

MARCIN BORECKI

ZACHOWANIE SIĘ SKAŁ W UKŁADACH JEDNOOSIOWYCH obciążeń wysokociśnieniowych ze skrępowanym odkształceniem poprzegznym

POLITECHNIKA ŚLĄSKA ZESZYT NAUKOWY Nr 321 – GLIWICE 1971

9.3351 41 OLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE

Nr 322

MARCIN BORECKI

ZACHOWANIE SIĘ SKAŁ W UKŁADACH JEDNOOSIOWYCH obciążeń wysokociśnieniowych ze skrępowanym odkształceniem poprzecznym

REDAKTOR NACZELNY ZESZYTÓW NAUKOWYCH POLITECHNIKI ŚLĄSKIEJ

Fryderyk Staub

REDAKTOR DZIAŁU

Jerzy Nawrocki

SEKRETARZ REDAKCJI

Witold Guzkowski

Dział Wydawnictw Politechniki Śląskiej Gliwice, ul. Kujawska 2

Nakł. 200+110
Ark. wyd. 7,43
Ark. druk. 9,25
Papier offsetowy kl. III, 70x100, 80 g

Oddano do druku 4
11. 1971
Podpis. do druku 22, 12. 1971
Druk ukoń. w grudniu 1971

Zam. 1288
26. 10. 1971
C-22
Cena zł 10,--

Skład, fotokopie, druk i oprawę wykonano w Zakładzie Graficznym Politechniki Śląskiej w Gliwicach

PJ-75/72

SPIS TRESCI

St	ro	na	:
----	----	----	---

1. Przedmiot i stan zagadnienia			
	1.1.	Stan naprężeń w górotworze na dużych głębo- ściach	6
	1.2.	Dotychczasowe badania wysokociśnieniowe w trzyosiowym stanie naprężeń	10
	1.3.	Aktualny stan badań w zakresie parcia bocznego	16
	1.4.	Określenie zadania dla przeprowadzenia badań	23
2.	Meto	da badań	26
	2.1.	Zasadniczy cel pomiarów	26
		2.1.1. Dobór metody pomiarów	27
		2.1.2. Dobór typów skał	29
	2.2.	Konstrukcja przyrządu pomiarowego	40
	2.3.	Zastosowany układ pomiarowy	45
	2.4.	Cechowanie układu pomiarowego	45
	2.5.	Przygotowanie próbek i przyjęte tolerancje	52
	2.6.	Sposób przeprowadzenia badań	54
3.	Wyni	ki badań	55
	3.1.	Ocena wiarygodności charakterystyki cechowa- nia	55
	3.2.	Srednie wyniki pomiarów	57
4.	Anali	za wyników badań	67
	4.1.	Zmienność zależności p _x = f /p _z / w cyklu obciąże- nia i odciążenia	67
	4.2.	Zagadnienie uplastycznienia skał przy wysokim ciśnieniu	71

Strona:

	4.3. Fizyczne aspekty stwierdzonych zależności	74
	4.4. Zależność parcia bocznego od własności mecha- nicznych skał	75
5.	Zakończenie i wnioski	80

Tablice od 1 do 5 Tablice A, B Rysunki od 1 do 28

ZAŁĄCZNIKI

÷.

Tablice od I do XXIX Rysunki od I do XXIX - 4 -

1. PRZEDMIOT I STAN ZAGADNIENIA

Dla szeregu zagadnień z zakresu budownictwa górniczego znajomość ciśnienia bocznego skał, nazywanego również parciem bocznym skał, ma zasadnicze znaczenie. Wymienić można przede wszystkim zagadnienia ciśnienia górotworu na obudowę szybów, ciśnienie poziome na obudowę podszybi, przekopów i innych wyrobisk o długotrwałym użytkowaniu, wyciskanie węgla z pokładu na froncie wybierania pod wpływem ciśnienia eksploatacyjnego itp.

W miarę rozwoju technologii górniczej umożliwiającej schodzenie z eksploatacją kopalin na coraz większe głębokości problem ciśnienia boznego skał nabiera coraz większego znaczenia. Dotyczy to w równej mierze wyrobisk poziomych, jak i pionowych. W wyrobiskach poziomych, w miarę wzrostu głębokości ich założenia, ciśnienie stropowe na obudowę zostaje zastąpione przez ciśnienie wszechstronne - co powoduje zmianę warunków utrzymania wyrobisk i konieczność uwzględniania parcia bocznego skał.

W szybach ciśnienie boczne skał na znacznych głębokościach stwarza konieczność przeanalizowania niezbędnej w tych warunkach dużej wytrzymałości i odpowiednio dobranej podatności obudowy – w celuniedopuszczenia do dynamicznego zgniatania przekroju i rozluźnienia skał co z kolei spowodowałoby dalszy i ciągły wzrost ciśnień dynamicznych.

Jak wynika z przeglądu dotychczasowych badań w tym zakresie, znajomość mechaniki parcia bocznego skał przy dużych naciskach pionowych jest niewystarczająca. Dotyczy to szczególnie zmian parcia bocznego różnych skał wynikających z różnic własności fizycznych i mechanicznych tych skał.

Przy wysokim zakresie ciśnień trzyosiowych, odpowiadającym stanowi naprężeń w górotworze na większych głębokościach, niektóre parametry mechaniczne skał wydają się tracić na znaczeniu. Należą do nich: wytrzymałość w prostych stanach naprężeń rozciąganie, ściskanie, zginanie , moduł odkształcenia i sprężystości, wskaźniki kruchości, pełzania, relaksacji, itp. Inne wskaźniki, jak na przykład liczba Poissona nabierają odmiennego sensu fizycznego aniżeli w prostych stanach naprężeń, a w związku z tym muszą być -badane przy zastosowaniu metod uwzględniających wysokie wartości wszystkich trzech składowych głównych stanu napięcia.

Wreszcie trzecia grupa wskaźników, do których należą: współczynnik tarcia wewnętrznego, porowatość /stopień uszczelnienia/ oraz krystaliczno--strukturalne właściwości podstawowych mineralogicznych składników skał, wydają się odgrywać istotną rolę w procesach zachodzących przy wysokim ciśnieniu wszechstronnym. Szczególnie własności tarcia wewnętrznego skał wydają się mieć podstawowe znaczenie dla ściskania przestrzennego.

1.1. Stan naprężeń w górotworze na dużych głębokościach

Pierwotny stan napięcia w skałach przed wykonaniem w nich wyrobisk górniczych charakteryzuje się tym, że pionowa składowa naprężeń jest proporcjonalna do głębokości rozpatrywanego przekroju:

$$p_{\chi} = -\gamma \cdot h \tag{1}$$

gdzie

h - głębokość, m

Y - ciężar objętościowy skał, №⁻³,

p_z - pionowa składowa stanu naprężeń, Nm⁻².

W miarę wzrostu głębokości w górotworze rośnie ciśnienie pierwotne. Wzrost ten jest spowodowany z jednej strony coraz wyższym słupem nadkładu wywierającym nacisk na jednostkę powierzchni poziomej rozpatrywanego elementu skały, z drugiej zaś strony może być spotęgowany wskutek możliwego wzrostu średniej masy właściwej /ciężaru objętościowego/ skał w miarę rosnącej głębokości.

Jak bowiem wykazały badania doświadczalne przeprowadzone dla skał Górnośląskiego Zagłębia Węglowego (16), w grubych formacjach skał osadowych daje się zaobserwować zjawisko konsekwentnego wzrostu średniego ciężaru objętościowego skał występujących na coraz głębszych poziomach. W przedziale głębokości obecnie prowadzonych w Zagłębiu Górnośląskim wyrobisk górniczych /do ok. 1200 m/ stwierdzono przyrost średniego ciężaru objętościowego skał od ok. 23,5 do ok. 27,0 kNm⁻³, przy czym na różnych poziomach głębokościowych rozkład ciężarów różnych skał wykazał charakter rozkław normalnego /gaussowskiego/ - rys. 1.

Można przypuszczać, że przy jeszcze większych głębokościach wchodzących jednak w zakres możliwości eksploatacji górniczej w miarę spodziewanego postępu techniki nastąpi dalszy przyrost średniego ciężaru objętościowego skał. Tak więc wzrost ciśnienia pierwoinego w górotworze w miarę powiększania się głębokości ma charakter nieliniowy i jest większy niżby to wynikało z proporcji przyrostu głębokości. Wynika to z faktu, że wielkości Y nie można traktować jako stałej niezależnej od głębokości.

Przyrost ciśnienia pierwotnego wywiera zasadniczy wpływ na przebieg przejawów ciśnienia górotworu w bezpośrednim otoczeniu wyrobisk górniczych. Ogólne zasady teoretyczne dotyczące koncentracji naprężeń wokół otworów /wyrobisk/, naroży calizny, w filarach, itp. pozostają te same, ulega natomiast zmianie stopień wytężenia skał będący stosunkiem średniego z działających naprężeń do naprężenia krytycznego. Wynikającą z tego zasadniczą tendencją zmiany przejawów ciśnienia górotworu w miarę wzrostu głębokości jest przejście ciśnienia stropowego w ciśnienie wszechstronne.

Tak więc, zachodzi konieczność uwzględniania w schemacie obudowy wyrobisk nie tylko odpowiedniego podparcia stropu, ale również opanowania narastających objawów wyciskania spągów wyrobisk, przede wszystkim zaś parcia bocznego ociosów. Tendencje te znane są praktycznie z szeregu obszarów górniczych, w których prowadzi się głęboką eksploatację złóż.

Intensywne wyciskanie ociosów wyrobisk kapitalnych zmusza tam często do stosowania obudowy pełnej /pierścieniowej/ o odpowiednio dobranym kształcie i dużej wytrzymałości, znaczne zaś nasilenie się objawów dynamicznego wyciskania skał z ociosów eksploatacyjnych / np. czoła ściany/ pociąga za sobą konieczność stosowania specjalnych metod prowadzących do rozproszenia naprężeń na większym obszarze. Bezpieczne prowadzenie robót w tych warunkach wymaga stałej kontroli naprężeń w skałach otaczających wyrobiska |17].

-7-

Rys. 1 Rozkład ciężaru objętościowego skał karbońskich Górnośląskiego Zagłębia Węglowego w zależności od głębokości wg M.Boreckiego i A.Kidybińskiego

Przytoczone zjawiska występujące w robotach górniczych, szczególnie przy eksploatacji złóż na większych głębokościach, uwypuklają potrzebę dokładnego poznania fenomenu parcia bocznego skał.

Ciśnienie boczne nienaruszonego górotworu na określonej głębokości określa się w dotychczasowej literaturze zależnością obliczoną z uogólnionego prawa Hooke'a:

$$p_x = p_y = -\frac{y \cdot h}{m-1} = \frac{p_z}{m-1}$$
 (2)

gdzie:

P_x, **P**_y - dwie składowe poziome ciśnienia przestrzennego.

Liczbam jest natomiast odwrotnością współczynnika Poissona, mianowicie:

$$m = \frac{1}{\gamma}$$
(3)

Wartość współczynnika nie jest wielkością stałą, lecz zależną od obciążenia. Według badań Bauschingera i Schmidta wykonanych na próbach piaskowca, przyjmuje się jej wartość w granicach od około 1/12 przy małych obciążeniach do 1/2 przy dużych obciążeniach. Przy tym w miarę wzrostu obciążenia wartość współczynnika rośnie, zbliżając się asymptotycznie do wielkości = 0,5, co oznacza, że w określonych /większych/ głębokościach ciśnienie boczne moze równać się wartości ciśnienia pionowego, tzn.:

$$\mathbf{p}_{\mathbf{x}} = \mathbf{p}_{\mathbf{y}} = \mathbf{p}_{\mathbf{z}} \tag{4}$$

Na większych zatem głębokościach stan ciśnienia w górotworze nienaruszonym zbliza się do stanu hydrostatycznego. Ta krytyczna głębokość jest określona przez różnych badaczy różnie. Najczęściej określa się ją w granicach od 800 do tysiącakilkuset metrów, w zależności od rodzaju skały. Według tych poglądów, przyjętych w dotychczasowych rozważaniach mechaniki górotworu, ciśnienie boczne skał rośnie z głębokością zachowując zależność nieliniową i począwszy od głębokości kilkuset metrów /400 do 600 m/ zdąża asymptotycznie do wielkości ciśnienia pionowego. Obserwacje i pomiary kształtowania się ciśnień górotworu w kopalniach głębokich /poniżej tysiąca metrów/ nie potwierdzają tych poglądów; wskazując raczej na wyraźną zależność fenomenu parcia bocznego od fizyko-mechanicznych własności skały. W wyrobiskach górniczych na głębokościach przekraczających nawet 2000 m nie obserwuje się szczególnie w skałach zwięzłych stanów wskazujących na uplastycznienie skał. Również takiego stanu nie potwierdzają wyniki głębokich wierceń dochodzących do 10 000 i 15 000 m.

Dla wyjaśnienia fenomenu kształtowania się naprężeń w skałach górotworu nienaruszonego podejmowane były w szeregu krajów badania laboratoryjne na odpowiednio przygotowanych próbkach skał, przy obciążeniach jednodwu- i trzyosiowych.

Dla bliższego naświetlenia stanu dotychczasowych badań w tym zakresie przedstawimy w następnych rozdziałach przeprowadzone ciekawsze badania podając krótko stosowane metody badań oraz ocenę wyników.

1.2. Dotychczasowe badania wysokociśnieniowe w trzyosiowym stanie naprężeń

Badania wysokociśnieniowe skał w trzyosiowym stanie naprężeń wymagają specjalnej skomplikowanej aparatury, dlatego też nie są one tak rozpo wszechnione jak badania jedno- czy dwuosiowe. Niejmniej jednak w szeregu krajów o wysokorozwiniętym nowoczesnym górnictwie, skonstruowano tego rodzaju aparaturę i przeprowadzono badania na próbkach różnych skał. Badania te miały najczęściej charakter badań tzw. "wytrzymałościowych", zajmujących się mechanicznymi własnościami skał w różnych stanach naprężenia.

A.N. Stawrogin |1 | przeprowadził badania w aparacie umożliwiającym przykładanie obciążenia osiowego do 3 GNm⁻² oraz obciążenia bocznego, nazywanego okólnym lub radialnym do 1 GNm⁻². Jako zasadę przyjął on zachowanie stałego stosunku σ_p / σ_z w trakcie badania pojedynczej próbki, realizację zaś tego warunku zapewniała specjalna konstrukcja układu hydraulicznego. Komora ciśnienia okólnego była bowiem połączona z układem ciśnienia osiowego otworem w wymiennym tłoku mającym ściśle określoną średnicę w części wchodzącej do cylindra otworu osiowego. W ten sposób ciśnienie osiowe przekazywane od góry za pomocą multiplikatora sterowało automatycznie okólnym, w zależności od dobranej średnicy zewnętrznej dolnego tłoka przy - zachowaniu stałej geometrii komory ciśnieniowej oraz próbki. Zestaw wymiennych tłoków oporowych zapewniał możliwość zmieniania stosunku w granicach od O do O,666.

Stosowane próbki skał miały średnicę 30 mm. Odkształcenia próbek mierzone były za pomocą tensometrów oporowych naklejonych bezpośrednio napróbkę, połączonych wielożyłowym kablem z układem rejestracyjnym. Kabel ten był tak wykonany, że zapewniał zarówno właściwą izolację przewodów, jak 1 szczelność komory ciśnieniowej przez której ściankę był wyprowadzony na zewnątrz.

Na podstawie przeprowadzonych badań A.N. Stawrogin określił obwiednie kół Mohra dla szeregu skał, biorąc za podstawę oceny granicy sprężystości moment pojawienia się odkształceń o charakterze trwałym. Analiza stanu odkształcenia ściskanych próbek skał doprowadziła tego autora do wniosku - że proces deformacji trwałej przy trzyosiowym ściskaniu próbek marmuru prowadzi do przyrostu objętości próbki wskutek powstawania systemu mikroszczelin.

M.M. Protodiakonow i E.J. Ilnickaja 2 przeprowadzili badania trzyosiowego ściskania próbek w celu określenia wpływu tzw. efektu skali / czyli zmiany wielkości próbki / na parametry wytrzymałościowe. Główne badania przeprowadzono na próbkach węgla, wapienia, marglu kredowego oraz mieszaniny piaskowo-cementowej. Srednicę próbek zmieniano w granicach od ok. 17 do 60 mm. W wyniku badań stwierdzono, że wzrost wymiarów próbki /przy zachowaniu stałej proporcji wymiarów/ prowadzi do spadku otrzymanych z badań wartości kohezji oraz w pewnych przypadkach również kąta tarcia wewnetrznego danej skały /rys. 2/.

Zauważono przy tym, że z reguły spadek wymienionych wielkości jest większy przy dużej różnicy naprężania osiowego i okólnego. Przy dużych nato-

miast wartościach obydwóch naprężeń wpływ skali jest niewielki. Na wykresie w układzie naprężeń normalnych i stycznych omawiana prawidłowość wyraża się postępującą w kierunku dużych naprężeń normalnych zbieżnością krzywych reprezentujących próbki o małych oraz dużych wymiarach.

K.H. Höfer i K. Thoma 3 przeprowadzili obszerne badania trzyosiowe na próbkach soli kopalnych. Zastosowany aparat do ściskania próbek miał kształt cylindra, do którego z jednej strony wsuwany był tłok zabezpieczony odpowiednimi uszczelnieniami. Stosowane próbki miały średnicę 42 mmi taką samą wysokość, zakres zaś ciśnienia bocznego sięgał do 200 MNm⁻². Nacisk na tłok wywierano za pomocą prasy hydraulicznej o maksymalnym zakresie do 30 kN. Odkształcenie podłużne próbek mierzono za pomocą czujnika indukcyjnego umocowanego na zewnątrz aparatu i mierzącego zagłębienie tłoka w cylindrze zwiększające się w miarę odkształcania próbki. W celu zapobiegnięcia infiltracji cieczy ciśnieniowej do wnętrza próbek, były one zabezpiecza**ne** powłoką gumową zakleszczoną w uchwytach obejmujących końcowe części próbek.

W wyniku przeprowadzonych badań otrzymano wykresy zależności odkształcenia podłużnego od różnicy głównych naprężeń dla różnych poziomów ciśnienia okólnego.

S.A.F. Murrel 4 przeprowadził badania, których głównym celem było określenie kryteriów wytrzymałościowych skał w trzyosiowym stanie naprężeń z uwzględnieniem ciśnienia porowego. Próby przeprowadzone zostały na porowatych skałach osadowych, a wymiary próbek były następujące: średnica 2,5 cm i długość 7,3 cm. Zastosowany aparat umożliwiał osiągnięcie maksymalnego ciśnienia osiowego do około 1,8 GNm⁻² oraz ciśnienia okólnego 0,4 GNm⁻². Obie składowe obciążenia przykładane były niezależnie, podobnie jak ciśnienie porowe doprowadzone do próbki przez perforowane denka tloków.

Aparat umożliwiał dokładną regulację wszystkich składowych obciążenia oraz prowadzenie rozciągania próbek – przy zastosowaniu specjalnej wkładki z uchwytem. Ciśnienia wyższe ponad 63,0 M.Nm⁻² uzyskiwane były za pomocą multiplikatorów, przy czym dla systemu ciśnienia porowego multiplikator spełniał ponadto dodatkową rolę, a mianowicie oddzielał olej od wody porowej. Odkształcenia próbek mierzono połączonymi tensometrami mechanicznymi / obejmami mocowanymi na próbce/. Zastosowany schemat ściskania polegał na utrzymywaniu stałego ciśnienia okólnego i porowego przy równoczesnym wzroście ciśnie nia osiowego. W ten sposób otrzymano obwiednię kół Mohra dla naprężeń maksymalnych oraz stwierdzono, że wzrost ciśnienia porowego w piaskowcu wywiera taki sam wpływ na wytrzymałość i nachylenie powierzchni pęknięcia jak obniżenie ciśnienia bocznego. Dało się także zauważyć pewne osłabiające skałę działanie ciśnienia porowego - występujące zapewne wskutek chemicznego działania składników wody porowej na ścianki por.

G.W. Arcimowicz i E.D. Skliarow |5| przeprowadzili badania mające na celu wyjaśnienie wpływu wysokich ciśnień na mechaniczne własności skał. Badania prowadzono metodą wciskania tłoczka o płaskiej powierzchni czołowej w próbkę skalną poddaną wszechstronnemu ściskaniu w specjalnej komorze ciśnieniowej. Zbadano marmur, piaskowiec i wapień na próbkach średnicy 40 mm i wysokości 20 mm. Próby wykazały, że wskaźniki mechaniczne określone na podstawie wciskania tłoczka w próbkę skały – a mianowicie współczynnik plastyczności i twardość, wzrastają przy wzroście ciśnienia wszechstronnego od zera do około 40,0 MNm⁻². Przy dalszym wzroście ciśnienia nie stwierdzono dalszych zmian wskaźników wytrzymałościowych zbadanych skał /rys. 3/.

Analiza wymienionych powyżej pozycji bibliograficznych, jak również szeregu innych prac dotyczących ściskania trzyosiowego, doprowadza do wniosku, że pomimo dużej różnorodności stosowanych metod i aparatury badawczej, z wyników "badań wytrzymałościowych trudno wyciągnąć wnioski odnośnie fenomenu parcia bocznego wywieranego przez skały w warunkach nieściśliwego otoczenia. Próby bowiem wytrzymałościowe dotyczą z reguły trzyosiowych, osio-

Rys. 3 Wykres zależności własności mechanicznych skał od wielkości ciśnienia wg G.W. Arcimowicza i E.D. Skliarowa

- 15 -

wo symetrycznych stanów naprężenia, podczas gdy dla analizowanego problemu parcia skał właściwy jest jednoosiowy stanodkształcenia.

1.5. Aktualny stan badań w zakresie parcia bocznego

Dotychczasowe badania parcia bocznego skał poddanych naciskowi osiowemu podzielić można na dwie grupy. Do grupy pierwszej zaliczyć można przeprowadzone w ZSRR badania bezpośrednio związane z próbami określenia nacisku skał słabo zwięzłych na obudowę wyrobisk szybowych.Grupa druga obejmuje prace mające na celu określenie wartości liczby Poissona skał przy ściskaniu jednoosiowym oraz z małym obciążeniem bocznym.

Z grupy pierwszej wymienić należy przede wszystkim badania B.W. Matwiejewa 6. Przeprowadził on obszerne badania słabych skał /średnica próbek 36 mm, wysokość 40 mm/ polegające na wywoływaniu poprzecznych deformacji próbek pod naciskiem osi owym, a następnie zmniejszenie tych deformacji do zera wywieranym ciśnieniem bocznym /okólnym/. Zastosowany przyrząd składał się z cylindra stalowego z przykręconymi dwoma płaskimi pokrywami, wewnątrz którego umieszczono próbkę w opasce tensometrycznej.

Ciśnienie osiowe /do 70,0 MNm⁻²/ i boczne /do 40,0 MNm⁻²/ wywieramo za pomocą dwóch osobnych układów hydraulicznych, przy czym w celu umożliwienia prób pełzania objętościowego i relaksacji,obydwa układy połączone były z wyrównawczymi zbiornikami gazu /azotu/. Opaska tensometryczna w kształcie dwudzielnego pierścienia stalowego z wyciętym odcinkiem i sprężystym połączeniem obydwu części, wyposażona była w rozpięty na specjalnych trzpieniach drut oporowy pozwalający na elektryczny pomiar stopnia rozwarcia pierścienia przy bocznym odkształceniu się próbki. Element ten połączony był z układem automatycznej regulacji i sterowania umożliwiającym samoczynną kompensację odkształceń bocznych za pomocą ciśnienia okólnego - na poszczególnych włączających się samoczynnie poziomach obciążenia osiowego. W wyniku przeprowadzonych badań B.W. Matwiejew podał równania empiryczne opisujące przebieg parcia bocznego skał słabych w zależności od stanu odkształcenia oraz wartości współczynników stałych w równaniach dla szeregu skał, jak na przykład: glina piaszczysta, słabe iłowce i mułkowce, kreda słaba, margle, piaskowce itp.

Badania nad zmiennością liczby Poissona skał, w zależności od warunków obciążenia prowadzone były przez wielu autorów. Jak wiadomo, ściskanie foremnych próbek skał w prasie prowadzi do powstawania w nich stanu naprężeń przyjętego umownie za jednoosiowy. Na charakter rozkładu wpływa tarcie na stykach próbki i prasy - stąd też dla zachowania porównywalnych warunków najczęściej prowadzi się próby bez jakichkolwiek materiałów zmniejszających tarcie, umieszczając próbkę centralnie bezpośrednio na gładkiej płycie maszyny wytrzymałościowej. Pomiar odkształceń podłużnych i poprzecznych próbki w czasie jej obciążenia do granicy wytrzymałości pozwala na obliczenie liczby Poissona, a więc i współczynnika **a**.

Ponieważ obciążenie, a w szczególności jego prędkość, wywiera wpływ na mierzone wartości odkształceń pomiary należy realizować przy obciążeniu szybkim, nie mniejszym niż O,5 MNm⁻²/s. Zakłada się przy tym, że dla skał zwięzłych pełzanie próbek wynikające z długotrwałego obciążenia jest małe w stowunku do wielkości odkształceń sprężystych. Pełzanie jednak nasila się znacznie w miarę wzrostu naprężeń. Przy jednorazowym szybkim obciążeniu do granicy wytrzymałości skały współczynnik Foissona wykazuje wzrost od wartości O,O5-O,15 do około O,3O-O,4O bezpośrednio przed rozpadem próbki.

Jak wykazały badania przeprowadzone na różnych skałach 7, końcowa /krytyczna/ wartość współczynnika Poissona zależy nie tylko od stopnia wytężenia oznaczającego stosunek aktualnej wartości naprężenia do jego warrtości krytycznej, lecz także od samego naprężenia. Skały bardziej wytrzymałe wykazują mianowicie mniejszą wartość współczynnika Poissona odpowiadającą granicy wytrzymałości /rys. 4/.

