BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

APRIL, 1944

A II—ORGANIC CHEMISTRY

CONTENTS

I, Aliphatic	vi, Heterocyclic	PAGE IIO
II, Sugars and Glucosides 92	vii, Alkaloids	113
III, Homocyclic 93	VIII, Organo-metallic Compounds	114
IV, Sterols and Steroid Sapogenins 104	ıx, Proteins	114
v, Terpenes and Triterpenoid Sapogenins 106	x, Miscellaneous Unclassifiable Substances	115

Published by the

BUREAU OF CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

(Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, the Anatomical Society of Creat Britain and Ireland, and the Society for Experimental Biology.)

Determination 2 ALUMINIUM

Gravimetric assay with 8-HYDROXYQUINOLINE

Colorimetric estimation of traces with ALIZARIN RED S ALUMINON *QUINALIZARIN*

The separation and determination of ALUMINIUM and many other metals forms the subject of

"ORGANIC REAGENTS FOR METALS"

175 pp.

4th Edition, 1943

4 - post free

The Book and the Reagents produced and distributed by

HOPKIN & WILLIAMS LTD. 16-17 ST. CROSS STREET, LONDON, E.C.I

THE JOURNAL OF

BIOLOGICAL CHEMISTRY

FOUNDED BY CHRISTIAN A. HERTER AND SUSTAINED IN PART BY THE CHRISTIAN A. HERTER MEMORIAL FUND

EDITORIAL BOARD:

RUDOLPH J. ANDERSON. W. MANSFIELD CLARK. HANS T. CLARKE. CARL F. CORI. EDWARD A. DOISY. A. BAIRD HASTINGS.

HOWARD B. LEWIS. ELMER V. McCollum. WILLIAM C. ROSE. WILLIAM C. STADIE. DONALD D. VAN SLYKE. HUBERT B. VICKERY.

SUBSCRIPTION PRICE

Beginning with January, 1939, 5 volumes to be issued a year £1 1s. 9d. per volume, post free

> INDEX TO VOLS. 101-125 8s. net to Subscribers 12s. net to Non-Subscribers

> > British Agents:

BAILLIÈRE, TINDALL & COX 7 & 8 HENRIETTA STREET, LONDON, W.C.2

BUREAU OF CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

Chairman: L. H. LAMPITT, D.Sc., F.R.I.C.

Vice-Chairman: B. A. McSWINEY, B.A., M.B., Sc.D., F.R.S.

Hon. Treasurer: F. P. DUNN, B.Sc., F.R.I.C.

Editor and Secretary: T. F. BURTON, B.Sc.

Indexer: MARGARET LE PLA, B.Sc.

JULIAN L. BAKER, F.R.I.C. H. W. CREMER, M.Sc., F.R.I.C., M.I.Chem.E.

C. W. DAVIES, D.Sc., F.R.I.C.

H. J. T. ELLINGHAM, B.Sc., Ph.D., F.R.I.C. G. A. R. KON, M.A., D.Sc., F.R.S. E. B. HUGHES, D.Sc., F.R.I.C. L. A. JORDAN, D.Sc., F.R.I.C.

SAMSON WRIGHT, M.D., F.R.C.P. F. G. YOUNG, D.Sc., Ph.D.

Assistant Editors :

J. H. BIRKINSHAW, D.Sc., F.R.I.C.* H. BURTON, M.Sc., D.Sc., F.R.I.C. F. G. CROSSE, F.R.I.C.

A. A. ELDRIDGE, B.Sc., F.R.I.C. E. B. HUGHES, D.Sc., F.R.I.C. W. JÉVONS, D.Sc., Ph.D.† SAMSON WRIGHT, M.D., F.R.C.P.*

E. E. TURNER, M.A., D.Sc., F.R.I.C., F.R.S. F. L. USHER, D.Sc.

H. WREN, M.A., D.Sc., Ph.D.

* Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Biochemistry), A. G. POLLARD (Plant Physiology and Agriculture), K. TANSLEY (Sense Organs), L. G. G. WARNE (Plant Physiology), G. P. WELLS (Comparative Physiology), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands).

† Assisted by A. J. E. WELCH (Physical Chemistry).

A III-PHYSIOLOGY. BIOCHEMISTRY. ANATOMY.

PUBLICATIONS OF THE BUREAU

ABSTRACTS SECTIONS

A I-GENERAL, PHYSICAL AND INORGANIC CHEMISTRY.

A II-ORGANIC CHEMISTRY.

B I-CHEMICAL ENGINEERING AND INDUSTRIAL INORGANIC CHEMISTRY.

B II-INDUSTRIAL ORGANIC CHEMISTRY.

B III-AGRICULTURE, FOODS, SANITATION, ETC.

C-ANALYSIS AND APPARATUS.

COLLECTIVE INDEXES

DECENNIAL INDEX 1923-1932.

QUINQUENNIAL INDEX 1933-1937.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II—Organic Chemistry.

APRIL, 1944.

I.—ALIPHATIC.

Modern methods of preparative organic chemistry. XI. Oxidations with selenium dioxide. G. Stein. XIII. Hydrogenation with Raney catalysts. R. Schröter. XIV. Boron fluoride as catalyst of chemical reactions. D. Kästner (Angew. Chem., 1941, 54, 146—152; 229—234, 252—260; 273—281, 296—304).—

Reaction of hydrogen atoms with propylene. B. S. Rabinovitch, S. G. Davis, and C. A. Winkler (Canad. J. Res., 1943, 21, B, 251—257).—The principal products of the reaction between H atoms and c₃H₆, studied by the Wood-Bonhoeffer method over the temp. range 30—250°, are C₃H₈, C₂H₆, and CH₄. No unsaturated products appear to be formed. The nature and proportions of the products are independent of temp. A mechanism is suggested based on the formation of an active Pr radical as the primary step. H. W.

Action of anisole with ααα-trichloro-β-methyl-Δβ-propene. C. C. Price and H. D. Marshall (J. Org. Chem., 1943, 8, 532—535).—CCl₃·CMc:CH₂ (I) is very resistant to attack by Br in CCl₄ or aq. KMnO₄ and does not dissolve in conc. H₂SO₄. Addition of HCl or HBr is not practicable because of the ease with which it undergoes the allylic rearrangement. In presence of HF as catalyst, (I) and ρ-OMe·C₆H₄·NH₂ smoothly yield αα-dichloro-γ-p-anisyl-β-methyl-Δα-propene (II), b.p. 124—126°/4 mm., oxidised by CrO₃ to ρ-OMe·C₆H₄·CO₂H. CH₂Cl·CMe·CCl₂, formed by allylic rearrangement of (I) under the influence of HF, gives very little (II) when treated with ρ-OMe·C₆H₄·NH₂ and HF under the same conditions. The formation of (II) from (I) may therefore be interpreted as a direct addition of the base to the double linking in (I) in opposition to Markovnikov's rule; the additive product then gives (II) by loss of HCl. It is, however, possible that the dissociation of (I) gives a resonating ion common to both the allylic rearrangement and the Friedel-Crafts reaction. Friedel-Crafts reaction.

Reactions of monovinylacetylene with chlorine and bromine. K. Rengert and H. J. Schumacher (Ber., 1940, 73, [B], 1025—1042).—CH₂:CH·C:CH (I) and Br, when illuminated at 60—150°/100 mm., give a liquid mixture, C₄H₄Br₄, b.p. 172—180°/20 mm., the low v.p. of which prevents investigation of the kinetics; the thermal reaction also interferes. Thermal interaction of Cl₂ with (I) is a chair reaction on the control of th reaction also interieres. Thermal interaction of Cl_2 with (I) is a chain reaction up to 650 mm., leading to a mixture, $\text{C}_4\text{H}_4\text{Cl}_4$, b.p. $90-110^\circ/25$ mm., or, if an excess of (I) is used, mainly to a product (II), $\text{C}_4\text{H}_4\text{Cl}_2$, b.p. $35^\circ/40$ mm. Investigation of the kinetics is complicated by the stepwise reaction, rearrangement of (II), polymerisation, and addition of Cl_2 to the polymers. H_2 and O_2 , if introduced, take part in the reaction. R. S. C.

[Laboratory] preparation of nitroethane. H. McCombie, B. C. Saunders, and F. Wild (J.C.S., 1944, 24—25).—Et₂SO₄ (100 g.) is shaken for 20 hr. with NaNO₂ (100 or 150 g.) in H₂O (125 or 187 g.). The best yield is 46% (65% on Et₂SO₄ not recovered), based on Et₂SO₄ \rightarrow NaEtSO₄. More EtNO₂ is obtained by distilling solid NaEtSO₄, NaNO₂, Na₂CO₃, and a little H₂O above 100°. S. A. M.

Reduction of nitroparaffins in liquid ammonia. G. W. Watt and C. M. Knowles (J. Org. Chem., 1943, 8, 540—543).—EtNO₂, Pr^aNO_2 , Pr^bNO_2 , Bu^aNO_2 , and Bu^bNO_2 dissolve in and react with liquid NH_3 at -33.5° to form relatively unstable NH_4 salts of the type $CHR:N(\rightarrow O)\cdot ONH_4^+$. All are colourless, cryst. solids which decompose slowly with liberation of NH_3 . Qualitatively the decreasing order of stability of the corresponding NH_4 salts is $Pr^bNO_2 > Bu^bNO_2 > Pr^aNO_2 > Bu^aNO_2 > EtNO_2$. When Na is added to liquid NH_3 containing a nitroparaffin with an excess of NH_4 Br the quantity of H_4 , liberated is almost exactly equiv. to that of the Na quantity of H₂ liberated is almost exactly equiv. to that of the Na taken. Removal of the solvent and decomp. of the NH₄ salts results in recovery of the nitroparaffins. Addition of Na to solutions of these nitroparaffins in liquid NH₃ results in the liberation of H₂, the formation of white ppts. (probably of Na salts), and, after addition of NH₄Br, the isolation of the corresponding alkylhydroxylamines, solutions of which readily reduce Ag₂O-NH₃ at room temp. The yields are low owing to slow and incomplete reduction and to the difficulties in separating small quantities of these products from relatively large quantities of inorg. salts. The following must be prepared under anhyd. conditions: p-nitrobenzaldoxime Et, m.p. E (A., II.)

122—123°, Pr^a , m.p. 77—78°, and $Bu\beta$, m.p. 80—81°, ether. iso-Propylhydroxylamine hydrochloride and n-butylhydroxylamine platinichloride are described. M.p. are corr. H. W.

Polymerisation of vinyl ethers. I. Vinyl n-butyl ether. M. F. Schostakovski and I. F. Bogdanov (J. Appl. Chem. Russ., 1942, 15, 249—259).—OBu^α·CH:CH₂ (I) prepared (not quite pure) from Bu^αOH and C₂H₂, b.p. 92—93°, is polymerised by SnCl₄ or FeCl₃ to an oil (n and η of 1% solutions in C₆H₆ given). The heat of polymerisation is 11·6—14·4 kg.-cal. per 100 g.; to prevent overheating the mixture of monomer and catalyst is either cooled (to keep the temp. at 40—60°) or diluted with polymer. Some η vals. are given for (I)—Bu^αOH mixtures. BuaOH mixtures.

Rôle of neighbouring groups in replacement reactions. VII. Methoxyl group. S. Winstein and R. B. Henderson (J. Amer. Chem. Soc., 1943, 65, 2196—2200; cf. A., 1943, II, 228).—Owing to interaction of neighbouring groups, reaction of CHMeBr-CHMe-OMe interaction of neighbouring groups, reaction of CHMeBr-CHMe·OMe or trans-1-bromo-2-methoxycyclohexane (I) occurs substantially without inversion. threo-, b.p. 55·6—55·7°/40 mm., and erythro-β-Bromo-y-methoxy-n-butane, b.p. 55·7—56·2°/40 mm., are obtained by trans-addition to (CHMe·)₂ by NHBrAc + H₂SO₄ (trace) in MeOH at < 0°. The following are prepared by known methods: threo-, b.p. 126·4—126·5°/752 mm. (a-naphthylurethane, m.p. 84—85°; acetate, b.p. 154·8—155·4°/750 mm.), and erythro-y-methoxy-n-butan-β-ol, b.p. 132·3—132·5°/748 mm. (a-naphthylurethane, m.p. 111—112°; acetate, b.p. 153·4—154·0°/749 mm.); trans-2-methoxycyclohexanol (from the oxide by H₂SO₄-MeOH), b.p. 72·5—73·2°/100 mm. (3:5-dinitrobenzoate, m.p. 101—102°; acetate, b.p. 87·5—88·0°/10 mm.). (I) could not be resolved by brucine.

Fructose-1: 6-diphosphoric acid and fructose-6-monophosphoric acid. C. Neuberg, H. Lustig, and M. A. Rothenburg (Arch. Biochem., 1943, 3, 33-44).—Ba H_2 d-fructose-1: 6-diphosphate (I) was prepared from the strychnine H salt by treatment with $Ba(OH)_2, H_2O$ in McOH, $[a]_D^{17} + 4\cdot04^\circ$ to $+4\cdot15^\circ$ (free acid), reducing power (K salt) 0.48 times that of d-fructose, and resistant to $Br-H_2O$. The Ba H salt was prepared by treating (I) with HBr at 3° and pptn. with EtOH. Partial hydrolysis of fructose-1:6-diphosphates (Ca salt with HCl, Ba salt with HBr) at 36° gave 50% yield of Ba d-fructose-6-phosphate, $[a]_{19}^{19}$ $+3.58^{\circ}$ (Ba salt), reducing power (K salt) 0.82 times that of d-fructose, and resistant to Br-H₂O.

Invert soaps. II. Dimethyl-butyl-, octyl-, -dodecyl-, and -hexadecyl-sulphonium iodides. R. Kuhn and O. Dann (Ber., 1940, 73, [B], 1092—1094; cf. A., 1944, II, 115).—RSMe and MeI-N₂ at ~20° give dimethyl-butyl-, -octyl-, -dodecyl-, and -hexadecyl-sulphonium iodide, all cryst. but very hygroscopic. RHal and NaSMe in EtOH at room temp. to -10° (exothermic) and then the b.p. give Me octyl, b.p. $100\cdot5$ — $102\cdot5^\circ$ /17—18 mm., dodecyl, b.p. 163— 165° /19 mm., and hexadecyl sulphide, m.p. $19\cdot5$ — $20\cdot5^\circ$. SMe_RI is surface-active if $R=C_{48}$; SMe_RI are effective against B. coli and staphylococci, respectively, at the following concns.: R= Me, Bu, or octyl >2%. $C_{12}H_{25}$ 0-1, $0\cdot2\%$, and $C_{10}H_{33}$ 0-5, $0\cdot02\%$; for $C_{12}H_{25}$ SMeCl-CH₂Ph the concns. are 0·1 and 0·067, for $C_{12}H_{25}$ NMe₂Br-CH₂Ph 0·0167 and 0·02%, respectively. R. S. C.

Methanetri-β-propionic acid.—See A., 1944, III, 33.

Reaction of sodium triphenylmethyl with esters of a β -unsaturated acids.—See A., 1944, II, 99.

Glycidyl esters of aliphatic acids. E. B. Kester, C. J. Gaiser, and M. E. Lazar (J. Org. Chem., 1943, 8, 550—556).—Glycidyl laurate, b.p. 126°/1 mm., 290° (decomp.)/760 mm., m.p. 21°, myristate, b.p. 146°/1 mm., 310° (decomp.)/760 mm., m.p. 33·5—34·5°, palmitate (I), b.p. 170°/1 mm., m.p. 44·5—45·0°, stearate, b.p. 193°/1 mm., m.p. 50·5—51·3°, and oleate, b.p. 185°/1 mm., m.p. -1°, and β -methylglycidyl myristate, b.p. 130°/1 mm., m.p. 21·5°, are obtained by boiling the requisite Na salt with epichlorohydrin (II) (or β -methylepichlorohydrin) in excess. The best results are obtained under atm. pressure and strictly anhyd. conditions. The use of increased pressures shortens the time of reaction considerably but the increased temp. favours the formation of quantities of material of high b.p. With imperfectly dried reactants at atm. pressure

50-60% of materials polymerised or of high b.p. are produced. An excess of (II) is preferable to PhMe or light petroleum to produce An excess of (11) is preferable to Pinke or light petroleum to produce fluidity of the soap suspension. (II) does not react satisfactorily with Na₂ sebacate and glycidyl sebacate, m.p. 44°, is best obtained from glycidol and sebacyl chloride in PhMe containing NEt₃ as acceptor for HCl in place of C₅H₅N, thus enabling NEt₃, HCl to be almost quantitatively filtered off. (I) is obtained similarly The soaps are best obtained by neutralising the fatty acid in COMe₂ with 5N-NaOH. Glycidyl esters of the mixed acids of babassu, were hear replaced. soya-bean, walnut, and castor oils and rosin have been prepared. H. W.

Synthesis of $d(-)-\beta$ -phosphoglyceric acid and $d(+)-\alpha$ -phosphoglyceric acid. C. Neuberg (Arch. Biochem., 1943, 3, 105—112).—d(-)-Glyceric acid was phosphorylated by EtPO₃, and the insol. Ba H d(-)- β -phosphoglycerate obtained in 70% yield; Ag d(+)- α -phosphoglycerate was obtained also in 7% yield. The synthetic E. R. S. and natural products are identical.

Quantitative effect of X-rays on ascorbic acid in simple solution and in mixtures of naturally occurring compounds.—See A., 1944,

Mechanism of ketol formation from pyruvate and aldehydes. R. L. Berg and W. W. Westerfeld (J. Biol. Chem., 1944, 152, 113—117).—Oxidation of (CHMe·OH)₂, CHMeAc·OH, and Ac₂ by KIO₄ leads to rupture of the linking between the substituted C atoms and conversion of the substituent OH groups into CHO while the CO groups are transformed into CO₂H. Oxidation of the 4-C ketol produced in the enzymic reaction between pyruvate (I) and EtCHO gives AcOH and EtCHO thereby identifying the ketol as CHETACOH gives AcOH and EtCHO, thereby identifying the ketol as CHEtAc OH. Association of CO of the ketol with the 2-C portion of the structure derived from (I) makes doubtful the possibility of intermediate compound formation between EtCHO and (I) prior to the decarbanches of the latter of oxylation of the latter.

Reaction of ethylenediamine with Zeise's salts. A. Gelman (Compt. rend. Acad. Sci. U.R.S.S., 1943, 38, 243—246; cf. A., 1940, I, 267).—(CH₂:NH₂)₂ (I) and aq. Zeise's salt [K(PtC₂H₄Cl₃)] afford a complex, Pt ethylene ethylenediamine dichloride, a complex, Pt ethylene ethylenetamine attenuatie, $(C_2H_4\cdot PtCl_2\cdot NH_2\cdot CH_2)_2$ (II); no cycle is formed, but (I) unites two central atoms as a bridge. Evaporation of the mother-liquor from (II) at 100° (bath) gives C_2H_4 and $(CH_2\cdot NH_2)_2PtCl_2$. (I) and the butadiene salt, $K_2[(PtCl_3)_2C_4H_6]$, afford the very long-chain complex, Pt butadiene ethylenediamine dichloride (III); the bridges between two central atoms are formed by butadiene on the one hand and (I) on the other. (II) and (III) are decomposed by boiling H₂O. probable reason why (I) does not follow Tschugaev's rule when there is a C_2H_4 mol. in the inner sphere is the instantaneous formation of an insol. ppt. [[PtCl₂·C₂H₄)₂(CH₂·NH₂)₂], when an attempt is made to introduce (I).

Synthesis of amino-acids from substituted cyanoacetic esters. P. E. Gagnon, R. Gaudry, and F. E. King (J.C.S., 1944, 13—15).— P. E. Gagnon, R. Gaudry, and F. E. King (J.C.S., 1944, 13—15).—
Alkylcyanoacetic esters are converted into hydrazides, to which the Curtius reaction is applied (cf. Darapsky, A., 1936, 1494).
CN·CHPrβ·CO₂Et gives a syrupy hydrazide, which gives 60% yield of valine (PhNCO gives a-N-phenylcarbamidoisovaleric acid, m.p. 149°).
CN·CH₂·CO₂Et (I) and CH₂·PhBr give 44% yield of CH₂·Ph·CH(CN)·CO₂Et, b.p. 165—173°/15 mm. [hydrazide (II), m.p. 123—124°], and 23% yield of Et a-cyano-ββ-dibenzylacetate, b.p. 190—200°/15 mm. (hydrazide, m.p. 235—237°); (II) gives 50% yield of phenylalanine (phenylcarbamyl derivative, m.p. 168—170°). (I) and anisyl chloride give 48% yield of Et a-cyano-β-anisylprojenonate, b.p. 165—170°/0·2 mm.; the hydrazide, m.p. 122—123°, gives 30% yield of O-methyltyrosine, but if conc. HCl-AcOH is used in place of the usual 20% HCl for the final hydrolysis of the urethane, tyrosine is obtained (yield 11%). (I) and OPh·[CH₂]₃·Br give Et a-cyano-8-phenoxyvalerate (40% yield), b.p. 175—190°/0·7 mm.; the hydrazide, m.p. 85°, gives a 40% yield of a-amino-8-phenoxyvaleric acid, m.p. 265—267° (decomp.), with which PhNCO forms a phenylureide, m.p. 158°. (I) and Br-[CH₂]₃·CO₂Et give 40% yield of Et₂ a-cyanoadipate, b.p. 178—186°/15 mm.; the dihydrazide, m.p. 128°, cannot be converted into the desired ornithine. Similarly (I) and Br-[CH₂]₄·CO₂Et give 30% yield of Et₂ a-cyanopimelate, b.p. 183—197°/12 mm., the dihydrazide, m.p. 115—116°, from which cannot be converted into lysine.

S. A. M. Alkylcyanoacetic esters are converted into hydrazides, to which the cannot be converted into lysine. S. A. M.

Raman spectrum of glycine.—See A., 1944, I, 78.

New mode of formation of β -alanine. C. Enders [with Zellweger] (Naturwiss., 1943, 31, 209).—A substance promoting the growth of yeast and considered to the β -alanine is obtained when AcCHO is heated with 40% NH₃ at 100°. It is also formed in neutral or slightly acid solution from AcCHO and glycine. The mechanism of the change is discussed.

Complex compounds of diguanide with bivalent metals. VII.— See A., 1944, I, 89.

Optical antipodes of pantothenic acid. R. Kuhn and T. Wieland (Ber., 1940, 73, [B], 1134).—Resolution of dl-pantothenic acid by quinine in COMe₂-EtOH or COMeEt gives d- and l-acids, [a]²⁰

 $\pm 27^{\circ}$ in H₂O. The d-acid has $45-50 \times 10^{6}$ SbmE units of activity per g.; the l-acid is inactive (cf. A., 1942, II, 297; 1944, II, 36).

Analogues of pantothenic acid. III. Preparation of growth-inhibiting analogues related to N-pantoyltaurine (Miss) J. Barnett (J.C.S., 1944, 5—8; cf. A., 1942, II, 250; III, 621).—NH₂·[CH₂]₂·SH [from (CH₂)₂NH and H₂S](2: 4-dinitrobenzoylthioether, m.p. 93.5— 94·5°) and pantolactone (a-hydroxy-ββ-dimethylbutyrolactone) (I) in a sealed tube in vac. (100°, 1 hr.) give N-pantoyl-β-aminoethylthiol (II), a yellow oil (86% pure), highly toxic to rats. (NH₂:[CH₂]₂)₂S and (I) in abs. MeOH (reflux, 1 hr.) give bis-(N-pantoyl-β-aminoethyl) disulphide (III), m.p. 141—144°. (NH₂:[CH₂]₂)₂S (IV) and (I) in abs. MeOH (cold, 12 hr.; reflux, 1 hr.) give bis-(N-pantoyl-β-aminoethyl) sulphide (V), a viscous oil. (IV) and Br-H₂O give bis-β-aminoethyl sulphide dihydrobromide, m.p. 201—202° (quant. yield, ~100% pure); this with NaOEt gives the sulphoxide (VI), a syrup [dihydrochloride (VII), m.p. 220°; 97% pure]. (VI) and (I) in abs. MeOH (20°, 3 days) give bis-(N-pantoyl-β-aminoethyl) sulphoxide (VIII), a syrup (~92% pure); after 3 months in a sealed tube. COMe₂ extracts a compound, m.p. 143—144°, identical with (III). (IV) or (VII) and KMnO₄ in 50% AcOH give 50% yield of bis-β-aminoethyl sulphone dihydrochloride, m.p. 226—228°; the sulphone and (I) in abs. MeOH (reflux, 1 hr.) give bis-(N-pantoyl-β-aminoethyl) sulphone (IX), a syrup. (II) and (III) inhibit the growth in vitro of Lactobacillus arabinosus to approx. the same degree as pantoyltaurine, (V), (VIII), and (IX) to a smaller degree; rats are more susceptible 94·5°) and pantolactone (a-hydroxy-ββ-dimethylbutyrolactone) (I) (V), (VIII), and (IX) to a smaller degree; rats are more susceptible to Streptococcus hamolyticus in presence of any of these substances than in their absence.

