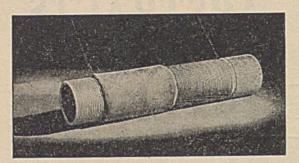
BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

FEBRUARY, 1944

A II—ORGANIC CHEMISTRY

CONTENTS


ı, Aliphatic	PACE 29		FAGE 53
II, Sugars and Glucosides	37	vii, Alkaloids	62
III, Homocyclic	40	viii, Organo-metallic Compounds	65
iv, Sterols and Steroid Sap	ogenins 49	ıx, Proteins	67
v, Terpenes and Triterpen	oid Sapogenins 52	x, Miscellaneous Unclassifiable Substances	68

Published by the

BUREAU OF CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

(Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, the Anatomical Society of Great Britain and Ireland, and the Society for Experimental Biology.)

REFRACTORY INSULATING CEMENTS

of Fused ALUMINA and MAGNESIA for furnace work of all kinds are available to replace materials formerly imported. Appropriate grades are supplied for use with base, noble or refractory metal electric heating elements, and in contact with VITREOSIL, ALUMINA or metal surfaces.

THE THERMAL SYNDICATE LTD.

Head Office: Wallsend, Northumberland

London Depot: 12-14 Old Pye Street, Westminster, S.W.I ESTABLISHED OVER 40 YEARS.

NOW IN PRINT

3rd Edition

'ANALAR' STANDARDS

LABORATORY CHEMICALS

Containing the published specifications of over 200 Laboratory Chemicals with maximum limits of impurities.

250 pages Demy 8vo.

Per copy Postage Extra.

Orders will be dispatched as soon as received from the Printers.

HOPKIN & WILLIAMS LTD.

Makers of Fine Chemicals, Reagents, etc.

16-17 ST. CROSS STREET, LONDON, E.C.I

BUREAU OF CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

Chairman: L. H. LAMPITT, D.Sc., F.I.C.

Editor and Secretary: T. F. BURTON, B.Sc.

Hon. Treasurer: F. P. DUNN, B.Sc., F.I.C.

Indexer: MARGARET LE PLA, B.Sc.

JULIAN L. BAKER, F.I.C.

G. L. BROWN, M.Sc., M.B., Ch.B.

H. W. CREMER, M.Sc., F.I.C., M.I.Chem.E.

C. W. DAVIES, D.Sc., F.I.C.

H. J. T. ELLINGHAM, B.Sc., Ph.D., F.I.C.

E. B. HUGHES, D.Sc., F.I.C.

F. G. YOUNG, D.Sc., Ph.D.

L. A. JORDAN, D.Sc., F.I.C.

G. A. R. KON, M.A., D.Sc., F.R.S.

B. A. McSWINEY, B.A., M.B., Sc.D.

Assistant Editors :

J. H. BIRKINSHAW, D.Sc., F.I.C.* H. BURTON, M.Sc., D.Sc., F.I.C.

F. G. CROSSE, F.I.C.

A. A. ELDRIDGE, B.Sc., F.I.C. E. B. HUGHES, D.Sc., F.I.C.

W. JEVONS, D.Sc., Ph.D.†

SAMSON WRIGHT, M.D., F.R.C.P.*

E. E. TURNER, M.A., D.Sc., F.I.C., F.R.S.

F. L. USHER, D.Sc.

H. WREN, M.A., D.Sc., Ph.D.

* Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Biochemistry), A. G. POLLARD (Plant Physiology and Agriculture), K. TANSLEY (Sense Organs), L. G. G. WARNE (Plant Physiology), G. P. WELLS (Comparative Physiology), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands).

† Assisted by A. E. J. WELCH (Physical Chemistry).

PUBLICATIONS OF THE BUREAU

ABSTRACTS SECTIONS

A I-GENERAL, PHYSICAL AND INORGANIC CHEMISTRY.

A II-ORGANIC CHEMISTRY.

A III-PHYSIOLOGY, BIOCHEMISTRY, ANATOMY.

B I-CHEMICAL ENGINEERING AND INDUSTRIAL INORGANIC CHEMISTRY.

B II-INDUSTRIAL ORGANIC CHEMISTRY.

BIII-AGRICULTURE, FOODS, SANITATION, ETC.

C-ANALYSIS AND APPARATUS.

COLLECTIVE INDEXES

DECENNIAL INDEX 1923-1932.

QUINQUENNIAL INDEX 1933-1937.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II—Organic Chemistry.

FEBRUARY, 1944.

I.—ALIPHATIC.

Isomorphous replaceability of bivalent atoms and ψ -atoms in organic compounds. A. Lüttringhaus (Ber., 1940, 73, [B], 1022—1023).—A reply to Bruni (A., 1943, II, 308). Valency angles are

Behaviour of the free *n*-propyl radical. G. Semerano, L. Riccoboni, and L. Götz (Z. Elektrochem., 1941, 47, 484—486).—From the amounts of C_3H_6 and C_3H_8 produced by the thermal decomp. of AgPra it is concluded that ~77% of the Pra radicals initially formed disproportionate to C_3H_6 and C_3H_8 and the remainder dimerise to n-C₆H₁₄.

Optical rotation and atomic dimension. The four optically active Optical rotation and atomic dimension. The four optically active β -halogenopentanes. D. H. Brauns (J. Res. Nat. Bur. Stand., 1943, 31, 83—106).—The enantiomorphic modifications of pentan- β -ol (I) have been prepared in the pure state and the laworotatory isomeride has been converted into dextrorotatory β -Cl-, -Br-, and -I-derivatives. Laworotatory β -CHMePraF is obtained from the dextrorotatory β -bromo- or -iodo-pentane and AgF. The derivatives obtained by halogenation of the alcohol with PHal₃ have higher [a] than those obtained by use of HHal. The purity of the Cl-, Br-, and I-derivatives is \sim 70—80%; the optical purity of the F-derivative, the prep. of which involves another Walden inversion, is less. The relative amounts of the isomeric modifications are deteris less. The relative amounts of the isomeric modifications are determined by the purity of the alcohol obtained by hydrolysis and the relative optical rotations of the pure F-, Cl-, Br-, and I-derivatives are calc. All halogen derivatives of (I) of like configuration have the same sign of optical rotation. The difficulty of obtaining optically pure compounds on account of incomplete Walden inversion (partial racemisation) prevents an adequate check of the rule according to which for compounds in which the halogen is directly attached to the asymmetric C the differences of sp. rotations of the d- or l-compounds (Cl - F), (Br - Cl), and (I - Br) have the same numerical relation as the differences of the respective at radii of the neutral halogen atoms. The experimental data, however, in no manner contradict the rule, the deviations which are observed being plausibly explained by the incompleteness of the Walden inversion.

inversion.

H. W.

Hydrogenation of the triple linking. A. L. Henne and K. W.

Greenlee (J. Amer. Chem. Soc., 1943, 65, 2020—2023).—CH:CAlk in liquid NH₃ are quantitatively reduced to trans-olefines by Na and (NH₄)₂SO₄ (insol. in liquid NH₃); NH₄Cl, which is sol. in liquid NH₃, gives inefficient reduction; thus, H generated from an acetylene is more efficient than H generated from NH₄; the function of the NH₄ salt is to regenerate the acetylene from its Na derivative. Reduction of CAlk:CAlk' by Na and NH₄ salts is inefficient, some H₂ escaping and an excess of Na being consumed; the Na probably adds to the C.C. Catalytic hydrogenation of acetylenes to olefines is best effected by Ni-kieselguhr in EtOH at 30—80°/3 atm.; it yields mainly cis-olefines (cf. Campbell et al., A., 1941, II, 216; 1942, II, 71). The following are prepared: Δα-, m.p. –102·56°, b.p. 121·37°, trans-Δβ-, f.p. –87·8°, b.p. 124·94°, trans-Δγ-, f.p. –110·05°, b.p. 123·29°, and trans-Δδ-, f.p. –93·80°, b.p. 122·37°, ''cis''-Δβ-, f.p. –100·5°, b.p. 125·62°, ''cis''-Δγ-, f.p. –137° to –138°, b.p. 122·7°, and ''cis''-Δβ-n-octene, f.p. –120·2°, b.p. 122·8°; ''cis''-Δβ-, f.p. –141·4°, and -Δγ-n-hexene, f.p. –143·3°; ''cis''-Δβ-n-decene, f.p. –112·8°. With Na and (NH₄)₂SO₄ in NH₃, [CH₂]₃(CCCH)₂ and [CH₂]₃(CCMe)₂ give Δα-heptadiene, f.p. –129·35°, b.p. 90·01°, and impure trans-trans-Δβ-n-nonadiene (I), f.p. –76·2°, b.p. 150·3°. Catalytic hydrogenation gives impure cis-cis-Δβ-n-nonadiene, a glass, b.p. 151·0°. R. S. C.

Substituted acetylenes and their derivatives. XLVI. Form-

Substituted acetylenes and their derivatives. XLVI. Formaldehyde derivatives of acetylenic hydrocarbons. G. F. Hennion and E. P. Bell (J. Amer. Chem. Soc., 1943, 65, 1847—1848; cf. A., 1942, II, 327).—Adding RCO₂·CH₂Cl to finely dispersed CR^{*}CNa (prep. in situ described) in C₆H₆-N₂ and then boiling gives Δβ-nheptinenyt acetate (16%), b.p. 82—83°/7 mm., propionate (21%), b.p. 70—71°/4 mm., and benzoate (10%), b.p. 160—162°/2 mm., and n-C₅H₁₁·CC·CH₂·OAc (10%), b.p. 79—81°/6 mm.; coating of the CR^{*}CNa with NaCl prevents more than initial reaction. CH₂Cl·OAc does not react with CH*CNa in Et.O or C.H.: CBu²-CNa cannot be does not react with CH:CNa in Et2O or C6H6; CBuc CNa cannot be B (A., 11.)

obtained sufficiently fine in Et₂O to react. CH₂Cl-OR and CBu^a; C·MgBr in Et₂O give Me (42%), b.p. $80-81^{\circ}/29$ mm., Et (27%), b.p. $77-78^{\circ}/20$ mm., and Pr^{a} Δ^{β} -n-heptinenyl ether (34%), b.p. $60-62^{\circ}/6$ mm.; (CH₂Cl)₂O in presence of a little CuCl gives di- Δ^{β} -n-heptinenyl ether (21%), b.p. $140-142^{\circ}/6$ mm. CH₂Br₂ does not react with CBu^a; CNa in liquid NH₃ (gives much tar) or CBu^a; C·MgBr in Et₂O. CH₂:SO₄, CBu^a; C·MgBr, and a trace of CuCl in boiling Et₂O give $\Delta^{\epsilon\theta}$ -n-tridecadi-inene (13%), b.p. $108-110^{\circ}/8$ mm. d, n, and [M] are given for the products. R. S. C.

Radioactive exchange and adsorption of methyl bromide with several inorganic bromides.—See A., 1944, I, 42.

βββ-Trifluoroethyl iodide. H. Gilman and R. G. Jones (f. Amer. Chem. Soc., 1943, 65, 2037—2038).— CF_3 ·CHN $_2$ with HI-PhMe at -75° gives βββ-trifluoroethyl iodide (I) (77%), b.p. $54\cdot5-55^\circ$ /730 mm., obtained only in 4-5% yield from CF_3 ·CH $_2$ ·OH by I-P. With Mg in Et_2O-N_2 , (I) gives no Grignard reagent (Michler's ketone test) but instead CH_2 ·CF $_2$, b.p. 91°/740 mm. R. S. C.

Electrolysis of the nitroparaffins. R. Pearson and W. V. Evans (Trans. Electrochem. Soc., 1943, 84, Preprint 21, 227—231).— Electrolysis of MeNO₂ containing 1% of NMe₃ between Pt electrodes at 15° with c.d. 0·8—2·4 amp. per dm.² gives at the cathode NHMe·OH (oxalate, m.p. 157—158°; sulphate, m.p. 129°) in 53% yield and at the anode NO₂·[CH₂]₂·OH, b.p. 191·5°, in 25% yield, identified further by reduction to NH₂·[CH₂]₂·OH; NO, NH₂OH, and some CH₂·N·OH are also obtained. Under similar conditions EtNO₂ affords NHEt·OH (oxalate, m.p. 95—96°) in 40% yield and NO₂·[CHMe]₂·OH in 25% yield with some NH₂OH and apparently CHMe·N·OH. In aq. alkali NH₂OH does not result and the solution contains NO₃' but not NO₂'; O₂ is evolved at the anode. PrβNO₂ and NMe₃ give a green solution probably containing NO·CMe₂·NO₂; on electrolysis NHPrβ·OH is formed at the cathode and COMe₂ at the anode with a residue of high b.p. In presence of NaOH there is no anode with a residue of high b.p. In presence of NaOH there is no production of NH₂OH but there is a 15% yield of dinitro- $\beta\gamma$ -dimethylbutane which causes partial polarisation of the anode, at which O, is evolved.

Anode reactions in the electrolysis of ethyl alcohol.—See A., 1944, I, 43.

Catalytic dehydrogenation. I. Catalytic conversion of alcohols into aldehydes, paraffins, and olefines. E. J. Badin (J. Amer. Chem. Soc., 1943, 65, 1809—1813).—Catalytic changes of n-C_xH_{2x+}·OH (x = 5, 8, 9, 10, and 16) in presence of Raney Ni at $140-275^{\circ}$ are reported. Reactions are successively: loosening of an a-H; R-[CH₂]₃·OH \rightarrow R-[CH₂]₂·CHO + H₂; R-[CH₂]₂·CHO \rightarrow CHR:CH₂ + CO + H₂; C-CH₂ + H₂OH + H₂OH + H₂OH + CHR:CH₂ + CO + H₂; C-CH₂ + CH₂MeR; and, slowly, CO + C-SH₂ + CH₄ + H₂O. At 140° only aldehyde is formed. Max. amounts of aldehyde (measured as 2:4-dinitrophenylhydrazone; probably present largely as acetal) are obtained at 200—215°, of CH₂MeR at 250°, and of olefine at 275°. Temp. is thus the main factor. n-Decaldehyde-2:4-dinitrophenylhydrazone has m.p. 104°.

R. S. C. Reaction between alcohols and metal oxides. E. Berner (5 Nor-diske Kemikermode, 1939, 231—232).—Anhyd. MeOH and CaO give basic Ca methoxide, of very variable composition, which reacts with more MeOH to give Ca(OMe)₂ and H₂O. Sr(OMe)₂ and Ba(OMe)₂ are freely sol. in MeOH at room temp.; their pptn. on heating is due to conversion into an unsolvated modification. PbO and MeOH at room temp. in sunlight or Hg-vapour light give finely-divided Ph. divided Pb; the reaction is quantitatively reversed in darkness.

Leaf alcohol. IV. trans-cis Problem of the leaf alcohol, Δ^{γ} -n-hexen-a-ol. S. Takei, M. Ono, and K. Sinosaki (Ber., 1940, 73, [B], 950—955; cf. A., 1939, III, 536).—H₂-Pd-BaSO₄ converts CEt₂*C·[CH₂]₂·OH (I) in Et₂O at -18° into trans- (II) (96%) (3:5-dinitrobenzoate, m.p. 49°; allophanate, m.p. 146°; anthraquinone-2-carboxylate, m.p. 68°) but in xylene at 100° into cis-CHEt:CH·[CH₂]₂·OH (III) (3:5-dinitrobenzoate, m.p. 28°; allophanate, m.p. 143°; anthraquinone-2-carboxylate, m.p. 50°), and in C₄H₆ at 50° into a mixture (cf. Stoll et al., A., 1939, II, 2). Complete hydrogenation in Et₂O yields n-C₆H₁₃·OH (3:5-dinitrobenzoate, m.p. 59—60°). (II) is identical with the natural product (A., 1938, II, 345). (III) is also obtained from Et₂ sorbate by reduction by Na. The dibromide, b.p. 119—122°/6 mm. (4'-iododi-30) IV. trans-cis Problem of the leaf alcohol, Δ^{γ} -n-

phenylylurethane, m.p. 127°), of (II) with KOH-aq. EtOH in the cold gives C_6H_{10} Br·OH, b.p. 68—69°/3 mm. (allophanate, m.p. 171°), and thence at the b.p. (I), b.p. 69—71°/16 mm. [allophanate (IV), m.p. 187°; 3:5-dinitrobenzoate, m.p. 72°; anthraquinone-2-carboxylate, m.p. 129°] (cf. loc. cit.), regenerated by distilling (IV) + KOH in steam and oxidised by aq. KMnO₄ at 70° to EtCO₂H.

Volatile vegetable compounds. XXV. Presence of Matsutake's alcohol (Δ^a -n-octen- γ -ol) and of 3-methylcyclohexanol in oil of pennyroyal [Mentha puleguim, L.]. Y. R. Naves (Helv. Chim. Acta, 1943, 26, 1992—2001).—Different samples of the oil of Spanish origin which contain piperitenone and n-octan-y-ol also contain octenols. In one such sample d-n-octan-y-ol, Aa-l-n-octen-y-ol, and 3-methylcyclohexanol have been identified; other alcohols are present. dl-n-Octan-γ-yl allophanate, m.p. 155·5—156°, appears new. d-n-Octan-γ-yl allophanate has m.p. 182—182·5°. H. W.

Optically active phytol. P. Karrer, A. Geiger, H. Rentschler, E. Zbinden, and A. Kugler (Helv. Chim. Acta, 1943, 26, 1741—1750).— Zbinden, and A. Kugler (Helv. Chim. Acta, 1943, 26, 1741—1750).— Partly racemised (+)-citronellol (I), b.p. $106-108^{\circ}/12 \text{ mm.}$, $[a]_{D}^{15} + 2\cdot 9^{\circ}$, is hydrogenated (Pt) to (+)-dihydrocitronellol, b.p. $104-107^{\circ}/12 \text{ mm.}$, $[a]_{D}^{15} + 2\cdot 56^{\circ}$, which is converted by PBr₃ at 0° into (-)-dihydrocitronellyl bromide, b.p. $98-100^{\circ}/12 \text{ mm.}$ This is condensed with CHAcNa·CO₂Et to Et (-)-βζ-dimethyloctylaceto-acetate, b.p. $155^{\circ}/12 \text{ mm.}$, $\phi - 1\cdot 6^{\circ}$, hydrolysed by KOH-McOH at room temp. to (+)-hexahydro-ψ-ionone (II), b.p. $122^{\circ}/12 \text{ mm.}$, $[a]_{D}^{15} + 0\cdot 55^{\circ}$, which is purified to optical homogeneity through the semicarbazone, m.p. 95° . (II) and $C_{2}H_{2}$ afford $\gamma\eta\lambda$ -trimethyl- Δ^{a} -dodectinen-γ-ol, b.p. $140-142^{\circ}/13 \text{ mm.}$, $\phi + 0\cdot 82^{\circ}$, converted by partial hydrogenation (Pt or Pd) into $\gamma\eta\lambda$ -trimethyl- Δ^{a} -dodecenyl bromide (which could not be purified), Et $\gamma\eta\lambda$ -trimethyl- $\Delta\beta$ -dodecenylacetoacetate, and (-)- $\zeta\kappa\xi$ -trimethyl- Δ^{c} -pentadecen-β-one (III), b.p. $175-178^{\circ}/11 \text{ mm.}$, $\phi_{D} - 0\cdot 20^{\circ}$. Thus far the compounds contain only one asymmetric C but partial reduction of (III) involves the formation of a second asymmetric centre. Only one (-)- $\zeta\kappa\xi$ -trithe formation of a second asymmetric centre. Only one (-)- $\zeta \kappa \xi$ -tri-methylpeniadecan- β -one, b.p. $168-172^{\circ}/11$ mm., $\phi_D - 0.24^{\circ}$, appears to be formed as judged by the behaviour of the cryst. semicarbazone, m.p. 68° , $[a]_{1}^{16} - 0.35^{\circ}$ in EtOH. Optical homogeneity at $C_{(\zeta)}$ is not regarded as definitely established. Addition of $C_{2}H_{2}$ to the ketone leads to $\gamma \eta \lambda_{0}$ -tetramethyl- λ^{α} -hexadecinen- γ -ol, b.p. $159-164^{\circ}/0.6$ mm., $\phi_{D} - 0.2^{\circ}$, transformed by partial catalytic hydrogenation into $(-1)-\gamma \lambda_{0}$ -tetramethyl- λ^{α} -hexadecen- γ -ol (-1)-jsophytoll, b.p. $136-164^{\circ}/0.6$ (-)- $\gamma\eta$ ho-tetramethyl- Λ^a -hexadecen- γ -ol [(-)-isophytol], b.p. $136-141^{\circ}/0\cdot 1$ mm., $\phi_D - 0\cdot 2^{\circ}$, transformed by PBr₃ into phytyl bromide, converted by KOAc in COMe₂ followed by hydrolysis into (-)-phytol (IV), b.p. $132^{\circ}/0\cdot 02$ mm., ϕ 0·18°. Since the processes involved in the production of (IV) are analogous to those used in the isolation of chlorophyll phytol, the optical inactivity of the latter compound is not due to recemisation during isolation. latter compound is not due to racemisation during isolation. examination of a phytol obtained from stinging nettles has disclosed an optical activity equal in magnitude but opposite in sign to that of (**W**). The reality of the observation is established by ozonisation of the compound to (+)- $\zeta\kappa\dot{\xi}$ -trimethylpentadecan- β -one with $\phi + 0.22^{\circ}$ (synthetic ketone -0.22°). Further the ketone is oxidized (CC) by (-1) and trimethylpridecal axid $+0.2^{\circ}$ (0.24) ised (CrO₃) to (+)- $\gamma\eta\lambda$ -trimethyltridecoic acid, ϕ +0·2-0·24°. An optically active, dextrorotatory phytol, therefore, is sometimes found in the plant of which (IV) may be the optical antipode. Previous observations of optically inactive phytol in plants are due to the natural occurrence of both d- and r-phytol. H. W.

Vitamin- A_2 . P. Karrer and E. Bretscher (*Helv. Chim. Acta*, 1943, 26, 1758—1778).—The unsaponifiable matter of winter trout-liver oil is largely freed from sterols by freezing and purified by repeated on is largely freed from sterols by freezing and purined by repeated chromatography over $Ca(OH)_2$ followed by distillation in a cathoderay vac. The best specimens of vitamin- A_2 thus obtained still contain $\sim 2-3\%$ of -A as judged by the yield of geronic acid after ozonisation. This result invalidates the formulæ for $-A_2$ proposed by Gillam et al. (A., 1938, III, 315) and by Gray (A., 1942, II, 185). The isolation of $COMe_2$ and CH_2O by the ozonisation of $-A_2$ indicates that it may be a mixture of invariance. that it may be a mixture of isomerides, CMe₂:CH·[CH₂]₂·[CMe:CH·CH:CH]₂·CMe:CH·CH₂·OH and CH₂:CMe·[CH₂]₃·[CMe:CH·CH:CH]₂·CMe:CH·CH₂·OH, similar to that occurring in natural citronellal. It is, however, possible that the production of CH₂O is due to an isomerisation within the mol. under the action of O₃ since -A gives the product in smaller amount than -A and nearly equal amounts are derived from carotene and lycopene; in these cases it is undoubtedly due to subsidiary reactions or isomerisations. The constitution of $-A_2$ is confirmed by its hydrogenation to dihydrophytol, isolated as the allophanate, m.p. 73° . The purest specimens of $-A_2$ have $\sim 1/10$ th of the physiological activity of -A; this is due in part to the presence of -A, but it appears that the rat

Derivatives of α-bromo-β-methyl-n-valeric acid. C. D. Hurd and F. W. Cashion (J. Amer. Chem. Soc., 1943, 65, 2037).— CHMcEt·CH₂·CO₂H with red P-Br at 95° gives α-bromo-β-methyln-taleryl bromide (54%), b.p. 98—100°/23 mm., and thence the amide, m.p. 104°, anilide, m.p. 84°, and p-toluidide, m.p. 105°.

H. W.

has a limited capacity to cyclise -A2 to -A.

Course of autoxidation reactions in polyisoprenes and allied compounds. VII. Rearrangement of double linkings during autoxidation. E. H. Farmer, H. P. Koch, and D. A. Sutton (J.C.S., 1943, 541—547; cf. A., 1943, II, 151).—Et linolenate (I) and Me docosahexaenoate (II), both showing unsaturation of the methylene interrupted type, C.C.C.C.C.C.C.C., are shown by spectrographic measurements to develop conjugated-diene and -triene unsaturation during incorporation of mol. O₂. (II) is obtained from glycerides of cod-liver oil, which are converted by MeOH-HCl into Me esters, the C_{23} ester fraction is separated by mol. distillation at $<115^{\circ}$, and after rapid hydrolysis with KOH-MeOH; the K soaps are converted through the free acid into Li soaps, and the purified, more sol., Li soap yields the free acid and thence (II), which is purified by mol. distillation in N2 or high vac.; the yellow colour developed in O2 is removed by chromatographic treatment (A_2O_3) in purified N_2 . (1) absorbs $1\cdot 1\%$ of O_2 in 24 hr., $3\cdot 7\%$ in 48 hr., and 12% in 110 hr.; (II) absorbs $6\cdot 3\%$ in 72 hr., and a second sample, $7\cdot 2\%$ in 24 hr. Extent of double linking displacement is correlated with degree of peroxidation. After incorporation of I mol. of O2, rearrangement of double linkings in (I) has progressed to a stage at which $\sim\!28.5\%$ of ester contains 2 double linkings in conjugation, and 4.5% has 3 conjugated. (II) exhibits a similar rearrangement, as shown by the development of intense absorption in the originally feeble absorbing regions of 2340 and 2700 A. (cf. Triebs, A., 1942, II, 392). Squalene (rectified by mol. distillation at <112°, and purified by chromatographic treatment in N₂) and rubber (purified by fractional dissolution of crepe rubber in petroleum-COMe₂ in N₂) show another type of unsaturation, *C:C-C-C-C:C-C-C-C:C-C, and do not develop conjugated units. No representative increase in absorption of light is noted. Such small increases observed in the spectra of squalene or two of its oxidation products are probably due to small degrees of conjugation or to formation of peroxide groups. Apart from an induction period (no O2 is absorbed in 2 days, but 8.7% is absorbed in 10 days), the result of oxidising (I) at room temp. in complete darkness is the same with regard to efficiency of peroxide formation and extent of double linking rearrangement as that observed in summer daylight. Mechanisms of autoxidative reactions are discussed.

autoxidative reactions are discussed.

Configurative relation between optically active lactic acid and a-hydroxybutyric acid. A. Fredga, M. Tenow, and I. Billström (Arkiv Kemi, Min., Geol., 1943, 16, A, No. 21, 10 pp.).—r- (I), through the brucine salt, gives (—)-a-hydroxybutyric acid (II), m.p. 55—55.5°, [a]_D²⁵—2.5° in H₂O, —4-1° in COMe₂, +1·7° in AcOH, +6·8° in CHCl₃. (I)-aq. NaOH-CS₃, then EtBr, afford ethylcarbothiolon-a-hydroxybutyric acid, SEt·CS·O·CHEt·CO₂Et (III), m.p. 58—59°, resolved into the (+)- (IV), m.p. 31·5—32° (cinchonidine salt, +H₂O), and (—)-acid, m.p. 30·5—31·5° (brucine salt, +3H₂O). The (+)-acid, also obtained from (—)-(I), shows vals. of [a]₂²⁵ +39·2° in C₆H₆, +14·5° in CHCl₃, +6° in AcOH, which are similar to those of SEt·CS·O·CHMe·CO₂H (V). M.p. curves of (+)- and (—)-(II) or (III), r-(III) and r-(II), (+)-(III) and (+)-(V) (eutectic) are shown. The 1: 1 mol. compound, indicated from the curve derived from (+)-(III) and (—)-(V), gives a continuous m.p. curve with r-(V), but with r-(III) affords a eutectic. The steric series (II), (IV), (+)-(V), (+)-OH·CHMe·CO₂H is deduced.

A. T. P.

Irreversible transformation of dehydroascorbic acid.—See A., 1944,

Rearrangement of allyl-type esters of β-keto-acids. W. Kimel and A. C. Cope (J. Amer. Chem. Soc., 1943, 65, 1992—1998).— CH₂Ac·CO·O·CH₂·CH·CH₂ (I) and its derivatives at 250° give Ac·[CH₂]₂·CH·CH₂ etc. and CO₂, reaction proceeding by chelation, migration of allyl etc. to the CH₂ of CO·CH₂·CO with inversion, shift of the ethylenic linking, and finally loss of CO₂. Similar reactions with CH₂Bz·CO·O·CHR·CH·CHR' (R and R' = H or Me) occur even more readily, owing to the superior activating effect of Bz on CH₂. Formation of Ac·[CH₂]₂·CH·CHPh (II) or CH₂Ac·CHPh·CH·CH₃ (III) from CH₂Ac·CO₂Et and CHPh·CH·CH₂·OH (Carroll, A., 1941, II, 310) occurs by re-esterification in presence of the alkaline catalyst, followed by an allylic shift of Ph and the ethylenic linking. CH₂Ac·CO₂Me and CH₂·CH·CH₂·OH give (I) (71%), but the reaction fails with analogous alcohols. The alcohols with diketen and 0.01 fails with analogous alcohols. The alcohols with diketen and 0.01 mol. of NaOAlk at 0—25° give β-methylallyl (IV) (85%), b.p. 95—97°/18 mm., crotyl (V) (83%), b.p. 100—102°/18 mm., ΔΥ-β-butenyl (VI) (89%), b.p. 92—93°/18 mm., cinnamyl (VII) (69%), b.p. 101—104°/0.025 mm., a-phenylpropenyl (VIII) (70%), b.p. 77°/0.002 mm., linalyl (IX) (61%), b.p. 71—74°/0.006 mm., and geranyl (X) (77%), b.p. 79—80°/0.006 mm., acetoacetate. (X) contains some neryl ester (disclosing itself by variation of n); hydrogenation of (X) gives only tetrahydrogeraniol. At the b.p., (I) gives CH₂·CH·CH₂·OH, COMe₂, dehydroacetic acid, and only 5·5% of COMe₂(CH₂)-CH:CH₂ (XI), but in Ph₂O at 185—200° gives 31% of (XI). In Ph₂O at 200—215° (IV) gives β-methyl-Δα-hexen-ε-one (26%), b.p. 148—149° (semicarbazone, m.p. 136·5—137·5°) (also obtained from CH₂·CMe·CH₂Cl and CHAcNa·CO₂Et), (V) at 190—220° gives COMe·CH₂·CHMe·CH:CH₂ (37%), and (VI) at 185—200° gives COMe·[CH₂]₂·CH:CHMe (80%), b.p. 161—153° (semicarbazone, m.p. 104·5—105·5° (lit. 97°); with O₃-C₃H₁₂ and then H₂O₂ gives

MeCHO and COMe·[CH₂]·CO₂H}. At 250° (VII) (no solvent) gives (III) (74%), b.p. 85—86°/1 mm. [2:4-dinitrophenylhydrazone, m.p. 102—103° (lit., 101—102°)], (VIII) at 200—240° gives (II) (88%), b.p. 97—99°/0·3 mm. [2:4-dinitrophenylhydrazone, m.p. 143·5—145° (lit. 145—146·5°); semicarbazone, m.p. 130·5—131° (lit., 132°)]; geranylacetone, b.p. 101·5—103°/2·5 mm. [semicarbazone, m.p. 94·5—96° (lit. 96°)], is obtained (78%) from (IX) at 170—235° or (23%) from (X) at 220—230°. CH₂Bz·CO₂Et, ROH, and NaOR give crotyl (31%), b.p. 112—114°/0·20 mm., and Δ^{γ} - β -butenyl benzoylacetate (65%), b.p. 110°/0·5 mm., which at 240—250° give Ph β -methyl- Δ^{γ} -butenyl (76%), b.p. 98—100°/2·1 mm. (semicarbazone, m.p. 176—177·5°; with O_3 — C_5 H₁₂ at -5° and then H_2 O–Zn dust-quinol-AgNO₃ gives CH₂O and with H_2 -Pd-C-EtOH gives COPh·CH₂·CHMeEt), and Δ^{γ} -n-pentenyl hetone (83%), m.p. gives COPh CH₂ CHMeEt), and Δ '-n-pentenyl ketone (83%), m.p. 23°, b.p. 96—97°/9 mm. (semicarbazone, m.p. 129—130°; with O₃ gives MeCHO and with H₂-Pd-C gives n-C₆H₁₃Ph), respectively. In the pyrolyses yields of CO₂ considerably exceed those of the

Carboxyphenylhydrazones in the identification of carbonyl compounds. S. Veibel [with A. Blaaberg and H. H. Stevns] (5 Nordiske Kemikermode, 1939, 223—225; cf. A., 1939, II, 133)—p-SO₂H·C₆H₄·NH·NH₂ is unsuitable for the identification of CO: compounds owing to its poor solubility. o- (I) is as suitable as p-CO₂H·C₆H₄·NH·NH₂ (II) for this purpose; both react normally with a- and γ -CO-acids, but with β -CO-acids (I) reacts normally whilst (II) yields pyrazolones. (II) reacts normally with CH₂Ac₂ whilst (I) gives an unidentified substance sol. in acids and pptd. by M. H. M. A.

Methanetri- β -propionic acid. V. Prelog and K. Balenović (Ber., 1940, 73, [B], 875—877).—CH([CH₂]₂·Br)₃ is converted by the protracted action of KCN in boiling aq. EtOH into $\alpha\varepsilon$ -dicyano- γ - β -cyanoethylpentane, m.p. 83°, hydrolysed by boiling aq. H₂SO₄ (1:1) to methanetri- β -propionic acid [γ - β -carboxyethylpentane- $\alpha\varepsilon$ -dicarboxylic acid] (I), m.p. 108·5—109°. The corresponding Et_3 ester, b.p. 163°/0·06 mm., is condensed by Na in PhMe at 115—120° to β -4-keto-3-carbethoxycyclohexylpropionic acid, m.p. 101°; alkaline hydrolysis affords the free heto-acid, decomp. ~80°, which at 100°/0·05 mm. yields β -4-keto-evelohexylpropionic acid. m.p. 69—70° 0.05 mm. yields β-4-ketocyclohexylpropionic acid, m.p. 69—70° (hydrate, m.p. 55°; 2:4-dinitrophenylhydrazone, new m.p. 156°), also obtained by heating (1) with Δc Q (of Harris et al. 1928). also obtained by heating (I) with Ac₂O (cf. Harris et al., A., 1938, II 332). II, 332).

Hydroxyl-ion-catalysed aldol condensation of benzaldehyde with methyl ethyl ketone and acetone.—See A., 1944, I, 42.

α-Keto-β-hydroxybutyric acid. E. Hoff-Jørgensen (5 Nordiske Kemikermode, 1939, 251—252).—CHMeBr·CO·CN (from EtCO·CN with Br-AcOH) is heated with aq. Pb(OAc), for 30 min. at 70°, PbBr₂ filtered off and all Pb removed with H₂S, and the solution evaporated 4—5 times, with H₂O addition, at 50° to give n-α-keto-β-hydroxybutyramide, m.p. 214°, which is converted via the Me ester, liquid, and the Ba salt into the corresponding acid (I). (I) reduces Fehling's solution and is decarboxylated at pH >7, but is stable in 3cid solution. M. H. M. A. acid solution.