Dla skał średniozwięzłych Aczy na granicy wytrzymałości osiągnąć może według S. Matsushimy 8 wartości wykraczające daleko po-

Rys. 4 Zależność liczby Poissona od stopnia wytężenia skał przy jednoosiowym obciążeniu ściskającym wg S. Matsushimy

za O,5 i dochodzące nawet do około 2,0. Zjawisko to należy tłumaczyć utratą ciągłości materiału badanej prćki /powstawanie mikroszczelin/. Wykluczając wielkości odkształceń po u racie ciągłości fizycznej można stwierdzić, że większość skał wykazuje krytyczną wartość w granicach do około 0,30. Odpowiada to wielkości liczby m = 3,3.

Współczynniki Poissona, którymi dzisiaj rozporządzamy zostały w większości oznaczone przy ciśnieniu poniżej 50 % naprężenia niszczącego. Krzywe dla zakresu bliskiego granicy wytrzymałości są bowiem trudne do wyznaczania. Wskazują one jednak na interesujące zjawiska, a mianowicie, że odkształcenia poprzeczne przy zbliżaniu się do granicy wytrzymałości próbki gwałtownie rosną i współczynnik Poissona przez to znacznie rośnie.

Na rys. 5 przedstawiono według H. Linka 9 zależność liczby Poissona od naprężeń ściskających – dla różnych skał. Krzywe te zostały wyznaczone przy jednoosiowym ściskaniu. Według tego autora zaznacza się duży przyrost odkształceń poprzecznych przy ciśnieniu przekraczającym 60-70 % obciążenia krytycznego /niszczącego/.

Zagadnieniem zmiany liczby Poissona skał w górnym przedziale przyłożonych obciążeń jednoosiowych zajmowali się L.Cameron oraz M.Rosi A.Eichniger |10, 11 |. Stwierdzili oni doświadczalnie, że przy powolnym wzroście obciążenia liczba Poissona na ogół maleje szybciej przy wyższych zakresach ciśnień.

Na rys. 6 przedstawiono według D.W. Phillipsa | 12 | przebieg odkształceń podłużnych i poprzecznych dla łupku ilastego przy różnych prędkościach obciążenia. Porównując wyniki badania próbek przy obciążeniu natychmiastowym oraz przy obciążeniu z prędkością 0,14 MNm⁻²/s stwierdził on przy nacisku 40, 60, 80 MNm⁻², że liczba m zmalała odpowiednio o 13, 26, i 38 %.

Zwiększający się przy wzroście ciśnienia wpływ czasuna odkształcenie poprzeczne przejawia się przez zwiększenie zdolności skały do pełzania. Wyniki pomiarów otrzymanych w tym zakresie przez S. Matsushimę | 13 | przedstawiono na rys. 7.

Rys. 5 Zależność wartości m od wielkości naprężeń dla różnych skał pod jednoosiowym obciążeniem ściskającym wg H. Linka

Rys. 6 Zależność odkształceń od naprężeń przy różnych prędkościach obciążenia dla łupku ilastego

Rys. 7 Pelzanie podlużne i poprzeczne próbek granitu pod ciągłym obciążeniem jednoosiowym wg S. Matsushimy

.

- 22 -

Z danych przytoczonych przez tego autora wynika, że dla granitu o wytrzymałości 140 MNm⁻² nie stwierdzono dostrzegalnego pełzania w zakresie naprężeń ści skających poniżej 1/3 krytycznych. Z chwilą osiągnięcia natomiast ok. 2/3 obciążenia krytycznego pełzanie poprzeczne wyraźnie wzrosło. Podobne wyniki badań uzyskał F. Rummel 141.

Przy obciążeniach przekraczających 60-70 % obciążenia krytycznego stwierdzony wzrost pełzania jest wynikiem rozluźnienia struktury skały związanego ze zwiększeniem się objętości próbki. Dla betonu jest to zjawisko znane od dawna.

1.4. Określenie zadania dla przeprowadzenia badań

Przedstawione w poprzednim rozdziale wyniki badań szeregu autorów wyjaśniają w dostatecznym stopniu zagadnienie odkształceń poprzecznych przy jednoosiowym obciążeniu. Przedstawione wyniki nie dają jednak podstawy do wnioskowania o zachowaniu się górotworu pozostającego w trzyosiowym układzie naprężeń, bowiem zależności liczby II ulegają zmianom w przypadku istnienia reakcji krępujących swobodne odkształcenie próbki w kierunku poprzecznym do działania głównego nacisku.

Jak wykazały doświadczenia T. Horibe i B. Kobayashi 15, w miarę wzrostu reakcji poprzecznej maleje gradient spadku wartości liczby m ze wzrostem różnicy pomiędzy naprężeniem osiowym i naprężeniem okólnym.

Zależność tę przedstawiono na rys. 8 dla ciśnienia bocznego w granicach 0-12 MNm⁻² oraz różnicy naprężeń głównych do 25 MNm⁻². W omawianym zakresie wartości odciętej spadek liczby m dla zerowej wartości ciśnienia bocznego ma charakter krzywoliniowy.

Ponieważ w tym przypadku składowa pozioma równa się zeru, różnica naprężeń głównych jest zgodna co do wartości z obciążeniem pionowym. Krzywoliniowy przebieg wielkościm jest przeto zgodny z danymi przedstawionymi na rys. 5. W przypadku wartości ciśnienia okólnego w granicach do 12 MNm⁻² występuje liniowy spadek wartości liczby m do wartości 3,0-5,0 /dla p = 25 MNm⁻²/.

Rys. 8. Zależność liczby m od różnicy naprężeń głównych przy niedużym obciążeniu trójosiowym drobnoziarnistych piaskowców wg T. Horibe i B. Kobayashi

- 24 -

Dla wyjaśnienia mechaniki nacisku bocznego skał w warunkach wyrobisk wykonywanych na znacznych głębokości ach konieczne jest określenie zależności parcia bocznego od nacisku pionowego w warunkach nieściśliwego otoczenia da wysokiego zakresu obciążeń pionowych. Zależność ta charakteryzuje bowiem ciśnienie pierwotne w górotworze nienaruszonym, gdzie rozpatrywany element skały nie ma możliwości odkształceń bocznych w stosunku do elementów sąsiednich. Wysoki zakres ciśnień pionowych odpowiada w tym układzie znacznej głębokości zalegania.

W omówionych powyżej badaniach autorzy zajmowali się bądż odkształceniami skał w warunkach jednoosiowego obciążenia, bądź też w warunkach obciążenia trzyosiowego. W pierwszym przypadku warunki badań nie odzwierciedlały stanu górotworu nienaruszonego z uwagi na nieograniczoną możliwość odkształceń bocznych.

W drugim przypadku zadawano ciśnienie boczne, co z góry określało zmienne warunki odkształceń poprzecznych. Tak więc również i w tym przypadku warunki badań nie odzwierciedlały stosunków panujących w górotworze nienaruszonym.

W celu więc określenia parcia bocznego skał pod dużym obciążeniem pionowym potrzebne było przeprowadzenie badań doświadczalnych, które by odpowładały z możliwie dużą dokładnością warunkom jednoosiowego stanu odkształcenia.

Analiza dotychczasowego stanu wiedzy w tym zakresie upoważnia do sformułowania wstępnej tezy, że podstawowe znaczenie dla ściskania przestrzennego w warunkach górotworu nienaruszonego wydają się mieć własności tarcia wewnętrznego skał oraz ich wytrzymałość na ściskanie. Pewną rołę odgrywają również tego rodzaju własności, jak porowatość / stopień uszczelnienia / oraz krystaliczno-strukturalne własności podstawowych mineralogicznych składników skał.

2. METODA BADAÑ

2.1. Zasadniczy cel pomiarów

Zasadniczvm celem przeprowadzonych pomiarów było określenie wielkości parcia bocznego wywieranego przez skały zwiezłe pod dużym obciążeniem pionowym - w warunkach zbliżonych do nienaruszonego górotworu. Warunki te odpowiadają w przybliżeniu jednoosiowemu stanowiodkształcenia. Stan ten nie może być zmodelowany idealnie przy jednoczesnym pomiarze parcia bocznego. Wynika to z podatności wszelkich materiałów konstrukcyjnych oraz układów pomiarowych - wskutek działania na nie mechanicznych obciążeń. Z tego wzgledu dokonując pomiarów pośrednich, to znaczy określając wielkości siły poprzez odkształcenie elementu dynamometrycznego, które ta siła powoduje - można jedynie zbliżyć się do stanu odpowiadającego całkowitemu skrępowaniu odkształceń poprzecznych. Należy dodać, że również bezpośredni pomiar siły za pomocą układu hydraulicznego i czujnika ciśnienia cieczy - teoretycznie tylko odbywa się przy absolutnej nieodkształcalności układu. W rozwiązaniach technicznych należy się bowiem liczyć zarówno z pewnąniewielką ściśliwością cieczy wskutek istni enia rozproszonej fazy gazowej, jak i podatnościa układu wynikająca z przepływu cieczy w ilości określonej podatnością czujnika /rurka Bourdona, czujnik membramowy, itp./.

Z wyżej podanych powodów pomiar parcia bocznego postanowiono zrealizować przy maksymalnym technicznie możliwym ograniczeniu poprzecznych odkształceń próbek obciążanych osiowc w cylindrze stalowym. W tym celu dobrano odpowiednią grubość ścianki cylindrów pomiarowych oraz jakość stali, a także technologię odpowiedniej obróbki cieplnej cylindrów.

Maksymalny zakres obciążeń pionowych przyjęto 750 MNm-². Wartość ta wynika z realnych w obecnej dobie możliwości głębokich wierceń oraz współczynnika koncentracji naprężeń na ściankach otworu wykonanego w skale poddanej wysokim naprężeniom.

Jak wiadomo, najnowsze zamierzenia radzieckich głębokich wierceń rozpoznawczych planowanych do wykonania w ciągu najbliższych lat sięgają głębokości 15 000 m. Zbliżone głębokości są również obecnie osiągane w amerykańskich wierceniach podmorskich. Dla przybliżonego określenia ciśnień pierwotnych przyjąć można liniową zależność ciężaru nadkładu od jego głębokości, co dla średniej masy właściwej 2,5 g/cm³ pozwala określić ciśnienie pierwotne na głebokości 15 000 m na 375 MNm⁻².

Współczynnik koncentracji naprężeń, czyli stosunek maksymalnego naprężenia obwodowego na ściance otworu o przekroju kołowym do odpowiedniej wielkości pionowej składowej stanu naprężeń w nienaruszonym górotworze, dla wzajemnego stosunku składowych pionowej i poziomych, zbliżonego do 1,0 wynosi 2,0. Tak więc maksymalne ciśnienia, z jakimi można się liczyć na głębokościach około 15 000 m wynoszą około 750 MNm⁻²/7500 kG/cm²/.

2.1.1. Dobór metody pomiarów

Istotą przyjętej metody badań było wykorzystanie podwójnej roli cylindrów pomiarowych, w których ściskano próbki, mianowicie:

- funkcji maksymalnego ograniczenia/skrępowania/ poprzecznych odkształceń próbek,
- funkcji dynamometrycznej w odniesieniu do nacisku bocznego wywieranego przez próbki przy pionowym aktywnym obciążeniu.

Wymienione funkcje narzucały przeciwstawne cechy całości układu pomiarowego. Zapewnienie bowiem maksymalnego ograniczenia poprzecznych odkształceń próbek wymagało dużej sztywności cylindra, a więc z jednej strony doboru możliwie mało odkształcalnej i wytrzymałej stali, z drugiej zaś strony doboru znacznej grubości ścianki odpowiadającej równowadze sprężystych odkształceń zewnętrznej powłoki z krytycznymi naprężeniami kontaktowymi na styku ścianki cylindra z próbką.

Wykorzystanie natomiast funkcji dynamometrycznej cylindrów kierowało wymagania konstrukcyjne w kierunku ścianki odkształcalnej sprężyście /a więc o ograniczonej grubości/ i co się z tym wiąże - omożliwie liniowym rozkładzie naprężeń obwodowych w przekroju. W trakcie prowadzenia badań stosowana met. Ja uległa wielokrotnie zmianom i modyfikacjom w celu zwiększenia wiarogodności i dokładności wykonywanych pomiarów. Wskutek tego całość badań została zrealizowana w træch etapach. W pierwszym etapie rozeznano wstępnie przydatność przyjętej metody badań odnośnie do prawidłowości przyjętych wymiarów cylindra pomiarowego oraz potwierdzono wstępnie słuszność przyjętej tezy dotyczącej zależności parcia bocznego od własności mechanicznych skał. Pozostałe badania miały na celu zwiększenie wiarygodności wyników uzyskanych w I etapie. Podzielono je na dwa odrębne etapy, w których stosowano każdorazowo nowy układ pomiarowy, złożony ze świeżo naklejonych tensometrów. Miało to na celu określenie powtarzalności wyników i wyeliminowanie stałego błędu związanego z danym układem pomiarowym.

W pierwszym okresie prowadzenia pomiarów parcia boczne badanych próbek obliczano za pomocą równania wiążącego deformacje cylindra grubościennego z ciśnieniem panującym w jego wnętrzu. Obliczenia te jednak dawały niedokładne wyniki, co przypisywano głównie nieciągłości strefy ciśnienia wewnętrznego wzdłuż odcinka cylindra współpracującego z badaną próbką skały, oraz małemu stosunkowi długości próbki do średnicy wewnętrznej cylindra /1,0/. Przeprowadzono więc badania porównawcze ściskając w cylindrze próbki skalne o różnej wysokości w granicach od 20 do 80 mm /przy stałej średnicy równej 50 mm/. Otrzymane wyniki okazały się bardzo zbliżone dla całego zakresu zmienności wysokości próbek, co eliminowało poprzednie przypuszczenia i raczej świadczyło o nieliniowym rozkładzie naprężeń obwodowych w przekroju ścianki cylindra oraz o przybliżonym charakterze równania dotyczącego odkształceń rur grubościennych.

Dla zapewnienia możliwie maksymalnej dokładności pomiarów zdecydowano się na wybór porównawczej metody pomiaru parcia bocznego badanych próbek skalnych – poprzez odniesienie wyników pomiaru obwodowych odkształceń zewnętrznej ścianki cylindra – do równorzędnego ciśnienia cieczy. W tym celu poddawano cylindry cechowaniu, sprężając w nich ciecz. Jako ciecz do cechowania cylindrów stosowano najpierw zwykły olej wrzecionowy. W trakcie badań okazało się jednak, że przy bardzo wysokich ciśnieniach dochodzących do 7500 at wykazuje on niekorzystne właściwości, co uwidaczniało się w postaci różnic krzywych charakteryzujących kolejne cykle cechowania. Ostatecznie zastosowano specjalną ciecz do wysokich ciśnień -Hydrol 70, wykazujący minimalną ściśliwość oraz wysoki współczynnik równomierności ciśnienia.

2.1.2. Dobór typów skał

W celu przeprowadzania badań parcia bocznego przy dużych naciskach osiowych wybrano kilka typów skał najczęściej występujących w głównych polskich formacjach surowcowych zarówno osadowych, jak i magmowych. Wybrane skały osadowe charakteryzują w pełni przedział zmienności litdogicznej odpowiadającej karbońskim formacjom węglowym. Obok węgla zbadano bowiem następujące skały plastyczne: łupki ilaste, mułkowce i łupki piaszczyste oraz piaskowcę drobno- i gruboziarniste. Jako przedstawiciela skał magmowych wybrano granit.

Ze względu na brak ostrych granic pozwalających na odróżnienie zbliżonych typów skał plastycznych /np. łupki ilaste, ilowce, ilołupki bądź też : łupki piaszczyste, mułkowce i zailone piaskowce drobnoziarniste/, zdecydowano się ostatecznie na podział badanych skał na 4 typy ogólne, a mianowicie:

typ	Ι		węgiel,
typ	II	-	łupki,
typ	III		piaskowce
typ	IV	-	granit.

W tym ujęciu typy II i III obejmują szerszy zakres zmienności petrograficznej, mianowicie typ II łączy łupki ilaste z mułkowcami i łupkami piaszczystymi, typ III zaś łączy piaskowiec o różnej wielkości uziarnienia.

Poniżej podano skrócony opis petrograficzny zbadanych skał zuwzględnieniem wprowadzonej generalizacji typów.

Typ I - Wegiel

Węgiel durytowy z nielicznymi mikrolaminacjami witrytu, które wyklinowywują się na dość krótkiej przestrzeni. Duryt charakteryzuje się spoiwem fuzynitowo-semifuzynitowym z małą ilością okruchów mikrynitu. Gdzieniegdzie występują kolonie drobnych skleorocji lub fragmenty sklerotyniu. Zawartość egzynitu jest przeciętnie duża. Występują mikro- i makrospory barwy ciemnobrązowej. Ułożenie egzynitu jest regularne. Makrospory gromadzą się przeważnie w większe skupienia ułożone pasemkowato w niektórych partiach durytu.

W związku ze zmienną zawartością egzynitu, należy wyróżnić duryt typu egzynitowego przy bardzo dużej lub średniej /80 - 50/ liczbie mikrospor lub mikro- i makrospor łącznie oraz duryt typu inertynitowego, gdzie zawartość egzynitu obniża się nawet do 10%, a główną masą durytu jest spoiwo inertynitowe. Oba typy durytu ułożone są naprzemianlegie.

W durycie mikrolaminacje tworzy witryt w postaci kolonitu i telenitu, przebiegają one dość regularnie. Grubość tych mikrolaminacji wynosi od 1,5 do 0,05 mm. Telinit przeważnie impregnowany jest drobnoziarnistym mikrynitem, rzadziej wykazuje budowę o zapłyniętych komórkach.

W kolonicie spotyka się dość liczne dorbne konkrecje syderytu /0,34-0,17 mm i mniejsze/. Konkrecje syderytu występują też gdzieniegdzie w durycie. Nieliczne soczewki fuzytu /fuzynitu i semifuzynitu/ są pustokomórkowe o grubej tkance.

Obraz mikroskopowy zbadanego węgla przedstawiono na rys. 9.

Typ II - łupki

Lupek ilasty. Łupek ilasty z laminami węglowymi składał się z minerałów ilastych typu kaolinitowo-illitowego z dużą ilością ułożonego mniej więcej równolegle detritusu roślinnego. Niewielka ilość kwarcu pylastego, pojedyncze bardzo drobne okruchy łyszczyków. Obraz mikroskopowy szlifu łupku ilastego pokazano na rys. 10. Mułkowiec i łupek piaszczysty. Mułkowiec i łupek piaszczysty składały się głównie z ziarn kwarcu wielkości 0,03-0,1 mm dobrze wysortowanych, tkwiących w spoiwie ilasto-węglanowym. Zawierały dość liczne ziarna glaukonitu oraz mniej liczne - łyszczyków /przeważnie muskowitu/. Znaczne ilości detritusu z przewagą detritusu sporowego. Obraz mikroskopowy szlifu mułkowca przedstawiono na rys. 11.

Typ III - Piaskowce

Piaskowiec drobnoziarnisty. Piaskowiec drobnoziarnisty składał sę z ziarn kwarcu o różnym otoczeniu, niezbyt dobrze wysortowanych. Wielkość ziarn wahała się od 0,1 do 0,5 mm. /przeciętnie 0,2-0,3 mm/. Lepiszcze ilaste, miejscami krzemionkowe. Drobna ilość łyszczyków oraz mocno zniszczonych skaleni. Pojedyncze okruchy cyrkonu, detritusu roślinnego oraz minerałów femicznych. Obraz mikroskopowy szlifu piaskowca drobnoziarnistego przedstawiono na rys. 12.

Piaskowiec gruboziarnisty. Piaskowiec gruboziarnisty składał się z ziarn kwarcu o wielkości od 0,3 do 1,5 mm /przeciętnie 0,7-0,9 mm/o różnym stopniu otoczenia. Zawierał liczne ziarna skaleni oraz okruchy kwarcytowe i granognejsowe. Bardzo rzadko stwierdzano ziarna łyszczyków przeważnie - muskowitu oraz granaty i minerały femiczne. Spoiwo tego piaskowca miało charakter ilastego z małą domieszką krzemionkowego. Obraz mikroskopowy szlifu piaskowca gruboziarnistego przedstawiono na rys. 13.

Typ IV - Granit

W skład badanego granitu pochodzącego z łomu ze Strzegomia na Dolnym Sląsku - wchodziły następujące minerały: liczne kwarce, skalenie / głównie plagioklaz kwaśny/, liczne łyszczyki z przewagą biotytu oraz nieliczne chloryty. Obraz mikroskopowy szlifu wykonanego z granitu przedstawiono na rys. 14.

Dla wszystkich wymienionych typów skał przeprowadzono badania laboratoryjne w celu określenia ich głównych własności fizyko-mechanicznych, a mianowicie wytrzymałości na ściskanie i kąta tarcia wewnętrznego. Wyniki tych oznaczeń przedstawiono w tablicach A i B.

Rys. 9 Widok szlifu węgla w świetle przechodzącym

Rys. 10 Widok szlifu łupku ilastego w świetle przechodzącym

Rys. 11 Widok szlifu łupku piaszczystego w świetle przechodzącym

Rys. 12 Widok szlifu piaskowca drobnoziarnistego w świetle przechodzącym

- *

Rys. 13. Widok szlifu piaskowca gruboziarnistego w świetle przechodzącym

Rys. 14. Widok szlifu granitu w świetle przechodzącym

1

Tablica A

Wyniki badań wytrzymałości na ściskanie

		_	Meto	da próbel	k foremny	ch			Metoda	próbek r	ieforem-	Srednia
Rodzaj	,	Wymiary p	róbki		Prze- krój	Sila	Rc	Rc	Liczba		Rc	małość
skały	D	н	S	L	efek- tywny	na			probek			na ści- skanie
	mm	mm	mm	mm	cm ²	kN	10 ⁵ Nm ⁻²	10 ⁵ Nm ⁻²	-	τ.	10 ⁵ Nm ⁻²	10 ⁵ Nm ⁻²
Wegiel	46,0	54,0	-	-	17,2	62,00	302	254	20	0,07	263	256
	44,0	48,4	-	-	15,2	31,50	207		20	0,07	250	
Łupki	49,4	49,2	-	-	19,1	65,00	350	311	20	0,12	327	319
ilaste	47,3	49,5	-	-	17,5	50,00	283					
	47,7	53,3	-	-	17,8	160,00	899					
	47,3	53,0	-	-	17,5	190,00	1086		20	0.17	885	
Piaskow	49,3	50,2	-	-	19,0	170,00	895			- , - ,		
ce	47,6	53,1	-	-	17,7	125,00	712	748				738
	49,8	48,2	-	-	19,5	131,00	672					100
	47,8	52,6	-	-	17,9	140,00	782		20	0.10	587	
	47,6	53,4	-	-	17,7	68,00	384		20	0,10	304	
	47,6	52,7	-	-	17,7	88,50	550					
	47,0	54,8	-	-	17,4	120,00	690		-	-	-	
	47,0	52,6	-	-	17,4	180,00	1034					-
	47,5	54,3	-	-	17,8	80,00	450					
	47,5	52,6	-	-	17,8	160,00	900				· ·	
	-	56,7	51,4	44,3	22,7	153,00	674			-	-	
	-	54,8	48,1	46,2	22,2	104,00	468					
Słaby	-	52,8	47,8	44,9	21,5	211,00	982					-
granit	-	55,3	45,8	43,9	20,1	161,00	800	693			_	693
	-	55,1	47,8	49,8	23,8	208,00	874	055				0,0
	-	55,7	46,4	47,2	21,9	188,00	904					
	-	55,5	49,4	45,2	22,4	162,00	723					
	-	56,1	46,0	46,5	21,4	105,00	490					
	-	54,8	46,8	46,1	21,6	118,00	546					
	-	56,1	48,5	46,8	22,7	168,00	741					
	-	56,2	48,3	46,6	22,5	182,00	810					
	-	55,1	47,2	47,0	22,2	114,00	514		-	-	-	
	-	54,5	50,0	45,5	22,8	108,00	474					

Tablica B

Wyniki badania oporów ścinania

	Wvmiar	v próbki			-	Napręże	nie kry-	Kąt	Ozna-
	C.		Ŀ	ŧ	Pr,	tyc	zne	tarcia	czenie
	D	Н		9	4	kr .	kr	wewn.	na wy- kresie
_	mm	mm	cm ²	7	kN	10 ² Nm ⁻⁴	10 ^D Nin ⁻²	10	
	47,8	49,2 49,3	23,5 23,6	30 20	13,50 21,00	19,7	54,0 77,2	42 [°] 00	0
	47,6	53,2	25,3	15	20,50	21,0	78,4		
	47,6	30,5	17,4	20	12,50	. 24,6	67,4	00007	-1
	47,5	52,8	25,1	20	25,50	36,9	101,5	5	_
	48,2	49,0	23,6	30	35,00	69,7	121,0		
	48,0	54,0	25,9	20	80,00	105,7	290,0		
	47,9	53,5	25,6	30	131,50	257,0	445,0	00011	<
	47,6	53,0	25,2	15	30,00	30,8	115,0	200 000	<]
	47,7	52,4	25,0	30	87,00	174,3	302,0		
	50,0	81,5	40,8	30	240,50	295,0	511,0		
	50,0	81,0	40,5	30	295,00	364,0	631,0	60,00	
	47,5	53,5	25,4	30	100,00	197,0	341,0		-
	47.0	53,5	25,2	30	82,50	164,0	283,0		

- 39 -

2.2 Konstrukcja przyrządu pomiarowego

Przeprowadzenie badań zgodnie z założoną metodą wymagało skonstruowania odpowiedniego przyrządu badawczego umożliwiającego określenie parcia bocznego próbki przy znanym nacisku osiowym.

