Input signal
Excitation of a system.

X or xor Sygnat wejsciowy 4

X(s)or X(jw)

Pobudzenie uktadu.
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Product of the voltage u and the current i flowing into the
Instantaneous ) positive voltage terminal of two-terminal element,
power Moc chwilowa p=ui.

P Iloczyn warto$ci chwilowych pradu i napigcia dwojnika.
Circuit (system) that provides integration of the input
voltage (signal). Transfer function of an ideal integrator is
Uktad catkujacy sygnal wejéciowy. Funkcja przejsécia
idealnego uktadu catkujacego:

Integrator Uktad catkujacy
K(s) =1/sT
T is the integration constant.
T jest stata catkowania.

Jc;ul Dzul See Energy
The algebraic sum of currents (constant or varying in time,
in the s-domain or in the phasor-domain) entering and
leaving the node (cutset) equals zero,

Kirchhoff’s “+” if current arrowhead is directed to the node,
Current Law — | prawo Kirchhoffa | “— otherwise.

KCL Algebraiczna suma pradéw (statych, zmiennych,
operatorowych, symbolicznych) wptywajacych do
odciecia jest rowna zero,

» T jesli strzatka pradu do odciecia, ,,— gdy od odciecia.
The algebraic sum of voltages (constant or varying in
time, in the s-domain or in the phasor-domain) around a
loop (any closed path) equals zero,
“+” if voltage arrowhead is directed clockwise,
Kirchhoff’s « > .
Voltage Law — Il prawo Kirchhoffa - Othe.rWISe' ) )

KVL Algebraiczna suma napie¢ (statych, zmiennych,
operatorowych, symbolicznych) zamknietej §ciezki
(oczka) jest rowna zero,

T jesli strzatka zgodna z ruchem wskazoéwek zegara,
»— gdy przeciwna.
Laplace Transform of f(t) into its s-domain form
transform Transformata Transformata funkcji czasowej
Laplace’a
F(s) F(s) = L{f ()}
Line (-to-line) o Voltage between any two lines i and j, except the neutral
voltage Napigcie migdzy- one. For wye connection: U =+/3E .
U przewodowe o7 . .
i Napigcie migdzy przewodami fazowymi.
Line length Distance from the line input to its output.

Dhugo$é¢ linii

Odlegtosc¢ od poczatku do konca linii.
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i . P ¢ Per unit length parameters:
Ine primary . arame ry. .. | Parametry na jednostke¢ dtugosci:
parameters jednostkowe linii

R [Q/m], G [S/m], L [H/m], C [F/m].

Line propagation
time
T

Czas propagacji

Time of propagation of a signal from the line input to the
output or in the reverse direction, 7 =1/v.
Czas propagacji sygnatu od wejscia do wyjscia linii.

Line secondary
parameters

Parametry wtérne
linii

Functions of primary parameters, such as: characteristic
impedance, propagation constant, etc.

Parametry charakterystyczne linii, wyrazone przez
parametry jednostkowe.

Linear resistive
circuit

Liniowy obwod
rezystorowy

Circuit consisting of only linear resistors and independent
sources. Such circuit is a reciprocal circuit.

Obwod zbudowany z liniowych opornikéw i zrodet
niezaleznych. Taki obwod podlega zasadzie wzajemnosci.

Linearity

Liniowos$¢é

When responses to inputs X,, X, each acting alone, are
Y,,Y,, then the response to the scaled inputs

K, X, K, X, applied simultaneously is
Jesli odpowiedzi na wejsciowe sygnaty X, X, dziatajace
niezaleznie sg Y1, Y,, to po ich przeskalowaniu i podaniu
na wejscie jednocze$nie

Y=Y +Y, =K X, +K,X,.

Linearity implies both superposition and proportionality.
Liniowos¢ implikuje tak superpozycje jak i
proporcjonalnos¢.

Logarithmic gain

Wzmocnienie w

Gain in the logarithmic scale:
Kgg (@) =20log,, K(®).
Unit: decibel [dB].

K, (@) skali logarytmicznej
See Bode plot.
Closed path formed by two or more branches.

Loop Petla _ . ) . .
Sciezka zamknigta zbudowana z dwoch lub wiecej gatezi.
Device, such as ideal coil or capacitor or lossless line, in
which energy can only be stored and never dissipated.

Lossless device Uktad bez strat gy y P

Uktad/element, ktory nie rozprasza energii, moze ja tylko
magazynowac, taki jak idealna cewka lub kondensator.

Loss-less line

Linia bezstratna

Line with no energy loss, R=0,G=0.

Linia, w ktorej nie ma strat energetycznych.

Lossy device

Uklad ze stratami

Device that dissipates energy, such as resistor or lossy
two-port (line).

Uktad/element, ktory rozprasza energie, taki jak rezystor,
linia ze stratami.
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Low-Pass Filter
(LPF)

Filtr dolno-
prezepustowy

Filter that passes all frequencies up to the cut-off
frequency @, and rejects all frequencies above it.

Filtr przepuszczajacy wszystkie czestotliwosci az do
czestotliwos$ci graniczne;.

Magnetic field

Pole magnetyczne

Region in space where a force F, acts upon a magnetic
body M.

Przestrzen, w ktorej na umieszczone dipole magnetyczne
dzialaja sily.