Stabilisation of keto-compounds by acetalisation. M. Kühn (J. pr. Chem., 1940, [ii], 156, 103—149; cf. Salmi, A., 1938, II, 427).— Stabilisation of CO-compounds as acetals, which because of their tendency to form peroxides may be useful as polymerisation catalysts, is studied. Cyclic acetals are obtained from various CORR' and a glycol in C₈H₆ or C₂HCl₃ using an acid catalyst (e.g., PhSO₃H); the H₂O formed in the reaction is removed by distillation. Thus, saturated α , β -, γ -, and δ -CO-acids (as esters) all give 5- and 6-membered ring ketals; the ring is completely stable to alkali and is hydrolysed by dil. HCl only at $>50^{\circ}$. Reaction does not occur is hydrolysed by dil. HCl only at >50°. Reaction does not occur with ketones containing C:C aβ to the CO (e.g., CHR:CAc·CO₂Et; R = Ph, 2-furyl) or with compounds which can enolise to produce C:CCO· (e.g., CHAC₂·CO₂Et; CN·CHPh·COMe). CEt₂Ac·CO₂Et does not react. cycloHexanone (I), glycerol, and a trace of PhSO₃H in boiling C₆H₆ thus give cyclohexanone γ(or β)-hydroxy-aβ(or aγ)-propylene ketal (64%), b.p. 133—135°/15 mm. [chloroacetate, b.p. 170—174°/15 mm., with NEt₂·[CH₂]₂·OH in EtOH affords the 1:1 additive compound, m.p. 196° (decomp.)], ultra-violet irradiation of which causes strong peroxide formation. CH₂Cl·[CH₂]₂·OH with camphor (in C₆H₆ + PhSO₃H) and COPhMe (in PhMe + H₂SO₄) gives the γ-chloro-aβ-propylene ketals, b.p. 146°/17 mm. and 138—140°/15 mm., respectively. (CH₂·OH)₂ and COPh·CH₂Cl in C₆H₆ + PhSO₃H afford the ethylene ketal (95%), b.p. 144—146°/15 mm., m.p. 67°, the Cl of which is stable to EtOH-NaOH and to CHNaAc·CO₂Et or OMe·[CH₂]₂·O·[CH₂]₂·O·Na in PhMe; it slowly forms a Grignard reagent. COPh·CHCl₂ does not similarly react but ethylene ketals of the following are prepared: COPh·CH₂Br, b.p. but ethylene ketals of the following are prepared: COPh CH2Br, b.p. out ethylene ketals of the following are prepared: COPh-CH₂Br, b.p. 154°/17 mm., m.p. 60—61° (no reaction with MeOH–NaOMe at 70°/10 hr.), COMe·CH₂Br, b.p. 76—78°/16 mm., CO(CH₂Br)₂, b.p. 113°/16-mm., COMe·CH₂Cl, b.p. 62—64°/18 mm., and CO(CH₂Cl)₂, b.p. 105°/12 mm. CH₂:CH·COMe (II), (CH₂·OH)₂, and C₆H₆ + PhSO₃H give a mixture of probably (COMe·[CH₂]₂·O·CH₂)₂ and its diketal; COMe·[CH₂]₂·Cl [from (II) and HCl in C₆H₆] gives an impure product [from which the ketal of (II) could not be obtained by treatment with alkali] and COPh·[CH₂]₃·Cl affords a polymerisation product. CHPh·CH·COPh and CHR·CH·COMe (R = Ph, 2-furyl) did not react (cf. above). Glucose and (I) in C₆H₈-BuOH-PhSO₃H give 1: 2: 5: 6-dicyclohexylidene-3: 4-anhydroglucofuranose

PhSO₃H give 1: 2: 5: 6-dicyclohexylidene-3: 4-anhydroglucofuranose (III) (R = cyclohexylidene), b.p. 193—195°/0·5 mm.; phenylglucosazone similarly affords a product containing 80% of the 3: 4: 5: 6-dicyclohexylidene ether. 3: 4: 5: 6-Diisopropylideneglucosazone (from COMe₂ + PhSO₃H) is a resin. NEt₂·[CH₂]₃·COMe (as hydrochloride which is dried by C₆H₆) does not react with various hydrocarbons but gives the ethylene, b.p. 116°/15 mm., and γ(or β)-hydroxy-αβ(or αγ)-propylene ketal, b.p. 163°/15 mm. NEt₂·[CH₂]₂·COMe affords the ethylene, b.p. 93—94°/13 mm., 208°/760 mm. (the wax-like quaternary salt with C₁₂H₂₅Br is an emulsifying agent for oils), αγ-butylene, b.p. 112—113°/13 mm., and γ(or β)-hydroxy-αβ(or αγ)-propylene ketal, b.p. 145—150°/12 mm. Me β-N-cyclohexyl-N-ethylaminoethyl ketone (from C₆H₁₁·NHEt,HCl, CH₂O, and COMe₂) and 2-N-cyclohexyl-N-methylaminomethylcyclohexanone [from (I), cyclohexyl-amine hydrochloride, and CH₂O] give ethylene ketals, b.p. 166°/14 mm. and 190—192°/14 mm., respectively. NN-Di-(γ-keto-Δδ-pentenyl)cyclohexylamine [from cyclohexylamine sulphate, (II), and (CH₂O)_x in AcOH] does not react with (CH₂OH)_x in C₆H₆ + PhSO₃H;

(CH₂O)_z in AcOH does not react with (CH₂·OH)₂ in C₆H₆ + PhSO₃H; diacetonamine similarly decomposes but diacetone-ethylamine and Me β -cyclohexylaminoethyl ketone [from cyclohexylamine and (II)] form ethylene ketals, b.p. $84-86^{\circ}/14$ mm. and $162-163^{\circ}/18$ mm., respectively. The hydroxypropylene ketal obtained from glycerol and mixed COPh·CH₂·NMe₂RCl ($R=C_{10}-C_{20}$ alkyl) forms a frothy

respectively. The hydroxypropylene hetal obtained from glycerol and mixed COPh·CH₂·NMe₂RCl (R = C₁₀—C₂₀ alkyl) forms a frothy aq. solution which emulsifies oils.

CH₂Ac·CO₂Et (IV) does not react with [CH₂]₄(OH)₂ or various CH₂R·OH in C₆H₆ + PhSO₃H or PhMe + H₂SO₄; its ethylene ketal (V) (loc. cit.) is hydrolysed by 5N-aq. EtOH-NaOH to CH₂Ac·CO₂H ethylene ketal (readily sol. in H₂O), which can be esterified to (V) (46% yield). The aγ-butylene ketal of (IV) is similarly hydrolysed. (IV) also yields the γ(or β)-hydroxy-aβ(or aγ)-propylene, b.p. 145°/14 mm., and γ-chloro-aβ-propylene hetal (VI), b.p. 132°/13 mm. Boiling MeOH-NaOMe converts (VI) into the not quite pure aβ-allene hetal (VII), b.p. 118—120°/13 mm.; MeOH-NaOPh gives (VII) (42%) and the γ-phenoxy-aβ-propylene hetal (48%), b.p. 198°/11 mm., and Na ρ-isooctylphenoxide in PhMe affords the γ-p-isooctylphenoxy-aβ-propylene hetal. Et dodecylaceto-acetate, b.p. 168—170°/0·5 mm., gives the ethylene hetals, b. 184—186°/0·5 mm. (corresponding acid, m.p. 63°). Ethylene hetals of the following are prepared: CO(CH₂·CO₂Et)₂, b.p. 162—164°/25 mm., CH₂Ph·CHAc·CO₂Et, b.p. 178—179°/11 mm., Et₂ a-acetylglutarate, b.p. 180—182°/24 mm., Me Et(a) a-acetylglutarate, b.p. 168—170°/15 mm. (y-chloro-aβ-propylene hetal, b.p. 209—210°/17 mm.), Et γ-acetylbutyrate, b.p. 135—136°/17 mm., Et lawulate, b.p. 110—112°/15 mm., AcCO₂Et, b.p. 80—81°/15 mm., Et and Bu a-formylphenylacetate, b.p. 172—174°/16 mm. and 212—214°/20 mm., respectively, Et γ-ketobutylmalonate, b.p. 162—164°/14 mm., Et λ-keto-a-cyanohexoate, b.p. 168—170°/14 mm., and Et₂ a-acetyl-succinate, b.p. 162°/14 mm. Et phenacylacetoacetate and (CH₂·OH)₂ (2 mols.) in PhMe + PhSO₃H give the di(ethylene hetal), b.p. 174—178°/0·5 mm., m.p. 62—64° (free acid, m.p. 150—151°), and Et 2-phenyl-5-methylfuran-3-carboxylate (free acid, m.p. 179—181°). 2-Chlorocyclohexanone and CHNaAc·CO₂Et in PhMe followed by (CH₂·OH)₂-PhSO₃H give Et 1-methyl-3 : 4 : 5 : 6-tetra-2-Chlorocyclohexanone and CHNaAc CO Et in PhMe followed by $(CH_2 \cdot OH)_2 - PhSO_3 H$ give Et 1-methyl-3: 4: 5: 6-tetrahydrocoumarone-2-carboxylate, b.p. 143—144°/13 mm. (free acid, m.p. 161°). $CH_2(CHAc \cdot CO_2Et)_2$ affords the $di(ethylene\ hetal)$, b.p. 214—218°/20 mm.

Deuterium as indicator in keto-enolic tautomerism. A. Tananger (5 Nordiske Kemikermode, 1939, 229—230).—The type of di-enolisation in diketo-compounds is studied by introducing D into an active CH₂ group and measuring the rate of enolisation and the distribution of D in the dienol.

M. H. M. A.

Behaviour of trimethylamine, trimethylammino-sulphur trioxide, and trimethylamine oxide towards sulphur dioxide.—See A., 1944 I, 16.

Additive compounds of trimethylamine with boron fluoride and its methyl derivatives.—See A., 1944, I, 44.

Interaction of higher a-chloroparaffins with ammonia, primary, sec., and tert. amines. O. Westphal and D. Jerchel (Ber., 1940, 73, [B], 1002—1011).—RCl (R = n-alkyl here and below) with 1:1 liquid NH₃-EtOH give mainly NHR₂ with smaller amounts of NH₂R liquid NH₃-EtOH give mainly NHR₂ with smaller amounts of NH₂R and NR₃; the amount of NR₃ decreases with the size of R. Thus, $n\text{-C}_8\text{H}_{17}\text{Cl}$ (I) at 140° gives $n\text{-C}_8\text{H}_{17}\text{NH}_2$ (11·4%), b.p. 76—78°/12 mm., $(n\text{-C}_8\text{H}_{17})_2\text{NH}$ (~40%), m.p. 35°, b.p. 142—147°/3 mm., and tri-n-octylamine (~22%), b.p. 183—185·5°/3 mm. $n\text{-C}_{12}\text{H}_{25}\text{Cl}$ (II) at 170° gives $(n\text{-C}_{12}\text{H}_{25})_2\text{NH}$ (III) (81%), m.p. 57—58° (lit. 55—56°) [hydrochloride, dimorphic (transition point ~72°), m.p. ~200° (decomp.)], but at 110° gives $n\text{-C}_{12}\text{H}_{25}\text{NH}_2$ (IV) (16%) [hydrochloride, m.p. 183—186° (decomp.)] and (III) (64%). H₂-Ni-Co-Cu at $100^\circ/\sim100$ atm. reduces $n\text{-C}_{11}\text{H}_{23}\text{*CN}$ in MeOH-H₂O (150: 80 ml.) to (IV) but in 96% EtOH to (III). $n\text{-C}_{16}\text{H}_{33}\text{Cl}$ (V) at 170° gives

much $(n\text{-}C_{1_8}H_{33})_2$ NH and 24% of $n\text{-}C_{1_6}H_{33}\text{\cdot}NH_2$ (hydrochloride, m.p. 178°). In EtOH at 175° (II) and (IV) give 47% of pure (III). With NH₂Me in a little EtOH, RCl gives NHMeR and NMeR₂ (only with lower alkyl), but, if $R = C_{\kappa 6}$, no NMeR₃Cl. Thus, Bu°Cl at $100-110^\circ$ gives methyldi-n-butylamine (69%), b.p. $53\cdot 5-54^\circ$ /11 mm., and some NHMeBu°. $n\text{-}C_8H_{13}$ Cl at 100° gives much NHMe·Ce $_8H_{13}$ -n and 40% of $(n\text{-}C_6H_{13})_2$ NMe, b.p. 118° /12 mm. At 140° (I) gives $n\text{-}C_8H_{17}$ ·NHMe (24%) and methyldi-n-octylamine (30%), b.p. $143-145^\circ$ /3 mm. At 160° (II) gives $n\text{-}C_{12}H_{25}$ ·NHMe (VI) (59%), b.p. $168-110^\circ$ /1·5 mm. (hydrochloride, m.p. $181-184^\circ$), and methyldi-n-dodecylamine (37%), m.p. $15-16^\circ$, b.p. 201° /1·5 mm. [obtained in 51% yield from (II) and (VI) in EtOH at 160°]. At $140-150^\circ$ (V) gives $n\text{-}C_{18}H_{33}$ ·NHMe (15%) (hydrochloride, m.p. $169-170^\circ$) and $(n\text{-}C_{18}H_{33})_2$ NMe (68%), m.p. $36-37^\circ$ (lit. $34-35^\circ$), b.p. $269-271^\circ$ /1 mm. With sec. amines RCl in MeOH or EtOH (not C_6H_6 or light petroleum) gives, usually, good yields of tert. base. E.g., NHEt₂ petroleum) gives, usually, good yields of tert. base. E.g., NHEt, with (I) at 160° gives diethyl-n-octylamine, b.p. 112—113°/12 mm., with (I) at 160° gives diethyl-n-octylamine, b.p. 112—113°/12 mm., and with (II) at 140° gives diethyl-n-dodecylamine (86%; in absence of EtOH), b.p. 122—124°/2 mm. (hydrochloride, m.p. 119·5°). NH(CH₂Ph)₂ and (II) at 150° give dibenzyl-n-dodecylamine (75%), b.p. 219—220°/2 mm. (hydrochloride, m.p. 101°). NHMe₂ and (V) at 140° give dimethyl-n-hexadecylamine (82·5%), b.p. 138°/1 mm. (hydrochloride, m.p. 198°). Higher alkyl chlorides and tert, amines react with difficulty in EtOH and not at all in other solvents or alone. NMe₂CH, Ph. (VI) and (I) in a little EtOH at 105° (24 br.) react with difficulty in EtOH and not at all in other solvents or alone. NMe₂·CH₂Ph (VI) and (I) in a little EtOH at 105° (24 hr.) give benzyldimethyl-n-octylammonium chloride (~90%), f.p. ~0°. NMe₃ and (II)-EtOH at 80—90° give trimethyl-n-dodecylammonium chloride (75—80%), m.p. ~37°. (VI) and (II)-EtOH at 90° (45 hr.) give benzyldimethyl-n-dodecylammonium chloride (~100%), an oil. NMe₃ and (II)-EtOH at 180° (18 hr.) give n-C₁₂H₂₅·NMe₂ (hydrochloride, m.p. ~132°). NMe₃ and (V)-EtOH at 100—105° (12—16 hr.) give n-C₁₂H₃₅·NMe₃Cl, m.p. ~70° (lit. 240°). (VI) and (V)-EtOH at 90° (28 hr.) give benzyldimethyl-n-hexadecylammonium chloride (70%), m.p. 58°.

Constitution of thionylamines. K. A. Jensen (5 Nordiske Kemikermode, 1939, 216—217).—The absence of syn- and anti-forms and their low dipole moments support the resonance structure: R-N=S \rightarrow O \rightleftharpoons R-N \leftarrow S=O. M. H. M. A.

Reaction of d-glucosamine with o-phenylenediamine. R. Lohmar and K. P. Link (J. Biol. Chem., 1943, 150, 351—352).—d-Glucosaminic acid and o-C₆H₄(NH₂)₂ (I) do not give a cryst. product. Direct oxidative condensation of d-glucosamine hydrochloride with (I) in presence of Cu(OAc)₂-aq. AcOH at 50° affords 3·(D-arabotetrahydroxybutyl)quinoxaline, m.p. 192—193° (decomp.), [a]²⁰
—85·8° in 4n-HCl (tetra-acetate, m.p. 121°, [a]²⁰
—29·2° in CHCl₃) (cf. Ohle, A., 1934, 392).

Amino-acids and peptides. XV. Physical properties of l(+)- and d(-)-alanine. M. S. Dunn, M. P. Stoddard, L. B. Rubin, and R. C. Bovic (J. Biol. Chem., 1943, 151, 241—258).—Benzoyl-dl-alanine is resolved into its optical components by successive use of strychnine resolved into its optical components by successive use of strychnine and brucine in aq. solution and the optically active substances are hydrolysed by HCl. The following sp. rotations are recorded: l-strychnine benzoyl-l(+)-alanine dihydrate, $[a]_{\rm B}-10\cdot45^{\circ}$ in ${\rm H_2O}$; l-brucine benzoyl-d(-)-alanine $(+4\cdot5{\rm H_2O})$, $[a]_{\rm D}-26\cdot53^{\circ}$ in ${\rm H_2O}$; benzoyl-l(+)-alanine, $[a]_{\rm B}+33\cdot4$ in N-NaOH; benzoyl-l(-)-alanine, $-32\cdot5^{\circ}$ in $1\cdot05{\rm N}$ -NaOH; l(+)-alanine (I), $[a]_{\rm B}^{25}-13\cdot60^{\circ}\pm0\cdot01^{\circ}$ in $6\cdot{\rm N}$ -HCl; d(-)-alanine (II), $[a]_{\rm B}^{25}-13\cdot60^{\circ}\pm0\cdot01^{\circ}$ in $6\cdot{\rm N}$ -HCl. Vals. of $[a]_{\rm B}^{0}$ (θ varied between $0\cdot50^{\circ}$ and $45\cdot0^{\circ}$) (I) and (II) in $7\cdot25{\rm N}$ -, $5\cdot97{\rm N}$ - (c=10, 6, or $3\cdot5$), $4\cdot83{\rm N}$ - (c=2), $0\cdot884{\rm N}$ - (c=8), $0\cdot502{\rm N}$ - $(c=4\cdot5)$, and $0\cdot228{\rm N}$ -HCl (c=2), and in ${\rm H_2O}$ have been determined. The sp. rotations of (I) and (II) recorded have been determined. The sp. rotations of (I) and (II) recorded in the literature have been evaluated by means of temp, and solute concn. factors derived from the present authors' data.

Dihydroxyacyl derivatives of β -alanine and l-leucine from tunny fish liver.—See A., 1944, III, 124.

Isolation of valylvaline from gramicidin hydrolysates. H. N. Christensen ($J.\ Biol.\ Chem.$, 1943, 151, 319—324).—Valylvaline (I) has been isolated as the Bz derivative (II), m.p. 218°, apparently optically inactive, from hydrolysates of gramicidin (III) prepared by boiling this substance with 16% HCl for 6 or 24 hr. (none obtained in 2 hr.). The resulting mixture of NH₂-acids is fractionated as the Cu salts and the fraction sol. both in H₂O and in MeOH is freed from reasonts and honzovlated. When completely hydrolysed (III) from reagents and benzoylated. When completely hydrolysed (II) yields BzOH and 2 mols. of dl-valine, identified as the Ac (IV), m.p. 149°, and p-toluenesulphonyl (V), m.p. 170° (corr.), derivatives. In separate experiments ~90% of the N was recovered as valine hydrochloride, 80% as (IV), and 50% as (V). The implication of the presence of (I) in the hydrolysates of (III) is discussed. H. W.

Amide metabolism in etiolated seedlings. I. H. B. Vickery and G. W. Pucher (J. Biol. Chem., 1943, 150, 197—207).—See A., 1944, III, 83). Almost quant. results are obtained in Schiff's method for the prep. of aspartic acid (A., 1885, 377) if the asparagine is hydrolysed with HCl (2 mols.) for 3 hr., aq. NH $_3$ (1 mol.) added, followed by EtOH, and the pH then adjusted to $3\cdot0$.

Carbamic acid peptides. New type of peptide. Possible source of ammonia from proteins. A. H. Corwin and (Miss) C. I. Damerel (J. Amer. Chem. Soc., 1943, 65, 1974—1984).—NH₂·CH₂·CO₂·CH₂Ph, HCl, KCNO, and a slight excess of NaOH in H₂O at 100° (2—3 min.) give N-carbamylglycine CH_2Ph ester (50%), m.p. 124·5—126°, converted by CH₂Cl·COCl in boiling C₆H₆ (1 hr.) into N-N'-chloroacetylcarbamylglycine CH_2Ph ester (70%), m.p. 179·5—180°, which with H₂-Pd-C in MeOH-H₂O-AcOH (a little) gives N-N'-chloroacetylcarbamylglycine (65%), m.p. 198—200° (decomp.), also obtained (56%) from NH₂·CO·NH·CH₂·CO₂H (I) by CH₂Cl·COCl in dioxan (not various other solvents). The Et ester, m.p. 145—146°, is also prepared. NH₂·CO·NH·CHR·CO₂H and the appropriate acid halide lead similarly to N-N'-chloroacetylcarbamyl-dl-alanine (51%), m.p. (not various other solvents). The Let ester, in.p. 143—140, is also prepared. $\mathrm{NH}_2 \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CH}_R \cdot \mathrm{CO}_2 + \mathrm{n}$ and the appropriate acid halide lead similarly to $\mathrm{N-N'}$ -chloroacetylcarbamyl-dl-alanine (51%), m.p. $181-5^\circ$ (decomp.), $\mathrm{N-N'}$ -a-chloropropionylcarbamyl-glycine (51%). m.p. $208 \cdot 5 - 211^\circ$ (decomp.). -dl-alanine (56%), m.p. $191-192 \cdot 5^\circ$ (decomp.), and -l-leucine (46%), m.p. $147-148^\circ$ (remelts at $148-148 \cdot 5^\circ$), $\mathrm{N-N'}$ -a-bromopropionyl- (10%), m.p. $201-204^\circ$ (decomp.), and $\mathrm{N-N'}$ -acetyl-carbamylglycine (poor yield), m.p. $234-235^\circ$ (decomp.). The halogenated products with liquid NH_3 in ice-COMe₂ give $\mathrm{N-N'}$ -glycylcarbamyl-glycine (II) (70%), m.p. $192 \cdot 5 - 194^\circ$, and -dl-alanine (III) (77%), and $\mathrm{N-N'}$ -alanylcarbamyl-glycine (IV) (55%), $+\mathrm{H}_2\mathrm{O}$ (absorbed from air), softens 180° , m.p. $190-195^\circ$ (decomp.). (II)—(IV) are amphoteric, having pK_1 $\sim 3\cdot 34$ and $\mathrm{pK}_2 \sim 7\cdot 6$, and changes in titration curves due to CH₂O resemble those of NH_2 -acids and polypeptides. The course of hydrolysis is elucidated by titration. In $0\cdot 3\mathrm{N-NaOH}$ at room temp. (II) or (III) gives glycine + (I) or $\mathrm{NH}_2\cdot\mathrm{CO\cdot NH}\cdot\mathrm{CH}_2\cdot\mathrm{CO\cdot 2H}$, respectively, (IV) gives alanine + (I), and $\mathrm{NHAc\cdot CO\cdot NH}\cdot\mathrm{CH}_2\cdot\mathrm{CO}_2\mathrm{H}$, the amide then decomp. further with liberation of NH_3 . In strong alkali, quant, yields of CO_2 and NH_3 are obtained. In strong alkali, quant. yields of CO₂ and NH₃ are obtained. In 0·3n-HCl at 90—100° (II), (III), and (IV) give NH₂·CHR·CO₂H + NH₂·CO·NH·CHR'·CO₂H, with subsequent ring-closure of the latter product to hydantoin (V) or methylhydantoin (VI), respectively; ring-closure to (V) is slower than that to (VI) and only the latter reaction is completed under the conditions of hydrolysis. In H₂O at 90—100° NH₂·CHR·CO·NH·CO·NH·CHR/·CO₂H gives (**V**) or (**VI**) and NH₂·CHR/·CO₂H; thus (**V**) is isolated from (**II**), alanine from (**III**), and glycine and (**VI**) from (**IV**). NHAC·CO·NH·CH₂·CO₂H gives, slowly, AcOH + (I). In boiling 5N-HCl, (II) gives CO₂ (16·3%) and NH₃; thus, if ·NH·CO· units occur in polypeptides, some CO₂ and NH₃ may be formed on hydrolysis but the amount of ·NH·CO· cannot be calc. by simple stoicheiometric rules.

R. S. C.

Crystalline quinine salt of pantothenic acid. Synthesis and resolution of the racemate. R. Kuhn and T. Wieland (Ber., 1940, 73, [B], 971—975).—COCl·[CH₂]·NH₂,HCl (prep. from the acid by PCl₆-AcCl) with CH₂Ph·OH at 70—80° give β-alanine CH₂Ph ester hydrochloride, m.p. 100—101° [derived platinichloride, m.p. 202—203° (block)], which with the lactone (I) of OH·CH₂·CMe₂·CH(OH)·CO₂H (II) at 100°, and then H₂—PtO₂ in AcOH or HCO₂H, gives syrupy dl-pantothenic acid, obtained pure by adsorption from H₂O at pH 8·5 on Al₂O₃ and elution by Ba(OH)₂. This acid has 2 × 10° Sbm units per g. (cf. A., 1943, III, 124). The derived Ba salt (pH 8·5) with quinine sulphate in H₂O gives l-pantothenic acid, [a]^{2h}₂ —26·7° in H₂O, [a]^{2h}₃ —56·3° in MeOH {Ba, [a]^{2h}₂ —20·4° in H₂O, and quinine salt, m.p. 165—167° (block), [a]^{2h}₃ —115° in H₂O}, having 4·5—5 × 10° Sbm units per g. and a rat dose ~15 μg. per day. With hot, aq. Ba(OH)₂, (I) gives the derived Ba salt, m.p. 220°, and thence, by quinine sulphate, the quinine salts, m.p. 182—183°, and 164—165°, of (—)- and (+)-(II), respectively, and thence d-, m.p. 82—84°, [a]²⁰₂ +28·0°, and l-(I), m.p. 76—80°, respectively.

Solubilities of amides etc.—Sec A., 1944, II, 34.

Structure and insecticidal properties of organic compounds. N. N. Structure and insecticidal properties of organic compounds. N. N. Melnikov, N. D. Suchareva, and M. L. Fedder (Compt. rend. Acad. Sci. U.R.S.S., 1941, 31, 610—613).—See A., 1944, III, 133. The following are described (% yields in parentheses): Pr^a (88), b.p. $108-110^{\circ}/4$ mm.; altyl (60), b.p. $115-117^{\circ}/5$ mm.; Bu^a (88), b.p. $114-115^{\circ}/3$ mm.; Bu^{β} (92), b.p. $111-113^{\circ}/4$ mm., and octyl thiocyanate (63), b.p. $185-187^{\circ}/16$ mm.; Pr^a (80), b.p. $125-127^{\circ}/8$ mm., altyl (72.5), b.p. $113-114^{\circ}/5$ mm., Bu^a (75), b.p. $137-140^{\circ}/10$ mm., Bu^{β} (70), b.p. $125-126^{\circ}/9$ mm., and octyl a-thiocyanobutyrate (53), b.p. $159-162^{\circ}/5$ mm.

J. N. A.

Theory of allyl isomerisation. IV. Allyl thiocyanate \rightarrow allyl-thiocarbimide. O. Mumm and H. Richter (Ber., 1940, 73, [B], 843—860; cf. A., 1939, II, 113, 478).—Further evidence is adduced in favour of the view that there is a change in position of attachment of the allyl group in all cases of allyl isomerisation in which the intermediate production of a 6-membered ring is possible even by participation of partial yalencies. Technical CHMe.CH·CHO is reduced [Al(OPr β)₃] to CHMe.CH·CH₂·OH, converted by saturated aq. HBr at 0° into a mixture of 87% of the primary and 13% of the see, bromide. Gradual addition of NH₄CNS to this material in wellcooled EtOH leads to crotyl thiocyanate (I), b.p. 40°/0.7 mm., which can be kept for a few days in the dark at 0° but soon becomes

former of which is hydrogenated to (IV), further identified by conversion into (V). (VI) is hydrogenated (Pd-BaSO₄ in EtOAc) and then partly hydrolysed to sec.-butylisophthalamic acid,

then party hydrosysed to see.-bulylisophilatamic art, CO₂H·C₆H₄·C(OH).N·CHMeEt, m.p. 101°. (II) is therefore identical with the product described by Charon (A., 1899, i, 848). The product described by Schimmel & Co. (A., 1910, i, 759) is CHMe:CH·CH₂·NCS. OH·CHEt·CH:CH₂ is converted into a mixture separated by fractional distillation into \(\gamma\)- and \(\alpha\)-ethylallyl hloride. The former compound is slowly transformed by NH₄CNS in well-cooled EtOH into \(\gamma\)-ethylallyl thiocyanate (VII), b.p. 55°/1·6 mm., which becomes isomerised with separation of S in a few days at room temp. Fission of (VII) by O₃ gives EtCHO (\(\rho\)-nitrophenyl-hydrazone, m.p. 123—124°) and oxidative fission of the ozonide by alkaline KMnO₄ gives EtCO₂H in nearly quant. amount. Distillation under atm. pressure isomerises (VII) to \(\alpha\)-ethylallyl-thiocarbimide, b.p. 71°/19 mm., transformed by NH₃ in EtOH at toom temp. into \(\alpha\)-ethylallylthiocarbamide, m.p. 92°; this is reduced to \(\gamma\)-amylthiocarbamide, m.p. 78—79°. \(\gamma\)-Ethylallyl thiocyanate is converted similarly into the corresponding -carbimide, b.p. 186—188°.

Effect of molecular environment on absorption of organic compounds in solution. Compounds containing the chromophore C.C.C.N.—See A., 1944, I, 28.

II.—SUGARS AND GLUCOSIDES.

d-Ribose. Preparation of a crystalline anhydroribose. H. Brederck, M. Köthnig, and (Miss) E. Berger (Ber., 1940, 73, [B], 956–962).—[a] $_{10}^{20}$ 0 of d-ribose (I) (prep. described) in C_5H_5 N at 20 5 changes regularly from $-38\cdot4^\circ$ (after 4 min.) to $-43\cdot1^\circ$ in 2 days, but const. vals. for h are not obtained (cf. Phelps et al., A., 1934, 494). With CPh $_3$ Cl in C_5H_5 N at 37 $^\circ$ (4 days) and then 100 $^\circ$ (0·5 hr.), (I) gives the 5-CP h_3 ether (+0·5EtOH), m.p. 125 $^\circ$, [a] $_{10}^3$ (in C_5H_5 N) + 12·1 $^\circ$ (4 min.) \rightarrow 9·9 $^\circ$ (12 hr.) (h = \sim 0·0·205, const.) (reduces Fehling's solution; blue colour with CuSO $_4$ -alkali), and thence (Ac $_2$ O-C $_5H_5$ N; room temp.) the 5-CP h_3 ether 1 : 2 : 3-triacetate, a syrup, [a] $_{10}^{20}$ +4·9 $_{10}^{20}$ 0 to +5·2 $_{10}^{20}$ 0 in EtOH, which with HBr-AcOH at 0 $_{10}^{20}$ 0 gives anhydroribose <1, 5><1, 4> 2 : 3-diacetate, m.p. 169 $_{10}^{20}$ 0, [a] $_{10}^{20}$ 0 +78 $_{10}^{20}$ 0 (reduces Fehling's solution only after hydrolysis; blue colour with CuSO $_4$ -alkali). R. S. C.

Carbohydrate characterisation. IV. Identification of d-ribose, l-fucose, and d-digitoxose as benziminazole derivatives. R. J. Dimler and K. P. Link (J. Biol. Chem., 1943, 150, 345—349; cf. A., 1942, II, 248).—d-Ribose and l-fucose are oxidised by KOI-MeOH to d-ribonic acid (I) (through the K salt) and l-fuconic acid (through the Ba salt), and condensation with o-C₆H₄(NH₂)₂-HCl-H₂PO₄ at 135° then gives d-ribo- (II), m.p. 190°, [a]₂²⁵ +22·5° in N-HCl (hydrochloride, m.p. 196—198°; picrate, m.p. 185—186°) (cf. Richtmeyer et al., A., 1942, II, 395), and l-fuco-benziminazole, m.p. 248—240°, [a]₂²⁵ -41·2° in N-HCl (hydrochloride, m.p. 224—225°; picrate, m.p. 189—191° (also +H₂O)), respectively. K d-arabonate [~5%) is also formed during prep. of (1), by epimerisation, and gives insol. d-arabobenziminazole, m.p. 235—237°, [a]₂²⁵ -45° in N-HCl (picrate, m.p. 155—156°), which is not solated if (I) is prepared by oxidation by the Br-Ba(OBz)₂ method of Hudson et al. (A., 1929, 1043). Oxidative condensation of d-digitoxose in presence of Cu(OAc)₂, H₂O-aq. AcOH at 53° for 14 hr. yields d-digitoxobenziminazole, m.p. 207—209°, [a]₂²⁵ -45·7° (hydrochloride, an oil; picrate, m.p. 124—127°).

Reaction of glucose with some amines. A. E. Mitts (Iowa State Coll. J. Sci., 1943, 18, 68—70).—NH₂R with glucose yields glucosyln-butyl-, m.p. 96—97°, $[a]_{0}^{25}$ —22° to —7.8° in EtOH, -amyl-, m.p. 96—97°, $[a]_{0}^{25}$ —22° to —8° in EtOH, -heptyl-, m.p. 97—98°, $[a]_{0}^{25}$ —13° to —7° in EtOH, and -dicyclohexyl-amine, m.p. 97—98°, $[a]_{0}^{25}$ —23.5° to —11.6° in EtOH. Cryst. compounds were not obtained

from β -C₈H₁₇·NH₂, NH₂·CHMe·CH₂·NH₂ and NH₂Pr β . Also prepared were glucosyl-n-octa-, m.p. $104-105^{\circ}$, and -hexa-decylamine, m.p. $106-107^{\circ}$, and diglucosylethylenediamine, m.p. $152-153^{\circ}$, $[a]_{10}^{25}-17^{\circ}$ to +14·5° in EtOH. Hydrogenation (Raney Ni) of these yields N-butyl-, m.p. $126-127^{\circ}$, $[a]_{20}^{25}-14^{\circ}$ in 50% EtOH, N-amyl-, m.p. $129-130^{\circ}$, $[a]_{20}^{25}-138^{\circ}$ in 50% EtOH, N-heptyl-, m.p. $126-127^{\circ}$, $[a]_{20}^{25}-14^{\circ}$ in 50% EtOH, N-cyclohexyl-, m.p. $145-146^{\circ}$, $[a]_{20}^{25}-11^{\circ}$ in 50% EtOH, N-hexadecyl-, m.p. $123-124^{\circ}$, and N-octadecyl-d-glucamine, m.p. $118-119^{\circ}$, and NN'-ethylenediglucamine, m.p. $136-137^{\circ}$, $[a]_{20}^{25}-15\cdot5^{\circ}$ in 50% EtOH. F. R. G.

d-Fructopyranose, a sugar unfermentable by yeast. A. Gottschalk (Austral. J. Exp. Biol., 1943, 21, 133—137; cf. Hopkins et al., A., 1935, 1538).—At 0° and pH 4·3 the rate of fermentation of the β -pyranose form of d-fructose by suspension of baker's yeast is minute compared with that of a-d-glucose, is independent of the conen. of the yeast, and depends on the partial conversion of d-fructopyranose into d-fructofuranose. Hence it is the latter alone which undergoes alcoholic fermentation. At 0° and pH 3·05—5·35 the rate of mutarotation of a-d-glucose is < one tenth of that of β -d-fructopyranose: this indicates that a-d-glucose is fermented without first undergoing a change in mol. structure. The pH of the yeast cell is 5·9: its buffering power, which is high compared with that of serum, is chiefly due to its content of salts. W. McC.

Proportion of fructofuranose in d-fructose solution at equilibrium. A. Gottschalk (Austral. J. Exp. Biol., 1943, 21, 139—140).— Advantage is taken of the fact that the only fermentable component of d-fructose solution at equilibrium is fructofuranose, to determine the proportion of this form in the equilibrium mature at pH 4·3. The val. is ~12% at 0° and probably 20% at 20°.