Przyrząd ten składał się z trzech zasadniczych elementów: dwóch tłoków /dolnego i górnego/ dla przeniesienia nacisku osiowego na próbkę, oraz cylindra stalowego krępującego odkształcenie boczne próbki i umożliwiającego pomiar parcia bocznego. Nacisk osiowy był realizowany prasą hydrauliczną. Dla określenia parcia bocznego zastosowano tensometryczny pomiar odkształcenia obwodowego cylindra porównując odczyt uzyskany przy obciążeniu próbki z odczytem wzorcowym uzyskanym podczas skalowania cylindra wypełnionego cieczą.

Sam przyrząd pomiarowy musiał więc spełniać następujące wymogi:

- materiał przyrządu powinien być tak dobrany, aby nie następowały odkształcenia trwałe na powierzchniach roboczych tłoków i wewnętrznej powierzchni cylindra przy ciśnieniu maksymalnym rzędu 750 MNm⁻²,
- średnica aktywna tłoków powinna umożliwić uzyskanie nacisku osiowego na próbkę rzędu 750 MNm⁻² przy maksymalnym obciążeniu ściskającym prasy 1,5 MN,
- grubość cylindra należało tak dobrać, aby był możliwy pomiar odkształceń obwodowych na ściance zewnętrznej przy równoczesnym możliwie małym odkształceniu średnicy wewnętrznej cylindra.

Dla uniknięcia odkształceń plastycznych wymagane było zastosowanie materiałów o wysokich własnościach wytrzymałościowych, a w szczególności wysokiej granicy plastyczności. Poza tym zastosowany materiał powinien odznaczać się wysoką udarnością i nie wykazywać kruchości odpuszczania.

Stale konstrukcyjne węglowe ulepszone cieplnie nie osiągają wymienionych warunków. W związku z tym zdecydowano się na zastosowanie stali konstrukcyjnej stopowej. Wytypowaną stal 30 HGS nadającą się do ulepszania cieplnego, o dużej hartowności w przekrojach o grubości do 60 mm. Stal ta umożliwia uzyskanie granicy plastyczności R w zakresie 800-900 MNm⁻², a tym samym spełnia stawiane wymagania odnośnie powierzchni roboczej tłoków. Dla określenia wymiarów cylindra wyliczono przede wszystkim jego średnicę wewnętrzną przy danych założeniach:

$$d_{w} = \sqrt{\frac{4P}{\pi \cdot P_{z}}} \cdot 10^{2} = \sqrt{\frac{4 \cdot 1.5}{3.14 \cdot 750}} \cdot 10^{2} = 5.0 \text{ cm}$$

gdzie:

d - średnica wewnętrzna cylindra, cm,

P - obciążenie ściskające prasy, MN,

p_z - nacisk osiowy na próbkę równy ciśnieniu wewnętrznemu w cylindrze, MN m⁻².

Srednicę zewnętrzną cylindra określono przez obliczenie grubości ścianki z wzoru

$$g = \frac{p_z \cdot d_w}{2\sigma_r} = \frac{750 \cdot 5.0}{2.600} = 3.1 \text{ cm}$$

gdzie:

Przyjęto grubość ścianki cylindra g = 3,5 cm, średnica zewnętrzna cylindra wyniosła więc d_z = 12,0 cm.

Przyrząd pomiarowy umożliwiał więc badania próbek cylindrycznych o średnicy 50 mm.

Dla uzyskania dobrego prowadzenia tłoka odcinek równy co najmniej 2/3 średnicy tłoka powinien mieścić się wewnątrz cylindra. Zakładając centryczne umieszczenie próbki można zatem określić wysokość cylindra równą około 12 cm. W dalszym ciągu wyznaczono wielkość naprężeń występujących w cylindrze o określonych wymiarach. Maksymalne naprężenie promieniowe ^Gmmax będą równe z

$$\sigma_{r_{max}} = P_z = -,750 \text{ MN m}^{-2}$$

Największe natomiast naprężenia obwodowe $\sigma_{t_{max}}$ występujące przy powierzchni wewnętrznej cylindra wyznaczone zgodnie ze wzorem Lamego dla rur grubościennych:

$$\sigma_{t_{max}} = p_{z} \frac{r_{w}^{2} + r_{z}^{2}}{r_{z}^{2} - r_{w}^{2}} = 750 \frac{2.5^{2} + 6.0^{2}}{6.0^{2} - 2.5^{2}} = 1065 \text{ MN m}^{-2}$$

gdzie:

- r średnica wewnętrzna cylindra, cm,
- r średnica zewnętrzna cylindra, cm.

Naprężenie obwodowe mogące wystąpić na wewnętrznej ściance cylindra leżą na górnej granicy plastyczności dla stali 30 HGS w stanie ulepszonym. Uwzględniając jednak, że naprężenia te występują wyłącznie w przypadku ściskania cieczy, a więc tylko w przypadku cechowania przyrządu, można przypuszczać, że ewentualnie występujące niewielkie trwałe odkształcenia powierzchni spowodują jej utwardzenie, co w konsekwencji nie powinno mieć wpływu na działanie przyrządu.

Przewidywane maksymalne zmiany promienia wewnętrznego i zewnętrznego cylindra zgodnie z wzorami Lamego dla rurgrubościennych poddanych ciśnieniu wewnętrznemu wynoszą:

$$\Delta \mathbf{r}_{\mathbf{w}} = \mathbf{p}_{\mathbf{z}} \cdot \frac{\mathbf{r}_{\mathbf{w}}}{\mathbf{E}} \left(\frac{\mathbf{r}_{\mathbf{w}}^{2} + \mathbf{r}_{\mathbf{z}}^{2}}{\mathbf{r}_{\mathbf{z}}^{2} - \mathbf{r}_{\mathbf{w}}^{2}} + \mathbf{V} \right) =$$

= 750 $\frac{2*5}{0,21 \cdot 10^{6}} \left(\frac{2*5^{2} + 6*0^{2}}{6,0^{2} - 2,5^{2}} + 0,3 \right) = 0,0154 \, \mathrm{cm}$

natomiast

$$\Delta \mathbf{r}_{z} = \mathbf{p}_{z} \cdot \frac{\mathbf{r}_{w}}{\mathbf{E}} \cdot \left(\frac{2\mathbf{r}_{w}^{2}}{\mathbf{r}_{z}^{2} - \mathbf{r}_{w}^{2}}\right) =$$
$$= 750 \frac{6.0}{0,12 \cdot 10^{6}} \cdot \frac{2 \cdot 2.5^{2}}{6,0^{2} - 2.5^{2}} = 0,0090 \text{ cm}$$

Maksymalna zmiana średnicy zewnętrznej wynosi zatem 0,15%, a wewnętrznej 0,63%.

Zgodnie z podanymi wyżej założeniami skonstruowano przyrząd przedstawiony na rys. 15. Dla spełnienia warunków gwarantujących prawidłowe działanie, a głównie zapewnienie całkowitej szczelności układów w czasie skalowania, wykonano jeden cylinder wyposażony w dwa komplety tłoków.

Jeden komplet tłoków o wysokiej szczelności służył wyłącznie cechowaniu. Zastosowano tutaj najprostszy układ, to jest uszczelkę gumową o przekroju kołowym /O-Ring/ współpracującą z poliamidowym pierścieniem prowadzącym. Uwzględniając ponadto ograniczony i stosunkowo niewielki ruch roboczy tłoków nie stawiano zbyt ostrych wymogów w stosunku do tolerancji wymiaru średnicy wewnętrznej cylindra oraz gładkości powierzchni wewnętrznej.

Opierając się na dotychczasowych doświadczeniach przyjęto jako wystarczającą tolerancję wykonawczą współpracujących średnic tłoków i cylindra, zapewniającą zachowanie wzajemnego luzu obu tych elementów nie większego niż 5 µm. Chropowatość powierzchni otworów cylindra odpowiadała ⊽ 9. Ponadto wykonano w jednym z tłoków otwór umożliwiający odpowietrzenie układu.

Druga para tłoków przyrządu przeznaczona była wyłącznie do zgniatania próbek skalnych. Była ona konstrukcyjnie rozwiązana prawie w ten sam sposób z tym, że zrezygnowano z układu uszczelniająco – prowadzącego oraz układu odpowietrzającego. Założono przy tym, że wymaganą dla przeprowadzenia procesu zgniatania próbki skały szczelność uzyska się przez pasowanie tłoków w otworze cylindra z luzem nie większym niż 5 µm uzyskanym jak dla pierwszej pary tłoków wzajemne docieranie elementów.

Zbadano twardość powierzchniową elementów przyrządu /metodą Rockwella/ stwierdzając, że wynosi ona ponad 10 MNm⁻². Cylinder i tłoki zbadźno defektoskopem rentgenowskim nie stwierdzając żadnych ukrytych wad materiałowych.

Rys. 15 Schemat konstrukcyjny przyrządu pomiarowego

2.3. Zastosowany układ pomiarowy

Na obwodzie zewnętrznym cylindra naklejono w środku jego wysokości dwa tensometry oporowe długości 5 cm. Tensometry odkształcały się pod wpływem parcia bocznego badanego elementu. Dla kompensacji układu elektrycznego naklejano dwa dalsze analogiczne tensometry na powierzchni czołowej cylindra w sposób pokazany na rys. 16 i 17.

Układ rejestrujący stanowił zestaw wzmacniacza pomiarowego KWS II/5 wraz z oscyloskryptem Hte - 4 firmy Hottinger /NRF/. Zastosowany wzmacniacz jest specjalnie przystosowany do pomiarów tensometrycznych zasilając mostek tensometryczny prądem o napięciu 6,0 V i częstotliwości 5000 Hz. Oscyloskrypt rejestrował uzyskane za pośrednictwem wzmacniacza zmiany oporności tensometrów na specjalnie przygotowanym papierze.

Układ rejestrujący oscyloskryptu ustawiono w każdym etapie badań na takim zakresie, że maksymalne odkształcenie obwodowe występujące w trakcie cechowania powodowało możliwie maksymalne wychylenie pisaka. Rejestrowano na taśmie wyniki odczytywano następnie z dokładnością 0,25 mm.

2.4. Cechowanie układu pomiarowego

Skonstruowany przyrząd ustawiono w laboratoryjnej prasie hydraulicznej typu WK-2 firmy Stal- Dźwig /PRL/ rys. 18. Prasa ta przystosowana do badań wytrzymałościowych na ściskanie składa się z trzech zasadniczych elementów, a mianowicie ramy kolumny pomiarowej oraz agregatu hydraulicznego. Do napędu prasy służy pompa olejowa, obciążenie zaś ściskające przekazywane na badany element mierzone jest na manometrze włączonym w układ hydrauliczny.

Uwzględniając fakt, że średnica wewnętrzna tłoka prasy wynosi 275 mm, a średnica wewnętrzna tłoka w przyrządzie pomiarowym 50 mm można określić stosunek umożliwiający przeliczenie ciśnienia hydraulicznego prasy na na cisk osiowy w przyrządzie pomiarowym:

$$P_{z} = \frac{D_{w}^{2}}{d_{w}^{2}} \cdot A = \frac{275^{2}}{50^{2}} \cdot A = 30 A$$

- 45 -

Rys. 17 Widok przyrządu pomiarowego

Rys. 18 Stanowisko pomiarowe z przyrządem badawczym

A - odczyt na manometrze prasy.

Prasa wyposażona była: w manometry, które umożlwiały odczyt z dokładnością - 2%. Błąd pomiarowy zestawu elektrycznego zgodnie z danymi fabrycznymi może wynosić - 4%. Całkowity błąd układu pomiarowego wyłączając tensometry nie przekracza zatem - 10%.

W poszczególnych etapach badań przeprowadzono każdorazowo odrebne cechowanie przyrządu pomiarowego, stosując jednak analogiczną metodę cechowania. Polegała ona na ustawieniu w prasie dolnego tłoka, przyrządu z nałożonym pierścieniem dystansującym oraz cylindrem pomiarowym. Do cylindra wlewano hydrol w ilości 100 cm³, dopowiadającej z niewielkim nadmiarem objętości próbek skalnych. Nastepnie wprowadzono do cylindra górny tłok wyposażony w korek odpowietrzający. Po odpowietrzeniu układu i szczelnym zakręceniu korka obciążano z pomocą prasy układ dokonując równoczesnego zapisu na oscyloskrypcie. Obciążenie przykładano z szybkościa 0,5 MN⁻²/s skokami odpowiadającymi odczytowi na manometrze prasy co 20 atn = 2 MNm⁻². Po wzroście ciśnienia cieczy prasie o 20 atn odpowiadającemu przyrostowi nacisku osiowego 60 MNm² w przyrządzie pomiarowym, wstrzymano dalszy przy rost obciążenia tak długo, aż nastąpiło uspokojenie całego układu pomiarowego, co odzwierciedłało się prostoliniowym zapisem na oscyloskrypcie. W ten sposób wywoływano skokowo zmiany w zakresie 0-240 atn w górę i w dół na prasie, co odpowiadało 0-720 MNm⁻² w górę i w dół w przyrządzie badawczym. Po całkowitym zwolnieniu nacisku prasy w przypadku wystąpienia histerezy zerowano cały układ pomiarowy elektrycznie, po czym ponownie powtarzano cykl obciążenia.

Po wykonaniu trzech cykli obciążenia rozmontowywano cały układ dla sprawdzenia jego szczelności i stanu powierzchni wewnętrznej cylindra. W poszczególnych etapach badań nie stwierdzono żadnych odchyłek, wobec czego napełniano układ ponownie przeprowadzając kolejne trzy cykle obciążenia. Również w trakcie prowadzenia badań oraz po ich zakończeniu przeprowadzano kontrolne oględziny oraz cechowanie przyrządu nie stwierdzając nigdy żadnych odchyleń od normy.

Tablica 1

Pz Py	Etap	I	Etap	II	Eta	ıp III	Pz Pv
Py	CL.	Δα	α	Δα	α	Δα	Py
10 ⁵ Nm ⁻²	mm	mm	mm	mm	mm	mm	10 ⁵ Nm ⁻²
0	0,25	0,25	0,25	0,25	0,00	0,00	0
600	5,00	0,75	2,75	0,50	1,75	0,25	600
1200.	10,00	0,75	5,50	0,75	4,25	0,50	1200
1800	14,50	0,75	8,50	0,75	7,00	0,50	1800
2400	19,25	0,75	12,50	1,00	10,00	0,75	2400
3000	23,50	0,75	16,50	1,25	13,25	0,75	3000
3600	28,00	0,75	21,25	1,00	16,50	0,75	3600
4200	32,00	0,75	25,50	1,25	19,50	0,75	4200
4800	35,50	0,75	30,00	1,25	22,50	0,75	4800
5400	38,25	0,75	34,00	1,50	25,50	0,75	5400
6000	41,00	0,75	38,00	1,50	28,00	0,50	6000
6600	43,25	0,75	40,75	1,75	30,00	0,50	6600
7200	45,25	1,50	43,25	3,75	31,50	0,50	7200

Contraction of the last of

Cechowanie wkładu pomiarowego

- 50 -

Rys. 19 Wykres cechowania przyrządu pomiarowego

- 51 -

Przeprowadzona analiza charakterystyk cechowania przyrządu wykazała dużą ich powtarzalność w poszczególnych etapach badań. W tej sytuacji dla określenia średniej charakterystyki wytypowano każdorazowo wyniki drugiej z kolei serii obciążenia hydrolu przed rozpoczęciem danego etapu badań oraz ostatniej serii po zakończeniu etapu.

Zapis rejestrowany na papierze oscyloskryptu odczytywano następnie z dokładnością 0,25 mm. Uzyskane w poszczególnych etapach wyniki cechowania zestawione tabelarycznie i graficznie przedstawiono w załączniku w tablicach I,II i III oraz na rysunkach I, II i III.

Występujące nieduże różnice odczytów podczas obciążania oraz odciążania układu można tłumaczyć bezwładnością całego układu pomiarowego. W dalszym ciągu jednak różnice te pominięto, ustalając dla poszczególnych o etapów średnią charakterystykę cechowania w postaci pojedynczej linii. Średnie wielkości zapisu na oscylaskrypcie w zależności od ciśnienia panującego wewnątrz cylindra przedstawiono w tablicy 1, na podstawie której skonstruowano wykres cechowania przedstawiony na rys. 19. Przyjęcie pojedynczej linii jest dodatkowo uzasadnione tym, że w zakresie ponad 150 MN m⁻² średni błąd średniej arytmetycznej przy uwzględnieniu ufności 95 % i małej liczebności populacji - nie przekracza 10 %, a zatem nie jest większy od dokładności całego układu pomiarowego.

2.5. Przygotowanie próbek i przyjęte tolerancje

Dla przeprowadzenia badań przygotowano próbki skalne dostosowane do współpracy z wykonanym cylindrem pomiarowym.

Próbki walcowe /rys. 20/ o średnicy 50 mm oraz wysokości 50 mm wytaczano z wytypowanych skał na tokarce precyzyjnej na sucho. Próbki wycinano z przygotowanego materiału w ten sposób, aby uławicenie naturalne skał było możliwie prostopadłe do osi walca. Tolerancja wykonawcza gabarytów zewnętrznych, a przede wszystkim w średnicy próbki, wynosiła -- 0,1 mm. Uzyskanie większej dokładności obróbki było niemożliwe z uwagi na niejednorodność materiału.

Rys. 20 Widok próbek skał a/ przed ściskaniem b/ po ściskaniu Ponadto zwracano uwagę na uzyskanie prostopadłości powierzchniczołowych próbki do jej osi oraz na ich wzajemną równoległość, którą wykonano z dokładnością ⁺ 0,05 mm.

Zachowanie tak ostrych wymagań wobec wymiarów próbek spowodowało duże trudności wykonawcze, było jednak konieczne z uwagi na założoną metodykę badań.

Dla zniwelowania drobnych nierówności na zewnętrznych ściankach próbek zanurzono je po wytoczeniu wciekłej parafinie, która tworzyła po wystygnięciu otoczkę wokół próbki. Wciskając następnie tak przygotowaną próbkę do cylindra uzyskiwano lepsze dopasowanie próbki oraz wypełnienie wszystkich szczelin między próbką skalną a przyrządem pomiarowym. Tworzenie otoczki parafinowej wokół próbki zapobiegało ponadto wietrzeniu skały.

Ogółem wytypowano do badań 26 próbek, przy czym w poszczególnych etapach zbadano następujące numery próbek:

		I etap	II etap	III etap
Węgiel,	próbka nr	1,	2, 3, 4,	5,
Łupki,	próbka nr	1,2	3, 4, 5, 6,	7,8,
Piaskowce,	p ró bka nr	1,2	3, 4,	5, 6, 7, 8
Granit	p ró bka n r	1,		2,3,4,5

Wszystkie te próbki zostały wyselekcjonowane ściśle według podanych warunków ich wykonania.

2.6. Sposób przeprowadzania badań

Po wycechowaniu przyrządu pomiarowego i przygotowaniu próbek przystąpiono do przeprowadzenia zasadniczych badań. W tym celu wymieniono w przyrządzie tłoki, wszystkie natomiast pozostałe elementy stanowiska pozostały te same.

Po ustawieniu na stole prasy dolnego tłoka i nałożeniu pierścienia dystansującego oraz cylindra wciskano ręcznie w ten ostatni przygotowaną próbkę skalną. Następnie wkładano do cylindra tłok górny, popychając go ręcznie, aż do oporu, oraz opuszczano trawers prasy. W ten sposób stanowisko zostało przygotowane do przeprowadzenia próby.

Tak samo jak podczas cechowania obciążono układ pomiarowy z szybkością 0,5 MN m⁻²/s skokami odpowiadającymi przyrostowi nacisku osiowego co 60 MN m^{-2} . Po każdorazowym uzyskaniu takiego przyrostu nacisku wstrzymywano dalszy wzrost obciążenia aż do uspokojenia całego układu pomiarowego. W ten sposób uzyskano na oscyloskrypcie zapis odpowiadający parciu bocznemu danej próbki w zakresie 0 - 720 MN m⁻² w odstępach co 60 MN m⁻² przy obciążeniu oraz odciążeniu. Z chwilą wystąpienia histerezy po całkowitym zwalnianiu nacisku prasy zerowano cały układ pomiarowy elektrycznie.

Każdą próbkę skalną poddano trzem cyklom obciążenia - odciążenia. Następnie rozmontowano cały układ, po czym wyciskano próbkę specjalnym popychakiem. We wszystkich przypadkach udało się wyjąć próbkę w całości jednakże przy skałach uwarstwionych wykazywały one tendencję do kruszenia sę wzdłuż spękań rozdzielczych zawsze w płaszczyznach równoległych do uwarstwienia / rys. 20/.

Tendencja ta była szczególnie wyraźna po kilkudniowym pozostawieniu próbki na powietrzu. Również inne próbki traciły wówczas swoją zwięzłość wykazując skłonność do rozpadu /rozsypywania się/.

3. WYNIKI BADAN

3.1. Ocena wiarygodności charakterystyki cechowania

Jak wspomniano uprzednio, wyniki pomiarów cechowania rejestrowano na taśmie oscyloskryptu, skąd odczytywano zapis z dokładnością do 0,25 mm. Wszystkie uzyskane zapisy zestawiono nastepnie dla poszczególnych etapów badań tubelarycznie i graficznie w funkcji nacisku osiowego. Ponieważ błąd bezwzględny określenia ciśnienia wewnątrz cylindra przy pierwszym odczycie równym 60 MNm⁻² wynosi zgodnie z charakterystyką zastosowanego manometru w prasie 2 % \pm j. \pm 1,2 MNm⁻²/ przyjęto dokładność zapisu ciśnienia osiowego /a tym samym parcia bocznego/ równą 2,5 MNm⁻².

Duża powtarzalność wyników uzasadniła /zgodnie z treścią rozdziału 2.4/ wybór wyłącznie dwóch serii obciążeń - przed i po badaniach próbek skalnych - do określenia średniej charakterystyki cechowania. Wyniki pomiarów tych serii dla poszczególnych etapów badań przedstawiono w załączniku /tablica I, II i III oraz górne części rysunków I, II i III/. Ponadto wyliczono średnie arytmetyczne wielkości odczytów dla poszczególnych nacisków osiowych, które przedstawiono tabelarycznie również w tablicach I, II i III/ załącznika, graficznie zaś w dolnej części rysunków I, II i III załącznika - oznaczając kółkami obciążenie, a krzyżykami odciążenia układu pomiarowego.

W dalszym ciągu określono średnie błędy średnich arytmetycznych poszczególnych odczytów.. W przypadku uzyskania rozkładu wyników pomiarów według krzywej – Gaussa, wyznaczony średni błąd średniej arytmetycznej nie jest większy od błędu bezwzględnego Δ z prawdopodobieństwem 68,3%. Jednakże niezbyt duża liczebność wykonanych cechowań utrudnia ocenę występowania rozkładu normalnego, w związku z czym w dalszych rozważaniach uwzględniono rozkład t według Studenta umożliwiający wprowadzenie poprawki na liczebność badanej populacji. Przyjęto przy tym prawdopodobieństwo pomyłki 5%, co odpowiada wiarygodności 95%.

Analizując w dalszym ciągu średnie arytmetyczne odczytów i przynależne błędy dochodzi się do wniosku, że średnie wartości uzyskane w trakcie obciążania mieszczą się w granicach rozrzutu odciążania oraz na odwrót. W tej sytuacji scalono wszystkie wyniki obliczając dla poszczególnych wielkośc nacisku osiowego wyłącznie jedną wartość średnią wskazań oscyloskryptu zarówno dla obciążenia, jak i odciążenia. Dla tak wyznaczonych średnich obliczono w sposób analogiczny również błędy bezwzględne. Wyniki te zestawiono tabelarycznie w tablicy 1 dla poszczególnych etapów badań.

Wyniki cechowania udało się dzięki temu przedstawić w postaci jednej linii. Na rys. 19 przedstawiono tak wyznaczony wykres cechowania dla zakresu obciążenia do 550 MN m⁻² uzyskany w poszczególnych etapach badań. Dla całego natomiast zakresu badań wykresy cechowania wraz z wyliczonymi średnimi błędami średnich arytmetycznych przedstawiono w dolnych częściach rys. I, II i III załącznika.

Stwierdzone podczas cechowania rozbieżności wyników uzyskiwanych podczas obciążenia i odciążenia, będące wynikiem bezwładności całego układu pomiarowego, okazały się więc w świetle powyższego rozumowania nieistotne. Niepokrywanie się zaś charakterystyk cechowania w poszczególnych etapach związane było z każdorazowym naklejeniem nowych tensometrów. Z uwagi na zastosowanie metody porównawczej pomiaru parcia bocznego skał - uwzględniając dużą powtarzalność krzywych cechowania dla każdego oddzielnego etapu badań - zjawisko niepokrywania się charakterystyk cechowania między poszczególnymi etapami nie miało wpływu na dokładność pomiarów.

3.2. Srednie wyniki pomiarów

Uzyskane podczas badania próbek skalnych wyniki rejestrowane naoscyloskrypcie z dokładnością do 0,25 mm zestawiono tabelarycznie w załączniku na tablicach IV-VIII /dla węgla/, IX-XVI /dla łupków/, XVII-XXIV /dla piaskowców/ oraz XXV-XXIX /dla granitu/.

Następnie odczytano z określonych podczas cechowania charakterystyk przyrządu pomiarowego wielkości parcia bocznego z dokładnością do 2,5 MN m⁻², W "załącznikach" zestawiono te wyniki tabelarycznie również w wymienionych tablicach oraz przedstawiono graficznie w górnych częściach rysunków IV-VIII / ila węgla/, IX-XVI /dla łupków/, XVII - XXIV / dla piaskowców/ oraz XXV-XXIX /dla granitu/.

Uwzględniając powtarzalność wyników w poszczególnych cyklach obciążeń danej próbki, określono następnie średnie arytmetyczne wielkości parcia bocznego w trakcie obciążenia oraz odciążenia. Wyniki te przedstawiono również w załączniku we wszystkich tablicach, oraz naniesiono w dolnych częściach rysunków w postaci kółek – dla obciążenia oraz krzyżyków – dla odciążenia.

