Seria: GÓRNICTWO z. 48

Nr kol. 313

WALERY SZUŚCIK

BADANIA WYIDEALIZOWANEGO MODELU ŁUKU KOŁOWEGO OBUDOWY KORYTARZOWEJ W STANIE GRANICZNYM

> Streszczenie. W pracy rozpatrzono stan graniczny i zdefiniowano obciążenie graniczne pierścienia z wyciętą szparą wstawionego do sztywnego korpusu jak na rysunku 1. Uzyskany wzór (17) na obciążenie P stanowi funkcję, której maksimum stanowi połowę obciążenia granicznego.Uzyskane wyniki teoretyczne potwierdzono badaniami laboratoryjnymi.

1. Wstep

Jako obiekt badań przyjęto model żuku kołowego w postaci pierścienia z wyciętą szparą wstawionego do sztywnego korpusu jak na rysunku 1.

Pierácień ma wymiary:

- r promień średni pierścienia,
- h grubość pierścienia,
- s szerokość pierścienia,
- 2w wycięcie wykonane w pierścieniu dla zimitowania podatności łuku.

(1)

przy największym możliwym obciążeniu siłą 2P. W stanie granicznym pierścień przyjmuje postać pokazaną na rysunku 2.

W punktach A i B pierścienia powstają przeguby plastyczne. Dalsze przemieszczanie sworznia w dół spowoduje przemieszczanie się przegubów plastycznych B w górę, poprzez wyrównanie się ich poziomów, przy czym wielkość obciążenia będzie już malała.

Celem niniejszej pracy jest określenie nośności granicznej jako funkcji wielkości wsuwu:

$$P = P(W)$$

i to zarówno teoretycznie jak i doświadczalnie.

2. Rozważania teoretyczne

2.1. Określenie współrzędnych dla przegubów plastycznych

Na skutek działającego obciążenia następuje likwidacja wycięcia 2w, a następnie już przy obciążeniu granicznym pierścień przyjmuje kształt pokazany na rysunkach 2 i 3

Rys. 3

Badania wyidealizowanego modelu łuku kołowego ...

Powierzchnia środkowa pierścienia przyjmuje kształt jaki winna by u-zyskać przez obrót odcinka łuku A'B o kąt Ψ dokoła punktu B.

Punkt A' o współrzędnych r. sin $\frac{1}{r}$ i r. cos $\frac{1}{r}$ przemieszcza się do punktu A o współrzędnych O i y_o.

Przegub plastyczny B ma współrzędne r. $\sin \beta$ oraz r. $\cos \beta$. Przy rozważaniu tym pominięto zmiany długości i kształtu łuku na skutek odkształceń sprężystych, gdyż jako małe można je pominąć.

Z zależności trygonometrycznych otrzymano, przy uproszczeniu (ze względu na wartość kąta -),

$$\sin \frac{\pi}{r} \approx \frac{\pi}{r}$$
 (2)

$$\cos \frac{\pi}{r} \cong 1 \tag{3}$$

następujące wartości współrzędnej y oraz kąta obrotu

$$\mathbf{y}_{0} = \left[\cos\beta + \sqrt{\left(1 - \cos\beta\right)^{2} - 2\frac{\pi}{r}\sin\beta}\right] \cdot \mathbf{r}$$
 (4)

$$\sin \frac{\psi}{2} = \frac{\sqrt{\left(\frac{\psi}{r}\right)^{2} + (1 - \cos \beta - \sqrt{\left(1 - \cos \beta\right)^{2} - 2 \frac{\psi}{r} \sin \beta}}}{2\sqrt{\sin^{2} \beta + (1 - \cos \beta)^{2} - 2 \frac{\psi}{r} \sin \beta}}$$
(5)

2.2 Sily wewnetrzne w przegubach plastycznych

W przegubach plastycznych A i B występują siły wewnętrzne pokazane na rysunku 4.

Siły wewnętrzne P N i M stanowią obciążenie graniczne w przegubie plastycznym A, zaś siły wewnętrzne N i M stanowią obciążenie graniczne w przegubie plastycznym B.

