BRITISH CHEMICAL AND # PHYSIOLOGICAL ABSTRACTS AUGUST, 1944 # A II—ORGANIC CHEMISTRY #### CONTENTS | I, Aliphatic | vi, Heterocyclic | PAGE 232 | |---|--|----------| | II, Sugars and Glucosides 214 | VII, Alkaloids | 239 | | III, Homocyclic 214 | VIII, Organo-metallic Compounds | 241 | | IV, Sterols and Steroid Sapogenins 228 | IX, Proteins | 243 | | v, Terpenes and Triterpenoid Sapogenins 231 | x, Miscellaneous Unclassifiable Substances | 244 | Published by the ### BUREAU OF CHEMICAL AND PHYSIOLOGICAL ABSTRACTS (Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, the Anatomical Society of Great Britain and Ireland, and the Society for Experimental Biology.) # Determination 6 **MOLYBDENUM** Gravimetric assay with Colorimetric estimation of traces with **PYROGALLOL** α-BENZOIN OXIME The separation and determination of MOLYBDENUM and many other metals forms the subject of "ORGANIC REAGENTS FOR METALS" 4th Edition, 1943 4/- post free The Book and the Reagents produced and distributed by HOPKIN & WILLIAMS LTD. 16-17 ST. CROSS STREET, LONDON, E.C.1 ## VITREOSIL FILTERING & IGNITION CRUCIBLES We can now supply VITREOSIL crucibles for filtration and subsequent ignition at temperatures up to 1000°C. Filtration without asbestos mats, ignition and weighing are all done in the same crucible. Laboratory workers will appreciate the value of these great advantages of the VITREOSIL filtering crucible. #### THE THERMAL SYNDICATE LIMITED Head Office: Wallsend, Northumberland London Depot: 12-14, Old Pye St., Westminster, S.W.1 ## BUREAU OF CHEMICAL AND PHYSIOLOGICAL ABSTRACTS Chairman: L. H. LAMPITT, D.Sc., F.R.I.C. Vice-Chairman: B. A. McSWINEY, B.A., M.B., Sc.D., F.R.S. Hon. Treasurer: F. P. DUNN, B.Sc., F.R.I.C. Editor and Secretary: T. F. BURTON, B.Sc. Indexer: MARGARET LE PLA, B.Sc. JULIAN L. BAKER, F.R.I.C. G. M. BENNETT, M.A., D.Sc., F.R.I.C. H. J. T. ELLINGHAM, B.Sc., Ph.D., F.R.I.C. G. A. R. KON, M.A., D.Sc., F.R.S. E. B. HUGHES, D.Sc., F.R.I.C. H. W. CREMER, M.Sc., F.R.I.C., M.I.Chem.E. L. A. JORDAN, D.Sc., F.R.I.C. SAMSON WRIGHT, M.D., F.R.C.P. F. G. YOUNG, D.Sc., Ph.D. #### Assistant Editors: J. H. BIRKINSHAW, D.Sc., F.R.I.C.* H. BURTON, M.Sc., D.Sc., F.R.I.C. F. G. CROSSE, F.R.I.C. A. A. ELDRIDGE, B.Sc., F.R.I.C. E. B. HUGHES, D.Sc., F.R.I.C. W. JEVONS, D.Sc., Ph.D.+ SAMSON WRIGHT, M.D., F.R.C.P.* E. E. TURNER, M.A., D.Sc., F.R.I.C., F.R.S. F. L. USHER, D.Sc. H. WREN, M.A., D.Sc., Ph.D. * Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Blochemistry), A. G. POLLARD (Plant Physiology and Agriculture), K. TANSLEY (Sense Organs), L. G. G. WARNE (Plant Physiology), G. P. WELLS (Comparative Physiology), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands). † Assisted by A. J. E. WELCH (Physical Chemistry). ## PUBLICATIONS OF THE BUREAU #### ABSTRACTS SECTIONS A I-GENERAL, PHYSICAL AND INORGANIC CHEMISTRY. A II-ORGANIC CHEMISTRY. A III-PHYSIOLOGY. BIOCHEMISTRY. ANATOMY. B I-CHEMICAL ENGINEERING AND INDUSTRIAL INORGANIC CHEMISTRY. B II-INDUSTRIAL ORGANIC CHEMISTRY. B III-AGRICULTURE, FOODS, SANITATION, ETC. C-ANALYSIS AND APPARATUS. COLLECTIVE INDEXES DECENNIAL INDEX 1923-1932. QUINQUENNIAL INDEX 1933—1937. # BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS # A II-Organic Chemistry. #### I.—ALIPHATIC. Cinchona alkaloids. VI. Configuration of (-)-\(\gamma\)-methyl-\(\delta\)-ethyl-bexane. V. Prelog and E. Zal\(\text{a}\) in (\(He\)\(U\). Chim. Acta. 1944, 27, 545—547).