We wszystkich badanych próbkach stwierdzono występowanie różnic pomiędzy wielkością parcia bocznego przy obciążeniu oraz odciążaniu, przy

Tablica 2

Parcie boczne próbek węgla

	Próba	1	Pról	ba 2	Pró	ba 3	Prób	a 4	Prół	a 5	T
P _z	p, x	Δp _x	iq.x	Δp _x	ıط [×]	ΔP _x	^d ×	ΔP _x	Px x	Δp _x	Pz
100Nin#	105Nm-2	1051m-2	1051:m-2	105Nm-2	105以田-2	105Nm-2	1051m-2	105以前-2	105以田-2	105Nm-2	10PNh-2
0	25	100	0	0	25	50	25	25	25	20	0
600	300	225	150	100	150	125	575	300	275	175	600
1200	600	250	600	250	575	200	1125	400	600	150	1200
1800	925	250	1000	300	975	250	1600	350	925	200	1800
2400	1275	250	1500	350	1475	250	2050	350	1300	225	2400
3000	1625	275	1900	300	1875	225	2525	300	1700	200	3000
3600	2000	300	2350	300	2250	200	2950	250	2100	225	3600
4200	2675	450	2750	300	2675	225	3350	225	2475	200	4200
4800	2925	350	3175	250	3100	200	3750	200	2850	200	4800
2400	3375	325	3575	225	3450	175	4150	150	3250	175	5400
6000	3725	225	7000	225	3850	200	4500	100	3650	150	6000
6600	4250	200	7300	175	4175	125	4750	50	4050	100	6600
7200	4700	250	4550	325	7450	300	4900	150	4425	150	7200
	Px-0,65	9p _z - 197	Px-0,67	² p _z = 126	P _x =0,65	2p _z - 122	P _x =0,691	lp _z + 312	P _x =0,62	6p _z - 128	
	r=0,	166	-1	666'0	- J	966*0	r=0	,993		666'0	T

١

- 59 -

Tablica 3

Parcie boczne próbeł łupku

	p.s	10 Nm	0	600	1200	1900	2400	3000	3600	4200	1800	3400	6000	660	7200		
bka 8	ΔP _x	10 SNm-2	100	200	325	125	425	007	007	350	350	250	200	150	375	0p_g - 38	000"
Pró	Id X	105Nm-2	20	150	350	525	725	950	1150	1325	1525	1750	1950	2150	2375	Px=0,33	r-1
bka. 7	ΔP _x	10 5Nm-2	75	225	350	400	450	425	007	007	325	250	175 .	100	125	$7p_{x} + 83$	966*0
Pró	Pa	105Nm-2	25	325	650	975	1275	1550	1875	2150	2425	2725	2950	3200	3425	Px=0,47	r=(
ca 6	ΔP _x	10 5Nm-2	75	200	350	325	350	300	300	300	250	175	100	75	100	0pz \$182	956*0
Prob	14.4	105 Nm-2	0	350	-725	006	1175	1400	1650	1850	2075	2275	2450	2625	2800	Px=0,38	-
a 5	AP _x	105Nm-	3	250	300	325	375	300	275	225	200	150	100	8	05	7pz + 399	987
Probk	10.4	105km-2	25	525	656	1250	1575	1800	2050	2250	2475	2650	2850	3050	3 200	Px=0,41	r=0.
bka 4	A P_X	-HOSNE-2	75	350	450	500	500	525	450	350	325	300	200	100	250	7pz+332	992
Pró	p_x	105 Nu-2	5	550	1650	1525	2025	2450	2800	3175	3550	3850	4125	0077	4600	Px=0,63	r=0
dea 3	ΔPx	105Nm-2	100	350	475	525	525	525	650	625	3/5	275	200	250	300	h _z + 275	566 10
' Pró	h	105Nm-2	3	200	1000	1475	1900	2350	2750	3100	3475	3800	4125	4350	4575	P*=0,635	2
bka 2	4 px	105Nm-2	125	325	425	475	500	500	500	475	450	007	300	250	625	66 + ^z dg	666*
Pró	I.C.M	105Nm-2	30	425	800	1150	1500	1850	2200	2550	2875	3200	3525	3875	4250	Px=0,57	r=0
ka 1	A Px	105Nm-2	175	325	007	475	425	425	425	450	007	425	350	275	225	0p _x = 15	666
Prob	Pi K	10 SNm-a	8	007	800	1150	1525	1900	2250	2675	3050	3425	3825	4325	4825	Px-0,65	1-0
	PR	d'nm	0	600	1200	1800	2400	3000	3600	4200	4800	5:400	6000	6600	7200		

rablica 4

Parcie boczne próbek piaskowca

Próbka 8	P _x AP _x P _z		105 Nm-2 1. 58m-2 10 Nm2	105Nm-21, Nm-100Nm ² 25 50 0	10 ⁵ Nm ⁻² 1, [*] Nm ⁻² 10 ⁵ Nm ⁴ 25 50 0 75 75 600	105 Nm ⁻² 1, 10 Nm ² 25 50 0 75 75 600 200 125 1200	105%m-z 1, ** <th1, **<="" th=""> 1, ** 1, ** <t< th=""><th>105 Xiii - 8 3, Yiii - 8 105 Xiii - 8 25 50 0 75 75 600 200 1255 1200 400 2255 1800 455 2755 2400</th><th>105 Mur-z 1,1,2 Mur-z 1,0 Mur-z 25 50 0 75 75 600 200 125 1200 200 225 1200 400 225 1800 575 275 2400 775 275 3000</th><th>105 Mun-2 1,1,2 Mun-2 1,0 Mun-2 25 50 0 75 57 600 700 1255 1200 2000 1255 1200 4000 2255 1800 575 2755 2000 775 2755 3000 775 2505 3600</th><th>105 htm 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,</th><th>10.5 Mut. 1* Nut. 1.0 Mut. 25 50 0 75 50 0 75 75 600 200 125 1200 200 225 1200 575 275 2400 775 275 3000 975 250 3600 1175 250 4000 11350 225 4800</th><th>TOFNUE-2 TofNue-3 TofNue-3 TofNue-3 25 50 0 75 57 600 75 75 800 200 1255 1200 200 2255 2400 775 2755 3000 775 2755 3000 775 2500 4000 1175 2250 42000 1350 2255 4800 1355 175 5400</th><th>10.5 Mat. 1 * Nat. 1.0 Mat. 25 50 0 75 57 600 75 75 600 200 125 1200 200 225 1200 775 275 2400 775 275 3000 775 275 3000 775 250 4400 11.75 255 4400 1350 225 4600 1526 175 5400 1725 150 6000</th><th>10.5 Main 1, * * y main 10.5 Main 25 50 0 75 57 600 75 75 600 200 1255 1200 200 2255 12000 775 2755 3000 775 2755 3000 775 2500 42000 1175 2550 42000 11350 2255 4200 15285 1755 5400 17285 150 6000 17755 150 6000</th><th>10.5 Mail 1.0 * Nail 1.0 * Nail 25 50 0 75 57 600 75 75 600 200 1255 12000 2075 2255 18000 775 2755 24000 775 2755 36000 7175 2757 3600 11755 2550 42000 11755 1755 54000 11755 1500 60000 17255 1500 60000 1875 755 6600 1875 1500 7200</th><th>10.5 Main 1* Name 1* Name 1.0⁵ Main 25 50 0 75 57 600 200 125 1200 200 225 1200 775 275 2400 775 275 3000 775 275 3000 775 250 4600 1175 255 4800 1350 225 4800 1375 175 5400 1375 150 6000 1375 150 6000 1375 150 5400 1775 150 5400 1975 150 7200 1975 150 7200 1975 150 7200 1975 150 7200</th></t<></th1,>	105 Xiii - 8 3, Yiii - 8 105 Xiii - 8 25 50 0 75 75 600 200 1255 1200 400 2255 1800 455 2755 2400	105 Mur-z 1,1,2 Mur-z 1,0 Mur-z 25 50 0 75 75 600 200 125 1200 200 225 1200 400 225 1800 575 275 2400 775 275 3000	105 Mun-2 1,1,2 Mun-2 1,0 Mun-2 25 50 0 75 57 600 700 1255 1200 2000 1255 1200 4000 2255 1800 575 2755 2000 775 2755 3000 775 2505 3600	105 htm 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	10.5 Mut. 1* Nut. 1.0 Mut. 25 50 0 75 50 0 75 75 600 200 125 1200 200 225 1200 575 275 2400 775 275 3000 975 250 3600 1175 250 4000 11350 225 4800	TOFNUE-2 TofNue-3 TofNue-3 TofNue-3 25 50 0 75 57 600 75 75 800 200 1255 1200 200 2255 2400 775 2755 3000 775 2755 3000 775 2500 4000 1175 2250 42000 1350 2255 4800 1355 175 5400	10.5 Mat. 1 * Nat. 1.0 Mat. 25 50 0 75 57 600 75 75 600 200 125 1200 200 225 1200 775 275 2400 775 275 3000 775 275 3000 775 250 4400 11.75 255 4400 1350 225 4600 1526 175 5400 1725 150 6000	10.5 Main 1, * * y main 10.5 Main 25 50 0 75 57 600 75 75 600 200 1255 1200 200 2255 12000 775 2755 3000 775 2755 3000 775 2500 42000 1175 2550 42000 11350 2255 4200 15285 1755 5400 17285 150 6000 17755 150 6000	10.5 Mail 1.0 * Nail 1.0 * Nail 25 50 0 75 57 600 75 75 600 200 1255 12000 2075 2255 18000 775 2755 24000 775 2755 36000 7175 2757 3600 11755 2550 42000 11755 1755 54000 11755 1500 60000 17255 1500 60000 1875 755 6600 1875 1500 7200	10.5 Main 1* Name 1* Name 1.0 ⁵ Main 25 50 0 75 57 600 200 125 1200 200 225 1200 775 275 2400 775 275 3000 775 275 3000 775 250 4600 1175 255 4800 1350 225 4800 1375 175 5400 1375 150 6000 1375 150 6000 1375 150 5400 1775 150 5400 1975 150 7200 1975 150 7200 1975 150 7200 1975 150 7200
6bka 7	ΔP _x		TE TOSNET		50 50 75	50 575 5 200	5 50 250 250 250 250 250 250 250 250 250	50 50 50 50 50 50 50 50 50 50 50 50 50 5	50 50 50 50 75 200 50 250 55 275 575 5	10. 10. 50 50 51 75 52 200 53 200 54 275 55 275 56 300 325 325	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10. 50 50 50 75 200 25 200 25 275 300 325 300 325 275 300 325 300 275 300	10. Mail 10. Mail 50 50 51 250 52 250 53 275 53 300 325 300 53 375 53 300 54 275 55 300 55 300 56 275 57 300 57 275	10. Mm 10. Mm 50 50 55 250 55 275 56 275 57 300 325 300 56 275 57 275 57 275 57 275 57 300 57 275 57 325 57 275 57 325 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 <th>10. Martin 10. Martin 50 50 55 250 55 275 55 275 56 275 57 300 325 300 275 325 56 275 57 275 57 275 56 275 57 300 57 275 57 300 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275<th>10.44 10.44 5 50 5 250 5 275 3 275 3 300 3 325 3 325 3 300 3 325 3</th><th>101 Mm⁻¹ 101 Mm⁻¹ 50 50 55 75 56 250 57 250 57 275 300 325 325 300 275 325 325</th></th>	10. Martin 10. Martin 50 50 55 250 55 275 55 275 56 275 57 300 325 300 275 325 56 275 57 275 57 275 56 275 57 300 57 275 57 300 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 57 275 <th>10.44 10.44 5 50 5 250 5 275 3 275 3 300 3 325 3 325 3 300 3 325 3</th> <th>101 Mm⁻¹ 101 Mm⁻¹ 50 50 55 75 56 250 57 250 57 275 300 325 325 300 275 325 325</th>	10.44 10.44 5 50 5 250 5 275 3 275 3 300 3 325 3 325 3 300 3 325 3	101 Mm ⁻¹ 101 Mm ⁻¹ 50 50 55 75 56 250 57 250 57 275 300 325 325 300 275 325 325
6 Pr	AP _x P _x		5Nm-2105 Km	5Nm-2/105Hm	51/m ⁻² 10 ⁵ Nm ⁻	^{5/141-2} 10 ⁵ He 100 50 200 225 275 425	275 575 575	9/44-2 10 9/45 100 50 200 225 275 425 300 575 350 725	SNar Synar Synar <ths< th=""><th>SMm=3 To SMm 1000 50 2000 2255 2775 4285 3000 5775 3250 7255 3255 9255 3255 9255 3255 9255 3255 9255</th><th>338 300 50 200 225 225 200 225 225 300 575 425 350 775 925 325 925 926 325 926 775 300 1100 926 300 1100 926 300 1100 926</th><th>310 50 100 50 200 225 200 225 300 275 320 725 320 725 320 725 320 725 320 1100 300 1100 300 1100 200 1100 300 1100 201 1100</th><th>310 310 310 300 50 325 326 325 325 325 326 325 326 325 326 325 326 326 326 325 326</th><th>310 310 310 300 50 325</th><th>310 310 310 300 50 325 1275</th><th>State State <th< th=""><th>State State <th< th=""></th<></th></th<></th></ths<>	SMm=3 To SMm 1000 50 2000 2255 2775 4285 3000 5775 3250 7255 3255 9255 3255 9255 3255 9255 3255 9255	338 300 50 200 225 225 200 225 225 300 575 425 350 775 925 325 925 926 325 926 775 300 1100 926 300 1100 926 300 1100 926	310 50 100 50 200 225 200 225 300 275 320 725 320 725 320 725 320 725 320 1100 300 1100 300 1100 200 1100 300 1100 201 1100	310 310 310 300 50 325 326 325 325 325 326 325 326 325 326 325 326 326 326 325 326	310 310 310 300 50 325	310 310 310 300 50 325 1275	State State <th< th=""><th>State State <th< th=""></th<></th></th<>	State State <th< th=""></th<>
Próbka 6	IQ. ^N		10 SNBTE 10	50 50	50 200	50 410	200 x10	50 50 530 530 530 500 550	200 50 445 600 750 975	200 50 200 405 600 750 975 1125	1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 1	1 10.1% - 10.1% - 10.1% - 10.1% - 10.1% - 200 -	1 10.1% - 10.1% - 10.1% - 10.1% - 10.1% - 200 -	1 101% 110% 110% 110% 110% 110% 110% 11	100*86***100**** 100*86*** 50 50 2200 6000 7750 975 11:250 11:250 11:255 15:755 12:755 17:300 12:755 12:755 12:755 12:755	100*86****100* 50 50 200 200 750 975 1125 11250 11250 11250 11250 11250 11250 11250 11250 11555 1575 1575 1575 1575	200 200 200 445 600 750 975 11250 11250 11250 1250 12750 12750 12750 12750 12750 12750 12750
Próbles 5	Px APx		Film-E-105Mm-E	75 105 Mm-2	75 100 50 200	75 100 75 100 50 200 00 275	75 100 50 200 00 275 00 325	75 100 75 100 50 200 00 325 00 325	75 100 50 200 00 325 00 325 00 300	75 100 50 200 00 275 00 300 90 300	75 100 50 200 00 275 00 300 125 00 300 125 300 275 300	75 100 550 200 600 275 800 300 775 300 800 300 875 300	75 100 550 200 600 125 600 300 775 300 775 275 725 250 725 250	75 100 550 200 000 125 000 300 975 300 275 255 250 275 255 175 250 150	75 100 550 200 550 200 000 1255 000 300 300 300 300 275 225 250 275 175 000 275 260 150 000 150	75 100 55 200 55 200 000 325 000 325 900 325 200 275 225 250 275 225 250 175 200 150 175 200 150	75 100 550 200 550 200 000 325 000 300 975 300 975 300 275 255 250 175 175 250 150 150 150
ia 4	ÅP _x		105 Rm-2 105	105Rm-2 105	10 ⁵ Film= 10 ⁵ 100 250 3	10 ¹ 10 ¹ 10 ¹ 10 ¹ 200 23: 250 23: 275 6i	100 mm 100 100 100 100 100 100 100 100 1	100 100 100 250 35 255 66 325 88 325 88	10 110 100 100 100 100 100 100 100 100	100 1100 1250 35 250 35 275 66 325 86 325 86 325 10 10 123 300 123	100 110 110 110 110 110 110 110 110 110	10.711 10.7 100 3: 250 3: 275 6: 325 8: 325 8: 350 123 300 123 250 123 200 123 200 123 200 123 200 123 200 133 200 133	10.71, 100 100 3: 250 3: 275 6: 325 8: 325 8: 100 13 300 13 250 13 13 250 13 13 250 13 13 250 13 13 16 13 16 13 16 16 17 16 16 17 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16	100 mm 100 7 100 3: 2:50 3: 275 6: 3: 3: 275 6: 3: 3: 375 8: 3: 3: 3750 120 12 3: 300 12 3: 2: 12 300 12 2: 12 12 250 12 12 12 12 150 12 12 12 12 150 12 12 12 12 150 12 12 12 12 150 12 12 12 12	100 mm 100 7 100 3: 2:50 3: 275 6: 3: 5: 275 6: 3: 5: 375 8: 3: 5: 3750 100 12: 0: 3000 13: 2: 12: 3000 13: 2: 15: 25:0 15: 2: 15: 15:0 15: 12: 12: 7:5 15: 2: 2:	100 100 100 3 250 3 275 6 375 8 375 10 375 10 375 10 375 10 375 10 370 12 300 13 250 14 250 14 150 14 75 14 75 22 250 17 250 17 250 17 75 24	10.111 10.111 100 3 250 3 275 64 325 84 325 84 325 10 350 124 300 123 300 124 300 133 250 134 250 137 150 138 250 137 250 230 775 24 250 24 250 23
Proble	IA.X	a law we have	TO NEW	05	50 225	225 1400	225 100 100 100	225 225 400 7000 200	225 225 400 7000 900 900	225 225 200 700 900 900 1075	225 225 200 7000 9000 1075 11225	225 225 200 7000 9000 1075 11225 11225 11225	225 225 225 226 700 900 1075 11225 11425 11425 11575	225 225 225 226 7000 9000 1075 11225 11425 11425 11425 11425 11725	225 225 225 7000 9000 1075 11225 11225 11225 11225 11225 11225	225 225 400 700 900 1075 11225 11225 1575 1575 1575 1575 1575	225 225 226 700 900 1075 1225 1425 1425 1425 1575 1575 1575 1575 1575 1575 1575 15
robka 3	AP _x	m-2 10 5 km-	and	50 150	50 150 00 275	50 150 00 275 00 350	50 150 00 275 00 350	50 150 00 275 00 350 00 400 75 350	50 150 00 275 00 350 00 400 25 325	50 150 000 275 000 350 000 400 75 450 75 325 75 325	50 150 000 275 000 350 000 400 255 325 75 325 50 350	50 150 50 275 000 370 000 375 000 350 150 325 50 325 50 350	50 150 50 150 60 275 75 350 75 325 50 350 75 325 75 325 75 325 75 325 75 250	50 150 50 150 275 375 350 350 51 325 52 325 50 250 775 325 775 325 50 250 75 250 75 250 75 250 75 255 75 255 75 255 75 255	50 150 50 150 60 275 77 300 775 325 50 325 51 325 52 325 54 250 775 325 775 325 775 225 775 225 775 225 775 225 775 225 775 225 775 225 775 225 775 225 775 225 775 225	50 150 000 275 000 275 000 350 75 325 75 325 75 325 75 325 75 325 75 325 75 325 75 325 75 325 75 325 75 225 <	50 150 000 275 000 370 000 375 25 325 55 325 775 325 775 325 775 325 755 250 755 250 755 255 755 175 256 175 255 1005 755 1255
2 P	A- ×av	5Nm-2 105 K		150	150 153 325 3	150 15 325 3 375 6	150 150 3325 34 375 64 425 9	150 5 325 8 375 6 425 9 450 11	150 15 325 34 375 66 425 99 450 11 425 13	150 150 3325 33 3375 66 450 111 425 99 450 111 425 133 425 135 425 133 425 135 425 135 425 135 425 135 425 155 455 155 1	L50 150 3325 33 375 64 425 94 425 111 425 13375 13375 111 450 111 450 111 425 13375 13375 113 3375 117 117 117 117 117 117 117 117 117 1	I50 5 325 8 325 8 375 6 425 11 425 11 425 13 425 13 375 5 375 13 375 13 375 15 375 15 375 17 300 19	I50 5 325 64 375 64 425 11 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 2375 21	150 150 325 8 375 6 425 11 425 13 425 13 425 13 425 13 2375 14 2425 13 252 21 225 21	150 150 325 84 375 84 425 11 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 425 13 2375 17 225 21 2350 25	150 150 335 345 3375 3475 3475 3475 3475 317 3375 313 3375 117 3375 112 3375 112 325 153 325 153 325 123 3275 211 221 <	I50 150 325 3 325 3 325 3 425 11 425 11 425 11 425 12 335 13 425 13 225 13 300 19 275 21 275 21 275 21 275 21 275 21 275 21 275 21 275 23 275 23 275 25 275 25 275 25 275 25 19 1
Próbka 2	P _x	105 Km-z-10		75	75 400	75 400 675	75 400 675 875	75 400 675 875 1125	75 400 675 875 1125 1300	75 400 675 875 1125 1300 1525	75 400 675 875 1125 1125 1300 1525 1700	75 400 675 875 1125 11300 1525 1300 1525 1700	75 400 675 875 1125 1125 1125 1125 1125 1125 1125 11	75 400 675 675 875 875 1125 1125 1125 1125 1125 1125 1125 2100 2100	75 400 675 675 875 875 1125 1125 1125 1125 1125 1125 1125 1200 2100 2200	75 400 675 875 875 1125 1125 1300 1525 1500 1900 2325 2325 2575 2375	75 400 675 875 1125 1300 1525 1700 1900 2325 2575 2875 2875 2875
Próbka 1	ΔP _x	-2 405Nm-2		0 125	0 125	0 125 6 425 5 400	0 125 5 400 5 400	0 125 5 400 5 400 5 250	0 125 5 400 5 250 0 425 6 425	0 125 5 400 5 425 5 420 6 425 0 425 0 375	0 125 5 400 5 400 6 425 0 375 5 350	0 125 5 425 6 425 6 425 6 375 5 350 5 335	0 125 0 125 4.00 4.25 5 4.00 6 4.25 7 250 375 375 5 325 5 325 5 325 5 325	0 125 0 125 4.00 4.25 5 4.00 6 4.25 7 250 6 4.25 7 255 6 3.75 5 3.25 5 3.25 5 3.25 5 3.25 5 3.25 5 3.25 5 3.25	0 125 125 425 400 375 5 400 6 425 75 325 5 325 5 325 6 325 6 325 7 325	0 125 5 400 5 400 5 250 6 425 6 425 75 375 5 350 5 325 6 325 6 325 6 325 6 325 6 325 6 325	125 125 425 420 5 400 5 400 6 375 5 350 5 325 6 325 8 325 6 325 8 325 6 325 8 325 6 850 8 325
-	z Px	Nm" 105Nm		0 50	0 50	0 50 600 450 1200 675	0 50 600 450 1200 675 1800 925	0 50 600 450 1200 675 1800 925 2400 1175	0 50 600 450 1200 675 1800 925 2400 1175 3000 1400	0 50 600 450 1200 675 1800 925 2400 1175 3000 1400 3600 1600	0 50 600 450 11200 675 2400 1175 3000 1400 3600 1400 1400 1200	0 50 600 456 600 456 11200 675 1175 22400 1175 3000 11400 3600 1160 4200 1182 4800 2025	0 50 600 456 600 456 11200 675 712200 1175 3500 1100 1175 3500 1100 4200 1182 4800 2025 5500 2225	0 50 600 450 61200 675 11200 675 32200 1175 3500 1100 1175 3500 1100 4200 1182 4220 2025 5500 2225 6000 2225	0 50 600 450 600 450 673 11200 673 22400 1175 3500 1100 1175 3500 1100 1225 5400 2225 6000 2225 6600 2255 6600 2656	0 50 600 455 600 455 11200 677 1170 925 22400 1170 11400 2025 4200 1222 55400 2025 6600 2425 6600 2655 7700 2855	0 50 600 450 673 11200 673 22400 1175 3500 11400 3500 1120 4200 1120 4200 2025 6600 2425 6600 2435 7200 2855 7 ₂ 00

2.

Tablica 5

Parcie boczne próbek granitu

	Pz	10 ⁵ Nm ⁻²	0	600	1200	1800	2400	3000	3600	4200	4800	5400	6000	6600	7200	
15	ΔP _x	105Nm-2	50	50	75	150	100	100	150	125	75	25	50	25	50	7 + 19
Prób	Px	105Nm-2	50	175	250	350	500	650	700	006	1075	1175	1350	1450	1550	P _x =0,21 r=1
ba 4	ΔP_X	105Nm-2	50	100	20	125	100	75	75	75	50	50	50	50	50	40P _z - 114 , 995
Pró	PI	10 5 Nm-2	25	100	150	275	400	550	750	875	1025	1150	1350	1525	1700	P _x =0,2,
ba 3	Δp _x	105 Nm-2	50	25	100	125	100	100	100	75	75	75	50	25	75	9P _z + 40 ,998
Pró	Px	105Nm-2	25	150	275	475	625	750	9006	1075	1225	1325	1425	1600	1725	P _x =0,23 r=0
a 2	ΔP _X	105Nm-2	50	75	50	150	150	150	125	100	100	250	125	50	0	1 ₂ + 82 ,000
Prób	Px	105 Nm-2	25	250	400	550	725	800	950	1100	1250	1400	1550	1675	1800	P _x =0,24 r=1
1	Δ P _x	10 SNm-2	50	75	100	125	125	125	125	125	100	100	75	50	150	91 _{Pz} - 38 ,999
Próba	Px	105 Nm-2	25	75	200	275	400	500	625	750	850	975	1100	1250	1375	P _x =0,1!
¢	N	10°Nm ²	0	600	1200	1800	2400	3000	3600	4200	4800	5400	6000	6600	7200	

- 65 -

czym dla danego ciśnienia osiowego wielkości parcia bocznego przy odeiążeniu są zawsze większe niż przy obciążaniu. Zjawisko to zostanie szerzej omówione w rozdziale 4.1.