Magnetic field

Force per unit pole (magnetic body), number of ampere-
turns per length of magnetic element
Sita dziatajaca na dipol jednostkowy, stosunek

intensity ..
(magnetizing Natgzenie pola amperozwojow do dtugosci elementu obwodu
force) magnetycznego | magnetycznego
H H=F /M=12z/l
Unit: [N/Wb] =[At/m].
Total number of lines of magnetic force
®@=B-S
Magnetic flux Strumien ]
& or ¢ magnetyczny Unit: weber [Wb] =[V -s].
See Magnetic flux density
Ratio of the magnetic flux that passes perpendicularly
Magnetic flux ) through an area S to this area.
density Indukcja Stosunek strumienia przenikajacego prostopadle dany
B magnetyczna przekrdj do tego przekroju.
Unit: tesla [T]=[V -s/m?].
Magnetic . B
permeability I:Tr];;rrl]ﬁ?cn;s: See Magnetization curve
Hy
For ferromagnetic materials, B = f (H).
For diamagnetic or after linearization of the curve:
Dla diamagnetyka po linearyzacji krzywej
Magnetization or B = u u,H
B-H Krzywa . . .
-H curve . uy - magnetic permeability of the material,
magnesowania
B=f(H) przenikalno$¢ magnetyczna materiatu

Ly =47107" [V -s/A-m]
magnetic permeability of the free space.
przenikalno$¢ magnetyczna w prozni
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. Product of the current I passing through a coil and number
Magnetomotive . . .
force (MMF) Sita ofitsturns: F=1-z.
E magnetomotoryczna | lloczyn pradu ptynacego przez cewke i liczby zwojow.
Unit: ampere-turns [At].
) Magnitude (modulus) F of a complex number:
Magnitude or Modut Modut liczby zepolone;j:

modulus _

F=Fe'.
. Frequency characteristic — ratio of effective values of the
Magnitude . .

output to the input phasor signals,

response Odpowiedz o -

. . . Charakterystyka czestotliwosciowa — stosunek wartosci
(gain ratio) amplitudowa boli h ) o d -
K () symbolicznych sygnatu wyjsciowego do wejsciowego

K(w) =Y (®)! X(w)
Line with the generator (input) resistance equal to the

Matched Linia dopasowana | characteristic resistance, for such line M=0.

generator line

na wejsciu

Linia, ktérej oporno$¢ charakterystyczna rowna jest
oporno$ci wewnetrznej generatora.

Matched load line

Linia dopasowana

Line with the load (output) resistance equal to the
characteristic resistance, for such line N=0.

Maximum power
transfer — AC case

na wyjsciu Linia, ktérej oporno$¢ charakterystyczna rowna jest
opornosci obcigzenia.
If the source has the Thevenin equivalent impedance
Warunek Z,(jw), then the maximum power is delivered to the

przekazywania
maksymalnej mocy

load when its impedance is
Dla zrodta opisanego schamatem Thevenina warunek

Maximum power
transfer — DC case

czynnej dopasowania energetycznego
Z(jo)=2,(jo)*
The maximum power delivered by a source represented by
its Thevenin equivalent is attained when the load
Warunek resistance R, is equal to the Thevenin (equivalent)

przekazywania
maksymalnej mocy

resistance R, .

Dla zrédta opisanego schematem Thevenina, w warunkach
dopasowania energetycznego oporno$¢ obcigzenia jest
réwna opornosci wewngtrznej zrodta.

Mesh

Oczko

Loop that does not contain any other loop within it.
Petla, ktora nie zawiera wewnatrz zadnej innej petli.

Mesh or delta
( A) connection

Skojarzenie w
trojkat

Individual phase windings/loads are connected to form a
closed path. Delta (A) connection in case of a three-phase
system.

Wszystkie fazy tworza oczko.
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Modified nodal
analysis

Zmodyfikowana
metoda potencjatow
weztowych

Modification in which the unknowns are not only the
usual nodal voltages but also currents of resistiveless
branches (ideal voltage sources and short-circuit
elements).

Modyfikacja polegajaca na pozostawieniu w réwnaniach
pradow gatezi bezoporowych (SEM, amperomierz
idealny).

Multi-terminal
element or circuit

Wielobiegunnik

Element or circuit with m terminals available for external
connections.
Element lub obwod o m zaciskach zewnetrznych.

Mutual

Coefficient of proportionality relating current passing
through one coil and flux caused by this current in the
second (coupled) coil:

Wspolczynnik proporcjonalnosci migdzy pradem jednej

. Indukcyjnosé
inductance wzajemna cewki a strumieniem jaki ten prad wywoluje w cewce
M sprzezonej:
M =k,LL,
k — coupling coefficient (wspotczynnik sprzgzenia)
Response to the initial condition, when all source
Natural or . o
input Odpowiedz excitations are set to zero.
zero-inpu L . .
P naturalna Odpowiedz na warunek(ki) poczatkowe, po odtgczeniu
response .
zrodia(et).
Neper .
NITJ Neper See Propagation constant
For a star connection, line connecting a common junction
. ) point of a generator and a load star.
Neutral line Przewdd zerowy

Dla skojarzenia gwiazda-gwiazda, przewod taczacy srodki
gwiazd.

Nodal analysis

Metoda potencjatow
weztowych

KCL equations with currents expressed by node voltages
and branch parameters:

Roéwnania I prawa Kircchoffa, w ktorych prady wyrazono
przez potencjaly weztowe i parametry uktadu:

GV =1,
G — conductance matrix (macierz konduktancyjna)
I, - vector of source currents of individual nodes

wektor pradow zrodtowych poszczegolych weztow.

Node

Wezet

Connection point between two or more branches. Number
of circuit nodes is denotes as n.

Punkt potaczenia dwoch lub wigcej gatezi. Liczba
wszystkich weztow: n.

Noninear resistive
circuit

Nieliniowy obwod
rezystorowy

Circuit that contains at least one nonlinear resistor.
Obwod zawierajacy przynajmniej jeden element
nieliniowy.
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Norton equivalent

Schemat zastepczy
Nortona

Independent current source J, or J,(jw) in parallel
with a conductance G, or admittance Y, (jw) .

Zrodto pradowe (prad zwarcia) potaczone rownolegle z
opornoscig wewnetrzng.

Norton’s theorem

Twierdzenie
Nortona

For any linear active two-terminal circuit its linear
equivalent circuit can be found. This circuit consists of the
parallel connection of a current source and total
(equivalent) conductance (admittance),

the current source is the short circuit current of the circuit,
the conductance (admittance) is the conductance
(admittance) at the terminals when all the independent
sources are deactivated.