W. McC.

W. McC.

Alkaline degradation of phenyl-β-lactoside, -β-cellobioside, and -D-gluco-β-D-guloheptoside. (Miss) E. M. Montgomery, N. K. Richtmyer, and C. S. Hudson (J. Anner. Chem. Soc., 1943, 65, 1848—1854).—Phenyl-β-lactoside in boiling 2·6n-KOH ([a] — 36·0° becomes — 44·0°) gives, after acetylation (Ac₂O-C₅H_δN), 4·β-D-galactopyranosido-D-glucosan <1, 5>β<1, 6> hexa-acetate, m. p. 206—208°, [a] — 40·8° in CHCl₃ (cf. Karrer et al., A., 1933, 1146), converted by Ba(OMe), into the unesterified glucosan, +H₂O, m.p. 128—130°, [a] — 50·6° in H₂O, and anhyd., m.p. 140—144°, [a] — 53·5° in H₂O (lit., an oil; does not reduce Fehling's solution), which in 2: 1 Ac₂O-AcOH containing 2·5% (vol.) H₂SO₄ at 20° gives α-lactose octa-acetate (83%). Phenyl-β-cellobioside hepta-acetate (prep. described), m.p. 206—208° (lit. 193°), [a] — 36·0° in CHCl₃, with Ba(OMe)₂ gives phenyl-β-cellobioside, m.p. 211—213°, [a] — 59·5° in H₂O, which in 2·6n-KOH at 110—115° gives 4-β-D-glucopyranosido-D-glucosan <1, 5>β<1, 6>, m.p. 122°, [a] — 75·0° in H₂O (loc. cit.), by way of the hexa-acetate, m.p. 145—146°, [a] — 54·4° in CHCl₃. D-Gluco-β-D-guloheptose hexa-acetate, m.p. 134—135°, [a] +4·8° in CHCl₃, with HBr-AcOH at room temp. (dark) gives acetobromo-D-gluco-α-D-guloheptose (I), m.p. 111°, [a] +187° in CHCl₃ (cf. lit.). With PhOH and Ag₂CO₃ in C₉H₈ and then Ba(OMe)₂ this gives phenyl-D-gluco-β-D-guloheptoside, m.p. 168°, [a] — 90·0° in H₂O (hepta-acetate, m.p. 99°, [a] +8·0° in CHCl₃), which in boiling 2·6n-KOH gives D-gluco-D-guloheptosan-<1, 5>β<1, 6> (II), m.p. 95°, [a] +62·9° in H₂O (additive compound with 1 NaCl, m.p. 165—167°, [a] +48·6° in CHCl₃, or -p-nitrobenzoate, m.p. 268°, [a] +218° in C₅H₅N, and converted by H₂SO₄-Ac₂O-AcOH into D-gluco-β-(60%) and -a-D-guloheptose (20%).
2·02 NaIO, are consumed by (II) with formation of 0·98 HCO₂H. In C₅H₅N, (II) gives its 2: 3:7-tri-p-toluenesulphonate, +COMe₂, m.p. 105° (gas), [a] +55·2° in CHCl₃, which with NaI in (CH₂

In the discovered form of the following states of the

Synthesis of the acetyl derivative of primulaveroside, the glucoside of the ordinary primrose (Primula officinalis). F. Mauthner (J. pr. Chem., 1940, [ii], 156, 150—153).—Gentisic acid (prep. from o-OH·C₆H₄·CO₂H by $K_2S_2O_8$ in aq. NaOH + FeSO₄ at room temp.) is methylated (Me₂SO₄, aq. NaOH) to the 5-Me ether, the Me ester, b.p. 261—262° (lit. 235—240°) (prep. by MeOH-HCl), of which with acetobromoprimverose and dry Ag₂O in quinoline gives primulaveroside hexa-acetate, m.p. 198—199°. H. B.

New hamameli-tannin. C. P. Edwards and M. Nierenstein (*Pharm. J.*, 1943, **151**, 241).—The bark of English witch-hazel

(Hamamelis virginica, Lin.), extracted with CCl₄ and then CHCl₃, yields to cold H_2O γ -hamameli-tannin (I), m.p. $217-233^\circ$ (slight decomp.), and then to hot H_2O ellagitannin, m.p. 347° (decomp.), $[a]_D^{11} + 23.07^\circ$ in H_2O , $[a]_D^{11} + 17.11^\circ$ in EtOH. (I) is $3:4:5:1-(OH)_3C_6H_2\cdot CO_2\cdot [C_6H_{10}O_4\cdot O]_2\cdot CO\cdot C_6H_2\cdot (OH)_2\cdot OMe-1:3:4:5;$ with hamamelase in H_2O at 37° it yields gallic acid, the 3-Me ether thereof, and glucose; with aq. NaHCO₃ in air it gives a mixture, whence A_{CO} yields

Two types of molecules in starch. B. Brimhall and R. M. Hixon (Wallerstein Lab. Comm., 1943, 6, 95—100).—Evidence supporting the two-component theory of starch structure is presented. Methods for separating amylose (straight chain) and amylopectin (branched chain) are outlined, and the properties of these components discussed, variations between starches of different origin being noted.

Starch. X. End-group determination of starch components. K. Hess and B. Krajnc (Ber., 1940, 78, [B], 976—979).—Erythroand amylo-amylose (Samec et al., A., 1921, i, 226) give, in end-group determinations, $4\cdot94-5\cdot01$ and $0\cdot46-0\cdot50\%$, respectively, of tetramethylglucose, indicating $23\cdot3-23\cdot4$ and 229-247 units per mol., respectively, whereas η in CHCl₃ indicates 113—129 and 213—283 units respectively. R. S. C. 283 units, respectively.

Characterisation of components of starch. J. F. Foster (Iowa State Coll. J. Sci., 1943, 18, 36-38).—Mol. wts. of various amyloses have been determined from viscosity measurements and are related to the potentials at which I is taken up. Osmotic behaviour of amylose and amylopectin has also been investigated.

Starch-iodine complex. R. R. Baldwin (Iowa State Coll. J. Sci., 1943, 18, 10—12).—Absorption spectra of the starch-I complex under varying conditions indicate that the I atoms have definite positions in the starch helix. From these results deductions concerning the structure of starch can be made.

Starch. XXV. Glycogen of native muscle. K. H. Meyer and R. Jeanloz (Helv. Chim. Acta, 1943, 26, 1784—1798).—Only a part of the glycogen (I) of mussel muscle can be extracted with hot H2O. The remainder is found with the coagulated proteins. This fraction can be solubilised by $CCl_3 \cdot CH(OH)_2$ or 40% CaCl₁. These reagents do not hydrolyse the proteins or rupture chemical linkings between carbohydrate and protein but the glycogen remains insol. (I) therefore consists of parts sol. and insol. in H_2O . Sol. (I) after pptn. by MeOH contains 85% of pure (I) and proteins, the greater part of by MeOH contains 35% of pure (1) and proteins, the greater part of the latter being removable by pptn. with picric acid. Electrodialysis of (I) gives a fraction (A) sol. and limpid, an opaque fraction (B), and swollen particles (C). A and B can be freed from proteins by agitation with CHCl₃ but this method is not applicable to C, which is dissolved in 40% CaCl₂ and pptd. by I as a brown compound from which the carbohydrate is readily regenerated. There remains some (I) which can be solubilised with a proportion of proteins by heating with 33% CCl₃·CH(OH)₂ and purified through its compound with I (fraction D). Even after complete purification C and D remain insol. in H₂O. (I), prepared by treatment with KOH at 100°, is also composed of sol. and insol. portions. P is absent from all fractions and the N content can be diminished to 0.07% by methods which do not attack chemical linkings. After dissolution in $CCl_3 \cdot CH(OH)_2$ and pptn. by EtOH, the fractions are acetylated by Ac_2O and C_5H_5N , the difficulty increasing with the insolubility of the fraction; measurements of $\eta_{sp.}$ of these acetates in $CH_2Ph \cdot OH$ indicate a mol. sp. wt. $>6 \times 10^6$. Comparison of the viscosity curve of the acetates of amylopectin, amylose, and (I) indicates that the mol. of (I) is very highly branched and compact in character. The limit of degradation of A by β -amylase is 43— 43.5% whereas the figures for B and C are 33—34% and 30—32% respectively. HCl converts (I) into fragments which retain their highly polymerised character. It appears therefore that the voluminous enzyme fails to penetrate the mol. of (I) and that certain ramifications are consequently protected.

Yeast-mannan. R. Garzuly-Janke (J. pr. Chem., 1940, [ii], 156, 45—54).—By the methods of Salkowsky (A., 1894, i, 316), Daoud et al. (A., 1931, 1277), and Harden et al. (J.C.S., 1902, 81, 1224), bakers' yeast yields mannans having [a]₂₀²⁰ +90·1°, +70°, and +78°, respectively, and containing no P or N. Extraction of the yeast by H₂O at, successively, room temp., 40°, and 100° (total 100—120 hr.) gives a product containing carbohydrate 85·8—87, N 0·89—0·99, P 0·08—0·09, and ash 1·00—1·18%, and having [a]₂ +62° to +63°. Extraction with 75% H₂SO₄ at room temp. (<24 hr.) gives a product containing carbohydrate 87·6—89·5, N 1·09—1·21, P 0·12—0·18, and ash 1·91—2·00%, and having [a]₂ +66·8° to +67·2°. Alkali extraction thus decomposes the mannan-protein or -lipin components originally present. R. S. C. protein or -lipin components originally present. R. S. C.

Preparation of main valency gels by net formation from cellulose molecules in solution. R. Signer and P. von Tavel (Helv. Chim. Acta, 1943, 26, 1972—1978).—Methylcellulose (I) of mean mol. wt. 21,000 and containing 68 free OH groups per 100 glucose residues reacts with (COCl)₂ (II) in CHCl₃ containing p-C₀H₄Me·NMe₂ (III) to form a main valency gel. For every such solution a definite solidification time can be determined. It is considered that a mol. of (II) reacts one-sidedly with a free OH of a mol. of (I) to give an ester chloride; the second COCl group is unable for steric reasons to react with a further OH of the same mol. of (1) but speedily encounters a OH of a second mol. so that oxalic ester bridges are produced between 2 macromols. The bridge building extends to a third and to further mols, and ultimately proceeds through the whole solution. With a const. ratio of 0.5 mol. of (II) to 1 free OH of (I) increase in the amount of (III) diminishes the solidification time and increases the rate of gel formation. With a const. ratio of 1 mol. of (III) per OH the time of solidification is short with 0.5 mol. of (II), much greater in presence of 1 mol., whilst further increase in the proportion of (II) prevents gel formation. With 1 mol. of (II) per OH the time of (II) prevents gel formation. With I mol. of (II) per OH the time of solidification diminishes sharply with increasing concn. of (III). It appears that (III) also facilitates the reaction: $OR \cdot CO \cdot COCI + OR \cdot CO \cdot COCI + OR \cdot CO \cdot COCI + (COCI)_2$ [R and R' are glucose residues of different mols. of (I)]. Simultaneous variation of (II) and (III) shows the influences which have been studied separately (see above) to be superimposed. The time of solidification increases as the concn. of (I) diminishes in the const. presence of 0.5 mol. of (II) and 2 mols. of (III) per OH. The transition sol \rightarrow gel occurs the more rapidly as the distance between the thread mols. in the solution diminishes. In solutions with higher concn. of (I) solidification occurs simultaneously through the entire solution whereas in ation occurs simultaneously through the entire solution whereas in more dil. solution a solid surface layer is first produced which later extends to the lower portions. Net formation is also observed with succinyl, glutaryl, and sebacyl chlorides and partly acetylated celluloses may be used in dioxan. Withdrawal of solvent and reswelling of these systems occurs exactly as with isotropic, main valency gels.

Kinetics of oxidation of cellulose with periodic acid.—See A., 1944, I, 41.

End-group content of natural ramie. K. Hess and K. P. Jung (Ber., 1940, 73, [B], 980—983).—No tetramethylglucose is obtained from ramie by end-group determinations if degradation is avoided during its prep.

III.—HOMOCYCLIC.

Spectral characteristics and configuration of stereoisomeric carotenoids including prolycopene and pro- γ -carotene. L. Zechmeister, A. L. LeRosen, W. A. Schroeder, A. Polgár, and L. Pauling (J. Amer. Chem. Soc., 1943, 65, 1940—1951).—Steric conditions preclude more than 5 ethylenic linkings becoming cis in the β -carotene series, 6 in the γ -carotene, or 7 in the lycopene series. The denomination "all-cis" refers to these max. Change of the all-trans to a one-cis compound shifts the absorption max, by 4-6 m μ . Procarotenoids have "available" one-trans linking, since melting and chromatography reveals compounds having max, at still shorter λ The isomerides in the lycopene series are investigated in detail; not all have the "cis-peak" (A., 1944, II, 9). For lycopene in light petroleum the band at ~ 470 m μ . is due to the electron transition $0 \rightarrow 1$, corresponding to oscillation of the "unsaturation" electrons between the ends of the chain; the cis-peak is due to the $0 \rightarrow 2$ transition and oscillation between the centre and ends of the chain; the \sim 270 m μ . band is due to the 0 \rightarrow 3 transition and oscillation between (a) the first and third and (b) second and fourth quarters of the chain. Lycopene isomerides having a vertical plane of symmetry should have an intensity at the main absorption band < ~80% of that of the all-trans-compound; this is the case for several known isomerides. The cis-peak does not exist for compounds having a centre of symmetry; its intensity depends on the distance between the cis-linking and the straight line joining the two ends of the chain; it is thus a max. for the compound in which the central C.C is cis and the others trans (in the lycopene series, neolycopene-A). The intensity of the $0 \rightarrow 3$ max. \propto approx. that of the main max but is less for compounds which are twice bent. Further considerations allow prediction of the ease of isomerisation, e.g., that the central C:C is easiest to isomerise. Equilibrium amounts of isomerides are 10^{-x} , x being the no. of cis-linkings, which accounts for the limited no. of isomerides isolated. R. S. C.

Physical data of alkylcvclohexanes. A. W. Schmidt and A. Grosser (Ber., 1940, 73, [B], 930—933).—The following -cyclohexanes are obtained by hydrogenation (PtO₂ in warm AcOH) of the requisite alkylbenzenes; the process is often irregular and generally very slow, re-activation of the catalyst being frequently necessary: n-butyl-, b.p. 64°/12 mm.; n-heptyl-, b.p. 109—110°/12 mm., m.p. 41°; n-dodecyl-, b.p. 131—132°/0·8 mm., m.p. 12°; n-tetradecyl-, b.p. 155°/0·8 mm., m.p. 25°; n-hexadecyl-, b.p. 163—164°/1·5 mm., m.p. 32·5°. Vals. of d, n, and η are recorded. H. W. Methylation of benzene. A. Klit (5 Nordiske Kemikermøde, 1939, -217—218).—MeCl and m-xylene (AlCl₃-HCl) do not give $1:2:3-C_6H_3Me_3$ or $1:2:3:4-C_6H_2Me_4$. The equilibrium mixture from o-xylene (I) (AlCl₃-HCl) does not contain (I). M. H. M. A.

Syntheses of one-, two-, and three-nuclear hydrocarbons with 22 carbon atoms. N. Turkiewicz (Ber., 1940, 73, [B], 861—866).—p-Cymene (I) and lauryl chloride are converted by AlCl₃ in CS₂ into carvacryl undecyl ketone (II), m.p. 40·5°, b.p. 168—170°/1 mm., reduced (Clemmensen) with difficulty to 2-dodecyl-p-cymene, b.p. 163—164°/1 mm. Reduction (Raney Ni-H₂ at 230—240°/148 atm.; decahydronaphthalene) of (II) affords 2-dodecyl-p-menthane, b.p. 159—160°/1 mm. Diisoamylacetyl chloride, (I), and AlCl₃ in CS₂ give carvacryl diisoamylmethyl ketone, b.p. 162°/1'mm, reduced (Raney Ni) to a-hexahydrocarvacryl-β-diisoamylethane [4-isopropyl-2-ββ'-diisoamylethylhexahydrotoluene], b.p. 150—152°/1 mm. (I) is converted by CH₂O and HCl in presence of anhyd. ZnCl₂ and NiCl₂ into carvacrylmethyl chloride (IV), converted by Mg and CO₂ into αβ-dicarvacrylethane (III), b.p. 155—156°/1 mm., and carvacrylacetic acid, m.p. 69—70°; the corresponding Et ester, b.p. 136°/2 mm., and 1-C₁₀H₇·MgBr afford 1-naphthyl carvacrylmethyl ketone, b.p. 195—198°/0·5 mm., hydrogenated at 240—260°/150 atm. in decahydronaphthylethane, b.p. 165—166°/1 mm. (III) is obtained from (IV) and Na in boiling Et₂O and is hydrogenated at 240—260°/120—160 atm. in presence of Raney Ni to aβ-dikexahydrocarvacrylethane, b.p. 160—154°/1 mm. 1-C₁₀H₇·MgBr and lauronitrile give a-naphyl undecyl ketone, reduced to 1-dodecyldecahydronaphthalene, b.p. 170—171°/1 mm.

 $pp^\prime\text{-}\text{Diradical}$ of diphenyl of the type of triphenylmethyl. II. W. Theilacker and W. Ozegowski (Ber., 1940, 73, [B], 898—908; cf. A., 1940, II, 270).—Comparison of the absorption curves of 4:4′-dihydroxydiphenylmethyldiphenyl, its 2:2′-Me $_2$ derivative, and CPh $_3$ ·OH in conc. $H_2\text{SO}_4$ shows them to be generally similar. Similarly the absorption curves of 2:2′-dimethyl-4:4′-diphenylene-bisdiphenylmethyl (I) and CPh $_3$ in C $_6H_6$ are closely alike and indicate that the two halves of the former are not optically independent of one another. The spectroscopic behaviour of the Tschitschibabin hydrocarbon (II) differs from that of (I) and indicates that it

has predominatingly the quinonoid form $\left[\text{CPh}_2 \right]_2$ whereas (I) is predominatingly the diradical, $\left[\text{CPh}_2 \right]_2$. When

exposed to air crystals of (II) give an orange-red peroxide, m.p. 111—112°, which immediately liberates I from acidified KI, evolves $\mathrm{CH_4}$ from MgMeI, and in conc. $\mathrm{H_2SO_4}$ gives the same halochromism as the carbinol. The substance has the structure

$$\begin{array}{c} \text{OH-O-CPh}_2\text{-}\text{C}_6\text{H}_4\text{-}\text{C}_6\text{H}_4\text{-}\text{CPh}_2 & \text{CPh}_2\text{-}\text{CPh}_2\text{-$$

(A) or $[OH\cdot O\cdot CPh_2\cdot C_6H_4]_2$, of which the former is considered the more probable. Passage of air through a solution of (II) in C_6H_6 or tetrahydronaphthalene causes a change of colour with gradual separation of a peroxide, m.p. $156-171^\circ$ according to the mode of prep.; this slowly liberates I from acidified KI, evolves CH_4 from MgMeI, and in conc. H_2SO_4 gives the same halochromism as the carbinol. Analytical results indicate the formula A with n>10. (I) and (II) behave similarly towards O_2 . Since all the available evidence points against the existence of a true diradical in (II) it is doubtful whether the behaviour towards O_2 is a true criterion of diradical nature.

Reactions of tetrahydrophenanthrene. II. W. E. Bachmann and M. W. Cronyn (J. Org. Chem., 1943, 8, 456—465).—A mixture of γ-1- and -2-naphthylbutyric acid is treated with PCl₅ in C₆H₆ at room temp. and then at 100° followed by SnCl₄ in C₆H₆ at 5—10° and hydrolysis, thereby giving a mixture of 1- and 4-ketotetrahydrophenanthrene (85% yield), reduced to 1:2:3:4-tetrahydrophenanthrene (I) in 90% yield. AcCl is added to anhyd. AlCl₃ in CS₂ followed by (CHCl₂)₂; the mixture is warmed at 45—50° until the AlCl₃ has dissolved completely to a green solution, which is cooled to 15° and treated with (I) in CS₂; the product is hydrolysed to 9-acetyl-1:2:3:4-tetrahydrophenanthrene (II), b.p. 163—166°/0·1 mm., m.p. 56·5—58°. Successive additions of AcCl in PhNO₂ to AlCl₃ at 5° and (I) in PhNO₂ at −14° give (II) and 7-acetyl-1:2:3:4-tetrahydrophenanthrene (HII), m.p. 90·5—91·5°, reduced (Zn-Hg and HCl in boiling AcOH-PhMe) to 7-ethyl-1:2:3:4-tetrahydrophenanthrene (picrate, m.p. 90—91°), dehydrogenated (Pd-C at 300—320°) to 7-ethylphenanthrene, m.p. 65—66° (picrate, m.p. 93·5—94·5°). 7-Bronnoacetyl-1:2:3:4-tetrahydrophenanthrene (picrate, m.p. 910—51°), is converted by condensation with CHNa(CO₂Et)₂ followed by hydrolysis and decarboxylation of the product into β-1:2:3:4-tetrahydrophenanthryl-7-propionic acid, m.p. 155·5—157°. Addition of (I) in CS₂ to a solution of AlCl₈ and BzCl in the same solvent

leads to 9-benzoyl-1:2:3:4-tetrahydrophenanthrene, m.p. 120—121°, the oxime, m.p. 228—229°, of which is converted by PCl₅ in boiling C₆H₆ into 1:2:3:4-tetrahydrophenanthrene-9-carboxylanilide (IV), m.p. 240—241°, also obtained from the acid chloride and NH₂Ph. Similarly (I), EtCOCl, and AlCl₃ in CS₂-C₂H₂Cl₄ afford 9-propionyl-1:2:3:4-tetrahydrophenanthrene, b.p. 160—162°/0·05 mm., m.p. 43—44°, reduced (Clemmensen) to 9-propyl-1:2:3:4-tetrahydrophenanthrene, m.p. 25—25·5° (picrate, m.p. 106—107°), which is dehydrogenated (Pd-C at 300—320°) to 9-propylphenanthrene, m.p. 58·5—59·5° (picrate, m.p. 95·5—96°). Dropwise addition of Br in C₆H₆ to (I) in C₆H₆ containing reduced Fe leads to 9-bromo-1:2:3:4-tetrahydrophenanthrene, b.p. 142—145°/0·05 mm. (picrate, m.p. 102—103°), converted by CuCN in C₅H₅N at 215—225° into the 9-CN-compound, m.p. 124—125°, which is hydrolysed by protracted action of boiling KOH-MeOH to 1:2:3:4-tetrahydrophenanthrene-9-carboxylic acid, m.p. 215—216° (Me ester, m.p. 70·5—71°). (I), paraformaldehyde, AcOH, HCl, and 85% H₃PO₃ at 80—85° yield 9-chloromethyl-1:2:3:4-tetrahydrophenanthrene (V), b.p. 163—165°/0·05 mm., m.p. 60·5—61°, which in boiling aq. COMe₂ containing KCN passes into 1:2:3:4-tetrahydrophenanthryl-9-acetonitrile, m.p. 89·5—90°, hydrolysed by HCl-AcOH to the -9-acetic acid (M), m.p. 153—153·5° also obtained by hydrolysis of the 9-acetic acid (M), m.p. 89.5-90°, hydrolysed by HCl-AcOH to the -9-acetic acid (VI), m.p. 153—153·5°, also obtained by hydrolysis of the -9-acetamide, m.p. 211·5—212·5°, obtained by the Willgerodt method from (II). Treatment of (IV) with PCl₅ in C₆H₆ and of the product with anhyd. SnCl₂ and dry HCl in Et₂O-C₂H₆Cl₂ followed by hydrolysis leads to Sincl₂ and dry filt in Et₂O-C₂H₄Cl₂ followed by hydrolysis leads to 1:2:3:4-tetrahydrophenanthrene-9-aldehyde, m.p. $128\cdot5-129^\circ$, which condenses with $CH_2(CO_2H)_2$ in C_5H_5N at 100° to β -1: 2:3:4-tetrahydrophenanthryt-9-acrylic acid, m.p. $226\cdot5-227\cdot5^\circ$, reduced (Na-Hg) to the -9-propionic acid, m.p. $168-169^\circ$ (Me ester, m.p. $49-50^\circ$), which is also obtained from (V) by aid of $CH_2(CO_2Et)_2$. The oxime, m.p. $157-158^\circ$, of (III) is transformed by PCl_5 in boiling C_6H_6 into 9-acetamido-1: 2:3:4-tetrahydrophenanthrene, m.p. $191-192^\circ$, hydrolysed by boiling PCl_5 in the 9-amine, m.p. $76\cdot5-192^\circ$, hydrolysed by PCl_5 in PCl_5 C_6H_6 into 9-acetamido-1:2:3:4-letrahydrophenanthrene, m.p. 191—192°, hydrolysed by boiling HCl-EtOH to the 9-amine, m.p. 76·5—77° (hydrochloride, m.p. 263—264°). 7-Acetamido-1:2:3:4-letrahydrophenanthrene, m.p. 136—137°, and the non-cryst 7-amine (hydrochloride, m.p. 238—239°) are obtained similarly from the mixture of Ac derivatives (see above). The following are obtained by similar methods: 1:2:3:4-letrahydrophenanthrene-7-carboxylic acid, m.p. 184—186° (Me ester, m.p. 114—115°); 1:2:3:4-letrahydrophenanthryl-7-acetamide, m.p. 210—211°, and -acetic acid, m.p. 150—151°. (VI) is converted by SOCl₂ in dry Et₂O containing a little C_6H_6 to 4-keto-7:8:9:10-letrahydroacephenanthrene, m.p. 158·5—160°, which is reduced (Clemmensen) to 7:8:9:10-tetrahydroacephenanthrene, m.p. 158·5—160°, which is reduced (Clemmensen) to 7:8:9:10-tetrahydroacephenanthrene, m.p. 89—90° (picrate, m.p. 111—112°).

1:2:9:10-Tetramethylanthracene. R. B. Sandin, R. Kitchen,

1:2:9:10-Tetramethylanthracene. R. B. Sandin, R. Kitchen, and L. F. Fieser (J. Amer. Chem. Soc., 1943, 65, 2018—2020).—
1:2-Dimethylanthraquinone (modified prep.), m.p. 157·5—158·5°, with MgMcI-Et₂O and then HI (50%)-HBr (d 1·4)-McOH gives impure, yellow, amorphous (?) 1:2:9-trimethyl-10-iodomethylanthracene (I), which with NaOMe-MeOH at 60—70° yields (?)1:2:9-trimethyl-10-methoxymethylanthracene (II), yellow, fluorescent, m.p. 124·5—125·5° [compound, m.p. 142·5—143·5°, with s-C₈H₃(NO₂)₃], and (?) 9-methoxy-1:2:9-trimethyl-9:10-dihydro-anthracene, non-fluorescent, colourless, m.p. 141—142° [with a drop of HCl in MeOH gives (II)]. SnCl₂-conc. HCl-dioxan at the b.p. reduces (I) to yellow 1:2:9:10-tetramethylanthracene, m.p. 52—54° after softening, which is too unstable in air to be isolated except as picrate, m.p. 137—138°, or compound, m.p. 170·5—171·5°, with s-C₈H₃(NO₂)₃. M.p. are corr. R. S. C.

Aromatic cyclodehydration. XIV. 9:10-Dialkylphenanthrenes. C. K. Bradsher and S. T. Amore (J. Amer. Chem. Soc., 1943, 65, 2016—2017; cf. A., 1944, II, 10).—COR₂ with o-C₆H₄Ph-MgI-Et₃O and then aq. NH₄Cl gives α-2-diphenylylisopropyl alcohol, m.p. 71° (lit., 75°), b.p. 145—154°/7 mm., γ-2-diphenylyl-n-pentan-γ-ol, b.p. 155—157°/7 mm., δ-2-diphenylyl-n-heptan-δ-ol (I), m.p. 68°, b.p. 182—183°/11 mm., and ε-2-diphenylyl-n-nonan-ε-ol, b.p. 185—192°/8 mm., dehydrated by KHSO₄ at 160° to β-2-diphenylyl-propylene (71% over-all), b.p. 125—128°/7 mm., γ-2-diphenylyl-propylene (47% over-all), b.p. 138—141°/7 mm., δ-2-diphenylyl-Δβ-n-pentene (47% over-all), b.p. 155—157°/8 mm., and ε-2-diphenylyl-Δγ-n-heptene (71% over-all), b.p. 158—179°/7 mm., respectively, containing small amounts of Ph₂. Thence BzO₂H-CHCl₃ at 0°, followed by boiling 34% HBr, yields 9-methyl- (40%; 68% obtained from the oxide by KHSO₄ at 160°), m.p. 92° (picrate, m.p. 154°), 9-methyl-10-ethyl- (54%), m.p. 85° (picrate, m.p. 150°), 9-ethyl-10-n-bropyl- (44%), m.p. 69° (picrate, m.p. 117°), and 9-n-propyl-10-n-butyl-phenanthrene (67%), m.p. 74° (picrate, m.p. 99°), respectively. With H₂SO₄ (5 drops) in boiling AcOH (15 c.c.), (I) gives 9:9-di-n-propylfuorene, m.p. 37—38°.

Acetylation of primary aromatic amines in vivo and in vitro.—See A., 1944, III, 129.

Derivatives of 1:2:4:5-tetrachlorobenzene. III. Amination of 2:3:5:6-tetrachloro-nitrobenzene and -4-nitroaniline. A. T. Peters, F. M. Rowe, and D. M. Stead (J.C.S., 1943, 576-577; cf. A., 1943, II, 323).—The NO_2 and, to a smaller extent, both Cl o to

it in 2:3:5:6:1-C₆HCl₄·NO₂ (I) are labile. With EtOH-NH₃ at 200° for 10 hr., (I) affords 2:3:5:6:1-C₆HCl₄·NH₂ (61%) and 3:5-dichloro-1-nitro-2:6-diaminobenzene (II) (5.6%), m.p. 172—173° [Ac₂ derivative, m.p. 315° (decomp.), darkens 295°]; 9.7% of 1:3:5:6:2-NO₂·C₆HCl₃·NH₂ is also formed, as shown by reduction with aq. EtOH-Na₂S₂O₄ to the diamine, and conversion by phenanthraquinone (III) in AcOH into 1:2:4-trichloro-5:6:9':10'-phenanthraphenazine, m.p. 262—263°. (II) does not condense with (III); reduction and then condensation of 4:6:1:2:3-C₆HCl₂(NH₂)₃, m.p. 121—122° (decomp.), with (III) gives 2:4-dichloro-1-amino-5:6:9':10'-phenanthraphenazine (IV), m.p. 265°. 3:5:1:2-C₆H₂Cl₂(NO₂)₂ is unaltered with KNO₃-25% oleum at 130—160°. 1:2:5:4:6-NH₂·C₆HCl₂(NO₂)₂, m.p. 170—171°, is reduced (Na₂S₂O₄) to 3:6:1:2:5-C₆HCl₂(NO₂)₂, converted by (III) into 1:4-dichloro-2-amino-5:6:9':10'-phenanthraphenazine, m.p. $\sim 322°$, isomeric with (IV). Only the two Cl atoms o to NO₂ in 4:2:3:5:6:1-NO₂·C₆C₄·NH₂ (V) are labile. (V) with EtOH-NH₃ at 200° for 22 hr. gives 3:5-dichloro-1-nitro-2:4:6-triamino-benzene (56%), m.p. 256—257° (decomp.) [does not condense with (III)], and a trace of 1:3:5:6:2:4-NO₂-C₆C₆(3(NH₂)₂ as shown by reduction and conversion into 1:2:4-trichloro-3-amino-5:6:9':10'-phenanthraphenazine, m.p. > 330°, darkening at 280°. A. T. P.

Action of aluminium chloride on phenol homologues. G. Baddeley (J.C.S., 1943, 527—531).—PhOH (1 mol.) and AlCl₃ (1 mol.), warmed until evolution of HCl ceases, afford OPh·AlCl₂, b.p. 210°/15 mm., n.p. 183° (with H₂O gives PhOH). p-C₆H₄Me·O·AlCl₂ is stable at 200° for several hr., but p-cresol (I) and AlCl₃ (>1 mol.) at 130° for 2 hr. give some m-cresol (II). Kinetic study shows this change to be reversible and unimol. in respect of p-C₆H₄Me·O·AlCl₂, but bimol. in respect of the further AlCl₃ used. The reagent is not used up, and the unimol, velocity coeff. at a given temp. c square root of amount of reagent present. (I) or (II) and AlCl₃ at 135° (34 hr.) give an equilibrium mixture containing 60·7% of (II) and 39·3% of (I). At 125°, a similar mixture results; thus the heat of isomerisation is small. o-Cresol (III) (1 mol.) and AlCl₃ (2 mols.) at 130° for 3 hr. give (III) only, but at 170° for 5 hr., intermol. change occurs and (III) [or (II) or (I)] gives PhOH + m-5-xylenol (IV). (IV) is also obtained from m-2-xylenol and AlCl₃ at 130—135°. m-4-Xylenol (at 15—120°) gives some o-3- and p-xylenol (V), but at 130—135° for 4·5 hr., (IV) is formed: (V) or o-4-xylenol is convertible into (IV), and (V) + (IV) are obtained from o-3-xylenol and AlCl₃ at 120—125°. Hemimellithenol is isomerised (quant.) to iso-\(\psi\$-cumlol by AlCl₃ at 100° for 10 hr. With AlCl₃, p- or m-C₆H₄Et·OH (at 120° or 125°, respectively) gives PhOH and 3:5:1-C₆H₃Et₄·OH, also obtained from o-, m-, or p-C₆H₄Et·OH at 100°; C₂H₄ is probably an intermediate. 3:4:1-C₆H₃MeEt·OH (100°; 18 hr.) gives 3:5:1-C₆H₃MeEt·OH. With (I), PhMe, and AlCl₃ at 135°, much decomp. and some demethylation occur, and PhOH + (I) are isolable. Mechanisms of interconversions are suggested. Intermol. migration is associated with a high nuclear electron availability. The sequence, C₆H₆ homologues, xylenols, cresols, PhOH, is one of decreasing electron availability (nucleophilic character) in presence of excess of

Action of aluminium chloride on aromatic bromo-compounds. G. Baddeley and J. Plant (J.C.S., 1943, 525—527).—PhBr is a brominating agent in presence of AlCl₃. Thus, PhBr and AlCl₃ at 100° give some \$p-C_6H_4Br_2\$. \$p-Cresol (I), PhBr, and AlCl₃ at 100° yield small amounts of 2:1:4-C_6H_3BrMe·OH (II), C_6H_6\$, higher-boiling products, and unchanged materials. PhOH similarly affords highboiling products, but no C_6H_4Br·OH. \$o-\$, \$m-\$, or \$p-C_6H_4Br·OH (III)\$ (1 mol.) and AlCl₃ (2 mols.) at 130° afford (III) (~70%) and PhOH (~17%), with higher-boiling products; isomerisation of the \$o-\$ is more facile than that of the \$m-\$ isomeride. (I) (1 mol.), (III) (1 mol.), and AlCl₃ (4 mols.) at 130° yield PhOH, (II), higher-boiling products, and (I) + (III). At 100° for 20 hr., 3:1:4-C_6H_3BrMe·OH (1 mol.) and AlCl₃ (2 mols.) give (I) (3%), (II) (60%), and 2:6-dibromo-presol (IV) (3%), m.p. 109° (obtained also from 2:6:1:4-C_6H_2Br_2Me·NH₂); at 127° for 1 hr. the respective % are 8; 67, and 6. 2:4:1-C_6H_3BrEt·OH (p-nitrobenzoate, m.p. 57°) and AlCl₃ at 100° afford unchanged material, p-C_6H_4Et·OH, and 3:4:1-C_6H_3BrEt·OH (V) (p-nitrobenzoate, m.p. 108°). 4:2:1-OMe·C_6H_3Br·COMe (semicarbazone, m.p. 198°) is reduced (Clemmensen) to 3:4:1-C_6H_3BrEt·OHe, b.p. 123—124°/5 mm., converted by boiling HBr (d 1·5)-AcOH into (V). With AlCl₃ at 130° for 1 hr., 3:5:1:4-C_6H_3BrEt·OHe, b.p. 123—124°/5 mm., converted by boiling HBr (d 1·5)-AcOH gives (IV); at 100° for 24 hr., some 2:5-dibromo-p-cresol (VI), m.p. 61° [probably intermediate in forming (IV)], is obtained also. 3:1:4-C_6H_3BrMe·OH and Br-AcOH give (VI) and 2:3:5:1:4-C_6HBr_3Me·OH; with Cl₂-CCl₄ at room temp., (VI) yields 3-chloro-2:5-dibromo-p-cresol, m.p. 95°, converted by Cl₂-CCl₄ + Fc at 70—80° into 3:6:2:5:1:4-C_6(Cl_3Br_2Me·OH, new m.p. (177—178°. 3:6:1:4-C_6H_2Br_2Me·OH and AlCl₃ at 130° give IV). With 2:6:4:1-C_6H_3BrEt·OH and AlCl₃ at 130° at 120° causes some isomerisation to 3:5-dibromo-tehylphenol, m.p. 116—117° (convertible into 2

is not isomerised by AlCl₃. Br migrates to the nuclear positions of greatest electron density, as indicated by nuclear alkylation.