Przebieg parciabocznego w zależności od ciśnienia osiowego wykazuje tendencję do kształtowania się w postaci prostoliniowej, Dlatego też, dla określenia w pierwszym przybliżeniu zależności parcia bocznego skał od ciśnienia osiowego uzasadnione jest przeprowadzenie aproksymacji prostoliniowej. W tym celu obliczono średnie wielkości parcia bocznego dla danych wielkości obciążenia osiowego zarówno dla obciążenia jak i odciążenia.

Wyniki zestawiono w tablicach 2 dc 5. Stanowiły one zbiór punktów, dla którego przeprowadzono regresję metodą najmniejszych kwadratów. Uzyskane dla poszczególnych próbek linie regresji oraz współczynniki korelacji podano również w wymienionych tablicach.

Wyliczone współczynniki korelacji, określające stopień dokładności aproksymacji zależności funkcyjnej przekraczają zawsze wartość 0,992. Można tym samym stwierdzić, że istnieje bezpośredni związek pomiędzy analizowanymi wielkościami oraz, że związek ten ma charakterścisłej zależności stochastycznej.

Graficzny obraz otrzymanych równań regresji przedstawiono dla poszczególnych skał na rys. 21 do 24; oraz w dolnych częściach rysunków IV-XXIX załącznika.

Dla wyznaczonych wielkości parcia bocznego wspólnych dla obciążenia i odciążenia wyliczono następnie średnie błędy średnich arytmetycznych. Stosując rozumowanie takie jak przy ocenie wiarygodności charakterystyk cechowania obliczono błędy bezwzględne odpowiadające rozkładowi t według Studenta przy wiarygodności 95 %. Wielkości błędów bezwzględnych dla poszczególnych próbek podano również w tablicach 2 do 5.

4. ANALIZA WYNIKOW BADAN

4.1. Zmienność zależności $p_x = f / p_z / w cyklu: obciążenie i odciążenie$

Określone równania regresji /rys. 21 do 24/ tworzą dla węgla, piaskowców oraz granitu zwarty pęk prostych, dla łupków natomiast - rozrzut ich jest dość duży. Ponadto można zauważyć, że otrzymane linie regresji mogół nie przechodzą przez początek układu. Może to być związane albo z występowaniem histerezy /w przypadku dodatniej wartości wolnego wyrazu równania/, albo też z nieznacznym opóźnieniem zaistnienia parcia bocznego, /w przypadku ujemnej wartości/ spowodowanego niedokładnym dopasowaniem próbki. Wielkość przesunięcia prostej wzdłuż osi y scharakteryzowana wolnym wyrazem równania jest jednak we wszystkich przypadkach nieznaczna mniejsza od średniego wyliczonego błędu bezwzględnego określonego dla średnich arytmetycznych parcia bocznego w całym zakresie badań. W tej sytuacji można odrzucić wolny wyraz równania uzyskując zależność w postaci:

$$\mathbf{p}_{\mathbf{x}} = \boldsymbol{\beta} \cdot \mathbf{p}_{\mathbf{z}} \tag{5}$$

gdzie:

β - określa się jako współczynnik parcia bocznego.

Wspólnymi cechami przebiegu zależności parcia bocznego od nacisku osiowego – dla wszystkich zbadanych skał są:

- histereza w pełnym przedziale obciążenia oraz
- różnica przebiegu zależności w I cyklu obciążenia oraz w cyklach dalszych /występująca dla większości próbek/.

Wyrazem występującej histerezy są niższe wartości ciśnienia osiowego wywołujące to samo parcie boczne - przy odciążaniu w porównaniu z przebiegiem odpowiadającym obciążeniu.

Różnice te dla pełnego przedziału obciążenia są stosunkowo największe dla łupków, nieco mniejsze dla piaskowców i węgla, najmniejsze zaś - dla

granitu. Ujmując przebieg omawianego procesu pod względem energetycznym, można stwierdzić, że praca odkształcenia objętościowego skały wykonana w trakcie wzrostu obciążenia nie zostaje całkowicie z układu wydzielona przy odciążaniu. Pozostała w układzie część pracy związana z występowaniem odkształceń trwałych uzewnętrznia się wyraźnie zwłaszcza po pierwszym cyklu obciążenia- odciążania w postaci resztkowej wartości p_x przy zerowym ciśnieniu osiowym. Wartość jej jest największa dla piaskowców, nieco mniejsza dla łupków, najmniejsza zaś dla węgla i granitu. W dalszych cyklach obciążenia /poza pierwszym/ różnice występujące z tego tytułu są minimalne.

Sugeruje to, że nieodwracalne zmiany w układzie, a więc przede wszystkim w badanych próbkach skalnych zachodzą w pierwszym cyklu obciążenia, w dalszych natomiast cyklach zachowanie się skał ma charakter powtarzalny i nie zachodzą już w zasadzie dalsze zmiany o charakterze trwałym.

W świetle różnic, jakie zachodziły w trakcie badań w odniesieniu do poszczególnych typów skał, można stwierdzić, że łupki charakteryzują się naj – większą zdolnością przejściowego akumulowania energii odkształconia objętościowego, mniejszą skłonność w tym kierunku wykazują piaskowce i węgiel, najmniejszą zaś granit.

Jeśli chodzi natomiast o zdolność do trwałych odkształceń objętościowych w omawianym układzie obciążenia, to charakteryzują się nią w największym stopniu piaskowce, w dalszej kolejności łupki, w najmniejszym zaś stopniu – węgiel i granit. Kolejność ta wydaje się być uzasadniona jakościowymi różnicami budowy petrograficznej wymienionych skał – co zostanie omównone szerzej w dalszej kolejności. Potwierdzają ją zresztą wyniki porównawczego ściskania objętościowego w cylindrze próbek dwóch skał, a mianowicie łupku piaszczystego i węgla, dla których prowadzono pomiar podłużnego odkształcenia /rys. 25/.

Na podkreślenie zasługuje charakter pętli występującej w cyklach o powtarzalnym przebiegu zależności $p_x = f / p_z / .$ Jak wspomniano wyżej, charakteryzuje ona zdolność skały do przejściowego akumulowania energii odkształcenia objętościowego w zadanych warunkach badawczych, a więc przy wy-

Rys. 25 Odkształcenie podłużne próbek skał przy ściekaciu objętościowym w cylindrze

- 59 -

stępującym ograniczeniu nawrotu odkształcenia osiowego wskutek tarcia próbki o wewnętrzną ściankę boczną cylindra pomiarowego.

Wyższe obciążenie wywołuje większe odkształcenia podłużne próbki oraz większy docisk brzeżnych części próbki do ścianki cylindra. Rosną wskutek tego bierne opory tarcia próbki o ścianki cylindra. Z kolei przy odciążaniu energia nawrotu objętościowego próbki nie równoważy w pełni siły tarcia o ścianki, co powoduje powstanie opóźnienia spadku wartości p_x w stosunku do wartości zaobserwowanych przy obciążeniu próbki. Dodać należy, że w warunkach występowania elementu skalnego w górotworze nienaruszonym siła pionowa działająca na określonej powierzchni wywołuje również efekt tarcia rozpatrywanegc elementu o ścianki elementów sąsiednich, nie poddanych procesowi odkształcenia. Analogia jest tu szczególnie bliska w przypadku występowania w górotworze sieci spękań o kierunk**u** dsliżonym do kierunku działania siły /pionowym/. W tym przypadku bowiem nie występuje dodatkowy czynnik oporu skały przeciw ścinaniu w kierunku działania przyłożonego obciążenia.

Jak wspomniano przy omawianiu wyników badań, stosunek otrzymanego roz rzutu danych do zmienności aproksymowanej funkcji $p_x = f/p_z/$ upoważniał do prostoliniowej interpretacji wielkości średnich.

Jednakże w początkowym przedziale obciążenia do ok. 200 MNm⁻² szczególnie w przypadku skał klastycznych, występuje zjawisko wstępnego opóźnienia parcia bocznego. Zjawisko to jest szczególnie wyraźne w I cyklu obciążenia, gdzie w skrajnych przypadkach stwierdzono brak parcia bocznego do wysokości nawet ok. 180 MNm⁻². Jest ono spowodowane trudnościami odpowiedniego dopasowania próbki do ścianki cylindra.

Należy bowiem zaznaczyć, że pomimo zastosowania precyzyjnych sposobów obróbki próbek /przyjęto dokładność obróbki 0,1 mm/,otrzymanie idealnie gładkich ścianek jest niemożliwe wskutek zróżnicowanej wytrzymałości oraz kruchości poszczególnych minerałów tworzących skałę, a także jej wewnętrznej struktury i tekstury. Piaskowce gruboziarniste składające się z dużych,dobrze otoczonych ziarn twardego kwarcu tkwiących w znacznie mniej wytrzymałej masie bezpostaciowego spoiwa – są najbardziej skłonne do tworzenia drobnych wykruszeń i wskutek tego przy znormalizowanej metodzie obróbki stopień gładkości ścianek próbek jest w tym przypadku najmniejszy.

Niewielkie odchyłki występujące dla węgla wynikają z kruchości oraz niejednorodności struktury węgla - co również powodowało odpowiednie trudności obróbki.

Z kolei dla granitu, którego poszczególne ziarna wykazują wzajemną więź o charakterze krystalograficznym oraz znacznie większą niż w przypadku druchowych skał osadowych powierzchnię wzajemnego przylegania poszczególnych kryształów – obróbka powierzchniowa nie powoduje wyrywania szlifowanych ziarn i uzyskuje się najlepszą gładkość ścianek próbek. Tak więc, początkowy rozrzut wielkości p_x spowodowany jestkształtowaniem się kontaktu próbki z cylindrem – przy występowaniu między poszczególnymi skałami niewielkich różnic stopnia gładkości powierzchni spowodowanych różnicami petrograficzno-strukturalnymi.

Większość badanych próbek wykazywała różnicę przebiegu zależności $p_x = f/p_z/w$ I cyklu obciążania oraz w cyklach dalszych. Różnica ta przeważnie uwidaczniała się większym parciem bocznym przy maksymalnym ciśnieniu osiowym w I cyklu obciążenia.

Oba pozostałe cykle natomiast nie wykazywały między sobą znaczniejszych różnic. Należy zaznaczyć, że niezależnie od przytoczonych w niniejszej pracy wyników, przeprowadzono na kilku próbkach badania obejmujące 8 cykli obciążenia - gdzie również zachodziła stwierdzona prawidłowość. Zjawisko to można tłumaczyć dopasowaniem się próbki do cylindra, porowatością skały oraz niszczeniem struktury skały i poszczególnych jej ziarn, itp.

4.2. Zagadnienie uplastycznienia skał przy wysokim ciśnieniu

Przeprowadzone badania wykazały, że w granicach ciśnień ok. 750 MNm⁺² w skałach zwięzłych nie dochodzi do stanu odpowiadającego warunkom ciśnienia hydrostatycznego, czyli plastycznego stanu odkształcenia. Teoretycznie stan taki odpo-
wiadałby nieściśliwości materiału, czyli jego porowatości równej zero. Stwierdzenia powyższe są bardziej interesujące w świetle coraz liczniejszych ostatnio prac na temat reologicznych własności skał. Prace te dotyczyły w zasadzie wyłącznie jedno- lub dwuosiowych stanów napięcia i pozwoliły na określenie reologicznych współczynników materiałowych, jak np. granicy plastyczności, współczynników lepkości itp. Zaczęły się w związku z tym pojawiać opinie, że w świetle lepkich i plastycznych własności skał można się spodz iewać już przy stosunkowo niewielkich naprężeniach pionowych /a więc na głębokościach rzędu paruset metrów/ dużych ciśnień poziomych wywieranych przez skały.

W świetle wyników przeprowadzonych badań poglądy te nie wydają się słuszne. J eżeli bowiem przy ści skaniu postaciowym skały wykazują szereg cech pseudoplastycznych, to w warunkach odkształcenia objętości cechuje je stosunkowo mała podatność i plastyczność. Głównymi powodami tego stanu rzeczy wydają się być: struktura ziarnista większości skał, duża wytrzymałość ziarn kwarcowych oraz faza gazowa /porowatość/. Czynniki te wywołują w skałach opory tarcia wewnętrznego, które w zasadniczym stopniu kształtują parcie boczne.

Zasadniczym dalszym wnioskiem, jaki wynika z doświadczeń przeprowadzonych w ramach niniejszej pracy jest stwierdzenie, że zależność parcia bocznego skał zwięzłych od ciśnienia osiowego w zakresie do 750 MNm⁻² ma charakter prostoliniowy, określony wartością współczynnika parcia bocznego.

Wielkość współczynnika parcia bocznego / β / jest cechą materiałową, której wartość jest różna dla poszczególnych typów skał /rys. 26/. Srednia wielkość współczynnika parcia bocznego / β /, wyznaczona w drodze empirycznej dla badanych skał wynosi:

I	węgiel	0,660
II	łupki	0,514
II	piaskowiec	0,317
v	granit	0,226

Jak wynika z powyższego zestawienia, przy równorzędnych pozostałych parametrach węgiel wywiera parcie boczne średnio dwa razy większe od piaskowca i trzy razy większe od granitu.

4.3. Niektóre fizyczne aspekty stwierdzonych zależności

Szereg zjawisk zachodzących w trakcie ściskania objętościowego próbek skał znajduje swoją przyczynę bądź w specyficznych własnościach fi zycznych i strukturalnych danej skały, bądź też w charakterze stanu odkształcenia i naprężenia, jaki przyjęto w badaniach.

Wspomniano poprzednio o zróżnicowanych efektach ściskania objętościowego poszczególnych skał, co wyraża się różnym ich stopniem ulegania odkształceniom nieodwracalnym. Wykazano, że faza gazowa, a ściślej trwałe zmiany porowatości próbek w trakcie ich ściskania wywierają zasadniczy wpływ na różnice współczynnika parcia bocznego między pierwszym i dalszymi cyklami obciążenia. Wspomniano wreszcie o roli tarcia między odkształcającą się w kierunku działania siły osiowej próbką a ścianką stalowego cylindra.

Na osobne omówienie zasługuje zachowanie się skał ilastych po odciążeniu. Otóż stwierdzono w trakcie badań, że próbki łupków ilastych wyjęte z cylindra pomiarowego po przeprowadzeniu cyklu badań początkowo zachowywały się jak nienaruszone nie wykazując szczelin i spękań widocznych gołym okiem, po pewnymczasie zaś pozostawienia ich na powietrzu wytwarzały się w nich gęste siatki spękań poziomych /prostopadłych do kierunku uprzedniego ściskania/.

Opisane zachowanie się próbek łupków ilastych wydaje się być konsekwencją zmian ich budowy cząstkowej. Jak bowiem wiadomozniektórych badań dotyczących zachowania się iłów jednoosiowych ściskanych w cylindrze |21 |, |22 | minerały ilaste wykazują tendencję do reorientacji cząstek pod wpływem ciśnienia.

lntensywność tego procesu zależna jest od czasu oraz wielkości przyłożonego obciążenia. W omawianym przypadku wskutek bardzo wysokiego ciśnienia /750 MNm⁻²/ najprawdopodobniej dochodziło do wysokiego stopnia uporządkowania struktur minerałów ilastych i ułożenia cząstek mniejszym wymiarem równolegle do działania siły. Po odciązeniu nowo wytworzone więzy międzycząstkowe okazały się tak duże, że odkształcenia nawrotu przekroczyły granicę ciągłości materiału i pojawiły się spękania prostopadłe do kierunku nawrotu.

W pracy niniejszej nie zajmowano się wpływem wysokiej temperatury, jaka może panować na wielkich głębokościach – na wielkość parcia bocznego i stopień uplastycznienia skał.

Zagadnienie to wymaga bowiem odrębnych, szerokich badań zarówno teoretycznych, jak i doświadczalnych. Przede wszystkim – dla rozwiązania go – konieczne byłoby wyjaśnienie funkcji zmienności stopnia geotermicznego z głębokością przy uwzględnieniu zakresu głębokości sięgającego ok. 15 000 m. Metodyka badań laboratoryjnych ciśnienia bocznego skał przy wysokiej temperaturze nastręczałaby szereg trudnych problemów dotyczących z jednej strony konieczności zachowania adiabatyki, z drugiej zaś strony – izolacji strefy wysokich temperatur i układu pomiarowego odkształceń poprzecznych cylindra.

Badania mikroskopowe szlifów zbadanych skał wykonane przed ich ściskaniem w cylindrze oraz po przeprowadzeniu cyklu badań – wykazały, że w wyniku zastosowanych wysokich ciśnień w niektórych typach skał stwierdza się poważne zmiany struktury. Dotyczy to szczególnie piaskowca gru – boziarnistego, którego próbki po przeprowadzeniu badań w cylindrze wykazywały silne spękania ziarn kwarcu i skaleni.

W przypadku skał bardziej drobnoziarnistych nie stwierdzono wyraźnych objawów spękania ziarn, a jedynie ich przemieszczenia i naruszenia spoiwa. W przypadku granitu również nie stwierdzono spękania ziarn poszczególnych minerałów wskutek przyłożonego ciśnienia.

4.4. Zależność parcia bocznego od własności mechanicznych skał

Rozważmy obecnie zagadnienie znacznych różnic współczynnika parcia bocznego dla poszczególnych skał. Ze względu na to, że warunki badania

pozostawały w przypadku wszystkich skał takie same, stwierdzone różnice należy przypisać indywidualnym własnościom skały, a ściśle biorącich wewnętrznej budowie. Większa lub mniejsza skłonność skały do wywierania parcia bocznego przy jednakowej wielkości nacisku osiowego uzależniona jest od więzi wewnętrznej, w próbkach, krępującej przemieszczenia w poszczególnych cząstkach w kierunku poprzecznym do działającej siły. Charakter przeprowadzonych doświadczeń, a szczególnie duża sztywność zastosowanych cylindrów stalowych były powodem poważnego ograniczenia poprzecznych odkształceń próbek - do wielkości niższych od krytycznych przemieszczeń poprzecznych związanych z utratą więzi wynikających ze spójności skały /przekroczenia wytrzymałości przy odkształceniu postaciowym/. Stąd też zasadniczą przyczyną omawianych różnic wydaje się być tarcie wewnątrz struktury wewnetrzneį.

Podstawowymi **pa**rametrami wytrzymałościowymi charakteryzującymiskały zwięzłe są wytrzymałość na ściskanie oraz kąt tarcia wewnętrznego. W celu wyznaczenia średnich wartości tych parametrów odnoszących się do czterech wydzielonych typów skał przeprowadzono badania laboratoryjne polegające na ściskaniu próbek oraz ich ścinaniu.

Badania wytrzymałości na ściskanie przeprowadzono dwoma metodami, a mianowicie na próbkach foremnych i nieforemnych. W badaniach tych stosowano ściśle wytyczne III Grupy Roboczej I.B.G. odnoszące się do metodyki prowadzenia badań wytrzymałości skał. Łącznie zbadano 129 próbek /węgiel - 42, łupki - 22, piaskowce - 48 oraz granit - 17 próbek/.

Wyniki przeprowadzonych badań zestawiono w tabl. A /str. 38/. Jak wiadać z danych zawartych w tablicy, średnia wytrzymałość na ściskanie węgla wynosiła 25,6 MN m⁻², łupków - 31,9 MN m⁻², piaskewców 73,8 MNm² a granitu - 69,3 MN m⁻².

W celu określenia kąta tarcia wewnętrznego przeprowadzono ścinanie próbek w specjalnym uchwycie ścinającym umieszczonym pomiędzy płytami prasy hydraulicznej ZNM 100. Uchwyt ten umożliwiał zmianę wzajemnego stosunku naprężeń normalnych i stycznych do płaszczyzny ścinania poprzez zmianę kąta nachylenia powierzchni ścięcia w kolejno badanych próbkach. Jednocześnie dzięki zastosowaniu łańcucha rolkowego między płytą prasy a przyrządem zapewniono ściśle pionowy kierunek siły reakcji w uchwycie ścinającym próbkę.

Łącznie zbadano 14 próbek przy kątach ścinania mierzonych od pionu od 15 do 30° . Wyniki badania podano w tablicy B /str. 39/. Wielkości wyznaczone metodą graficzną wyniosły 42° - dla węgla, 49° - dla łupków, $55^{\circ}30^{\circ}$ - dla piaskowców oraz 60° - dla granitu.

Otrzymano wielkości parametrów mechanicznych $/R_c$ i tg φ / skorelowano z średnimi współczynnikami parcia bocznego dla poszczególnych typów skał /rys. 27 oraz 28/.

Jak wiadać z rysunków, w obu przypadkach stwierdzono liniową zależność w zbadanym przedziale zmienności R_c oraz tg φ , przy czym znacznie większą wiarygodnością charakteryzuje się zależność β od wielkości współczynnika tarcia wewnętrznego.

Zależność tę ujmuje równanie empiryczne:

$$\beta = 1,155 - 0,556 \cdot tg \phi$$
 (6)

Jak wynika z powyższego, w zakresie przebadanej zmienności wielkości tg **9** można na podstawie jej znajomości określać parcia boczne skał. Potiwerdza to bezpośredni związek fizyczny własności tarcia z anizotropią reakcji objętościowej.

W pełnym przedziale możliwej zmienności współczynnika tarcia wewnętrznego skał wspomniana zależność $\beta = f(tg \phi)$ będzia miała charakter wykładniczy, zgodnie z warunkiem brzegowym:

 $0 < \beta \leq 1,0 \tag{7}$

wynikającym z podstawowych założeń fizycznych.

Ze względu na to, że trudno jest w drodze dedukcji ustalić dokładne wartoś-

Rys. 27 Zależność współczynnika parcia bocznego od wskaźnika tarcia wewnętrznego skał

Rys. 28 Zależność współczynnika parcia bocznego od wytrzymałości skał na ściskanie

- 79 -

ci graniczne /tzn. wielkość tg φ odpowiadającą $\beta = 1,0$ oraz maksymalny zakres tg φ i odpowiednią wielkość β /przyjęto interpretację liniową funkcji ograniczając ją do przedziału wartości tg φ określonego badaniami.

5. ZAKONCZENIE I WNIOSKI

Wyniki przeprowadzonych badań doświadczalnych rzucają nowe światło na dotychczasowe poglądy dotyczące parcia bocznego skał w warunkach skrępowanych odkształceń poprzecznych. Świadczą one mianowicie o tym, że w zależności od typu skały, a ściślej biorąc właściwego jej tarcia wewnętrznego, parcie boczne wzrasta liniowo ze wzrostam nacisku osiowego. Zależność tę wyraża równanie /5/.

$$P_x = P_y = \beta \cdot P_z$$

Współczynnik parcia bocznego $/\beta$ / jest właściwością zależną od rodzaju skały i jej parametrów fizyko-mechanicznych. Jest przy tym rzeczą charakterystyczną, że tarcie wewnętrzne odgrywa znacznie większy wpływ na parcie boczne skał aniżeli ich wytrzymałość. Wskazuje na to różnica zachowania się zbadanych piaskowców oraz granitu, które to skały wykazywały zbliżoną wartość wytrzymałości na ściskanie. Współczynnik parcia bocznego β może być określony zależnością wyrażoną równaniem /6/.

 $\beta = 1,155 - 0,556 \cdot 0.00$

Drugim istotnym stwierdzeniem, jakie można wysnuć z wyników przeprowadzonych badań jest przesunięcie domniemanej granicy uplastycznienia się skał pod wpływem wysokich ciśnień – poza praktyczny zakres zainteresowania górnictwa podziemnego. Maksymalny bowiem zakres nacisków zastosowanych w badaniach /750 MN m⁻²/ odpowiadał w przybliżeniu głębokości rzędu 30 km.

W granicach stosowanych ciśnień nie stwierdzono zaś wyraźnych objawów przejścia skał zwięzłych w stan plastyczny, czemu odpowiadałby wzrost wspólczynnika β do 1,6. Szereg problemów napotkanych w trakcie omówionych badań, zasługuje na dalsze opracowanie zarówno teoretyczne, jak doświadczalne. Można tu wymienić:

- zmiany własności fizyko-mechanicznych skał wskutek działania wysokich ciśnień, w szczególności zmiany struktury, tekstury, porowatości, wewnętrznych więzi /wytrzymałości/ oraz deformacji i stopnia zniszczenia pojedynczych ziarn skały;
- wpływ podwyższonych temperatur na wielkość współczynnika parcia bocznego dla różnych typów skał;
- zagadnienie reorientacji częstek minerałów ilastych w stosunku do kierunku działania nacisku;
- anizotropia parcia bocznego i jej związek ze strukturą skał;
- zagadnienie superpozycji parcia bocznego w warunkach niejednorodnego pola naprężeń.

Ostatnie zagadnienia łączą się z praktycznymi zastosowaniami wyników omawianych badań w praktyce budownictwa górniczego i wymagają przeanalizowania problematyki koncentracji naprężeń wokół wyrobisk o różnym kształcie znajdujących się w strefie górotworu poddanej wysokim naciskom pionowym. Analiza ta mogłaby stworzyć podstawy obliczenia obudów wyrobisk szybowych, przekopów, podszybi, ip. dostosowanych do wysokich ciśnień wynikających z dużej głębokości.

Przedstawiona praca została wykonana w laboratoriach Głównego Instytutu Górnictwa oraz Katedry Budownictwa Górniczego Kopalń Politechniki Śląskiej.

Kolegom - dr A. Kidybińskiemu oraz mgr inż. R. Gocmanowi i ich współpracownikom wyrażam podziękowanie za okazaną współpracę przy wykonywaniu badań.