Dimethanesulphonimide, a strong acid. B. Helferich and H. Grünert (Ber., 1940, 73, [B], 1131—1133).—NH(SO₂Me)₂ is best (~90%) obtained by adding 5N-NaOH (4) and MeSO₂Cl (2 mols.) to conc., aq. NH₄Cl (1 mol.) at 0°. It is a strong acid (cf. A., 1942, II, 297); 0·1, 0·01, and 0·001N. solutions have pH 1·27, 2·20, and 3·25, respectively. With CHMeN₂ it gives dimethanesulphonethylimide (100%), m.p. 94—95° (corr.), also obtained (47%) from NH₄Et,HCl (1 mol.), MeSO₂Cl (2·6), and NaOH (4·7 mols.) at 0—5°. NH₂R,HCl (1), MeSO₂Cl (1 mol.), and NaOH (2—2·21 mols.) at 2—5° give methanesulphon-ethylamide, b.p. 105·5—107° (corr.)/0·3 mm., and -methylamide (~60%), b.p. 118°/0·3 mm. [with some dimethanesulphonmethylimide, m.p. 115·5—116·5° (corr.)]. R. S. C.

Trimethylacetic acid. Isolation and degradation of pivalazide. A. Bühler and H. E. Fierz-David (Helv. Chim. Acta, 1943, 26, 2123—2136).—The behaviour of pivalazide (I) contradicts the theory that an enolisable CO or a vicinal C.C linking is essential for the Curtius transformation of azides. Survey of the literature leads to the conclusion that at present there is no experimentally established theory of the isomerisation incident to the Hofmann and Curtius degradations. Freshly sublimed pivaloylhydrazine, m.p. $56-57^{\circ}$, in 2N-HCl at -5° to -3° is converted by NaNO, into (I), a mobile, odourless liquid, m.p. 0° , which can (generally) be distilled unchanged odourless liquid, m.p. 0°, which can (generally) be distilled unchanged in a high vac.; it is less advantageously prepared from Bu^{\(\gamma\)}COCl and NaN₃. It passes quantitatively at 100° into N₂ and Bu^{\(\gamma\)}NCO, b.p. 84·6° (corr.), a colourless liquid with a pleasant odour, which does not solidify at -30° and could not be polymerised by prolonged irradiation. The following are described: NN'-ditert.-butyl-, m.p. 242°, N-phenyl-N'-tert.-butyl-, m.p. 153° (corr.), and N-tert.-butyl-carbamide, m.p. 242°; NHBu^{\(\gamma\)}CO₂Me, b.p. 56°/11 mm., NHBu^{\(\gamma\)}CO₂Et, b.p. 74°/11 mm., m.p. 30—21°, NH₂Bu^{\(\gamma\)}, b.p. 44° (hydrochloride, m.p. 273—275°).

H. W.

Modern methods of preparative organic chemistry. X. Syntheses with diazometham. B. Eistert (Angew. Chem., 1941, 54, 99—105, 124-131).-A review.

II.—SUGARS AND GLUCOSIDES.

Methanesulphonates of the sugar group. III. B. Helferich and H. Jochinke (Ber., 1940, 73, [B], 1049—1052; cf. A., 1939, II, 468).—β-Diisopropylidenefructose and MeSO₂Cl in C₅H₅N at 0° give 2:3-4:5-diisopropylidene-d-fructopyranose 1-methanesulphonate (85%), m.p. 125—126°, [a]²¹ – 29·3° in CHCl₃, converted by H₂SO₄-MeOH-H₂O into syrupy fructose 1-methanesulphonate. Diisopropylidenesorbose gives similarly 2:3-4:6-diisopropylidene-l-sorbofuranose 1-methanesulphonate (~70%), m.p. 116—117°. a-Diisopropylidenefructose gives 1:2-4:5-diisopropylidene-d-fructopyranose 3-methanesulphonate (>90%), m.p. 104—105°, [a]²⁵ —161·4° in CHCl₃, converted by boiling H₂SO₄-MeOH-H₂O into syrupy d-fructose 3-methanesulphonate or, by shorter treatment, into 1:2-isopropylidene-d-fructopyranose 3-methanesulphonate (I) (variable yield up to 70%), m.p. 133° (decomp.), [a]¹⁵ —138° in COMc₂. With MeSO₂Cl-C₅H₅N at 0°, (I) gives 1:2-isopropylidene-d-fructopyranose 3:4:5-trimethanesulphonate, m.p. 128—130°, [a]²⁵ —115·5° in CHCl₃, or with Ac₂O-C₅H₅N at 37° gives 1:2-isopropylidene-d-fructopyranose 4:5-diacetate 3-methanesulphonate (>90%), m.p. 84—36°. Phenyl-β-d-fructopyranoside with MeSO₂Cl-C₅H₅N at 0° gives phenyl-β-d-fructopyranose tetramethanesulphonate (>85%), m.p. 197° (decomp.), [a]¹⁵ —135·3° in C₆H₆N, or at —19° gives, after

acetylation, impure phenyl- β -d-fructopyranoside triacetate 1-methane-sulphonate (II), whence boiling NaOMe-MeOH gives phenyl- β -fructopyranoside 1-methanesulphonate, m.p. 120° (decomp.), [a] $_{\rm D}^{20}$ (decomp.), [a] $_{\rm D}^{20}$ -172·2° in C₅H₅N, which by reacetylation gives pure (II), m.p. 127—128°, [a] $_{\rm D}^{18}$ -135·4° (does not react with NaI-COMe $_{\rm 2}$ at 125—130°). R. S. C.

Splitting of sucrose by ultrasound.—See A., 1944, I, 88.

Starch. XI. Highly methylated starch. Sugars obtained by fission. K. Hess, H. A. Schulze, and B. Krajnc. XII. Comparison of end-group content, viscosity, and osmotic pressure of starch and its components. K. Hess and E. Steurer (Ber., 1940, 73, [B], 1069—1076, 1076—1079).—XI. When methylated potato starch (40—41% OMe) is treated with Na, liquid NH₃, and MeI in PhOMe, the product contains usually ~44—45.5% of OMe; high OMe content is obtained only if not too much Na is used, an excess causing backhydrolysis. MeI-Ag₂O similarly gives variable results up to 45.6% of OMe. Hydrolysis of a product containing 45.55% of OMe gives methyl-tetra-3.99, -tri-86.7, -di-4.77, and -mono-methylglucoside 2.27%. It is concluded that methylation is still incomplete but may involve structural changes.

XII. Data on the end-group content, η , and osmotic pressure of starch (potato; maize) and amylo- and erythro-amylose are recorded. They are considered too inconsistent to serve as a basis for final generalisation.

R. S. C.

Limit dextrins and starch. XII. Preparation and constitution of a difficultly hydrolysable disaccharide ("isomaltose") from starch. K. Ahlborg and K. Myrback (Biochem. Z., 1941, 308, 187–195; cf. A., 1944, II, 8; III, 67).—The prep. of isomaltose (I) from maize starch by hydrolysis with $0\cdot 2n\cdot H_3 SO_4$ followed by removal of glucose and fractional pptn. with EtOH is described. Hydrolysis of a limit dextrin with takadiastase gives 20% yield of (I). The theoretical yield is calc. to be $\sim\!\!36\%$, whence it is concluded that the mol. of the limit dextrin with mol. wt. 700–1000 contains one (I) unit. The action of pancreatin on potato starch shows that it contains one (I) for every 15–20 maltose units. Since amylose is probably not branched, amylopectin must contain one (I) to every 10 maltose units. The structure of (I) is shown by methylation followed by hydrolysis, which yields 2:3:4-tri- and 2:3:4:6-tetra-methylglucose.

Phosphorylase of waxy maize.—See A., 1944, III, 289.

Amorphin, a glycoside in Amorpha fruticosa, L. F. Acree, jun., M. Jacobson, and H. L. Haller (J. Org. Chem., 1943, 8, 572—574).— The seeds of A. fruticosa, L., give the colour reaction in the Durham test which heretofore has been considered sp. for rotenone and the rotenoids, but no compounds of this class could be isolated from them. The product responsible for the positive reaction is amorphigenin (I), C₂₂H₂₂O₇, the aglycon of the glycoside, amorphin (II), C₃₃H₄₀O₁₆. (I) has m.p. 191—192°, does not reduce Fehling's solution before or after acid hydrolysis, and gives a negative phenol test. (II) has m.p. 151—151·5°, does not reduce Fehling's solution until after acid hydrolysis, and gives a positive Durham and orcinol test and a negative phenol test. A substance, m.p. 218°, which gives a positive Durham test has been isolated in quantity too small for extended examination.

III.—HOMOCYCLIC.

Action of ultra-violet light on liquid benzene. C. B. Allsopp and B. Szigeti (J.S.C.I., 1944, 63, 31—32).—When liquid C_6H_6 is irradiated in presence of air with ultra-violet light of λ 2537 A., small quantities of five different substances can be separated by chromotographic fractionation of the products. The absorption spectrum of one of them resembles those of the diphenylpolyenes, and another yields a bromophenylhydrazone. None of them has been definitely identified.

2:3:5-Trimethylnaphthalene in coal tar. O. Kruber (Ber., 1940, 73, [B], 1174—1175).—The first cryst. sulphonic acids obtained by partial sulphonation (with 92% H₂SO₄) of a neutral, heavy oil fraction, b.p. 286—289°, readily yield 2:3:5-trimethylnaphthalene (I), b.p. 285°/762 mm., m.p. 25·3° (picrate, m.p. 124°; styphnate, m.p. 148°), after purification through the K salts. The hydrocarbon from subsequent sulphonates requires purification through the picrate, which is successful only if much preliminary enrichment has been effected by sulphonation. Its constitution is established by its oxidation by CrO₃ in AcOH at 60° to 2:3:5-trimethyl-1:4-naphthaquinone, m.p. 128°, which is further oxidised by aq. KMnO₄ at 60—70° to 3:1:2-C₆H₃Me(CO₂H)₂, m.p. 154°, or to 2:3:1-C₆H₃Me₂·CO₂H if excess of KMnO₄ is used at 100°.

H. W. syntheses in the naphthalene group. III. Syntheses of 2-benzylnaphthalenes. W. Borsche, P. Hofmann, and H. Kuhn [and, in part, R. Manteuffel] (Annalen, 1943, 554, 23—40; cf. A., 1937, II, 18, 257).—a-Phenacylcinnamic acid (I) is hydrogenated (Pd-C in EtOAc) to a-phenacyl-β-phenylpropionic acid, reduced (Zn-Hg and HCl in boiling MeOH) followed by hydrolysis to γ-phenyl-a-benzyl-

n-butyric acid, b.p. 198°/1 mm., m.p. 54—55°, also obtained by hydrogenation (Pd-C in EtOAc) of (I) or of phenylbenzylcrotonohydrogenation (Pd–C in EtOAc) of (I) or of phenylbenzylcrotonolactone. This is converted by treatment with PCl₃ and subsequent distillation in vac. into 1-keto-2-benzyl-1:2:3:4-tetrahydronaphthalene (II), b.p. 176°/1 mm., m.p. 53—54° (2:4-dinitrophenylhydrazone, m.p. 53—54°), reduced (Clemmensen) to 2-benzyl-1:2:3:4-tetrahydronaphthalene, b.p. 195°/13 mm., which is dehydrogenated by Se at 280—300° to 2-C₁₀H₇·CH₂Ph, m.p. 58° (lit., m.p. 35·5°). (II) is transformed by MgPhBr followed by dehydration and dehydrogenation (Se) of the product into 1-phenyl-2-benzylnaphthalene, m.p. 87—88°. (CH₂Ph)₂CH·CH₂·COCl is cyclised by distillation to 1-keto-3-benzyl-1:2:3:4-tetrahydronaphthalene, b.p. ~170°/1 mm. (2:4-dinitrophenylhydrazone, m.p. 220°), which is reduced and de-1-heto-3-benzyl-1: 2: 3: 4-tetrahydronaphthalene, b.p. ~170°/1 mm. (2: 4-dinitrophenylhydrazone, m.p. 220°), which is reduced and dehydrogenated to (III), m.p. 57—58°. 2-C₁₀H₇·COPh is reduced by N₂H₄,H₂O at 220—230° to 2-C₁₀H₇·CH₂Ph, m.p. 58° (picrate, m.p. 93°). 1-C₁₀H₇·COPh is transformed similarly into 1-C₁₀H₇·CH₂Ph, m.p. 57·5—58° (picrate, m.p. 103—104°). Na β-anisoylpropionate, PhCHO, and Ac₂O at 100° afford p-anisylbenzylidenecrotonolactone, m.p. 176—177°, converted by Na₂CO₃ in boiling and MeOH into a-p-methoxyphenacylcinnamic acid, m.p. 171°, which is hydrogenated to a-p-methoxyphenacyl-β-bhenylbrobionic acid, m.p. 132°; this is to a-p-methoxyphenacyl-β-phenylpropionic acid, m.p. 132°; reduced (Clemmensen) to a-benzyl-γ-p-anisyl-n-butyric acid, b.p. ~200°/1 mm., m.p. 77°, which is cyclised to 1-keto-7-methoxy-2-benzyl-1:2:3:4-tetrahydronaphthalene (III), b.p. 202—204°/1 mm., m.p. 120—121° (2:4-dinitrophenylhydrazone, m.p. 223°). Reduction (Clemmensen) followed by dehydrogenation (Se) of (III) leads to 7-methoxy-2-benzylnaphthalene, m.p. 75.5° (picrate, m.p. 92—93°). γ-p-Anisylbutyric acid, m.p. 53—55°, is smoothly obtained by hydrogenation (Pd-C in EtOAc) of γ-keto-γ-p-anisyl-n-butyric acid, γ-Keto-γ-phenyl-γ-anisylidenebutyric acid, m.p. 179°, is reduced a-4-methoxybenzylbutyric acid, m.p. 87°; this gives successively 1-keto-2-4'-methoxybenzyl-1: 2: 3: 4-tetrahydronaphthalene, m.p. 65° 1-keto-2-4'-methoxybenzyl-1:2:3:4-tetrahydronaphthalene, m.p. 65° (2:4-dinitrophenylhydrazone, m.p. 195°), and 2-4'-methoxybenzyl-1:2:3:4-tetrahydronaphthalene, m.p. 69°, but the subsequent dehydrogenation does not appear to proceed smoothly. Reduction of 2-anisoylnaphthalene by N₂H₄ affords 2-4'-hydroxybenzylnaphthalene, m.p. 98° (picrate, m.p. 125—126°). Na β-anisoylpropionate, p-OMe·C₆H₄·CHO, and Ac₂O at 100° afford p-anisyl-anisylidene-crotonolactone, m.p. 175—176°, converted by prolonged boiling with Na₂CO₃ in aq. MeOH into p-methoxy-a-4-methoxybenzylcinnamic acid, m.p. 191°, which is reduced directly to γ-p-anisyl-a-4-methoxybenzyl-n-butyric acid, m.p. 112°; this is treated with PCl₃ and then cyclised to 1-keto-7-methoxy-2-4'-methoxybenzyl-1:2:3:4-tetrahydronaphthalene, b.p. 233—236°/1 mm., m.p. 90·5° (2:4-dinitrophenyl-hydrazone, m.p. 200°), which is reduced (Clemmensen) and then dehydrogenated (Se at 280—300°) to 7-methoxy-2-4'-methoxybenzyl-naphthalene, m.p. 121·5°. Na β-veratroylpropionate, PhCHO, and Ac₂O at 100° give 3:4-dimethoxyphenylbenzylidenecrotonolactone (IV), Ac₂O at 100° give 3: 4-dimethoxyphenylbenzylidenecrotonolactone (IV), m.p. 139—140°, converted by Na₂CO₃ in boiling aq. MeOH into a-3: 4-dimethoxyphenacylcinnamic acid, m.p. 212°, and by boiling NaOMe-MeOH with immediate acidification into Me a-3: 4-dimeth Nature-MeOH with immediate acidincation into Me a-3: 4-aimethoxyphenacylcinnamate, m.p. $121-122^{\circ}$, which is transformed by N_2H_4 , H_2O at $120-130^{\circ}$ into 3-keto-6-3: 4'-dimethoxyphenyl-4-benzyl-2: 3: 4:5-letrahydropyridazine, m.p. $173-174^{\circ}$. The ester is hydrogenated to Me a-3: 4-dimethoxyphenacyl- β -phenylpropionate, m.p. $136-137^{\circ}$ (corresponding acid, m.p. 140°), which is reduced (Clemmensen) to γ -3: 4-dimethoxyphenyl-a-benzylbutyric acid, b.p. \sim 240°/ 1 mm., also obtained by catalytic hydrogenation of (IV) and converted into 1-keto-6: 7-dimethoxy-2-benzyl-1:2:3:4-tetrahydronaphthalene, m.p. 143° (2:4-dinitrophenylhydrazone, m.p. 227°). Gradual addition of NaOMe in MeOH to Me β-veratroylpropionate and PhCHO in MeOH at 30° leads to β-veratroyl-β-benzylidenepropionic acid, m.p. 124—126°; this is hydrogenated (Pd-C) in EtOAc) to the corresponding saturated acid, which is reduced (Clemmensen) to the non-cryst. y-3: 4-dimethoxyphenyl-\(\beta\)-benzyl-n-butyric acid, b.p. ~220°/1 mm. The corresponding non-cryst. 1-keto-6: 7-dimethoxy-3-benzyl-1: 2: 3: 4-tetrahydronaphthalene (2: 4-dinitrophenylhydrazone, m.p. 239°) is dehydrogenated to 6: 7-dimethoxy-2-benzylnaphthone, m.p. 239°) is dehydrogenated to 6.7-american alene, m.p. 105—106°, which does not give a colour with FeCl₂. H. W

Perylene and its derivatives. II. A. Zinke, U. Noculak, R. Skrabal, and H. Troger (Ber., 1940, 73, [B], 1187—1192).—Gradual addition of Br to a solution of perylene in boiling C₈H₈ gives a tetrabromoperylene (I), m.p. 310°, which gives a dark green colour in conc. H₂SO₄ and a more freely sol. (probably non-homogeneous) tetrabromoperylene (II), m.p. (indef.) 198—203°, which dissolves in warm conc. H₂SO₄ to a blue solution becoming violet and then dirty red when further heated. Under similar conditions 3:9-dibromoperylene gives (I) and a further tetrabromoperylene (III), m.p. 250—251°, whereas the 3:10-Br₂-compound gives a tetrabromoperylene (IV), m.p. 265°, softens at 254°. It is uncertain whether (II), (III), and (IV) are isomeric compounds or identical products in different stages of purity. Hot conc. H₂SO₄ transforms (I), (II), (III), and (IV) into quinones which are non-cryst. and sol. in alkali. (I) and conc. H₂SO₄ at 90° give a product with the approx. composition of a dibromoperylenequinone. Attempts to establish the position of Br in (I), (II), (III), and (IV) by use of (:CH·CO)₂O are shown to be useless since no reaction occurs with

3:4:9:10-tetra-chloro- or -nitro-perylene although the 1:12positions are free. Condensation with (:CH·CO)₂O is not completely inhibited by the presence of substituents since

inhibited by the presence of substituents since 3:9-dichloroperylene gives a compound [(V), R = Cl] and 3:9-dibenzoylperylene affords a substance [(V), R = Bz]. Treatment of this with AlCl₃ at 170—180° gives varying results; it is decarboxylated by NaOH-CaO to 1:12-benzperylene, m.p. 272°, the Bz groups being removed. Decarboxylation of 4:5-benz-1:2-diphenylaceperylene-Bz1:Bz2-dicarboxylic anhydride leads to a hydrocarbon, m.p. 279°, of the expected diphenylaceperylene but

with the composition of the expected diphenylacebenzperylene but it is doubtful whether both Ph groups are still present. Condensation of tribenzoylperylene with (:CH·CO)₂O in boiling PhNO₂ yields tribenzoyl-1: 12-benzperylene-Bz1: Bz2-dicarboxylic anhydride.

Invert soaps. III. Benzylmethyldialkylammonium chlorides. Invert soaps. III. Benzyimethyidialkylammonium chlorides. R. Kuhn, D. Jerchel, and O. Westphal (Ber., 1940, 73, [B], 1095—1100; cf. A., 1944, II, 90).—CH₂PhCl and NMeR₂ at 110—120° give benzylmethyldi-butyl-, m.p. 181°, -hezyl-, m.p. 58°, -octyl- (I), m.p. 68°, -dodecyl- (II) (prep. in EtOH at 120° and then 90°), m.p. 96°, and -cetyl-ammonium chloride (III) (prep. in EtOH at 100°), m.p. 99°. Dimethyldi-hezyl-: m.p. ~35°, and -tetradecyl-ammonium methosulphate, m.p. 129—130°, and methylethyldiodecylammonium iodide m.p. 140° and nitrate m.p. 14° are also prepared. Surface iodide, m.p. 149°, and nitrate, m.p. 14°, are also prepared. Surface activity reaches a sharp max. at (II). For CH₂Ph·NMeR₂Cl, activity reaches a sharp max, at (II). For chi21 Relatively, efficiency against Streptobacterium plantarum is a max, with (II). Efficiency against staphylococci, B. coli, E. typhi, and Friedländer bacillus is a max, at (I); against paratyphoid-B bacteria, (II) is as effective as (I).

R. S. C.

Aniline homologues in coal tar. O. Kruber and L. Rappen (Ber., 1940, 73, [B], 1178—1184).—The most volatile fractions obtained in the separation of quinoline (I) are acetylated and the Ac derivatives are separated from one another by fractional crystallisation. The total primary bases constitute only 0.12% of crude (I). The presence of o-, m-, and p-toluidine, m-4-, p-, m-6- (II), and o-3-xylidine is established. The three toluidines are present in tar in about the same ratio as the three cresols. Among the xylidines as among the xylenols the m-compounds, particularly (II), predominate.

H. W. Reactions of 3-nitro-1-naphthylamine, including anil formation, bromination, and the preparation of 1:2:3:4-tetrabromonaphthalene. H. H. Hodgson and D. E. Hathway (J.C.S., 1944, 21—22).—3:1-NO₂·C₁₀H₆·NH₂ (I) [Bz, m.p. 220°, p-toluenesulphonyl, m.p. 200°, CHPh., m.p. 122°, o-, m.p. 194°, m-, m.p. 188°, and p-nitrobenzylidene, m.p. 242° (sinters at 235°), and p-hydroxybenzylidene derivative, m.p. 233°] and Zn-Ac₂O-NaOAc give 1:3-C₁₀H₆(NHAc)₂, m.p. 264°. (I)-NaNO₂-AcOH-H₂SO₄, followed by Cu₂O-EtOH, afford an almost quant. yield of 2-C₁₀H₇·NO₂. Br (1 or 2 mols.)-CHCl₃ converts (I) into 2:4-dibromo-3-nitro-1-naphthylamine, m.p. 182° (Ac derivative, m.p. 202°). 3:2:4:1-NO₂·C₁₀H₄Br₂·N₂HSO₄ and Cu₂O-EtOH yield 1:3-dibromo-2-nitronaphthalene, m.p. 130·5°; CuBr-HBr (d 1·7) at <20° affords 1:3:4-tribromo-2-nitronaphthalene, m.p. 218° (reduced by aq. Na₂S₂O₄-EtOH to the corresponding amine, m.p. 163°), and CuCl-Na₂S₂O₄-EtOH to the corresponding amine, m.p. 163°), and CuCl-HCl (d 1·16) gives 4-chloro-1:3-dibromo-2-nitronaphthalene, m.p. 198° (amine, m.p. 161°). 1:2:3:4-Tetrabromonaphthalene, m.p. 196°, is obtained from 1:3:4:2-C₁₀H₄Br₃·N₂HSO₄. A. T. P.

Chromophoric naphthalene nucleus.—See A., 1944, I, 52.

"Carpasemine" isolated from Carica papaya seeds. T. B. Panse and A. S. Paranjpe (Proc. Indian Acad. Sci., 1943, 18, A, 140—144).—"Carpasemine" (I) (A., 1941, II, 381) is identified as benzylthiocarbamide, m.p. 165° (Ac derivative, m.p. 131°; methiodide, m.p. 103—105°). (I) is transformed by boiling 20% NaOH into NH₃, CH₂Ph·NH₂ (hydrochloride, m.p. 245—246°), and NH₂·CO·NH·CH₂Ph, m.p. 148—149° (Ac derivative, m.p. 130°), oxidised (KMnO₄) to an unidentified compound, m.p. 205—207°. A synthesis of (I) starting from CH₂Ph·CN is recorded. H. W.

Complex compounds of diguanide with bi- and ter-valent metals. Complex compounds of diguanide with bi- and ter-valent metals. VI. Copper, nickel, and cobaltic phenyldiguanide-p-sulphonic acid. P. Råy and S. K. Siddhanta (J. Indian Chem. Soc., 1943, 20, 250—252; cf. A., 1942, II, 254).—Dicyanodiamide and boiling aq. p-NH₂·C₆H₄·SO₃H give phenyldiguanide-p-sulphonic acid (I), p-SO₃·C₆H₄·NH·C(:NH)·NH·C(:NH)·NH₃+, m.p. 265—268° (decomp.), which behaves as an ampholyte. Aq. CuSO₄, 5H₂O (at 50—60°) or NiCl₂, 6H₂O (at 100°) added to (I) in an excess of aq. NH₃ affords the Cu", +H₂O, or Ni" complex, +2H₂O (probably trans-forms). CoCl₂, 6H₂O and aëration yields the Co" complex, +5H₂O.