Liniowy dwdjnik aktywny zastapi¢ mozna schematem
zastepczym Nortona: rownolegltym polaczeniem SPM
zwarcia i oporno$ci widzianej z zaciskdw po wyzerowaniu
zrodet.

See Deactivation of independent source, Norton
equivalent

Ohm’s Law

Prawo Ohma

The voltage across the terminals of a resistor is related to
the current flowing into the positive terminal as: U = RI .

Napigcie na zaciskach opornika proporcjonalne jest do
pradu, ze wspotczynnikiem R.

Open-circuit (oc)

Rozwarcie, bieg

Condition that exists when the current between two
terminals is zero, irrespective of the voltage across the
terminals.

luzem
Stan pracy, przy ktérym zaciski dwdjnika sg rozwarte =
nie ptynie przezen prad.
Open-circuit Naniecie bi Voltage that appears between two terminals of a circuit or
voltage apllzczlgmlegu element in the open-circuit condition.
E, Napiecie na zaciskach dwojnika dla biegu luzem.
The point on an element | —U characteristic at which the
. circuit Kirchhoff’s laws are satisfied. The coordinates at
Operating or L . Q .
. this point are the operating voltage U ~ and the operating
Q-point Punkt pracy 0
(Quiescent point) current |~
Punkt na charakterystyce elementu, dla ktorego spelnione
sa w obwodzie prawa Kircchoffa.
Output signal
Response of a system.
Y or yor Sygnat wyj$ciowy P 4

Y(s)or Y(jw)

Odpowiedz uktadu.
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Nonoscillatory response of the RLC - circuit condition
that exists when all poles of the response are real and

Overdamped Odpowiedz silnie | distinct.
response thumiona Aperiodyczna odpowiedz uktadu RLC — warunek
spetniony gdy oba bieguny odpowiedzi sa rzeczywiste i
rozne od siebie.
Arrangement of elements so that each element has the
Parallel Potgczenie same voltage appearing across it.
connection rownolegte Potaczenie, dla ktorego wszystkie elementy poditaczone sa
na to samo napiecie.
] . .| Circuit with a resistor, capacitor and inductor in parallel.
Parallel resonant | Réwnlegly obwod ) ) .
circuit rezonansowy waod, w ktorym element R,L i C polaczone sg
rownolegle.
Ratio of the parameter design deviation to its nominal
Parameter ) value:
tolerance Tolerancja Stosunek odchyltki projektowej parametru do wartosci
tol parametru nominalnej:
tol, =AX/X".
Circuit consisting of resistors, capacitors and inductors,
Passive circuit Obwod pasywny that can only store and/or dissipate energy.

Obwod zbudowany z elementow RLC, ktory moze tylko
rozprasza¢ energie lub/i jg magazynowac.

Passive element

Element pasywny

Total energy supplied to it from the rest of the circuit is
always nonnegative. Such element cannot deliver net
power to a circuit.

Element, ktory rozprasza lub magazynuje energie, nie
zasila obwodu.

Period of Time between two subsequent maximum points of a
oscillations Okres oscylacji periodic (sinusoidal) waveform.
T Czas pomiedzy kolejnymi maksimami fali sinusoidalne;j.
Permanent Magnet made of the iron compound magnetite (Fe;0,).

(natural) magnet

Magnes trwaly

Magnes zbudowany z magnetytu.

Phase shift
4

Przesunigcie fazowe

Phase angle between an element voltage and its current,
with current as the reference, p = o, — ¢«; .

Przesunigcie fazowe miedzy napigciem na elemencie a
pradem, liczone od pradu.

Phase shift per
distance

B

Przesuniecie fazowe

See Propagation constant
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Phase voltage
V.

Napiecie fazowe

Voltage appearing at a phase impedance. For the four-wire
system, the voltage between line 1 or 2 or 3 and the
neutral.

Napigcie na impedancji fazowej. Dla uktadu cztero-
przewodowego, napiecie miedzy przewodem fazowym a
przewodem zerowym.

Phasor diagram

Wykres wektorowy

Phasors expressed graphically in a complex plane.
Warto$ci symboliczne skuteczne zobrazowane graficznie
na plaszczyznie fazowej.

Phasor voltage or

Complex number associated with sinusoidal voltage or
current,

current Napie;cti)e Il_ub prad | [ iczba zespolona opisujaca sinusoidalny prad lub
U(jw)or 1(je) | ™Y napicee.
U(jo) =U(w)exp a, (o) or | (jo) = | (o) exp &; (@)
Approximation of the nonlinear | —U characteristic by
. . . linear segments. For each segment its Thevenin or Norton
Piecewise-Linear . .
Aproksymacja equivalent can be found.

Approximation
(PWLA):

odcinkowo-liniowa

Aproksymacja odcinkowa charakterystyki nieliniowej.
Kazdy segment mozna zamodelowa¢ schematem
Thevenina lub Nortona.

Circuit whose diagram (graph) can be drawn on a plane
without branches crossing each other.

Planar circuit Obwod planarny Obwod, ktorego graf mozna tak narysowac by galezie si¢
nie przecinaty.
Poles of transfer Root§ of the denominator polynomial of the transfer
function Bieg.uny ) function K(s).
s, transmitancji Pierwiastki wielomianu mianownika operatorowej funkcji
przejscia.
Pair of circuit terminals to which another subcircuit may
be attached. Current entering one terminal is equal to the
Port Wrota current leaving the other.
Para zaciskow — prad wptywajacy do jednego z nich
wyplywa z drugiego.
) Voltage between the reference point P and the other one
Potential A:
(noilf \(;?I:/age) Potencjat Napigcie migdzy weztem odniesienia a danym weztem.