BIBLIOGRAFIA

- Stawrogin A.N.: Ispytanije fizyko-miechaniczeskich swoistw gornych porod pri objomnom zżatii, Tiechnol. Dob. Uglia Podz. Spos. 1968, nr 5, s. 62-73.
- Protodiakonow M.M., Ilnickaja E.J.: Der Einfluss des Masstabeffekts auf die Gesteinsfestigkeit bei allseitigem Druck, Bericht über das 8. Ländertreffen des I.B.G., Akademie Verlag, Berlin, 1967, s. 41-48.
- Höfer K.H., Thoma K.: Triaxale Versuche an Salzgesteinen, Bericht über das 8. Landertreffen des I.B.G., Akademie Verlag, Berlin 1967, s. 62-71.
- Murrel S.A.F.: Der Effekt triaxialer Spannungssysteme Temperaturem. Bericht über das 8. Landertreffen des I.B.C., Akademie Verlag, Berlin 1967, s. 88-97.
- Arcimowicz G.W., Skliarow E.B.: Wlijanije wysokogo dawlenija na miechaniczeskije swoistwa gornych porod. Gieofiziczeskij Sbornik, Wyp. 29 "Naukowa Dumka" Kijew, 1969, s. 78-83.
- 6. Matwiejew B.W.: Rukowodztwo po prowiedieniu ispytanii słabych gornych porod na bokowyj raspor. WNIMI, Leningrad 1961.
- Sikora W., Kidybiński A.: Badanie fizyko-mechanicznych własności skał zwięzłych dla potrzeb górnictwa. Dokum. GIG, Pion Górniczy 1964.
- Matsushima S.: On the deformation and fracture of granite under high confining pressure. Biulletin Didatter Prevention Research Inst. Un. Kyoto, 1960, nr 36, s. 11-20.
- Link H.: Zur Querdehnungszahl von Gestein und Fels bei Beanspruchungen nahe der Bruchfestigkeit, I -st. Intern. Congress on Rock Mechanios, Liboa, 1966, 3/33, Proc. vol. I, s. 425-431.

- Cameron L.: Physical properties of some canadian mine rocks, Transact. Canad. Inst. Min. Metall, 57/1954/ p. 506-509.
- Ros M., Eichniger A.: Versuche zur Klärung der Bruchgefahr, II Nichtmetallische Steffe. Diskuss-Ber. Nr 28, der EMPA, Zurich 1928.
- Phillips D.W.: Tectonics of mining, Colliery Engineering 25/1948/
 p. 199/202, 206, 278/82, 312/16, 349/52, 364/68, 387.
- Matsushima S.: On the flow and fracture of igneous rocks, Bulletins Disaster Prevention Research Inst. Kyoto, Univers. Japan, 1960, nr 36, s. 2-9.
- 14. Rummel F.: The rheological behaviour of some quartz phyllite and eimestone - jura specimens under uni-axial static pressure, Bolletion di Geofisica Teoretica od Applicata /1965/, No 26, s. 165-174.
- 15. Horibe T., Kobayashi B.: Physikalische und mechanische Eigenschaften von Karbongesteinen unter dreiachsigem Druck, Intern. Kongress für Gebirgsdruck - forschung. Paris, Mai 1960, Ber. Cl. 75.
- Borecki M, Kidybiński A.: Warunki geotechniczne eksploatacji węgla z dużych głębokości. Przegl. Górn. 1966, nr 5.
- Borecki M., Kidybiński A.: Problems of stress measurements in rock taken in the Polish coalmining industry. Proc. 1 st Congres on Rock Mech., Lizbona, 1966.
- Murrell S.A.F.: The strength of coal under triaxial campression, Mech. Prop. of Non - metallic Brittle Mat. Butter Worths Sc. PUbl., London 1958.
- Terry N.B., Morgans W.T.A.: Studies of the rheological behaviour of coal, Mech. Prop. of Non-metallic Brittee Mat. Butter Worths Sc. Publ., London 1958.
- Kidybiński A.: Mechaniczne własności skał karbońskich Zagłębia Górnośląskiego, Przegl. Górn. 1969, nr 11.

- 83 -

- Ewertowska-Madej Z.: Wpływ ułożenia cząstek iłowych na wytrzymałość gruntu na ścinanie. Rozprawy Hydrotechniczne IBW PAN, zesz. 23/1969 str. 251-253.
- Lambe T.W.: The structure of compacted clay. Journ of the Soil Mech. and Found. Div. T. 84, nr SM2, 1958.

ZACHOWANIE SIE SKAŁ W UKŁADACH JEDNOÓSIOWYCH OBCIĄŻEŃ WYSOKOGIŚ-NIENIOWYCH ZE SKREPOWANYM ODKSZTAŁCENIEM POPRZECZNYM

Streszczenje

Stały wzrost głębokości eksploatacji wymaga coraz lepszego poznania stanu naprężeń panującego w górotworze. Dla wyjaśnienia zjawisk zachodzących w górotworze nienaruszonym prowadzone dotychczas szeroko zakrojone badania laboratoryjne odpowiednio przygotowanych próbek skał. Próbki te obciążano jednoosiowo nie krępując ich możliwości odkształceń lub też trójosiowo przykładając z góry określone siły. Przedstawiona w pracy analiza tych metod badawczych wykazała, że przyjęte schematy obciążeń nie odpowiadają jednak w pełni rzeczywistym warunkom panującym w górotworze nienaruszonym.

W celu wiernego odzwierciedlenia stanu górotworu nienaruszone go przyjęto schemat badań, który przewidywał jednoosiowe obciążenie próbki skalnej. Przez skrępowanie możliwości jej odkształzenia uzyskano wewnątrz próbki trójosiowy stan naprężeń. Wywieraną przez próbkę siłę normalną do działania przyłożonego obciążenia określono jako parcie boczne.

Dla jakościowego i ilościowego określenia tego parcia bocznego skonstruowano specjalny przyrząd pomiarowy umożliwiający osiow we obciążenie próbek walcowych w cylindrze stalowym.Cylinder ten krępował odkształcenia boczne w zakresie obciążeń do 750 MNm⁻². Równocześnie umożliwiał on pomiar nacisku próbki na ścianki cylindra. Wacisk ten charakteryzuje wielkość parcia bocznego.

Badaniami objęto węgiel, łupki karbońskie, piaskowce karbońskie oraz granit. Dla skał tych określono także pozostałe własności fizyko-mechaniczne. Dobrano odpowiednią metodę pomiaru przeprowadzając ocenę jego dokładności, wiarygodności i powtarzalności. Dokumentację pomiarów przedstawiono w formie tabelarycznej i graficznej.

W wyniku analizy przeprowadzonych badań stwierdzono,że w stosowanym zakresie obciążeń stosunek parcia bocznego danej próbki do przyłożonego nacisku osiowego jest w przybliżeniu wielkością stałą dla danej skały. Stosunek ten nazwano współczynnikiem ' parcia bocznego β. Dalsza analiza wykazała, że zasadniczy wpływ na wielkość współczynnika parcia bocznego posiada tarcie wewnątrz strukturalne skały. Stwierdzono ponadto, że w granicach stosowanych obciążeń badane skały zwięzłe nie przechodzą w stan plastyczny.

поведение пород в одноосных системах высоких нагрузок со стесненной поперечной деформацией

Содержание

Непрерывный рост глубины эксплуатации требует более детального изучения напряженного состояния в горном массиве. Для выаснения явлений, происходящих в ненарушенном горном массиве, до сих пор проводились в широком масштабе лабораторные испытания подготовленных соответствующим образом образцов пород. Эти пробы нагружались одноосно, не стесняя их возможности деформации, или же трехосноприлагая сверху определенные усилия. Представленный в работе анализ этих исследовательских методов показал, что принятые схемы нагрузок не соответствуют, однако, полностью действительным условиям в ненарушенном горном массиве.

С целью точного воспроизводства состояния ненарушенного горного массива принята сжема испытаний, по которой предусматривалось одноосное нагружение породного образца. Благодаря стеснению (воспрепятствованию) возможности его деформации внутри образца было достигнуто трехосное напряженное состояние. Вызываемое образцом усилие, нормальное к действию прилагаемой нагрузки, определено как боковой распор.

Для качественного и количественного определения этого бокового распора сконструирован специальный измерительным прибор, позволяющий производить ссевую нагрузку цилиндрических образцов в стальном цилиндре. Этот цилиндр препятствовал боковым деформациям в диапазоне нагрузок до 750 ШНм⁻².

Одновременно он позволил производить измерение нажима образца на стенки цилиндра. Этот нажим характеризует величину бокового распора. Испытаниями были охвачены уголь, карбонские сланцы и песчаники и гранит. Для этих пород определены тыкже остальные физико-механические свойства. Подобран соответствующий метод измере ния, произведена оценка его точности, достоверности и повторимости. Документация измерений представлена в форме таблици циаграмм.

В результате анализа проведенных испытаний констатируется что в примененном диапазоне нагрузок отношение бокового распора данного образца к приложенному осевому давлению является приблизительно постоянной величиной для данной породы. Это отношение названо козффициентом бокового распора В. Дальнейший анализ показал, что на величину козффициента бокового распора основное влияние оказывает внутриструктурное трение породы. Кроме того обнаружено, что в пределах применявнихся нагрузок испытываемые плотные породы не переходыт в пластическое состояние.

ROCK BEHAVIOUR IN UNAXIAL HIGH-PRESSURE WADING WITH LATERAL CON-STRAINT

Summary

The increase of mining depth requires deeper knowledge of the ixisting stresses in rock.

To explain the phenomena occuring in the undistrubed strata laboratory test have been conducted on specially prepared specimens, or triaxially loaded.

The analysis of these investigations presented in this paper have shown that the loading scheme used can not fully satisfy the preexisting stress condition in the undistrubed strata. To create an exact model of the indisturbed stress conditions, the scheme which provides unaxial load of rock specimen, has been accepted. However, by contraining the specimen triaxial state of stress has been achieved. Lateral stress produced by a specimen under unaxial loading was defined as lateral pressure.

To determine this lateral pressure, a special steel cylinder enabling axial loading of cylindrical specimen was constructed. The cylinder limited the lateral strain up 750 MNm^{-2} . The cylinder enabled the measurement of the specimen's lateral pressure on the cylinder wall. The tests included coal, carboniferous shale, carboniferous sandstone and granite. The other physico-mechanical properties for these rocks has been also defined. A metod was chosen for which the evaluation of accuracy, reliability and repeatability has been made. Measurement data has been given tabularly and graphically.

According to the results of tests carried out a conclusion was drawn that in the range of applied loads the relation of the lateral pressure of a given specimen to the applied axial pressure is approximately constant of a given rock.

This relation was named a factor of the lateral pressure (β).

Further analysis has shown that the principal influence on the factor of the lateral pressure has the structural internal friction in rock.

Besides, it has been stated that within the limits of the applied loads, the tested competent rock did not show the plastic behaviour.

Tablica I

	C				<u> </u>		-	
Pz Py	Ser				50		-	₽ _Z P _v
Py	061	α ₂	α3	α1	062	α3	CL.	Py
10°Nm =	mm	mm	mm	mm	mm	mm	mm	10916~2
0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0
600	5,50	4,50	4,50	4,00	3,75	4,00	4,50	600
1200	10,50	9,50	9,50	9,50	9,50	9,00	9,25	1200
1800	15,00	13,75	13,75	13,50	13,00	13,25	13,75	1800
2400	19,50	20,00	18,00	17,75	17,50	18,25	18,50	2400
3000	23,75	23,00	22,50	22,25	22,00	22:25	22,75	3000
3600	27,50	26,75	26,75	27,00	26,50	26,75	26,75	3600
4200	31,75	30,50	30,50	30,75	30,50	30,75	30,75	4200
4300	35,00	34,25	34,25	34,50	34,25	34,75	34,50	4800
54 0 0	37,50	36,75	37,00	38,00	37,25	38,00	37,50	5400
6000	40,50	39,25	39,50	41,25	40,75	41,00	40,50	6000
6600	42,50	41,75	41,75	43,50	43,75	44,00	42,75	6600
7200	45,00	43,25	43,75	46,25	46,50	46,75	45,25	7200
6600	43,25	41,75	42,50	44,50	44,25	44,50	43,50	.6600
6000	41,75	40,00	40,75	42,25	42,25	42,00	41,50	6000
5400	39,50	38,00	38,75	39,75	39,25	39,25	39,00	5400
4800	37,50	35,00	36,25	37,00	36,25	36,50	36,50	4800
4200	34,25	32,00	33,25	33,00	32,50	33,00	33,00	4200
3600	30,75	28,25 .	29,50	23,50	28,50	28,25	29,00	3600
3000	25,75	23,25	25,00	23,75	23,50	23,75	24,25	3000
2400	21,50	19,50	21,25	19,00	19,50	19,50	20,00	2400
1800	15,75	15,00	16,75	14,50	14,50	14,75	15,25	1800
1200	12,50	10,50	12,00	9,75	9,75	10,25	10,75	1200
600	6,75	5,00	6,75	4,50	4,75	4,75	5,50	600
0	0,75	0,00	1,75	0,00	0,00	0,25	0,50	0

Wyniki cechowania układu pomiarowego. Etap I

Rys. I Wykres cechowania układu pomiarowego. Etap I

-92-

Tablica II

p _z	S	eria 1			Seria 2		Ŝrednie	p _z
P _y	α1	α2	α,	α1	α₂	α	ā	py.
10 ⁵ Nm ⁻²	mm	mm	mm	mmm	mm	mm	mm	105Nim2
0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0
600	2,00	2,50	2,25	2,50	3,00	2,50	2,50	600
1200	4,75	5,00	5,00	5,00	6,00	4,75	5,00	1200
1800	7,75	8,00	8,50	8,00	9,50	8,25	8,25	1800
2400	11,75	12,25	12,50	11,50	13,50	12,50	12,50	2400
3000	15,50	16,25	16,75	15,00	17,50	17,50	16,50	3000
3600	20,25	20,50	21,00	19,50	22,25	21,50	20,75	3600
4200	23,50	24,25	25,00	23,75	27,00	26,25	25,00	4200
4800	27,25	28,75	30,00	27,75	31,50	30,75	29,25	4800
5400	31,25	32,75	34,25	31,25	35,50	35,00	33,25	5400
6000	35,00	36,50	38,50	34,75	39,75	39,50	37,25	6000
6600	37,00	39,25	41,50	37,25	43,50	43,25	40,25	6600
7200	39,25	41,75	44,25	39,75	47,25	46,75	43,25	7200
6600	37,50	39,75	42,25	37,75	44,50	44,00	41,00	6600
6000	35,75	37,50	40,50	35,75	41,50	41,00	38,75	6000-
5400	32,50	33,75	35,25	31,75	37,50	37,00	34,75	5400
4800	28,50	29,75	32,25	28,00	33,50	33,00	30,75	4800
4200	24,00	25,00	26,75	23,75	29,25	28,75	26,25	4200
3500	20,25	20,75	21,50	19,00	24,50	21,75	21,75	3600
3000	14,75	15,50	15,25	14,25	20,00	19,50	16,75	3000
2400	10,75	11,75	12,25	10,50	15,50	14,75	12,50	2400
1800	7,25	8,50	8,75	6,75	11,25	11,00	9,00	1800
1200	4,00	5,50	6,25	4,00	7,25	7,25	5,75	1200
600	1,25	2,50	3,25	2,75	3,50	3,50	2,75	600
0	0,00	0,00	0,25	1,25	0,00	0,00.	0,25	0

Wyniki cechowania układu pomiarowego. Etap II

Tablica III

P _z	Se	ria 1	1.1		Seria	. 2	Srednie	Pz
P _x P _y	α1	α2	α	α1	α₂	α3	ā	P _x P _y
10°Nm-2	mm	mm	mm	mm	mm	mm	mm	10 Nur?
0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0
600	2,00	2,00	2,00	0,75	1,50	2,00	1,75	600
1200	4,50	4,50	4,50	2,25	4,00	4,00	4,00	1200
1800	7,00	7,25	7,25	4,50	6,75	7,00	6,75	1800
2400	10,00	10,00	10,50	7,25	10,00	9,75	9,50	2400
3000	13,00	13,25	13,50	10,25	13,25	13,00	12,75	3000
3600	16,25	16,50	16,50	13,25	16,25	16,00	15,75	3600
4200	19,00	19,50	19,50	16,50	19,25	19,25	18,75	4200
4800	22,00	22,50	22,50	19,75	22,25	22,25	22,00	4800
5400	25,00	25,25	25,25	22,75	25,00	24,75	24,75	5400
6000	27,50	27,75	27,75.	25,75	27,75	27,75	27,50	6000
6600	29,50	30,00	29,75	28,25	30,00	30,00	29,50	6600
7200	31,25	31,50	31,25	30,50	32,00	31,75	31,50	7200
6600	30,25	30,25	30,50 [.]	29,25	30,75	30,75	30,25	6600
6000	28,50	28,75	28,75	27,50	29,00	29,00	28,50	6000
5400	26,00	26,50	26,25	25,25	27,00	26,75	26,25	5400
4800	23,25	23,50	23,50	22,25	24,00	23,50	23,25	4800
4200	19,75	20,50	20,00	19,25	21,00	20,50	20,25	4200
3600	16,50	17,00	17,00	16,50	17,50	17,25	17,00	3600
3000	13,25	13,75	13,50	13,00	14,25	14,25	13,75	3000
2400	10,00	10,75	10,75	9,75	11,00	10,75	10,50	2400
1800	7,00	7,50	7,75	7,00	7,75	7,75	7,50	1800
1200	4,25	4,75	4,75	4,00	4,75	4,50	4,50	1200
600	1,75	2,25	2,00	1,75	2,00	1,75	2,00	600
C	0,00	0,50	0,25	0,00	0,25	0,00	0,25	0

Wyniki cechowania układu pomiarowego. Etap III

Rys. III Wykres cechowania układu pomiarowego. Etap III

-96-

Tablica IV

		α		р				
Pz	(Ka	(Ca)	(X.)			x	-	P _z
105 Jm-2	~~1		,	EX1	10 Nr 1	105Nm-2	Px	10 Nm
	mm	mm	mm	10-11	10-141	TONIA	TO-NIII	10.11
0	0,00	0,00	0,00	0	0	0	0	0
600	1,25	1,50	1,75	100	150	150	150	600
1200	3,25	3,75	3,75	375	425	425	400	1200
1800	5,50	6,25	6,25	650	750	750	725	1800
2400	8,50	9,00	8,75	1025	1100	1050	1050	2400
3000	11,50	11,25	11,25	1425	1400	1400	1400	3000
3600	15,00	14,50	13,25	1875	1800	1625	1775	3600
4200	18,25	17,50	17,25	2275	2175	2150	2200	4200
4800	21,75	21,25	20,75	2750	2675	2600	2675	4800
5400	25,00	24,75	23,75	3200	3150	3025	3125	5400
6000	28,50	28,00	27,00	3675	3600	3450	3575	6000
6600	32,50	31,00	30,75	4275	4050	4025	4125	6600
7200	35,75	34,75	34,50	4800	4650	4625	4700	7200
6600	33,75	32,50	33,00	4500	4275	4375	4375	6600
6000	30,50	30,50	28,75	3975	3975	3700	3875	6000
5400	28,00	29,75	27,00	3600	3875	3450	3650	5400
4800	25,00	26,75	23,25	3200	3425	2950	3200	4800
4200	22,00	24,25	20,00	2775	3150	3500	3150	4200
3600	18,75	18,00	17,25	2350	2250	2150	2250	3600
3000	15,50	15,25	14,25	1925	1900	1750	1850	3000
2400	12,75	12,25	11,25	1575	1500	1400	1500	2400
1800	10,00	9,25	8,75	1225	1125	1050	1125	1800
1200	7,50	6,50	6,00	900	775	725	800	1200
600	5,00	4,00	3,00	575	475	350	475	600
0	1,50	0,50	0,00	150	25	0	50	0

Wielkość parcia bocznego węgla. Próbka 1

.

Rys. IV Wykres parcia bocznego w zależności od nacisku osiowego dla węgla. Próbka 1

Tablica V

Wielkość parcia bocznego węgla. Próbka 2

		α						
P _z	α	α2	α3	Px4	Р _х 2	Px 3	₽ _x	р _z
10 ⁵ Nm ²	mm	mm	mm	10 ⁵ Nm ²	10 ⁵ Nm ²	10 ⁵ Nm ⁻²	10 ⁵ Nm ²	10 ⁵ Nm ²
0	0,00	0,00	0,00	. 0	0	0	0	0
600	0,00	1,00	0,50	0	200	75	100	600
1200	1,25	2,00	2,00	250	450	450	375	1200
1800	2,50	4,00	4,00	550	900	900	775	1800
2400	4,50	6,25	6,50	1000	1375	1400	1250	2400
3000	6,50	9,00	9,00	1400	1850	1850	1700	3000
3600	9,00	11,75	12,00	1850	2300	2.325	2150	3600
4200	11,50	14,50	14,75	2250	2700	2725	2550	4200
4800	14,50	17,75	18,00	2700	3150	3175	3000	4800
5400	17,25	21,00	21,00	3150	3575	3575	3425	5400
6000	21,00	24,50	24,25	3575	4050	4025	3875	6000
6600	24,75	27,00	26,75	4025	4400	4375	4275	6600
7200	27,00	28,75	28,75	4400	4625	4625	4550	7200
6600	25,25	27,00	27,00	4150	4400	4400	4325	6600
6000	23,75	25,00	25,00	3950	4125	4125	4050	6000
5400	21,25	22,50	22,25	3600	3775	3750	3700	5400
4800	18,25	19,50	19,50	3225	3375	3375	3325	4800
4200	15,50	16,50	16,75	2850	2975	3025	2950	4200
3600	12,50	14,00	14,00	2400	2625	2625	2550	3600
3000	10,00	11,25	9,75	2025	2225	1975	2075	3000
2400	7,50	9,00	8,75	1575	1850	1825	1750	2400
1800	5,00	5,75	6,00	1100	1275	1325	1225	1800
1200	3,00	3,75	4,00	675	825	900	800	1200
600	0,75	1,25	1,25	125	250	250	200	600
0	0,25	0,00	0,00	0	0	0	0	0

Rys. V Wykres parcia bocznego w zależności od nacisku osiowego dla węgla. Próbka 2

Tablica VI

Wielkość parcia bocznego węgla. Próbka 3

11 Discontanty- Representation of the

0,50

0,00

1,00

0,00

1,75

0,75

-101-

Rys. VI Wykres parcia bocznego w zależności od nacisku osiowego dla węgla. Próbka 3

Tablica VII

		α	-					
P _z	α1	α2	α	Px 1	Р _{Х 2}	Px 3	₽ _x	P _z
$10^5 \mathrm{Nm}^{-2}$	mm	mm	mm	10 ⁵ Nm ⁻²	10 ⁵ Nm ⁻²	10 ⁵ Nm ⁻²	10 ⁵ Nm ²	$10^{5} Nm^{-2}$
0	0,00	0,00	0,00	0	0	0	0	0
600	0,75	2,00	2,25	125	. 425	475	350	600
1200	2,50	4,25	4,25	525	925	925	800	1200
1800	5,00	6,50	6,75	1075	1400	1450	1300	1800
2400	7,75	9,25	9,50	1525	1875	1925	1775	2400
3000	10,75	12,00	12,50	2125	2325	2400	2275	3000
3600	14,00	15,00	15,50	2625	2775	2850	2750	3600
4200	17,25	18,00	18,50	3075	3175	3250	3175	4200
4800	21,00	21,00	21,50	3550	3550	3625	3575	4800
5400	24,25	24,25	25,00	4000	4000	4125	4050	5400
6000	27,25	26,75	27,50	4425	4350	4450	4400	6000
6690	29,25	29,00	29,75	4700	4650	4750	475Ö	6600
7200	31,00	30,25	30,75	4950	4825	4900	4900	7200
6600	30,25	29,50	30,25	4825	4725	4825	4800	6600
6000	28,50	28,00	28,50	4600	4525	4600	4575	6000
5400	26,25	26,00	26,25	4300	4250	4300	4275	5400
4800	23,75	23,50	24,00	3950	3900	3975	3950	4800
4200	21,00	20,50	21,00	3550	3500	3550	3525	4200
3600	18,00	17,75	18,25	3175	3150	3225	3175	3600
3000	15,00	14,75	15,25	2775	2725	2800	2775	3000
2400	12,00	12,00	12,50	2325	2325	2400	2350	2400
1800	9,25	9,00	9,75	1875	1850	1950	1900	1800
1200	6,75	6,50	7,00	1450	1400	1500	1450	1200
600	3,75	3,50	4,00	825	775	875	825	600
0	0,50	0,00	0,50	50	0	50	25	0

Wielkość parcia bocznego węgla. Próbka 4

Rys. VII Wykres parcia bocznego w zależności od nacisku osiowego dla węgla. Próbka 4

Wielkość parcia bocznego węgla. Próbka 5								
n		α			D			
Z	α1	α2	α3	P _{X1}	Px2	Px,	₽ _x	Pz
$10^5 \mathrm{Nm}^2$	mm	mm	mm	105Nm~2	105Nm-2	105Nm-2	10 ⁵ Nm ^{- 2}	10 ⁵ Nm ²
0	0,00	0,00	0,00	0	0	0	0	0
600	0,50	0,50	0,50	175	175	175	175	600
1200	1,25	1,50	1,50	425	500	500	475	1200
1800	2,00	2,50	2,75	6500	775	825	750	1800
2400	3,50	4,00	4,25	1000	1125	1200	1100	2400
3000	5,25	5,75	6,00	1425	1525	1600	1525	3000
3600	7,25	7,50	8,00	1850	1900	2000	1925	3600
4200	9,25	9,50	9,75	2250	2300	2350	2300	4200
4800	11,25	11,50	12,00	2625	2675	2775	2700	4800
5400	13,50	13,75	14,00	3050	3100	3150	3100	5400
6000	15,75	16,00	16,25	3475	3500	3550	3500	6000
6600	13,00	18,50	18,75	3900	4000	4075	4000	6600
7200	20,50	20,50	21,00	4400	4400	4500	4425	7200
6600	19,00	19,00	19,25	4100	4100	4150	4125	6600
6000	17,50	17,00	17,50	3800	3700	3800	3775	6000
5400	15,50	15,00	15,50	3425	3325	3425	3400	5400
4800	13,50	13,00	13,50	3050	2950	3050	3025	4800
4200	11,25	11,00	11,50	2625	2600	2650	2625	4200
3600	9,25	9,00	9,75	2250	2200	2350	2275	3600
3000	7,25	7,25	7,50	1850	1850	1900	1875	3000
2400	5,50	5,50	5,75	1475	1475	1525	1500	2400
1800	3,75	3,75	4,00	1075	1075	1125	1100	1800
1200	2,25	2,25	2,50	700	700	775	725	1200