—The configuration (\(A\)\) is established for (-)-\(\gamma\)-methyl-\(\delta\)-ethylhexane (1) by its prep. from (-)-H-\(\text{C-Me}\) Et (\(A\)\) mm., [a]\(\frac{1}{3}\) -17.35°\(\pma\)-0.05°, is converted by CH_2N_2 into the Me ester, bp. 108—112°/730 mm., [a]\(\frac{1}{3}\)-19.42°\(\pma\) 0.05°, which with MgEtBr in Et_2O affords (+)-\(\gamma\)-methyl-\(\delta\)-ethyl-kexan-\(\delta\)-ol, bp. 63—65°/11 mm., [a]\(\frac{1}{3}\)^0 +17.1°\(\pma\)-05°. This is dehydrated by anhyd. H₂C₂O₄ to the corresponding hexene, which is hydrogenated (PtO₂ in AcOH) to (I), b.p. 155—162° (bath), [a]\(\frac{1}{3}\)0-3.18°\(\pma\)-0.05°. Polymerisation of isobutene on hydrated silicate catalysts.—See A., 1944, I, 180. A., 1944, I, 180. Diolefines from allylic chlorides. II. A. L. Henne and H. H. Chanan (J. Amer. Chem. Soc., 1944, 66, 392—394; cf. A., 1942, II, 126).—Treating 1: I mixtures of (a) CH₂:CH·CH₂Cl, CH₂:CMe·CH₂Cl, or butadiene hydrochloride and (b) piperylene hydrochloride or isoprene hydrochloride with Mg in Et₂O gives diolefines in which the as. product predominates. Compositions are determined by fractionation. Structures are proved by reduction and ozonolysis. The following are new: δ-methyl-Δα⁶-heptadiene, b.p. 110·3°; δε-dimethyl-Δβ⁶-octadiene, m.p. -64·8°, b.p. 153·3°; βδ-, b.p. 132·1°, and γδ-dimethyl-Δα⁶-n-heptadiene, b.p. 129·8°; γγ-dimethyl-Δα⁶-n-hexadiene, b.p. 101·6°; β-methyl-Δβ⁶-n-heptadiene, b.p. 119·1°; γγζ-trimethyl-Δα⁶-n-heptadiene, b.p. 149·7°; βη-dimethyl-Δβ⁶-n-octadiene, m.p. -74·4°, b.p. 168·6°; βδδ-trimethyl-Δα⁶-n-hexadiene, b.p. 126·3°; βζ-dimethyl-Δα⁶-n-heptadiene, m.p. -102·7°, b.p. 141·9°; βε-dimethyl-Δβ⁶-n-heptadiene, b.p. 134·6°; δε-dimethyl-n-octane, b.p. 162·4°; γδ-dimethyl-η-b.p. 140·1°, and βεε-trimethyl-n-heptane, b.p. 152·8°; γδ-dimethyl-n-valeric acid semicarbazone, m.p. 178° (lit. 191°, 182°). B.p. are corr. Conjugated diolefines by double hond displacement. II. A. L. Conjugated diolefines by double bond displacement. II. A. L. Henne and H. H. Chanan (J. Amer. Chem. Soc., 1944, 66, 395—396; cf. A., 1942, II, 294).—Conversion of unconjugated into conjugated dienes in presence of Al_2O_3 is greatly improved by including 5 mol.-%. of Cr_2O_3 in the catalyst (prep.: Grosse et al., B., 1940, II, 260). The optimum temp. is 250°. The catalyst is gradually impaired by deposition of C but is regenerated by heating at 450°, first in all rand then in H., but repeated treatment impairs the efficiency by deposition of C but is regenerated by heating at 450°, first in air and then in H₂, but repeated treatment impairs the efficiency. (CH₂:CH·CH₂)₂ gives (CHMe:CH)₂ (76·7%). (CH₂:CMe·CH₂)₂ gives (CMe₂:CH)₂ (85·5%). CH₂:CH·CHMe·CH₂·CH:CHMe gives CHMe:CH·CH:CMeEt (73·1%). CH₂:CH·CH₂·CHMe·CH:CHMe gives CHMe:CH·CMe:CHEt (37·1%), b.p. 135·9°. CH₂:CH·[CHMe]₂·CH:CHMe gives CHMe:CH·CMeEt (22·6%), b.p. 156·5°. CH₂:CH·[CH₂]₂·CH:CMe₂ gives CHEt:CH·CH:CMe₂ (54·4%), m.p. -96·4°, b.p. 135·8°. CH₂:CH·CHMe·CH₂·CH:CHCe₂ gives CMEEt:CH·CH:CHCe₂ (48·9%), m.p. -63·1°, b.p. 156·9°. CH₂:CMe·CH₂·CH·CHMe·CH₂·CH·CHMe, CHMe:CH·[CHMe]₂·CH:CHMe, CH₂·CH·CMe₂·CH₂·CHCeCe₂, and CH₂·CH·CMe₂·CH₂·CH:CMe₂ are not thus rearranged. R. S. C. CH₂:CMe·[CH₂]₂·CH:CMe₂ are not thus rearranged. Kinetics and mechanism of thermal polymerisation of acetylene and its reaction with nitric oxide. Mercury-photosensitised polymerisation of acetylene.—See A., 1944, I, 179, 180. Dehydrochlorination of γ-chloro-Δβ-propen-α-ol. Preparation of propargyl alcohol. L. F. Hatch and A. C. Moore (J. Amer. Chem. Soc., 1944, 66, 285—287).—The α- and β-forms of CH₂Cl·CH:CHCl in boiling 10% Na₂CO₃ give the α- (I), b.p. 146·3°/746 mm., and β-forms (II), b.p. 153·6°/756 mm., respectively, of γ-chloro-Δβ-propen-α-ol. Up to 69·3% of CH₂C-CH₂OH is obtained from (I) by 10% NaOH, but (II) is unaffected except by >10% alkali, which causes resinification. R. S. C. Optically active phytol. II. P. Karrer, H. Simon, and E. Z. Binden (Helv. Chim. Acta, 1944, 27, 313—316; cf. A., 1944, II, 31).