A. T. P Derivatives of diphenylsulphonamides. I. Preparation of 2'-aminodiphenyl-4-sulphonamide. A. H. Popkin: II. Derivatives of 2'-aminodiphenyl-4-sulphonamide. A. H. Popkin and (Miss) G. M. Perretta (J. Amer. Chem. Soc., 1943, 65, 2043—2045, 2046—2048).—I. Adding o-C₆H₄Ph·NHAc (I) to CISO₃H at <10° and then heating at 60° gives 2'-acetamidodiphenyl-4-sulphonyl chloride (II), m.p. 149—150·5°, converted by hot, conc., aq. NH₃ into the amide, m.p. 201-202°, which with hot, conc., aq. HCl-MeOH gives 2'aminodiphenyl-4-sulphonamide (III), m.p. 186-187°.

m.p. 201—202°, which with hot, conc., aq. HCl-MeOH gives 2'-aminodiphenyl-4-sulphonamide (III), m.p. 186—187°. o-C₆H₄Ph·NO₂ and ClSO₃H give, as above, 2'-nitrodiphenyl-4-sulphonyl chloride (IV), m.p. 78—80°, and thence the amide, m.p. 203—204°, which with Sn-conc. HCl-EtOH yields (III). 2'-Aminodiphenyl-4-sulphonic acid, decomp. >250°, is obtained from (II) by boiling 18% aq. HCl or from (I) by 96% H₂SO₄ at 120°; when it is diazotised in 10% H₂SO₄ at room temp. and then heated at 60° and the Na₂ salt resulting is fused with NaOH at 270—290°, o-OH·C₆H₄·C₆H₄·OH-p, m.p. 161·5—162·5° [diacetate, m.p. 94·5—96·5° (lit. 94°)], is obtained, thus proving the structure.

II. (II) is unstable when kept. NH₂R and (II) or (IV) in C₃H₅N-COMe₂ at 50° and then room temp. give o-NHAc·C₆H₄·C₆H₄·SO₂·NHR-p or o-NO₂·C₆H₄·C₆H₄·NHR-p, respectively, converted by HCl-MeOH or Sn-conc. HCl-MeOH respectively, into o-NH₂·C₆H₄·C₆H₄·SO₂·NHR-p, which are inactive against E. coli in vitro and streptococci in mice. The following are described: 2'-aminodiphenyl-4-sulphon-anilide, m.p. 100—100·5° (Ac derivative, m.p. 163·5—164·5°), -benzylamide, m.p. 106—107° (Ac derivative, m.p. 168·5—166·5° (Ac derivative, m.p. 173·5—175°), and -p-zenylamide, m.p. 166-16° (Ac derivative, m.p. 196—196·5°); 2'-nitrodiphenyl-4-sulphon-anilide, m.p. 165·5—156·5°, -benzylamide, m.p. 128·5—130°, -o-, m.p. 161—162°, and -p-zenylamide, m.p. 165·5—130°, -o-, m.p. 161—162°, and -p-zenylamide, m.p. 197·2—198·2°, and N⁴·2''-acetamido-, m.p. 162·4 - 166°, N⁴·2''-acetamido-, m.p. 263—240°, and 2'-2'''-nitro-diphenyl-4'-sulphonylsulphanilamide, m.p. 239·5—240°; 2'-2'''-acetamido-, m.p. 148·5—150° (decomp.), 2'-2'''-anino-, m.p. 263—264°, and 2'-2'''-nitro-diphenyl-4''-sulphonamidodiphenyl-4-sulphonamidodiphenyl-4-sulphonamidodiphenyl-4-sulphonamidodiphenyl-4-sulphonamidodiphenyl-4-sulphonamidodiphenyl-4-sulphonamidodiphenyl-4-sulphonamidodiphenyl-4-sulphonamidodiphenyl-4-sulphonamidodiphenyl-4-sulphonamidod amide, m.p. 173-174°.

Decomposition of the diazonium salts of 4-nitro-1-naphthylamine by sodium sulphite and sodium acetate. Preparation of 4:4'-dinitro-1:1'-azonaphthalene. H. H. Hodgson, D. E. Nicholson, and G. Turner [with, in part, J. Habeshaw] (J.C.S., 1944, 15—17).—Rapid addition of aq. Na₂SO₃ to 4:1-NO₂·C₁₀H₆·N₂Cl (or ·N₂HSO₄) (I) + NaOAc (excess) at 0° yields 4:4'-dinitro-1:1'-azonaphthalene (II), m.p. 334°, and a trace of 4:1-NO₂·C₁₀H₆·OH. Excess of NaOAc alone initiates an oxidation-reduction reaction with (I) (II), m.p. 334°, and a trace of 4:1-NO₂·C₁₀H₆·OH. 'Excess of NaOAc alone initiates an oxidation-reduction reaction with (I) and affords (II), 4:4'-dinitro-1:1'-dinaphthyl (III), m.p. 246°, and (by a simultaneous decomp. by H₂O or OH') some 4:4'-dinitro-naphthalene-1':2-azo-1-naphthol (IV), m.p. 278° (also obtained from 4:1-NO₂·C₁₀H₆·N₂Cl and 4:1-NO₂·C₁₀H₆·OH in aq. NaHCO₃). (I) and aq. Na₂SO₃ at 0° afford numerous substances, including (II) (10—20%), (III), and 1-C₁₀H₇·NO₂; no (IV) is formed. In the above reactions, 4:4'-dinitronaphthalene-1':2-azo-1-naphthylamine, m.p. 274°, is not obtained, but is prepared from 4:1-NO₂·C₁₀H₆·N₂Cl and 4:1-NO₂·C₁₀H₆·NH₂ in AcOH-NaOAc. Mechanisms of reactions are postulated, and colour reactions recorded. (III) gives a actions are postulated, and colour reactions recorded. (II) gives a bright blue colour with H2SO4, suggesting that salt formation has produced a di-indamine-like structure.

Replacement of the diazonium by the nitro-group. General method based on decomposition of the aryldiazonium cobaltinitrites. H. H. Hodgson and E. Marsden (J.C.S., 1944, 22—24).—Aryldiazonium cobaltinitrites (I), $(ArN_2)_3Co(NO_2)_6$, are prepared by adding $Na_3Co(NO_2)_6$ to a solution of ArN_2Cl neutralised with $CaCO_3$. They decompose on heating, sometimes with explosive violence, and couple with alkaline β - C_1H_7 -OH. (I) $(Ar = Ph, o-, m-, and p-NO_2\cdot C_6H_4\cdot, and p-C_6H_4\cdot Cl-)$ with Cu_2O in conc. aq. $NaNO_2$ give $PhNO_2\cdot (75\cdot5\%)$, $o-(67\cdot4\%)$, m-(72%), and $p-C_6H_4(NO_2)_2\cdot (75\cdot5\%)$, and $p-C_6H_4(NO_2)_2\cdot (75\cdot5\%)$, respectively. Small amounts of 1-(20%) and $2-C_{10}H_7\cdot NO_2\cdot (16\cdot9\%)$ are obtained similarly from (I) $(Ar = 1- and 2-C_{10}H_7)$, but $CuSO_4-Cu_2O-NaNO_2$ gives 68 and 60%, respectively. Using the latter method, o- and p-toluidine and o- and p-anisidine also give >60% of the respective NO_2 -compounds. A. T. P. Replacement of the diazonium by the nitro-group.

Interpretation of the Sandmeyer reaction. IV. Catalysed decomposition of diazonium cations by anionoid complexes with special reference to those of cobalt and ferric iron. H. H. Hodgson, S. Birtwell, and J. Walker (J.C.S., 1944, 18—19; cf. A., 1943, II, 28).—9% Yields of m- and p-C₀H₄Cl·NO₂ (I) obtained by decomp. of m- and p-NO₂-C₀H₄·N₂Cl with metallic salts in boiling HCl (d·1·16) are recorded in parentheses: HCl alone (47:3: 54:4) hydrated and p-NO₂·C₆H₄·N₂Cl with metallic salts in boiling HCl (d 1·16) are recorded in parentheses: HCl alone (47·3; 54·4), hydrated AlCl₂ (54·4; 60·7), SbCl₃ (31·6; 37·1), anhyd. CaCl₂ (47·3; 54·4) hydrated CoCl₂ (60·7; 70·9), CuCl, hydrated CuCl₂, or anhyd. FeCl₃ (67·5; 77·6), anhyd. ZnCl₂ (47·3; 54·4); the use of CrCl₃, SnCl₄, NiCl₂, and HgCl₂ is also examined in the case of (I). At the acid concn., FeCl₃ or CuCl₂ is as efficient as CuCl. CoCl₂ in the blue complex anionoid condition catalyses the reaction, whereas in the pink cationoid state it loses its catalytic influence. The results support the mechanism previously suggested (A., 1942, II, 52, 254). support the mechanism previously suggested (A., 1942, II, 52, 254).

Decomposition of diazotised 1:6-dinitro-2-naphthylamine by precipitated copper in organic solvents. H. H. Hodgson and H. S. Turner (J.C.S., 1944, 10—11).—1:6:2-(NO₂)₂C₁₀H₅·N₂HSO₄ is added to pptd. Cu in a solvent at 15° (cf. Cu₂O method; A., 1943, 11, 159); if McCH is used no CH O information and contact that 1943, added to pptd. Cu in a solvent at 15 (cf. Cu₂O method; A., 1845, 11, 158); if MeOH is used, no CH₂O is formed and a yield of 58% of 1: 6- $C_{10}H_6(NO_2)_2$ results. Yields are recorded using other solvents, e.g., EtOH (57·5), Pr β OH (54·5), Bu α OH (36·5), COMeEt (44·5), and Cl·[CH₂]₂·OH (36%) (cf. loc. cit.). 2: 1-NO₂· $C_{10}H_6$ ·NH₂ is deaminated similarly to 2-C₁₀H₇·NO₂ in MeOH (35) or EtOH

Colour and constitution. VIII. Coupling of the four m-halogenophenols and the chromoisomerism of the 3-halogeno-4-benzeneazophenois, explained on resonance theory. H. H. Hodgson (J. Soc. Dyers and Col., 1944, 60, 43—45; cf. A., 1943, II, 361).—The unique mono-coupling of m-C₆H₄F-OH in position 4, and the mono-and di-coupling of the other three m-C₆H₄Hal-OH in the 4- and 2: 4positions, are discussed from the viewpoint of H bonding and theory of resonance. The consequent chromoisomerism which arises both in the 3-halogeno-4-benzeneazophenols and in 3:2-NO₂·C₁₀H_e·NH₂ is explained.

A. T. P.

p-Diphenylyl iodoacetate. L. C. Hensley and S. E. Hazlet (J. Amer. Chem. Soc., 1943, 65, 2256).—CH₂Br·CO₂·C₆H₄Ph-p or CH₂Cl·CO₂·C₆H₄Ph-p with KI in COMe₂ at room temp. and then the b.p. give 77.8 and 18·3%, respectively, of p-diphenylyl iodoacetate, mp. 113.5—114.2° m.p. 113.5-114.3°.

of acyi, minet aliphatic acyi alysinpholy delivatives of one of the control of th NH2·C8H4·OH and its substitution products are stable. Latimer's m.p. 129-130°, and p-bromobenzene-sulphonate, m.p. 128°; 3-bromo-5-amino-p-tolyl p-toluene-, m.p. 88°, and p-bromobenzene-sulphonate, m.p. 112-113°.

R. S. C.

Synthesis and properties of aryl vinyl ethers. M. F. Schostakovski and M. S. Burmistrova (J. Appl. Chem. Russ., 1942, 15, 260—266).— PhOH containing 10—15% of H₂O, C₂H₂ at 10—18 atm., and NaOH afford at 180° OPh·CH:CH₂, b.p. 155—156° (only slightly hydrolysed by 2% H₂SO₄); if PhOH is dry, a polymer is formed. Similarly are prepared o-tolyl, b.p. 167—168·5°, m-tolyl, b.p. 173—174·5°, p-tolyl, b.p. 175·5°, a-naphthyl, b.p. 257—258·5°, and benzyl (I), b.p. 183—184°, vinyl ether. The mol. refraction of the ethers, except (I), is by 0·8—1 > expected, and all the ethers, except (I), polymerise on heating. polymerise on heating.

Preparation of 6-nitro-1-naphthol, improved methods for the decomposition of diazo-naphthols, and new reactions of nitro-naphthols. H. H. Hodgson and H. S. Turner (J.C.S., 1944, 8—10).—6-Nitro-2-diazo-1-naphthol (I) [from 1:6:2-(NO₂)₂C₁₀H₆·NH₂], explodes at 150—151° (lit. 142—145°, 151—157°), is converted by Cu₂O-EtOH in AcOH-H₂SO₄ at 55—80° into 6:1-NO₂·C₁₀H₆·OH (II), new m.p. 181—182° (acetate, m.p. 121°; benzoate, m.p. 147·5—148°). (I) and aq. HCl-CuCl at 100° (bath) give 2-chloro-6-nitro-1-naphthol, m.p. 179—180°, converted by Br-AcOH at 60—90° into its 4-Br-derivative, m.p. 199°. 2-Brono-6-nitro-1-naphthol, m.p. 164·5—165·6°, is similarly obtained from (I). (II) and Br-AcOH at room temp. give the 4-Br-derivative, m.p. 238°, and at 100° (bath) afford 2:4-dibrono-6-nitro-1-naphthol, m.p. 210° [also obtained from (I) and Br-AcOH at 110° without evolution of HBr]. (I) in AcOH-H₂SO₄ and saturated aq. KI (+ Cu powder) at 95° yield 2-iodo-6-nitro-1-naphthol, m.p. 214—215° (decomp.) (discolours >200°). (II) and Hg(OAc)₂-AcOH give 6-nitro-1-naphthol-4-mercuriacetate, m.p. >360° (shrinks at 300°), converted by I in 30% aq. KI at 90—100° into 4-iodo-6-nitro-1-naphthol, m.p. 214—216°. 4:5-Dinitro-1-diazo-2-naphthol (III) [from 2:4:5:1-(NO₂)₃C₁₀H₄·NH₂], decomp. slowly if heated gradually, explodes at 160° on rapid heating, is converted by Al +a little Cu in boiling EtOH into 4-5-2-(NO) C H-OH m.p. 237—238° (lit 2-230°). 160° on rapid heating, is converted by Al + a little Cu in boiling EtOH into 4:5:2-(NO₂)₂C₁₀H₅·OH, m.p. 237—238° (lit. ~230°). 1-Bromo-4:5-dinitro-2-naphthol, m.p. 218—220°, is obtained from (III) and 30% HBr-CuBr at 100° (bath). β-C₁₀H₇·NH·SO₂·C₆H₃Me-p with Br-AcOH at 90°, followed by hydrolysis (cold, conc. H₂SO₄) and discretization affords 6-hyomo-2-diagol-suphthol, m.p. 214° and diazotisation, affords 6-bromo-2-diazo-1-naphthol, m.p. 214° (decomp.) (darkens ~145°; shrinks ~160°), converted by Al-Cu-Devarda's alloy in boiling EtOH into 6:1-C₁₀H₆Br·OH. 1:6:2-(NO₂)₂C₁₀H₅·NH·SO₂·C₈H₄Me-p after hydrolysis, diazotisation, and

immediate addition to β -C₁₀H₁·OH in aq. NaOH at <10° gives 1:6-dinitro-2-naphthaleneazo- β -naphthol, m.p. 310°. M.p. are corr.

Phenols of the heavy oil of coal tar. II. O. Kruber and A. Marx (Ber., 1940, 73, [B], 1175—1177).—Fractional extraction with 4—5% NaOH of a phenol mixture, b.p. 248—252°, leads to the isolation of 5-hydroxyhydrindene (I), b.p. 251°/760 mm., m.p. 54—55° [phenylurethane, m.p. 155°; oxyacetic acid, m.p. 157°; benzoate (II), m.p. 110°], and 3:4:5-trimethylphenol (III), b.p. 248°/758 mm., m.p. 106° (phenylurethane, m.p. 148°; oxyacetic acid, m.p. 149°). (III) forms mixed crystals with (I) which can be removed as (III). as (II).

 $\beta\beta$ -Di-p-hydroxyphenylpropane.—See B., 1944, II, 65.

Alkylpyrocatechols.—See B., 1944, II, 65.

Alkylpyrocatechols.—See B., 1944, 11, 65.

Invert soaps. IV. Quaternary salts of aminophenyl ethers. R. Kuhn and D. Jerchel (Ber., 1940, 73, [B], 1100—1105; cf. A., 1944, II, 95).—o-NO₂·C₆H₄·OK, n-C₁₂H₂₅Cl, and a little ZnCl₂ in EtOH at 180° give o-NO₂·C₆H₄ (55—65%), b.p. 201—203°/3·5 mm, hydrogenated (PtO₂; EtOH) to o-NH₂·C₆H₄ n-C₁₂H₂₅ ether, m.p. 39°, b.p. 188—189°/3 mm. (hydrochloride), which with Me₂SO₄ at ~150° gives o-NMe₂·C₆H₄ n-C₁₂H₂₅ ether (80%), b.p. 220°/3 mm. [methylmethosulphate (I), m.p. 102—104°]. p-NO₂·C₆H₄·OK gives similarly p-NO₂·C₆H₄, m.p. 55°, and thence p-NH₂·C₆H₄ (hydrochloride, m.p. 103—106°), and (by Me₂SO₄) p-NMe₂·C₆H₄ n-C₁₂H₂₅ ether [methylmethosulphate (II), m.p. 118—120°]. m-NMe₂·C₆H₄·OK gives m-NMe₂·C₆H₄ n-C₁₂H₂₅ ether, m.p. 28—29° [methylmethosulphate (III)), m.p. 82—83°]. The bactericidal and bacteriostatic activity of (I)—(III) are quantitatively similar to those of n-C₁₂H₂₅·NMe₂Br·CH₂Ph. R. S. C. C₁₂H₂₅·NMe₂Br·CH₂Ph.

Derivatives of 4:4'-diaminodiphenyl sulphone.—See B., 1944,

Rôle of neighbouring groups in replacement reactions. VII. Methoxyl group.—See A., 1944, II, 90.

Action of anisole with aaa-trichloro-β-methyl-Δβ-propene.—See A., 1944, II, 89.

Behaviour of hydrogenated anisoles towards lithium phenyl.—See A., 1944, II, 114.

Synthesis of 1:4-epoxycyclohexane. R. C. Olberg, H. Pines, and V. N. Ipatiev (J. Amer. Chem. Soc., 1943, 65, 2260).—Passing cis- or trans-cyclohexane-1:4-diol over activated Al₂O₃ at 275° gives 28 or 73%, respectively, of 1:4-epoxycyclohexane, b.p. 120·1°/760 mm., converted by 48% HBr into trans-1:4-dibromocyclo-

Restricted rotation in arylolefines. VII. New synthesis of hindered β -substituted β -arylacrylic acids. R. Adams and C. W. Theobald (J. Amer. Chem. Soc., 1943, 65, 2208—2211; cf. A., 1943, II, 10).—Di-o-substitution only slightly reduces the ease with which II, 10).—Di-o-substitution only slightly reduces the ease with which CPh;C·CO₂H undergoes addition reactions. 2:4:6:1-C₆H₂Me₃·COMe and PCl₅ at 60° (3 hr.) and then 100° (45 min.) give 2:4:6:1-C₆H₂Me₃·CO:CH₂Cl (19%), b.p. $122-122^4/25$ mm., $-C_6$ H₂Me₃·CO·CH₂Cl (19%), m.p. $62-63^\circ$, and some a-mesitylvinyl H₂ phosphate, m.p. $229-232^\circ$. 2:4:6:1-C₆H₂Me₃·C·CH with MgEtBr-Et₂O and then CO₂ at <0°/2·5-3 atm. gives mesityl-propiolic acid (I) (43%), m.p. $165-167^\circ$ (decomp.), which with gaseous HCl in AcOH at 80-90° gives β -chloro- β -mesitylacrylic acid (67%), m.p. $145-146^\circ$, obtained also (71%) from 2:4:6:1-C₆H₂Me₃·CO·CH₂·CO₂H by POCl₃-PCl₅ at 0°. With HBr-AcOH (79% yield) or, less well, aq. HBr at room temp. (I) gives β -bromo- β - $C_0H_2\dot{M}e_3$ ·CO·CH₂·CO₂H by POCl₃–PCl₆ at 0°. With HBr-AcOH (79% yield) or, less well, aq. HBr at room temp. (I) gives β-bromo-β-mesitylacrylic acid, m.p. $135-135\cdot5^\circ$. 2: 3: 4: 6: $1-C_0HMe_4$ ·COMe (II) and PCl₅–PCl₃–POCl₃ at, successively, 0°, room temp., 55°, and 65–70° give a-isodurylvinyl chloride (III), b.p. 225° /745 mm., with ω-chloroacetoisodurene, m.p. $88-88\cdot5^\circ$, b.p. 144° /6 mm., and ? a-isodurylvinyl H₂ phosphate, m.p. $184-184\cdot5^\circ$. NaOEt converts (III) in boiling EtOH into isodurylacetylene (~65%), b.p. 86° /1 mm., which affords, as above, isodurylpropiolic (67%), m.p. $164-164\cdot5^\circ$ (decomp.), and thence β-chloro-(90%), m.p. 185° , and (by aq. HI at room temp.) β-iodo-β-isodurylacrylic acid (90%), m.p. $183-184^\circ$. MgEtBr-Et₂O and then CO₂ converts (II) into β-heto-β-isoduryl-propionic acid (71%), m.p. $113-114^\circ$ (decomp.). M.p. are corr.

Synthesis of amino-acids from substituted cyanoacetic esters.—See A., 1944, II, 91.

Condensation of aldehydes with malonic acid. XV. Condensation of 5-bromo- and 3:5-dibromo-salicylaldehyde; influence of dissimilar groups. K. C. Pandya and (Miss) R. B. K. Pandya (Proc. Indian Acad. Sci., 1943, 18, A, 164—170; cf. A., 1941, II, 170).—Condensation of o-OH·C₆H₄·CHO with CH₂(CO₂H)₂ is facilitated by the presence of Br or Cl in the aromatic nucleus. By reason of the ready sublimation of 2:5:1-OH·C₆H₃Br·CHO condensation with CH₂(CO₂H)₂ in presence of a little C₅H₅N at 100° proceeds somewhat slowly, giving 5-bromo-2-hydroxycinnamic acid (I), m.p. 150—152° (yield 50—55%) (no colour with FeCl₃; decolorises Baeyer's reagent), and 5-bromosalicylidenemalonic acid, m.p. 175° (decomp.) (yield 24%), which passes at 180° into (I). At 100—105° in absence of a

condensing agent the reactants afford 6-bromocoumarin-3-carboxylic acid, m.p. 200° (yield 92·5%), with small amounts of a compound, m.p. 241° (decomp.). 2:3:5:1-OH·C₆H₂Br₂·CHO (II), fused NaOAc, and Ac₂O at 170—180° afford 6:8-dibromocoumarin, m.p. 176°, in ~33% yield. (II), CH₂(CO₂H)₂, and a little C₅H₆N at 110° give a substance, m.p. 323—327°, darkens at 210°, which contains Br but not OH, CHO, or CO₂H, 3:5-dibromo-2-hydroxy-cinnamic acid, m.p. 185—187° (yield 31%), and 3:5-dibromo-salicylidenemalonic acid, m.p. 157—159° (yield 22%). In absence of a condensing agent the reactants afford 6:8-dibromocoumarin-3-carboxylic acid, apparently dimorphous, m.p. 224—226°. H. W.

carboxylic acid, apparently dimorphous, m.p. 224—226°. H. W. Reaction of sodium triphenylmethyl with esters of αβ-unsaturated acids. W. D. McPhee and E. G. Lindstrom (J. Amer. Chem. Soc., 1943, 65, 2177—2180).—CPh₃Na does not cause enolisation of CHMe.CH.CO₂Et in Et₂O, but by 1: 4-addition gives [CPh₃·CHMe·CH·CO₂Et]Na (I), whence H₂O and then boiling 10% KOH-EtOH gives β-triphenylmethyl-n-butyric acid (II), m.p. 213·5—215·5° (214—216°) after sintering (p-bromophenacyl ester, m.p. 174—176° after sintering) (cf. Michael et al., A., 1943, II, 192). Adding BzCl to (I) in situ gives a glass, whence distillation gives CHPh₃ and impure CPh₃·CHMe·CHBz·CO₂Et (III), hydrolysed by KOH in boiling 75% EtOH to (II) and BzOH; hydrolysis of (III) to a ketone was impracticable. ~2 mols. of CH₂·CH·CO₂Me are required to discharge the colour of 1 mol. of CPh₃Na; hydrolysis of the product affords, with difficulty, γγγ-triphenyl-n-butyric (IV) (16%), m.p. 153—156° (p-bromophenacyl ester, m.p. 193·5—194·5°), and α-β'β'β'-triphenylethylglutaric acid (18%), m.p. 205—206° (bis-S-benzylthiuronium salt, m.p. 144—144·5°). CPh₃Na and (CH₂)₂O in Et₂O give γγγ-triphenyl-n-propyl alcohol (96%), m.p. 107—108°, b.p. 208—212°/3 mm., converted by red P-I at 165° into the iodide, m.p. 173·5—174·5° (cf. Wooster et al., A., 1934, 1095), the Grignard reagent of which with gaseous CO₂ gives 19% of (IV), sinters 148°, m.p. 154—156° (p-bromophenacyl ester, sinters 192°, m.p. 194—195·5°).

R. S. C. Reformatsky reaction with benzylideneaniline. H. Gilman and

Reformatsky reaction with benzylideneaniline. H. Gilman and M. Speeter (J. Amer. Chem. Soc., 1943, 65, 2255—2256).—CHPh:NPh, CH₂Br·CO₂Et (gives 54% yield) or CH₂Br·CO₂·CH₂Ph (gives 40% yield), and Zn in boiling PhMe give, after or without hydrolysis, β -anilino- β -phenylpropiolactam, m.p. 154°. Use of CHMeBr·CO₂Et gives 85% of β -anilino- β -phenylisobutyrolactam, m.p. 109—110°.