4-Diphenylyl butyrate. S. E. Hazlet and L. C. Hensley (f. Amer. Chem. Soc., 1943, 65, 2041).—This ester, m.p. 59—60·3°, is prepared (81%) from p-C₆H₄Ph·OH and PrCOCl in C₅H₃N-dioxan.

Triterpenes. LXXXI. Synthesis of 3-hydroxy-1:2:5-trimethylnaphthalene and of 1:2:6-trimethylphenanthrene. L. Ruzicka, E. Rey, and W. J. Smith (Helv. Chim. Acta, 1943, 26, 2057—2065).—Successive addition of 1:2:3-C₆H₃Me₂·OMe and (CH₂·CO)₂O to AlCl₃ in PhNO₂ at 0° gives γ-keto-γ-4-methoxy-2:3-dimethylphenyl-n-butyric acid, m.p. 178°, reduced (Zn-Hg in AcOHconc. HCl) to γ-4-methoxy-2:3-dimethylphenyl-n-butyric acid, m.p. 178°, reduced (Zn-Hg in AcOHconc. HCl) to γ-4-methoxy-2:3-dimethylphenyl-n-butyric acid, m.p. 122—123°; the acid chloride (SOCl₂) could not be cyclised satisfactorily by AlCl₃ in CS₂ but the acid and P₂O₅ in boiling C₆H₆ give 1-keto-7-methoxy-5:6-dimethyl-1:2:3:4-tetrahydronaphthalene (I), m.p. 78° [semicarbazone, m.p. 243° (decomp.)]; attempted cyclisation with 80% H₂SO₄ at 120—130° results also in hydrolysis to the 7-OH-compound, m.p. 203° [semicarbazone, m.p. 243° (decomp.)]. (I) is converted by an excess of MgMeI in Et₂O followed by treatment of the product with a little I at 140° and dehydrogenation by Se at 330° into 3-methoxy-1:2:5-trimethylnaphthalene, m.p. 106—107° [unstable picrate, m.p. 150—151·5° (decomp.)]; this is demethylated by HBr in AcOH to the 3-OH-compound, m.p. 140—141° (slight decomp.) (unstable picrate). 4-Methylcyclohexanone is converted by Mg β-2:3-dimethylphenylethyl bromide into β-1-hydroxy-4-methylcyclohexyl-a-2:3-dimethylphenylethyl bromide into β-1-hydroxy-4-methylcyclohexyl-a-2:3-dimethylphenanthrene, b.p. 117—120° (0.6 mm., which is dehydrogenated by Se at 320° to 1:2:6-trimethyl-phenanthrene, m.p. 128·5—129° (picrate, m.p. 167—168°). This is oxidised by CrO₃ in AcOH at room temp. to 1:

Antibacterial action of stilbene derivatives. G. Brownlee, F. C. Copp, W. M. Duffin, and I. M. Tonkin (Biochem. J., 1943, 37, 572—577; cf. A., 1944, III, 144).—p-Methoxydeoxybenzoin is reduced (Zn-Hg, aq. HCl) to p-methoxydibenzyl, which with MgMeI at 180—200° gives p-hydroxydibenzyl (cf. Späth, A., 1914, i, 1). a-Ethyldeoxybenzoin with Et₂O-MgEtBr affords a-hydroxy-aβ-diethyldibenzyl [aβ-diphenyl-α-ethyl-n-butyl alcohol], b.p. 182—186°/14 mm., dehydrated (PCl₃) to (CPhEt:)₂, b.p. 170°/15 mm. (cf. Carlisle and Crowfoot, A., 1941, I, 103), reduced (H₂-PtO₂-COMe₂) to (CPhEtt)₃, m.p. 83—84° (lit. 88°, 92—93°). COPhEt and Al-Hg in wet Et₂O afford (CPhEt·OH)₂, m.p. 135—136° (lit. 138—139°). p-Methoxy-aβ-diethylstilbene, m.p. 79—80° (from distillation of δ-phenyl-γ-anisylhexan-γ-ol), is reduced (H₂, Pd-C, COMe₂) to p-methoxy-aβ-diethyldibenzyl, m.p. 89—90°; demethylation (MgMeI) affords p-hydroxy-aβ-diethylstilbene, m.p. 125—127°, and p-hydroxy-aβ-diethyldibenzyl, m.p. 139—140° [benzoate, m.p. 110°; O-SO₃H-derivative (C_δH_δN salt, m.p. 195—196°)], respectively. 4-hydroxy-4'-methoxy-aβ-diethylstilbene, m.p. 101—102°, is obtained as a by-product during demethylation of the Me₂ ether. p-Nitrodeoxy-benzoin and Et1 in boiling EtOH-NaOEt yield p-nitro-a-ethyldeoxybenzoin, m.p. 78—80°, reduced (Fe-FeCl₃-H₂O-xylene) to the NH_δ-compound, m.p. 128—129°, which with MgEtBr gives p-amino-β-hydroxy-aβ-diethyldibenzyl, m.p. 91—92°, converted by AcOH-HCl into p-amino-gβ-diethylstilbene, m.p. 180—182°. 4'-Nitro-4-hydroxy-aβ-diethyldibenzyl, m.p. 180—182°. 4'-Nitro-4-hydroxy-tlene is reduced (EtOH-aq. NH_δ-FeSO₄ at b.p.) to 4'-amino-4-hydroxystilbene is reduced (EtOH-aq. NH_δ-FeSO₄ at b.p.) to 4'-amino-4-hydroxystilbene, m.p. 270—271° (decomp.). p-CN·C₆H₄·CH₂·CO₂H with p-OH·C₆H₄·CHO and piperidine at 140° gives 4-hydroxy-4'-cyanostilbene, m.p. 221—223°, converted (method: Ashley et al., A., 1942, II, 172) into 4-hydroxy-4'-amidinostilbene hydrochloride, m.p. 316—317° (decomp.).

Formation of phenols by the action of hydrogen peroxide on non-phenolic, aromatic aldehydes. E. Späth, M. Pailer, and G. Gergely (Ber., 1940, 73, [B], 935—938).—Shaking 100-vol. aq. H₂O₂ with Et₂O and drying gives 2% H₂O₂-Et₂O, whence evaporation gives ~4—6% H₂O₂-Et₂O. This reagent (1·1 mol. of H₂O₂) with ArCHO at 20° (~15 hr.), sometimes with CHCl₃ or more Et₂O, gives (i) 2:4:1-(OMe)₂C₆H₃·OH (26·1%) (no acid is formed), (ii) 2:4:5:1-(OMe)₃C₆H₂·OH (17·6%) and -(OMe)₃C₆H₂·CO₂H (trace), (iii) 3:4:6:1-(OMe)₂C₆H₂Et·OH (13·7) and -(OMe)₂C₆H₂Et·CO₂H (4·2%), (iv) p-OMe·C₆H₄·OH (7·1) and p-OMe·C₆H₄·CO₂H (6·5%), (v) o-OMe·C₆H₄·OH (6·6) and o-OMe·C₆H₄·CO₂H (4·7%), (vi) 3:4:1-(OMe)₂C₆H₃·OH (1·4) and -(OMe)₂C₆H₃·CO₂H (4·0%), and (vii) PhOH (0·7) and BzOH (8·6%). ArCHO not thus accounted for is mainly recovered unchanged. OH·CHA·O₂H may be intermediates. R. S. C.

Synthesis and structure of ψ -cumoquinol monoalkyl ethers. W. John and F. H. Rathmann (Ber., 1940, 73, [B], 995—1001).— ψ -Cumoquinol, 2:3:5:1:4-C₆HMe₃(OH)₂ (I), with MeOH-H₂SO₄ at room temp. gives the 1-Me ether (II), m.p. 101°; Me₂SO₄ gives

mainly the Me₂ ether with a little (II). 1:2:5:3-C₈H₂Me₃·OMe (prep. by Me₂SO₄) with 1:2 HNO₃ (d 1·52)-AcOH at ~30° gives the 6·NO₃-, m.p. 107—108°, reduced by Sn-conc. HCl-EtOH to the 6·NH₃-derivative (III), m.p. 75° (hydrochloride, decomp. >230°; impure stannichloride, m.p. 213—215°), whence diazotisation in 0·5n-HCl and heating at 75° gives (II). In boiling 90% HCO₂H 3:1:2:5:6-OH·C₆HMe₃·NH₂ gives 6-formanidoiso-ψ-cumenol, m.p. 216—219°, which with Me₂SO₄ gives the N-CHO derivative, m.p. 178—179°, of (III), hydrolysed to (III) by conc. HCl. 1:2:5:3-C₈H₂Me₃·OH and 1:4 HNO₃ (d 1·52)-AcOH at room temp. to 45° give the (NO₂)₂-derivative, m.p. 134·5° (K and Na salts; Me, m.p. 96°, and Et ether, m.p. 92°, prepared from the Ag salt), but no (NO₂)₁-derivative could be obtained. With ROH-H₂SO₄, (I) gives the 1-Et, m.p. 87—88° [acetate (IV), m.p. 57—58°; propionate, m.p. 40—41°], -Pr, m.p. 78°, -Bu° (80%; 20—30% obtained by BuBr-NaOEt-EtOH), m.p. 68°, and -isoamyl ether, m.p. 51°. (IV) is physiologically inactive.

Constituents of red sandalwood. II. Constitution of pterostilbene. E. Späth and J. Schläger (Ber., 1940, 73 [B], 881—884; cf. A., 1940, II, 286).—The freely sol. portion of the Et₂O extract of red sandalwood is treated with hot CCl_4 . The residue after removal of the solvent is dissolved in Et₂O and fractionally extracted with aq. KOH; the alkaline extracts are acidified and extracted with Et₂O, and the residue from this extract is cryst. from Et₂O-light petroleum, thus giving pterostilbene [4-hydroxy-3':5'-dimethoxy-stilbene] (I), m.p. 85—86°, a O. (I) contains 2 OMe. It is converted by CH₂N₂ into pterostilbene Me ether (II), m.p. 56—57°. (I) quantitatively absorbs 1 H₂ in AcOH containing Pd sponge. Oxidation of (I) and (II) gives 3:5:1-(OMe)₂C₆H₃·CO₂H (III) and p-OMe·C₆H₄·CO₂H with (III) respectively.

Hexahydroxybenzene and its derivatives. I. E. Neifert and E. Bartow (J. Amer. Chem. Soc., 1943, 65, 1770—1772).—
1:2:3:5:6:4-O:C₆(OH)₄:O is obtained (80%) from the Na₂ salt (prep. from i-inositol by conc. HNO₃ and then NaHCO₃) by 1:10 45% HI-37% HCl, and with 45% HI (3 pts.) in boiling EtOH (10 pts.) gives ~70% of C₆(OH)₆. This yields a hexa-acetate, m.p. 203°, -propionate, m.p. 133°, -n., m.p. 135°, and -iso-butyrate, m.p. 164·5°, -n., m.p. 103°, and -iso-valerate, m.p. 155°, -n-hexoate, m.p. 97°, -n-octoate, m.p. 86°, -n-decoate, m.p. 85°, -chloroacetate, m.p. 212°, -trichloroacetate, m.p. 245°, (decomp.), and -benzoate, m.p. 254°. In 50% EtOH it gives compounds, C₆(OH)₆, 2NH₂Ar, in which Ar = Ph, o-, m-, and p-tolyl, m- and p- (not o-)C₆H₄Cl, and a compound, C₆(OH)₆, NH₂-C₆H₄Me-o.

R. S. C.

Preparation of fluoreneazo-dyes. W. Bielenberg, H. Goldhahn, and H. Pluskal (Ber., 1940, 73, [B], 878—881).—The following 2-fluoreneazo-dyes are obtained by mixing equiv. amounts of 2-fluoreneado-dyes of KOAc in EtOH and purifying the product by repeated dissolution in EtOH and pptn. by H₂O: -phenol, m.p. 1875—191°; -m., -o-, and -p-cresol, m.p. 200°, 173—174°, and 143—144°, respectively; -thymol, m.p. 164—164·5°; -guaiacol, m.p. 145—146°; -resorcinol, m.p. 204—204·5°, decomp. at a slightly higher temp.; -orcinol, m.p. 220—221°; -m.4-xylenol, m.p. 179—180°; -phloroglucinol, softens at 215° and decomposes at a higher temp.; -pyrogallol, no distinct m.p. (I) and o-C₆H₄(OH)₂ give a product, m.p. 172—173°; an almost colourless, unidentified compound, m.p. 112—113°, is formed from o-C₆H₄(OAc)₂ but normal coupling occurs with o-OH·C₆H₄·OBz to the benzoate, m.p. 223°, of 2-fluoreneazopyrocatechol, m.p. 175°.

Lignin and related compounds. LXXII. Ultra-violet absorption spectra of compounds related to lignin.—See A., 1944, I, 28.

Constitution of the internal diazo-oxides (diazo-phenols and -naphthols). H. H. Hodgson and E. Marsden (J. Soc. Dyers and Col., 1943, 59, 271—275).—Previous views on the constitution of the diazo-oxides are reviewed and it is concluded that they are not internal cyclic oxides but resonance hybrids whereas the more stable o-diazosulphides are true cyclic compounds. Supporting evidence is adduced from (a) coupling, especially in acid solution, (b) replacement by H, (c) a new bromination reaction in which 6-nitronaphthalene-2:1-diazo-oxide affords 6:2:4:1-NO₂·C₁₀H₄Br₂·OH via the diazoperbromide, and (d) the action of Incl. or SbCl. in EtOH on diazo-oxides made from p-NH₂·C₆H₄·OH, p-NH₂·C₆H₄·SO₃H, 1:8:3:6-NH₂·C₁₀H₆(OH)(SO₃H)₂, 1:8:4-NH₂·C₁₀H₅(OH)·SO₃H, 2:1- and 1:2-NO₂·C₁₀H₆·NH₂, 2:4:1- and 1:6:2-(NO₂)₂C₁₀H₅·NH₂; these do not give isolable double salts (considered to be formed) and are recovered unchanged on dilution with H₂O when SO₃H is not present and giving Zn salts of the sulphonic acids. The diazo-oxides do not afford periodides with KI but either replace N₂ by I or give K salts of the diazo-oxide sulphonic acids. K. H. S.

Catalytic debenzylation. Effect of substitution on the strength of the O- and N-benzyl linkings. R. Baltzly and J. S. Buck (J. Amer. Chem. Soc., 1943, 65, 1984—1992).—The effects of substitution on catalytic debenzylation (Pd-C-H₂; usually in EtOH or MeOH) are investigated by observing the rates of hydrogenolysis of CHARR-OH

and COArR etc. and by isolating the products of competitive hydrogenolysis of the hydrochlorides (bases not reduced) of CH₂Ar·NH·CH₂Ar or CH₂Ar·NMe·CH₂Ar. R = alkyl or OH-alkyl reduces the rate of reaction; R = CO·NH₂ or CO₂H prevents it; the exact effect of R = CN or Ph is uncertain, but hydrogenolysis proceeds normally. Benzoin and α-diketones are readily reduced. Reductions of CiC and CH₂·OH in CHPhiCH·CH₄·OH proceed at approx. the same rate. Substitution in Ar of OMe, OH, NH₂, Cl, NR₃Cl, or Me increases the stability. α- or β-C₁₀H₇·CH₂ is removed in preference to CH₂Ph, this being the only case in which the ease of removal of CH₂Ph is exceeded; its preparative usefulness is limited to special cases. Ephedrine is not reduced. Hydrogenation of COPhEt in presence of an inefficient catalyst and NH₄Cl gives 85% of CHPhEt·OH [Hartung]. Hydrochlorides (m.p. in parentheses) of the following are described: o-(123—123·5°) and m-methoxybenzyl-(128·5—129°), 4-diphenylylmethyl-[265° (decomp.)], and α-naphthylmethyl-methylamine (189·5—190°); 4-methoxy-3': 4'-methylenedioxy- (246—247°) and -4'-hydroxy-dibenzylamine (179—179·5°); 2:4'- (160—161°) and 3:4'-dimethoxy- (159—160·5°), 4-methyl-(161—162°), and 4-chloro-dibenzylmethylamine (145·5—146·5°); benzyl-α- (225°) and -β-naphthylmethyl-thylmethylamine (149-195°); α-naphthylmethyl-β-naphthylmethyl- (230·5—231°) and α-naphthylmethyl-4-diphenylylmethyl-methylamine (n.p. 223-23·5°, p-dimethylaminonium chloride, m.p. 201·5—202°), p-aminomethylphenyltrimethylaminonium chloride hydrochloride, m.p. 223-223·5°, p-dimethylaminodibenzylamine methochloride hydrochloride, m.p. 164° (decomp.), p'-benzyloxybenzylidene-p-methoxybenzylamine, m.p. 82°, p-N-acet-N-benzylamidomethylphenyltrimethylammonium chloride (I), m.p. 130—130·5° and 4-aminodibenzylmethylamine (I) in grepared by the reactions: p-NMe₂·C₆H₄·CHO + CH₂Ph·NH₂·> p-NMe₂·C₆H₄·CHO + CH₂Ph·NH₂·> p-NMe₂·C₆H₄·CHO + CH₂Ph·NH₂·> p-NMe₂·C₆H₄·CHO + CH₂Ph·NH₂·> p-N

Action of potassium on benzpinacol in boiling ether under nitrogen. L. Anschütz and (Miss) A. Ungar (J. pr. Chem., 1940, [ii], 156, 38—44).—When K is added to $(CPh_2 \cdot OH)_2$ (I) in boiling Et_2O-N_2 , change in the b.p. indicates halving of the mol. wt. within 1-2 min., followed in < 10 min. by appearance of a blue colour due to $CPh_2 \cdot OK$. The first change is due to KOH present in the K decomp. (I) into $COPh_2$ and $CHPh_2 \cdot OH$, which later react with K to give (i) $CPh_2 \cdot OK$ and (ii) $CHPh_2 \cdot OK + H$. Analysis (method: C., 1944, Part 1) shows presence of < 80% of $CHPh_2 \cdot OK$ and < 20% of $CPh_2 \cdot OK$, this being caused by reduction of $COPh_2$ to $CHPh_2 \cdot OH$ by the liberated H. (I) and K react more slowly in Et_2O at room temp., in this case evolution of H_2 being visible. KOH may play a part in all formations of ketyls from pinacols.

Synthetic mydriatics. III. F. F. Blicke and H. M. Kaplan (J. Amer. Chem. Soc., 1943, 65, 1967—1970; cf. A., 1942, II, 237).—
The following esters are prepared by heating the appropriate amino-alkyl chloride and acid in PrβOH. Mydriatic activity in 2% aq. solution is indicated by 1 poor, 2 moderate, 3 good, or 4 excellent, and anæsthetic activity by S slight, G good, or E excellent; absence of an entry for the salts indicates inactivity. β-Dipropyl- (hydrochloride, m.p. 116—118°) and β-dibutyl-aminoethyl (hydrochloride, m.p. 140—141°), γ-dibutylamino- (hydrochloride, m.p. 92—93°) and γ-piperidino-n-propyl (hydrochloride, m.p. 136—137°), γ-dimethylamino- [hydrochloride, m.p. 145—146°], γ-dictivlylamino- (G), m.p. 66—67°, and γ-piperidino-ββ-dimethyl-n-propyl (G), m.p. 96—97°, mandelate; β-dimethyl- [hydrochloride (4, E), m.p. 183—185°] and β-dipropyl-aminoethyl [hydrochloride (G), m.p. 152—153°], β-diethyl- [hydrochloride (G), m.p. 164—166°], γ-diethyl- [hydrochloride (G), m.p. 165—169°], and γ-dibutyl-amino-n-propyl [hydrochloride (G), m.p. 114—115°; methobromide (G), m.p. 166—167°], γ-dimethyl- [hydrochloride (4, E), m.p. 169—170°; methobromide (4, E), m.p. 150—151°] and γ-dibutyl-amino-ββ-dimethyl-hydrochloride (E), m.p. 150—151°] and γ-diethyl-amino-ββ-dimethyl-hydrochloride (E), m.p. 161—162°; methobromide, m.p. 149—150°], γ-dibutylamino- [hydrochloride (S), m.p. 130—131°], γ-dimethyl-[hydrochloride (E), m.p. 161—162°; methobromide, m.p. 149—150°], γ-dibutylamino- [hydrochloride (S), m.p. 130—131°], γ-dimethyl-[hydrochloride (S), m.p. 130—131°],

amino- (methobromide, m.p. 129—131°) and β-piperidino-ethyl (hydrochloride, m.p. 102—103°; methobromide, m.p. 113—115°), γ-dibutylamino- (methobromide, m.p. 87—89°) and γ-piperidino-n-propyl (hydrochloride, m.p. 143—144°), γ-dimethyl- (methobromide, m.p. 117—119°) and γ-diethyl-amino-ββ-dimethyl-n-propyl (hydrochloride, m.p. 89—90°) β-hydroxy-β-phenylpropionate; β-diethyl-amino- [hydrochloride (2, G), m.p. 144—146°], β-dipropylamino-[hydrochloride (E), m.p. 115—116°], and β-piperidino-ethyl [hydrochloride (G), m.p. 169—171°], γ-diethylamino- [hydrochloride (E), m.p. 136—138°] β-hydroxy-ββ-diphenylpropionate. Generalities noted include the frequent but not universal concurrence of mydriatic and anæsthetic activity, irregularities among homologues, the general activity of benzilates, and the lack of or homologues, the general activity of benzilates, and the lack of or slight anæsthetic activity of tropates. CH₂Ph·CH(OEt)₂, b.p. 114—120°/15 mm., is obtained (70%) from CH₂Ph·MgCl and CH(OEt)₃ in Et₂O and with, successively, 10% H₂SO₄, NaHSO₃, KCN, and 18% HCl gives CH₂Ph·CH(OH)·CO₂H. β-Piperidinoethyl chloride, b.p. 69°/12 mm. [hydrochloride, m.p. 229—230° (lit., 208°, 231°)], NBu₂·CHMe·CH₂Cl, b.p. 116—120°/29 mm., NPr₂·[CH₂]₃·Cl, b.p. 99—102°, NBu₂·[CH₂]₃·Cl (aurichloride, m.p. 143—146°), and NMe₂·CH₂·CMe₂·CH₂Cl, b.p. 44—49°/14 mm., are also described.

Rearrangement of allyl groups in three-carbon systems. III. Nitriles and an acid. D. E. White and A. C. Cope (J. Amer. Chem. Soc., 1943, 65, 1999—2004; cf. A., 1941, II, 279).— C:C·CRR'·CH₂·CH:CH₂ (R and R' = CN or CO₂Et) rearranges at 135—200°, with inversion, to CH₂·CH·CH₂·CH·C·CRR'. cyclo-Hexylidenephenylacetonitrile (I) (modified prep.), b.p. 173—174°/10 mm., with NaNH₂ in liquid NH₃ gives the Na derivative, which Hexylidenephenylacetonitrile (1) (modified prep.), b.p. 173—174°/10 mm., with NaNH₂ in liquid NH₃ gives the Na derivative, which with CH₂·CH·CH₂Br (II) in boiling Et₂O gives a-Δ¹-cyclohexenyl-a-phenyl-Δ²-pentenonitrile (III) (77%), b.p. 106—109°/0·001 mm., hydrogenation of which proceeds in two stages, giving, best with Raney Ni in EtOAc at ~200°/~130 atm., acet-β-Δ¹-cyclohexenyl-β-phenyl-n-amylamide (IV) (45%), m.p. 141·5—143°. With PraI instead of (II) in C₆H₆, (I) gives a-Δ¹-cyclohexenyl-α-phenyl-n-valeronitrile, b.p. 147—148°/1·5 mm., hydrogenated as above to (IV) (53%), m.p. 140·5—142° (proof of structure). CH₂Ph·CN with NaNH₄—NH₃ and then cyclohexyl bromide in C₆H₆ gives cyclohexyl-α-phenyl-n-valeronitrile (72%), m.p. 55—55·5° (lit., 56°, 60°), b.p. 185—167°/9 mm., which by propylation as above gives a-cyclohexyl-α-phenyl-n-valeronitrile (70%), b.p. 155—158°/3·5 mm., and thence by hydrogenation as above acet-β-cyclohexyl-β-phenyl-n-amylamide (48%), m.p. 129—130°. At 220° in N₂, (III) gives 2-allylcyclohexylidenephenylacetonitrile (V) (85%), b.p. 160—162°/2 mm., the structure of which is proved as follows. (V) absorbs 0·996 H₂ rapidly and then slowly a further quantity. Distillation of (V) from KOH in aq. (OH·[CH₂]₂)₂O (VI) gives NH₃, CH₂Ph·CO₂H (73%), and 2-allylcyclohexanone (VII) (43% isolated as 2:4-dinitrophenylhydrazone, m.p. 145—146°). CHPhNa·CN and (VII) in boiling PhMe give 28% of (V) (possibly a slightly different mixture of geometrical isomerides). Heating CN·CH₂·CO₂H, cyclohexanone, and NH₄OAc in C₈H₈ with removal of H₂O gives cyclohexylidenecyanoacetic acid, which is decarboxylated at 130—140°/50—70 mm. to Δ¹-cyclohexenyl-α-n-pentenonitrile (IX) (40%), b.p. 107—108·5°/1·5 mm., and a substance, C₂₂H₃₀N₂, m.p. 105—106°. At 185° in N₂, (VIII) gives 2-allylcyclohexylideneacetonitrile, fractions, b.p. 121—122°/10 mm. and 122—123°/10 mm., converted by KOH as above, with much hydrolysis, into small amounts of (VII) and AcOH. At 175° (IX) gi and $122-123^{\circ}/10$ mm., converted by KOH as above, with much hydrolysis, into small amounts of (VII) and AcOH. At 175° (IX) gives a-2-ally/cyclohexylidene- Δ° -n-pentenonitrile (78%), b.p. $117-119^{\circ}/2$ mm., cleaved as above into (VII) (poor yield). Alkylation of CH₂:CH·CH₂·CN as above gives a-vinyl-a-allyl- Δ° -n-pentenonitrile (X) (31%), b.p. $103-104^{\circ}/35$ mm., which at 180° in N₂ yields a-allyl- Δ° -heptadienonitrile (62%), b.p. $95-96^{\circ}/13$ mm., whence O₃ in EtOAc and then aq. H_2O_2 at 100° yields (CH₂·CO₂H)₂. Distiling H_2O from COEt₂-CN·CH₂·CO₂H-NH₄OAc-AcOH-C₄H₆ and heating the product at $140-145^{\circ}/40-60$ mm. gives β -ethyl- Δ° -n-pentenonitrile (72%), b.p. $104-105^{\circ}/72$ mm., which by alkylation gives β -ethylidene-a-allyl-n-valeronitrile (38%), b.p. $69-70^{\circ}/2$ mm. At 195° (N₂), this gives γ -methyl- β -ethyl- Δ° -heptadienonitrile (70%), b.p. $100-101^{\circ}/11$ mm., whence O₃ gives COEt·CHMe·CH₂·CO₂H, also obtained by ozonising COEt·CHMe·CH₂·CH:CH₂ in EtOAc. With KOH-(VI)-H₂O₃ (X) gives a-vinyl-a-allyl- Δ° -n-pentenoic acid With KOH-(VI)- H_2O , (X) gives a-vinyl-a-allyl- Δ^{γ} -n-pentenoic acid (54%), b.p. $108-110^{\circ}/2.5$ mm., rearranged at 185° (N₂) into a-allyl- $\Delta^{\alpha\epsilon}$ -n-heptadienoic acid (61%), b.p. $116-118^{\circ}/1.5$ mm. [with O₂ gives

Oxidation of o-cresol to salicylic acid by alkali fusion. D. E. Bland (J. Proc. Austral. Chem. Inst., 1943, 10, 239-242).-Under the most favourable conditions, the method of Lock et al. (A., 1939, II, 113) gives >~31% of o-OHC₆H₄·CO₂H. Yields of 29—39% are obtained from a dry, intimate mixture of o-cresol and NaOH (3 parts) at 250°/3 hr.

(CH2.CO.H)2].

Photochemical dimerisation of trans-cinnamic acid. H. I. Bernstein and W. C. Quimby (J. Amer. Chem. Soc., 1943, 65, 1845—1846).—Rapidly pptd. or commercial trans-CHPh:CH·CO₂H gives only β -truxinic acid on exposure to sunlight, but after slow recrystallis-W. R. A. ation it gives a-truxilic acid.

Synthesis of 3-methylpyrogallolaldehyde [2:4-dihydroxy-3-methoxybenzaldehyde]. F. Mauthner (J. pr. Chem., 1940, [ii], 156, 154—156).—The fraction, b.p. 145—155°/12 mm., of the mixture obtained from 1:2:3-C₆H₃(OH)₃ (100 g.) in EtOH (200 c.c.), MeI (80 g.), and KOH (20·4 g.) in EtOH (150° c.c.) after 10 hr. at the b.p., is treated with boiling AcCl and the product fractionated. Fractional crystallisation of the material, b.p. 160—180°/12 mm., from EtOH gives 1:2:3- and 2:1:3-OMe·C₆H₃(OAc)₂, m.p. 51—54° (more sol.) Hydrolysis (dil NaOH) then affords a poor yield of 2:1:3sol.). Hydrolysis (dil. NaOH) then affords a poor yield of 2:1:3-0 Me·C₆H₃(OH)₂, m.p. $85-87^{\circ}$, converted by $Zn(CN)_2-Et_2O-HCl$ into 2:4-dihydroxy-3-methoxybenzaldehyde, m.p. $83-84^{\circ}$ (p-nitrophenylhydrazone, decomp. 250°).

Stabilisation of keto-compounds by acetalisation.—See A., 1944, II, 33.

cis- and trans-8-Methyl-1-hydrindanone. W. E. Bachmann and S. Kushner (J. Amer. Chem. Soc., 1943, 65, 1963—1967).—Et 1-hydroxy-2-carbethoxy-2-methylcyclohexylactate (prep. improved to give 88% yield; cf. Chuang et al., A., 1935, 859), b.p. 173—177°/18 mm., with SOCl₂-C₅H₅N and then KOH-MeOH gives 2-carboxymm., with SOCl₂-C₅H₅N and then KOH-MeOH gives 2-carboxy-2-methylcyclohexylideneacetic (I), m.p. 101·8—103·5°, and 2-carboxy-2-methyl-Λ⁶-cyclohexenylacetic acid (II), m.p. 170·5—170·8° [? a stereoisomeride of (I)]. H₂-PtO₂ converts (II) in AcOH into cis-2-carboxy-2-methylcyclohexylacetic acid (III), m.p. 161·5—163° (A., 1943, II, 372, m.p.163—164°), but (I) gives also a small amount of the trans-acid (IV), m.p. 173—174°. Treating crude (III) with CH₂N₂ and then NaOH-H₂O-MeOH gives cis-2-carbomethoxy-2-methylcyclohexylacetic acid, m.p. 54·5—60° (Chuang et al., loc. cit.), which with SOCl₂ and a little C₅H₄N in C₆H₆ at 40° and then CH₂N₂-C₆H₆-Et₂O gives a diazo-ketone, converted by Ag₂O-MeOH into Me cis-8-2-carbomethoxy-2-methylcyclohexylpropionate, a syrup. Me cis-β-2-carbomethoxy-2-methylcyclohexylpropionate, a syrup. Cyclisation by NaOMe-C₈H₆ and subsequent treatment with boiling HCl-AcOH-H₂O yields cis-8-methyl-1-hydrindanone, m.p. 38·2—39·5°, b.p. 121—123°/45—47 mm. (oxime, m.p. 85·5—87°). Hydrogenation (Raney Ni; 125—150°/1800—2000 lb.; H₂O) of K H 1-methyl-\(\Delta^2\)-cyclohexene-1: 2-dicarboxylate gives trans-1-methyl-cyclohexane-1: 2-dicarboxylic acid, m.p. 214—214·3° (lit. 210°), which widds as above trans? Carboxylic weighty cyclohexane-1 which yields, as above, trans-2-carbonethoxy-2-methylcyclohexane-The state of the s b.p. 108-109°/20 mm. [semicarbazone, m.p. 234° (bath preheated to 190°); oxime, m.p. 113-115.5°].

Relationship between anti-mitotic action and constitution in colchicine derivatives. H. Lettré and H. Fernholz (Z. physiol. Chem., 1943, 278, 175—200; see also A., 1944, III, 92).—Colchiceine Chem., 1943, 278, 175—200; see also A., 1944, III, 92).—Colchiceine (in CHCl₃) and the diazoalkane (in Et₂O) give the amorphous methyl-, melts from ~130° (probably not identical with colchicine), ethyl-, melts from ~110°, n-propyl-, melts from 98°, and n-butyl-colchiceine, melts from 90°. p-Anisyl 3:4:5-trimethoxystyryl ketone, m.p. 134° [from 3:4:5:1-(OMe)₃C₆H₂·CHO (I) and p-OMe·C₆H₄·COMe in EtOH + MeOH-NaOMe], is reduced (H₂, Pt-black, AcOH) to the β -3:4:5-trimethoxyphenylethyl ketone, m.p. 98°, the oxime, m.p. 102°, of which is reduced (Na-Hg, EtOH-AcOH) to a-p-anisyl-y-3:4:5-trimethoxyphenylpropylamine (Ac derivative, m.p. 88°). Ph 3:4:5-trimethoxystyryl ketone, m.p. 137°, similarly leads to a-phenyl-y-3:4:5-trimethoxyphenylpropylamine derivative, m.p. 88°). Ph 3: 4:5-trimethoxystyryl ketone, m.p. 137°, similarly leads to a-phenyl-y-3: 4:5-trimethoxyphenylpropylamine (Ac derivative, m.p. 137—138°). N-Acetyl-a-p-anisyl-, m.p. 112°, and -a-phenyl-y-3: 4-dimethoxyphenyl-, m.p. 122°, -a-phenyl-y-p-anisyl-, m.p. 117°, -y-phenyl-a-p-anisyl-, m.p. 115—117°, -ay-di-p-anisyl-, m.p. 114°, and -ay-diphenyl-propylamine, m.p. 88—89°, are similarly obtained. N-Acetyl-a-p-anisylethylamine, m.p. 74—75°, and the Ac, m.p. 91—92° (lit. 93—94°), propionyl, m.p. 79°, and the Ac, m.p. 80—81°, and isovaleryl derivative, m.p. 104°, of 3:4:5:1-(OMe)₃C₆H₂·[CH₂]₂·NH₂ (mescaline) are described. 7-Nitro-4'-methoxystilbene is reduced (Zn dust, EtOH-AcOH) to the corresponding oxime, which with H₂-PtO₂-EtOH-H₂C₂O₄ gives aphenyl-\$-p-anisylethylamine (as oxalate, m.p. 197°; Ac derivative, m.p. 150°). 7-Nitro-3':4'-di- and -3':4':5'-tri-methoxystilbene similarly afford a-phenyl-\$\beta 3:4-di- and -3:4:5-tri-methoxyphenylethylamine (Ac derivatives, m.p. 143—144° and 153—154°, respectively). p-OMe·C₄H₄·CH₂·NO₂ and (I) in EtOH-NH₂Me give 7-nitro-4:3':4':5'-tetramethoxystilbene, m.p. 137°. H. B.

New preparation of hydroxy-aromatic ketone. I. Monoketones. S. S. Israelstam and H. Stephen. II. Diketones. S. S. Israelstam (J. S. African Chem. Inst., 1943, 26, 41—48, 49—53).—I. A trace of conc. H₂SO₄ is added to an equimol. mixture of Ac₂O and a phenol containing two armore OH preparation to the containing two armore OH preparations. containing two or more OH groups in the meta position; there is an immediate rise in temp. of $\sim 60^{\circ}$, after which the mixture is heated at 130° for 15 min.; the product is boiled with H₂SO₄-EtOH to hydrolyse any O-Ac derivative. Thus are obtained: 2:4:1onc. H_2SO_4 results in the relative proportions of acid anhydride and conc. H_2SO_4 results in the introduction of two acyl groups. Thus resorcinol affords a mixture of 2:4-, m.p. 92°, and 4:6-diacetyl-resorcinol, m.p. 182° (Me_2 ether, m.p. 171°); similar mixtures are obtained from resorcinol, AcCl, and conc. H_2SO_4 and from m- $C_8H_4(OAc)_2$ and hot conc. H_2SO_4 . 4:6- and 2:4-Dipropionyl-resorcinol, m.p. 125° and 81° respectively are obtained similarly resorcinol, m.p. 125° and 81°, respectively, are obtained similarly. All the following diketones give a red colour with FeCl₃ in EtOH: diacetylphloroglucinol, m.p. 153°; dipropionylphloroglucinol, m.p. 137—138°; 4:6-diacetylpyrogallol, m.p. 188° (diacetate, m.p. 218°); 4:6-dipropionylpyrogallol, m.p. 186°.