Va=Upi Ugg =Va —Vs.
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Energy per unit period of time,
Energia przypadajaca na jednostke czasu,
t
Power Moc p=dw/dt; w= [ pdt.
Porp 0
Inthe DC case: P=Ul; w=UI-t.
Unit: watt [W] =[J/s].
Ratio of an average power to an apparent power:
5 ; ) ) Stosunek mocy czynnej do mocy pozornej:
ower factor Wspolczynml_( mocy of =cosp=P/S
pf czynnej

See Average power, Apparent power

Practical circuit

Obwod rzeczywisty

Circuit built of practical elements, with parameters given
by the design tolerances.

Obwod uwzgledniajacy modele elementéw o parametrach
zadanych tolerancjami projektowymi.

Coil shown on the left-hand side of the model of a

Primary coil Uzwojenie transformer. Winding connected to a source.
(winding) pierwotne Cewka z lewej strony modelu transformatora — jej
uzwojenie podtaczone jest do zrdodia.
7(s) = /(R +sL)(G +5C)
For the distortionless line:
Dla linii bezstratnej:
y(s)=a+s/vor y(jo)=a+ jp
Propagation a= . RG - attenuation constant
constant Stala propagacji Humiennosé
7(s)or y(jow) in [1/m] or neper per meter [Np/m],
v =1/+/LC - propagation (phase) velocity
szybkos¢ propagacji
in [m/s],
L =w~NLC =wl/V - phase shift per distance
przesunigcie fazowe.
Propagation
Page Predkosé _ .
velocity . . | See Propagation function
v rozchodzenia si¢ fali
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When an input to a linear resistive circuit is acting alone,
then scaling the input by a constant K implies that the
response is also scaled by K.

Proportionality Proporcjonalno$¢ | Dla pojedynczego pobudzenia ukadu, jego przemnozenie
przez stala K powoduje przemnozenie odpowiedzi przez tg
sama stalg.

See Linearity
Function of time, built of step functions, that is zero for
t <0, has magnitude 1 for 0 <t <7, and is equal to
Pulse Impuls prostokatny
zerofor t>17.
Funkcja rézna od zera w przedziale od 0 do z.
Measure of the circuit energy storage property in relation
to its energy dissipation property.
Miara zdolno$ci obwodu do gromadzenia energii w relacji
do zdolnosci do jej rozpraszania.
uality factor itor: =
Q th Dobrod Capacitor: Q. (@)= R.aC.
oractical kondensatora, cewki | Inductor: Q, (w) =wL/R, .
capacitor 'Uf ObV‘{ijUE Bandpass circuit:
practical coil glgi?;x;?/(;h Obwad o wlasciwosciach selektywnych:
bandpass Circuit Q _ 27[ maximum energy StOI’Ed
totalenergy dissipated per cycle
Series RLC circuit: Q=1/R+/L/C
Parallel RLC circuit: Q =1/G~/C/L
Reactance . . .
Reaktancja See Impedance in phasor-domain
X ()
Power oscillating between the circuit reactive elements
(capacitors and inductors) and the power source,
Reactive power ) =Ulsing.
P Moc bierna Q .(p ) o
Q Moc oscylujaca migdzy reaktancjami (cewka,
kondensator) a zrodtem.
Unit: var, volt-ampere-reactive [VAr].
Circuit whose node equations have symmetric
_ | Obwod podlegajacy | ¢ongyctance matrix, G; =G;.
Reciprocal circuit zasadzie
wzajemnosci Obwod o symetrycznej macierzy konduktancyjne;j.
See Linear resistive circuit.
Coefficients of the incident and reflected waves,
Reflection , e o .
o Wspotezvnniki Wspolezynniki, z jakimi odbija si¢ fale wedrujace,
coefficients p db'y' 2(8)-7.(5) 2(5)-7.(5)
odbicia - -
M(s), N(s) - M(s) =~ o ——t=2 N(s) =~ Lo
Z(s)—Z,(s) Z(s)+Z,(s)
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seRnesliT:,\:fy Wrazliwos¢ | Stx = (OF10X), . I(F"/X")
Sry wzgledna See Sensitivity of circuit variable
Parameter describing linear magnetic element, ratio of the
Reluctance or magnetic voltage drop to the flux flowing
magnetic Parametr opisujacy liniowy element magnetyczny
resistance Op6r magnetyczny R, =1/ 1,5)
R | - mean length of a core, S - its cross-section area.
$rednia droga magnetyczna, pole przekroju
Coefficient of proportionality between the voltage and the
Resistance , ) current of linear resistor. Unit: ohm [Q]=[V/A].
Opornos¢ (opoér) , . . L.
R Wspolczynnik proporcjonalnosci miedzy pradem a
napieciem na liniowym oporniku.
Resistance
in phasor-domain Rezystancja See Impedance in phasor-domain
R(w)
Element whose primary purpose is to introduce resistance,
Resistor Opornik i.e. _to impede current f!ow and vgltage drop into a circuit.
Resistor converts electric energy into heat.
Element zamieniajacy energi¢ elektryczng na ciepto.
Condition in a two-terminal circuit, occurring at the
resonant frequency, when the equivalent impedance
Z(jw) or admittance Y (jw) becomes a real number
Resonance Rezonans L .
(circuit becomes non-reactive).
Stan pracy dwdjnika, w ktorym impedancja zastepcza
posiada tylko czgs¢ rzeczywista (urojona jest rowna zero).
Frequency at which a two-terminal circuit becomes purely
resistive. In the series or parallel RLC circuit, also
fResonant Czestotliwosé frequency of the undamped transient response:
req;ency rezonansowa o, =1/ \/E .

r

Czgstotliwos¢ dla ktorej dwojnik znajduje si¢ w
rezonansie.

Right hand rule

Reguta prawej dtoni

If a current-carrying conductor is grasped in the right hand
with the thumb pointing in the direction of the
conventional current, the fingers will then point in the
direction of the magnetic lines of flux.