Anhydrides of peptides and dehydrogenated peptides. J. E. Tietzman, D. G. Doherty, and M. Bergmann (J. Biol. Chem., 1943, 151, 387—394).—Acetyldehydrophenylalanyldehydrophenylalanine (I) and C₅H₅N-H₂O (1:1) at 100° (bath), followed by 2N-HCl at 0°, afford anhydroacetyldehydrophenylalanyldehydrophenylalanine (II), m.p. 210—212° (decomp.), also obtained similarly, but more slowly, at 37·5° (20 days), or from the azlactone of (I) at 100° (bath). Hydrogenation (2 H₂; Pd-black in EtOH at 20—25° for 150 hr.) of (II) yields anhydroacetylphenylalanylphenylalanine, m.p. 203—204° (decomp.) (Me ester, m.p. 135—137°) (decomposed by boiling HCl to phenylalanine), and an acetylphenylalanylphenylalanine (III), m.p. 246—248° (decomp.). The azlactone of the Bz analogue of (I) and C₅H₅N-H₂O (1:2) at 100° (bath) give anhydrobenzoyldehydrophenylalanyldehydrophenylalanine, m.p. 258—259° (decomp.). The crude azlactone from glycine, PhCHO, and Ac₂O-NaOAc with boiling H₂O (2 hr.) (cf. Dakin, A., 1929, 811) gives a product, C₂₀H₁₆O₃N₂, m.p. 254—255° (decomp.) (structure suggested); it forms Na, NH₄, and C₅H₅N salts. The azlactone of acetylbis(dehydrophenylalanyl)dehydrophenylalanine and COMe₂ in N-NaOH at room temp. yield anhydrobis(dehydrophenylalanyl)dehydrophenylalanine and COMe₂ in N-NaOH at room temp. yield anhydrobis(dehydrophenylalanyl)dehydrophenylalanine and COMe₂ in N-NaOH at room temp. yield anhydrobis(dehydrophenylalanyl)dehydrophenylalanine and COMe₂ in N-NaOH at room temp. yield anhydrobis(dehydrophenylalanyl)dehydrophenylalanine and COMe₂ in N-NaOH at room temp. yield anhydrobis(dehydrophenylalanyl)dehydrophenylalanine and COMe₂ in N-NaOH at room temp. yield anhydrobis(dehydrophenylalanyl)dehydrophenylalanine and comerciae, m.p. 183—185°. Acetyldehydrophenylalanylalycine at 180° in vac. gives only a tar, and neither it nor its Bz analogue could be transformed by C₅H₅N-H₂O into anhydropeptides. A. T. P. Cyclic fatty acids. cycloHexylgeranylacetic acid. L. Leder-

Cyclic fatty acids. cycloHexylgeranylacetic acid. L. Leder-Pakendorf (Compt. rend. Acad. Sci. U.R.S.S., 1941, 31, 757—760).— Adding Et cyclohexylmalonate and then geranyl chloride to Na powder in xylene-PhMe gives Et_2 cyclohexylgeranylmalonate [Et a-carbethoxy- α -cyclohexyl- $\delta\theta$ -dimethyl- $\Delta \gamma n$ -decadienoate], b.p. 201—203-5°/5 mm., the derived (50% KOH) oily acid from which at $40-150^\circ$ gives a-cyclohexyl- $\delta\theta$ -dimethyl- $\Delta \gamma n$ -decadienoic acid (I), b.p. 213—214°/7 (? 17) mm. (Et ester, b.p. 215—218°/25 mm.), reduced by H_2 -Pd-Pt-C in EtOH to a-cyclohexyl- $\delta\theta$ -dimethyl-n-decoic acid (II), b.p. 218—219°/14 mm. (I) and (II) are only feebly toxic, but are effective against Lupus vulgaris, Lepra, and [(I) much more effective than (II)] tubercle bacilli. R. S. C.

Chemotherapeutic study of p-nitrobenzoyl and related compounds. C. Siebenmann and R. J. Schnitzer (J. Amer. Chem. Soc., 1943, 65, 2126—2128).—cycloHexanol (2 mols.) and p-NO₂·C₈H₄·COCl (I) (I mol.) in C₈H₅N at <20° and then at the b.p. give cyclohexyl p-nitrobenzoate (II), m.p. $51\cdot5-52\cdot5^\circ$. Resorcinol (2 mols.) and (I) (I mol.) in C₈H₈N at 100° give resorcinol mono-, m.p. $175-177^\circ$, and some di-p-nitrobenzoate, m.p. $185-186^\circ$ [best obtained by use of an excess of (I)]. The following are similarly prepared. Pyrocatechol mono-, m.p. $151-152^\circ$, and di-, m.p. $162-165^\circ$, quinol

mono-, m.p. 190—194°, and di-, m.p. 252—257°, pyrogallol mono-, m.p. 193—197°, and tri-, m.p. 229—231°, 4-hexylresorcinol mixed (III) (m.p. 60—72°) mono- and di-, inosital hexa- (prep. without a solvent at 180—200°), m.p. 310—315°, -p-nitrobenzoate; cyclohexyl 3:5-dinitrobenzoate, m.p. 109—111°; p-nitrobenzoate; cyclohexyl 3:5-dinitrobenzoate, m.p. 109—1118°, and -cyclohexylamide, m.p. 101—106°, -piperidide, m.p. 115—118°, and -cyclohexylamide, m.p. 203—204°; 3:5-dinitrobenz-morpholide, m.p. 184—187°, and -piperidide, m.p. 143—144·5°; 1:4-di-p-nitrobenzoylpiperazine, m.p. 318°. p-NH₂·C₈H₄·SO₂·NH₂ (IV) (0·11) and (I) (0·23 mol.) in C₈H₅N at <30° and then 100° give N¹N⁴-di-, m.p. 268° (decomp.), hydrolysed by boiling 30% NaOH to N¹-p-nitrobenzoylsulphanilamide (V), m.p. 218—219° (lit. 235—240°). 1 mol. each of (I) and (IV) in C₈H₅N give N⁴-p-nitrobenzoylsulphanilamide, m.p. 260°. N¹-Benzoyl- (VI), m.p. 178—180° (lit. 181·2—182·3°), and N¹N⁴-dibenzoyl-sulphanilamide, m.p. 252° (decomp.) (lit. 268—270°), are also prepared. Most of these compounds have little or no anticoccal activity. (II) is slightly active against strepto- but not against pneumo-cocci. (III) is effective against pneumoccoci. (VI) is extremely effective against meningococci in mice, and (VI) is sp. against pneumoccoci. The N¹N⁴-derivatives of (IV) are quite inactive, as are the 3:5-dinitrobenzoyl derivatives. R. S. C.

Isomorphism of organic compounds. VI. H. Lettré [with H. Barnbeck, P. Lehmann, and M. Stier] (Ber., 1940, 73, [B], 1150—1152).—p-OMe·C₆H₄·CO₂H (I) gives eutectics with BzOH and p-C₆H₄R·CO₂H (R = OH, Me, Cl, Br, and I). OMe therefore resembles OH in inability of isomorphous replacement by other substituents. (I) forms additive compounds (1:1) with o-, m-, and p-NO₂·C₆H₄·CO₂H. γ-OH·CHPh·CO₂H (II) gives only a eutectic with r-p-OMe·C₆H₄·CH(OH)·CO₂H (III). Similar observations are made with (+)-p-OMe·C₆H₄·CH(OH)·CO₂H and (+)- and (-)-OH·CHPh·CO₂H. (II) and (III) form a system of two true racemates in which the racemic forms are not isomorphous. The sterically similar forms do not give mixed crystals and a partial racemate does not arise from the sterically opposite modifications.

Rearrangement of benzyl ethers of salicylic acids. D. S. Tarbell and V. P. Wystrach (J. Amer. Chem. Soc., 1943, 65, 2146—2149).—2:3:5:1-OH·C₆H₂Cl₂·CO₂H (I), CH₂PhCl, K₂CO₃, and NaI in boiling COMeEt-H₂O give Me 3:5-dichloro-2-benzyloxybenzoate, m.p. 42·5—43·5°, hydrolysed by KOH-H₂O-MeOH to the acid (II), m.p. 148—148·5°. At 153° (II) gives CH₂Ph 3:5-dichlorosalicylate (III) (65—72%), m.p. 109·5—110·5° [also obtained from (I) (as Na salt) by CH₂Ph·OH and a little NEt₃ at 135°], (I) (20%), and 8—10% of CO₂, but no other decarboxylation product. In NPhMe₂ at 155° (II) gives 51% of (III) and 25% of (I); (III) is also obtained slowly in boiling AcOH, but (II) is unchanged in PhMe-xylene at 116—117°. o-CH₂Ph·O·C₆H₄·CO₂H at 185—190° gives o-OH·C₆H₄·CO₂·CH₂Ph (35%), o-OH·C₆H₄·CO₂H (17—~35%), and 5:2:1-CH₂Ph·C₆H₃(OH)·CO₂·CH₂Ph (a little; identified by hydrolysis). 5:2:1-NO₂·C₆H₃(OH)·CO₂Et, m.p. 97—97·5° (lit. 93°), gives, as above, Et 5-nitro-2-benzyloxybenzoate, m.p. 75—75·5°, which with KOH-H₂O-MeOH at the b.p. gives 5:2:1-NO₂·C₆H₃(OMe)·CO₂H, m.p. 159·5—160·5° (lit. 161°), but at room temp. gives 5-nitro-2-benzyloxybenzoate acid, m.p. 166—166·5°. At 175° this gives CH₂Ph 5-nitrosalicylate (63%), m.p. 83·6—85·5° [also prepared from 5:2:1-NO₂·C₆H₃(OH)·CO₂H. (28%). The reaction mechanism is discussed. M.p. are corr. R. S. C. Effect of heat on the β-naphthylmethyl and 9-phenanthrylmethyl

Effect of heat on the β-naphthylmethyl and 9-phenanthrylmethyl ether of 3:5-dichlorosalicylic acid. D. S. Tarbell and V. P. Wystrach (J. Amer. Chem. Soc., 1943, 65, 2149—2153).—The 9:10-ethylenic linking of phenanthrene is sufficiently "aliphatic" to cause rearrangement of 9-phenanthrylmethyl ethers to resemble that of allyl (A., 1942, II, 258) rather than that of CH₂Ph ethers (cf. preceding abstract). This is not so for the 1:2-linking of C₁₀H₈, since β-C₁₀H₇·CH₂ resemble CH₂Ph ethers. β-C₁₀H₇·CH₂Cl with 2:3:5:1-OH·C₆H₂Cl₂·CO₂Me (I) and NaOH in aq. COMeEt and then KOH-MeOH-EtOH gives 3:5-dichloro-2-β-naphthylmethoxybenzoic acid (II) (50%), m.p. 142—142·5° (decomp.), which at 147—148° gives β-naphthylmethyl 3:5-dichlorosalicylate (III) (67%), m.p. 138·5—139° [identified by hydrolysis to 2:3:5:1-OH·C₆H₂Cl₂·CO₂H (IV) and β-C₁₀H₇·CH₂·OH₁, CO₂ (9·5%), and (IV) (~10%). (III) is also obtained when (II) is crystallised from AcOH. HCl passed into phenanthrene, conc. HCl, and 40% CH₂O at 94° gives 9-chloromethylphenanthrene (V) (21%), m.p. 101·5—102° [picrate, m.p. 101·5—102° (lit. 99·5—100·5°)], which with (I), NaI, and K₂CO₃ in aq. COMeEt gives Me 3:5-dichloro-2-9'-phenanthrylmethoxybenzoate (56%), m.p. 162·5—163·5°. Hydrolysis with alkali then yields the derived acid (VI), m.p. 174·5—175°, which at 229° gives CO₂ (75%), (IV) (29·8°), and 9-3':5'-dichloro-2'-hydroxybenzyl-1phenanthrene (41%), m.p. 136·5—137·5' (acetate, m.p. 208—208·5°). (VI) is unchanged in boiling AcOH. 9-Phenanthroyl chloride, 2:4:1-C₆H₃Cl₂·OH (VII), and AlCl₃ in CS₂ give 2:4:1-C₆H₃Cl₂ -phenanthroate (14%), m.p. 183—184°, which with EtOH gives some of the Et ester, m.p. 114·5—115°. (V), (VII), NaI, and K₂CO₃ in aq. COMeEt give 9-2':4'-dichlorophenoxymethylphenanthrene (60%), m.p. 125—125·5°, which at 279—280° (not 240°) yields (VII) as sole product isolated. Mg,

(V), and a trace of MeI in boiling Et₂O-C₈H₈ give, after treatment with aq. NH₄Cl, $\alpha\beta$ -di-9-phenanthrylethane (69%), m.p. 252·5—254·5°, and a little (?) 9-methylphenanthrene. Zn-HCl-EtOH is without effect on (V). M.p. are corr. R. S. C.

without effect on (V). M.p. are corr.

Synthesis of phenolic acid esters. I. Depsides. C. J. Cavallito and J. S. Buck (J. Amer. Chem. Soc., 1943, 65, 2140—2142).—OH·C₈H₄·CO₂Na and CH₂PhCl (1·1 mol.) in boiling aq. EtOH give up to 40% of CH₂Ph p-, m.p. 111°, o-, b.p. 158°/3 mm., and mhydroxybenzoate, m.p. 70°. 2:4:1-(OH)₂C₆H₃·CO₂H and CH₂PhCl (1·05 mol.) in boiling KOH-EtOH-H₂O give CH₂Ph 2:4-dihydroxy-benzoate, m.p. 60°, b.p. 215°/2 mm. Similar use of an excess of CH₂PhCl gives CH₂Ph p-benzyloxybenzoate, m.p. 115°, hydrolysed by alkali to p-CH₂Ph·O·C₆H₄·CO₂H₄, m.p. 188°. Similarly are prepared o-benzyloxy-, m.p. 70°, 2:4-di-, m.p. 180°, and 3:4:5-tri-benzyloxy-benzoic acid, m.p. 189°. The benzyloxy-acids with SOCl₂ give CH₂Ph·O·C₆H₄·CO₂·C₆H₄·CO₂·CH₂Ph etc., whence H₂-spongy Pd in dioxan at 50°/40 lb. gives the free depsides. Thus are obtained: p-benzyloxy-, m.p. 110°, and 3:4:5-tribenzyloxy-benzoyl chloride, m.p. 115°; CH₂Ph p-, m.p. 166°, m., m.p. 107°, and o-p'-benzyloxy-benzoyloxy-benzoyloxy-benzoyloxy-benzoyloxy-m.p. 116°; CH₂Ph p-, m.p. 166°, m., m.p. 107°, and o-p'-benzyloxy-benzoyloxy-m.p. 111°, and p-3′:4′:5′-tribenzyloxybenzoyloxy-benzoyloxy-benzoyloxy-benzoyloxy-benzoyloxy-m.p. 107°, m.p. 270°, m-71°, 2: 4-di-p-benzyloxybenzoyloxy-, m.p. 111°, and p-3': 4': 5'-tribenzyloxybenzoyloxy-benzoate, m.p. 107°; p-, m.p. ~270°, m-m.p. 247°, and o-p'-hydroxybenzoyloxybenzoic acid, m.p. 180°; p-0'-hydroxy-, m.p. 210°, p-3': 4': 5'-trihydroxy-, m.p. 255—260°, and 2: 4-di-p-hydroxy-benzoyloxybenzoic acid, m.p. ~210°.

Action of sodium on ethyl β -methylbutane- $\alpha\beta\delta$ -tricarboxylate. III. Synthesis of cis-allosantenic acid. IV. R. N. Chakravarti (J. Indian Chem. Soc., 1943, 20, 243—246; 247—249; cf. A., 1943, (J. Indian Chem. Soc., 1943, 20, 243—246; 247—249; cf. A., 1943, II, 371).—III. CO₂Et·CH₂·CMe(CN)·CH(CN)·CO₂Et and EtOH-NaOEt-MeI at room temp., then boiling, give Et₂ γδ-dicyano-γ-methylpentane-αδ-dicarboxylate, b.p. 185°/5 mm., converted by boiling conc. HCl, followed by EtOH-H₂SO₄ at 110°, into Et₃ γ-methylpentane-αγδ-tricarboxylate (I), b.p. 154°/5 mm. [free acid, m.p. 178° (cf. Sen-Gupta, A., 1933, 1049)]. (I) and Na in boiling C₈H₆ give Et₂ 2:3-dimethylcyclopentanone-3:5-dicarboxylate, b.p. 135°/4 mm., which with boiling 6% HCl affords 2:3-dimethylcyclopentanone-3-carboxylic acid, a liquid (semicarbazone, decomp. 204°); its Et ester (HCl-EtOH), b.p. 99°/4 mm. and anhyd. HCN (+ a little its Et ester (HCl-EtOH), b.p. 99°/4 mm. and anhyd. HCN (+ a little KCN) at 9° yield a cyanohydrin, dehydrated by POCl₃-C₅H₅N at 145—150° and then hydrolysed by boiling conc. HCl to a mixture, m.p. 140—145°, of santenenic and isosantenenic acid. The mixture is hydrogenated (PtO₂, AcOH, room temp., 1 atm.) to 2: 3-dimethylatical and in the santial constant of the santial constant o

is ĥydrogenated (PtO₂, AcOH, room temp., 1 atm.) to 2:3-dimethyleyclopentane-1:3-dicarboxylic acid, converted by AcCl into cisallosantenic anhydride (II), m.p. 92°, and some isomeric santenic acids. Hydrolysis of (II) with EtOH-KOH yields cis-allosantenic acid, m.p. 151—152° (cf. Enkvist, A., 1933, 822).

IV. CO₂Et·[CH₂]₂·CMe(CO₂Et)·CH₂·CO₂Et and Na-C₆H₆, followed by CH₂Br·CO₂Et, give Et₃ 4-methylcyclopentanone-2:4-dicarboxylate-2-acetate, b.p. 170°/5 mm., hydrolysed by boiling conc. HCl to 4-methylcyclopentanone-4-carboxylic-2-acetic acid (Et₂ ester, b.p. 145°/6 mm.), reduced (Clemmensen) to 1-methylcyclopentane-1-carboxylic-3-acetic acid (III), m.p. 124—125°. Et 3-methylcyclopentanone-3-carboxylate and CH₂Br·CO₂Et-Zn afford esters, converted by POCl₃-C₆H₆ into unsaturated esters, b.p. 125°/4 mm., and thence by H₂-PtO₂-EtOH at room temp. and 1 atm., followed by boiling 10% aq. KOH-EtOH, into (III). (III) is probably identical with the acid, m.p. 126°, described by Banerjee (A., 1941, II, 16) as the 2-acetic acid. (A., 1941, II, 16) as the 2-acetic acid.

Sulphonated esters, amides, and imides of cis-3: 6-endomethylene-hexahydrophthalic acid,—See B., 1944, II, 66.

hexahydrophthalic acid,—See B., 1944, II, 66.

Synthesis of condensed ring compounds. XI. A tricyclic compound [obtained] by the di-inene double addition reaction. W. Nudenberg and L. W. Butz (J. Amer. Chem. Soc., 1943, 65, 2059—2060: cf. A., 1943, II, 330).—δ-1-Hydroxycyclopentyl-β-methyl-Δ^γ-n-butinen-β-ol, b.p. 124°/5 mm., and KHSO₄ at 160—180° give δ-Δ¹-cyclopentenyl-β-methyl-Δα-buten-Δγ-inene (62%), b.p. 81°/13 mm., which with ('CH·CO)₂O-CO₂ at 110—120° and then 150—160° gives 8-methyl-7: 12-cyclopenta[a]naphthitadiene-5: 6: 10: 11-[1-methyl-5: 6-trimethylene-2: 3: 4: 6: 7: 8-hexahydronaphthalene-3: 4: 7: 8-jtetracarboxylic anhydride (13%), m.p. 168—170° (vac.) [absorption max. at 2500 A. (ε 18,000) in EtOH]. δ-1-Hydroxy-2-methylcyclopentyl-β-methyl-Δγ-n-butinen-β-ol (prep. in 70% yield), b.p. 122—123°/1—2 mm., in boiling 15: 37 (vol.) H₂SO₄-H₂O gives δ-2-methyl-Δ¹-cyclopentenyl-β-methyl-Δα-buten-Δγ-inene (38%), b.p. 85—95° (90°)/13—14 mm., which with Me₂ fumarate (3 mols.)—N₂ at 190—200° gives (?) Me₄ 4: 8-dimethyl-7: 12-cyclopenta[a]-naphthitadiene-trans-trans-5: 6: 10: 11- [1: 6-dimethyl-5: 6-trimethylene-2: 3: 4: 6: 7: 8-hexahydronaphthalene-trans-transmethylene-2:3:4:6:7:8-hexahydronaphthalene-trans-trans-3:4:7:8]-tetracarboxylate, a glass, whence N_2H_4 yields no cryst. product. Me₄ $\Delta^{8(14):2}$ -chrysitadiene-trans-trans-6:7:11:12-tetracarboxylate and N₂H₄,H₂O in boiling MeOH give a Me₂ est dihydrazide, m.p. 161—168° (decomp.). M.p. are corr. R. S. C.

Preparation of p-aminobenzaldehyde, and the mechanism of the reactions of sodium polysulphides with p-nitrotoluene. H. G. Beard and H. H. Hodgson (J.C.S., 1944, 4—5).—p-C₆H₄Me·NO₂ and Na₂S_x in boiling aq. EtOH-NaOH (90 min.) give p-NH₂·C₆H₄·CHO (I) in yields of 35—40 (x=1), 45·3 (x=2), 53·4 (x=3), and 72—75% (x=4); much by-product results when x=5. In absence of an alcohol (EtOH is more efficient than MeOH or Pr^aOH) or of free alkali the optimum yield of (I) falls to 31 or <10%, respectively. A mechanism of the reaction is postulated.

[With R. R. Davies.] (I) (52%) and its o-Cl-derivative (48%) are prepared by a modification of Geigy's process (G.P. 86,874), using the respective nitrotoluene and 17% aq. NaOH + S. A. T. P.

Reaction of p-bromophenacyl bromide with chloride ions. H. H. Pokras and H. I. Bernstein (J. Amer. Chem. Soc., 1943, 65, 2096—2097).—p-C₆H₄Br·CO·CH₂Br (I) and NaCl or KCl (excess) in boiling 2097).—p-C₆H₄Br·CO·CH₂Br (I) and NaCl or KCl (excess) in boiling 62% EtOH give p-bromophenacyl chloride (II), also obtained (m.p. 117—118°; 80%) from PhBr, CH₂Cl·COCl, and AlCl₃. Use of 1 mol. of NaCl causes only partial conversion, but the reverse change could not be effected. Solubilities of (I) and (II) in 62% EtOH at 25° are 0·332±0·008 and 0·278±0·01 g. per 100 c.c., respectively. Mixtures of (I) and (II) melt at intermediate temp. (mixed m.p. diagram given). Formation of (II) may obscure identification of compounds contaminated with NaCl.

R. S. C. compounds contaminated with NaCl.

Fluorine derivatives of acetophenone and ethylbenzene. J. H. Simons and D. F. Herman (J. Amer. Chem. Soc., 1943, 65, 2064—2066).—Fluorination may be effected by active AgF (AgF_{1-n}) in liquid HF or by F₂ in liquid HF. Gradual replacement of Cl in liquid HF or by F₂ in liquid HF. Gradual replacement of Cl in C₂PhCl₅ by F progressively increases the difficulty of further exchange; exchange starts at C_(a). COPh·CHBr₂ and AgF_{1.6} in liquid HF at 75° (not other methods) give COPh·CHF₂ (40%), b.p. 83—85°/29 mm. (2:4-dinitrophenylhydrazone, m.p. 221—223°), converted by warm 5% NaOH into OH·CHPh·CO₂H. COPhMe, F₂, and Ag₅O in HF at 0° give COPh·CHF₂ (20·2%) with small amounts of CF₄ and BzF. COPh·CCl₃ and AgF_{1.6} in HF at <0° give ωω-dichloro-ω-fluoro- (48·7%), b.p. 111—112°/24 mm., and ω-chloro-ωω-difluoro-acetophenone (8·5%), b.p. 84—85°/25 mm., both converted by warm 10% NaOH into BzOH but failing to give 2:4-dinitrophenylhydrazones; a little BzF is also formed; COPh·CF₃ could not be obtained thus from COPh·CCl₃ or the products. COPh·CCl₃ and PCl₅ at 220° give C₂PhCl₅ (84%), b.p. 155—156°/15 mm., which with HF at 145°/≯300 lb. gives αβββ-telrachloro-α-fluoroethylbenzene (I) (51·1%), b.p. 246°/731 mm., 123—126°/14 mm., βββ-trichloro-α-difluoroethylbenzene (II) (29·8%), b.p. 219°/731 mm., 100°/16 mm., and small amounts of BzF and (?) CPhF₂·CCl₂F. With SbF₃-SbCl₅ at 170—180° (I) gives (II) (47·3%), ββ-dichloro-With SbF₃-SbCl₅ at 170—180° (I) gives (II) (47.3%), ββ-dichloro-aaβ-trifluoroethylbenzene (III) (6.7%), b.p. 177—178°/731 mm., 94—95°/42 mm., and a little BzF. Repeated treatment of (II) with AgF_{1.6}-HF at 180° gives 19.9% of β -chloro-aa $\beta\beta$ -tetrafluoro-(IV), b.p. $152-153^{\circ}/733$ mm., 1.3% of β -chloro-eahylbenzene, b.p. $128-129^{\circ}/733$ mm., and 16% of (III), SbCl₅ and (III) in HF at $180^{\circ}/\Rightarrow 400$ lb. give 15% of (IV) and a small amount of C_2PhF_5 (not obtained the state of the state of the small amount of C_2PhF_5 (not obtained the state of the small amount of C_3PhF_5 (not obtained the state of the small amount of C_3PhF_5 (not obtained the small amount of C_3PhF_5). pure by this method).