Zgodnie z pracami (!) 1 (2) można dla profilu pierścienia wyznaczyć równania krzywych granicznych w postaci funkcji:

$$\mathbf{M} = \mathbf{f}(\mathbf{P}, \mathbf{N}) \tag{6}$$

$$\mathbf{M}_{1} = \mathbf{f}(\mathbf{N}_{1}) \tag{7}$$

Ze względu, że siła poprzeczna P jest małą zgodnie z pracami (3) i (4), wzór (6) może być przedstawiony z dość dobrym przybliżeniem w postaci:

$$\mathbf{M} = \mathbf{f}(\mathbf{N}) \tag{8}$$

Funkcje (8) i (7) dla omawianego przekroju (profilu) pierścienia zgodnie z pracą (5) przyjmuje postać:

$$\mathbf{H} = \mathbf{C}_{1} - \mathbf{C}_{2} \mathbf{N}_{2}^{2}$$
 (9)

$$\mathbf{H}_{1} = \mathbf{C}_{1} - \mathbf{C}_{2} \, \mathbf{H}_{1}^{2} \tag{10}$$

gdsie

$$C_1 = \frac{eh^2}{4} R_e \tag{11}$$

$$C_2 = \frac{1}{4sR_e}$$
(12)

R - naprężenie na granicy plastyczności

2.3. Warunki równowagi

Dla odcinka łuku pokazanego na rysunku 4 można napisać następujące warunki równowagi:

$$\mathbf{N} - \mathbf{N}_{\mathbf{x}} \cos(\beta - \psi) = 0 \tag{13}$$

$$P - \mathbf{N}_{1} \sin(\beta - \Psi) = 0 \tag{14}$$

$$-\operatorname{Pr} \sin\beta + \operatorname{Ny}_{*} + \operatorname{M}_{*} = 0 \tag{15}$$

$$y_1 = y_0 - r\cos\beta = r \sqrt{(1 - \cos\beta)^2 - 2 \frac{w}{r} \sin\beta}$$
 (16)

2.4. Rozwiązanie równań

Po podstawieniu równań (4), (5), (9), (10), (13), (14), (16) do (15) otrzymamy

$$P = \frac{-r\left[\sin\beta\sin^2(\beta-\psi) - \frac{y_1}{r}\sin(\beta-\psi)\cos(\beta-\psi)\right]}{2 C_2 \left[1 + \cos^2(\beta-\psi)\right]}$$

$$+ \sqrt{r^2 \left[\sin \beta \sin^2 (\beta - \psi) - \frac{1}{2} \sin (\beta - \psi) \cos (\beta - \psi) \right]^2 + 8C_1 C_2 \sin^2 (\beta - \psi)}$$

$$2 C_2 \left[1 + \cos^2 (\beta - \psi) \right]$$

$$\frac{\left[1 + \cos^{2}(r - \psi)\right]}{2C_{2}\left[1 + \cos^{2}(\beta - \psi)\right]}$$
(17)

Otrzymane równanie (17) z uwzględnieniem równania (16) stanowi zależność obciążenia od kąta β (określającego położenie skrajnych przegubów plastycznych) jako funkcję parametru W (wycięcia pierścienia).

2.5. Graficzne przedstawienie równania (17)

Dla graficznego przedstawienia równania (17) przyjęto wartości

r = 3,295 cm s = 1 cm h = 0,23 cm

Na rysunku 5 pokazano przykładowo dla trzech wartości w (0,1 cm),(0,2 cm), (0,3 cm) wykresy funkcji (17).

Obciążenia graniczne P dla tych trzech wartości zestawiono w tablicy 1.

W	β	P/R ₈		
сш	stopnie	cm ²		
0,1	43	0,0100		
0,2	52	0.0157		
0.3	56	0.0142		

Tablica 1

Badania wyidealizowanego modelu łuku kołowego

2.6. Wyznaczenie zależności P = P(w)

Wykres obciążenia granicznego P jako funkcji w przedstawiono na rysunku 6.

3. Badania laboratoryjne

Do przeprowadzenia badań laboratoryjnych wykonano próbki wytoczone z rury wykonanej z materiału o granicy plastyczności $R_e = 4822 \text{ daN/cm}^2$ o wymiarach:

średnica zewnętrzna - 68,2 mm, średnica wewnętrzna - 63,6 mm o szerokości - 10,0 mm.