Biochemistry of the lower fungi. VI. Synthesis of fumigatin. T. Posternak and H. W. Ruelius (Helv. Chim. Acta, 1943, 26, 2045—2049).—3:5:4:1-(OH)₂C₆H₂(OMe)·CHO is hydrogenated in abs. EtOH containing PtO₂ to 3:5-dihydroxy.4-methoxybenzyl alcohol (I), m.p. 177—178°, or in glacial AcOH containing Pd-black to 3:5-di-hydroxy-4-methoxytoluene (II), m.p. 135—136°, also obtained under these conditions from (I). (II) is converted by amyl nitrite through the K salt into 2-nitroso-3:5-dihydroxy-4-methoxytoluene, m.p. 118° (decomp), reduced cotalytically or by Na S O, to the unstable (decomp.), reduced catalytically or by $\mathrm{Na_2S_2O_4}$ to the unstable amine which is immediately oxidised to fumigatin [3-hydroxy-4-methoxy-2:5-toluquinone], m.p. $113-113\cdot5^\circ$. H. W.

Biochemistry of the lower fungi. V. New syntheses of phoenicin and isophoenicin. T. Posternak, H. W. Ruelius, and J. Tcherniak (Helv. Chim. Acta, 1943, 26, 2031—2044).—4:1:3:5-at 10° affords 3:3'-dinitro-2:6:2':6'-tetramethoxy-4:4'-dinethyldiphenyl, m.p. 145—146°, which with HNO₃ (d 1·4) in Ac₂O at -10° affords 3:3'-dinitro-2:6:2':6'-tetramethoxy-4:4-dimethyldiphenyl, m.p. 197—198°, reduced to the 3:3'-(NH₂)₂-compound, m.p. 168° or (+2H₂O) m.p. 132—134° (evolution of steam) and, after resolidification, m.p. 168°; this can be diazotised normally with arter resoliding action, m.p. 108°; this can be diazotised normally with production of relatively very stable salts. It is oxidised by Na₂Cr₂O₇ and H₂SO₄ to 2:2'-dimethoxy-4:4'-dimethyldiphenyl-3:6:3':6'-diquinone (phoenicin Me₂ ether), m.p. 131—132°, identical with the compound obtained from phoenicin (I), Ag₂O, and McI and hydrolysed to (I) by 2% Na₂CO₃ at 100°. 4-Iodotoluquinone is converted by Thiele's reagent at room temp. into a mixture of 4-iodo-2:3:5-(II) m. 154°. lysed to (1) by 2%, Na₂CO₃ at 100°. 4-Iodotoluquinone is converted by Thiele's reagent at room temp. into a mixture of 4-iodo-2: 3: 5-(II), m.p. 154—155°, and 4-iodo-2: 5: 6-triacetoxytoluene (III), m.p. 117—118°, which retains a trace of (II). (II) is transformed by activated Cu into leucophœnicin hexa-acetate (IV), m.p. 200—201°. Leucoisophœnicin hexa-acetate, m.p. 178—181°, is obtained similarly from (III) or better, together with (IV), from an equimol. mixture of (II) and (III). (II) is partly hydrolysed by HCl-MeOH to 4-iodohydroxyuiacetoxytoluene (V), m.p. 173—175°; partial hydrolysis followed by methylation (CH₂N₂) leads to 4-iododiacetoxymethoxytoluene (VI), m.p. 164° [also obtained by methylation (CH₂N₂ in Et₂O) of (V)], and 4-iodoacetoxydimethoxytoluene, m.p. 82—84°. (VI) is converted by activated Cu into tetra-acetoxydimethoxy-4: 4'-dimethyldiphenyl, m.p. 171° (also an unstable form, m.p. 149°), which is converted by hydrolysis followed by oxidation by FeCl₃ into (I). Partial hydrolysis (HCl in abs. MeOH) of (III) gives 4-iodohydroxydiacetoxytoluene, m.p. 196—198°, transformed by CH₂N₂ into the corresponding OMe-compound, m.p. 111—113°. dexamethyl-leucophænicin, m.p. 123°, is obtained by treating leucophenicin with Me₂SO₄ and NaOH in presence of Na₂S₂O₄. Hexamethyl-leucoisophænicin, m.p. 85—86°, is obtained analogously and is converted by HNO₃ (d 1·4) in Ac₂O at −10° into a (NO₂)₂-derivative, m.p. 154°. Leucoisophænicin, m.p. 290—291° (block).

H. W.

IV.—STEROLS AND STEROID SAPOGENINS.

Oxidative degradation of neoergosteryl acetate. R. P. Jacobsen (J. Amer. Chem. Soc., 1943, 65, 1789—1792).—The acetate (I), m.p. $118-119^{\circ}$, of neoergosterol (modified prep. from bisergostatrienol in boiling $n\text{-}C_5H_{11}\text{-}OH\text{-}N_2$), m.p. $152\cdot5-154^{\circ}$ (lit. $151-152^{\circ}$), $[a]_D^{19}-10^{\circ}$ in CHCl₃, with successively OsO₄-Et₂O at room temp., aq. EtOH-Na₂SO₃, and HIO₄ in Et₂O containing a little MeOH at 15° gives $a\text{-}3(\beta)\text{-hydroxy-}\Delta^5:7:9\text{-}estratrien-17\text{-ylpropionic}$ acid (II),

 $+0.5\mathrm{H}_2\mathrm{O}$, m.p. $206.5-208.5^\circ$ (Remesov, A., 1938, II, 18, m.p. $210-212^\circ$), $[a]_D^{19}-7^\circ$ in COMe₂ [Me ester (III), m.p. (air-dried) $173-175^\circ$, (dried at $110^\circ/\mathrm{vac}$.) $174-176.5^\circ$], also obtained (m.p. $203.5-206^\circ$) from (I) by O_3 in 2: 1 AcOH-CCl₄ in 6.5-9%, yield (cf. loc cit.). With hot $\mathrm{Ac}_2\mathrm{O-C}_5\mathrm{H}_5\mathrm{N}$ and then $\mathrm{CH}_2\mathrm{N}_2$, (II) gives its Me ester acetate (IV), m.p. $159.5-161.5^\circ$ (loc. cit., m.p. $144-145^\circ$). (IV) with MgPhBr-Et₂O-PhMe gives aa-diphenyl-β-3(β)-acetoxy- $\Delta^{5:7:9}$ -extratrien-17-yl-n-propyl alcohol, $+0.5\mathrm{H}_2\mathrm{O}$, m.p. $112-120^\circ$ (effervescence), dehydrated by $\mathrm{Ac}_2\mathrm{O-C}_5\mathrm{H}_5\mathrm{N}$ and then boiling $\mathrm{Ac}_2\mathrm{O}$ (a little)-AcOH to aa-diphenyl-β-3(β)-acetoxy- $\Lambda^{5:7:9}$ -extratrien-17-yl-(effervescence), dehydrated by $Ac_2O-C_5H_5N$ and then boiling Ac_2O (a little)-AcOH to aa-diphenyl- β -3(β)-acetoxy- $\Delta^{5:7:7}$ -astratrien-17-yl- Δ^a -propene (16%), m.p. 197—201°, [a] $_{19}^{19}$ +171° in CHCl₃. With MgMcI in PhMe-Et₂O, (III) gives γ -3(β)-hydroxy- $\Delta^{5:7:7}$ -astratrien-17-yl- β -methyl-n-butan- β -ol (V), m.p. 179—183°, [a] $_{19}^{19}$ -27° in CHCl₃, which with $Ac_2O-C_5H_5N$ at room temp. gives the 3(β)-acetate, m.p. 127—130°. This is dehydrated by AcOH + a little Ac_2O at 150—155° (less well, $Ac_2O-ZnCl_2$ or anhyd. $H_2C_2O_4$), to γ -3(β)-acetoxy- $\delta^{5:7:9}$ -astratrien-17-yl- β -methyl- Δ^a -n-butene (VI), m.p. 135—136°, [a] $_{19}^{19}$ -14° in CHCl $_{3}$ [corresponding 3(β)-3':5'-dinitrobenzoate, m.p. 252—255° (decomp.)]. With OsO_4 - and then HIO_4 -Et₂O, (VI) gives, after hydrolysis, a-3(β)-hydroxy- $\Delta^{5:7:7}$ -astratrien-17-ylethyl Meketone, m.p. 177—181°, [a] $_{19}^{10}$ —22° in CHCl $_{3}$ (acetate, m.p. 148—152°), which with MgMcI-PhMe-Et₂O gives (V), thus proving the structure. M.p. are corr. structure. M.p. are corr.

Steroid excretion in a case of adrenocortical carcinoma. I. Isolation of a Δ^5 -androstene-3(β): 16:17-triol. H. Hirschmann (J. Biol. Chem., 1943, 150, 363—379).—Urine obtained from a boy with adenocarcinoma of the adrenal cortex is hydrolysed by boiling with HCl; it is extracted with Et₂O and the 17-keto-steroids in the neutral fraction are determined (method: Callow et al., A., 1938, III, neutral fraction are determined (method: Callow et al., A., 1938, III, 905). The neutral fraction is extracted with C_6H_6 and the insol. residue affords Δ^5 -androstene-3(β): 16:17-triol (I), $C_{10}H_{30}O_3$, m.p. $267-270^\circ$ (decomp.). $Ac_2O-C_5H_5N$ at room temp. gives the triacetate (II), m.p. $189\cdot5-191^\circ$, $[a]_{20}^{26}-102^\circ$ in 95% EtOH; the mother-liquors (chromatographic separation) yield a diacetate, m.p. $183-187^\circ$, and 3-monoacetate (III), m.p. $243-245^\circ$, both of which are hydrolysed by aq. NaOH-MeOH at room temp. to (I), $+0\cdot5$ MeOH, m.p. $266-270^\circ$ (decomp.). Hydrogenation (Pd-CaCO₃; EtOH) of (I) affords androstane-3(β): 16:17-triol (IV), m.p. $256-260^\circ$ (digitonide); its triacetate, m.p. $175\cdot5-176\cdot5^\circ$, $[a]_{10}^{16}-44^\circ$ in 95% EtOH, is obtained by hydrogenating (II). (I) and HIO₄, $2H_2O$ -aq. dioxan (in N_2) at room temp. give a product, and HIO₄,2H₂O-aq. dioxan (in N₂) at room temp. give a product, m.p. 131—134°. CrO₃-AcOH at room temp. (21 hr.) convert (IV) into 3-ketoætioallobilianic acid (V), m.p. 253—256°, which is also obtained from isoandrosterone as follows: NaOMe-MeOH-PhCHO obtained from isoandrosterone as follows: NaOMe-MeOH-PhCHO afford 16-benzylideneandrostan-3(β)-ol-17-one, m.p. 181·5—182·5°; its acetale, m.p. 237—238°, and CrO₃-AcOH at 60° yield β -3-hydroxyætioallobilianic acid, new m.p. 254—257° (decomp.), converted by CrO₃-AcOH at room temp. into (∇). (III) with successively BrAcOH, CrO₃-AcOH at room temp., and COMe₂-NaI gives β -3-hydroxy- Δ 5-atiobilienic acid, forms, m.p. 232—236° and 247—255°, or after acetylation (Ac₂O-C₅H₅N), β -3-acetoxy- Δ 5-atiobilienic anhydride, m.p. 186—188°. (I) is not identical with that described by Butenandt et al. (A., 1939, II, 165) or Stodola et al. (A., 1942, II, 104), there being probably a different spatial arrangement at C₍₁₆₎ or C₍₁₇₎ (or both). (I) could not be extracted from the urine prior to hydrolysis. M.p. are corr.

A. T. P.

Photochemical transformation of αβ-unsaturated steroid ketones under the influence of ultra-violet light. II. A. Butchandt and L. Poschmann (Ber., 1940, 73, [B], 893—897; cf. A., 1939, II, 328).— Exposure to ultra-violet light of cholestenone in pure hexane in absence of air gives lumicholestenone, $[a]_{23}^{123} + 36^{\circ}$ to $+37^{\circ}$ (11—12%), and 4% of cholestenonepinacol (I) (A, R = C_8H_{17}), $[a]_{23}^{121} + 103^{\circ}$ in CHCl₃. (I) does not exhibit absorption in the ultra-violet and hence is stable to further irradiation in hexane or C_6H_8 . In CHCl₃ in sunlight it passes into the hydrocarbon (B, R = C_8H_{17}), m.p. 244—

$$(A.)\begin{bmatrix} R & & & \\ & &$$

246° (block) (slight decomp. at 170°), $[a]_{23}^{23}$ -230° in CHCl₃. The change is ascribed to the catalytic influence of HCl derived from decomp. of CHCl₃; it also occurs in EtOH or C₈H₆ containing a decomp. of CHCl₃; it also occurs in EtOH or C_8H_8 containing a trace of HCl in absence of light. Analogously, testosterone propionate (II) in C_6H_6 -hexane (1:10) affords lumitestosterone propionate (II), m.p. 350—355°, and the pinacol (A, R = O·COEt), m.p. 223° after softening, $[a]_5^{23}$ +75° in CHCl₃, also obtained by reduction of (II) by Na-Hg in 96% EtOH and dehydrated by repeated dissolution in EtOH or insolation in CHCl₃ to the compound (B, R = O·COEt), m.p. 275—280°, decomp. >230°, $[a]_2^{123}$ —272° in CHCl₃.

Barbier-Wieland degradation of 3-hydroxy-12-ketocholanic acid. B. Riegel and R. B. Moffett (J. Amer. Chem. Soc., 1943,

65, 1971—1973).—Steric hindrance at the 12-CO allows application of the Barbier-Wieland degradation in the 3-hydroxy-12-ketocholanic acid series. A little ACCl in MeOH at the b.p. and then room temp. or PrβOH at room temp. converts 3-hydroxy-12-ketocholanic acid into the Me (I), m.p. 111·5—113·5° (lit. 110—111·5°), or Prβ ester, m.p. 149·5—151°, respectively. With MgPhBr in boiling Et₂O-C₆H₆ and then, best, 7·5% KOH-MeOH, (I) gives diphenyl-3-hydroxy-12-ketonorcholanylcarbinol (II) (32%), m.p. 215—216·5°, converted by boiling Ac₂O-AcOH (II) (ad-diphenyl-β-12-keto-3-acetoxybisnorchanylethylene (III), m.p. 180·5—182°, which with CrO₃-AcOH-CHCl₃ at ~35° and then boiling aq. NaOH gives 3-hydroxy-12-ketonorcholanic acid, m.p. 248—250° (Me ester, m.p. 149·5—151°). The crude H succinate, m.p. 97—115°, of diphenyl-3: 12-dihydroxynorcholanylcarbinol (IV), m.p. 114—119°, with CrO₃-aq. AcOH at room temp. and then boiling KOH-MeOH gives (II), m.p. 214—215°. Ac₂O-AcOH and then 10% KOH-MeOH converts (IV) into aa-diphenyl-β-3: 12-dihydroxybisnorcholanylethylene, +0·5MeOH (retained at 78°/1 mm.), m.p. 108—10°, which with (CH₂·CO)₂O in C₅H₅N at 100° (5 min.) and then room temp. (24 hr.) gives the 3-H succinate, m.p. 198—201°, converted by CrO₃-AcOH-H₂O at 0—5° and then boiling KOH-MeOH into aa -diphenyl -β - 3 -hydroxy - 12 -hetobisnorcholanylethylene, +0·5EtOH (retained at 78°/1 mm.), m.p. 158—159° [acetate = (III), m.p. 181·5—182·5°]. M.p. are corr. R. S. C.

Bile acids and related substances. XXVII. α-Oxides of the two 3-hydroxy- and the 3-keto-Δ¹¹-cholenic acid. G. H. Ott and T. Reichstein (Helv. Chim. Acta, 1943, 26, 1799—1815).—Me 3-keto-Δ¹¹-cholenate (I) is hydrogenated (Raney Ni) in alkaline medium and then esterified (CH₂N₂) and acetylated to a mixture of Me 3(α)- (II), m.p. 119—121°, and Me 3(β)-acetoxy-Δ¹¹-cholenate (III), m.p. 149—151°, separated from one another by chromatography over Λ¹₂O₃. Gradual addition of an aq. solution of NHBrAc and NaOAc,3H₂O to (II) in COMe₃ at 55—30° and chromatography of the product over A¹₂O₃ gives the corresponding dibromide, Me 11(α): 12(α)-oxido-3(α)-acetoxycholanate (III), m.p. 154—155° [α]¹¹² +62·0°±2° in COMe₂, and Me 12-keto-3(α)-acetoxy-Δ²-cholenate (V), m.p. 146—148°, [α]¹³ +100·0°±2° in COMe₂. The formation of (IV) and possibly of (V) is due to the intervention of the Al₂O₃. Under somewhat modified conditions (II) is converted by NHBrAc in aq. COMe₂ containing NaOAc,3H₂O or in C₅H₅N-C₅H₆ into Me 12-bromo-11(α)-hydroxy-3(α)-acetoxycholanate (VI), m.p. 201—203°, [α]¹¹ +70·5°±2° in COMe₂. (VI) is unchanged by boiling C₅H₅N or by Al₂O₃ which has been washed with dil. HCl and hot MeOH and dried at 250° but converted into (IV) by Al₂O₃ in presence of a little C₅H₅N or by has been washed with dif. Het and not MeOH and dried at 200° but converted into (IV) by Al_2O_3 in presence of a little C_5H_5N or by technical Al_2O_3 containing alkali. Zn dust and boiling AcOH or Zn-Cu in AcOH is without action on (VI). Hydrogenation at $50^{\circ}/100-115$ atm. in MeOH- C_5H_5N containing Raney Ni causes some formation of (IV). (VI) is oxidised by CrO₃ in AcOH-CHCl₃ to Me . 12-bromo-11-keto-3(a)-acetoxycholanate, m.p. $183-185^{\circ}$, [a] $^{15}_{100}$ $^{12}_{1$ $+13\cdot0^{\circ}\pm2^{\circ}$ in COMe₂, debrominated by Zn dust in warm AcOH to Me 11-keto-3(a)-acetoxycholanate, m.p. 131—133°. (VI) is transformed into (IV) by KOH-MeOH at room temp. followed by reesterification (CH₂N₃), or by technical Al₂O₃ containing alkali. Short treatment with boiling AcOH leaves (IV) almost unchanged whereas larger treatment results in vellers are represented in the control of the con Short treatment with boiling AcOH leaves (IV) almost unchanged whereas longer treatment results in yellow, amorphous materials. CrO₃ in AcOH oxidises (IV) at room temp, to an unidentified neutral substance, m.p. 131—138°. Boiling H₂SO₄-MeOH followed by remethylation and acetylation transforms (IV) into a product, m.p. 131—133°. (IV) is hydrogenated (120—145°/~150 atm.; Raney Ni-MeOH), then re-methylated and acetylated, to Me 11 (a)-hydroxy-3 (a)-acetoxycholanate, m.p. 147—149°. (I), NHBrAc, and NaOAc,3H₂O in aq. COMe₂ afford Me 12-bromo-11(a)-hydroxy-3-ketocholanate, m.p. 166—167°, [a]₁¹⁸ +48·9°±2° in COMe₂, converted by technical Al₂O₃ containing alkali into Me 3-keto-11(a): 12(a)-oxidocholanate (VII), m.p. 121—122°, [a]₁¹⁷ +34·0°±2° in COMe₂, vill is converted by NHBrAc and NaOAc,3H₂O in aq. COMe₂ or by NHBrAc in C₆H₆ containing C₇H₆N into Me 12-bromo-11(a)-hydroxy-3(β)-acetoxycholanate (VIII), m.p. 196—198°, [a]₁¹⁸ +50·4°±2° in COMe₂, with (probably) some of the dibromide. (VIII) is oxidised to Me 12-bromo-11-keto-3(β)-acetoxycholanate, m.p. 226—227°, [a]₁¹⁸ -7·3°±2° in COMe₂, debrominated to Me 11-keto-3(β)-acetoxycholanate, m.p. 174—175°. Technical Al₂O₃ transforms (VIII) into Me 11(a): 12(a)-oxido-3(β)-acetoxycholanate (IX), m.p. 151—152°, [a]₁¹⁸ +39·9°±1° in COMe₂; the change is also conveniently effected by KOH-MeOH followed by methylation (CH₂N₂) and acetylation (IX) is hydrolysed, esterified (CH₂N₂), and then oxidised to (VII), also obtained analogously from (IV). M.p. are corr. (block); limit of error ±2°. H. W. whereas longer treatment results in yellow, amorphous materials.

Isomerisation of 17-hydroxy-20-keto-steroids. IV. Reaction of $3(\beta):17(\alpha)$ -diacetoxyallopregnan-20-one with magnesium methyl bromide. C. W. Shoppee and D. A. Prins (Helv. Chim. Acta, 1943, 26, 2089—2095).—Addition of $3(\beta):17(\alpha)$ -diacetoxyallopregnan-20-one (I) in Et₂O-dioxan to MgMeBr in boiling Et₂O followed by treatment of the product with $\text{Ac}_2\text{O}-\text{C}_5\text{H}_5\text{N}$ at room temp. gives unchanged material, small amounts of a substance, m.p. ~265°, $17(\alpha):20$ -dihydroxy-3(β)-acetoxy-20-methylallopregnane (II), m.p. 168— 170° , and $17a(\beta)$ -hydroxy-3(β)-acetoxy-17a-methyl-D-homo-

androstan-17-one, m.p. $159-160^\circ$, $[a]_{15}^{18}-33^\circ\pm 3^\circ$ in COMe₂. Oxidation by (II) by CrO_3 in AcOH at room temp. and hydrolysis of the neutral portion of the product leads to *trans*-androsterone, thus affording direct proof that (I) belongs to the *allo*pregnane series. M.p. are corr. (block); limits of error $\sim \pm 2^\circ$. H. W.

Steroids and sex hormones. LXXXVII. alloPregnan-3(β)-ol-21-al-20-one and pregnan-3(β)-ol-21-al-20-one. Testalolone. L. Ruzicka, V. Prelog, and P. Wieland ($Helv.\ Chim.\ Acta$, 1943, 26, 2050—2057).—3(β)-Acetoxyætioallocholanic acid is converted through the acid chloride and diazo-ketone into 21-chloroallopregnan-3(β)-ol-20-one, m.p. 152—153°, which with hot C_5H_5N gives the pyridinium salt, $C_{28}H_{40}O_3NCl$, m.p. 273—274° (decomp.) (also +1H₂O), converted by p-NO· C_6H_4 *NMe2 into the nitrone, m.p. (indef.) 119—120°, which is hydrolysed by HCl to allopregnan-3(β)-ol-21-al-20-one (I) [monohydrate, m.p. 155°, softens at 136°, [a]p +92·7°±3° in C_5H_5N , giving after desiccation at 90°/high vac. a semihydrate, [a]p +87·5°±3° in C_5H_6N ; dioxime, m.p. 246—249° (decomp.); Me_2 acetal, m.p. 113—115°, [a]p +111·5°±3° in CHCl3, transformed through the pyridinium chloride, m.p. 284° (decomp.), into pregnan-3(β)-ol-21-al-20-one (II) [monohydrate, m.p. ~143°, softens at 127°, [a]p +103°±3° in C_5H_5N ; dioxime, m.p. 224° (decomp.); Me_2 acetal, m.p. 126—129°, [a]p +132°±10° in CHCl3]. (I) and (II) are oxidised by HIO4 to 3(β)-hydroxyætio-cholanic acid, m.p. 224—225·5°, respectively and by CrO_3 in AcOH to the corresponding keto-acids. Neither (I) nor (II) is identical with testalolone (A., 1936, II, 644). M.p. are corr.

Pyridazine derivative of cholestanedione. K. Bursian (Ber., 1940, 73, [B], 922—923).—Contrary to Noller (A., 1940, II, 18) the pyridazine derivative (1) of cholestanedione is a well-defined cryst. compound. It has m.p. >200° to a brown liquid, softens and darkens at 170°. The vals. for the mol. wt. in $C_{10}H_8$, C_6H_6 , PhOH, and exaltone do not reach the high data recorded by Noller but show ill-defined association varying from solvent to solvent and never indicating double the expected formula so that only the formula $C_{27}H_{44}N_2$ is possible. Solutions of (I) in boiling C_6H_6 are turned brown by passage of air whereas (I) can be subjected to protracted heating in a high vac. at ~180° without suffering change; at ~200° it melts to a brown liquid which does not form a sublimate.

Y.—TERPENES AND TRITERPENOID SAPOGENINS.

Condensation of dipentene dihydrochloride with phenol. A. Zinke and H. Hönel [with O. Benndorf, R. Dreweny, and E. Ziegler] (J. pr. Chem., 1940, [ii], 156, 97—102).—Dipentene dihydrochloride (I), PhOH, and a little AlCl₃ or ZnCl₂ at 40—65° give a resinous product from which CH₂Cl₂ or C₆H₆ extracts 1:8-di-p-hydroxyphenylmenthane (+H₂O) (II), m.p. 166° (diacetate, m.p. 122°; dibenzoate, m.p. 169·7°; di-p-bromobenzoate, m.p. 208·8°), which does not resinify when heated, could not be dehydrogenated, and is oxidised by HNO₃ (d 1·1) at 150° to picric acid. Halogenation of (II) gives no cryst. products. Resinous products are obtained from (I) and resorcinol or guaiacol; C₆H₆-AlCl₃ gives resin and some 1:8-di-phenylmenthane, m.p. 242·5°.

Syntheses in the pinane series. G. Komppa (5 Nordiske Kemikermode, 1939, 213—214).—The total synthesis of α- (I) and δ-pinene (II), starting from R(CO₂H)₂ (III) (R = -CH CM_{CD}CH-), has been accomplished in the following stages: (III) via the anhydride and Me H ester gave CO₂Me·R·COCl, and thence, with ZnMeI, CO₂Me·R·COMe, and then (Reformatsky) CO₂Me·R·CMe(OH)·CH₂·CO₂Me (IV). H₂O was split off from (IV) with SOCl₂ to give CO₂Me·R·CMe:CH·CO₂Me, catalytically hydrogenated to CO₂H·R·CHMe·CH₂·CO₂H, the Pb salt of which on dry distillation gave verbanone (V). Reduction of (V) (Na-EtOH) gave C₈H₁₄ CH₁ , which with SOCl₂-C₅H₆N gave (II). (V) with NaNH₂-CO₂ gave C₈H₁₄ CH·CO₂H, which was electrolytically reduced to C₈H₁₄ CH·CO₂H, losing H₂O (Ac₂O) to yield C₈H₁₄ CH·CO₂H and thence (Curtius) C₈H₁₄ CH₂ converted into (I) by known methods. (Cf. A., 1942, II, 147.) M. H. M. A.

Mechanism of the sulphonation of camphor. P. Lipp and H. Knapp (Ber., 1940, 73, [B], 915—921).—The (incorrect) hypothesis that the by-product (I) obtained by Frèrejacque (A., 1926, 1251) in the sulphonation of camphor (II) is a mixed anhydride of camphor-

enolsulphuric acid and AcOH suggests that Reychler's acid (III) is obtained according to the scheme:

$$(II) \longrightarrow CH_{2} - C \cdot OR \longrightarrow CH_{2} - C \cdot OR \longrightarrow CH_{2} CH_{2}$$

(R = H, Ac, or SO_3H). In support of this hypothesis it is shown that (III) is obtained from 1-hydroxycamphene (IV) and $Ac_2O-H_2SO_4$ more rapidly than from (II). (I) yields AcOH but no trace of H_2SO_4 under the influence of $Ba(OH)_2$ and hence is an acetate but not a H sulphate. Further it is resistant to KMnO $_4$ in COMe $_2$, does not absorb Br in CHCl $_3$, and cannot be catalytically hydrogenated; it is therefore saturated and is not an intermediate compound in the sulphonation of (II). The tert. nature of OH in (IV) is established by the positive Wienhaus reaction and by the resistance of (IV) to the formation of a p-nitrobenzoate. Attempts to establish the presence of the semicyclic ethylenic linking in (IV) by fission with O_3 to CHO $_2$ and hydroxycamphenilone show that ketonisation to (II) takes place more rapidly than ozonisation. It is, however, readily hydrogenated giving 1-hydroxyisocamphane (V), m.p. 113.5— 114° . Attempted methylation of (V) with Ag_2O and MeI leads to (II), the Ag_2O behaving as a dehydrogenating agent. (V) has the constitution assigned by Kresstinski et al. (A., 1937, II, 253) to their isoborneol. Since (V) has quite different properties from those of isoborneol, the observations of Kresstinski must be explained otherwise. H. W.

Triterpene resinols and related acids. XIV. Oxidation of acetylursolic acid. E. S. Ewen and F. S. Spring (J.C.S., 1943, 523—525). —Oxidation (AcOH—H₂CrO₄) of acetylursolic acid affords ketoacetylursolic acid (I), $C_{32}H_{48}O_5$, m.p. $315-316^\circ$ (decomp.), $[a]_D^{10} + 40.8^\circ$ in CHCl₃, and a small amount of a lactone, $C_{32}H_{46}O_6$, m.p. $305-306^\circ$ (decomp.). Similar oxidation of Et acetylursolate yields Et ketoacetylursolate, m.p. $210-212^\circ$, $[a]_D^{10} + 92^\circ$ in CHCl₃, identical with that obtained from the acid and CHMeN₂. Quinoline and (I) give nor-a-amyradienonyl acetate, m.p. $203-205^\circ$, $[a]_D^{10} + 41^\circ$ in CHCl₃, with loss of HCO₂H. This acetate contains the chromophoric system O.C-C.C-C.C. These transformations indicate that the CO₂H of ursolic acid is in the vicinity of the ethylenic linking. F. R. S.

VI.—HETEROCYCLIC.

Synthesis of 2-ketocyclohexylsuccinic acid and related substances. III. Syntheses involving ethylene and propylene oxides. J. A. McRae, E. H. Charlesworth, F. R. Archibald, and D. S. Alexander (Canad. J. Res., 1943, 21, B, 186—193).—Addition of (CH₂)₂O to a well-cooled solution of CHNa(CO₂Et)₂ in EtOH followed by CH₂Cl·CO₂Et and alkaline hydrolysis of the product gives 2-ketotetrahydrofuran-3-carboxylic-3-acetic acid, m.p. 165° (Et₂ ester, b.p. 204—206°/15 mm.), which passes at 160° into 2-ketotetrahydrofuran-3-acetic acid, m.p. 56—58°; this is converted by NH₃-EtOH at 100° into β-hydroxyethylsuccindiamide, m.p. 137—139° (decomp.). Under similar conditions Br·[CH₂]₂·CO₂Et affords Et₂ 2-ketotetrahydrofuran-3-carboxylate-3-propionate, b.p. 204—206°/15 mm.; the corresponding dicarboxylate-3-propionate, b.p. 204—206°/15 mm.; the corresponding dicarboxylate-3-propionate, b.p. 204—206°/15 mm.; The corresponding dicarboxylate-3-propionate, b.p. 125° (decomp.), is decarboxylated at 160° to 2-ketotetrahydrofuran-3-propionic acid, m.p. 51·5—53°. Analogously CH₂PhCl gives Et 2-keto-3-benzyltetrahydrofuran-3-carboxylated to 2-keto-3-benzyltetrahydrofuran, b.p. 165—166°/10 mm. Condensation of propylene oxide (I) with CHNa(CO₂Et)₂ and hydrolysis of the product leads to the unstable β-hydroxyropylmalonic acid (isolated as the Ba salt), decarboxylated at 160° to 2-keto-5-methyltetrahydrofuran [γ-valerolactone], b.p. 83—84°/12 mm.; if the Na derivative of the original condensation product is not hydrolysed by NaOH but immediately acidified the unstable γ-hydroxy-a-carbethoxyvalerolactone, b.p. 125—135°/25—40 mm. (partial decomp.), results. Successive treatments of CHNa(CO₂Et)₂ in EtOH with (I) and Br·[CH₂]₂·CO₂Et followed by hydrolysis and decarboxylation of the product lead to 2-keto-5-methyltetrahydro-furan-3-β-propionic acid, m.p. 54—56°.

New furancarboxylic acids from glucose. T. Széki and E. László (Ber., 1940, 73, [B], 924—929).—Glucose, $CH_2Bz \cdot CO_2Et$, and $ZnCl_2$ in abs. EtOH give Et 2-phenyl-5-aβyδ-letrahydroxybutylfuran-3-carboxylate (I), m.p. 176—177°, [a] $_2^{\rm D2}$ —38-4° in AcOH, converted by Ac_2O and C_5H_5N at 0° into the tetra-acetate, m.p. 95°, [a] $_5^{\rm B}$ —51·2° in CHCl $_3$, and by benzoylation into an oil. Oxidation of (I) by $Pb(OAc)_4$ in $AcOH-C_5H_6$ at 0° affords Et 5-aldehydo-2-phenylfuran-3-carboxylate (II), m.p. 76°, [a] $_5$ —9° (semicarbazone, m.p. 170—171°; phenylhydrazone, m.p. 124—126°), which gives a cryst additive product with NaHSO $_3$. (II) is converted by boiling 15°/6 NaOH containing Ag_2O into 2-phenylfuran-3:5-dicarboxylic acid, m.p. 270—271° (decomp.) (dichloride, m.p. 68—72°; diamide, m.p. 206—208°; diamilide, m.p. 147—150°; Me_2 ester, m.p. 95—96°). 2-Phenyl-5-tetrahydroxybutylfuran-3-carboxylic acid, m.p. 195—197° (decomp.), [a] $_5^{\rm B2}$ —24·6° in AcOH, is oxidised [Pb(OAc) $_4$ in C_4H_6 —AcOH] to 5-aldehydo-2-phenylfuran-3-carboxylic acid, m.p. 145—147°, in poor yield. Similarly $CO(CH_2 \cdot CO_2Et)_2$ is condensed to Et_2

5-tetrahydroxybutylfuran-3-carboxylate-2-acetate (III), m.p. 128—130°, $[a]_{2}^{20}$ —14·7° in MeOH, oxidised to Et_{2} 5-aldehydofuran-3-carboxylate-2-acetate, an oil (semicarbazone, m.p. 180—182°; phenylhydrazone, m.p. 96—97°; 3:5-dinitrophenylhydrazone, m.p. 168—170°). (III) is transformed by boiling alkaline KMnO₄ followed by MeOH into Me_{3} furan-2:3:5-tricarboxylate, m.p. 68—73°. H. W.