Preparation and properties of mesityl-2:4:6-trimethylbenzyl-glyoxal [ay-dimesitylpropane-a β -dione]. R. P. Barnes and A. E. Brandon (*J. Amer. Chem. Soc.*, 1943, 65, 2175—2177).—CHR:CH·COR (R = mesityl) and H₂O₂ in NaOH-H₂O-MeOH at 30° give $\beta\gamma$ -epoxy-ay-dimesitylpropan-a-one, geometrical isomerides, m.p. (I) 95° and (II) 110°; illumination of (I) in EtOH gives (II), but the reverse change could not be effected. In boiling NaOH-MeOH-H₂O, (II) gives β -hydroxy-ay-dimesityl- $\Delta\beta$ -propen-a-one (III), m.p. 143°; (I) gives mainly the geometrical isomeride (IV), m.p. 128°, and a little (III). (III) and (IV) give red colours with FeCl₃-EtOH and are respectively ~70% and ~40% enolic (Kurt Meyer), but are not interconvertible. Br in MeOH converts (III) or (IV) into y-bromoay-dimesitylpropane-aβ-dione (V), yellow, m.p. 137—148°, converted by boiling conc. HCl-MeOH into the colourless enolic form (VI), m.p. 143°, and by KI and a little AcOH in COMe₂ into (III). (VI) gives a dark brownish-green colour with FeCl₃-EtOH and is ~5% enolic (Kurt Meyer). With boiling Ac₂O-KOAc, (V) or (VI) gives y-bromo-β-acetoxy-ay-dimesityl-Δβ-propen-a-one, m.p. 133—134°, whence boiling conc. HCl-MeOH yields (VI). R. S. C.

Preparation and properties of mesityl-p-methoxybenzylglyoxal. R. P. Barnes and H. Delaney (J. Amer. Chem. Soc., 1943, 65, 2155—2157).—2:4:6:1-C₆H₂Me₃·COMe and p-OMe·C₆H₄·CHO in NaOH-H₂O-EtOH at room temp. give mesityl p-methoxystyryl ketone, m.p. 103—104°, which with H₂O₂ in NaOH-H₂O-EtOH at ~35° gives the oxide, an oil, converted by boiling NaOH-MeOH-H₂O in 10 min. into β-hydroxy-y-p-anisyl-a-mesityl-Δβ-propen-a-one, m.p. 97—98°. This is 99% enolic (Kurt Meyer) in EtOH, with alkaline H₂O₂ gives p-anisyl-a-mesitylorobane-aβ-dione, an oil, converted by KOAc in anisyl-a-mesitylpropane-aβ-dione, an oil, converted by KOAc in boiling. AcOH into β -hydroxy- γ -acetoxy- γ -p-anisyl-a-mesityl- $\Delta\beta$ -propen-a-one (I), m.p. 128—129°. (I) gives a red colour with FeCl₂, is 83% enolic, is unchanged by AcCl, but with boiling KOAc-Ac₂O gives $\beta\gamma$ -diacetoxy- γ -p-anisyl-a-mesityl- $\Delta\beta$ -propen-a-one (II), m.p. 96°. Hydrolysis of (I) or (II) by cone. H₂SO₄ gives the white, cryst. enediol (III), which gives a bluish-green colour with FeCl₃, decolorises indophenol, and, when kept, is converted by autoxidation into an orange peroxide and then into deep yellow a-p-anisyl-y-mesitylpropane-aβγ-trione, m.p. 106°. (III) is thus much less stable than its o-anisyl analogue (A., 1943, II, 66). R. S. C.

Polycyclic compounds. III. Benzonaphthone [perinaphthindenone] bromide, the primary product of interaction of bromine and benzonaphthone. A. M. Lukin (Bul. Acad. Sci. U.R.S.S., Cl. Sci. chim., 1941, 565—572).—Contrary to Brass and Clar (A., 1940, II, 75) the primary interaction product of benzonaphthone and Br is the dibromide. The monobromide is an intermediate stage, as is the complex formed by the mono- and di-bromides. V. B.

Ionone. II. Optical resolution of dl-a-ionone. H. Sobotka, (Miss) E. Bloch, H. Cahnmann, (Misses) E. Feldbau, and E. Rosen (J. Amer. Chem. Soc., 1943, 65, 2061—2062; cf. A., 1944, II, 78).—dl-a-Ionone and l-menthydrazide, $[a]_D^{23} - 76 \cdot 7^\circ$ in 95% EtOH, in boiling EtOH containing a little NaOAc and AcOH give the difficultly separable l-, m.p. 185°, $[a]_D^{22} - 320^\circ$ in EtOH, and d-a-ionone-l-menth-hydrazone, m.p. 176°, $[a]_D^{22} + 230^\circ$ in EtOH, whence distillation with o-C_gH₄(CO)₂O in steam yields l-, $[a]_D^{27} - 406^\circ$ (2:4-d-initrophenylhydrazone, m.p. 133°; p-chlorobenzoylhydrazone, m.p. 200—201°), and d-a-ionone, $[a]_D^{23} + 347^\circ$ (2:4-d-initrophenylhydrazone, m.p. 129°; p-chlorobenzoylhydrazone, m.p. 178°, [a] -35° , dl-a-ionone-2:4-d-initrophenylhydrazone, m.p. 143°, and -p-chlorobenzoylhydrazone, m.p. 214°, are also described. Use of the active compounds for investigating the $a \longleftrightarrow \beta$ -ionone equilibration is discussed. R. S. C.

Volatile vegetable substances. XXVI. Ionones, Y. R. Naves and P. Bachmann (Helv. Chim. Acta, 1943, 26, 2151—2165).—a-Ionone (I) [semicarbazone, m.p. 142—143° (lit. 137—138°); δ-phenylsemicarbazone, m.p. 186·5—187°; 2:4-dinitrophenylhydrazone, m.p. 151° (lit. 147—148°)] is readily obtained pure through the H sulphite or oxime. β-Ionone (II) is obtained pure by hydrolysis of the semicarbazone (III), m.p. 148·5—149°, becomes yellow at >100°, with aq. o-C₈H₄(Co₂H)₂ in a current of steam; the δ-phenyl-semicarbazone has m.p. 157·5—158° and is stable to light and air whereas a phenylsemicarbazone, m.p. 151—152°, obtained from (III) and NH₂Ph at 180°, rapidly becomes yellow in air. The reactions of (I), (II), and methyl-α-ionone (IV) with NaOEt-EtOH and according to Legal, Rosenthaler, Ehrlich-Müller, and Hanriot are described in detail. Reduction of (I), (II), and (IV) with Na in boiling EtOH gives dihydro-α-ionol (V). b.p. 126—127°/10 mm. (acetate, b.p. 131—132°/10 mm.), differing in physical consts. from the product of Palfray et al. (A., 1937, II, 108), dihydro-β-ionol, b.p. 132—133°/10 mm., m.p. 41° [allophanate, m.p. 162·5—163° (lit. 171·5°); acetate, b.p. 137—138°/10 mm.] and dihydromethyl-α-ionol, b.p. 136—138°/10 mm. (acetate, b.p. 141—142°/10 mm.), respectively. Hydrogenation (PtO₂ in 90% AcOH at 70°) of (V) affords cis-tetrahydroionol, b.p. 130—131°/10 mm. (allophanate, m.p. 162—162·5°), oxidised to cis-tetrahydroionone (semicarbazone, m.p. 183—184°; 2:4-dinitro-phenylhydrazone, m.p. 120—120·5°). It is probable that the product obtained by Kandel (A., 1939, II, 169) is the trans-isomeride. a-Methyltetrahydroionol, b.p. 138—139°/10 mm., is similarly obtained. (I) is hydrogenated (Raney Ni in 95% EtOH at 65°) to dihydro-a-ionone, b.p. 119—120°/10 mm. [semicarbazone, m.p. 167—167·5° (lit. 171—172°)]. The dihydroionol obtained by hydrogenation (Raney Ni in 95% EtOH at 65°) is non-homogeneous and appears to contain ~22% of ketones. (I) is dehydrated by I to 1:1:6-trimethyl·1:2:3:4-tetrahydronaphthale

Reaction between quinones and metallic enolates. XVIII. Mechanisms. L. I. Smith, R. T. Arnold, and J. Nichols (J. Amer. Chem. Soc., 1943, 65, 2131—2134; cf. A., 1944, II, 54).—The varying modes of reaction of bromopolymethylbenzoquinones with CHNa(CO₂Et)₂ or other anionoid reagents are correlated and shown to be rational on the basis of possible modes of resonance. Similar explanations can be applied also outside this series of compounds.

Vitamin-K group. I. Synthesis of potassium 2-methyl-1: 4-naphthaquinone-3-sulphonate. D. A. Bochvar, L. A. Schukina, A. S. Chernyshev, N. G. Semenov, and M. M. Shemiakin. H. Meehanism of biological action of vitamin-K and of its synthetic analogues, M. M. Shemiakin, L. A. Schukina, and J. B. Shvezov (J. Amer. Chem. Soc., 1943, 65, 2162—2164, 2164—2167).—I. With KHSO₃ in 5% H₂SO₄ and then K₂Cr₂O₇, 1: 2: 4-O:C₁₀H₅Me:O

$$\begin{array}{c|c}
\hline
O & H^{+} \\
\hline
O & Me \\
\hline
O & Me \\
\hline
O & Me \\
\hline
SO_{3}K \\
\hline
O & Me \\
\hline
SO_{3}K \\
\hline
O & Me \\
\hline
SO_{3}K \\
\hline
O & OH
\end{array}$$

(I) gives >9% of K 2-methyl-1: 4-naphthaquinone-3-sulphonate (II) (cf. Fieser and Fieser, A., 1935, 585; Moore, A., 1941, II, 369).

By use of aq. KHSO₃ (no acid) at 115—120° and then $K_2Cr_2O_7$ or, better, aq. $Cl_3 \sim 60\%$ of (II) is obtained. The reaction mechanism is (I)—(III)—(IV)—(V) and thence, by oxidation, (II). The change (IV)—(V) is accelerated by H' or OH', but for (I) the reverse change to (I) is accelerated by H' to a greater degree so that the total effect of acid is unfavourable; for 1:4-O: $C_{10}H_0$ -O (VI) the total effect is favourable (cf. loc. cit.). (II) has only slightly less anti-hæmorrhagic effect than has (I) (cf. Moore, loc. cit.; Baker et al., A., 1942, II, 285; Menotti, A., 1943, II, 303; a different method of test is used).

II. Biological activity of (I) and its derivatives is held to be due to biological degradation to o-C₆H₄(CO₂H)₂ (VII) or its derivatives. (VII) and particularly its E₂ ester and diamide have vitamin-K activity. In boiling H₂O (30 hr.) (I) (20 g.) gives (VII) (0.9 g. isolated as anhydride) and a (?) quinhydrone, m.p. >350°; 1·2 g. of (VII) is obtained by boiling aq. KOH (45 min.). In H₂O (5 hr.), (II) (20 g.) gives 0·8 g. of (VII) and 3·3 g. of a quinhydrone (VIII), m.p. 243—244° (decomp.) (oxidised to a quinone by Cl₂ and reduced to a quinob by Zn-AcOH). In 25% aq. KOH at room temp., (II) gives the yellow K_2 salt (IX), which in H₂O rapidly gives (VII) and (VIII) but by further treatment with 25% KOH gives the orangered K_2 salt (X) and thence, by acid, regenerates (II). Generation of

(VII) depends on formation of a 2-CHR: derivative, which explains why (I), but no other 2-alkyl derivatives, is antihæmorrhagic and why substitution at C₍₃₎ usually has little effect. R. S. C.

Perylene and its derivatives. L. A. Zinke, H. Troger, and E. Ziegler (Ber., 1940, 73, [B], 1042—1048; cf. A., 1937, II, 142).— Contrary to Zinke et al. (A., 1927, 1190), perylene (I), o-CeH4(CO)₂O, and AlCl₃ (or AlCl₃–NaCl) at 170° give di-o-carboxybenzoylperylene- A_1 , m.p. >360°, and - A_3 , sinters from 260°, m.p. 292—296°, o-carboxybenzoylperylene- A_2 , m.p. 277—278° (sinters 260°), and diphthaloylperylene- B_1 (violet-blue vat) and - B_2 (blue-green vat). In boiling PhNO₂, - A_3 gives - B_1 and ? a half-cyclised acid; - A_1 gives similarly ? impure - B_2 . (CH₂·COCl)₂. (I), and AlCl₃ in CS₂ give γ -keto- γ -3-perylenyl-n-butyric acid, darkens 240°, m.p. 255° (Br₄-derivative, m.p. 190°; Me, m.p. 183°, and Et ester, m.p. 168°), converted by Ac₂O into ? 2: 3-succinylperylene. (CH₂·CO)₂O and (I) give impure products.

IV.—STEROLS AND STEROID SAPOGENINS.

Organ extracts. III. Unsaponifiable lipoids from arteriosclerotic aortas. E. Hardegger, L. Ruzicka, and E. Tagmann (Helv. Chim. Acta, 1943, 26, 2205—2221).—The comminuted material is extracted exhaustively with COMe₂ and neutral lipoids result after removal of acids and substances readily sol. in H₂O from the extract. These are hydrolysed successively with Ba(OH)₂ and KOH (whereby alterations of the native material are not excluded) and the unsaponified residue is separated into its components by crystallisation and chromatography over Al₂O₃. 370 human aortas yield 127 g. of unsaponifiable matter from which is obtained ~90 g. of cholesterol (I) containing (according to [a]_D) ~5·6% of dihydrocholesterol. On average 1 aorta contains ~240 mg. of total (I) compared with 5—50 mg. in the normal organ. From the residual (I)-poor unsaponifiable matter are isolated: \$\Delta^{3:5}\$-cholestadien-7-one (II), m.p. 114—114·5°, [a]_D —299°±5° in CHCl₃ (oxime, m.p. 176—178°; semicarbazone, m.p. 206·5—207·5°); \$\Delta^{4:5}\$-cholestadien-3-one (III), m.p. 79·5—81°, [a]_D +35°±2° in CHCl₃ (oxime, m.p. 176—177°); cholestane-3(\Beta):5:6(trans)-triol (IV), m.p. 244—245° (softens at 227°) (diacetate, m.p. 165—167°), which does not give a colour reaction with SbCl₃, C(NO₂)₄, or CCl₃·CO₂H; 7(\Beta)-droxycholesterol (V), m.p. 188—188·5°, [a]_D —93°±2° in CHCl₃ (dibenzoate, m.p. 151·5—152·5°); batyl alcohol; unidentified substance A, m.p. 301—303°, [a]_D +25·5°±3° in CHCl₃; substance B, m.p. 301—301·5°, [a]_D +25·5°±3° in CHCl₃; substance B, m.p. 301—301·5°, [a]_D +25·5°±3° in CHCl₃; substance B, m.p. 79·5—80°, [a]_D ±0°±1° in CHCl₃; substance B, m.p. 19—60°±3° in CHCl₃, saturated towards C(NO₂)₄, which gives a red colour with SbCl₃ in CHCl₃ and a blue colour with CCl₃·CO₂H in CHCl₃; substance E, m.p. 68—69°, [a]_D +17°±4° in CHCl₃, which gives a marked yellow-brown colour with C(NO₂)₄. Provisionally, the possibility cannot be excluded that (II), (III), (IV), and (V) [wi

Organ extracts. IV. Unsaponifiable lipoids from swine spleen. V. Prelog, L. Ruzicka, and P. Stein (*Helv. Chim. Acta*, 1943, 26, 2222—2242).—The material is extracted with COMe₂ and the extract is treated with hot MeOH into which the bulk of the unsaponifiable matter passes, leaving the fatty acid glycerides undissolved. From the MeOH extract the bulk of the cholesterol (I) is separated by crystallisation from COMe₂. What remains is hydro-

lysed by NaOH-MeOH and much of the fatty acids are separated as the insol. Ba salts, which retain a considerable proportion of the residual unsaponifiable matter, the removal of which is described. This is then treated with Girard's reagent T and the reacted and unchanged portions are chromatographed over Al_2O_3 . The following are isolated: Δ^5 -cholestene-3(β): 7(a)-diol [7(a)-hydroxycholesterol], m.p. $168-170^\circ$, $[a]_D^{21}-12\cdot3^\circ\pm3^\circ$ in CHCl $_3$ (dibenzoate, m.p. $170\cdot5^\circ$, $[a]_D^{21}+97^\circ+5^\circ$ in CHCl $_3$), which does not give a colour with $C(NO_2)_4$ and with SbCl $_3$, $CCl_3\cdot CO_2H$, and Lifschütz reagent gives the colours typical of hydroxycholesterols; Δ^4 -cholestene-3(β): 6-diol, m.p. 254° , $[a]_D^{20}+8\cdot4^\circ\pm4^\circ$ in C_5H_5N (diacetate, m.p. $132-133^\circ$, $[a]_D^{20}-12^\circ\pm3^\circ$ in CHCl $_3$; dibenzoate, m.p. 181° , $[a]_D^{20}-73\cdot0^\circ\pm2\cdot5^\circ$ in CHCl $_3$); cholestan-3(β)-ol-6-one, m.p. $128-129^\circ$, $[a]_D^{13}-13\cdot6^\circ\pm3^\circ$ in CHCl $_3$; Δ^4 -5-cholestadien-7-one, m.p. 114° , $[a]_D^{14}-305^\circ\pm4^\circ$ in CHCl $_3$; Δ^4 -6-cholestadien-3-one (oxime, m.p. $173\cdot5-175^\circ$); substance, $C_{27}H_{46}O_2$, m.p. $155\cdot5-156^\circ$, $[a]_D^{10}-132^\circ\pm4^\circ$ in CHCl $_3$, which gives the colour reactions typical of hydroxycholesterols, gives a monoacetate, m.p. $110-111^\circ$, $[a]_D^{20}$ This is then treated with Girard's reagent T and the reacted and hydroxycholesterols, gives a monoacetate, m.p. $110-111^\circ$, $[a]_D^{10}$ $-118^\circ \pm 4^\circ$ in CHCl₃, and a monobenzoate, m.p. $134-135^\circ$, $[a]_D^{10}$ $-79^\circ \pm 3^\circ$ in CHCl₃, cannot be pptd. with digitonin, and is oxidised by Al(OPh)₃ and COMe₂ to $\Delta^{4:6}$ -cholestadien-3-one (oxime, m.p. $172-174^\circ$); in EtOH it does not exhibit absorption in the ultra-172—174°); in EtOH it does not exhibit absorption in the ultraviolet; it gives a marked depression of m.p. with Δ^a -cholestene-3:5-diol, of which it is very possibly a stereoisomeride; batyl alcohol, m.p. $64\cdot 5-65\cdot 5^\circ$, $[a]_D^{21}+5\cdot 3^\circ\pm 1\cdot 5^\circ$ in CHCl₃ (bisphenylwethane, m.p. $98\cdot 5-99^\circ$); (?) palmitylsphingosine, m.p. $90-91^\circ$, $[a]_D^{11}\pm 0^\circ\pm 3^\circ$ in CHCl₃; compound A, $C_{27}H_{46-48}O$, m.p. $210-216^\circ$, $[a]_D^{11}-74\cdot 8^\circ\pm 2^\circ$ in CHCl₃, which does not give a yellow colour with $C(NO_2)_4$; substance B, $C_{29}H_{48}O_3$, m.p. $200-201^\circ$, $[a]_D^{19}-5\cdot 7^\circ\pm 3^\circ$ in CHCl₃, which does not give a ppt. with digitonin, and is not identical with cholestane- $3(\beta)$: 5: 6-(trans)-triol or $-3(\beta)$: 5: 6-(cis)-triol; substance C, m.p. $86-87^\circ$, which does not give a yellow colour with $C(NO_2)_4$. As impurities a hydrocarbon, $C_{23}H_{52}$, m.p. $53\cdot 5-54^\circ$, and fricdelin, m.p. $255-259^\circ$, are isolated. According to their constitution, all the isolated steroids can be represented as oxidation or transformation products of (I). In this represented as oxidation or transformation products of (I). In this and similar researches it has been found possible to isolate from organ extracts all derivatives of (I) which have been identified from the autoxidation or photo-oxidation of (I). It cannot therefore be decided definitely whether the transformation products of (I) isolated from organ extracts are present as such in the organism or are produced during the working up. The biochemical significance of the isolation of the steroids is therefore very difficult to evaluate. The total result is, however, valuable. Since steroids with 18, 19, and 21 C atoms have only so far been isolated from the sexual tract, the adrenals, and urine, their occurrence appears provisionally to be characteristic of these sources. M.p. are corr. H.W.

Steroids and sex hormones. LXXXVIII. 3(a)-Hydroxyalloætio-cholanic acid. P. A. Plattner and A. Fürst (Helv. Chim. Acta, 1943, 26, 2266—2273).—Oxidation of 3(β)-hydroxyalloætiocholanic acid by CrO₃ in AcOH gives 3-ketoalloætiocholanic acid (I), m.p. 260—2889 the right of the statement of the 262°, the yield of which is greatly diminished by the simultaneous formation of isoalloætiolithobilianic acid. Similar oxidation of the hydrogenation product of $\Delta^{5:6}$ -3(β)-hydroxypregnen-20-one gives 20-keto-23-allopregnane-2: 3-diacid, m.p. 219—219·5°, [a]_D +93·8° in CHCl₃. Hydrogenation (PtO₂ in AcOH containing HB rate 60°) of (I) gives 3(a)-acetoxyalloætiocholanic acid, m.p. 215—218°, [a]_D +50·3° in CHCl₃; the Me ester (II), m.p. 199—202°, [a]_D +54·5° in CHCl₃, is hydrolysed to 3(a)-hydroxyalloxtiocholanic acid (III), m.p. 281—284°, [a]_D +45·3° in CHCl₃ (Me ester, m.p. 178—181°, [a]_D +55·6° in CHCl₃). Similar hydrogenation of larger quantities of crude (I) gives a product from which cryst. derivatives of (III) cannot be separated. From the ethereal solution of the hydrogenated product separates a substance of high m.p. from which by esterification (CH_2N_2) and chromatography Me_3 isoalloætiolithobilianate, m.p. 82—83°, $[a]_D + 47\cdot 2^\circ$ in CHCl₂, is isolated. Esteriesternication (CI1₂N₂) and chronical set of CHCl₃, is isolated. Esteribilianate, m.p. 82—83°, [a]_D +47·2° in CHCl₃, is isolated. Esterification and acetylation of the more sol. products lead to Me allowitocholanate, m.p. 140—142°, [a]_D +55·4° in CHCl₃ (acid, m.p. 225—227°, [a]_D +55·8° in CHCl₃), and Me 3(β)-bromoallowitocholanate, m.p. 135°, [a]_D +59·3° in CHCl₃. Me 3(β)-bromoallowitocholanate, m.p. 160°, [a]_D +69·8° in CHCl₃. Me 3(β)-p-toluenesul-phonyloxyallowitocholanate, m.p. 147°, [a]_D +80·1° in CHCl₃, from the OH-ester and p-C₆H₄Mc-SO₂Cl in dry C₅H₅N at 0° and then at room temp., is converted by anhyd. NaOAc in boiling AcOH into (II) (yield 50%) and Me $\Delta^{2:3}$ - or $\Delta^{3:4}$ -allowitocholenate, m.p. 129—131°. [a]_D +94·8° in CHCl₃, hydrogenated (PtO₂ in AcOH) to Me allowitocholanate, m.p. 142—144·5°, [a]_D +53·3° in CHCl₃. M.p. are corr.

Bile acids and related substances. XXVIII. 12(a)-Hydroxy-cholanic acid. M. Sorkin and T. Reichstein (Helv. Chim. Acta, 1943, 26, 2097—2101; cf., A., 1942, II, 412).—Hydrogenation (Raney Ni-McOH at 20°) of Me 12-ketocholanate (I) gives a mixture of Me 12(a) (II) and 12(b) (IVI) 12(a)- (II) and $12(\beta)$ - (III) -hydroxycholanate, partly separated chromatographically, after which (III) can be caused to crystallise. Crude (II) is hydrolysed to 12(a)-hydroxycholanic acid (IV), m.p. 109—115°, $[a]_D^{12}+37\cdot9^\circ\pm2^\circ$ in COMe₂, also obtained by treating Me 3-keto-12(a)-acetoxycholanate with N_2H_4,H_2O and NaOEt=EtOH at 180°. 12(β)-Hydroxycholanic acid has $[a]_D^{12}+43\cdot5^\circ\pm2^\circ$ in COMe₂. The constitution of (**IV**) is established by methylation (CH₂N₂) followed by oxidation (CrO₃ in AcOH at room temp.) to (**I**). Substitution of NaOH-MeOH for pure MeOH in the hydrogenation of MaOH-MeOH for pure MeOH in the hydrogenation of Me 3(a)-hydroxy-12-ketocholanate so favours the production of 3(a): 12(a)-dihydroxycholanic acid that the greater part of it can be separated pure by two crystallisations; a simplified method is described for the separation of the remainder of it from deoxycholic acid. M.p. are corr. (block); limit of error $\pm 2^{\circ}$.