Jesli obja¢ przewod prawa dtonig tak by kciuk wskazywat
przeplyw pradu, to pozostate palce wskazg kierunek
wytworzonego strumienia magnetycznego.
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Secondary coil
(winding)

Uzwojenie wtorne

Coil shown on the right-hand side of the model of a
transformer. Winding connected to a load.

Cewka z prawej strony modelu transformatora. Jej
uzwojenie polaczone jest z obcigzeniem.

Sensitivity of
circuit variable

Sx

Wrazliwos$¢ funkcji
uktadowej

Sensitivity of F with respect to X:
Sy =(oF /8X)‘x:xn

Separation
(voltage/current
substitution)
principle

Zasada
wyodrebnienia

Two subcircuits connected in m nodes can be separated by
means of m—1 pairs of voltage or current sources
connected between the arbitrarily selected reference node
and each of other m—1 nodes. Value of the voltage
source connected between two nodes is equal to the
original circuit voltage. Value of the current source equals
the total current entering/leaving the node from/to one of
the subcircuits.

Dwa obwody potgczone w m weztach mozna odseparowac
od siebie wiaczajac m—1 par sit elektromotorycznych
miedzy kolejne wezty a m-ty wezel odniesienia, o
wartosciach jak przed wyodrebnieniem.

Series connection

Potaczenie
szeregowe

Circuit of a series of elements connected so that the same
current passes through each element.

Obwod zbudowany z elementow potaczonych tak by
ptynal przez nie ten sam prad.

Series Resonant

Szeregowy obwod

Circuit with a series connection of a resistor, capacitor and
inductor.

Circuit rezonansowy Szeregowy obwod RLC.
Cutsets around all individual nodes except the reference
Set of independent Zbior odcieé one, their number: t=n-1
cutsets niezaleznych Zbidr odcigé wokot wszystkich weztow za wyjatkiem

wezla odniesienia.

Set of independent

Zbior oczek

All meshes of a circuit. Their number: | =b—-n+1

loops niezaleznych Zbior wszystkich oczek.
Condition that exists when the voltage across two
terminals is zero, irrespective of the current between the
Short-circuit (sc) Zwarcie two terminals.

Stan pracy, przy ktorym zaciski dwojnika sg zwarte =
napigcie miedzy nimi jest rowne zero..

Short-circuit

Current passing an active element (practical source) in the

current Prad zwarcia | short-circuit condition.

N Prad plynacy przez zaciski dwdjnika w stanie zwarcia.
Siemens .

S Siemens See Conductance
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Signal variable in S t i Real valued function of time; waveform that conveys
time yena Zm?enny v information, denoted by a small letter.
czasie . .
f)="1 Funkcja czasu, oznaczana mala litera.

Standing wave
ratio
S

Wspotczynnik fali
stojacej

Ratio of the maximum to the minimum rms voltages along
aline

Stosunek maksymalnej amplitudy do minimalnej
amplitudy fali stojace;.

S = U /U e = (L+|N[)/2—|N])

xmin

Standing waves

Fale stojace

Plots of U, (jw)| and |1, (je| with their maxima and

minima occurring at fixed locations along the line.

Star or wye (Y)
connection

Skojarzenie w
gwiazde

Individual phase windings/loads are joined in a common
junction point. Wye (Y) connection in case of a three-
phase system.

Wszystkie fazy majg wspolny zacisk.

Steady-state

Analiza w stanie

Analysis of a circuit behavior resulting after have been on
for a long time.

analysis ustalonym Analiza w stanie, w ktorym wszystkie przebiegi osiagaja
wartosci stale, niezmienne w czasie.
Step-down Transformator Transformer of the turns ratio less than one.
transformer obnizajacy Transformator o przektadni mniejszej od 1.
Step-up Transformator Transformer of the turns ratio greater than one.
transformer podwyzszajacy Transformator o przektadni wiekszej od 1.

Stray capacitance

Pojemnos¢ migdzy
weztem a masg

Unwanted capacitance between a circuit node (element
terminal) and ground.

Pasozytnicza pojemno$¢ migdzy zaciskiem elementu a
masg uktadu.

Stray or parasitic Indukcyjnosé Unwanted inductance of element connections.
inductance doprowadzen Pasozytnicza indukcyjnos¢ doprowadzen elementu.
Stray or parasitic ) . Unwanted capacitance that exists between element
or shunting Pojel.nn(.)sc terminals or between a terminal and ground.
capacitance bocznikujaca Pasozytnicza pojemnos¢ migdzy zaciskami elementu.
When a number of inputs are applied simultaneously to a
linear circuit, the response is the sum of responses due to
each input acting alone.
Superposition Superpozycja W liniowym uktadzie o wielu pobudzeniach odpowiedz

mozna wyznaczy¢ sumujgc odpowiedzi na kazde z
pobudzen z osobna, przy pozostalych wyzerowanych.
See Linearity
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Superposition
principle

Zasada superpozycji

For a linear circuit containing independent sources, the
voltage across (or the current through) any element may
be obtained by adding algebraically all the individual
voltages (or currents) caused by each independent source
acting alone with all other sources deactivated.

Remark: Power can’t be found by superposing power
losses.

W obwodzie liniowym, w ktérym dziata wiele zrodet
niezaleznych, dowolny prad lub napigcie wyznaczy¢
mozna sumujac sktadowe wywotane przez kazde ze zrodet
z osobna, przy pozostalych wyzerowanych. Dla mocy
zasada superpozycji nie obowiazuje.

See Deactivation of independent source

Susceptance
B(w)

Susceptancja

see Admittance in phasor-domain

System

System

Interconnection of electrical elements and circuits to
achieve a desired objective.

Potaczenie elementow i obwodow dla uzyskania
pozadanego celu.

Tesla

Tesla

See Magpnetic flux density

Thevenin
equivalent

Schemat zastepczy

Thevenina

Independent voltage source E, or E,(j®) in series with
aresistance R, or impedance Z,(jw)

Schemat zastepczy powstaty z szeregowego potaczenia
SEM biegu luzem z oporno$cig wewnetrzng dwojnika.