Polyalkylbenzenes. XXXIII. 3:5:6-Trimethylcoumaran-2-one and its conversion into 4-hydroxy-3:5:6-trimethyl-1-isopropyl-coumaran. L. I. Smith, J. A. King, W. I. Guss, and J. Nichols (J. Amer. Chem. Soc., 1943, 65, 1594—1599; cf. A., 1943, II, 193).—2:3:5:1-C₆H₂Me₂·O·CH₂·CO₂H (prep. from 2:3:5:1-C₆H₂Me₃·OH by K₂CO₃-CH₂Br·CO₂Et-COMe₂ and then NaOEt-EtOH), m.p. 130—131° (lit. 128°), in H₂SO₄ at 90—95° gives 3:5:6-trimethyl-coumaran-2-one (I) (86%), m.p. 90·5—91·5° [2:4-dinitrophenyl-hydrazine salt, m.p. 231° (decomp.), of the enolic form], converted by ZnCl₂-EtOH exothermally into 2-ethoxy-3:5:6-trimethyl-coumarone, m.p. 86—88°. With a drop of H₂SO₄ in Ac₂O, (I) gives 2-acetoxy-3:5:6-trimethylcoumarone, m.p. 88—89°, which with Br-CCl₄ gives 2-acetoxy-3:5:6-trimethylcoumaron-1-one, m.p. 127·5—128·5°. With ZnCl₂ in boiling COMe₂, (I) gives 3:5:6-trimethyl-1-isopropylidenecoumaran-2-one (II), m.p. 90·5—91·5°, reduced by H₂-Raney Ni in EtOH at 200°/3000 lb. to 3:5:6-trimethyl-1-isopropylcoumaran (III), m.p. 38—39°, and converted by O₃ in EtBr and then H₂O₂-H₂O into 2-hydroxy-3:4:6-trimethylbenzoic acid, m.p. 181—182° (decomp.) (decarboxylated at > m.p. to 2:3:5:1-ch₂H₂Me₃·OH). 2:3:4:5:1-OH·C₆HMe₃·CO₂H, m.p. 181° (decomp.), is obtained from 2:4:5:1-C₆H₂Me₃·ONa and (solid) CO₂ at 250°. With Br-CCl₄ (II) gives HBr and 1-bromo-3:5:6-trimethyl-1-a-bromoisopropylcoumaran, m.p. 127—128° (decomp.). Br-CCl₄ converts (III) into 4-bromo-3:5:6-trimethyl-1-isopropylcoumaran, m.p. 65—66°, which with cyclohexyl bromide and EtBr and then Mg in Et₂O gives a Mg derivative, whence O₂ yields 4-hydroxy-3:5:6-trimethyl-1-isopropylcoumaran, m.p. 65—66°, which with cyclohexyl bromide and EtBr and then Mg in Et₂O gives a Mg derivative, whence O₂ yields 4-hydroxy-3:5:6-trimethyl-1-isopropylcoumaran, m.p. 119° (acetate, m.p. 76—77°) (cf. A., 1943, II, 240). Adding Na and then 1:2:3:5:4-O:C₈HMe₃·Oto CH₂(COPra)₂ (prep. from PraCO₂Et and COMePra by way o

Reaction between quinones and metallic enolates. XVII. Dibromo-p-xyloquinone and sodiomalonic ester. L. I. Smith and J. Nichols (J. Amer. Chem. Soc., 1943, 65, 1739—1747; cf. A., 1942, II, 267).—1:2:5:4-O.C₆H₂Mc₂O (I) or 2:5:1:4-C₆H₂Mc₂(OH)₂ (II), m.p. 208—213° (lit. 208° to 213°), with Br in AcOH at room temp. gives the red dibromoquinhydrone, converted by HNO₃ in hot EtOH into 1:2:5:3:6:4-O.C₆Mc₂Br₂O (III), softens 178°, m.p. 183—184° (derived quinol, m.p. 174-5—175-5° after softening), which with CHNa(CO₂Et)₂ (2 mols.) in pure dioxan at room temp. gives Et₂ 5-bromo-3:6-dimethyl-1:4-benzoquinon-2-ylmalonate (IV) (83-7%; much less under other conditions), m.p. 65—66°. With gives Et_2 5-bromo-3: 6-dimethyl-1: 4-benzoquinon-2-ylmalonate (IV) (83·7%; much less under other conditions), m.p. 65—66°. With Na₂S₂O₄-H₂O-Et₂O or H₂-PtO₂ in light petroleum this gives the derived quinol (V), softens 108°, m.p. 111—112°, which with H₂SO₄ (2 drops) in Ac₂O at room temp. gives Et_2 6-bromo-2: 5-diacetoxy-3-xylylmalonate (VI), m.p. 110—111°, and, when shaken in CHCl₃ with 75% H₂SO₄, is cyclised to give Et 5-bromo-4-hydroxy-3: 6-dimethylcoumaran-1-one-2-carboxylate (VII) (91·2%), m.p. 117—118·5° [acetate (VIII), m.p. 120—122°]. Boiling (IV) with Zn in AcOH, (VII) in AcOH, or (VIII) in 1: 1 HCl-AcOH gives 5-bromo-4-hydroxy-3: 6-dimethylcoumaran-1-one (IX), m.p. 200—201° (decomp.) [acetate, m.p. 166—168°, obtained from (IX) by Ac₂O-H₂SO₄ at room temp. or (VIII) by boiling AcOH]. Me₂SO₄-KOH converts (V) in boiling MeOH into Et 5-bromo-4-methoxy-3: 6-dimethylcoumaran-1-one-2-carboxylate (X), m.p. 96—97°, with some 5-bromo-1: 4-dimethoxy-3: 6-dimethylbenzfuran-2-carboxylic acid (XI), m.p. 210—211° (bath preheated at 200°) (decomp.), both [(50·8% of (X)] also obtained from (VII) by NaOH-Me₂SO₄ and both converted by boiling 70% AcOH into 5-bromo-4-methoxy-3: 6-dimethylcoumaran-1-one (XII), m.p. 165— NaOH-Me₂SÕ₄ and both converted by boiling 70% AcOH into 5-bromo-4-methoxy-3: 6-dimethylcounnaran-1-one (XII), m.p. 165—166°, unchanged by boiling KOH-EtOH-H₂O. With KOH-Me₂SO₄ in boiling MeOH, (IX) (81·7% yield) or (XII) (62·7% yield) gives 5-bromo-3: 6-dimethoxy-p-2-xylylacetic acid (XIII), m.p. 158—159°. Me₂SO₄-KOH converts (II) in boiling MeOH into 2: 5: 1: 4-C₆H₂Me₂(OMe)₂ (XIV), m.p. 107—108°, which with Br-AcOH gives 3-bromo-2: 5-dimethoxy-p-xylene (75·8%), m.p. 57—59°, purified by chromatography and converted by HCl-CH₂O-AcOH at 60—70° into 4-bromo-3: 6-dimethoxy-2: 5-dimethylbenzyl chloride (77·8%), m.p. 94—98°, which with boiling KCN-EtOH-H₂O gives the cyanide, m.p. 115—116°, hydrolysed by boiling H₂SO₄-AcOH-H₂O to (XIII). With an excess of CHNa(CO₂Et)₂ in pure dioxan, (IV) gives 2: 5-dimethylhydrolysed by boiling H₂SO₄-AcOH-H₂O to (XIII). With an excess of CHNa(CO₂Et)₂ in pure dioxan, (IV) gives 2:5-dimethyl-3:6-bisdicarbethoxymethyl-p-benzoquinone (XV) (15.7%), m.p. 74—76°, not obtained directly from (III) and reduced by aq. Na₂So₄-Et₂O to the quinol (80%), m.p. 151—154°, which, when shaken in CHCl₃ with 75% H₂SO₄, gives 2:6-diketo-3:7-dicarbethoxy-4:8-dimethylbenz[1, 2-b-4:5-b'-]tetrahydrodifuran [bis-1'-keto-2'-carbethoxy-1':2'-dihydrofurano-1':2'-2:3-1'':2'':5:6-p-xylene] (XVI) (62·5%), m.p. 129—131°. In boiling 80% AcOH, (XVI) gives 2:6-diketo-4:8-dimethylbenz[1,2-b-4:5-b'-]tetrahydrodifuran [bis-1'-keto-1':2'-dihydrofurano-1':2'-2:3-1'':2'':5:6-p-xylene], decomp. 337—340°, also obtained from (XV) by Zn in boiling 70% AcOH and 337-340°, also obtained from (XV) by Zn in boiling 70% AcOH and

converted by KOH-Me₂SO₄-MeOH into 2:5-dimethoxy-p-xylylene-3:6-diacetic acid (XVII) (34-6%), m.p. 267—271° (decomp.). HCl-CH₂O converts (XIV) into 2:5-dimethoxy-3:6-di(chloromethyl)-p-xylene (89%), m.p. 165·5—166°, which with NaCN in EtOH-COMe₂ gives the dinitrile, m.p. 207—207·5°, and thence (H₂SO₄-AcOH-H₂O) (XVII). With an excess of CHNa(CO₂Et)₂ in pure dioxan, (I) gives 4-hydroxy-3: 6-dimethylcoumaran-1-one-2-carboxylate 3.8% of (XVI)], which is hydrolysed and decarboxylated by distillation in steam to give 4-hydroxy-3: 6-dimethylcoumaran-1-one (41.5%), m.p. 214—216°. R. S. C.

Crystalline natural α - and γ -tocopherols. C. D. Robeson (J. Amer. Chem. Soc., 1943, 65, 1660).—Natural α -, m.p. 2·5—3·5° ($E_{1\,\mathrm{cm.}}^{1\,\mathrm{cm.}}$ 71 at 292 m μ .) and γ -, m.p. -3° to -2° ($E_{1\,\mathrm{cm.}}^{1\,\mathrm{cm.}}$ 93·2 at 298 m μ .), and synthetic a-tocopherol, m.p. $\sim 0^{\circ}$ ($E_{1\text{ cm}}^{1\%}$ 70 at 292 m μ .), are prepared. Synthetic dl-a-tocopherol was amorphous. R. S. C.

Derivatives of 2- and 2:8-substituted dibenzfurans. H. B. Willis (Iowa State Coll. J. Sci., 1943, 18, 98-101).—Dibenzfuran derivatives are discussed. New m.p. are recorded for 2-benzoyldibenzfuran (135—136°) and its oxime (182—183°). The following are stated to be new but no analyses are given: di-(2-, m.p. 201—202° and di-(3-dibenzfuryl), m.p. 245—246°: dibenzfuran-2-carboxyldiethylamide, m.p. 77—78°, and -4-carboxyldimethylamide, m.p. 175—786°, and -4-carboxyldimethylamide, m.p. 265—266°. etnylamide, m.p. 77—78°, and -4-carboxyldimethylamide, m.p. 116·5°, 2-benzoyldibenzfuran-x-carboxylic acid, m.p. 265—266° (Me ester, m.p. 189—190°), 3-nitro-2: 8-diamino-, m.p. 210—213° (Ac₂ derivative, m.p. 322—324°), -2-β-benzamidoethyl-, m.p. 183·5—183·9°, 3-sulphanilamido- (II), m.p. 245° (Ac derivative, m.p. 223—224°), 4-sulphanilamido- (II), m.p. 195° (Ac derivative, m.p. 218°), 1:9(?)-bisbenzeneazo-2: 8-dihydroxy-dibenzfuran, m.p. 155—156°; Et₂ 4-, m.p. 75—76°, and Et₂ 3-aminodibenzfuran-N-ethylmalonate, m.p. 99—100°; 2-acetoxy-1-dibenzfurancarboxylic acid, m.p. 151—152°. (I) and (II) are too insol. to be tested pharmacologically 152°. (I) and (II) are too insol. to be tested pharmacologically.

Santonin series. I. Two new desmotroposantonins and two new desmotroposantanous acids. H. Minlon, C. P. Lo, and L. J. Y. Chu (J. Amer. Chem. Soc., 1943, 65, 1780—1781).—Santonin with a Chi (J. Amer. Chem. Soc., 1943, 65, 1780—1781).—Santonin with a drop of H_2SO_4 in cold or warm Ac_2O gives l-desmotroposantonin ($\sim 100\%$), m.p. $194-195^\circ$. d-isoDesmotroposantonin in dil. H_2SO_4 at 100° gives l-desmotroposantonin (I), m.p. $260-261^\circ$, $[a]_D^{20}-106\cdot 2^\circ$, which with the d-isomeride gives the dl-compound (II), m.p. $231-232^\circ$ (acetate, m.p. $182-183^\circ$). Zn in dil. AcOH reduces (I) to d-desmotroposantanous acid, m.p. $175-176^\circ$, $[a]_D^{21}+54\cdot 0^\circ$, which with the l- gives the dl-acid, m.p. $180-181^\circ$, also obtained by reducing (II). Alkali-fusion converts (I) into the low-melting l-desmotroposantanin. Nomenclature of the series is revised l-desmotroposantonin. Nomenclature of the series is revised.

Halogenated m-dioxans.—See B., 1944, II, 6.
Synthesis of a tetrahy—hiophen with substituted amino-groups Synthesis of a tetrahy—hiophen with substituted amino-groups in the 2- and 5-positions. G. B. Brown and G. W. Kilmer (J. Amer. Chem. Soc., 1943, 65, 1674—1675).—cis-Tetrahydrothiophen-2: 5-dicarboxylic acid [prep. from meso-(CH₂·CHBr·CO₂H)₂], sinters 135°, m.p. 141—143° (lit. 144—145°), gives the Et₂ ester, b.p. 157°/10 mm., converted by N₂H₄, H₂O in EtOH at ~70° into the dihydrazide (23%), m.p. 208—209°, which with NaNO₂-H₂O-HCl-Et₂O at 0° and then abs. EtOH at ~50° to the b.p. gives 2: 5-di-(carbethoxyamino)letrahydrothiophen (53%), m.p. 152—154°. In boiling N-HCl it gives much H₂S and in boiling 5% Ba(OH)₂ or NaOH gives 0·8 mol. of NH₃ in 30 min.; with HCl-EtOH-H₂O it gives (CH₂·CHO)₂, isolated as di-p-nitrophenylhydrazone. R. S. C.

Relative reactivities of organometallic compounds. II. Metallation of thianthren and dibenzo-p-dioxin. H. Gilman and C. G. Stuckwisch (J. Amer. Chem. Soc., 1943, 65, 1461—1464; cf. A., 1943, II, 293).—Thianthren (I) with LiBu^a (improved prep.) in Et₂O and then solid CO₂ etc. gives thianthren-1-carboxylic acid, m.p. 217—218° [by decarboxylation gives (I)]. o-C₈H₄Br·SK with PhI and Cu-bronze in boiling xylene gives o-C₈H₄Br·SPh (65%), b.p. 203°/6 mm., converted by S and AlCl₃ into 1-bromothianthren (25%), m.p. 145°, which with LiBu^a etc. gives (I) (proof of structure). With LiBu^a and then NH₂·OMe-Et₂O, (I) gives 1-thianthrenylamine (II), m.p. 139° [hydrochloride, m.p. 231° (decomp.)]. which yields the N⁴-acetylsulphanilyl, m.p. 154°, and thence the sulphanilyl derivative, decomp. >120°. 2-Aminothianthren yields the N⁴-acetylsulphanilyl-m.p. 163°, and sulphanilyl derivative, decomp. >125°. 4-N⁴-Acetylsulphanilyl-m.p. 192°, amd 4-sulphanilyl-amidophenox-thionin, m.p. 168°, are also prepared. No BuSH, Bu₂S, or Bu₂S₄ is obtained from (I) and LiBu^a if S is entirely removed from the (I), e.g., by conc. NaOH (cf. A., 1939, II, 131; 1941, II, 54). Dibenzo-p-dioxin with LiBu^a-Et₂O gives, after carboxylation, dicarboxylic acids, m.p. 297—298° (20%; Me₂ ester, m.p. 142—143°) and >335° (7%; Me₂ ester, m.p. 202—204°); LiMe leads to dibenzo-p-dioxin-1-carboxylic acid (10%), m.p. 210° (Me ester, m.p. 86°). Me 3-bromosalicylate, m.p. 62°, could not be converted into dibenzo-p-dioxin-1-carboxylic acid. R. S. C. Relative reactivities of organometallic compounds. LI. dioxin-1: 6-dicarboxylic acid. R. S. C.

Heteropolar (XXXVI), polyarylated [compounds]. XII. Action of nitrosoaryl compounds on cyclones. Preparation of pentaphenyl-pyrrole. W. Dilthey, G. Hurtig, and H. Passing (J. pr. Chem., 1940, [ii], 156, 27—37).—Tetracyclone [2:3:4:5-tetraphenylcyclo-

pentadienone] (I) reacts similarly to, but less vigorously than, phencyclone [2:5-diphenyl-3:4-2':2''-diphenylenecyclopentadienone] (II) (A., 1939, II, 326). p-NO·C₆H₄·NMe₂ and (I) in warm (not cold) C₅H₅N give 3:4:5:6-tetraphenyl-2-p-dimethylaminophenyliso-oxazine (III) (81—83%), m.p. 212—213° [colourless monoperchlorate, m.p. 239—240° (decomp.); picrate, m.p. 167—169° (decomp.); no reaction with MgMeI], and CO (83%). cis-(CPhBz.)₂ and p-NH₂·C₆H₄·NMe₂.HCl in boiling C₅H₅N-N₂ give (III) and impure 2:3:4:5-tetraphenyl-1-p-dimethylaminopyrrole, m.p. 270—273°. PhNO and (II), alone at 70°, or exothermally in C₅H₅N, give (i) CO (61·3%) and 9:10-dibenzoylphenanthrenemonoamil (IV) (57—59%), m.p. 217—218° [perchlorate, m.p. 297—298° (decomp.); picrate, m.p. 227° (decomp.)], and (ii) CO₂ (25·2%) and 1:2:5-triphenyl-3:4-diphenylenepyrrole (V) (23—25%), m.p. 351° (no salts or reaction with MgMeI). 2:5-Diphenyl-3:4-diphenylenefuran, NH₂Ph,HCl, and Al₂O₃ at 400° give (V). 50—70% of (V) is obtained by boiling (II) in PhNO₂-N₂. C₅H₅N-C₆H₅N,HCl or AcOH hydrolyses (IV) to 9:10-dibenzoylphenanthrene (VI), so that condensation of (VI) with NH₂Ph is impossible. Dissolution of (IV) in C₅H₅N and addition of aq. N₂H₄ gives the azine, m.p. 336°, of (VI). H₂O₂ converts (IV) in warm AcOH or HCO₂H into (VI). H₂S converts (IV) in boiling C₅H₅N into (V). With MgPhBr in Et₂O-PhMe and then aq. NH₄Cl, (IV) gives 9-benzoyl-10-a-hydrozybenzhydrylphenanthreneanil, m.p. 279—280° (decomp.) [azenium perchlorate, m.p. 342 (decomp.), and picrate m.p. 233—234° (decomp.)]. PhNO and (I) in boiling C₅H₅N into (V). With MgPhBr in Et₂O-PhMe and then aq. NH₄Cl, (IV) gives 9-benzoyl-10-a-hydrozybenzhydrylphenanthreneanil, m.p. 279—280° (decomp.) [azenium perchlorate, m.p. 342 (decomp.), and picrate m.p. 233—234° (decomp.)]. PhNO and (I) in boiling C₅H₅N-N₂ give 1:2 CO₂-CO and a mixture including 1:2:3:4:5-pentaphenylpyrrole, m.p. 282° (no salts), also obtained (m.p. 2

Attempts to find new antimalarials. XVIII. D. C. Quin and (Sir) R. Robinson. XIX. W. L. Glen and (Sir) R. Robinson. XX. (Miss) J. Crum and (Sir) R. Robinson (J.C.S., 1943, 555—556, 557—561, 561—565).—XVIII. Condensation of 8-amino-6-methoxy-wipping. (I) with a C. W. (CO.) NICHAIL Regions (II.) 557—561, 561—565).—X\III. Condensation of 8-amino-6-methoxy-quinoline (I) with o-C₆H₄(CO)₂N·[CH₂]₂·Br gives 8-β-phthalimido-ethyl-6-methoxyquinoline, m.p. 153—155°. OPh·[CH₂]₃·NH₂ and o-C₆H₄(CO)₂N·[CH₂]₃·Br in dioxan afford phthalo-γ-(γ'-phenoxy-propylamino)propylimide hydrobromide, m.p. 184°, which with HBr yields the phthalo-γ-(γ'-bromo)-compound, m.p. 195°. This salt with (I) gives 8-x-phthalimido-phthali (I) gives 8-y-phthalimidopropyl-y-aninopropylamino-6-methoxy-quinoline dihydrobromide, m.p. 222—223°, which with N₂H₄ yields 8-y-aminopropyl-y-aminopropylamino-6-methoxyquinoline trihydro-chloride, almost devoid of antimalarial activity; the latter was chloride, almost devoid of antimalarial activity; the latter was thought to be the most probable structure for R.63 (cf. Robinson, et al., A., 1934, 1368). $1:2:4\cdot C_6H_3Cl(NO_2)_2$ and $(CH_2\cdot NH_2)_2$ in EtOH afford 2:4-dinitro- β -aminoethylaniline, m.p. 54° [hydrochloride, m.p. 250° (decomp.)], which with OPh·[CH₂]₃·Br and K_2CO_3 in EtOAc forms 2:4-dinitro-N- γ -phenoxypropyl- β -aminoethylaniline hydrochloride, m.p. 114° . 8- γ -Phthalimidopropylamino-6-methoxyquinoline (II) and o- $C_6H_4(CO)_2N\cdot[CH_2]_3$ ·Br give a mixture, from which is separated, as the hydrochloride, 8-di- γ -bthhalimidopropylamino-6-methoxyquinoline, m.p. 166° which with phthalimidopropylamino-6-methoxyquinoline, m.p. 166°, which with N₂H₄ yields 8-bis-γ-aminopropylamino-6-methoxyquinoline trihydrochloride, a weak antimalarial. 5-Chloro-8-amino-6-methoxyquinoline, m.p. 154° (lit. 150—152°), with Cl·[CH2]* NEt2, HCl affords 5-chloro-8-β-diethylaminoethylamino-6-methoxyquioline, m.p. 76°, which has weak antimalarial properties. 2:5-Dichloro-7-methoxyacridine with 8-γ-aminopropylamino-6-methoxyquinoline (III) and acridine with 8-y-aminopropylamino-b-methoxyquinoline (III) and PhOH gives 2-chloro-5-(6'-methoxyquinolyl-8'-y-aminopropylamino)-7-methoxyacridine, m.p. 114° [dihydrochloride, m.p. 223° (decomp.)], and with (II), 2-chloro-5-y-phthalimidopropylamino-(N-6'-methoxy-8'-quinolyl)-7-methoxyacridine, m.p. 253° (decomp.), is obtained. XIX. New preps. of R.63 have been made, and the high antimalarial activity is confirmed. Fractionation of the dimeconate (+2H₂O), decomp. ~150—160° (corresponding tartrate), has afforded no specimen of higher activity and in some cases a reduction of

no specimen of higher activity and in some cases a reduction of activity has occurred in all fractions without traceable loss of material. No light has been shed on the nature of R.63 by the synthesis of various substances that might have been produced in the formation reaction. (III) forms a dimeconate (+H₂O), m.p. 165—166° (decomp.). Br·[CH₂]₁₀·Br, ο-C₆H₄(CO)₂NH, and K₂CO₃ give phthalo-ω-bromodecylimide (IV), m.p. 57—58°, which with (I) affords 8-ω-phthalimidodecylamino-6-methoxyquinoline, m.p. 83— 84° [hydrochloride, m.p. 151—153° (decomp.)], converted by N₂H₄ into the 8-ω-NH₂-compound, isolated as the dihydrochloride, m.p. 172° (R.95). This base with (IV) yields 8-ω-aminodecyl-ω-aminodecylamino-6-methoxyquinoline, isolated as the meconate (weak antimalarial). (III) and (IV) heated together, followed by treatment malarial). (III) and (IV) heated together, followed by treatment with N₂H₄, give 8-ω-aminodecyl-γ-aminopropylamino-6-methoxy-quinoline, isolated as the meconate, m.p. 160—164°. (III) with Cl·[CH₂]₁₁·NEt₂,HCl gives a substance (meconate, R.97, m.p. ~155°, a potent antimalarial), the salts of which could not be cryst. CHEtCl·[CH₂]₂·NEt₂,HCl and (III) condense to a substance (meconate, R.113, decomp. 160—165°, a potent, non-toxic, antimalarial), whilst a similar substance [meconate, R.103, m.p. 150—155° (decomp.)] is obtained from (III) and CHMeBr·[CH₂]₃·NEt₂,HBr. p-NHAc·C₆H₄·SO₂Cl and (III) afford 8-γ-p-acetamidobenzenesulphonamidobrobylamino-6-methoxyguinoline. m.p. 189°.

amidopropylamino-6-methoxyquinoline, m.p. 189°.

NEt₂·[CH₂]₁₁·Cl,HCl with 5-chloro-8-amino-6-methoxyquinoline gives 5-chloro-8-\(\omega\$-diethylaminoundecylamino-6-methoxyquinoline hydrochloride, m.p. 126—128°. Br·[CH₂]₁₀·CO₂Et and (I) lead to 8-\(\omega\$-carbethoxydecylamino-6-methoxyquinoline, m.p. 43—47°, successively converted into the acid, m.p. 110—111°, and amide, m.p. 113—114°. Br·[CH₂]₁₁·CN and (I) give 8-\(\omega\$-cyanodecylamino-6-methoxyquinoline, m.p. 84—85°, which is converted through the iminoether hydrochloride with EtOH-NH₂ into the 8-\(\omega\$-cyanyl derivative, isolated as the hydrochloride (+H₂O), m.p. 76—77°. A similar prepfrom 8-aminoquinoline affords 8-\(\omega\$-cyano-, m.p. 60—61°, and guanyl-decylaminoquinoline, isolated as the hydrochloride, m.p. 92—93°. The appropriate reagents yield 8-\(\gamma\$-cyano-, m.p. 52—53°, and guanyl-propylaminoquinoline (hydrochloride, m.p. 152—154°). 6-Acetamidoquinaldine and o-C₈H₄(CO)₂N·[CH₂]₃·Br give \(\psi\$-6-acetamido-2-methyl-1-\(\gamma\$-phthalimidopropylquinolinium bromide, m.p. 240—245° (decomp.), which with \(\rho\$-NMe₂·C₈H₄·CHO affords \(\psi\$-6-acetamido-2-p-dimethylaminostyryl-1-\(\gamma\$-phthalimidopropylquinolinium bromide, converted by HBr into \(\psi\$-6-amino-2-p-dimethylaminostyryl-1-\(\gamma\$-phthalimidopropylquinolinium bromide, (no antimalarial properties, but is antiseptic and trypanocidal).

XX. A method for including sec.-amine end groups in the basic

XX. A method for including sec.-amine end groups in the basic side-chain in antimalarials of the plasmoquin series has been devised by alkylation of (I) by means of a chlorohydrin, replacement of OH in the product by Cl, and interaction of the chloroalkylamino-com-

compound with primary bases. The general formula of the bases is (V) and in the substances described x = 3. Interesting variations of antimalarial (V.) NH-[CH₂]_z·NRR' Trimethylenechlorohydrin, (I), and C_8H_{17} ·OH give 8- γ -hydroxy-propylamino-6-methoxyquinoline, m.p. 53°, which with SOCl₂ affords the -Cl-compound (VI), b.p. 115°) 0.0001 mm., and some bis-(8- γ -chloropropylamino-6-methoxy-5-quinolyl) sulphide, m.p. 144° [hydrochloride (+3H₂O), m.p. 200–201°]. The latter compound with NHEL2 forms the bis-8- γ -NEl₂-derivative (R.118), m.p. 85° [hydrochloride (+H₂O), m.p. 150° (decomp.)]. Condensation of (VI) with the appropriate amine affords \approx - γ -methyl- (R.105), b.p. 166° (05 mm. (H oxalate, m.p. 139°; hydrochloride, m.p. 218°), -ethyl- (R.106) [H oxalate, m.p. 139°; hydrochloride (+H₂O), m.p. 206°], -propyl- (R.119) (hydrochloride, m.p. 162°; H oxalate, m.p. 173°), -isopropyl- (R.108) (H oxalate, m.p. 136°; hydrochloride, m.p. 210°), -n-butyl- (R.107) [H oxalate, (H₂O), m.p. 180°], -isobutyl- (R.110) [H oxalate (+H₂O), m.p. 188°; hydrochloride, m.p. 178°), -tert.-butyl- (R.109) (meconate, m.p. 188°; hydrochloride, m.p. 174°), -n-heptyl- (R.114) (H oxalate, m.p. 181°; hydrochloride, m.p. 110—112°), -benzyl- (R.117) [H oxalate, m.p. 188°; hydrochloride, m.p. 174°), -n-heptyl- (R.114) (H oxalate, m.p. 181°; hydrochloride (+EtOH), m.p. 203°], -diethyl- (rhodoquin, R.116) (dimeconate, m.p. 178°), hydrochloride, m.p. 204°), -cyclohexyl- (H oxalate, m.p. 215°), -furfuryl- (R.112) [H oxalate (+H₂O), m.p. 188°; hydrochloride (+EtOH), m.p. 203°], -diethyl- (rhodoquin, R.116) (dimeconate, m.p. 178°); hydrochloride, m.p. 208°), and -methylpropyl-aminopropylamino-6-methoxyquinoline (R.123) [meconate (+H₂O), m.p. 188°; hydrochloride, m.p. 182°; hydrochloride, m.p. 185° (decomp.); hydrochloride, m.p. 180°), -β-hydroxyethyl- (R.111) [H oxalate (+H₂O), m.p. 188°; hydrochloride, m.p. 210°), -β-amino-n-amyl- (R.122) (H oxalate, m.p. 160°), -β-hydroxyethyl- [picrate, m.p. 150° (decomp.); hydro

Oxidations with selenium dioxide. W. Borsche and H. Hartmann (Ber., 1940, 73, [B], 839—842; cf. A., 1938, II, 202).—2-Methylpyridine is oxidised by ScO₂ in boiling EtOAc to small amounts of pyridine-2-aldehyde (phenylhydrazone, m.p. 178—179°; 2: 4-dinitrophenylhydrazone, m.p. 239—240°) and some pyridine-2-carboxylic acid. Under similar conditions 1:2:3:4-tetrahydroacridine is partly oxidised to 4-keto-1:2:3:4-tetrahydroacridine [dinitrophenylhydrazone, m.p. 273—274° (decomp.), and its hydrochloride, decomp. 255°) but mainly dehydrogenated to acridine. Similarly the 2-Me derivative is in part oxidised to 4-keto-2-methyl-1:2:3:4-tetrahydroacridine (dinitrophenylhydrazone, decomp. 257—258°) but mainly dehydrogenated. On the other hand in so far as it reacts 7-aza-5:6-benzhydrindene is converted into the -hydrindone (dinitrophenylhydrazone, darkens and decomp. >300°). Dimethyldihydrocsorcinol and SeO₂ in boiling EtOAc give anhydrodimethone

mainly dehydrogenated. On the other hand in so far as it reacts 7-aza-5: 6-benzhydrindene is converted into the -hydrindene (dinitrophenylhydrazone, darkens and decomp. >300°). Dimethyldihydroresorcinol and SeO₂ in boiling EtOAc give anhydrodimethone $CH_2-CO\cdot C\cdot ScO\cdot C\cdot CO-CH_2$ selenium oxide, $CMe_2\cdot CH_2\cdot C-O-C\cdot CH_2\cdot CMe_2$ [bisdinitrophenylhydrazone, m.p. 281—282° (cf. Stamm et al., A., 1933, 1314)]. Under similar conditions β -C₁₀H₁·OH affords dihydroxydinaphthyl selenide, m.p. 195—196°, which gives a dark green colour with FeCl₃, dissolves unchanged in NaOH, couples with PhN₂Cl, and yields a dibenzoate, m.p. 213—214°.

Relative reactivities of organo-metallic compounds. LIII. Dimetallation of 9-phenylcarbazole. H. Gilman and C. G. Stuckwisch (J. Amer. Chem. Soc., 1943, 65, 1729—1733).—9-Phenylcarbazole (I) (0·082) with LiBua (0·25 mol.) in Et₂O and then CO₂ gives 9-phenylcarbazole-2'-carboxylic (III) and -2':6'-dicarboxylic acid (III) (25%), m.p. 273—274° [by decarboxylation gives 87% of (II) (cf. A., 1942, II, 122)]. CH₂N₂ gives the Me₂ ester, m.p. 156—157°, of (III). PCl₅ and then SnCl₄ in xylene at 0° converts (III) into benz[ij]carbazolo[1:9:8-cdef]quinolizine-7:11-dione (IV), m.p. 228—230°, which gives a mono-oxime, m.p. 262—264°, but does not condense with l-menthyl N-aminocarbamate. Carbazole-1-carboxylic acid, m.p.

oenz[1][caroazolo] 1: 9: 8-cdei]quinotizine-1: 11-aione
(IV), m.p. 228—230°, which gives a mono-oxime, m.p.
262—264°, but does not condense with l-menthyl Naminocarbamate. Carbazole-1-carboxylic acid, m.p.
275—276°, is obtained from Mg 9-carbazolyl
bromide and CO₂ at > 1 atm. in 18% yield; its Me
ester, m.p. 98—100°, with o-C₆H₄I·CO₂Mc, K₂CO₃,
and Cu-bronze in boiling PhNO₂ and then 30% KOH
gives 9-phenylcarbazole-1: 2'-dicarboxylic acid, m.p.

and Cu-bronze in boiling PhNO₂ and then 30% KOH gives 9-phenylcarbazole-1: 2'-dicarboxylic acid, m.p. 231—232° (Me₂ ester, m.p. 144—145°), cyclised as above into (IV) (proof of structure). Similar condensations gives 9-phenylcarbazole-2: 2'-, m.p. 266—267° (Me₂ ester, m.p. 146—147°), -3: 2'-, m.p. 246—247° (Me₂ ester, m.p. 143—144°), and -2': 4'-dicarboxylic acid, m.p. 278—280° (Me₂ ester, m.p. 160—161°). 1: 3: 2-C₆H₃Mc₂I (V) and boiling aq. KMnO₄ give 2: 1: 3-C₆H₃I(CO₂H)₂, m.p. 260° (decomp.) (lit. 205—220°, 236°). Condensation of 2: 1: 3-C₆H₃I(CO₂H)₂ and carbazole (VI) and then hydrolysis gives only 70% of [C₆H₃(CO₂H)₂-2: 6]₂, m.p. 390° (decomp.). No products are obtained by condensing (VI) with (V). The Li₂ derivative of (I) with Me₂SO₄ in Et₂O gives an inseparable mixture, Conc. HNO₃ converts (III) in AcOH at 100° into the 3: 6-(NO₂)₂-derivative, m.p. >350°, which by decarboxylation gives 3: 6-dinitro-9-phenylcarbazole, m.p. 298°, obtained from 3: 6-dinitrocarbazole by PhI; HNO₃ in AcOH at room temp. gives 3-nitro-9-phenylcarbazole-2': 6'-dicarboxylic acid, m.p. 282—284°, which by decarboxylation gives 3-nitro-9-phenylcarbazole and resists cyclisation. R. S. C.

Hydrolysis of substituted barbituric acids under pressure. H. Ruhkopf (Ber., 1940, 73, [B], 938—940).—H₂O at 5 atm. hydrolyses substituted barbituric acids to 1:1 mixtures of acyl-urcides and -amides (+CO₂ + NH₃), but at 10 atm. the amide is the sole product. At 5 atm. salts of strong acids favour formation of urcide, those of weak acids lead to mainly urcide, and alkalis cause further hydrolysis to the acid. E.g., 5:5-diethylbarbituric acid in H₂O at 5 atm. gives CHEt₂·CO·NH·CO·NH₂ (I) (47%) and CHEt₂·CO·NH₄ (II) (~40%), but in aq. NaCl at 3 atm. gives 80% of (I). 5:5-Diallylbarbituric acid in H₂O at 10 atm. gives 95% of (CH₂·CH·CH₂)₂CH·CO·NH₂. In aq. Na₂SO₃ at 5 atm. 5-phenyl-5-cthylbarbituric acid gives 80% of CHPhEt·CO·NH₂. 1-Methyl-5:5-diethylbarbituric acid in H₂O at 10 atm. gives (II), CO₂, and NH₂Me.

Heterocyclic nitrogen compounds. Stereochemistry of tervalent nitrogen. H. H. Hatt and (Miss) E. F. H. Stevenson (J. Amer. Chem. Soc., 1943, 65, 1785—1786).—Known compounds having the ring-system of 1:2-trimethylenepyrazolidine (Buhle et al., A., 1943, II, 207) are listed.

R. S. C.

ring-system of 1: 2-trimethylenepyrazolidine (Buhle et al., A., 1943, II, 207) are listed.