Steroids and sex hormones. LXXXIX. Simple digitaloid lactones with allocholane configuration. P. A. Plattner, L. Ruzicka, and A. Fürst (Helv. Chim. Acta, 1943, 26, 2274—2278).—3(a)-Acetoxy-A. First (HeV). Chim. Acta, 1943, 20, 2214—2215).—3(a)-Actoxyalloætiocholanic acid is converted by SOCl₂ in boiling C_6H_6 into the chloride, which with CH_2N_2 in C_6H_6 — E_2O at -10° affords 21-diazo-3(a)-acetoxyallopregnan-20-one, decomp. 156—158°, $[a]_D+141\cdot6^\circ$ in CHCl₃, converted by AcOH at 100° into 3(a): 21-diazetoxyallopregnan-20-one, m.p. 165°, $[a]_D-92\cdot1^\circ$ in CHCl₃. This is converted by Zn and $CH_2Br\cdot\dot{C}O_2Et$ in C_6H_6 -dioxan followed by treatment with boiling dil. HCl and $Ac_2O-C_6H_5N$ at room temp. into 20: 21-diazetoxyarallo-chalavolactore (I) m. p. 255° (loss of HO) boiling dil. HCl and $Ac_2O-C_5H_5N$ at room temp. into 20:21-dihydroxy-3(a)-acetoxynorallocholanolactone (I), m.p. 255° (loss of H_2O), $[a]_D + 66^\circ$ in CHCl₃. (I) is converted by prolonged boiling with Ac_2O into $\Delta^{20:22-21$ -hydroxy-3(a)-acetoxy-, m.p. 230° , $[a]_D + 19^\circ$ in CHCl₃, and thence by 2N-HCl in dioxan at 100° into $\Delta^{20:22-23}(a):21$ -dihydroxy-, m.p. $243-244^\circ$ $[a]_D + 10^\circ$ in CHCl₃, -norallocholevolactone. $3(\beta)$ -Acetoxyalloætiocholanic acid similarly gives 21-diazo- $3(\beta)$ -acetoxyallopregnan-20-one, m.p. $131-132^\circ$, $[a]_D + 134\cdot 4^\circ$ in CHCl₃, which gives $3(\beta):21$ -diacetoxyallopregnan-20-one, m.p. $151-152\cdot 5^\circ$, $[a]_D + 80\cdot 8^\circ$ in CHCl₃, converted into $\Delta^{20:22-21}$ -hydroxy- $3(\beta)$ -acetoxynorallocholenolactone, m.p. $193-194^\circ$, $[a]_D + 1^\circ$ in CHCl₃. Likewise alloætiocholanic acid yields 21-diazoallopregnan-20-one, m.p. $120-121^\circ$ (decomp.), $[a]_D + 151\cdot 3^\circ$ in CHCl₃, which gives successively 21-acetoxyallopregnan-20-one, m.p. 200° , $[a]_D + 101\cdot 8^\circ$ in CHCl₃, and $\Delta^{20:22-21}$ -hydroxynorallocholenolactone, m.p. 170° , $[a]_D + 101\cdot 8^\circ$ in CHCl₃, and $\Delta^{20:22-21}$ -hydroxynorallocholenolactone, m.p. 170° , $[a]_D + 13^\circ$ in CHCl₃. M.p. are corr.

Constituents of the adrenal cortex and related substances. Ætio-cholane-3(a): $12(\beta)$ -diol-17-one. H. Reich and T. Reichstein (Helv. Chim. Acta, 1943, 26, 2102—2109).—Me $3(a):12(\beta)$ -diacetoxy-cholanate is oxidised by CrO_3 in AcOH at $\sim 75^\circ$ and the product is divided into acidic (I) and neutral (II) portions. Direct crystallisation of (II) leads to the removal of unchanged material and the residue is hydrolysed by alkali. The acids thus isolated contain some deoxycholic acid and a lactone, C₂₅H₃₈O₅, m.p. 285—288°, which is probably a monoacetate corresponding to the lactone obtained by Miescher et al. (A., 1939, II, 160) by the oxidation of cholesteryl acctate dibromide and is converted by energetic acetylation into a diacetate, $C_{27}H_{40}O_6$, m.p. 271—274°. The relatively small amounts diacetate, $C_{27}H_{40}O_6$, m.p. 271—274°. The relatively small amounts of neutral, unsaponifiable substances are treated with Girard's reagent T, thus leading to the isolation of pregnane- $3(a):12(\beta)$ -diol-20-one (identified as the diacetate) and ætiocholane- $3(a):12(\beta)$ -diol-17-one (diacetate, m.p. $162-162\cdot5^\circ$, $[a]_{1}^{16}+176\cdot0^\circ\pm2^\circ$, $[a]_{5461}^{16}+213\cdot7^\circ\pm2^\circ$ in COMe₂). (I) is completely hydrolysed, methylated (CH₂N₂), and fractionally hydrolysed whereby Me $3(a):12(\beta)$ -diacetoxyætiocholanate is largely unaffected. All the yields are very poor. M.p. are corr. (block); limits of error $\pm2^\circ$. H. W.

D-Homosteroids.—See B., 1944, III, 33, 34.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Characterisation of carboxylic acids by carbodi-imides. X. Optically active carbodi-imides. F. Zetzsche and A. Fredrich (Ber., 1940, 73, [B), 1114—1123).—l-Menthylamine (I) and CS2 in PhMe at ~50° and then the b.p. give 83% of s-di-l-menthylthiocarbamide, m.p. 201°, [a]p ~125-6° in CHCl3 (in this and other cases), converted by HgO in CS2 at room temp into carbodi-l-menthyltmide, C(:NR)2 (82%), b.p. 213—215°/14 mm., [a]p ~101-4°, which gives no ureides. p-NMe2·C6H4·NCS (II) and (I) in Et2O at room temp. give N-p-dimethylaminophenyl-N'-l-menthylthiocarbamide (87%), m.p. 149—150°, [a]p ~80·3°, and thence N-p-dimethylaminophenyl-N'-l-menthylcarbodi-imide (III) (67%), m.p. 50—52°, [a]p ~70·3°. With HCO2H in Et2O, (III) gives N-p-dimethylaminophenyl-N'-l-menthylcarbamide, m.p. 229—230°, [a]p ~62·9°, and with stearic acid in C5H3N at 100° or, in other cases, RCO2H in Et2O at room temp. gives N-stearoyl-, m.p. 115—116°, [a]p ~33·2°, N-benzoyl-, m.p. 115—116°, [a]p ~33·2°, N-benzoyl-, m.p. 115—116°, [a]p ~55·0°, N-p-bromobenzoyl-, m.p. 216—218°, [a]p ~48·8°, N-cinnamoyl-m.p. 148—149°, [a]p ~59·7°, and N-piperoyl-N- (or N'-)p-dimethylaminophenyl-N'- (or

with (II) gives N-p-dimethylaminophenyl-N'-bornylthiocarbamide, m.p. 181°, [a]_D -11·1°, and thence the carbodi-imide, m.p. 31—34°, b.p. 203—204°/0·12 mm., [a]_D -11·9°, which yields, as above, N-p-dimethylaminophenyl-N'-bornylcarbamide, m.p. 199—200°, and the CHMeBr·CO, m.p. 139—140°, Bz, m.p. 137—138°, and cinnamoyl derivatives, m.p. 139—140°, thereof. s-Dicyclohexylthiocarbamide, m.p. 180—181°, is obtained in 95·8% yield from the base and CS₂ in PhMe. N'-cycloHexyl-N-p-dimethylaminophenylthiocarbamide (prep. as above; 92% yield), m.p. 131—132°, gives the carbodi-imide, b.p. 175—176°/0·6 mm., carbamide (VI), m.p. 187—188°, and the crotonyl, m.p. 107—108°, stearoyl, m.p. 80—81°, CHMeBr·CO, m.p. 138—139°, CHEtBr·CO, m.p. 120—121°, Bz, sinters 140°, m.p. 141—142°, and cinnamoyl derivative, m.p. 160—161°, thereof. Similarly are prepared CS(NH·CH₂Ph)₂ (95·4% yield) and carbodibenzylimide (VII) (76%), b.p. 208—210°/18 mm., which is unstable and gives a dimer, m.p. 102—103° [reacts more slowly than does (VII)]. In C₈H₅N at 100° (VII) with BzOH gives benzoyl-NN'-dibenzylcarbamide, m.p. 98—99°, but with AcOH or n-C₈H₁₇·CO₂H gives CO(NH·CH₂Ph)₂, m.p. 166—167°. N-p-Dimethylaminophenyl-N'-benzylthiocarbamide has m.p. 127—128°. With CH₂·CH·CO₂H, a-bromopalmitic acid, or CHMeBr·CH₂·CO₂H. Formation of ureides thus depends on the nature of both the acid and carbodi-imide (cf. C., 1944, Part 2).

ω-Nitrocamphene. P. Lipp, H. Bräucker, and H. Sauer [with, in part, J. Gerdes] (Ber., 1940, 73, [B], 1146—1150; cf. A., 1940, II, 136).—Reduction of ω-nitrocamphene (I) with Zn dust and AcOH gives mainly tricyclal (II) containing a small proportion of camphenilanealdehyde, separated from (II) as its enol acetate and identified by oxidation to isocamphenilanic acid (III), m.p. 117·5—118·5° (corr.). In addition to (II) and in the ratio ~3:1 there is produced 2-acetoxyapocamphanealdehyde [semicarbazone, m.p. 216·5—217·5° (corr.)], readily converted by air and more readily by other oxidising agents into 2-acetoxyapocamphanecarboxylic acid, m.p. 121—122° (corr.) [corresponding chloride, b.p. 111—113°/0·3 mm., m.p. ~60°, and amide, m.p. 99—100° (corr.)]. This is hydrolysed to 2-hydroxyapocamphanecarboxylic acid, m.p. 225—226° (lit. m.p. 237°), which is oxidised (KMnO₄-KOH) to ketopinic acid, m.p. 232·5—234° (corr.). The non-carboxylic compounds contain essentially the two isocamphanols, removed as the p-nitrobenzoates, which are only partly separable from one another by crystallisation (small amounts of a p-nitrobenzoate, m.p. 148—149°, are isolated); the alcohols from the remaining mixture of p-nitrobenzoates are oxidised to (III). The nitrile, b.p. 93·5—96°/8 mm., of (III) or camphenilanic acid is indifferent towards p-NO₂·C₈H₄·COCl. In contrast to the complete change in system caused by additions to (I) in strongly acid solution the isocamphane skeleton is changed only in part and in part remains intact in a slightly acid medium.

H, W. Rearrangement of camphorquinone. I. Formation and reactions of the inactive modifications of 2:2:3-trimethylcyclohexan-4-one-1-carboxylic acid. R. N. Chakravarti (J. Indian Chem. Soc., 1943, 20, 301—306).—Synthetic camphor is oxidised with SeO₂ to dl-camphorquinone (cf. Evans et al., A., 1934, 299), which with conc. H₂SO₄ gives dl-2:2:3-trimethylcyclohexan-4-one-1-carboxylic acid (I), m.p. 109° (cf. d-acid, Manasse and Samuel, A., 1898, i, 147; 1903, i, 45; Bhagvat and Simonsen, A., 1927, 250) [monohydrate, m.p. 73—74°; semicarbazone, m.p. 230—231°; Me ester, b.p. 100°/4 mm.; Et ester (II), b.p. 120°/6 mm.]. Clemmensen reduction of (I) gives 1:2:2-trimethylcyclohexane-3-carboxylic acid, b.p. 118°/5 mm. (p-phenylphenacyl ester, m.p. 114°), the Me ester, b.p. 95°/12 mm., of which when dehydrogenated by Se at 340° in a sealed tube for 28 hr. gives o-xylene and o-xylene-3-carboxylic acid. Treatment of (II) with Et₂C₂O₄ and NaOEt gives an oxalyl derivative, which loses CO on heating to yield Et₂ 2:3:3-trimethylcyclohexan-1-one-4:6-dicarboxylate (III), b.p. 155°/6 mm. (violet colour with FeCl₃-EtOH), which in a closed tube with NaOEt at 150—200° for 24 hr. gives Et₃ aββ-trimethylpentane-aye-tricarboxylate, b.p. 160°/4 mm. (no colour with FeCl₃-EtOH). Treatment of this with Na and C₆H₆ regenerates (III), hydrolysis of which with either KOH-H₂O-EtOH or dil. HCl re-forms (I).

New derivatives of 4-phenylcamphor. S. S. Nametkin and T. V. Scheremeteva (Compt. rend. Acad. Sci. U.R.S.S., 1943, 33, 131—134).—4-Phenyl- (I) and 4-p-aminophenyl-camphor (II) (Ac derivative, m.p. 181—184°) are prepared by modified methods. (I) and 100% H₂SO₄ at 35—40° give 4-p-sulphophenylcamphor, m.p. 189—190° (Ba, +6H₂O, and Pb salt, +8H₂O). 4-p-Hydroxyphenylcamphor, m.p. 125°, is obtained by decomp. of the aq. diazonium solution from (II) at room temp. (I) and HCO₂C₅H₁₁-iso + Na yield 4-phenyl-3-hydroxymethylenecamphor (III), m.p. 50—54° (Bz derivative, m.p. 149—150°), converted by prolonged action of aq. AcOH at room temp. into 3-aldehydo-4-phenylcamphor, m.p. 91—95° (does not give a Bz derivative). 4-Phenylcamphorquinone, m.p. 142—143°, is obtained from (III) and 1% KMnO₄ in cold dilalkali, and 4-p-nitrophenylcamphor and SeO₂-Ac₂O afford 4-p-nitrophenylcamphorquinone, m.p. 137°.

A. T. P.

A tricyclic compound obtained by the di-inene double-addition reaction.—See A., 1944, II, 101.

Triterpenes. LXXXII. Degradation of diacetoxynorlupanone and acetylbetulic acid to acetoxybisnorlupandicarboxylic acid. L. Ruzicka and E. Ray (Helv. Chim. Acta, 1943, 26, 2143—2151).— Diacetoxynorlupanone (A., 1941, II, 71) in C₈H₆ is partly hydrolysed by KOH—EtOH at room temp. to dihydroxynorlupanone 2-acetate, m.p. 293°, [a]_D —7°, oxidised by CrO₃ in AcOH at room temp. to acetoxynorlupanonic acid (I), m.p. 253°, [a]_D —10°. The corresponding Me ester (II), m.p. 253°, [a]_D —45°, identical with the product obtained by Ruzicka et al. (A., 1941, II, 72) by the oxidation of Me acetylbetulate, the constitution of which is thereby established. (I) is hydrogenated (PtO₂ in AcOH) to acetylnorlupandiolic acid, m.p. 289°, [a]_D +10°, which could not be lactonised. (II) is oxidised by SeO₂ in hot AcOH to Me acetoxynorluponalonate, m.p. 184°, [a]_D —16°, further oxidised by 30% H₂O₃ in boiling AcOH and then esterified to Me acetoxybisnorlupandicarboxylate (III), m.p. 182°. [a]_D —13°. Acetylbetulic acid is oxidised by SeO₂ in boiling AcOH to acetyl-lupenalolic acid, m.p. 295°, [a]_D +11°, which does not give a vellow colour with C(NO₂)₄ and yields a yellow solution in conc. H₂SO₄ which rapidly becomes red. It is oxidised by CrO₃ in AcOH to acetyl-lupenoldicarboxylic acid, m.p. ~300°, [a]_D +14°, which does not give a colour reaction with C(NO₂)₄, and (after esterification) (III). Hydrolysis of (III) by KOH–MeOH gives Me₂ hydroxybisnorlupandicarboxylate, m.p. 210°, [a]_D —13°, and the corresponding Me₁ ester, m.p. 296°. M.p. are corr. [a]_D are in CHCl₂ (l = 1). The experiments further confirm the presence of the isopropenyl group in the C skeleton of betulin. The formulation of lupane derivatives by Jones et al. (A., 1942, II, 60) and Kon et al. (ibid. 60) is criticised adversely.

Triterpenes. LXXXIII. Oxidative degradation of rings A and B in hederagenin. L. Ruzicka, J. Norymberski, and O. Jeger (Helv. Chim. Acta, 1943, 26, 2242—2250).—Repetition of the work of Kitasato et al. (A., 1932, 1035; 1933, 612) confirms the composition of the hydroxytetracarboxylolactone Me₃ ester C₃₀H₄₈O₈ (I) and thus brings indirect evidence of the attachment of C₍₃₀₎ of the oleanolic acid skeleton to C of the ring. Hederagenin is converted by 33% HBr-AcOH into diacetylhederageninlactone, m.p. 248—248·5°, hydrolysed by KOH-EtOH to hederageninlactone (II), m.p. 358—360° (high vac.). Hederageninbromolactone is oxidised by CrO₃ in AcOH containing a little conc. H₂SO₄ to (?) hedragone-bromolactone and acidic products, debrominated (Zn dust in AcOH) and then converted by HBr-AcOH into hedragenone dicarboxylolactone, m.p. 266—267°, [a]_D +23·7° (Mc ester, m.p. 199—200°, [a]_D +28·5°). (II) is oxidised by CrO₃ in boiling AcOH to hedragonelactone, m.p. 309—310° (vac.), [a]_D +44·0, and the ketohydroxydicarboxylolactone (III) (A; R = H), m.p. 263—264°. The corresponding Me ester is oxidised by CrO₃ and H₂SO₄-AcOH and

the product is dissolved in Et₂O which is extracted successively with aq. KHCO₃ and Na₂CO₃. The former extract gives (III), sparingly sol. in Et₂O, and the hydroxycarboxylolactone (B; R = H), m.p. 238—239°, converted by CH₂N₂ in Et₂O-CHCl₃ into the Me_2 ester, m.p. 170—170-5°, and passing when heated at 240—250°/high vac. into the *pyroketone*, C₂·H₄₀O₃, m.p. 288—289° (high vac.), [a]p +152°. The portion of the KHCO₃ extract which is freely sol. in Et₂O after esterification with CH₂N₂ affords (I), m.p. 199—200°, [a]p -16·6°. The Na₂CO₃ extract yields (III). M.p. are corr. [a]p are in CHCl₃.

Triterpenes. LXXXIV. New evidence of the different position of the carboxyl group in oleanolic and glycyrrhetic acid. L. Ruzicka, O. Jeger, and W. Ingold (Helv. Chim. Acta, 1943, 26, 2278—2282).— Energetic oxidation of oleanolic and deoxoglycyrrhetic acid with SeO₂ gives dienedione derivatives converted by CrO₃ into oxides, which when treated drastically with alkali suffer fission of ring E with production of different acids. This behaviour is not compatible with the formulation of Kon et al. (A., 1942, II, 148, 418), according to which only one acid should be produced. Me Δ¹0:11-13:18-2-acetoxyoleadiene-12:19-dione-20-carboxylate is oxidised by CrO₃ in AcOH at 90° and then at room temp. to Me Δ¹0:11-13:18-2-carboxylate is oxido-2-acetoxyoleanene-12:19-dione-20-carbox

AcOH at 90° and then at room temp. to Me Δ10°11.

13:18-oxido-2-acetoxyoleanene-12:19-dione-20-carboxylate, m.p. 282—283°, [a]_p +86° in CHCl₃, which is transformed by 10% KOH at 200° into the noracid (I), m.p. 241°, [a]_p +101° in C₃H₆N, +131° in COMe₂ (non-cryst. Me ester), which gives a marked enol reaction with FeCl₂ in EtOH and a yellow colour

with C(NO₂)₄. M.p. are corr. H. W. Triterpenes. IXXXV. Sumaresinolic acid. L. Ruzicka, O. Jeger, A. Grob, and H. Hösli (Helv. Chim. Acta, 1943, 26, 2283—

2300).—Sumaresinolic acid (I) belongs to the oleanolic acid (II) group and, like hederagenin, siaresinolic and echinocystic acid, to the sub-group of hydroxyoleanolic acids. The position of 1 OH in (I) is

not definitely assigned but it must be attached to $C_{(7)}$ or $C_{(8)}$ in ring B. In formula A (R = R' = R'' = H) OH is placed arbitrarily at $C_{(7)}$; $C_{(8)}$ cannot be excluded. In the following formulæ x indicates 7 or 8. The relationship of (I) to (II) is established by chemical reactions and comparison of [a]_p for analogous derivatives of the acids. Extraction of Sumatra gum benzoin with boiling EtOH and treatment of the extract with NaOH

treatment of the extract with NaOH leads through the Na salt (III) to (I), m.p. 298°, [a]p +54·0°, converted by CH₂N, in Et₂O at 0° into the Me ester (IV), m.p. 220—221°, [a]p +46·7°, also obtained from (III) and Me₂SO₄ and hydrolysed with great difficulty (Claisen solution at 200° for 12 hr.) to (I). The Et ester has m.p. 212°, [a]p +44·7°. (IV) is transformed by Ac₂O in C₅H₅N at room temp, into Me 2-acetylsumaresinolate (V), m.p. 227°, [a]p +40·6°, converted by mild alkaline hydrolysis into (IV). Et 2-acetylsumaresinolate has m.p. 231°. Passage of HCl into a solution of (V) in AcOH at room temp. affords Me 2-acetylanhydrosumaresinolate, m.p. 174—175°, [a]p +48°, obtained analogously but in poorer yield from (IV). room temp. affords Me 2-acetylanhydrosumaresinolate, m.p. 174—175°, [a]_D +48°, obtained analogously but in poorer yield from (IV). Me diacetylsumaresinolate (VI), m.p. 258°, [a]_D +25·3°, is obtained from HCl, Ac₂O, and (V) at 100° and subsequently at room temp. or from (V) and BF₃-Et₂O in Ac₂O at room temp. Mild hydrolysis converts (VI) into Me x-acetylsumaresinolate, m.p. 134—135° (loss of MeOH of crystallisation and softening ~100°), [a]_D +48·0°, reacetylated by Ac₂O in C₅H₅N at room temp. to (VI) and drastically hydrolysed to (IV). (I) is oxidised by CrO₃ in AcOH at room temp. to Δ¹2:¹³·x-heto-2-hydroxyoleanene-28-carboxylic acid (VII), m.p. 286—287°, [a]_D +31·6°, converted by Ac₂O in C₅H₅N into a mixed anhydride, C₃₄H₅₀O₇, m.p. 312°, of the ketoacetoxy-acid and AcOH, which is well adapted to the isolation of homogeneous (VII), Me Δ¹2:¹³·x-heto-2-hydroxysumaresenecarboxylate (VIII), m.p. 205—206°, is obtained analogously from (IV) or from (VI) and CH₂N₂. (V) is oxidised by CrO₃ to Me Δ¹2:¹³·x-heto-2-acetoxyoleanene-28-carboxylate (IX), m.p. 285—286°, [a]_D +44·9°, converted by mild hydrolysis gives (VIII), which is reacetylated to (IX) and by drastic hydrolysis gives (VIII). It appears to be unchanged by N₂H₄,H₂O and NaOEtteOH at 210—220° but is quantitatively reduced (Clemmensen) to the 13:28-lactone of x-heto-13-hydroxy-2-acetoxyoleanane-28-carboxylate (VII), m.p. 266° (high year) (Clemmensen) (Control of the control of the con into (VIII), which is reacetylated to (IX) and by drastic hydrolysis gives (VII). It appears to be unchanged by N₂H₄,H₂O and NaOEt-EtOH at 210—220° but is quantitatively reduced (Clemmensen) to the 13: 28-lactone of x-keto-13-hydroxy-2-acetoxyoleanane-28-carboxylic acid (X), m.p. 324—326° (high vac.), [a]_D +46°. Gradual addition of Br-CHCl₃ to (IX) in boiling CHCl₃ leads to a compound, C₃₂H₄₉O₅Br, m.p. 216—225° (decomp.), [a]_D +38·6°, and an isomeric Br-ketone, m.p. 293—294·5°, [a]_D +81°; both substances give a yellow colour with C(NO₂)₄. Prolonged contact of (IX) with 33% HBr-AcOH at room temp. gives (X), hydrolysed by alkali to the 2:13-(OH)₂ derivative, m.p. >370°. (X) is oxidised by SeO₂ in dioxan at 200—210° to an acidic substance and the 13: 28-lactone of enol-7:8-diketo-13-hydroxy-2-acetoxyoleanane-28-carboxylic acid, m.p. 265—267°, [a]_D -30°, which could not be acetylated by Ac₂O in C₃H₂N or by Ac₂O and the BF₃-Et₂O complex, and is hydrolysed by boiling 5% KOH-McOH to the corresponding 2-OH-derivative, m.p. 325—327°, into which it is re-converted by Cu₂O-BF₃-Et₂O. Slow oxidation of (IV) by CrO₃ and H₂SO₄ in AcOH at room temp. affords Me A^{12:13}-2: x-diketo-oleanene-28-dicarboxylate, m.p. 190—191° after loss of MeOH of crystallisation at 110—114°, [a]_D +35·2° [oxime, m.p. 265—267° (decomp.); semicarbazone, m.p. 267—258° (decomp.)], which gives a marked yellow colour with C(NO₂)₄. The non-cryst. Me A^{12:13}-2-keto-x-acetoxyoleanne-28-carboxylate, obtained analogously from the 2-OH-compound, gives an oxime, m.p. 151—152° (decomp.), and a semicarbazone, m.p. 216—218° (decomp.). (VI) is oxidised by SeO₂ in boiling AcOH to Me A^{12:13}-19:19:2: x-diacetoxyoleadiene-28-carboxylate, m.p. 234—235° [a]_D -156·0°, which gives a brown colour with C(NO₂)₄; in dioxan at 200° the product is Me A^{10:11-13:18}-12: 19-diketo-2: x-dihydroxy-28-noroleadiene (XII), m.p. 300—302°, [a]_D +228° (2-acetate, m.p. 210—312°, which does not give a yellow colour w

Triterpene resinols and related acids. XV. Dehydration of a-amyrin and a-amyradienol with phosphoric exide: l-a-amyradiene and l-a-amyratriene. E. S. Ewen, A. E. Gillam, and F. S. Spring (J.C.S., 1944, 28—30).—Dehydration of a-amyrenonol with AcOHHI gives a-amyradienone-III, m.p. 179°, $[a]_{20}^{20}$ +170°. a-Amyra-

dienol (I) with PCl₅ yields a-dichloroamyradiene, m.p. 128—129°, $[a]_D^{pl} + 407^\circ$, which with AcOH–Zn affords d-a-amyratriene, m.p. 131—133°, $[a]_D + 439^\circ$. Dehydration of (I) with P₂O₅ leads to 1-a-amyratriene, m.p. 140—142°, $[a]_D^{p0} - 450^\circ$, which contains a conjugated triene system (absorption spectrum). The ethenoid linking of a-amyrin must consequently be situated in the vicinity of the OH. All rotations are in CHCl3.