W próbkach tych wykonano wycięcia w o wymiarach podanych w tablicy 2.

Tablica 2

Nr próbki	Wycięcie 2w	Maksymalna wartość obciąż. 2P	Obciążenie graniczne P	Obciążenie graniczne F/R _e
	mm	daN	daN	cm ²
1	1,0	228	114,0	0,0237
2	1,0	225	112,5	0,0234
3 4	1,5	207	103,5	0,0215
	2,0	175	87,5	0,0181
5	2,5	182	91,0	0,0188
6	2,5	165	82,5	0,0171
7	2,5	169	84,5	0,0175
8	2,5	174	87,0	0,0180
9	3,0	171	85,5	0,0177
10	4,0	147	73,5	0,0152
11	5,0	149	74,5	0,0154
12	6,0	131	65,5	0,0135
13	7,0	126	63,0	0,0130
14	7,0	134	67,0	0,0139

Próbki te wstawiono w korpus stalowy pokazany na rysunku 1 o średnicy wewnętrznej 68,2 mm, po czym poprzez trzpień obciążono je w maszynie wytrzymałościowej. Zmierzone wartości maksymlanych obciążeń zestawiono w tablicy 2.

Maksymalne wartości obciążeń podzielone przez 2 stanowią obciążenia graniczne P (tablica 2) odpowiadające wartościom maksymalnym P ze wzoru (17). Na rysunku 7 przedstawiono krzywą graniczną – $\frac{P}{R_e}$ jako funkcję w uzyskaną ze wzoru (17) oraz uzyskane wyniki obciążeń maksymalnych (zestawione w tablicy 2).

4. Wnioski

- Uzyskane wyniki badań laboratoryjnych potwierdzają poprawność przyjętej definicji obciążenia granicznego, jako największego obciążenia granicznego.
- Uzyskany wzór (17) na obciążenie P stanowi funkcję, której maksimum stanowi połowę obciążenia granicznego.

LITERATURA

- [1] Walery Szuścik: Obciążenie graniczne przy mimośrodowym rozciąganiu i ściskaniu belek. Zeszyty Naukowe Pol. Śl. Górnictwo - Zeszyt 4 Gliwice 1962 r.
- [2] Walery Szuścik: Obciążenie graniczne przy ogólnym nierównomiernym zginaniu i ściskaniu (rozciąganiu) belek. Zeszyty Naukowe Pol. Śl.Górnic two Zeszyt 5 Gliwice 1962 r.
- [3] Walery Szuścik: Krzywe graniczne profilów łukowej obudowy Korytarzowej. Zeszyty Naukowe Pol. Śl. Górnictwo Zeszyt 6, Gliwice 1963 r.
- [4] Walery Szuścik: Stan graniczny profilów stalowej obudowy górniczej praca doktorska - Biblioteka Pol. Sl. Gliwice 1962.
- [5] Walery Szuścik: Plastyczne zginanie płaskie belek z materiałów o niesymetrycznej wytrzymałości. Zeszyty Naukowe Pol. Śl. Górnictwo - Zeszyt 2, Gliwice 1959 r.

ИССЛЕДОВАНИЛ ВЫИДЕАЛИЗИРОВАННОЙ ШОДЕЛИ СВОДА КРУГОВОЙ КРЕІМ ШТРЕКА В ПРЕДЕЛЬНОШ СОСТОННИ.

Резюме

В работе рассмотрели предельное состояние и определено предельную нагрузку круга с вырезанным зазором круга, вставленного в твёрдый корпус как на рисунке 1.

Полученная формула (17) для нагрузки р является половиной предельной нагрузки. Полученные теорстические результаты потверждают проведённые лабораторные исследования.

INVESTIGATIONS CONCERNING AN IDEALIZED MODEL OF A WHEEL-SHAPED EXCAVATION LINING AT A LIMIT-STATE

Summary

The paper discusses the limit-state and defines the limit load of a ring, cut open, and placed into a stiff body, as shown in Fig. 1.

The obtanied formula (17) for the load P is a function, whose maximum makes up half the limit load. The obtanied theoretical results have been proved by means of laboratory tests.