1,00

0,00

1,00

0,25

1,25

0,25

Rys. VIII Wykres parcia bocznego w zależności od nacisku osiowego dla węgla. Próbka 5

Tablica IX

		α	+					
Pz	α1	α2	α3	Px4	Px2	Px3	Px	P _z
10° Nm-2	mm	mm	mm	10 ⁵ Nm ⁻²	10 ⁵ Nm ²	10 ⁵ Nm ²	10 ⁶ Nm ⁸	10 ⁵ Nm ⁻²
0	0,00	0,00	0,00	0	0	0	0	0
600	1,25	1,75	1,25	100	175	100	125	600
1200	3,00	4,00	5,00	350	450	600	450	1200
1800	6,25	6,75	6,25	750	800	750	750	1800
2400	9,75	9,50	9,25	1200	1150	1125	1150	2400
3000	13,25	12,00	12,00	1650	1475	1475	1525	3000
3600	16,50	15,00	15,00	2050	1850	1850	1925	3600
4200	19,75	18,00	18,00	2475	2250	2250	2325	4200
4800	23,50	21,00	21,00	3000	2650	2650	2775	4800
5400	27,00	24,00	23,00	3475	3050	2925	3025	5400
6000	30,00	28,00	27,00	3900	3600	3450	3650	5000
6600	33,25	31,50	30,75	4400	4150	4025	4200	5600
7200	37,25	35,00	34,25	5150	4725	4575	4825	7200
6600	35,00	33,00	32,25	4725	4375	4250	4450	5600
6000	33,00	29,25	29,25	4375	3800	3800	3975	5000
5400	30,25	28,00	27,25	3950	3600	3500	3675	5400
4800	28,25	25,00	25,25	3625	3200	3225	3350	;800
4200	26,00	23,00	22,25	3325	2925	2800	3025	4200
3600	22,50	20,25	19,25	2850	2550	2400	2600	3600
3000	19,75	17,50	16,75	2475	2175	2075	2250	3000
2400	16,75	14,75	14,00	2075	1825	1725	1875	2400
1800	14,50	11,75	11,00	1800	1450	1350	1525	1800
1200	10,50	8,25	8,50	1300	1000	1025	1100	1200
600	7,00	5,00	4,50	850	600	525	650	600
0	2,25	0,75	0,25	250	50	100	100	0

Wielkość parcia bocznego łupku. Próbka 1

Rys. 1X Wykres parcia bocznego w zależności od nacisku osiowczo dla tupku. Próbka 1

	4	0	0	
-		υ	Э	-

Tablica X

		α						
Pz	α1	α2	α3	Px	Px 2	Px,	TX	Pz
10 ⁵ Nm ⁻²	mm	mm	mm	10 ⁵ Nm ²	10 ⁵ Nm ²	10 ⁵ Nm ⁻²	10 ⁵ Nm ²	10 ⁵ Nm ²
0	0,00	0,00	0,00	0	0	0	0	0
600	1,25	1,75	1,75	100	175	175	150	600
1200	3,25	4,00	4,25	350	475	500	450	1200
1800	5,50	6,50	6,50	650	775	775	725	1800
2400	8,50	9,00	9,00	1025	1100	1100	1075	2400
3000	11,50	11,50	11,50	1425	1425	1425	1425	3000
3600	14,75	14,00	14,25	1825	1725	1750	1750	3600
4200	18,00	17,00	16,75	2250	2125	2075	2150	4200
4800	21,25	19,75	19,50	2675	2475	2450	2525	4800
5400	24,50	22,50	21,25	3125	2850	2675	2875	5400
6000	27,75	25,50	25,00	3250	3250	3200	3325	6000
6600	31,00	28,50	28,00	4050	3675 .	3600	3775	6600
7200	34,00	31,50	30,75	4525	4225	4025	4250	7200
6600	32,25	29,75	29,50	4250	3875	3800	3975	6600
6000	30,75	28,25	27,50	4025	3625	3550	3725	6000
5400	29,00	26,50	26,00	3750	3400	3325	3500	5400
4800	27,25	24,75	24,00	3500	3150	3050	3225	4800
4200	24,75	22,75	22,00	3150	2875	2775	2925	4200
3600	22,25	20,50	19,75	2800	2575	2475	2625	3600
3000	19,75	17,75	17,25	2475	2225	2150	2275	3000
2400	17,00	15,00	14,50	2125	1850	1800	1925	2400
1800	14,00	12,00	11,50	1725	1475	1425	1550	1800
1200	10,75	9,00	8,75	1325	1100	1050	1150	1200
600	7,00	5,50	5,00	850	650	600	700	600
0	2,50	1,00	0,00	275	75	0	125	0

Wielkość parcia bocznego łupku. Próbka 2

Rys. X Wykres parcia bocznego w zależności od nacisku osiowego dla łupku. Próbka 2

-110-

Tablica XI

Wielkość	parcia	bocznego	łupku.	Próbka 3
----------	--------	----------	--------	----------

		α			P	x		
P _z	α1	¢2	α3	Px	Px2	P _{x3}	P _X	Pz
10 ⁵ Nm ²	mm	mm	mm	10 ⁵ Nm ²	$10^{5} Nm^{-2}$			
0	0,00	0,00	0,00	0	0	0	0	0
600	0,50	1,25	1,50	50	250	300	200	600
1200	2,00	3,00	3,25	425	650	725	600	1200
1800	4,00	5,00	5,25	875	1100	1150	1050	1800
2400	6,25	7,25	7,25	1350	1525	1525	1475	2400
3000	8,75	9,75	9,50	1800	1975	1925	1900	3000
3600	11,75	12,25	12,50	2275	2375	2400	2350	3600
4200	14,50	14,75	15,25	2700	2725	2800	2750	4200
4800	18,00	17,75	18,00	3175	3150	3175	3175	4800
5400	21,25	20,75	21,00	3600	3525	3550	3550	5400
6000	24,50	23,75	23,75	4025	3950	3950	3975	6000
6600	27,00	25,75	25,50	4400	4225	4200	4275	6600
7200	29,50	27,75	28,00	4725	4500	4525	4575	7200
6600	28,50	26,75	27,00	4600	4350	4400	4450	5600
6000	27,25	25,75	25,50	4425 -	4225	4200	4275	6000
5400	25,75	24,25	24,25	4225	4000	4000	4075	5400
4800	23,75	22,25	22,00	3950	3725	3700	3800	4800
4200	21,25	19,75	19,75	3600	3400	3400	3475	4200
3600	18,50	17,25	17,25	3250	3075	3075	3125	3600
3000	16,00	14,75	14,75	2900	2725	2725	2775	3000
2400	13,25	11,75	12,00	2500	2275	2325	2375	2400
1800	10,25	9,00	9,00	2050	1850	1850	1925	1800
1200	7,25	6,25	5,00	1525	1350	1300	1400	1200
600	4,25	3,25	3,25	925	725	725	800	600
0	1,25	0,00	0,25	250	0	0	75	0

Rys. XI Wykres parcia bocznego w zależności od nacisku csiowego dla lupków. Próbka 3

-112-

Wielkość parcia bocznego łup	oku. Próbka 4	4
------------------------------	---------------	---

	-	α			Px			
P _z	α,	α2	α3	Pxy	Px2	P _x	Px	₽ _z
10 ⁵ Mm ⁻²	mm	mm	mm	10 ⁵ Nm ²	10 ⁵ Nm ²	10 ⁶ Nm ⁸	10 ⁸ Nm ²	10 ⁵ Nm ⁻³
0	0,00	0,00	0,00	0	0	0	0	0
600	0,50	1,50	1,50	50	425	425	300	600
1200	2,25	3,50	3,50	500	775	775	675	1200
1800	4,25	5,50	5,50	925	1200	1200	1100	1800
2400	6,50	7,75	8,75	1400	1625	1825	1625	2400
3000	9,25	10,25	10,50	1875	2050	2100	2000	3000
3600	12,25	12,75	13,00	2375	2450	2500	2450	3600
4200	15,00	15,50	15,75	2775	2850	3025	2875	4200
4800	18,50	18,50	18,50	3250	3250	3250	3250	4800
5400	21,75	21,50	21,50	3650	3500	3625	3625	5400
5000	24,75	24,00	24,00	4075	3975	3975	4000	6000
6600	27,25	26.25	26,25	4425	4300	4300	4350	6600
7200	29,50	28,25	28,25	4725	4550	45 50	4600	7200
6600	28,50	27,25	27,25	4575	4425	4425	4475	6600
6000	27,25	26,25	25,00	4425	4300	4275	4325	6000
5400	25,75	24,50	24,50	4225	4050	4050	4100	5400
4800	23,75	22,50	22,50	3950	3775	3775	3825	4600
4200	21,00	20,00	20,00	3550	3425	3425	3475	4200
3500	18,50	17,50	17,50	3250	3125	3125	3175	3600
3000	15,75	15,00	17,25	2875	2775	3075	2900	3000
2400	13,00	12,25	12,25	2500	2375	2375	2425	2400
1800	10,00	9,50	9,50	2000	1950	1950	1975	1800
1200	7,00	6,50	6,25	1500	1400	1350	1425	1200
600	4,25	3,50	3,50	925	775	775	825	600
0	1,00	0,50	0,50	175	50	50	100	0

Rys. XII Wykres parcia bocznego w zależności od nacisku osiowego dla łupków. Próbka 4

-114-

Tablica XIII

		α		-	-	₽ x		
р _z	α1	α2	α3	P _{X1}	P _{X2}	P _x ,	P _x	P _z
$10^{5} Nm^{-2}$	mm	mm	mm	10 ⁵ Nm ⁻²	10 Nm 2	10 ⁶ Nm ⁻²	10 ⁵ Nm ⁻²	10°Nm ²
0	0,00	0,00	0,00	0	0	0	0	0
600	1,25	1,75	2,00	250	375	425	350	600
1200	2,50	3,25	3,50	550	725	775	700	1200
1800	4,00	4,50	4,75	875	1000	1050	975	1800
2400	5,25	6,00	6,25	1150	1300	1350	1250	2400
3000	6,50	7,50	7,75	1400	1600	1650	1550	3000
3600	8,25	9,00	9,00	1725	1850	1850	1800	3600
4200	9,75	10,50	10,50	1975	2100	2100	2050	4200
4800	11,50	12,00	12,00	2250	2325	2325	2300	4800
5400	13,25	13,50	13,50	2500	2550	2550	2525	5400
6000	15,00	15,00	15,00	2775	2775	2775	2775	6000
6600	16,75	16,50	16,50	3025	3000	3000	3000	6600
7200	18,25	18,00	18,00	3200	3175	3175	3200	7200
6600	17,50	17,00	16,75	3125	3050	3025	3075	6600
6000	16,50	15,00	16,00	3000	2900	2900	2950	6000
5400	15,50	15,00	14,75	2850	2775	2725	2800	5400
4800	14,50	14,00	13,75	2700	2625	2600	2650	4800
4200	13,25	12,75	12,50	2500	2450	2400	2450	4200
3600	12,00	12,00	1,25	2325	2325	2200	2300	3600
3000	10,50	10,00	10,00	2100	2025	2025	2050	3000
2400	9,25	9,75	8,50	1900	1975	1775	1875	2400
1800	7,50	7,00	6,75	1600	1500	1450	1500	1800
1200	6,00	5,25	5,25	1300	1150	1150	1200	1200
600	4,00	3,25	3,25	875	725	725	775	600
0	0,75	0,25	0,25	125	0	0	50	0

Wielkość parcia bocznego łupku. Próbka 5

Rys. XIII Wykres parcia bocznego w zależności od nacisku osiowego dla łupków. Próbka 5

Tablica XIV

D	1-1-1-	α	-		I	z		P
ź	041	¢2	α3	Px	Px2	P _{x3}	$\overline{P_{\chi}}$	- Z
10°Nm ⁻²	mm	mm	mm	10 ⁵ Nm ²	10°Nm	10° Nm 3	10 [°] Nm	10°Nm ²
0	0,00	0,00	0,00	0	0	0	• 0	0
600	0,50	1,25	1,50	50	250	300	200	600
1200	1,25	2,25	2,25	250	500	500	400	1200
1800	2,00	3,25	3,50	425	725	775	650	1800
2400	3,00	4,50	4,50	675	1000	1000	900	2400
3000	4,25	5,50	5,75	950	1200	1250	1100	3000
3600	5,75	6,75	7,00	1250	1450	1500	1400	3600
4200	7,00	8,00	8,00	1500	1675	1675	1625	4200
4800	8,75.	9,25	9,50	1800	2125	1925	1875	4800
5400	10,50	10,75	10,75	2100	2150	2125	2125	5400
6000	12,25	12,25	12,25	2375	2375	2375	2375	6000
6600	13,75	13,50	13,50	2600	2550	2550	2575	6500
7200	15,50	15,00	15,00	2850	2775 -	2775	2800	7200
6600	14,75	14,25	14,25	2725	2650	2650	2675	6600
6000	13,75	13,25	13,25	2600	2500	2500	2550	6000
5400	12,75	12,50	12,25	2450	2400	2375	2400	5400
4800	11,75	11,50	11,25	2300	2250	2200	2250	3800
4200	10,50	10,25	10,25	2100	2100	2100	2100	4200
3600	9,50	9,00	9,00	1925	1850	1850	1875	3600
3000	8,25	8,00	7,75	1725	1675	1650	1700	3000
2400	7,00	6,75	6,50	1500	1450	1400	1450	2400
1800	5,50	5,25	5,25	1200	1150	1150	1200	1800
1200	4,00	3,75	3,75	· 875	1075	1075	1000	1200
600	2,25	2,25	2325	500	500	500	500	600
0	Q,50	0,25	0	50	0	0	25	0

Wielkość parcia bocznego łupku. Próbka 6

Rys. XIV Wykres parcia bocznego w zależności od nacisku osiowego dla łupków. Próbka 6

-118-

	-	α			ŀ)x		
Pz	α1	CL 2	α,	Px1	Px2	Px3	Px	Pz
10 [°] Nm ²	mm	mm	mm	10 ⁵ Nm ⁻¹	· 10 Nm	10 ⁵ Nm ²	10 ⁶ Nm ⁶	10 Nm ⁻²
0	0,00	0,00	0,00	0	0	0	0	0
600	0,25	0,50	0,50	100	175	175	150	600
1200	0,75	1,25	1,50	250	425	525	400	1200
1800	1,50	2,00	2,25	525	650	725	625	1800
2400	2,50	3,25	3,50	775	975	1000	925	2400
3000	- 3,75	4,50	4,50	1075	1250	1250	1200	3000
3600	5,25	5,50	6,00	1425	1500	1600	1500	3600
4200	6,75	7,00	7,25	1750	1800	1850	1800	4200
4800	8,50	8,75	9,00	2100	2150	2200	2150	4800
5400	10,50	10,50	10,50	2500	2500	2500	2500	5400
6000	12,50	12,00	12,00	2875	2775	2775	2800	6000
6600	14,25	13,75	33,75	3176	3100	3100	3125	6600
7200	15,75	15,50	15,25	3475	3425	3375	3425	7200
6600	15,00	14,75	14,50	3325	3275	3225	3275	6600
6000	14,25	13,75	13,50	3175	3100	3050	3100	6000
5400	13,25	12,75	12,50	3000	2900	2875	2925	5400
4800	12,25	11,50	11,25	2825	2675	2625	2700	4800
4200	11,00	10,25	10,00	2600	2450	2400	2500	4200
3600	9,50	9,00	8,75	2300	2200	2150	2225	3600
3000	8,00	7,50	7,25	2000	1900	1850	1925	3000
2400	6,75	6,00	6,00	1750	1600	1600	1650	2400
1800	5,25	4,50	4,50	1425	1250	1250	1300	1800
1200	3,50	3,00	2,75	1000	900	850	925	1200
600	2,00	1,50	1,00	650	525	350	500	600
0	0,50	0,00	0,00	175	0	0	50	0

Wielkość parcia bocznego łupku. Próbka

Rys. XV Wykres parcia bocznego w zależności od nacisku osiowego dla łupków Próbka 7

-120-

-121-

Tablica XVI

		α				P _x		
P _z	α1	α2	α3	Px 1	Px 2	Px3	P _X	^P z
10°Nm ⁻²	mm	mm	mm	10 ⁵ Nm ²	10 ⁹ Nm ⁻²	10 ⁵ Nm ²	10 ⁵ Nm ⁻⁹	10 ⁹ Nm ²
0	0,00	0,00	0,00	0	0	0	0	0
600	0,00	0,00	0,00	0	0	0	0	600
1200	0,00	0,25	0,25	0	100	100	75	1200
1800	0,00	0,75	0,75	0	250	250	175	1800
2400	0,75	1,25	1,25	250	425	425	375	2400
3000	1,50	2,00	2,00	525	650	650	600	3000
3600	2,25	2,75	2,75	725	850	850	800	3600
4200	3,50	3,75	3,50	1000	1100	1000	1025	4200
4800	4,50	4,75	4,25	1250	1300	1200	1250	4800
5400	6,00	5,75	5,50	1600	1550	1500	1550	5400
6000	7,50	7,00	6,50	1900	1800	1700	1800	6000
6600	9,00	8,25	7,75	2200	2050	1950	2075	6600
7200	10,75	9,75	9,25	2550	2350	2250	2400	7200
6600	10,00	9,00	8,50	2400	2200	2100	2250	5600
6000	9,25	8,25	7,75	2250	2050	1950	2000	6000
5400	8,50	7,50	7,00	2100	1900	1800	1925	5400
4800	7,75	7,00	6,25	1950	1800	1650	1800	4800
4200	7,00	6,00	5,50	1800	1600	1500	1625	4200
3600	6,00	5,50	5,00	1600	1500	1375	1475	3600
3000	5,25	4,50	4,25	1425	1250	1200	1300	3000
2400	4,25	3,75	3,25	1200	1075	975	1100	2400
1800	3,25	2,75	2,50	975	850	775	875	1800
1200	2,25	1,75	1,50	725	600	525	625	1200
600	1,25	0,75	0,50	425	250	175	275	600
0	0,75	0,25	0,00	250	100	0	125	0

Wielkość parcia bocznego łupku. Próbka 8

Rys. XVI Wykres parcia bocznego w zależności od nacisku osiowego dla łupków. Próbka 8

Tablica XVII

		α			P			
Pz	α1	CL2	α3	Px	Px.	Px	p _x	P _z
10°Nm ²	mm	mm	mm	105Nm-1	10°Nm-2	10°Nm	10"Nm-1	10°Nm ²
0	0,00	0,00	.0,00	0	0	0	0	0
600	0,25	2,00	: 2,00	0	200	200	125	600
1200	2,00	3,75	4,00	200	450	475	375	1200
1800	4,75	5,25	5,50	- 550	625	650	600	1800
2400	7,75	7,00	7,25	950	850	875	900	2400
3000	10,00	8,50	8,75	1225	1025	1050	1100	3000
3600	12,25	10,00	10,25	- 1500	1225	1250	1325	3600
4200	14,75	11,75	12,00	1825	1450	1475	1575	4200
4800	17,00	13,50	14,00	2125	1675	1725	1850	4800
5400	19,25	15,25	15,75	2400	1900	1950	2100	5400
6000	21,00	17,25	17,75	2650	2150	2225	2350	6000
6600	23,50	19,25	19,25	3000	2400	2400	2600	6600
7200	25,50	21,00	21,00	3250	2650	2650	2850.	7200
6600	24,00	20,00	19,75	3050	2500	2475	2675	6600
6000	22,50	18,75	18,50	2850	2350	2300	2500	6000
5400	21,25	17,50	17,50	2675	2175	2175	2350	5400
4800	20,25	16,50	16,75	2550	2050	2075	2125	4800
4200	18,75	15,25	15,25	2350	1900	1900	2050	4200
3600	17,50	13,75	14,00	2175	1700	1725	1775	3600
3000	15,75	12,25	12,50	2075	1500	1550	1725	3000
2400	14,00	10,75	11,00	1725	1325	1350	1475	2400
1800	12,25	9,00	9,25	1500	1100	1125	1250	180C
1200	10,25	7,00	7,25	1250	850	875	1000	1200
600	9,00	4,50	5,00	1100	525	600	750	600
0	2,75	0,00	0,50	300	0	25	100	0

ç

Wielkość parcia bocznego piaskowca. Próbka 1

Rys. XVII Wykres parcia bocznego w zależności od nacisku osiowego dla piaskowców. Próbka 1

Tablica XVIII

			the second			1		
		α				P _x		
P _z	α1	α2	α	P _{x1}	Px 2	Px 3	P _X	₽z
10 ⁹ Nm ⁻²	mm	mm	mm	10 ⁵ Nm ⁻²	$10^{\circ} \mathrm{Nm}^{-2}$			
0	0,00	0,00	0,00	0	0	0	0	0
600	1,00	1,50	2,00	75	150	200	150	600
1200	2,50	3,50	4,00	275 -	400	475	325	1200
1800	3,50	5,00	5,50	400	500	650	550	1800
2400	5,00	6,75	7,25	600	800	875	750	2400
3000	6,75	8,25	8,75	800	1000	1050	950	3000
3600	8,75	9,75	10,50	105 <mark>0</mark>	1200	1300	1175	3600
4200	10,75	11,50	12,00	1325	1700	1475	1400	4200
4800	13,50	13,25	13,50	1675	1625	1675	1550	4800
5400	16,25	14,50	15,50	2025	1800	1925	1925	5400
6000	19,00	16,75	17,25	2375	2075	2150	2200	6000
6300	22,00	19,00	19,25	2775	2375	2400	2500	6500
7200	24,50	20,75	21,75	3125	2625	2750	2825	7200
660C	23,25	19,50	20,25	2950	2450	2550	2650	6600
6000	21,50	18,00	18,75	2.700	2250	2350	2425	6000
5400	20,25	17,00	17,75	2550	2125	2225	2300	5400
4800	19,00	16,00	16,75	2375	2000	2075	2150	4800
4200	17,75	14,75	15,50	2225	1825	1925	2000	4200
3500	16,75	13,50	14,50	2075	1675	1800	1850	3500
3000	15,00	12,25	13,00	1850	1500	1500	1550	3000
2400	13,50	10,50	11,50	1675	1300	1425	1475	2400
1800	11,75	8,75	9,50	1450	1050	1150	1225	1800
1200	9,75	6,50	7,50	1200	775	900	950	1200
600	7,25	4,00	5,00	875	475	600	650	600
0	3,25	0,00	1,00	350	0	75	150	0
						1		

Wielkość parcia bocznego piaskowca. Próbka 2

Rys. XVIII Wykres parcia bocznego w zależności od nacisku osiowego dla piaskowców. Próbka 2

Tablica XIX

		α			Px			
Pz	α1	α2	α3	Px	Px2	P _{X3}	P _x	Pz
10 ⁹ Nm ⁻²	mm	mm	mm	10 ⁵ Nm ⁻²	10°Nm ⁻²	10 ⁵ Nm ²	10 ⁵ Nm	105Nm ²
0	0,00	0,00	0,00	0,0	0	0	0	0
600	0,50	0,50	1,00	50	50	200	100	600
1200	1,25	1,50	1,75	250	325	350	300	1200
1800	2,25	2,50	3,25	475	550	725	575	1800
2400	3,25	4,00	4,50	725	875	1000	850	2400
3000	4,25	4,75	5,50	925	1050	1225	1050	3000
3600 .	5,50	6,00	6,50	1200	1300	1400	1300	3600
4200	6,75	7,00	7,75	1450	1500	1625	1450	4200
4800	8,25	8,00	9,00	1725	1675	1850	1750	4800
5400	9,75	9,50	10,25	1975	1925	2050	1975	5400
6000	11,50	10,75	11,75	2250	2125	2300	2225	6000
6600	13,25	12,25	13,00	2500	2375	2475	2450	6600
7200	14,75	14,00	14,25	2725	2625	2675	2675	7200
6600	14,25	13,00	13,75	2650	2475	2600	2575	6600
6000	13,75	12,25	12,75	2600	2375	2450	2475	6000
5400	12,50	11,50	12,25	2400	2250	2375	2350	5400
4800	11,50	10,50	11,00	2250	2075	2175	2175	4800
4200	10,75	9,50	10,00	2125	1925	2000	2025	4200
3600	9,25	8,50	9,00	1875	1775	1850	1825	3600
3000	8,25	7,50	7,25	1700	1575	1525	1600	3000
2400	7,50	6,25	5,75	1575	1350	1450	1450	2400
1800	6,25	5,00	5,50	1350	1100	1200	1225	1800
1200	4,75	3,50	4,00	1025	775	875	900	1200
600	3,25	1,75	2,25	725	350	475	525	600
0	1,75	0,00	0,00	350	0	0	125	0

Wielkość parcia bocznego piaskowca. Próbka 3

Rys. XIX Wykres parcia bocznego w zależności od nacisku osiowego dla piaskowców. Próbka 3