Thevenin’s
theorem

Twierdzenie

Thevenina

For any linear active two-terminal subcircuit its linear
equivalent circuit can be found. This circuit consists of the
series connection of a voltage source and total (equivalent)
resistance (impedance):

the voltage source is the open-circuit voltage of the
subcircuit

the resistance (impedance) is the resistance (impedance) at
the terminals when all the independent sources are
deactivated.

Liniowy dwdjnik aktywny zastapi¢ mozna schematem
zastepczym Thevenina: szeregowym potaczeniem SEM
biegu luzem i opornosci widzianej z zaciskow po
wyzerowaniu zrodet.

See Deactivation of independent source
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English Polish Description (opis)
Three voltage sources of the same frequency and
magnitude, and the phase shift or 120° between any two
Three-phase Generator of them, connected in the form of Y or A.
source trojfazowy Trzy zrodta napiecia sinusoidalnego o tej samej

czestotliwos$ci, amplitudzie i przesunieciem 120° miedzy
kazda para.

Time constant

Stala czasowa

Parameter of exponentially decaying or rising response.
After one time constant the response drops to ~ 38% of
its initial value or rises to =~ 62% of its end value,
Parametr krzywej wyktadniczej. Po uptywie jedne;j stalej
czasowej krzywa zanika do 38% wartosci poczatkowej lub

T
narasta do 62% warto$ci koncowe;.
for RL circuit: T=L/R,,
for RC circuit: T =R,C.
Margins specifying the allowed (by the design) variation
Tolerance of parameter X from its nominal value X" :
margins of circuit | Granice obszaru | Marginesy odchylek parametru (gornej i dolnej) od
parameter tolerancji warto$ci nominalnej, dopuszczalnych tolerancjami
X7, X" projektowymi:

X"T=X"-AX X"=X"+AX.

Tolerance region

Obszar toleranc;ji

Parallelepiped in the parameter space R” with planes
parallel with the coordinate axes, designated by the
tolerance margins of all circuit parameters.

(box) : :
Rownolegloscian w przestrzeni parametrow wyznaczony
tolerancjami projektowymi.
Total flux or The total flux linked by the z turns of the coil,
) lloczyn strumienia i liczby zwojow,
flux linkage Strumien catkowity
. D, =1P.

t

See Magnetic flux

Transfer function
in s-domain
K(s)

Transmitancja
operatorowa

Ratio of the response (output signal) of a circuit to an
excitation (input signal) expressed as a function of s
(initial conditions are assumed to be zero).

Stosunek operatorowej postaci sygnatu wejsciowego do
sygnatu wejsciowego.

Transfer function
(gain) for DC
signals
K

Transmitancja

Ratio of the response (output signal) of a circuit to an
excitation (input signal)
Stosunek odpowiedzi uktadu do pobudzenia DC.

Transfer function
in frequency
domain

K(jo)

Czgstotliwosciowa
funkcja przejscia

See Frequency response
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English Polish Description (opis)
Conversion of a set of equations from one domain to
. . another, e.g. from the t-domain to the s-domain.

Transformation Transformacja ., , D C
Konwersja réwnan z dziedziny czasu w dziedzing
operatorowa
Magnetic circuit with two or more multi-turn coils wound

Transformer Transformator on a common core.

Obwdd magnetyczny o dwoch uzwojeniach.

Transient analysis
(state)

Analiza stanéw
przej$ciowych
(nieustalonych)

Analysis of a circuit behavior for a period of time
immediately after independent source or sources have
been turned on or turned off, at t = 0. In stable circuits,

transient state vanishes after 5T, , where T _, isthe

maximum time constant.

Analiza zachowania obwodu od momentu powstania
zaburzenia do momentu ustalenia si¢ odpowiedzi. W
obwodzie stabilnym, czas osiagnigcia stanu ustalonego
wyznacza pigciokrotno$¢ najwickszej statej czasowe;j
odpowiedzi.

Transmission line

Linia dtuga

Two-wire line connecting the input circuit with the output
circuit.
Linia dwuprzewodowa taczaca zrédto z obcigzeniem.

Traveling waves

Fale wedrujace

Initial and reflected waves traveling from the line input to
its output — forward waves and reflected waves traveling
in the opposite direction — backward waves.

Fala pierwotna i fale odbite, od poczatku i od konca linii.
The reflected waves interference can be disregarded if
time parameter(s) of a transmitted signal is(are) much
greater than the line propagation time 7 .

Efekt naktadania sie fal odbitych na fale pierwotng mozna
pominac¢ jesli czas charakterystyczny trsansmitowanego
sygnatu jest znacznie wiekszy od czasu propagacji z.

Turns ratio
n

Przekladnia

Ratio n=2,/z,, where z, and z, are turns in secondary
and primary coil of an ideal transformer.

Stosunek liczby zwojow uzwojenia wtornego do liczby
ZwWO0jOW uzwojenia pierwotnego.

Two-port

Czwornik

Four terminal element identified by two distinct pairs of
terminals - ports.
Element o dwdch wrotach.

Two-terminal
element or circuit

Dwojnik

Element/circuit connected at a pair of terminals, described
by asingle 1 —U relationship.

Element/obwod dwuzaciskowy.

See Element law...

Undamped
response

Odpowiedz nie
ttumiona

Transient response in LC (resistiveless) circuit.
Odpowied obwodu LC (bezoporowego).