Chemical composition of Calotropis gigantea. I. Wax and resin components of the latex. P. B. R. Murti and T. R. Seshadri (Proc. Indian Acad. Sci., 1943, 18, A, 145—159).—The latex of C. gigantea Indian Acad. Sci., 1943, 18, A, 145—159).—The latex of C. gigantea is converted by EtOH into a soft coagulum (A) and an aq. alcoholic solution (B). (A) is transformed by successive extractions with boiling EtOH and Et₂O into a sticky solid which has not been investigated completely, a small amount of a substance, m.p. 248—250°, and a residue which is hydrolysed to AcOH and $Pr^{\beta}CO_2H$ and mixtures of resinols which are separated into their components by acetylation or benzoylation followed by fractional crystallisation. Thus are obtained: a-calotropeol (I), $C_{30}H_{50}O$, m.p. $204-205^{\circ}$, $[a]_{12}^{32}+102\cdot0^{\circ}$ in $C_{6}H_{6}$ (acetate, m.p. $250-251^{\circ}$, $[a]_{50}^{30}+98\cdot0^{\circ}$ in $C_{6}H_{6}$; benzoate, m.p. $273-274^{\circ}$, $[a]_{12} +743^{\circ}$ in $C_{6}H_{6}$), which gives a bright pink solution immediately with the Liebermann-Burchard reagent, an orange-vellow solution with deep green fluorescence with reagent, an orange-yellow solution with deep green fluorescence with Salkowski's reagent, and appears to contain one double linking; β -calotropeol, $C_{30}H_{50}O$, m.p. $216-217^{\circ}$ (benzoate, m.p. $279-280^{\circ}$, $[a]_{50}^{39} + 69 \cdot 0^{\circ}$ in $C_{6}H_{6}$; acetate, m.p. 238° , $[a]_{50}^{39} + 43 \cdot 0^{\circ}$), which resembles (I) in its colour reactions; a mixture of β -amyrin and tetracyclic resinols. (B) yields to Et₂O-CHCl₃ a cryst. substance (? mixture), m.p. ~242° indicated by its colour reactions and solubility to belong to the cardiac poisons and containing N and S; CaC₂O₄ is also present in very fine subdivision. is also present in very fine subdivision.

VI.—HETEROCYCLIC.

Additive compounds of organo-magnesium derivatives with furanoid compounds. E. Cherbuliez and M. K. Araqui (Helv. Chim. Acta, 1943, 26, 2251—2252).—Coumarone, coumaran, diphenylene oxide (I), or methylcodeine (II) in C_0H_6 is added to MgMeI, MgEtBr, MgPhBr, or CH₂Ph·MgCl in Et₂O. The Et₂O is distilled off and the residual solution is boiled for 0·5—2 hr., whereby the additive compound is gradually pptd., usually almost quantitatively. Substitution of C_0H_6 by PhMe does not alter the change. Substances closely allied to (II) such as thebaine and deoxycodeine react with organo-magnesium compounds in Et₂O with rupture of the furanoid ring. (I) is obtained in 28% yield by heating PhOH with PbO at 170° until H₂O ceases to be evolved and then distilling the product rapidly with a free flame. H. W. rapidly with a free flame.

Transformation products of simpler benzopyrylium compounds. P. Karrer, C. Trugenberger, and G. Hamdi (Helv. Chim. Acta, 1943, 26, 2116—2120; cf. A., 1943, II, 101; Pratt et al., J.C.S. 1923, 123, 26, 2116—2120; cf. A., 1943, II, 101; Pratt et al., J.C.S. 1923, 123, 745).—3: 4'-Dimethoxy-2-phenylbenzopyrylium ferrichloride (I), m.p. 150—151° (lit. 135°), is obtained directly by passing HCl into a solution of o-OH·C₆H₄·CHO (II) and p-OMe·C₆H₄·CO·CH₂·OMe (III) in abs. EtOH; the corresponding chloride (IV), m.p. 109°, is almost quantitatively obtained by passing HCl into (II) and (III) in AcOH. (I) is transformed by hot MeOH containing NaOAc into the Me ether (V) of the carbinol base, m.p. 149°, more readily prepared from (IV) and cold MeOH; the corresponding Et ether has m.p. 132°. (V) and BzO₂H in CHCl₃ give 2:3:4'-trimethoxyflavanone, m.p. 220°, hydrolysed (HCl in boiling aq. MeOH) to 4'-methoxyflavanone, m.p. 230° (lit. 225°). (V) and Br in CHCl₃ afford 3:4'-dimethoxy-2-phenylbenzopyrylium perbromide, m.p. 143°, reconverted into (V) by MeOH. COPh·CH₂·OMe and (II) in anhyd. HCO₂H saturated with dry HCl at room temp. give 3-methoxy-2-phenylbenzopyrylium chloride, m.p. 119° (corresponding perbromide, m.p. 122°), converted by H₂O into the corresponding carbinol base, m.p. 121°, which in hot EtOH smoothly gives the Et ether, m.p. 124°. H. W.

Reaction between quinones and metallic enolates. Mechanisms.—See A., 1944, II, 103.

1:3-Dioxans.—See B., 1944, II, 35.

lin.-Dibenzothionaphthen in coal tar. O. Kruber and L. Rappen (Ber., 1940, 73, [B], 1184—1186).—The solid residue obtained from the C_5H_5N mother-liquors used in the purification of chrysene from the C_5H_5N mother-liquors used in the purification of chrysene from coal tar are extracted with EtOH containing 10% of xylene. The undissolved material is oxidised by 30% H_2O_2 in AcOH at 100° to dibenzothionaphthen sulphone (I), m.p. 231°, thus establishing the presence of lin-dibenzothionaphthen (II) in coal tar. Successive addition of S and AlCl₃ to $2-C_{10}H_7$ Ph at 110° and subsequent heating of the mixture to 200° give a product from which (I) can be obtained by oxidation but from which (II) could not be isolated. Brasan is transformed by molten KOH at $280-320^\circ$ into $3-hydroxy-2-o-hydroxy-phenylnaphthalene, converted into (II), m.p. <math>160^\circ$ (picrate, m.p. 128°), by distillation with P_2S_5 in a vac. The distillate contains also a substance which is oxidised (H.O. in AcOH) to a sulphone, tains also a substance which is oxidised (H₂O₂ in AcOH) to a sulphone, m.p. 264°. m.p. 264°.

Piperidine derivatives.—See B., 1944, II, 35.

Iron derivatives of heterocyclic acids. I. Ferric complexes of chelidamic acid. J. H. Gorvin (J.C.S., 1944, 25—28).—Picolinic acid and Fe(QH)₃ give tripicolinato-iron (+H₂O), decomp. 282° (corr.), and di-(4-chloropicolinato)hydroxo-iron, darkens 260—270°, is chained from the Clarid Chelidamic acid with Fe(QH) forms. is obtained from the Cl-acid. Chelidamic acid with Fe(OH)₃ forms dichelidamatoferric acid (+2H₂O) (I), which affords NH_4 (+2·5H₂O), NEt_4 (+2H₂O), o-toluidine, C_5H_5N , quinoline, quinine, Na (+2H₂O), K (+2H₂O), Ag (+2H₂O), Ba (+2·5H₂O), di-p-toluidine (+H₂O), decomp. 22O—225°, and dinor-d- ψ -ephedrine salts; Ag_3 and triaquoferric dichelidamato-oxoferrate (+4H₂O). (I) contains one free and one masked CO2H, and gives rise to two series of H2O-sol. salts. The light-absorption of the complexes has been studied.

Azo-dyes. I. Preparation and bacteriostatic properties of azo-derivatives of 2:6-diaminopyridine. R. N. Shreve, M. W. Swaney, and E. H. Riechers (J. Amer. Chem. Soc., 1943, 65, 2241—2243). and E. H. Riechers (J. Amer. Chem. Soc., 1943, 65, 2241—2243).—2:6-Diamino-3-arylazopyridine monohydrochlorides are prepared in which aryl = Ph (I), m.p. 137°, o-, m.p. 184°, m-, m.p. 123·2°, and p-tolyl, m.p. 151·3°, o-, m.p. 193°, m-, m.p. 99·5°, and p-anisyl, m.p. 192°, o-, m.p. 127°, and m-OEt·C₆H₄, m.p. 114·3°, o-, m.p. 189°, m-, m.p. 209·4°, and p-OH·C₆H₄, m.p. 232°, m-C₆H₄Cl, m.p. 259°, o-, m.p. 209·5°, m-, m.p. 141°, and p-C₆H₄I, m.p. 198°, 5:1:2-, m.p. 222°, and 6:1:3-OH·C₆H₃Me, m.p. 203—204°, 3:1:4-, m.p. 233°, 4:1:2-, m.p. 265°, and 5:1:2-NO₂·C₆H₃Me, m.p. 251°, 2:5:1-OMe·C₆H₃Cl, m.p. 204°, 5:2:1-NO₂·C₆H₃Me, m.p. 251°, 2:5:1-OMe·C₆H₃Cl, m.p. 204°, 5:2:1-NO₂·C₆H₃Me₂, m.p. 122°, o-, m.p. 135·6°, and p-C₆H₄Ph, m.p. 230·5°, p-PhN₂·C₆H₄, m.p. 203—204°, o-CO₂Me·C₆H₄, m.p. 177°. and o-CO₂Et·C₆H₄, m.p. 170°. M.p. are corr. Solubilities in H₂O are recorded, that of (I) being much the highest. For bacteriostatic properties, see A., 1944, III, much the highest. For bacteriostatic properties, see A., 1944, III, 295. R. S. C.

Invert soaps. V. Quaternary salts of isomeric hydroxyquinoline ethers. R. Kuhn and O. Westphal (Ber., 1940, 73, [B], 1105—1108; cf. A., 1944, II, 98).—3-Amino- is obtained (92%) from 3-bromo-quinoline by conc., aq. NH₃ and CuO at 140—150°. The K salt (pptd. by KOEt-EtOH) of 3-hydroxyquinoline with n-C₁₂H₂₅Br sate (pptd. by ROEL-EtOH) of 3-hydroxyquinoline with n-C₁₂H₂₅Br in EtOH at 180° gives 3-n-dodecyloxyquinoline, m.p. 42° [methylmethosulphate (I), m.p. 115—116°]. 8-n-Dodecyloxyquinoline, m.p. 25°, b.p. 225°/3 mm. [hydrochloride, m.p. 73—80°; methylmethosulphate (II), m.p. ~23°], is similarly prepared. n-C₁₂H₂₅Cl gives 6-n-dodecyloxyquinoline, m.p. 45°, b.p. 235°/2 mm. [hydrochloride, m.p. 150—151°; methylmethosulphate (III), m.p. 70° (decomp.)]. Bactericidal and bacteriostatic activities of (I), (II), (III), and n-C₁₂H₂₅°NMe₂Br·CH₂Ph are very similar. R. S. C.

Polarisation of fluorescence and anisotropy of molecules of dyes.—See A., 1944, I, 77.

cycloTetramethylenepyrazolone. III. Molecular compounds. H. Ruhkopf (Ber., 1940, 73, [B], 1066—1068; cf. A., 1940, II, 108).—By mixed m.p. diagrams [only eutectics and m.p. of compounds (in parentheses below) are recorded] it is shown that 1-december 1 and 1 phenyl-2-methyl-3:4-cvclotetramethylene-5-pyrazolone form 1:1 additive compounds with CHPhEt·CO·NH₂ (m.p. 92°), CHPhPra·CO·NH₂ (m.p. 78°), CHPh₂·CO·NH₂ (m.p. 125°), and phenylethylhydantoin (m.p. 146°), and a 1:2 additive compound, m.p. 128°, with a-allyl-A'-pentenoylcarbamide, but no compound with CHR₂·CO·NH₂ (R = Et, Pra, or allyl), a-cyclohexenyl-n-propionamide, CH₂Ph·CO·NH₂, CHRR'·CO·NH·CO·NH₂ (R = R' = Et or Pr; R = Ph, R' = Et), or diketopyrazolidine. It is similarly shown that no compounds are formed from (a) 1-phenyl-2-methyl-3:4-cyclotrimethylene-5-pyrazolone with CHPhEt·CO·NH₂, CHPh₂·CO·NH₂, or CHR₂·CO·NH·CO·NH₂ (R = Et, Pr, or allyl), (b) 1-phenyl-2:3-dimethyl-5-pyrazolone with CHPhEt·CO·NH₂ or phenacetin, or (c) 4-dimethylamino-1-phenyl-2:3-dimethyl-5-pyrazolone (I) with CHR₂·CO·NH₂ (R = Et or Ph), CHPhEt·CO·NH₂, or phenacetin, but that (I) gives a 1:1 additive compound, m.p. 147°, with phenylethylhydantoin. From these results general rules are propounded.

R. S. C. phenyl-2-methyl-3: 4-cvclotetramethylene-5-pyrazolone form 1: 1 adare propounded.

Pyrimidines.—See B., 1944, III, 34.

Synthesis of carbazo-condensed systems from α- and α'-aminonicotines. V. Synthesis of 3-phenylpyriminazole and its nicotine analogue. J. L. Goldfarb and M. S. Kondakova (J. Appl. Chem. Russ., 1942, 15, 151—163; cf. 1937, A., II, 473).—2-Aminopyridine (I) and CHPhBr·CO·CO₂H in aq. NaHCO₃ yield, besides COPh·CH₂·OH and CH₂Ph·CO₂H, 3-phenylpyriminazole-2-carboxylic acid, m.p. 201—202° (decomp.) (hydrochloride, m.p. 225—227°; hydrobromide, m.p. 246°; platinichloride, m.p. 243—247°; picrate, m.p. 205—207°), which at 210—220° gives 3-phenylpyriminazole, m.p. 97—98°, b.p. 188—192°/6 mm. (hydrobromide, m.p. 195°; platinichloride does not melt up to 285°; picrate, m.p. 236°), giving with aq. KMnO₄ (I) and with Br-H₂O a Br additive product. 2-Aminonicotine (II) and CHPhBr·CO·CO₂H in aq. NaHCO₃ give 7-(N-methylpyrrolidyl)-3-phenylpyriminazole-2-carboxylic acid, which could not be isolated but gave a picrate, m.p. 210—211° (decomp.), and at 230—240° afforded 7-(N-methylpyrrolidyl)-3-Synthesis of carbazo-condensed systems from a- and a'-amino-

phenylpyriminazole, m.p. 94-95° [picrate, m.p. 240° (decomp.)], which is oxidised by CrO3 to (II).

Pyridylquinolines.—See B., 1944, II, 66.

Invert soaps. VI. Triazolium salts. R. Kuhn and O. Westphal (Ber., 1940, 73, [B], 1109—1113; cf. A., 1934, II, 111).—The K salt of 1:2:4-triazole and n-C₁₂H₂₅Cl in EtOH at 110° gives 1-n-dodecyl-1:2:4-triazole, m.p. 39° [ethobromide, m.p. 150—152°]. The K or Na salt of benztriazole with AlkCl in EtOH at 100—120° gives 60— Na salt of benztriazole with AlkCl in EtOH at 100—120° gives 60—80% of 1-alkylbenztriazole but AlkBr affords 1:3-dialkylbenztriazolium bromide. Thus are obtained 1-n-dodecyl-, m.p. 44—46° [3-methylmethosulphate, m.p. ~25°; 3-ethobromide (I), m.p. 27°; butylobromide, m.p. 33°], and 1-n-hexadecyl-benztriazole, m.p. 62° (3-methylmethosulphate, m.p. 76—77°; 3-ethobromide, m.p. 96—97°), 1:3-dioctyl-, m.p. 147—148°, and 1:3-di-n-dodecyl-benztriazolium bromide, m.p. 141—143°, and 1:3-dibenzylbenztriazolium chloride, m.p. 207—209°. Bactericidal and bacteriostatic activities of the salts against six bacteria are recorded. The activity of (I) is of exceptional degree. exceptional degree.

Fluorescence of chlorophyll.—See A., 1944, I, 77.

Constitution of yeast-ribonucleic acid. VII. Diffusion coefficients and mol. wts. W. E. Fletcher, J. M. Gulland, D. O. Jordan, and (in part) H. E. Dibben. VIII. Electrometric titration of the acid groups. W. E. Fletcher, J. M. Gulland, and D. O. Jordan (J.C.S., 1944, 30—33, 33—39; cf. A., 1944, II, 85).—VII. Diffusion coeffs. suggest that yeast-ribonucleic acids (I) of different origins have mol. wts. ranging between those corresponding with 8 and 18 hypothetical tetranucleotides. Deamination of B.D.H. (I) under the special conditions described does not diminish the mol. wt., confirming the conclusion that phospho-amide groups are not essential links between nucleotides in that acid. Less controlled conditions cause extensive mol. degradation.

VIII. Electrometric titration of samples of (I) indicates that (I) has four acid dissociations per tetranucleotide when existing as a polytetranucleotide, three of which are primary dissociations, and one a secondary dissociation of H₃PO₄. The deaminated acid is similarly constituted. Mild hydrolysis reduces the mol. wt. of the polytetranucleotide, and the titration results suggest that a further secondary dissociation of $\rm H_3PO_4$ becomes free. These data necessitate a modification of the formula previously proposed for (I); this is discussed in relation to the existing mol. wt. and enzyme data.

F. R. S.

Nucleic acids. XVI. Constitution of thymonucleic acid. Position of the linking between bases and deoxyribose. H. Bredereck, G. Müller, and (Miss) E. Berger. XVII. Nucleotide syntheses. Synthesis of uridylic acid. H. Bredereck, and (Miss) E. Berger (Ber., 1940, 73, [B], 1058—1065, 1124—1125).—XVI. Linkage of the sugar to positions 9 and 3 is proved for purine and pyrimidine deoxyribonucleotides, respectively (cf. Gulland et al., A., 1938, II, 128, 296). Adding Me₂SO₄ and aq. NaOH to Na thymonucleate at 30—35° and pH 8—9 gives a Na salt (I) containing 7 NMe and 2 OMe; further methylation slightly increases the OMe but not the NMe content. Fission of (I) by emulsin at 37° and pH 4-9 causes an increase of 4 equivs. in acidity so that the methylated acid is tetrabasic; one Me is probably present as phosphoric ester. Passing gaseous HCl Me is probably present as phosphoric ester. Passing gaseous HCl into (I) in 95% MeOH gives 1: N_(e)-dimethyladenine,

CH N-CC(NMe) NMe (picrate, m.p. 235°), also obtained (pic-NH·C) N:CH

rate, m.p. 236°) from adenosine by Me₂SO₄-NaOH and then HCl-MeOH. With 25% H₂SO₄ at 175—180° (I) gives 1: N_(e)-dimethylcytosine, NH·CO·NMe (picrate, m.p. 222°) [also obtained (picrate, CH:CH-C:NMe obtained (picrate, m.p. 222°)]

CH:CH·C:NMe
m.p. 218° from cytidine nitrate by Me₂SO₄-NaOH and then 25%
H₂SO₄ at 175—180°], and (?1-)methylthymine, m.p. 210° (A., 1908, i, 835, m.p. 202—205°), but no methylguanine. Me₂SO₄-NaOH and then HCl-MeOH converts guanosine into a dimethylguanine (hydrochloride, m.p. 275°; picrate, m.p. 214°).

XVII. Triphenylmethyluridine (A., 1933, 149) with (OPh)₂POCl in C₅H₅N at —18° and then aq. NaOH at 100° gives uridylic acid, isolated as brucine salt, sinters 188°, m.p. 195°, [a]₁^D —54·8°. Known processes yield 3:5-benzylideneguanosine, m.p. 295° (2-acetate, m.p. 263°), guanosine 2-acetate, m.p. ~180°, and guanosine 5-CPh₂ ether, amorphous (2-acetate, amorphous).

R. S. C.

Aminothiazoles and benzenesulphonimidothiazolines etc.—See B., 1944, II, 34, 35.

Ring fissions with thiazolium salts. A. Schöberl and M. Stock (Ber., 1940, 73, [B], 1240—1252).—Addition of CH₂PhBr to 2:4-dimethylthiazole gives 3-benzyl-2:4-dimethylthiazolium bromide (I), m.p. 171°. Interaction of COMe·CH₂Cl with MeCS·NHPh at 15—20° gives S-acctonylthiacctanilide hydrochloride, which passes when heated or boiled with alkali and subsequently acidified into 3-phenyl-2: 4-dimethylthiazolium chloride, transformed by KI into the corresponding iodide (II), which gives an intense blue colour with phosphotungstic acid and a red colour with Na nitroprusside after addition of NH₃. The initially yellow solution of (I) in ^{2N-}

NaOH becomes colourless when heated but addition of acid does not cause liberation of $\rm H_2S$ and there is no production of PbS on boiling with alkali plumbite; the parallel experiment with aneurin is positive. In alkaline solution (I) is immediately oxidised by I and is converted by air into a substance, m.p. (indef.) 96—97°. Gradual addition of AcOH to a solution of (I) or (II) in 2N-NaOH-EtOH containing NaNO₂ causes the development of an intense yellow colour which does not appear to be very sensitive. When 9(18)phosphotungstic acid is added to solution of (I), (II), or aneurin (III) which has been kept for some time an intense blue colour appears which can be used in the detection and determination of thiazolium salts. Addition of freshly prepared Na nitroprusside solution to aq. solutions of (I) and (II) which have been treated with 2N-NH₃ causes the appearance of a cherry-red colour which attains its max. after a time and is very stable. The colour does not appear in 2N-NaOH and is markedly less stable in 0·ln-NaOH than in NH3. It is not given by (III). The test can be used quantitatively. Increase of given by (III). The test can be used quantitatively. Increase of temp. (55-60°) facilitates the development of the colour, which does not then reach its full intensity since decomp. is also facilitated. does not then reach its full intensity since decomp. is also facilitated. The solutions are rapidly bleached by exposure to light. They are, however, stable for days in the dark. They should be prepared in a subdued red light and exposed as briefly as possible to the photometer light. NH:CMe·SH and OH·CH:CCl·CO₂Et are condensed and then hydrolysed to 2-methylthiazole-5-carboxylic acid, m.p. 209° (decomp.) (Et ester, b.p. 117—120°/19 mm.), not identical with the acid thus described in the literature. 2-Methylthiazole-4:5-dicarboxylic acid, m.p. 169°, loses CO₂ at 175° with production of a monocarboxylic acid, m.p. 143—145°, softens at 130°. H. W.

Reactions of benzthiazole derivatives. IV. 1-Thiocyanobenzthiazole. W. H. Davies and W. A. Sexton (J.C.S., 1944, 11—13).—1-Thiocyanobenzthiazole (I) is not stable to prolonged storage and decomposes fairly rapidly when heated. With many reagents, e.g., NaOH and Na₂S, it is converted into derivatives of 1-thiolbenzthiazole. With MeOH, (I) gives mainly Me benzthiazyl-1-thion-carbanate, m.p. 175° (Et compound, m.p. 163°, from EtOH). The mechanism of this reaction is discussed. F. R. S.

Cyanine type dyes.—See B., 1944, II, 58, 90, 91.

Dioxazine dyes.—See B., 1944, II, 69.

VII.—ALKALOIDS.

Fluorescent alkaloid in rye-grass (Lolium perenne, L.). I. Introduction. R. E. R. Grimmett and J. Melville. II. Extraction from fresh rye-grass and separation from other bases. R. E. R. Grimmett and D. F. Waters. III. Extraction and properties. I. Reifer and N. O. Bathurst. VI. Investigation of a volatile base C₀H₇N. F. B. Shorland, E. P. White, and R. E. R. Grimmett (New Zealand J. Sci. Tech., 1943, 24, B, 149—150, 151—155, 155—159, 179—185; cf. A., 1944, III, 282; also C., 1944, Part 2).—I. A neutral or acid EVOH extract of the basel shocts of the grass from neutral or acid EtOH extract of the basal shoots of rye-grass, from which anthocyanins and fat-sol. pigments have been removed, gives an intense greenish fluorescence on addition of NH₃. This is due to an alkaloid, named *perloline* (I). Other alkaloids are present in smaller amount.

in smaller amount.