-128-

-129-

Tablica XX

		α			Px			
Pz	α1	α2	α3	P _{X1}	P _{x2}	P _{x3}	P _X	Ϋ́z
10 ⁹ Nm ⁻²	mm	mm	mm	10°Nm-2	10 ⁵ Nm ²	10 ⁵ Nm ⁻²	10 ⁵ Nm ⁻²	$10^{5} \mathrm{Nm}^{2}$
0	0,00	0,00	0,00	0	0	0	0	0
600	0,25	0,50	0,50	. 0	50	50	25	600
1200	0,75	1,25	1,25	125	250	250	200	1200
1800	1,75	2,00	2,25	350	425	500	425	1800
2400	2,25	3,00	3,25	500	650	725	625	2400
3000	3,00	4,00	4,25	650	875	950	825	3000
3600	4,00	4,75	3,00	775	1050	1100	975	3600
4200	5,00	5,75	6,00	1100	1275	1300	1225	4200
4800	6,25	6,50	6,75	1350	1400	1450	1400	4800
5400	7,50	7,50	7,75	1575	1575	1625	1600	5400
6000	9,00	8,25	8,50	1850	1725	1775	1775	6000
6600	10,50	9,50	9,50	2075	1925	1925	1975	6600
7200	12,25	11,00	11,00	2350	2175	2175	2225	7200
6600	10,75	9,75	9,75	2125	1975	1975	2025	6600
6000	10,00	9,00	9,25	2000	1850	1900	1925	6000
5400	9,50	8,75	8,75	1925	1800	1800	1850	5400
4800	9,00	8,00	8,25	1850	1675	1725	1750	4800
4200	8,25	7,50	7,50	1700	1575	1575	1625	4200
3600	7,25	6,50	6,75	1525	1400	1450	1450	3600
3000	6,75	5,75	6,00	1425	1275	1300	1325	3000
2400	6,00	5,00	5,25	1300	1100	1175	1200	2400
1800	5,00	4,00	4,00	1100	875	875	950	1800
1200	3,75	2,75	2,75	825	500	500	600	1200
600	2,50	1,50	2,00	550	325	425	425	600
0,	1,25	0,00	0,25	250	0	0	75	0

Wielkość parcia bocznego piaskowca. Próbka 4

١

Rys. XX Wykres parcia bocznego w zależności od nacisku osiowego dla piaskowców. Próbka 4

-130-

Tablica XXI

		α				P _x		
Pz	α1	α2	α,	Px	P _X	Px 3	Px	Pz
10 Nm	mm	mm	mm	10 ⁶ Nm ⁻²	10 ⁵ Nm*	10°Nm	10 ⁶ Nm	$10^{\rm Nm}$
0	0,00	0,00	0,00	0	0	0	0	0
600	0,25	0,75	0,75	100	250	250	200	600
1200	0,75	1,25	1,25	250	425	425	375	1200
1800	1,00	1,75	2,00	350	600	650	525	1800
2400	1,75	2,75	2,75	600	850	850	775	2400
3000	2,50	3,50	3,50	800	1000	1000	925	3000
3600	3,25	4,25	4,50	975	1200	1250	1150	3600
4200	4,00	5,00	5,25	1125	1375	1425	1300	4200
4800	5,00	5,75	6,00	1375	1525	1600	1500	4800
5400	6,00	6,50	6,75	1600	1700	1750	1675	5400
6000	7,00	7,50	7,75	1800	1900	1950	1875	6000
6600	8,00	8,25	8,50	2000	2050	2100	2050	6600
7200	9,00	9,50	9,75	2200	2300	2350	2275	7200
6600	8,50	8,75	9,00	2100	2150	2200	2150	6600
6000	8,50	8,75	8,75	2100	2150	2150	2125	6000
5400	8,00	7,75	8,00	2000	1950	2000	1975	5400
4800	7,75	7,50	7,75	1950	1900	1950	1925	4800
4200	6,75	6,50	6,75	1750	1700	1750	1725	4200
3600	6,25.	6,00	6,00	1650	1600	1600	1625	3600
3000	5,50	5,25	5,25	1475	1425	1425	1450	3000
2400	4,75	4,25	4,50	1300	1200	1250	1250	2400
1800	4,00	3,50	3,75	1125	1000	1100	1075	1800
1200	3,00	2,50	2,75	900	775	850	850	1200
600	1,75	1,25	1,50	600	425	525	525	600
0	0,75	0,25	0,25	250	100	100	150	0

Wielkość parcia bocznego piaskowca. Próbka 5

Rys. XXI Wykres parcia bocznego w zależności od nacisku osiowego dla piaskowców. Próbka 5

-132-

Tablica XXII

Wielkość	parcia	bocznego	piaskowca.	Próbka 6
----------	--------	----------	------------	----------

		α			P _x	2		
Pz	α1	α₂	α3	Pxy	Р _{х 2}	P _{x3}	P _X	Pz
10 ⁵ Nm ⁻²	mm	mm	mm	10 ⁶ Nm ²	10 ⁵ Nm ²	10 ⁵ Nm ⁻¹	10 ⁵ Nm ⁻²	10°Nm^2
0	0,00	0,00	0,00	0	0	0	0	0
600	0,00	0,25	0,25	0	100	100	75	600
1200	0,25	0,75	0,75	100	250	250	200	1200
1800	0,50	1,25	1,25	175	425	425	350	1800
2400	0,75	1,75	1,75	250	600	600	475	2400
3000	1,50	2,75	2,50	525	850	775	725	3000
3600	2,00	3,50	3,50	650	1000	1000	875	3600
4200	2,75	4,00	4,00	850	1125	1125	1025	4200
4800	3,50	4,75	4,75	1000	1300	1300	1200	4800
5400	4,50	6,50	6,50	1250	1475	1475	1400	5400
6000	5,75	5,50	5,50	1525	1700	1700	1650	6000
6600	7,00	7,25	7,25	1800	1850	1850	1825	6600
7200	8,25	7,75	7,75	2050	1950	1950	1975	7200
6600	8,00	7,50	7,25	2000	1900	1850	1925	6600
6000	7,75	7,25	7,00	1950	1850	1800	1875	6000
5400	7,25	6,75	6,50	1850	1750	1700	1775	5400
4800	6,50	6,25	6,00	1700	1650	1600	1650	4800
4200	6,00	5,50	5,25	1600	1475	1425	1500	4200
3600	5,25	5,00	4,75	1425	1375	1300	1375	3600
3000	4,75	4,25	4,25	1300	1200	1200	1225	3000
2400	4,00	3,50	4,25	1125	1000	950	1025	2400
1800	3,00	2,75	2,50	900	850	775	850	1800
1200	2,50	1,75	1,75	775	600	600	650	1200
600	1,50	0,75	0,75	525	250	250	350	600
0	0,75	0,25	0,00	250	100	0	125	0

Rys. XXII Wykres parcia bocznego w zależności od nacisku osiowego dla piaskowców. Próbka 6

-154-

Tablica XXIII

.

Wielkość parcia bocznego piaskowca. Próbka 7

		α			P _z			
Ϋ́z	α1	α.2	α3	Px	P _{X 2}	Px3	$\overline{p_{\mathbf{X}}}$	^p z.
10 ⁰ Nm ⁻²	mm	mm	mm	10 ⁵ Nm ²	10°Nm	10 ⁵ Nm ³	10 ⁵ Nm ³	10°Nm ²
0	0,00	0,00	0,00	0	. 0	0	0	0
600	0,25	0,75	0,50	100	250	175	175	600
1200	0,25	1,00	1,00	100	350	350	275	1200
1800	0,50	1,50	1,50	175	500	500	400	1800
2400	0,75	2,00	2,00	250	650	650	525	2400
3000	1,25	2,75	2,75	425	850	850	700	3000
3600	1,75	3,50	3,50	600	1000	1000	875	3600
4200	2,50	4,25	4,25	775	1200	1200	1050	4200
4800	3,25	5,00	5,25	950	1375	1425	1250	4800
5400	4,25	5,75	6,00	1200	1525	1600	1450	5400
6000	5,25	6,75	6,75	1425	1750	1750	1650	6000
6600	6,25	7,25	7,50	1650	1850	1900	1800	6600
7200	7,25	8,00	8,00	1850	2000	2000 -	1950	7200
6600	6,75	.7,75	7,75	1750	1950	1950	1900	6600
6000	6,50	7,50	7,50	1700	1900	1900 ·	1850	6000
5400	6,25	6,75	7,00	1650	1750	1800	1750	5400
4800	5,75	6,25	6,25	1525	1650	1650	1600	4800
4200	5,25	5,50	5,75	1425	1475	1575	1500	4200
3600	4,50	5,00	5,00	1250	1375	1375	1275	3600
3000	3,75	4,25	4,25	1075	1200	1200	1150	3000
2400	2,75	3,25	3,25	850	950	950	925	2400
1800	2,25	2,50	2,50	700	775	775	750	1800
1200	1,50	1,75	1,75	500	600	600	575	1200
600	0,75	0,75	1,00	250	250	350	300	600
0	0,25	0,25	0,25	100	100	100	100	0

Rys. XXIII Wykres parcia bocznego w zależności od nacisku osiowego dla piaskowców. Próbka 7

-136-

Ta	blica	XXIV

Wielkość	parcia	bocznego	piaskowca.	Próbka	8

	D		α			P	x		P.,
	۶Z	α1	α2	α3	Р _{х1}	P _{x 2}	Px3	Px	Z
	10 [°] Nm ²	mm	mm	mm	10°Nm ⁻²	10° Nm 2	10 ⁵ Nm ²	105Nm 2	10 Nm ²
	0	0,00	0,00	0,00	0	0	0	0	0
	600	0,25	0,00	0,00	100	0	0	50	600
	1200	0,25	0,25	0,25	100	100	100	100	1200
	1800	0,25	0,75	0,75	100	250	250	200	1800
	2400	0,50	1,25	1,50	175	425	500	375	2400
	3000	1,00	2,00	2,25	350	650	700	575	3000
	3600	1,75	2,75	3,00	600	850	900	775	.3600
	4,200	2,50	3,75	3,75	775	1075	1075	975	4200
_	4800	3,50	4,75	4,75	1000	1300	1300	1200	4800
	5400	4,50	5,50	5,50	1275	1475	1475	1400	5400
	6000	5,50	6,50	6,50	1475	1700	1700	1625	6000
	6600	6,75	7,50	7,25	1750	1900	1850	1825	6600
	7200	7,75	8,25	7,75	1950	2050	1950	1975	7200
	6600	7,25	7,75	7,50	1850	1950	1900	1900	6500
	6000	6,50	7,50	7,00	1700	1900	1800	1800	6000
	5400	5,75	6,75	6,50	1525	1750	1700	1650	5400
	4800	5,25	6,00	5,75	1425	1600	1525	1525	2800
-	4200	4,50	5,25	5,00	1250	1425	1375	1350	4200
	3600	3,75	4,50	4,25	1075	1275	1200	1175	3600
	3000	3,00	3,50	3,50	900	1000	1000	975	3000
	2400	2,25	2,75	2,50	700	850	775	700	2400
-	1800	1,50	2,00	1,75	500	650	600	575	1800
	1200	0,75	1,00	1,00	250	350	350	325	1200
	600	0,25	0,50	0,25	100	175	100	125	600
	0	0,25	0,25	0,00	100	100	0	75	0

Rys. XXIV Wykres parcia bocznego w zależności od nacisku osiowego dla piaskowców. Próbka 8

-138-

Tablica XXV

		α			P _x			
Pz	α1	α2	α3	P _{x1}	Px2	Pxs	Px	Pz
10°Nm ⁻²	mm	mm	mm	10 ⁶ Nm ⁻⁹	10 ⁶ Nm ⁻²	10 ⁶ Nm ⁻²	10 ⁶ Nm ²	10^{7} Nm ²
0	0,00	0,00	0,00	0	0	0	0	0
600	0,50	0,50	0,75	25	25	50	50	600
1200	1,25	1,00	1,50	100	75	150	75	1200
1800	2,00	1,75	2,00	200	175	200	200	1800
2400	3,00	2,75	2,75	275	300	300	300	2400
3000	3,75	3,50	3,50	425	400	400	400	3000
3600	4,75	4,50	4,50	550	525	525	525	3600
4200	5,75	5,25	5,50	675	625	650	650	4200
4800	6,75	6,25	6,50	800	750	775	775	4800
5400	7,75	7,25	7,50	950	875	900	900	5400
6000	8,75	8,75	8,50	1050	1050	1025	1025	6000
6600	10,25	9,75	10,00	1250	1200	1225	1225	6600
7200	11,75	10,75	11,00	1450	1325	1350	1375	7200
6600	10,75	10,00	10,00	1325	1225	1225	1250	6600
6000	9,75	9,25	9,25	1200	1125	1125	1150	6000
5400	9,25	8,50	8,50	1125	1025	1025	1050	5400
4800	8,50	7,50	7,50	1025	900	900	950	4800
4200	7,75	6,50	6,50	950	775	775	850	4200
3600	6,75	5,50	5,75	800	650	675	700	3600
3000	5,75	4,75	4,75	575	550	550	600	3000
2400	5,00	3,75	4,00	600	425	475	500	2400
1800	4,25	3,00	3,00	500	275	275	350	1800
1200	3,25	2,00	2,25	350	200	250	275	1200
600	2,25	1,00	1,00	250	75	75	125	600
0	1,25	0,25	0,00	100	0	0	50	0

Wielkość parcia bocznego granitu. Próbka 1

Rys. XXV Wykres parcia bocznego w zależności od nacisku osiowego dla granitu. Próbka 1

Tablica XXVI

		α			P _x			
P _z	α1	α2	α,	P _{X1}	P _{X2}	P _{x3}	^p χ	P _z
10°Nm ⁻²	mm	mm	mm	10 ⁵ Nm ²	10 ⁵ Nm ⁻²	10 ⁵ Nm ⁻²	10 ⁵ Nm ²	10 [°] Nm ²
0	0,00	0,00	0,00	0,00	0	0	0	0
600	0,50	0,75	0,50	175	250	175	200	600
1200	0,75	1,00	1,00	250	325	325	300	1200
1800	1,00	1,50	1,50	325	500	500	450	1800
2400	1,50	1,75	2,00	500	600	650	600	2400
3000	2,00	2,50	2,50	650	775	775	750	3000
3600	2,50	3,00	3,00	775	900	900	850	3600
4200	3,25	3,50	3,75	975	1000	1100	1025	4200
4800	4,00	4,25	4,50	1150	1200	1275	1200	4800
5400	4,50	5,00	5,00	1275	1375	1375	1350	5400
6000	5,50	5,75	5,75	1475	1525	1525	1500	6000
6600	6,25	6,25	6,50	1625	1625	1700	1650	6600
7200	7,00	7,00	7,00	1800	1800	1800	1800	7200
6600	6,50	6,50	6,50	1700	1700	1700	1700	6500
6000	6,25	6,00	6,00	1625	1500	1600	1600	6000
5400	5,50	5,25	5,50	1475	1425	1475	1450	5400
4800	5,00	4,75	4,75	1375	1325	1325	1350	4800
4200	4,25	4,25	4,25	1200	1200	1200	1200	4200
3600	3,75	3,50	3,75	1100	1000	1100	1100	3600
3000	3,25	3,00	3,25	975	900	975	950	3000
2400	2,75	2,50	2,75	850	775	850	825	2400
1800	2,25	2,00	2,00	700	650	650	675	1800
1200	1,50	1,50	1,50	500	500	500	500	1200
600	1,00	0,75	1,00	325	250	325	300	600
0	0,25	0,00	0,25	100	0	100	75	0

ŧ

Wielkość parcia bocznego granitu. Próbka 2

Rys. XXVI Wykres parcia bocznego w zależności od nacisku osiowego dla granitu. Próbka 2

-142-

Tablica XXVII

		α			P _x			
Pz	α1	αz	α3	Px1	P _{x2}	P _{X3}	P _x	P _z
10 ⁻ Nm ⁻²	mm	mm	mm	10 ⁵ Nm ⁻²	10 ⁵ Nm ²	10^{3} Nm ⁻²	$10^{5} Nm^{-2}$	10 ⁵ Nm ²
0	0,00	0,00	0,00	0	0	0	0	0
600	0,25	0,50	0,50	100	175	175	150	600
1200	0,50	0,50	0,75	175	175	250	200	1200
1800	1,00	1,25	1,25	325	425	425	400	1800
2400	1,50	1,50	1,75	500	500	600	525	2400
3000	2,00	2,25	2,25	650	700	700	675	3000
3600	2,50	2,75	2,75	775	850	850	825	3600
4200	3,25	3,50	3,50	975	1000	1000	1000	4200
4800	3,75	4,00	4,00	1100	1150	1150	1125	4800
5400	4,50	4,50	4,50	1275	1275	1275	1275	5400
6000	5,25	5,25	5,25	1425	1425	1425	1425	6000
6600	6,00	6,00	6,00	1600	1600	1600	1600	6600
7200	6,75	6,75	6,50	1750	1750	1700	1725	7200
6600	6,25	6,25	6,00	1625	1625	1600	1625	6600
6000	5,75	5,50	5,50	1525	1475	1475	1500	6000
5400	5,25	/ 5,00	5,00	1425	1375	1375	1400	5400
4800	4,50	4,50	4,50	1275	1275	1275	1275	4800
4200	4,00	4,00	3,75	1150	1150	1100	1125	4200
3600	5,50	3,25	3,25	1000	975	975	975	3600
3000	2,75	2,75	2,75	850	850	850	850	3000
2400	2,25	2,25	2,25	700	700	700	700	2400
1800	1,75	1,75	1,75	600	600	600	600	1800
1200	1,25	1,00	1,00	425	325	325	350	1200
600	0,50	0,50	0,50	175	175	175	175	600
0	0,25	0,00	0,00	100	0	0	50	0

-143-

Wielkość parcia bocznego granitu. Próbka 3

Rys. XXVII Wykres parcia bocznego w zależności od nacisku osiowego dla granitu. Próbka 3

-144-

Tablica XXVIII

Wielkość parcia bocznego granitu. Próbka 4

		α							
Pz	α1	α2	α3	P _{x1}	P _{x2}	Px 3	Px	Pz	
10°Nm ⁻²	mm •	mm	mm	10 ⁵ Nm ⁻²	10 ⁵ Nm ²	10 ⁵ Nm ⁻²	10 ⁵ Nm ⁻²	10 ⁵ Nm ⁻²	
0	0,00	0,00	0,00	0	0	0	0	0	
600	0,25	0,00	0,00	100	0	0	25	600	
1200	0,50	0,25	-0,25	175	100	100	125	1200	
1800	0,75	0,50	0,50	250	175	175	200	1800	
2400	1,00	1,00	1,00	325	325	325	325	2400	
3000	1,50	1,50	1,50	500	500	500	500	3000	
3600	2,25	2,75	2,00	700	850	650	750	3600	
4200	2,75	2,75	2,50	850	850	775	825	4200	
4800	3,75	3,25	3,25	1100	975	975	1025	4800	
5400	4,25	4,00	3,75	1200	1150	1100	1150	5400	
6000	5,00	4,75	4,50	1375	1325	1275	1325	6000	
6600	5,75	5,50	5,50	1525	1475	1475	1500	6600	
7200	6,75	6,50	6,50	1725	1700	1700	1700	7200	
6600	6,00	5,75	5,50	1600	1525	1475	1550	6600	
6000	5,00	4,75	4,75	1375	1325	1325	1350	6000	
5400	4,25	4,25	4,00	1200	1200	1150	1175	5400	
4800	3,75	3,50	3,50	1100	1000	1000	1025	4800	
4200	3,25	3,00	3,00	975	900	900	925	4200	
3600	2,50	2,50	2,50	775	775	775	775	3600	
3000	2,00	2,00	1,75	650	650	600	650	3000	
2400	1,50	1,50	1,25	500	500	425	475	2400	
1800	1,50	1,00	0,75	500	325	250	350	1800	
1200	0,75	0,50	0,50	250	175	175	200	1200	
600	0,75	0,25	0,25	250	250	100	100	600	
0	0,25	0,00	0,00	100	0	0	25	0	

Rys. XXVIII Wykres parcia bocznego w zależności od nacisku osiowego dla granitu. Próbka 4

-146-

kys. XXIX Wykres parcia bocznego w zależności od nacisku osiowego dla granitu. Próbka 5

-147-

Tablica XXIX

		α			D				
Ϋ́z	α.1	αε	α	Px.	Px2	P _{x3}	Px	- 2	
10 ⁵ Nm ⁻²	mm	mm	mm	10 ⁶ Nm ⁻²	10 ⁵ Nm ²	10 ⁵ Nm ⁻²	10 ⁵ Nm ²	10 [°] Nm ²	
0	0,00	0,00	0,00	0	0	0	0	0	
600	0,25	0,50	0,50	100	175	175	150	600	
1200	0,50	0,50	0,50	175	175	175	175	1200	
1800	0,75	1,00	0,50	250	325	175	250	1800	
2400	1,25	. 1,25	1,25	425	425	425	425	2400	
3000	1,75	1,75	1,50	600	600	500	550	3000	
3600	2,25	2,25	2,25	700	700	700	700	3600	
4200	2,25	3,00	2,75	700	900	850	825	4200	
4800	3,25	3,50	3,50	975	1000	1000	1000	4800	
5400	4,00	4,00	4,00	1150	1150	1150	1150	5400	
6000	4,50	4,75	4,50	1275	1325	1275	1300	6000	
6600	5,25	5,25	5,25	1425	1425	1425	1425	6600	
7200	5,75	5,75	6,00	1525	1525	1600	1550	7200	
6600	5,50	5,50	5,50	1475	1475	1475	1475	6600	
6000	5,00	5,00	5,00	1375	1375	1375	1375	6000	
5400	4,25	4,25	4,25	1200	1200	1200	1200	5400	
4800	4,00	4,00	3,75	1150	1150	1100	1150	4800	
4200	3,50	3,50	3,25	1000	1000	975	1000	4200	
3600	3,00	3,00	2,75	900	900	850	900	3600	
3000	2,50	2,25	2,00	775	700	650	700	3000	
2400	2,00	1,75	1,50	650	600	500	600	2400	
1800	1,50	1,50	1,00	500	500	325	450	1800	
1200	1,00	1,00	0,75	325	325	250	300	1200	
600	0,75	0,50	0,25	250	175	100	175	600	
0	0,25	0,25	0,00	100	100	0	75	0	

Wielkość parcia bocznego granitu. Próbka 5

(L'A

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

ukazują się w następujących seriach:

- Α. Αυτοματγκα
- **B. BUDOWNICTWO**
- Ch. CHEMIA
- E. ELEKTRYKA
- En. ENERGETYKA
- G. GÓRNICTWO
- IS. INŻYNIERIA SANITARNA
- JO. JĘZYKI OBCE
- MF. MATEMATYKA-FIZYKA
 - M. MECHANIKA
- NS. NAUKI SPOŁECZNE

Dotychczas ukazały się następujące zeszyty serii G:

Górnictwo	z.	1,	1956	r.,	s.	134,	zł	20,—	Górnictwo	z.	25,	1967	r	s.	96,	zł	5,—
Górnictwo	z.	2,	1959	r.,	s.	96,	zł	17,10	Górnictwo	z.	26,	1968	r.,	s.	137,	zł	10,—
Górnictwo	z.	3,	1961	r.,	s.	130,	zł	21,—	Górnictwo	z.	27,	1967	r.,	s.	378,	zł	24,—
Górnictwo	z.	4,	1962	r.,	s.	134,	zł	10,95	Górnictwo	Ζ.	28,	19€8	r.,	s.	185,	zł	11,
Górnictwo	z.	5,	1963	r.,	s.	158,	zł	11,90	Górnictwo	z.	29,	1968	r.,	s.	161,	zł	9,—
Górnictwo	z.	6,	1963	r.,	s.	154,	zł	8,50	Górnictwo	z.	30,	1968	r.,	s.	237.	zł	14,—
Górnictwo	z.	7,	1963	r.,	s.	129,	zł	6,80	Górnictwo	z.	31,	1968	r.,	s.	119,	zł	8,
Górnictwo	z.	8,	1964	r.,	s.	175,	zł	10,20	Górnictwo	z.	32,	1968	r.,	s.	97,	zł	6,
Górnictwo	z.	9,	1964	r.,	s.	133,	zł	10,50	Górnictwo	z.	33,	1968	r.,	s.	113,	zł	6,—
Górnictwo	z.	10,	1964	r.,	s.	157,	zł	8,75	Górnictwo	z.	34,	19 €8	r.,	s.	111,	zł	7.—
Górnictwo	z.	11,	1964	r.,	s.	221,	zł	13,10	Górnictwo	z.	25,	1968	r.,	s.	143.		
Górnictwo	z.	12,	1964	r.,	s.	304,	zł	15,20	Górnictwo	z.	36,	1969	r.,	s.	243.	zł	13,50
Górnictwo	z.	13,	1965	r.,	s.	145,	zł	8,40	Górnictwo	z.	37,	1969	r.,	s.	234,	zł	14,—
Górnictwo	z.	14,	1965	r.,	s.	78,	zł	5,	Górnictwo	z.	38,	1969	r.,	s.	167,	zł	10,—
Górnictwo	z.	15,	1966	r.,	s.	79,	zł	5,—	Górnictwo	z.	39,	1969	r.,	s.	76,	zł	4,50
Górnictwo	z.	16,	1966	r.,	s.	91,	zł	7,—	Górnictwo	z.	40,	1969	r.,	s.	107,	zł	7,—
Górnictwo	z.	17,	1966	r.,	s.	113,	zł	8,—	Górnictwo	z.	41,	1969	r.,	s.	642,	zł	42,—
Górnictwo	z.	18,	1966	r.,	s.	291,	zł	16,—	Górnictwo	z.	42,	1970	r.,	s.	84,	zł	5,—
Górnictwo	z.	19,	1966	r.,	s.	150,	zł	11,—	Górnictwo	z.	43,	1970	r,	s.	58,	zł	5,—
Górnictwo	z.	20,	1966	r.,	s.	84,	zł	5.—	Górnictwo	z.	44.	1971	r.,	s.	199,	zł	16,50
Górnictwo	Ζ.	21,	1967	r.,	s.	270,	zł	17,—	Górnictwo	z.	45,	1971	r.,	s.	73,	zł	5,
Górnictwo	z.	22,	1967	r.,	s.	196,	zł	12,—	Górnictwo	z.	46,	1971	r.,	s.	63,	zł	4,50
Górnictwo	z.	23,	1967	r.,	s.	69,	zł	4,—	Górnictwo	z.	47,	1971	r.,	s.	67.	zł	6,—