360




English Polish Description (opis)
Undamped Czgstotliwos¢ drgan See Resonant frequency
natural frequency wlasnych
Periodic response of the 2™ order circuit — condition that
exists when two poles of the response are complex
Underdamped Odpowiedz stabo | conjugates.
response thumiona Odpowiedz periodyczna obwodu stabo thumionego, ma
miejsce gdy w odpowiedzi wystepuja dwa bieguny
zespolone sprzezone.
Unit Impulse Infinit_ely short pulse of i_nfi_ni_tely large magnit_ude - its_
(Dirac delta) B value is zero fgr t =0, infinityat t =0 and its area is
function Funkcja impulsowa |equal to 1. Unit: [1/s].
5(t) Nieskonczenie krotki impuls o nieskonczonej amplitudzie
i polu jednostkowym.
Ug;i;nr:p Funkcja Ii-niowo r(t) =t1(t), an integral of the unit step function.
r(t) narastajgca catka skoku jednostkowego.
Unit Step function Dirnensionless function of time that is zero for t <0 and
1(t) Skok jednostkowy unity for t20.

Bezwymiarowa funkcja przyjmujaca wartos¢ 1 dla czasow
wigkszych od 0, warto$¢ 0 dla pozostatych czasow.

Unity coupling

Sprzgzenie idealne

Coupling with k =1.
Sprzezenie ze wspdczynnikiem jednostkowym.
See Mutual inductance

Var Var See Reactive power
Work required to move a unit charge Q =1 [C] from one
Voltage point A to another B,
(potential Napigcie Praca niezbedna do przemieszczenia tadunku
difference) (roznica jednostkowego z punktu A do punktu B,
tencjald
Uoru potencjatow) Us :WAB‘Qzl'
Unit: volt [V].
Circuit of a series of resistors that divides the input
voltage U by the ratio of the R, to the total series
resistance
Voltage divider Dzielnik napiecia | Obwod zbudowany z n opornikoéw polaczonych
szeregowo, dzielacy napigcie jak ponizej:
n
R =>R, U =UR/R,.
i=1
Weber .
Wh Weber See Magnetic flux
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English Polish Description (opis)
Case when deviation of circuit variable, caused by the
. design tolerances, reaches its maximum AF__ .
Najgorszy
Worst Case przypadek Przypadek najwickszej odchyltki funkcji uktadowej od

warto$ci nominalnej, spowodowanej tolerancjami
projektowymi parametrow obwodu.

Zeros of transfer
function

P

Zera transmitancji

Roots of the numerator polynomial of the transfer function
K(s).

Pierwiastki wielomianu licznika operatorowej funkcji

przejscia.

See Transfer function in s-domain
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3-phase
A—A system, 257
balanced generator, 251
balanced system, 254
combinational system, 258
four-wire system, 253
power transferred, 258
three-wire system, 254
Y-Y system, 254
ac, see current, alternating
active
element, 18
m-terminal element, 80
admittance
complex, 189
Laplace, 134
ammeter, 20
ampere, 10
ampereturn, 119
amplitude, 183
response, 226
arrows of standing wave, 281
attenuation constant, 265
bandwidth, 217
Bode plot, 229
corrected, 230
uncorrected, 230
branch, 25
branch current analysis, 33
branch voltage analysis, 34
capacitance
definition, 126
shunting, 249
stray, 212
capacitor
boundary behaviour, 133
circuit symbol, 126, 188
energy stored, 127
ideal-summary, 209
initial condition, 127
instantaneous power, 128
law in phasor domain, 188
law in time-domain, 127
practical, 213
s-domain equivalent, 129
cascade matrix, 81
charge, 8

circuit

1% order, 139, 146

2" order, 149

adjoint, 100

diagram, 25

graph, 25

ideal, 95

magnetic, 240

MIMO, 14, 65

order, 139

parameter (constant), 14, 95
parameter tolerance, 96
practical, 95

RC, 142, 227

response, 14
response-locus, 237
RL, 139

single-loop, 106, 121
SISO, 14, 64, 169, 226
variable, 95

coil, 120, see inductor
complex

exponential function, 301

general exponential function, 302
number angle, 298

number conjugate, 299

number exponential form, 298
number magnitude, 298

number polar form, 298

number rectangular form, 298
numbers addition/subtraction, 299
numbers division, 301

numbers multiplication, 300
plane, 298

conductance, 19, 125, 190

dynamic, 111
matrix, 77

convolution, 171
core

toroidal, 121, 129

coupled coils, 240
coupling

coefficient, 241
unity, 245

current, 10

alternating, 183
arrowhead, 16
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conventional, 16

direct, 10

divider, 46

secondary-to-primary ratio, 246
current source

controlled, 87

ideal, 21

practical, 52, 53
damping coefficient, 151
dc, see current, direct
decibel, 229
delta (mesh) connection, 257
dependent (controlled) element, 87
design

deviation, 97

tolerance, 97
diamagnetics, 118
differentiator

ideal, 173

RC, 173, 177

step response, 174
diode

ideal, 103

practical, 103

Zener's, 104
dissipation factor, 213
distributed constants, 261
dot convention, 242
electric field intensity, 8
emf, see voltage source, ideal
energy