II. The only other pasture species to give comparable yields of (I) is tall fescue. For bulk extraction, grass of >0.02% alkaloid content is chosen by spot testing. 60—70% of (I) in the grass is extracted by 0.75% HCl. Neutralisation with Ca(OH)₂ and adjustment of pH to 7.5 with Na₂CO₃ gives a sludge containing 50—60% of (I) in the extract; if tannic acid is also added, 90% is pptd.; approx. quant. extraction of the sludge is effected by excess of Na₂CO₃ and EtOH. (I) is finally separated from other bases by its greater basicity, and its hydrochloride is crystallised out of a solution conc. below 50°. Fraction "B" contains other CHCl₃-sol., Et₂O-insol. bases, similar to (I), but less fluorescent. Fraction "C" contains an Et₂O-sol. base, subliming at 295° (180°/0.04 mm.), decomp. 316°; the hydrochloride (subliming at 297°, decomp. 317°) gives a bright blue fluorescence in aq. solution, and characteristic ppts. with KI₃, KBiI₄, KHgI₃, AuBr₃, and HgCl₂. Fraction "D" (II) was sol. in ligroin and had an odour like C₅H₅N. KBiI₄, KHgI₃, AuBr₃, and HgCl₂. Fi ligroin and had an odour like C₅H₅N.

III. Dried ground rye-grass leaves are extracted with EtOH and AcOH. Dried unground grass is extracted with 1% H₂SO₄. Purification of (I) is carried out by partition between CHCl₃ and dil. HCl; after 7 crystallisations from H₂O₃, the hydrochloride analyses for C₃₆H₂₂O₃N₄(OMe)₄,2HCl. 0·2 p.p.m. can be detected in daylight by the fine green fluorescence of solutions in CHCl. or EtOH which by the fine green fluorescence of solutions in CHCl3 or EtOH, which are not stable to direct sunlight. Ppts. are given with AgNO3, pieric acid, HgCl₂, KBil₄, KHgI₃, phospho-molybdic and -tungstic acids, AuCl₃, PtCl₄, KI₃, and NH₄ reineckate, and colours with NaVO₃-H₂SO₄ (brown) and Ti₂O₃-H₂SO₄ (brick-red). Oxidation (KMnO₄ or H₂O₂) gives a colourless base with blue fluorescence, and reduction (TiCl₃) a non-fluorescent material. The alkaloid content of rye-grass varies with environmental conditions from traces to 0·1%.

VI. (II) is almost entirely a base, C₈H₇N, b.p. 134—138° (picrate, m.p. 154—156°, mercurichloride, m.p. 151—152°), which can be

reduced catalytically to a H_6 -derivative (hydrochloride m.p. 169—171°; 3:5-dinitrobenzoate, m.p. 110—112°). (II) is not a picoline; possible formulæ are discussed.

VIII.—ORGANO-METALLIC COMPOUNDS.

Mode of reaction of lithium phenyl. V. Behaviour of halogenated anisoles towards lithium phenyl. G. Wittig and G. Fuhrmann (Ber., 1940, 73, [B], 1197—1218).—The halogenated anisoles are allowed to react with LiPh in $\mathrm{Et_2O}$ under comparable conditions and investigation is made of the products formed after addition of H₂O or COPh₂. In the reaction of the o-halogenoanisoles it is found that I is replaced rapidly and Br more slowly by Li whereas Cl and F (the latter more rapidly than the former) give the Li halide with consequent formation of $o\text{-}C_0H_4\text{Ph}\text{-}\text{OMe}$. H between OMe and halogen in the meta-compounds is readily exchanged for Li and in consequence of this action the formation of C₀H₄Ph-OMe and LiHal predominates. In comparison the exchange of halogen for metal, which is observed only with m-C₆H₄I-OMe, recedes into the background. Common to para-substituted anisoles is the replacement of "mobile" H by metal which is facilitated by increasingly electronegative character of the halogen and with p-C₆H₄F·OMe results in the production of p-C₆H₄Ph·OMe. p-C₆H₄I·OMe and p-C₆H₄Br·OMe also exchange their halogen for Li. The exchangeability of aromatically bound H for Li depends on the polarisation of C-H linkings by electronegative substituents such as OMe or F and is explicable by the theory of induced alternating polarities. Since the acidifying effect diminishes with increasing distance only H in the *ortho*-position is replaceable and the entry of Li to the C_6H_6 nucleus is facilitated by the presence of 2 *meta*-substituents between which the Li enters. The influence of OMe and the 4 halogens on the action is qualitatively but not quantitatively similar to the effect on the acidity of AcOH. The theory fails to explain the observation that the exchange of H for Li is considerably facilitated by an accumulation of negative substituents even in the para-position. Here the alternating induction is subsidiary to a second effect which behaves as a "general effect" from C to C and, for example, causes the acidifying effect of a halogen in a fatty acid to diminish with increasing distance from CO2H. Steric effects are also obvious. If Li replaces H ortho to halogen as has been established for PhF and is observed with m-halogenoanisoles, the halogen becomes so reactive and the subsequent production of Ph₂ derivatives under the further influence of LiPh is so rapid that in only one case it has been possible to trap the metallic compound as the carbinol by use of COPh2. A polarising counter action of Li corresponds with the polarising action of halogen. An electronic explanation of the replaceability of halogen by Li is advanced. The following appear new: 1:6(or 1:8)-dimethoxy-9:9-diphenylfluorene, m.p. 201—202°; 1-methoxy-, dimorphic, m.p. 180-5—181° and 193—194°, converted by Br in boiling AcOH into 2(or 4)-bromo-1-methoxy-9:9-diphenylfluorene, m.p. 222-5—223°; 5-iodo-, m.p. 136—137°, 5-chloro-, m.p. 118—119°, and 5-fluoro-3-methoxytriphenylcarbinol, m.p. 129-5—131°. m-C₆H₄Ph-OMe is converted by successive treatments with LiPh in Et₆O and COPh, into 2-methoxy-4-phenyltriphenylcarbinol A polarising counter action of Li corresponds with the polarising in Et₂O and COPh₂ into 2-methoxy-4-phenyltriphenylcarbinol, m.p. 138·5-139·5°. Under similar treatment veratrole gives 2:3-dimethoxytriphenylcarbinol, m.p. 110-111·5° 1:2:3-C₆H₃(OMe)₃ aimethoxytriphenytcaronnot, m.p. 110—111° . 1:2:3-C₆H₃(OMe)₃ is converted by LiPh in Et₂O followed by COPh₂ and then by 2N-NaOH into 1:3:2-(OMe)₂C₆H₃·ONa (whence the benzoate, m.p. 114—116°); other products are unchanged material, CPh₃·OH, and 2:3:4-trimethoxytriphenylcarbinol, m.p. 140—140·8° (lit. 139°). 1:3:5-C₆H₃(OMe)₃ when treated similarly yields 2:4:6-trimethoxytriphenylcarbinol, m.p. 114—115° (lit. 110—111°).

Mercury diallyl. K. V. Vijayaraghavan (J. Indian Chem. Soc., 1943, 20, 318; cf. A., 1942, II, 41).—CH₂:CH·CH₂·HgI (I) and conc. aq. KCN give (CH₂:CH·CH₂)₂Hg (II). Fresh aq. suspensions of (I) give a faint odour of (II) with Na₂S₂O₃, Na₂S, or KI on keeping or gently warming; on heating Hg and complex inorg. Hg salts are formed. (I) in EtOH with Na₂S or Na₂S₂O₃ ppts. Hg and gives inorg. complex salts; with KI-EtOH it gives a faint odour of (II) on warming, but K₂HgI₄ on heating. (I) in COMe₂ with Nal gives a faint odour of (II), but is mainly unchanged. S. A. M.

IX.—PROTEINS.

Denaturation changes in ovalbumin with urea, radiation, and heat. J. H. Clark (J. Gen. Physiol., 1943, 27, 101—111).—When 10—50% of CO(NH₂)₂ (I) is added to isoelectric solutions of ovalbumin (II) the pH val. is altered to ~5·2—5·8 depending on the concn. of (I). The extent of the denaturation produced by (I) depends on concns. of (I) and (II) and also on the temp. of the solution. 0·9% (II) solution is not denatured by 20% (I); it is denatured slowly by 25% and rapidly by 35% (I) at room temp. At higher temp. 30% (I) is rapidly effective. Denaturation of (II) by ultra-violet radiation or heat is accompanied by structural changes but the mol. has a fair degree of symmetry except at the isoelectric point, and has a fair degree of symmetry except at the isoelectric point, and

there is no association or dissociation of the mol. within the pH range outside the zone in which aggregation follows denaturation. Denaturation of (II) by (I) causes no change in optical rotation until the concn. of (I) is high enough to dissociate the mol. The optical rotation of fresh native (II) does not vary over the pH range 3·4—10·5, but it is increased $\sim 100\%$ after boiling the solution for 5 min. at pH 3·4 or 6·4—7·2, and the increase is the greater the nearer is the pH to the isoclectric point. In presence of (I) a (I)-protein complex is formed in which the protein is denatured but is not pptd. because of the dispersive action of (I); this prevents pptn. of protein exposed to ultra-violet radiation and subsequent heating to 40° because the complex is not decomposed at 40°. Decomp. occurs at 55—58° so that aggregation results at a temp. < that of rapid heat-denaturation. This is not due to an acceleration of heat-denaturation or decrease in the temp. of heat-denaturation but results from the effect of heat on the complex which liberates the (I)-denatured protein and causes its pptn.

J. N. A.

Invert soaps. I. Action of invert soaps on albuminous substances. R. Kuhn and H. J. Bielig [in part, with O. Dann] (Ber., 1940, 73, [B], 1080—1091).—Invert soaps ppt. the echinochrome symplex from H₂O or aq. Na₂CO₃, the ppt. retaining the dye tenaciously (cf. Kuhn et al., A., 1943, 111, 738). In dill. AcOH invert soaps liberate the dye (removed by Et₂O) with pptn., and subsequent addition of Na₂CO₃ ppts. the almost colourless protein. A 1% solution of invert soap gives with chloroplastin a ppt. containing all the chlorophylls and carotenoids in extractable (Et₂O, C₈H₈) form; as the concn. of n-C₁₂H₃₅·SMe₂I (I) added is increased, the amount of dye liberated slowly increases; this amount suddenly becomes much greater, approx. when the drop no. of the soap solution is a max. (0·2% solution); an approx. parallelism also exists between the amount of dye liberated and the surface activity of various sulphonium iodides. ~30 mols. of (I) are needed to liberated; complete liberation of the dye requires much more (I). Normal soaps do not affect chloroplastin. The carotene of yellow carrots is present as symplex in non-extractable form but is at once liberated by 1—1·5% invert soaps do not split chromoproteins. CH₂Ph·NMe₂Br·C₁₂H₂₅-n (II) does not ppt., and prevents coagulation of, the yellow enzyme of yeast or of oxyhæmoglobin (III) by heat; its action on (III) is antagonised by Na deoxycholate. Methæmoglobin is pptd. by ~1% invert soap solution. Catalase is unaffected by an equal vol. of 0·1—10% (II) at pH 7·2—5·4, but is pptd. and inactivated by a 1% solution at pH 8·2 (Na₂CO₃). Ferritin (IV) is completely pptd. from 2 c.c. of 0·1% solution by 1 c.c. of a 1:300, but not 1:360, solution of (II) ppts. 1·03 atom of Fe. Invert soaps ppt. oxyhæmocyanin from dil. Na₂CO₃ (not dil. AcOH), the fresh (not old) ppt. being sol. in an excess of soap or (NH₄)₂SO₄ and dissolving also if the original mixture is warmed; Cu is not liberated. Ovoverdin is split by 0·00005% invert soap soluti

Crystalline muscle phosphorylase.—See A., 1944, III, 218.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Lignin and related compounds. LXIII. Ultra-violet absorption spectra of ethanol lignins. R. F. Patterson and H. Hibbert (J. Amer. Chem. Soc., 1943, 65, 1869—1873; cf. A., 1943, II, 346).— Absorption spectra are recorded for the fractions of spruce and maple lignins and for ethanolysis products from OH-CHMe-COAr and OH-[CH₂]₂·COAr (Ar = vanillyl). Comparisons with those of known ingredients and related compounds (loc. cit.) confirm the aromatic nature of lignin, the existence of OH-derivatives of 4:3:1-OH-C₆H₃(OMe)·COEt in both lignins and of 4:3:5:1-OH-C₆H₃(OMe)₂·COEt in spruce lignin, and conjugation (to an unkown extent) between the aryl nucleus and the side-chain.

Lignin. XII. Sulphite liquor from beech wood. H. Friese and G. Stoeck [with, in part, R. Konau] (Ber., 1940, 73, [B], 1135—1145; cf. A., 1938, II, 331).—The liquor is repeatedly evaporated with H_2O under diminished pressure to remove volatile acids and taken to dryness after neutralisation with $CaCO_3$. Treatment with

boiling EtOH and MeOH gives pure d-xylose (I), isolable by direct crystallisation. The non-cryst. residue in acetylated to a protein sol. in CHCl₃ and H₂O but not in Et₂O and containing ~36% OAc with Ca, S, and OMe, and an Et₂O-sol. fraction free from Ca and S but containing 71.8% OAc and 2.1% OMe. Hydrolysis gives (I) and fermentable hexoses, mainly mannose. Glucose is probably present. Methylpentoses, ketoses, uronic acids, and, probably, arabinose and galactose are absent. (I) frequently contains OMe in non-glucosidic union. The extractions remove sugars almost quantitatively. Their amount is 26—30% of the dry residue but depends on the boiling. (I) constitutes ~76% of the free carbohydrates. The remaining portion of the alcoholic extract separable by acetylation is a lignin-carbohydrate compound (Ca 4.2, S 6.5, OMe 11.0, OAc 36.5, C 45.2, H 4.7%). Extraction of the residue from the alcoholic extractions with 80% MeOH gives a brown solid (25—35% of the initial material, dependent on the duration of boiling). It contains Ca 6, S 6, OMe 11% and gives only small amounts of sugar acetates when drastically treated. The residue from the acetylation is a pale brown lignin-carbohydrate compound which contains little combined lignin. Hydrolysis with dil. H₂SO₄ is incomplete but sulphacetolysis leads to Et₂O-sol. sugar acetates with OAc 68.8, OMe 2.34% but no Ca or S. Ultrafiltration of the remaining material leaves a brown powder with C 52 H 4.7, OMe 16, S 5.1, and Ca 4.0%. The ultrafiltrate on pptn. with MeOH gives a substance with C 41.7, H 5.1, OMe 10.5, S 7.3, and Ca 8.5%; the MeOH contains Ca(OAc)₂, (HCO₂)₂Ca, and small amounts of Ca ligninsulphonate.

Oxidative degradation of pectin in aqueous solution. Viscosimetric determinations. H. Deuel (Helv. Chim. Acta, 1943, 26, 2002—2025).—The irreversible oxidative degradation of pectin (I) in aq. solution is followed viscosimetrically. Ascorbic acid (II) and similar enediols degrade (I) in the presence of O_2 , the change being accelerated by increase of temp., and occurring most rapidly at the neutral point. Decomp. of (I) and oxidation of (II) are inter-related. Dehydroascorbic acid has a weak degrading action. At room temp. H_2O_2 in small concn. causes decomp. of the mol. of (I); increase of temp. causes very marked acceleration; this degradation occurs more rapidly in the presence of (II), Fe^{II} salts, N_2H_4 , and NH_2OH . The oxidation of (I) is decelerated by EtOH and sucrose and inhibited by H_2S , SO_2 , and I. The degradation of (I) described above is externally similar to hydrolysis by pectinase and oxidative decomp. by HIO_4 but the reaction mechanism is different. Activated H_2O_2 and autoxidising (II) degrade the most varied carbohydrates on addition to (I).

Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. I. Production, physical and biological properties. J. R. Johnson, W. F. Bruce, and J. D. Dutcher (J. Amer. Chem. Soc., 1943, 65, 2005—2009).—Prep. of gliotoxin, new formula $C_{13}H_{14}O_4N_2S_2$, $[a]_D^{2b}-290\pm10^\circ$ in EtOH, $-270^\circ\pm10^\circ$ in C_5H_5N , $-255\pm10^\circ$ in CHCl₂, $+111^\circ\rightarrow0^\circ$ in 5 days in NaOH-EtOH-H₂O, is described. The mol. wt. is best determined cryoscopically in NHPh₂, other solvents giving erroneous or erratic results. Crystallo-optical properties and solubilities [much the greatest in C_5H_5N (at 100°) or dioxan] in 16 solvents are described. The absorption spectrum (detailed) resembles that of indole and tryptophan, indicating presence of an indole nucleus. For physiological properties see A., 1944, III, 292.

R, S, C.

Formation of a nicotinamide-like substance from various aminoacids and related compounds. M. R. Bovarnick (J. Biol. Chem., 1943, 151, 467—475).—The reaction between asparagine (I) and glutamic acid (II) that results in the formation of a nicotinamide-like substance (III) is catalysed by Mn (best; 10 times amount of (III)] and Fe salts (Mg, Ca, Al, Cr, Co, Ni, and Cu have little effect), and is promoted by aëration. Certain NH₂-acids and non-N dibasic acids are capable of substituting for (II) in the reaction. In order of decreasing activity are methionine [as active as (II)], proline, citrulline, ornithine, α-ketoglutaric acid, glutaric acid, maleic acid, arginine, phenylalanine, hydroxyproline, fumaric acid, tyrosine, oxalacetic acid, lysine, serine, threonine, and malic acid. All the terminal-substituted C₅ NH₂-acids react. The only effective substitute for (I) is glutamine. The NH₄ salts of aspartic, α-ketoglutaric, maleic, and malic acids when heated with (II) produce small amounts of nicotinamide activity, although their Na salts are inactive. With many mixtures of (I) + NH₂-acid, much more activity is produced by treating with H₂O₂ for 2 days at room temp., then autoclaving (15 min.), than at 100° (48 hr.); also small amounts of nicotinamide activity are produced from many NH₂-acids and from the NH₄ salts of several dicarboxylic acids by H₂O₂ alone, in absence of (I) and (II). Reaction mechanisms are discussed.

Hypericin and a non-fluorescent, photosensitive pigment from St. John's wort (Hypericum perforatum).—See A., 1944, III, 232.

INDEX OF AUTHORS' NAMES, A II.

APRIL, 1944.

Acree, F., jun., 93. Adams, R., 98. Ahlborg, K., 93. Allsopp, C. B., 93. Araqui, M. K., 110. Arnold, R. T., 103.

Arnold, R. T., 103.

BACHMANN, P., 103.
Barabeck, H., 100.
Barnes, R. P., 102.
Barnes, R. P., 102.
Barnett, J., 92.
Bathurst, N. O., 113.
Beard, H. G., 101.
Berg, R. L., 91.
Berger, E., 112.
Bergmann, M., 90.
Bernstein, H. I., 102.
Bielig, H. J., 115.
Birtwell, S., 96.
Bloch, E., 103.
Bochvar, D. A., 103.
Bochvar, D. A., 103.
Bogdanov, I. F., 90.
Borsche, W., 93.
Bovarnick, M. R., 116.
Bräucker, H., 107.
Brandon, A. E., 102.
Brideerek, H., 112.
Bruce, W. F., 116.
Buck, J. S., 101.
Buhler, A., 92.
Burmistrova, M. S., 97.
Butz, L. W., 101.

Cahnmann, H., 102. Cavallito, C. J., 101. Chakravarti, R. N., 101, 107. Cherbulicz, E., 110. Chernyshev, A. S., 103. Clark, J. H., 114.

Dann, O., 90, 115, Davies, W. H., 113, Davis, S. G., 89, Delaney, H., 102, Deucl, H., 116, Dibben, H. E., 112, Doberty, D. G., 99, Dutcher, J. D., 116.

EISTERT, B., 92. Enders, C., 91. Ewen, E. S., 109.

FELDBAU, E., 103. Fierz-David, H. E., 92. Flotcher, W. E., 112. Fredrich, A., 106. Friese, H., 115. Fürst, A., 105, 106. Fuhrmann, G., 114.

GAGNON, P. E., 91,
Gaiser, C. J., 90.
Gaudry, R., 91.
Gelman, A., 91.
Gerdes, J., 107.
Gillam, A. E., 109.
Gillam, A. F., 109.
Goldfarb, J. L., 111.
Gorvin, J. H., 111.
Grown, L. H., 111.
Grob, A., 108.
Grünert, H., 92.
Gulland, J. M., 112.

Habeshaw, J., 96.
Haller, H. L., 93.
Hamdi, G., 110.
Hardegger, E., 104.
Hathway, D. E., 95.
Hazlet, S. E., 97.
Helferich, B., 92.
Henderson, R. B., 90.
Hensley, L. C., 97.
Herman, D. T., 102,
Hess, K., 93.
Hibbert, H., 115.
Hodgson, H. H., 95, 96, 97, 101.
Hosli, H., 108.
Hofmann, P., 93.

INGOLD, W., 108. Ipatiev, V. N., 98. JACOBSON, M., 93. Jeger, O., 108. Jerchel, D., 95, 98. Jochinke, H., 92. Johnson, J. R., 116. Jordan, D. O., 112.

Kastner, D., 89.
Karrer, P., 110.
Kester, E. B., 90.
King, F. E., 91.
Knowles, C. M., 89.
Konau, R., 115.
Kondakova, M. S., 111.
Krajne, B., 93.
Kruber, O., 93, 95, 98, 110.
Kuhn, H., 93.
Kuhn, R., 90, 91, 95, 98, 111, 112, 115.

LAZAR, M. E., 90. Leder-Pakendorf, L., 93. Lehmann, P., 100. Lettré, H., 100. Lindstrom, E. G., 99. Lipp, P., 107. Lukin, A. M., 103. Lustig, H., 90.

McCombie, H., 89. McPhee, W. D., 99. Manteuffel, R., 93. Marsden, E., 96. Marshall, H. D., 89. Marx, A., 98. Melville, J., 112. Müller, G., 112. Murti, P. B. R., 110. Myrbäck, K., 93.

Nametkin, S. S., 107. Naves, Y. R., 103. Neuberg, C., 90, 91. Nichols, J., 103. Nicholson, D. E., 96. Noculak, U., 94. Norymberski, J., 108. Nudenberg, W., 101.

OLBERG, R. C., 98.

Pandya, K. C., 98. Pandya, R. B. K., 98. Patterson, R. F., 115. Perretta, G. M., 95. Pines, H., 98. Plattner, P. A., 105, 106. Pokras, H. H., 102. Popkin, A. H., 95. Prelog, V., 104. Price, C. C., 89.

RABINOUTISCH, B. S., 89.
Raiford, L. C., 97.
Rappen, L., 95, 110.
Ray, E., 108.
Ray, P., 95.
Reich, H., 106.
Reichstein, T., 105, 106.
Reifer, I., 113.
Rengert, K., 89.
Richers, E. H., 111.
Rosen, E., 103.
Rothenburg, M. A., 90.
Ruhkopf, H., 111.
Ruzicka, L., 104, 106, 108.

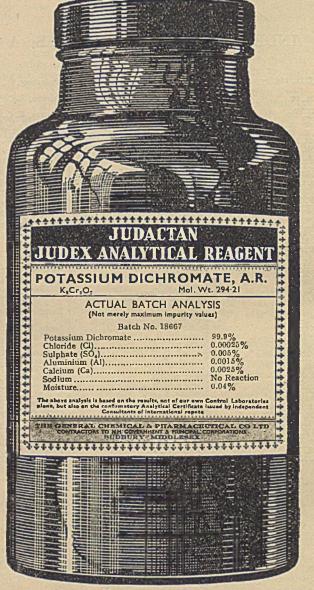
SAUER, H., 107, 106, 108.

SAUER, H., 107.
Saunders, B. C., 89.
Scheremeteva, T. V., 107.
Schnitzer, R. J., 99.
Schöberl, A., 112.
Schostakovski, M. F., 90, 97.
Schüter, R., 89.
Schukina, L. A., 103.
Schulze, H. A., 93.
Schunzeher, H. J., 89.
Semenov, N. G., 103.
Seshadri, T. R., 110.
Sexton, W. A., 113.
Shelton, J. R., 97.
Shemiakin, M. M., 103.
Shorland, F. B., 112.
Shreve, R. N., 111.

Shyezov, J. B., 103.
Siddhanta, S. K., 93.
Siddhanta, S. K., 93.
Siebenmann, C., 99.
Simons, J. H., 102.
Skrabal, R., 94.
Smith, L. I., 103.
Sobotka, H., 103.
Sorkin, M., 105.
Speeter, M., 99.
Spring, F. S., 109.
Stein, G., 89.
Stein, P., 104.
Steurer, E., 93.
Stier, M., 100.
Stock, M., 112.
Stocck, G., 115.
Swaney, M. W., 111.
Szigeti, B., 93.

Tagmann, E., 104. Tarbell, D. S., 100. Theobald, C. W., 98. Tietzman, J. E., 99. Troger, H., 94, 104. Trugenberger, C., 110. Turner, G., 96. Turner, H. S., 96, 97.

VIJAYARAGHAVAN, K. V., 114.


Walker, J., 96.
Waters, D. F., 113.
Watt, G. W., 89.
Westerfeld, W. W., 91.
Westphal, O., 95, 111, 112.
White, E. P., 113.
Wieland, T., 91.
Wild, F., 89.
Winkler, C. A., 89.
Winstein, S., 90.
Wittig, G., 114,
Wystrach, V. P., 100.

Zellweger, 91. Zetzsche, F., 106. Ziegler, E., 104. Zinke, A., 94, 104.

JUDACTAN

ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS

Each Batch subjected

to

INDEPENDENT

ANALYSIS

before

label is printed

You are invited to compare the above actual batch analysis with the purities

ACTUAL

BATCH

ANALYSIS

guaranteed by the specifications of any competing maker in this country or abroad

THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD.

Chemical Manufacturers, Judex Works, Sudbury, Middlesex