Pyrazole compounds. IV. Acylation of 3-phenyl- and 3-anilino-5-pyrazolone. A. Weissberger and H. D. Porter (J. Amer. Chem. Soc., 1943, 65, 1495—1502; cf. A., 1943, II, 280).—3-Phenyl-5-pyrazolone with Ac₂O or Ac₂O-AcOH at 100° gives 62—66% of the 1-Ac derivative (II), m.p. 127—128° (lit. 121°), and \$20% of 5-acetoxy-3-phenylpyrazole (III), m.p. 150—152° (cf. Curtius, A., 1895, i, 246; von Rothenburg, ibid., 686). NaOH hydrolyses (II) and, more readily, (III) to (I). (II), but not (III), is sol. in Na₂CO₃. (II) gives a magenta dye with p-NO-C₆H₄·NMe₂ (IV) or in the film-strip test with p-NH₂-C₆H₄·NMle₂ (Fischer, Phot. Korr., 1914, 51, 19). (II) and (III) are equilibrated in boiling 66% AcOH, but C₅H₅N converts (II) irreversibly into (III); thus (III) is best prepared by treating (I) in C₅H₅N with Ac₂O at 100° or AcCl at room temp. Further treatment of (I), (II), or (III) with Ac₂O or of (III) with AcCl-C₅H₅N gives 1-acetyl-5-acetoxy-3-phenylpyrazole (V), m.p. 84° [previously (loc. cii.) considered to be the 1: 2-diacetoxypyrazolone], insol. in Na₂CO₃ but slowly hydrolysed to (I) by NaOH, to (II) by boiling piperidine–EtOH, and to (III) by hot 66% AcOH. Ac₂O and (I) give also a small amount of 1-acetyl-3-acetoxy-5-phenylpyrazole [? 1: 2-diacetyl-3-phenyl-5-pyrazolone], m.p. 75—76°, insol. in Na₂CO₃, which is also obtained from (V) by Ac₂O-AcOH, is hydrolysed by NaOH to (I) and by 66% AcOH to (III), and with hot piperidine–EtOH gives 3-hydroxy-1-acetyl-5-phenylpyrazole, m.p. 144—146°, sol. in Na₂CO₃, hydrolysed to (I) by NaOH, and giving no dye by either test. With B2Cl-C₆H₅N at 100°, (I) gives 5-benzoyloxy-3-phenylpyrazole (VI), m.p. 170—171°, insol. in NaOH, reconverted into (I) by piperidine–EtOH and with Ac₂O at 100° or with AcCl-C₆H₅N giving 1-acetyl-5-benzoyloxy-3-phenylpyrazole (VII), m.p. 117—118°, but in PhMe some 1-benzoyl-3-benzoyloxy-5-phenylpyrazol

treatment with piperidine gives erratic results; HCl in dioxan gives (VI) from (VII) or (VIII). With Ac₂O at 100° (5 min.) or Ac₂O (1 mol.)-C₅H₅N, 3-anilino-5-pyrazolone (IX) gives 3-anilino-1-acetyl-5-pyrazolone (X), m.p. 207—209° (decomp.), sol. in Na₂CO₃, hydrolysed to (IX) by NaOH, and giving with (IV) a magenta dye containing Ac and formed also in the film-strip test. With Ac₂O at 100° (30 min.), (IX) or (X) gives 3-anilino-1-acetyl-5-acetoxypyrazole (XI), m.p. 131°, insol. in Na₂CO₃ [converted by piperidine (1 mol.) or aq. AcOH into (IX)], and a small amount of 5-anilino-1-acetyl-3-acetoxypyrazole (XII), m.p. 108—109°, insol. in Na₂CO₃, hydrolysed by NaOH to (IX) and by piperidine to 3-hydroxy-5-anilino-1-acetyl-pyrazole, m.p. 203—205° (decomp.), sol. in Na₂CO₃, giving (IX) by NaOH, but yielding negative dye tests. Boiling AcOH causes transformation of (XI) into (XII), but (X) is unaffected. (XII) is best obtained by boiling (IX) in Ac₂O. When heated with Bz₂O or BzCl (2 mols.) + H₂O (1 mol.) in C₅H₅N, (IX) gives 3-anilino-5-benzoyloxypyrazole, m.p. 148—150°, insol. in Na₂CO₃ and hydrolysed to (IX) by piperidine; heating with BzCl-C₅H₅N in absence of H₂O gives 3-anilino-1-benzoyl-5-pyrazolone, m.p. 198—200° (decomp.), relatively stable to NaOH, sol. in Na₂CO₃, and giving positive dye tests; BzCl in dioxan at 100° yields 3-anilino-1-benzoyl-5-benzoyl-oxypyrazole, m.p. 132—134°, insol. in Na₂CO₃. R. S. C.

Synthesis of purine nucleosides. III. 4-Glycosidaminopyrimidines. J. Baddeley, B. Lythgoe, and A. R. Todd. IV. 4:6-Diaminopyrimidine. New synthesis of pyrimidine derivatives. G. W. Kenner, B. Lythgoe, A. R. Todd, and A. Topham (J.C.S., 1943, 571—574, 574—575).—III. Direct glycosidisation of 4-aminopyrimidines is complicated since such compounds may behave as derivatives of 4-iminodihydropyrimidine. d-Xylose, 4:6-diamino-2-methylthiopyrimidine (II), and NH₄Cl in EtOH give 6-amino-4-dxylosidamino-2-methylthiopyrimidine (II), m.p. 190—192° (decomp.), hydrolysed to (I), isolated as the picrate, m.p. 212° (decomp.). Ac₂O, AcCl, and (II) in C₅H₅N afford 6-acetamido-4-triacetyl-d-xylosidamino-2-methylthiopyrimidine, m.p. 226°, [a]¹⁸/₁₀ +57° in C₅H₅N, which with MeOH-NaOMe yields the 6-acetamido-4-d-compound, m.p. 95—100°, or 192—193° (hydrated), [a]²⁰/₁₀ +23° in C₅H₅N. Acetylation with EtOAc-AcCl of (I) affords the hydrochloride (+H₂O), m.p. 213—214°, of the Ac derivative. 6-Amino-4-d-mannosidamino-2-methylthiopyrimidine (+1·5H₂O), m.p. 213—214° (decomp.), similarly prepared, gives rise to 6-acetamido-4-tetra-acetyl-d- (+3H₂O), m.p. 140—150°, [a]²⁰/₁₀ -100° in C₅H₅N, and -4-d-mannisidamino-2-methylthiopyrimidine, m.p. 242—243° (decomp.), [a]²⁰/₁₀ -55° in C₅H₅N. 4:6-Diamino-2-methylpyrimidine, d-xylose, EtOH, and HCl give 6-amino-4-d-xylosidamino-2-methylpyrimidine, m.p. 219° (decomp.), [a]³⁰/₁₀ +158° in H₂O (constitution proved by hydrolysis).

[a] +158° in H₂O (constitution proved by hydrolysis).

IV. 4:6-Dichloropyrimidine, m.p. 67·5°, prepared from the corresponding (OH)₂-compound and POCl₃-NPhMe₂, under pressure at 170° with NH₃-EtOH gives some 4:6-(NH₂)₂-compound (III). Small yields of (III) are also obtained from 4:6-diamino-2-thiolpyrimidine with NaOAc and H₂O₂, and from 6-iodo-4-amino-pyrimidine with NH₃-EtOH at 180-200°. Malondi-iminoether dihydrochloride, obtained from CH₂(CN)₂ and HCl-EtOH, with cold NH₃-EtOH affords malondiamidine dihydrochloride, which with Na-MeOH, followed by HCO₂Et, gives (III).

F. R. S.

Pyrimidines.—See B., 1944, II, 7.

Synthesis and properties of ninhydrin ureide. D. D. Van Slyke and P. B. Hamilton (J. Biol. Chem., 1943, 150, 471—476).—Ninhydrin (I) (1 mol.) and $CO(NH_2)_2$ (II) (1 mol.) combine in boiling $0\cdot 1v\cdot H_2SO_4$ to form ninhydrin "ureide" (III), $C_{10}H_{10}O_5N_2$, or after loss of 7·6% H_2O in vac. at 56° , $C_{10}H_8O_4N_2$, m.p. 216— 217° (decomp.); there may be anhydride formation or H_2O of crystallisation. In boiling H_2O , at pH 2, (III) undergoes partial degradation or hydrolysis, with loss of CO_2 and possible decomp. to (I) + (II). (I) has a retarding effect (noted after 1 min.) on evolution of CO_2 from (II) at 100° . From the velocity of the combination of (I) and (II), conditions are defined which enable (II) to be removed from solution nearly quantitatively by formation of (III). A. T. P.

Formation and properties of azlactones obtained from vanillin substitution products. L. C. Raiford and C. H. Buurman (J. Org. Chem., 1943, 8, 466—472).—The following 2-phenyl-4-3'-methoxy-4'-acetoxybenzylideneoxazol-5-ones (azlactones) are obtained by heating the requisite substituted vanillin (I) with hippuric acid (II) and NaOAc in Ac₂O at 100°: 5'-chloro-, m.p. 190·5—191·5°; 6'-chloro-, m.p. 205—206°; 5': 6'-dichloro-, m.p. 239—240°; 5'-bromo-, m.p. 191—191·5°; 6'-bromo-, m.p. 211°; 5': 6'-dibromo-, m.p. 265°; 2': 5': 6'-tribromo-, m.p. 190·5—191°; 5'-bromo-4'-methyl-, m.p. 167·5—168·5°; 5'-iodo-, m.p. 180—181°. 2-Bromo-hippuric acid, m.p. 193—194°, similarly affords 2-2'-bromophenyl-4-3'-methoxy-4'-acetoxybenzylideneoxazol-5-one, m.p. 158·5—159·5°, and its 5'-, m.p. 187—188°, and 6'-Br-, m.p. 197—198°, 5: 6-Br₂-, m.p. 225—226°, and 2: 5: 6-Br₃-, m.p. 189—191°, ·-derivatives. Aceturic acid yields the following 4-3': 4-dimethoxybenzylidene-2-methylpyrazol-5-ones by condensation with the appropriate vanillin derivative: 5'-chloro-, m.p. 203—204°; 5'-chloro-4'-methyl-, m.p. 169—170°; 5'-bromo-, m.p. 206—207°; 5'-bromo-4'-methyl-, m.p. 162—163°; 6'-bromo-, m.p. 119—120°; 5'-iodo-, m.p. 196—197°.

Cautious heating of the azlactone (III) from (I) and (II) with ~3% KOH gives a-benzamidoferulic (a-benzamido-4-hydroxy-3-methoxy-cinnamic) acid, m.p. 208·5—209·5°, reconverted into (III) by Ac₂O at 100°. The following substituted 4-hydroxy-3-methoxycinnamic acids are obtained analogously: 5-chloro-a-acetamido-, m.p. 212—213°; 4-chloro-a-benzamido-, m.p. 227—228°; 5-bromo-a-acetamido-, m.p. 203—204°; 5-bromo-a-benzamido-, m.p. 229—230°; 5-iodo-a-acetamido-, m.p. 217—218°; 5-iodo-a-benzamido-, m.p. 227—228°. a-Acetamido- and 5-bromo-a-benzamido-3: 4-dimethoxycinnamic acids have m.p. 198—199° and 201—202° respectively. Et, m.p. 196—197°, and Me, m.p. 205—206°, 5-bromo-a-benzamido-4-hydroxy-3-methoxycinnamate and Me 5-bromo-a-benzamido-3: 4-dimethoxycinnamate, m.p. 119—121°, have been prepared. The azlactones are converted by boiling 6n-NaOH into NH₃, BzOH, and the following 4-hydroxy-3-methoxyphenylpyruvic acids: 5-chloro-, m.p. 228—228·5° (oxime, m.p. 158—159°); 5-bromo-, m.p. 237·5—239°/(decomp.) [oxime, m.p. 169° (decomp.); semicarbazone, m.p. 195—196°; diacetate, m.p. 193—194°]; 5-iodo-, m.p. 234—235° (oxime, m.p. 170—171°). 5-Bromo-3: 4-dimethoxyphenylpyruvic acid, m.p. 175—177°, gives a Me ether, m.p. 162—163°. H. W.

Hydroindazolone derivatives; search for new analgesics. C. W. Picard and D. E. Seymour (Quart. J. Pharm., 1943, 16, 264—269; cf. A., 1944, III, Mar.).—A simplified method for prep. of 1-phenyl-tetrahydroindazolone (I) consists in condensing Et cyclohexanone-2-carboxylate (II) with a salt of NHPh·NH2 instead of the free base; similarly condensation of (II) with N2H4, H2SO4 in H2O yields tetrahydroindazolone. Condensation of (I) with the appropriate alkyl halide in boiling EtOH-KOH yields 1-phenyl-2-n-, m.p. 65-5°, and -isopropyl-, m.p. 84—85°, -2-n-butyl-, an oil, m.p. 84°, and -isoannyl, an oil, and -2-allyl-tetrahydroindazoline, m.p. 65—67°. (I) with B2Cl in C4H4N gives the 2-Bz derivative, m.p. 110°. Treatment of 1-phenyl-2-methyltetrahydroindazolone with ClSO3H and subsequently with NH3 yields 2-p-sulphonamidophenyl-1-methyltetrahydroindazolone, m.p. 272—273°. 1-p-Acetamidobenzenesulphonyl-2-phenyltetrahydroindazolone has m.p. 190—191°. J. N. A.

Further diacridines and diacridylium salts, K. Gleu and R. Schaarschmidt (Ber., 1940, 73, [B], 909—915).—Acridones (I) are reduced to "diacridines" by methods which must be adapted to the individual cases (Zn and HCl—EtOH are frequently useful) and these are readily oxidised to diacridylium nitrates by boiling dil. HNO₃. Alternatively (I) are treated with Mg+MgI₂ in boiling PhOMe; the resulting pinacols are too unstable for isolation and, after removal of the solvent with steam, the diacridylium salts are usually immediately obtained as the sparingly sol. iodides, which are readily converted into the nitrates and chlorides. The following are described: 10:10'-diethyl' diacridine," m.p. 275°; 10:10'-diethyl-diacridylium H nitrate, C₂₀H₂₆N₂(NO₃)₂HNO₃,3H₂O; 10:10'-diethyl-diacridylium H nitrate, C₂₀H₂₆N₂(NO₃)₂HOO₃,3H₂O; 10:10'-diethyl-diacridylium nitrate and chloride, C₂₈H₂₈N₂Cl₂,2HCl,8H₂O, and the compound, C₂₈H₂₆N₂Cl₂,ZnCl₂,H₂O; 10:10'-dimethyldiacridylium nitrate tetra-and di-hydrate. 10:10'-Diethyl- and -dimethyl-acridylium salts show green luminescence of about the same intensity. The chemiluminescence colour of the 10:10'-Ph₂ compounds in very dil. solution is pure blue comparable in shade and intensity with that of 3-aminophthalhydrazide; the fluorescence colour is not materially affected. The conen. of H₂O₂ is also significant. It appears therefore that the chemiluminescence phenomenon is more complex than assumed hitherto and that there is no general identity between fluorescence- and chemiluminescence-spectra; the identity sometimes observed is accidental. Diacridines show marked chemiluminescence in org. media in which autoxidation occurs without addition of alkali; it is best observed by addition of EtOH to a diacridine in cyclohexanone.

Pyridazine derivative of cholestanedione.—See A., 1944, II, 52.

ms-Benzacridan derivatives. H. Waldmann and K. G. Hindenburg [with S. Back] (J. pr. Chem., 1940, [ii], 156, 157—168).—1-Anilino-2: 3-benzanthraquinone is converted by AlCl₂ (10 parts) at 150° (bath)/2 hr. or by 75% H₂SO₄ (20 parts) at 180°/8 hr. into 2: 3-benzcæramidonine, m.p. 262°. 1-Amino-2: 3-benzanthraquinone, o-C₆H₄Cl·NO₂, K₂CO₃, Cu(OAc)₂, and Cu powder in boiling PhNO₂ give the 1-o-nitroanilino-, m.p. 283° [less readily obtained from 1-chloro-2: 3-benzanthraquinone (I), o-NO₂·C₆H₄·NH₂, K₂CO₃, and Cu(OAc)₂ in PhNO₂], reduced (EtOH-Na₂S) to the 1-o-amino-anilino-derivative, m.p. 264°, which with NaNO₂ in aq. AcOH at —6° to 0° affords 1-1'-benztriazoly1-2: 3-benzanthraquinone, m.p. 288° [also prepared from (I), benztriazole (II), KOAc, and Cu(OAc)₂ in PhNO₂]; this in boiling NHPh₂ gives 3: 4-phthaloyl-ms-benzacridan, m.p. 289—290°. 1-o-Chloroanilino-2: 3-benzanthraquinone, m.p. 206°, is obtained from (I), o-C₆H₄Cl·NH₂, and NaOAc. 1: 4-Dichloro-2: 3-benzanthraquinone (III), (II), KOAc, and Cu(OAc)₂ in PhNO₂ at 190° (bath) give 1: 4-di-1'-benztriazoly1-2: 3-benzanthraquinone, decomp. 291° (also formed by HNO₂ on the 1: 4-di-o-aminoanilino-derivative), which in boiling NHPh₂ affords 1: 2-

phthaloyl-4:5:8:9-dibenzo-3:10-dihydro-3:10-diazapyrene (A), m.p. >400° (obtained directly if the original reaction mixture is boiled). 4-Chloro-1-hydroxy-2:3-benzanthraquinone, (II), KOAc, and Cu(OAc)₂ in PhNO₂ at 220—230° give 2-hydroxy-3:4-phthaloyl-ms-benzacridan, m.p. >310°. ang.-Naphthotriazole with (I) and (III) in boiling PhNO₂ similarly affords the mono-, m.p. 319° (decomp.), and di-naphthotriazolyl derivatives, m.p. >340°, respectively, and thence 3:4-phthaloyl-5:6(7:8)-benzo-ms-benzacridan, m.p. 290° (in boiling NHPh₂), and 1:2-phthaloyl-4:5:8:9-di-1':2'(2':1')-naphtho-3:10-dihydro-3:10-diazapyrene, m.p. >400°. 3:4-Phthaloyl-1

oyl-6:7-benzo-ms-benzacridan, m.p. >320°, and 1:2-phthaloyl-4:5:8:9-di-2':3'-naphtho-3:10-dihydro-3:10-diazapyrene, m.p. >400°, are similarly obtained directly using lin.-naphthotriazole. lin.-Naphthotriazole-4:9-quinone with (I) and (III) in boiling PhNO2 similarly affords the mono-, m.p. >370°, and di-naphthotriazolequinonyl derivative, m.p. >400°, respectively, from which N2 could not be eliminated. 3-Bromobenzanthrone (IV), o-NO2·C6H4·NH2, KOAc, and Cu(OAc)2 in boiling PhNO2 give the 3-o-nitroanilino-, m.p. 266°, reduced (EtOH-Na2S) to the 3-o-minoanilino-derivative, m.p. 268°. This with NaNO2 in aq. AcOH at >-2° affords 3-1'-benztriazolylbenzanthrone, m.p. 306·5° [less readily obtained from (II) and (IV)], which in boiling anthracene gives the carbazole derivative (B), m.p. 348° [cautious oxidation (CrO3, AcOH) gives anthraquinone-1-carboxylic acid]. H. B.

Isolation of mononucleotides after hydrolysis of ribonucleic acid by crystalline ribonuclease. H. S. Loring and F. H. Carpenter (J. Biol. Chem., 1943, 150, 381—388).—The NH4 salt of ribonucleic acid (I) (yeast-nucleic acid is used) in neutral or slightly acid medium is treated with cryst. ribonucleinase (preferable to the term ribonuclease; cf. Kunitz, A., 1941, III, 47) at room temp. at pH 6·3 (decreases to 5·5). Four acids are obtained: guanylic [purified through the dibrucine salt, $+7H_2O$, $[a]_{12}^{23}-57\cdot6^{\circ}$ in aq. NaOH], uridylic [dibrucine salt, $+7H_2O$, $[a]_{12}^{23}-57\cdot6^{\circ}$ in aq. NaOH], uridylic [dibrucine salt, $+7H_2O$, $[a]_{12}^{23}-54\cdot4^{\circ}$ in C_5H_5N ; (NH4)2 salt, shrinks at $170-175^{\circ}$, decomp. 183° (immersed at 165°), $[a]_{12}^{24}+20\cdot9^{\circ}$ in H_2O], cytidylic, decomp. 230° , and adenylic, $+H_2O$, decomp. 196° , $[a]_{24}^{26}-38^{\circ}$ in H_2O . These four nucleotides are not formed during fractionation processes, as they could not be obtained in experiments in which nucleic acid, in absence of enzyme, is fractionated.

New method for isolation of crystalline adenine nucleotides. M. V. Buell (J. Biol. Chem., 1943, 150, 389—394).—The following reaction is characteristic of adenine mononucleotides and of yeast-nucleic acid (I): addition of solutions containing picrate + Al ions (at pH 2.4) [e.g., Al(OAc)₃ + picric acid] affords (mainly) an Al picrate complex of the nucleotide. The method is used for the isolation of cryst. adenine nucleotide (II). Thus, the K acetate salt of guanine nucleotide is pptd. by 95% EtOH from a neutral solution of (I), previously treated with 0·3-N aq. KOH for 24 hr. at room temp. The filtrate then a fords the Al picrate salt of (II); after dissolution in morpholine and pptn. with COMe₂, the salt is converted by aq. KOH + AcOH (pH 5) into (II), +2H₂O (purified through the Pb salt). Cryst. adenylic acid (III) is isolated from beef heart. Enzyme action is inhibited by freezing the muscle, and proteins are removed from an aq. extract by heat-coagulation and picric acid pptn. (11I) is obtained from the filtrate as the Hg salt, then pptd. as the Al picrate complex, and purified through the Pb salt.

A. T. P.

Fluorescent irradiation products of thiazole. R. Stämpfli (Helv. Physiol. Pharm Acta, 1943, 1, C54—55).—"Vitachrome" is most strongly fluorescent (deep blue) in acid solution. It is heat-stable, lowers surface tension, and is stable to long-wave ultra-violet radiation. Fluorescent substances were obtained from 2-thiol-4:5-dimethylthiazole, 2-thiol-4-methylt-5-acetoxyethylthiazole, Na 2-thiol-4-methylthiazolecarboxylate, and 2-thiol-4-methylthiazole; the last two prioducts show max. fluorescence at alkaline pH. Negative results were obtained with 4-methylthiazole and its nitrate, 2-amino-4-methylthiazolium nitrate, 3-benzyl-4-methyl-5-β-hydroxyethylthiazolium chloride, 3:4-dimethyl-5-hydroxymethylthiazolium chloride, 4-methyl-3-acetoxyethylthiazolium bromide, 4-methyl-3-diethylaminoethyl-5-hydroxyethylthiazolium chloride.

A. S.

Conversion of 2-phenyl-4-chloromethylmiazole into 5-chloro-2-phenyl-4-hydroxymethylthiazole. E. H. Huntress and K. Pfister, tert. (J. Amer. Chem. Soc., 1943, 65, 1667—1670).—2-Phenyl-4-chloromethylthiazole (I) [obtained from CO(CH₂Cl)₂ and

PhCS·NH₂ with subsequent hydrolysis by conc. HCl; 71% yield], m.p. 48·2—51·2°, with boiling 0·1n-NaOH or KOAc-AcOH gives 2-phenyl-4-hydroxy- (II), m.p. 66—69°, and 2-phenyl-4-acetoxy-methylthiazole, m.p. 42—43° [also obtained from (II)], respectively. CrO₃-H₂SO₄-H₂O oxidises (II) to 2-phenylthiazole-4-carboxylic acid (22%), m.p. 175—176·5° [acid chloride (III), m.p. 97·7—98·5°; amide, m.p. 143·3—143·8°]. With NaI-COMe₂, (I) gives 2-phenyl-4-iodo-methyl-, m.p. 103·5—104·6°, and with NaCN-EtOH gives 2-phenyl-4-cyanomethyl-thiazole, m.p. 43·1—44·2°, b.p. 147—148°/2 mm. (lit. 180—185°/4—5 mm.), hydrolysed by boiling 6n-HCl to 2-phenyl-4-thiazolylacetic acid, m.p. 88·8—89·8° (lit. 90°) [Na salt; hydrochloride, m.p. 203·1—205·1° (gas) (lit. 206—207°)]. Boiling conc. HNO₃-H₂O (10:24 ml.) converts (I) into 5-chloro-2-phenyl-4-hydroxymethyl-thiazole (57·5%), m.p. 116·5—118° (acetate, m.p. 63·3—64·1°; 3:5-dinitrobenzoate, m.p. 155·1—155·3°), which with CrO₃-H₂SO₄-H₄O gives 5-chloro-2-phenylthiazole-4-carboxylic acid (41·6%), m.p. 198·8—199·3° (gas), also obtained in 21% yield with 2-phenylthiazole-4-carboxylic acid (54%) from (III) by HNO₃-H₂O. 29·2% of BzOH is obtained from (II) by dil. alkaline KMnO₄. M.p. are corr. (block).

Oxidation product of aneurin effective antineuritically. O. Zima and R. R. Williams (Ber., 1940, 73, [B], 941—949).—Triturating aneurin chloride hydrochloride (I) with saturated, aq. K₂CO₃ at room temp. gives the quaternary chloride, C₁₂H₁₇ON₄ClS, decomp. when heated. In NaOEt-EtOH, (I) gives a yellow colour and yields a yellow Na salt (II), C₁₂H₁₅ON₄SNa, +3H₂O (lost at 78°/vac.), unstable in air. When repeatedly dissolved in EtOH and pptd. there-

$$\begin{array}{l} \texttt{CMe} \cdot \texttt{N} : \texttt{C} & -\texttt{N} : \texttt{CH} \\ \texttt{N} - \texttt{CH} : \texttt{C} \cdot \texttt{CH}_2 \cdot \texttt{N} \cdot \texttt{CMe} : \texttt{C} (\texttt{SNa}) \cdot [\texttt{CH}_2]_2 \cdot \texttt{OH} & (\textbf{II}.) \end{array}$$

from by $\rm Et_2O$, this gives a colourless $\it Na$ salt (III), $+4\rm H_2O$, converted over $\rm CaCl_2$ at room temp./vac. into a dihydrate, but becoming yellow at 110°. (III) is also obtained by adding aq. NaOH to (I) in $\rm H_2O$

$$\begin{array}{l} {\rm CMe\cdot N:C\cdot NH_2} \\ {\rm N-CH:C\cdot CH_2\cdot N(CHO)\cdot CMe:C(SNa)\cdot [CH_2]_2\cdot OH} \end{array} \ ({\rm III.}) \\ \end{array}$$

at 0° and treating the product with COMc2. It is probably formed by way of the quaternary hydroxide. (II) and (III) do not give a nitroprusside reaction, but the reaction is not characteristic in this series as it fails also with (I) and five related thiazole derivatives. The yellow colour in alkali is fairly characteristic of (I) but is no criterion of antineuritic activity as it is given also by the 4-Me isomeride. When (III) is treated in H2O at 0° with aq. I-KI, 1 I is rapidly absorbed and thereafter more is absorbed very slowly; use of 1 I leads to the colourless disulphide (IV), +Bu°OH, m.p. 173°, or +COMc2 + H2O, obtained anhyd. (m.p. 177°) by EtOH-Et2O (dihydrochloride, m.p. 231°). (IV) becomes yellow when melted and dissociates in high-boiling solvents, but its mol. wt. is correctly given in MeOH by Menzies and Wright's method (A., 1921, ii, 622). Benzthiazolc methiodide and I give a similar disulphide, which does not dissociate. Zn-HCl reduces (IV) to (I); boiling HCl-EtOH-H2O hydrolyses it to 6-amino-2-methyl-5-aminomethylpyrimidine, but boiling NaOEt regenerates (I). In boiling (CH2OH)2, (IV) gives thiochrome (V) and a product (VI), C12H16O2N4S, m.p. 233—234°,

which, when kept in solution, assumes a blue fluorescence, probably by formation of (V). (VI) has $\not < 60 - 70\%$ of the antineuritic effect (rats) of (I). (I) may be the reduced form of the natural "redox" system. R. S. C.

Cyanine dyes etc.—See B., 1944, II, 7, 10.

VII.—ALKALOIDS.

Constitution of yohimbine and its degradation products. B. Witkop (Annalen, 1943, 554, 83—126).—It is shown that the OH group of yohimbine (I) is attached to C₍₁₇₎. (I) has m.p. 234°, new [a]₀²⁰ +62·2° in EtOH; technical samples of its hydrochloride may contains a little isoyohimbine but the presence of alloyohimbine is excluded. Decarboxylation of yohimboaic acid (II) by NaOH-CaO cannot be effected at <350° and gives the ketone yohimbone (III), m.p. 307° (decomp.) [methiodide, m.p. ~290° (decomp.), darkens at 250°; methochloride (+2H₂O), m.p. 276° (decomp.); hydrochloride of 2:4-dinitrophenylhydrazone, m.p. >300°, darkens at 280°]. Rapid treatment of (II) with TlOH at 300°/0·1 mm. gives decay-yohimbol, m.p. 149°, [a]₀²⁰ -24·8° in C₅H₅N (hydrochloride, m.p. 228°; picrate, m.p. 224°; methiodide, m.p. 198°; the methochloride is physiologically inactive in the frog). The mother-liquors from (III) contain indole and isoquinoline derivatives so that direct crystallisation is impossible but treatment with MeI in MeOH leads to the isolation of yohimbol methiodide, m.p. 282° (decomp.) (corresponding methochloride, m.p. 259°, softens at 245°). At 260° (II) evolves CO₂ but gives a non-crystallisable residue. In presence of Cu powder decarboxylation occurs at 225°, giving (III) in 8% yield; mol. Ag and Ag₂O are without influence. (III) is obtained in good yield from

(II) mixed with anthracene at 320°, and in poor yield from (II) and aq. Ba(OH)₂ at 280°. Slow decarboxylation of (II) with NaOH-CaO at 270—300° leads to "tetrahydroyobyrine" (IV), m.p. 166°. Dehydrogenation of (I) by Al(OPh)₃ and cyclohexanone in xylene at 150° gives (III), [a]₂₀²⁰ – 105·8° in C₅H₅N (hydrochloride, m.p. 328°; picrate, m.p. 171°), similarly obtained from (II); attempts to isolate the intermediate "yohimbinone" under milder conditions were unsuccessful. (III) is dehydrogenated by black Se at 300° to tetraunsuccessful. (III) is dehydrogenated by black Se at 300° to tetrahydroyobyrine, m.p. 167° (hydrochloride, m.p. 236°), and yobyrine, m.p. 215° [picrate, m.p. 239° (much decomp.)], but does not appear to be affected by Pb(OAc). allo Yohimboaic acid and Al(OPh)₃ in boiling cyclohexanone—xylene afford alloyohimbone, m.p. 230° (decomp.) (2:4-dinitrophenylhydrazone, darkens at 250° and softens and swells at 264°), whilst under similar conditions yohimbenic acid and swells at 264°), whilst under similar conditions yohimbenic acid affords yohimbenone, m.p. 268° (decomp.) (2:4-dinitrophenyl-hydrazone hydrochloride darkens at 260° , softens at 280°). (III), Al(OPr β)₃, and Pr β OH in xylene afford yohimbol (V), m.p. 243° (decomp.), $[a]_0^{20} - 63 \cdot 4^\circ$ in EtOH, $-55 \cdot 4^\circ$ in MeOH [hydrochloride (+0.5H₂O), m.p. 291° , $[a]_0^{20} - 51 \cdot 5^\circ$ in MeOH], and epiyohimbol (VI), $C_{10}H_{24}ON_2$, m.p. 258° , $[a]_0^{20} - 80 \cdot 1^\circ$ in MeOH (methiodide, m.p. $>300^\circ$ after darkening and softening; methochloride, m.p. 298°); a short period of reaction favours (V) whilst with very protracted action the yield of (VI) is >50%. (IV) (hydrochloride, m.p. 236°) is dehydrogenated by Pd sponge at 280° to 2:3'-isoquinolyl-3-ethylindole, m.p. 128° (hydrochloride, m.p. 212° ; methiodide, n.p. 192°), isomeric with yobyrine (VII) [hydrochloride, m.p. 271° (much decomp.), softens at 240° ; picrate, m.p. 239° (decomp.)], which decomp.), softens at 240°; picrate, m.p. 239° (decomp.)], which remains unchanged under these conditions. (VII) is oxidised by SeO₂ in boiling xylene or, preferably, Ac₂O to yobyrone (VIII), C₁₉H₁₄ON₂, m.p. 185°, which does not react with (NO₂)₂C₆H₃·NH·NH₂ in dil. HCl. (VII) is converted by paracetaldehyde at 260° into ethylideneyobyrine, m.p. 298° (darkening); with p-NO₂·C₆H₄·CHO a similar condensation occurs at 180—200° but in subsequent working up the product is converted by acid but in subsequent working up the product is converted by acid into (VIII) and o-C₀H₄Me-CO₂H. (VII) is hydrogenated (PtO₂ in Λ cOH at 40°) to hexahydroyobyrine, m.p. 197°. apoYohimbine (IX) is oxidised by Pb(OAc)₄ in Λ cOH at 40° and then hydrolysed to to tetrahydroyobyronecarboxylic acid [hydrochloride semihydrate, m.p. 244° (decomp.)], which does not react with 2:4-(NO₂)₂C₈H₃·NH·NH₂ in dil. HCl. Hydroxyhexahydroyobyrine-carboxylic acid ["tetradehydroyohimboaic acid"] (+H₂O), m.p. 325°, is not obtained in the same manner as (X) but is best prepared is not obtained in the same manner as (X) but is best prepared through the ester hydrochloride; the presence in it of active CH₂ is proved by the reduction of SeO₂ in C₅H₅N. Yohimboaic acid sulphate hydrochloride, m.p. 308° (decomp.) [free sulphate, m.p. 289° (decomp.)], is converted by HCl in boiling MeOH followed by NH₃ into \(\varepsilon\)-yohimboaic acid by HCl in boiling MeOH followed by NH₃ into \(\varepsilon\)-yohimboaic acid, m.p. 203° (darkening), softens at 195°, [a]²⁰₂ +29-8° in C₅H₅N, and (1). Boiling KOH-MeOH hydrolyses (IX) to apo-yohimboaic acid, m.p. 306° (decomp.), with two bases, C₂₁H₂₄O₂N₂, m.p. 201° (decomp.), becomes yellow at 160°, and C₂₁H₂₄O₂N₂O₃N₂, m.p. 228°. In 50% of AcOH containing Pd-C under H₂ (IX) passes into a-isoyohimboaic acid (+1.5H₂O), m.p. 238°, and converted by NaOAc and boiling Ac₂O into (IX); oxidation (oppenauer) of it does not give a base or CO-acid. The isolation of \$\psi\-cresol by the distillation of (I) with Zn dust is described. The physiological activity of many quaternary bases of the yohimbine physiological activity of many quaternary bases of the yohimbine series is discussed. For these experiments the methiodides are frequently too sparingly sol. and must be converted into the methochlorides. apo Yohimbine methiodide monohydrate, effervesces at 259° after softening at 246° and becoming brown at 220°, appears new.

H. W.

Constitution of derivatives of the harman series from the view-point of their ultra-violet spectra. F. Pruckner and B. Witkop (Annalen, 1943, 554, 127—144).—Comparison of the absorption spectra of norharman (I) and yobyrine (II) leads to the conclusion that substitution in (I) at C₍₃₎ causes a marked diminution in the intensity in band II to an extent which exceeds the enhancement caused by addition of the extinction of the xylene residue. The spectrum of (I) and still more that of (II) is very similar to that of carbazole. The diminished height of the bands with (II) may be due to substitution as such which diminishes the symmetry of the due to substitution as such which diminishes the symmetry of the mol. This effect is yet more prominent in the comparison of the spectra of (II) and tetrahydroyobyrinecarboxylic acid; the extinction vals, of hydroxyhexahydroyobyrinecarboxylic acid (which has nearly the same position of the bands) could not be measured. Similar results are recorded for papaverine (III)-isoquinoline (IV) in which substitution causes a displacement of all bands towards the red and exaltation of the extinction is caused by the addition of an aromatic ring separated by a CH₂ group; this is particularly noticeable in band II. The complete absence from the spectrum of (III) of the individual bands seen in that of (IV) is ascribed to the presence of OMe in (III). In support of this hypothesis it is observed that the individual bands of indole are absent from the spectra of 5- and 6-methoxyindole; similar observations are recorded for lepidine and p-methoxylepidine. The spectrum of harmine (V) differs considerably from that of harmaline (VI), which behaves optically more like a derivative of indole than a hydrogenated harman. Further evidence in the same direction is based on the observation that the spectrum of (VI) does not differ so greatly from that of its methiodide as do the spectra of the methiodides of (V) and (II) differ from those of the tert.-bases. This difference shows that (V) and (II) are closely related in spite of the differences in their spectra. The transition of (V) into the quaternary salt causes a weakening of the aromatic system similar to that caused by the change, p-toluidine \rightarrow p-C₀H₄Me·NMe₃Cl but when N of (VI) becomes quaternary so great a change in the dihydropyridine ring C is not occasioned. The spectra of yohimbine and its methiodide indicate that caution is necessary in generalising this line of argument. Reasoning based on the chemical properties of indole and its OMe derivatives leads to the conception that the great spectroscopic differences between (V) and (I) are due to the mobility of imino-H in (V); exchange reactions with D₂O offer a possible experimental means of examining the problem. Close analogy is shown between the absorption spectra of 2:2'-isoquinolyland 2:2'-tetrahydroisoquinolyl-3-ethylindole.