definition, 8

electrical, 11

thermal, 11
Euler's formula, 298
excitation, 14, 169
exponential

decay, 292

rise, 293
farad, 126
Faraday's law, 130
ferromagnetics, 118
filter

band-pass, 233

band-stop, 234

definition, 231

high-pass, 232

low-pass, 232
flux, see magnetic flux

leakage, 245, 248

total (linkage), 129
frequency
angular, 183
break, cut-off, 230
damped resonant, 151
half-power, 217
normalized, 216
resonant, 212, 214
response, 206, 226
gain
curve, 228
logarithmic scale, 229
transfer function, 229
Heaviside's formula, 290
henry, 130
hybrid matrix, 81
impedance
characteristic, 263, 278
complex, 189
Laplace, 134
reflected, 244
triangular form, 190
impulse, 294
incremental analysis, 67
inductance, 130
mutual, 241
inductor, 129
boundary behaviour, 133
circuit symbol, 130, 187
energy stored, 131
ideal-summary, 207
initial condition, 130
instantaneous power, 132
law in phasor domain, 187
law in time-domain, 130
practical, 146, 211
s-domain equivalents, 132
initial
time, 123
value (condition), 123, 127, 130
input
port, 79
signal, 14
integrator
ideal, 171
RC, 171
step response, 172
joule, 9
KCL
in dc domain, 27
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phasor domain, 186
s-domain, 124
time-domain, 123
KVL
in dc domain, 28
magnetic circuit, 120
phasor domain, 186
s-domain, 124
time-domain, 124
Laplace
domain function, 289
inverse transform, 290
transform, 289
transformation, 123
line
distortionless, 265
half-wave, 286
input impedance, 283
losses, 201
lossless, 265
matched-generator, 269, 275
matched-load, 267, 279, 283
open-circuited, 282, 284
quarter-wave, 286
short-circuited, 283, 284
voltage, current, 252
load
impedance, 263, 278
resistance, 53, 280
logarithmic
plot, 229
scale, 229
loop, 25
lumped constants, 261
magnetic
field intensity, 117
flux, 117
flux density, 118
permeability, 118
resistance, 119
voltage, 119
magnetization curve (B-H curve), 118
magnetomotive force, 120
matter, 8
mesh, 25
m-terminal element
active, 80
passive, 76
neper, 280
neutral

artificial, 259

line current, 253

terminal, 252
Newton-Raphson iterations, 111
nodal analysis (equations), 35
node

definition, 25

voltage, 10
nodes of standing wave, 281
nominal value, 95
nonlinear element

bilateral, 18

unilateral, 18
normal (Gauss) distribution, 96
Norton equivalent, 50, 53
Norton's theorem, 50
ohm, 19
Ohm's law, 19

s-domain, 134
op amp, 89
open-circuit voltage, 50
output

port, 79

signal, 14
overcurrent

parallel RLC circuit, 222

RC circuit, 156
overvoltage

RL circuit, 158

series RLC circuit, 218
parallel connection, 46, 105
parallel RLC circuit, 220

quality factor, 221
passband, 231
passive

element, 17

m-terminal element, 76

sign convention, 17
per unit length parameters, 261
permeability, 245
phase

angle, 183

response, 226

sequence, 251

shift curve, 228

shift per distance, 279

voltage, current, 252
phasor, 184

circuit, 193

diagram, 194, 255, 302
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pole-zero plot, 170
port, 77
primary, secondary, 244
potential, see node voltage
power
apparent, 201
average, real, 199
balance, 42
complex, 203
dc, 11
factor, 199
factor correction, 202
factor lagging, 200
factor leading, 200
instantaneous, 199
peak, 199
reactive, 202
transfer, 59, 73, 203
primary parameters, see per unit length
parameters
primary port, circuit, 244
principle
of charge conservation, 127
of flux conservation, 131
propagation
constant, 263
velocity, 265
pulse
ideal, 294
practical, 176
PWL approximation, 109
Q-point, 106
quality factor, 212
capacitor, 213
coil, 212
parallel RLC circuit, 221
series RLC circuit, 216
ramp, 295
RC circuit, 142
natural response, 155
reactance, 190
rectangular waveform, 184
reflection coefficients, 264
reluctance, see resistance, magnetic
resistance, 19, 125, 190
critical, 151
equivalent (total), 45, 50
internal, 54
leakage, 213
matrix, 81

resistor
circuit symbol, 19, 187
energy dissipated, 126
ideal-summary, 206
instantaneous power, 126
law in phasor domain, 186
law in time-domain, 124
s-domain equivalent, 126
resonance, 214
overcurrent, 222
overvoltage, 218
resonant
circuit, 214, 222
curve, 216, 221
frequency, 214
parallel RLC circuit, 220
series RLC circuit, 215
response
1% order circuit, 146
2" order, 295
complete, 138, 160
critically-damped, 152
forced, 138, 139
impulse, 170
natural, 138, 155
overdamped, 151
step, 170
undamped, 152
underdamped, 151
right hand rule, 119
RL circuit, 139
natural response, 157
rms value, 184
sawtooth waveform, 184
secondary port, circuit, 244
sensitivity, 98
analysis, 99
relative, 99
series connection, 45, 104
series RLC circuit
resonance, 215
transient analysis, 150
short-circuit current, 50
siemens, 19

source substitution theorem, see separation

principle
standard deviation, 96
standing wave ratio, 282
standing waves, 280
steady state
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response, 140

time, 123

value, 123
step

ideal, 291

practical, 176
stopband, 231
superposition principle, 66
susceptance, 190
telegraphist's equations, see transmission

line equations
tesla, 118
Thevenin equivalent, 50, 53, 200
Thevenin's theorem, 50
three-terminal element, 77
time constant

RC circuit, 143

RL circuit, 141
tolerance

margins, 95

region, 97
transfer function

dc domain, 64

differentiator, 173

gain, 229

integrator, 171

properties, 170

s-domain, 169

zeroes and poles, 170, 229
transfer function-zeroes and poles, 290
transformer

auto, 247

basic, 244

ideal, 245

practical, iron core, 248

step-up(down), 246

tap point, 247

turns ratio, 246
transient

analysis, 123
response, 123, 140
transistor, 88
transmission line, 261
equations in phasor-domain, 280
equations in time-domain, 262
traveling waves
backward, 264
forward, 264
graphical representation, 267
T-shape structure, 79
two-port, 79, 227
two-terminal circuit, 189
two-terminal element
active, 49
general, 16
passive, 45
volt, 10
voltage, 9
arrowhead, 16
divider, 45, 64, 95
double subscript notation, 16
secondary-to-primary ratio, 246
voltage source
controlled (dependent), 87
ideal, 21
practical, 52, 53
volt-ampere, 201
voltmeter, 19
watt, 199
wattmeter, 258
wavelength, 281
weber, 118
winding
losses, 248
resistance, 211
work, 9
worst case analysis, 98
wye(star) connection, 252
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