H. W.

Lycoris alkaloids. XVI. Constitution of lycorenine. H. Kondo and T. Ikeda (Ber., 1940, 73, [B], 867—874).—Lycorenine (I), m.p. 200—202°, [a]²³ +149·33°, is A. Catalytic hydrogenation (Pd or PtO₂ in AcOH) of (I) gives dihydrolycorenine, m.p. 175—177°, or under more drastic conditions decaytetrallydrolycorenius m.p. 165—168°, with construction

OMe A C NMe CH:CH₂ drastic conditions deoxytetrahydrolyco-renine, m.p. 165—168°, with compounds, C₁₈H₂₃₍₂₈₎O₃N, m.p. 120—123°, and C₁₈H₂₇O₂N, m.p. 165—167°. (I) is transformed by Ac₂O and fused NaOAc at 100° into a mono-, m.p. 185—187°, and a di-, m.p. 173—176°, -acetyl-lycorenine, the In p. 183—187, and a ai_{-} , lin.p. 173—170, -acetyl-tycorenine, the latter compound being produced with much the greater difficulty. Lycorenine methiodide, decomp. 260°, is converted by AgOH followed by distillation at 130°/vac. mainly into the amorphous a-methine base (analysed as the methiodide, $C_{18}H_{20}O_3NMe_2I$, decomp. 223°), with a smaller proportion of amorphous β -methine base. de-N-Lycorenine (II), m.p. $114\cdot5^\circ$, is $C_{15}H_{10}O(OMe)_3$. One O is lost as H_2O in the first stage of the degradation and the residual O is present in CO and not in OH since (II) cannot be acetylated but as H₂O in the first stage of the degradation and the residual O is present in CO and not in OH since (II) cannot be acetylated but affords an oxime, C₁₇H₁₈O₂.N·OH, m.p. 147—150°. The nucleus is readily aromatised during the Hofmann degradation by the formation of a new double linking owing to loss of H₂O, and :CH·OH at C_(g) passes into CHO whilst N is eliminated. Ozonisation of (II) leads to CH₂O, a dialdehyde (III), C₁₈H₁₄O₄, m.p. 155—157° (disemicarbazone, decomp. 238°), and an aldehydic acid, C₁₆H₁₄O₅, m.p. 228—230° (p-nitrophenylhydrazone, decomp. 276—278°), also obtained by oxidising (III) with KMnO₄ in COMe₂ at room temp., and further oxidised to a dicarboxylic acid, C₁₆H₁₄O₆, m.p. 256—257° (Me₂ ester, m.p. 135—137°). This is characterised as 3:4 dimethoxydiphenyl-6:3'-dicarboxylic acid by hydrolysis of the Me₂ ester obtained synthetically from 3:4:6:1-(OMe)₂C₆H₂Br·CO₂Me, m-C₆H₄I·CO₂Me, and Cu powder at 255—260°. CH₂O is readily obtained by the action of O₃ on (I) but the aldehydic base formed simultaneously is too unstable for further examination. Like a typical ψ-base (I) affords an oxime hydrochloride, decomp. 258°.

Strychnos alkaloids. XCII. Reactions of N-methylsec.-\(\psi\)-brucine and related bases. H. Leuchs and H. G. Boit (Ber., 1940, 73, [B], 885-892).—An amended method of obtaining ψ-brucine (I) is reported. The action of MeI on (I) in MeOH gives 7% of quaternary salt against 3—4% in H₂O but the quaternary salt observed previously (A., 1939, II, 349) is not encountered when (I), free from brucine, is produced. With \(\psi-brucine Me ether and MeI the yields of tert. base and quaternary salt are 39 and 61% in presence of MeOH and 60 and 40% in presence of H₂O. Reaction of (I) with Me₂SO₄ yields exclusively tert.-N-Me base. Dihydro-ψ-brucine Me ether and McI in H₂O afford N-methyldihydro-ψ-brucine methiodide in 84% yield; this forms ~25% of the product from dihydro-ψ-brucine. Methylation of (I) may be expected to occur in accordance with the scheme, 'C(OH)·N.'→'CO·NMe· but the product does not react with NH₂·CO·NH·NH₂ or with NH₂OH,HCl in C₅H₅N and NH₂·CO·NH·NH₂ does not affect the quaternary methiodide or its H₂-derivative. MnO₄' oxidises (I) at 20° in COMc₂ but with 10 equivs. of O₂ ~40% remains unchanged and the rest is altered in an ill-defined manner. The Mc base is converted by MnO₂ and SO₂ into two isomeric subbanic acids (C. H. O.N. SO H. [c.]²⁰ —120.3° ds an ill-defined manner. The Me base is converted by MnO₂ and SO₂ into two isomeric sulphonic acids, C₂₄H₂₇O₅N₂·SO₃H, [a]²⁰_D -120·3°/d and 41°/d in 2 mols. of 0·1n-NaOH; the homogeneity of a third material, [a]²⁰_D -62·3°/d, is not established. With PhCHO in boiling NaOMe-MeOH it yields benzylidene- (II), m.p. 234—236° (vac.), reduced (Na-Hg in dil. MeOH containing a little AcOH) to benzyl-N-methylsec.-ψ-brucine, m.p. 195—197° (vac.) (hydrobromide; perchlorate). Hydrogenation (PtO₂ in 25% AcOH) of (II) leads to benzyldihydro-N-methylsec.-ψ-brucine [hydrobromide (+H₂O), m.p. 105—110° to a resin or, anhyd., m.p. 215—225° (slight decomp.); hydrochloride, m.p. ~100° and 215—225°). (I) condenses with PhCHO to benzylidene-ψ-brucine, isolated as the hydrobromide chars at 225°, reduced by Na-Hg in dil. MeOH to a mixture of benzylchars at 225°, reduced by Na-Hg in dil. MeOH to a mixture of benzylψ-brucine and -brucine hydrobromide and hydrogenated (PtO₂ in 50% AcOH) to benzyldihydro-ψ-brucine (hydrochloride, m.p. ~220° after softening; darkens at 190°). The tert ether base obtained by the action of NaOMe or Na–Hg on N-methyl-ψ-brucine methiodide is hydrolysed by 12n-HCl at 100° to N-methylsec.-ψ-brucine. The methiodide of this base is reduced by Na–Hg–H₂O to the methiodide, $C_{26}H_{36}O_5N_2$, MeI, m.p. 276—278°; other methods of treatment lead to a neutral perchlorate, $(C_{26}H_{34}O_5N_2)$, HClO₄, m.p. 102°, decomp. 112°, and a base, $C_{25}H_{32}O_5N_2$, m.p. 230—233° (vac.), which contains only 2 OMe and hence has suffered an Emde fission. This base absorbs 4 H when hydrogenated (PtO₂ in 0·1n-HCl) and according to conditions gives two interconvertible salts, $C_{25}H_{36}O_5N_2$, HClO₄, hydrated, m.p. 114—115° (decomp.), softens at 100°, anhyd. m.p. 263—269°, and $C_{25}H_{36}O_5N_2$, 2HClO₄, m.p. 153—154° (decomp.); the corresponding bases are non-cryst. but another experiment gives a cryst. base, $C_{25}H_{34(36)}O_5N_2$, m.p. 172° in <10% yield. H. W.

Veratrine alkaloids. XIV. Correlation of the veratrine alkaloids with the solanum alkaloids. L. C. Craig and W. A. Jacobs (Science, 1943, 97, 112).—5-Methyl-2-ethylpyridine (I) was isolated from the distillate from solanidine and Se. (I) is a characteristic degradation product of the veratrine alkaloids, which are probably C₂₇ compounds closely related to the sterols.

E. R. R.

VIII.—ORGANO-METALLIC COMPOUNDS.

Chemistry of bivalent and tervalent rhodium. V. Co-ordination complexes of rhodous halides with dialkylarsines.—See A., 1944, I, 46.

Synthetic application of o-β-bromoethylbenzyl bromide. II. Preparation and properties of 2-substituted 1:2:3:4-tetrahydro-Isoarsinolines. III. Preparation and optical resolution of 2-phenyl-2-p-chlorophenacyl-1:2:3:4-tetrahydroisoarsinolinium bromide. F. G. Holliman and F. G. Mann (J.C.S., 1943, 547—550, 550—554).
—II. o-Br·[CH₂]₂·C₆H₄·CH₂Br (I) in Et₂O with AsPhCl₂ and Na-EtOAc in absence of air give 2-phenyl-1:2:3:4-tetrahydroiso-arsinoline (II), b.p. 110—112° [0·01 mm. (methiodide, m.p. 136—137°), which is oxidised by HNO₃ to the oxy-compound, isolated as the hydroxy-nitrate, m.p. 149—150°; by Br-CHCl₃ to the arsine dibromide, isolated as the isoarsinoline dichloride, m.p. 147—149°, or as 2-phenyl-1:2:3:4-tetrahydroisoarsinoline sulphide, m.p. 124° (by H₂S), and by chloramine-T to the oxy-compound, isolated as the hydroxy-picrate, m.p. 116—118°. AsMcCl₂ with (I) in a similar manner affords 2-methyl-1:2:3:4-tetrahydroisoarsinoline (III), b.p. 131°/18 mm. (methiodide, m.p. 179—181°; methopicrate, m.p. 163—164°), which is oxidised with HNO₃ to the hydroxy-nitrate, isolated as the hydroxy-picrate, m.p. 164—165-5°. Cl₂ in CCl₄ converts (III) into 2-methyl-1:2:3:4-terahydroisoarsinoline dichloride, which at 130—140° gives McCl and 2-chloro-1:2:3:4-tetrahydroisoarsinoline, b.p. 157°/14 mm., unaffected by boiling C₅H₈N. 2-Phenyl-1:2:3:4-tetrahydroisophosphinoline, b.p. 130—160°/0·2 mm. (methiodide, m.p. 116—118°), can be prepared in small yield only. None of the compounds tested possesses trypanocidal or antimalarial activity.

activity.

III. p-C₆H₄Cl·CO·CH₂Br and (II) give dl-2-phenyl-2-p-chloro-phenacyl-1:2:3:4-tetrahydroisoarsinolinium bromide, m.p. 190—191° (dl-iodide, m.p. 190-5°), which with Ag d-bromocamphorsulphonate yields the d-bromocamphorsulphonate, m.p. 119—131°, [M]¹⁶ +279°. Crystallisation from C₆H₆-cyclohexane affords the lisoarsinolinium d-bromocamphorsulphonate, m.p. 236—238°, [M]¹⁶ -140°, which is converted into the picrate, [M]¹⁶ -450°, and iodide, m.p. 178·5—179°, [M]¹⁶ -352°. The Ag l-salt similarly gives d-isoarsinolinium 1-bromocamphorsulphonate, m.p. 236—237°, a¹⁰ +0·89°, from which the picrate, [M]¹⁶ +457° is obtained. 2-Phenyl-2-p-chlorophenacyl-1:2:3:4-tetrahydroisoarsinolinium d-camphorsulphonate, m.p. 210—212°, [M]¹⁶ +112°, similarly prepared, gives the chloroplatinate, m.p. 211—213°, and chloroaurate, 157—158°. The picrates and iodide are optically stable in CHCl₃ at room temp. These are the first arsonium salts to be obtained in optically stable forms, and the correlation of their optical and chemical stability provides strong evidence that the optical instability previously recorded for dissymmetric arsonium salts has been due to the formation of a "dissociation-equilibrium" in solution. The properties of other dissymmetric 4-covalent As compounds are discussed on this basis. All rotations are in CHCl₃.

Autoxidation of lead tricyclohexyl and its behaviour towards carbon tetrachloride. F. Hein, E. Nebe, and W. Reimann (Z. anorg. Chem., 1943, 251, 125—160).—PbR₃ (R = cyclohexyl) in solution is stable towards O_3 in the dark but undergoes oxidation in light thus: $4\text{PbR}_3 + 5O_2 = \text{PbR}_2O + 2\text{PbO} + \text{PbO}_2 + \text{other products.}$ The only intermediate product is $(\text{PbR}_3)_2O$. PbR₃ reacts with CCl₄ in presence of O_2 in the dark at room temp., giving PbR₃Cl, PbR₂Cl₂, COCl₂, CO₂, and Cl₂, and even in absence of O_2 affords PbR₃Cl, PbR₂Cl₂, and O_2 Cl₃. Free CCl₃ is an intermediate product. CBr₄ and O_2 Br₅ react similarly but even more energetically. Mechanisms are suggested.

Introduction of water-solubilising groups into some organometallic compounds. R. W. Leeper (Iowa State Coll. J. Sci., 1943, 18, 57—59).—The following were prepared: PbPh₃ H maleate, m.p. 207°, (PbPh₃)₂ maleate, sinters 198—199°, Pb triphenyl o-hydroxy-phenyl, m.p. 216—218°, PbPh₃0-phenanthryl, m.p. 169—171°, PbPh₂di-9-phenanthryl, m.p. 208—210°, PbPh₃ 7-(1:2-benzanthryl), m.p. 295—296°, PbPh dicyclohezyl chloride, m.p. 195°, decomp. 205°, PbPh₂ Etchloride, sinters 142°, decomp. 146—147°, Pb(C₆H₄·NO₂-m)₂ dichloride, sublimes 250°, decomp. 285—289° (di-iodide, decomp. 135°), GeBu^a₃ iodide, b.p. 126—128°/4 mm., Ge tetra-2-furyl, b.p. 163°/1 mm., m.p. 99—100°, SnBu^a tri-iodide, b.p. 154°/5 mm., Sn dicarbethoxymethyl dibromide, m.p. 139°. F. R. G.

Organolead compounds containing water-solubilising groups. D. S. Melstrom (Iowa State Coll. J. Sci., 1943, 18, 65—67).—RHal with LiBu^a in Et₂O gives LiR which with CO₂ yields RCO₂H, the following being new: 2:4:5-triphenylfuran-3-, m.p. 257—258° (Me ester, m.p. 123·5—124°), 3:4:6-triphenylfuran-3-, m.p. p-carboxylic acid, m.p. 166—168° (decomp.) (Me ester, m.p. 117—118°) p-carboxyphenylethyl alcohol, m.p. 127—128°, a-p-carboxyphenylethyl alcohol, m.p. 138—139°. The reaction of LiR with PbPh₃Cl leads to the formation of PbPh₃ o- (I), m.p. 134—136°, m-, m.p. 113—114°, and p-hydroxymethylphenyl (II), m.p. 98—100°; PbPh₃ p-β-, m.p. 87—88°, and -a-hydroxyethylphenyl, m.p. 68—70°. (II) was oxidised (KMnO₄) to PbPh₃ p-carboxyphenyl, m.p. 256—258° (Me ester, m.p. 125—127°; Na and K salts). Similarly (I) produces the anhydride of PbPh₂ o-carboxyphenyl hydroxide, m.p. 300—305° (with turbidity) [chloride, m.p. 210—220° (with turbidity) (Me ester, m.p. m.p. 170—171°)]. Also prepared were p-phenylenedi(lead triphenyl), m.p. 285—288° and PbPh₃ o-anisyl, m.p. 128—129°. F. R. G.

Long-chained organometallic compounds. R. N. Meals (Iowa State Coll. J. Sci., 1943, 18, 62—64).—The following were prepared: Hg di-n-dodecyl, m.p. 44—44·5°, -tetradecyl, m.p. 53—54°, -hexadecyl, m.p. 61—62°, and -octadecyl, m.p. 66·5—67°; Hg n-dodecyl, m.p. 114—114·5°, -hexadecyl, m.p. 114—115°, and -octadecyl chloride, m.p. 115—116°; Hg n-dodecyl, m.p. 108—108·7°, -tetradecyl, m.p. 110—1110·5°, -hexadecyl, m.p. 110·5—111·5°, and -octadecyl bromide, m.p. 110—1111°; Hg n-dodecyl-, m.p. 91°, and -hexadecyl iodide, m.p. 93; Sn tetra-n-dodecyl, m.p. 15—16°, -tetradecyl, m.p. 33—34°, -hexadecyl, m.p. 41·5—42·5°, and -octadecyl, m.p. 47°; Pb tetra-n-tetradecyl, m.p. 31°, and -hexadecyl, m.p. 42°; Sn tri-n-dodecyl, m.p. 33°, -tetradecyl, m.p. 46—47°, -hexadecyl, m.p. 55·5—56·5°, and -octadecyl chloride, m.p. 61—62°; Pb tri-n-dodecyl, m.p. 64—65°, -tetradecyl, m.p. 74—75°, -hexadecyl, m.p. 79—80°, and -octadecyl chloride, m.p. 82—83°; tri-dodecyl-, b.p. 200°/0·000 mm., and -tetradecyl-arsine.

Organotin compounds. C. E. Arntzen (Iowa State Coll. J. Sci., 1943, 18, 6—9).—A survey. The following were prepared (Grignard): $SnPh_3$ o-, m.p. 176— 177° (decomp.), and p-hydroxy-, m.p. 201— 203° , $SnPh_2$ o-hydroxy-, m.p. 136— 138° , $SnPh_3$ o-, m.p. 158— 159° , and p-hydroxymethyl- (I), m.p. 98— 100° ; $SnPh_3$ o-methoxymethyl-, m.p. $94 \cdot 5$ — $95 \cdot 5^\circ$; $SnPh_3$ o-, m.p. 110— 112° , and p-dimethylamino-phenyl (II), m.p. 132— 134° . (I) is oxidised (KMnO₄) to $SnPh_3$ p-carboxyphenyl, m.p. 166— 168° . Coupling of (II) yields $SnPh_3$ 4-dimethylamino-3-(4'-nitrobenzeneazo)phenyl, m.p. 190— 192° . F. R. G.

67

IX.—PROTEINS.

Denaturation of tobacco mosaic virus by carbamide. I. Biochemistry. M. A. Lauffer and W. M. Stanley (Arch. Biochem., 1943, 2, 413—424; cf. A., 1939, III, 729).—Tobacco mosaic virus is transformed by 6M-CO(NH₂)₂ from a substance sol. in dil. aq. electrolytes into one insol. in such solvents. The denatured protein is readily sol. in 6m-, considerably less sol. in 4.5m-, and very slightly sol. in 3M-CO(NH₂)₂. It dissolves easily in very dil. aq. Na dodecyl sulphate and in 0·1M-NaOH, but not at all readily in 0·01M-NaOH. These changes are shown by means of osmotic pressure, high-speed quantity centrifugation, ultra-centrifugation, stream double refraction, and turbidimetric examination to be accompanied by disintegration of the high-mol. virus nucleoprotein particles into much smaller particles ~10⁴ or 10⁵. The nucleic acid is removed from the protein in this disintegration, and the no. of SH groups increases during denaturation. CO(NH₂)₂ also causes a loss of virus infectivity. Residual infectivity is always associated with remaining high-mol. nucleoprotein in cases of partial denaturation, and the sp. infectivity of this residual material is considerably < that of untreated virus. This shows that virus inactivation can occur before the virus nucleoprotein mol. is extensively disintegrated, and denaturation by CO(NH_a)₂ appears to involve at least two consecutive reactions. The overall denaturation process is irreversible.

Effect of denaturation on sulphur content of ovalbumin and edestin. B. M. Hendrix and J. Dennis (Arch. Biochem., 1943, 2, 371-380).-Denaturation of ovalbumin with acid and alkali causes a decrease in the S content of the protein. Material rich in S is removed from the protein by these treatments, and denaturation appears to be accompanied by addition of H_2O to the protein. Alkali-denaturation of edestin resembles acid- and alkali-denaturation of albumin, whilst acid-denaturation of edestin differs from other acid- and alkali-denaturations in that no S is removed from the

Effect of dry grinding on properties of proteins. I. Native, denatured, and coagulated ovalbumin. H. R. Cohen (Arch. Biochem., 1943, 2, 1-8).—Dry grinding (ball mill at 100 r.p.m.) of cryst. and acid-denatured ovalbumin (I) produces insol. protein. Heat-denatured (I) gives some H_2O -sol. protein; the insol. fraction contains more S and less tyrosine and tryptophan than does cryst. (I). The rates of digestion by pepsin of the ground proteins are intermediate between those of cryst. and coagulated (I).

Effect of dry grinding on properties of proteins. II. Casein. III. Gelatin. IV. Human, ox, and pig coagulated hæmoglobins. H. R. Cohen (Arch. Biochem., 1943, 2, 345—351, 353—355, 357—361).—II. When casein (I) is dry ground for 48 hr. a H₂O-sol. fraction is obtained, which contains more P and less tryptophan (II) than the unground (I); it is also attacked by rennin. The other H₂O-sol. fractions by successive 48-hr. periods of grinding all contain more P and less (II) than native (I), and they are all unaffected by rennin. There is very little difference in N content of any of the fractions. They all contain dialysable proteins, and are pptd. from aq. solution by picric, trichloroacetic, and phosphotungstic acids, $HgCl_2$, and 50% saturation with $(NH_4)_2SO_4$. They are not precipitinogenic but produce anaphylactic sensitisation in guinea-pigs. The insol. residue left after prolonged grinding is only slowly attacked by trypsin. The H₂O-sol. fractions are all digested much more readily, whilst that from the first grinding is hydrolysed at a greater rate during the first 45 hr. than is native (I). The total H₂O-sol. product is partly nutritionally deficient since it does not support growth of mice although they are maintained in good health and at relatively const. wt., whilst the insol. residue is just as effective as is unground (I). The mechanism of degradation of the protein mol. by grinding is discussed.

III. Dry grinding of gelatin converts it into a protein sol. in cold H₂O. Grinding for 7 hr. has no effect on the ability to gel, but there is a marked increase in substility in H O at room terms and the time

is a marked increase in solubility in H₂O at room temp., and the time for gelling is considerably increased. After grinding for 72 hr. the product no longer forms a gel. There is no increase in formol titration val. during grinding, which shows that there is no appreci-

able cleavage of peptide bonds.

IV. Dry grinding of coagulated human, ox, and pig hæmoglobins (III) produces H₂O-sol. fractions which contain varying amounts of Fc. They all give the benzidine reaction, and the fact that the hæmatin is sol. in H₂O shows that the prosthetic group is not removed from the protein constituent during grinding. The H₂O-sol. proteins contain dialysable protein; they are non-coagulable by heat and require 50% or more EtOH for pptn. They are pptd. by HgCl₂, picric acid, and CCl₃·CO₂H, and by 50% saturation with (NH₄)₂SO₄. They are sol. in acids and alkalis, and do not give rise to precipitin antibodies and do not react with native (III) antisera. The N content decreases with successive fractions, and in the case of human (III) the amount of tyrosine decreases in each successive fraction, whilst with ox (III) the amount of tyrosine in each fraction

is fairly const. Tryptophan is absent from the last fractions from human (III) and from one of the H₂O-sol. fractions from ox-(III). 79% of coagulated human (III) is converted into $\rm H_2O$ -sol. protein in 384 hr. For coagulated ox- and pig-(III) the corresponding vals. are 75% in 192 hr. and 32.5% in 96 hr. respectively. The $\rm H_2O$ -sol. fractions from human (III) contain at least 70% of dialysable N which shows that they are small mol. fragments. The H₂O-sol. fractions from the various (III) differ from native (III) mainly in the ultra-violet spectrum between 313 and 264 m μ . In this region there is considerably more absorption than with native (III)

Methionine- and tryptophan-free casein hydrolysates. A. A. Albanese (Science, 1943, 98, 46).—1 kg. of casein in refluxed for 20—23 hr. with 500 ml. of H₂SO₄ and 1 l. of H₂O, cooled to 80°, 200 ml. of 30% H_2O_2 added, and the mixture kept at room temp. for 24 hr. 2 l. of H_2O and 4 l. of 16% CaO suspension are added, and the mixture is kept overnight and filtered through a norite-precoated filter. The CaSO₄ is re-suspended in 2 l. of hot H₂O, filtered, and the filtrate and washings conc. in vac. at 50-60° to 21., neutralised with $50\%~H_2\mathrm{SO_4},$ and refiltered. 650~g. of tryptophan-free (not detected) and methionine-free (0·12—0·21% of the protein) hydrolysate are E. R. R.

Etherification of hydroxyamino-acid residues in silk fibroin by dimethyl sulphate. A. H. Gordon, A. J. P. Martin, and R. L. M. Synge (Biochem. J., 1943, 37, 538-543).—Fibroin with Me₂SO₄ and N-NaOH is O-methylated; the max. degree of methylation obtainable corresponds to conversion of nearly all the tyrosine residues and about half the serine residues, suggesting the presence in fibroin of two types of serine residues, differing in accessibility to methylation.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Lignin esters of mono- and di-basic aliphatic acids. H. F. Lewis, F. E. Brauns, M. A. Buchanan, and E. B. Brookbank (Ind. Eng. Chem., 1943, 35, 1113—1117).—The prep. of lignin from soda black liquor from hardwood cooks by pptn. with CO₂ is described. Lignin esters are prepared by adding the acid chloride to a solution of lignin in C₅H₅N, and isolated by pouring into ice-H₂O. The esters of 17 monobasic aliphatic acids, ranging from acetic to stearic, and of succinic, adipic, suberic, azelaic, benzoic, p-toluenesulphonic, and phthalic acids were prepared and their m.p. and solubility data tabulated. In esters of monobasic acids, 3, 4, or 5 acyl groups are combined with each structural unit of lignin. The m.p., which are not sharp, decrease with increasing chain length of the acid group. These esters are sol. in COMe_2 , dioxan, $\mathsf{C_6H_6}$, and EtOAc ; the solubility in MeOH and EtOH decreases and in $\mathsf{Et}_2\mathsf{O}$ and light petroleum increases with increasing mol. wt. of the acid radical. Esters of dibasic acids have higher m.p. and are less sol.; this is attributed to attachment of the acid mol. to two neighbouring lignin chains forming a network structure. The stearic ester has possible industrial applications as a mould lubricant for wood plastics and for incorporation in inks and paints.

Purification and properties of humulon. V. Salac and J. Dyr (Gambrinus, 1943, 4, 253—255).—A solution in MeOH of the residue obtained by extracting lupulin with Et2O and evaporating the solution was freed from myricin wax, and the humulon (I) pptd. by aq. Pb(OAc)₂. The Pb salt of the a-bitter acid (II) was extracted with 25% $\rm H_2SO_4 + 4$ vols. of $\rm Et_2O$, and (I) purified by the o- $\rm C_6H_4(NH_2)_2$ method, followed by pptn. of a solution in MeOH with $\rm H_2O$. The crystals had m.p. 63–64°, $[a]_D^{20} - 206.24$ ° in MeOH, -212.53° in EtOH, -190.44° in $\rm Et_2O$. With solutions in $\rm C_6H_{14}$ $[a]_D^{20}$ was \propto the concn. Dil. aq. FeCl₃ gave a violet-brown and dil. aq. $\rm CuSO$, an emeral degreen colour with a solution of (II). EtOH CuSO₄ an emerald-green colour with a solution of (II) in EtOH. Polarimetric determinations of (I) from different hops gave lower vals. than pptn. with Pb(OAc)2. J. G.

Relationship of lupulin to the bitter constituents of hops. V. Salac Relationship of lupulin to the bitter constituents of hops. V. Salac and J. Dyr (Gambrinus, 1943, 4, 255—258).—Crude β-bitter acid (I), obtained as fine needles by the evaporation at 30° in CO₂ of an extract of lupulon (II) in C₃H₁₂, was dissolved in MeOH; 2 days later, two layers [a syrupy liquid containing β-soft resin (III), and a milky upper layer containing fine needles of (I)] had separated. After recrystallisation (I) had m.p. 78—81°, but (II) remained amorphous; both had [a] 0. Aq. FeCl₃ produced a brown and aq. CuSO₄ a bluegreen colour with the MeOH solution. The crystals of (II) and their solutions in MeOH had no bitter taste, but (III) was very bitter. A dil. solution of lupulin in MeOH—H₂O boiled free from A dil. solution of lupulin in MeOH-H2O boiled free from MeOH became very bitter owing to the rapid conversion of (II) into (III). Since [a] of hop oil is ~0, humulon can be determined polarimetrically (see above).

Esters of penicillin.—See A., 1944, III, 141.

Purification and properties of penatin.—See A., 1944, III, 141.

INDEX OF AUTHORS' NAMES, A II.

FEBRUARY, 1944.

Аввотт, R. К., jun., 66. Albanese, A. A., 68. Alexander, D. S., 53. Amore, S. T., 42. Anschütz, L., 46. Archibald, F. R., 63. Arntzen, C. E., 66.

Arntzen, C. E., 66.

BACHMAN, W. E., 41, 48.
Back, S., 60.
Baddeley, G., 43.
Baddeley, G., 43.
Baddeley, J., 59.
Badin, E. J., 30.
Baldwin, R. R., 39.
Balenović, K., 33.
Baltzly, R., 46.
Bartow, E., 45.
Bell, E. P., 29.
Benndorf, O., 52.
Berger, E., 37.
Berner, E., 30.
Bernstein, H. I., 48.
Bielenberg, W., 46.
Billström, I., 32.
Blaaberg, A., 33.
Bland, D. E., 47.
Blicke, F. F., 46.
Boit, H. G., 64.
Borsche, W., 57.
Bovic, R. C., 35.
Bradsher, C. K., 42.
Brauns, F. E., 68.
Brown, G. B., 55.
Brownlee, G., 44.
Buchanan, M. A., 68.
Buck, J. S., 45.
Buck, J. S., 45.
Buck, M., V., 61.
Bursian, K., 52.
Buturnan, C. H., 59.

Carpenter, F. H., 61. Cashion, F. W., 31. Charlesworth, E. H., 53. Christensen, H. N., 35. Chu, L. J. Y., 55. Cohen, H. R., 67. Cope, A. C., 32, 47. Copp, F. C., 44. Corwin, A. H., 36. Craig, L. C., 65.

Cronyn, M. W., 41. Crum, J., 56.

Damerel, C. I., 36. Dennis, J., 67. Dilthey, W., 55. Dimler, R. J., 37. Dreweny, R., 52. Duffin, W. M., 44. Dunn, M. S., 35. Dyr, J., 68.

EDWARDS, C. P., 38. Evans, W. V., 30. Ewen, E. S., 53.

FARMER, E. H., 32. Fedder, M. L., 36. Fernholz, H., 48. Fieser, L. F., 42. Foster, J. F., 39. Fredga, A., 32.

Garzuly-Janke, R., 39. Geiger, A., 31. Gergely, G., 44. Gilman, H., 30, 55, 58. Glen, W. L., 66. Gleu, K., 60. Götz, L., 29. Goldhahn, H., 45. Gordon, A. H., 68. Gottschalk, A., 38. Greenlee, K. W., 29. Grosser, A., 40. Guss, W. I., 54.

Hamilton, P. B., 59.
Hartmann, H., 56.
Hatt, H. H., 58.
Hazlet, S. E., 44.
Hein, F., 65.
Hendrix, B. M., 67.
Henne, A. L., 29.
Hennion, G. F., 29.
Hensley, L. C., 44.
Hess, K., 39, 40.
Hindenburg, K. G., 60.
Hirschmann, H., 50.
Hixon, R. M., 39.
Hodgson, H. H., 45.
Hönel, H., 52.
Hoff-Jørgensen, E., 33.
Holliman, F. G., 66.
Hudson, C. S., 38.
Huntress, E. H., 61.

Hurd, C. D., 31. Hurtig, G., 55.

IKEDA, T., 64. Israelstram, S. S., 48.

Jacobs, W. A., 65. Jacobsen, R. P., 49. Jeanloz, R., 39. Jensen, K. A., 35. Jerchel, D., 34. John, W., 44. Jones, R. G., 30.

KAPLAN, H. M., 46.
KAPLAN, H. M., 46.
KARTER, P., 31.
Kilmer, G. W., 56.
Kimel, W., 32.
King, J. A., 54.
Kitchen, R., 42.
Kitt, A., 41.
Knapp, H., 52.
Koch, H. P., 32.
Kothnig, M., 37.
Komppa, G., 52.
Kondo, H., 64.
Krajne, B., 39.
Kühn, M., 33.
Kuhn, R., 36.
Kugler, A., 31.
Kusher, S., 48.

Lásztó, E., 53.

Lauffer, M. A., 67.

Leeper, R. W., 66.

Le Rosen, A. L., 40.

Lettre, H., 48.

Leuchs, H., 64.

Lewis, H. F., 68.

Link, K. P., 35, 37.

Lipp, P., 52.

Lo, C. P., 55.

Lohmar, R., 35.

Loring, H. S., 61.

Lüttringhaus, A., 29.

Lyttgoe, B., 59.

McRae, J. A., 53.
Mann, F. G., 65.
Marsden, B., 45.
Martin, A. J. P., 68.
Mauthner, F., 38, 48.
Meals, R. N., 66.
Melnikov, N. N., 36.
Melstrom, D. S., 66.
Meyer, K. H., 39.

Minlon, H., 55. Mitts, A. E., 37. Moffett, R. B., 50. Montgomery, E. M., 38. Mumm, O., 36.

Naves, Y. R., 31. Nebe, E., 65. Neifert, I. E., 45. Nichols, J., 54. Nierenstein, M., 38.

Öno, M., 30. Ott, G. H., 51. Ozegowski, W., 41.

Pailer, M., 44.
Passing, H., 55.
Pauling, I., 40.
Pearson, R., 30.
Peters, A. T., 42.
Pfister, K., 61.
Picard, C. W., 60.
Plant, J., 43.
Polgår, A., 40.
Porter, H. D., 58.
Poschmann, L., 50.
Posternak, T., 49.
Prelog, V., 33, 52.
Prins, D. A., 51.
Pruckner, F., 63.
Pucher, G. W., 35.

Quin, D. C., 56.

RAIFORD, L. C., 59.
Rathmann, F. H., 44.
Reichstein, T., 51.
Reimann, W., 66.
Rentschler, H., 31.
Rey, E., 44.
Riccoboni, L., 29.
Richter, H., 36.
Richtmeyer, N. K., 38.
Riegel, B., 50.
Robeson, C. D., 55.
Robinson, R., 56.
Rowe, F. M., 42.
Rubin, L. B., 35.
Ruelius, H. W., 49.
Ruhkopf, H., 58.
Ruzicka, L., 44, 52.

SALAC, V., 68. Sandin, R. B., 42. Schaarschmidt, R., 60. Schläger, J., 45. Schmidt, A. W., 40.
Schroeder, W. A., 40.
Semerano, G., 29.
Seymour, D. E., 60.
Shoppee, C. W., 51.
Signer, R., 40.
Sinosaki, K., 30.
Smith, L. 1., 54.
Smith, L. 1., 54.
Smith, E., 44, 45.
Spring, F. S., 53.
Stämpll, R., 61.
Stanley, W. M., 67.
Stead, D. M., 42.
Stephen, H., 48.
Stevenson, E. F. H., 58.
Stevenson, E. F. H., 58.
Stevenson, E. F. H., 58.
Stuchareva, N. D., 36.
Sutton, D. A., 32.
Synge, R. L. M., 68.
Széki, T., 53.

Taket, S., 30.
Tananger, A., 34.
Taved, P., 40.
Tcherniak, J., 49.
Tenow, M., 32.
Theilacker, W., 41.
Todd, A. R., 59.
Tonkin, I. M., 44.
Topham, A., 59.
Turkiewicz, N., 41.

UNGAR, A., 46.

Van Slyke, D. D., 59. Veibel, S., 33. Vickery, H. B., 35.

WALDMANN, H., 60. Weissberger, A., 58. Westphal, O., 34. White, D. E., 47. Wicland, P., 52. Wicland, T., 36. Williams, R. R., 62. Willis, H. B., 55. Witkop, B., 62, 63.

ZBINDEN, E., 31. Zechmeister, L., 40. Ziegler, E., 52. Zima, O., 62. Zinke, A., 52.

JUDACTAN

ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS

Each Batch
subjected
to
INDEPENDENT
ANALYSIS
before
label is printed

You are invited to compare the above actual batch analysis with the purities

ACTUAL

BATCH

ANALYSIS

guaranteed by the specifications of any competing maker in this country or abroad

THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD.

Chemical Manufacturers, Judex Works, Sudbury, Middlesex