—The conversion of phytols (I) into phytadienes is accompanied by marked increase in optical activity and the products derived from (I) of differing dextrorotatory power or apparent optical inactivity have approx. the same rotation. Possibly (I) in spite of repeated fractionation retains a lævorotatory impurity which more or less com-I (A., II.) pensates the dextrorotation of (I) or, more probably, pure natural (I) has an immeasurably small optical activity and the dextrorotation of many distilled specimens is due to a difficultly removable, dextrorotation of many distilled specimens is due to a difficultly removable, dextrorotatory impurity (unidentified). At any rate it is established that natural (I) is not a racemate but an actual or latent optically active compound. Synthetic *l*-phytol (II) yields a *l*-phytadiene which has only slightly greater optical activity than the initial material and is much less active than the *d*-compound from natural (I). (II) and (I) are not therefore optical antipodes; (I) is probably racemic with respect to C_(p). Distinction is drawn between: natural *d*-phytol (sterically homogeneous with respect to both asymmetric d-phytol (sterically homogeneous with respect to both asymmetric C atoms and probably having immeasurably small [all and C atoms and probably having immeasurably small [a]) and d-phytadiene; synthetic l-phytol, sterically homogeneous with respect to $C_{(l)}$ and racemic at $C_{(\eta)}$ and synthetic l-phytadiene; synthetic dl-phytol, racemic in respect of both asymmetric C atoms, and optically inactive and synthetic dl-phytadiene. H. W. Lead tetra-acetate oxidations in the sugar group. V. Rates of oxidation of open-chain polyalcohols in dry acetic acid. R. C. Hockett, (Miss) M. T. Dienes, H. G. Fletcher, jun., and H. E. Ramsden. VI. Structures of di- and tri-benzoates of D-sorbitol and D-mannitol. R. C. Hockett and H. G. Fletcher, jun. (J. Amer. Chem. Soc., 1944, 66, 467—468, 469—472; cf. A., 1944, II, 7).—V. Under standard conditions, the rate of oxidation of polyhydric alcohols, rapid at first and then slower, is independent of configuration but dependent on the no. of CH-OH in unbroken series. An empirical rule enables the no. of via CH-OH to be determined: An empirical rule enables the no. of vic. CH-OH to be determined; reaction is not stoicheiometric as HCO₂H formed reduces more Pb(OAc)₄. The
diacetamides of *D*-threose, -erythrose, -arabinose, Ph(OAc)₄. The diagram and -lyxose behave similarly. VI. Oxidation of D-sorbitol $\alpha\zeta$ -dibenzoate by Pb(OAc)₄ closely resembles that of erythritol and gives no CH₂O, which proves its structure. The structure of the $\alpha\beta\zeta$ -tribenzoate is similarly constituted for the constitution of HCO H britched. The structure of the abz-thbehzoate is similarly confirmed by consumption of 2 Pb(OAc)₄ without formation of HCO₂H. D-Sorbitol and BzCl in C_5H_5N at 20° give an $\alpha\beta$ -dibenzoate and a small amount of $\alpha\beta\zeta$ -tribenzoate (I), m.p. $147\cdot7-148\cdot3^\circ$ (corr.), $[\alpha]_D^{2+8}-11\cdot1^\circ$ in CHCl₃. The structure of (I) is proved by consumption of 2 Pb(OAc)₄ and formation of L-OBz·CH₂·CH(OBz)·CHO Structure of styracitol. R. C. Hockett and (Miss) M. Conley (J. Amer. Chem. Soc., 1944, 66, 464—466).—The structure of styracitol (I) as αε-anhydro-D-mannitol (A., 1944, II, 7) is confirmed. Hydroxyglucal tetra-acetate (II) with H₂-PtO₂ in AcOH at 23 lb., falling to ~45 lb., and then NaOMe-McOH at 70° gives (I) (57%), m.p. 154—155°, [α]₁₀²⁰ –50·9° in H₂O. Hydrogenation of (II) in MeOH and then bolling gives mainly a syrup, [α]₁₀²⁰ +37·1° in EtOH, with only a trace of (I). Treating (I) with Pb(OAc)₄-CHCl₃ and then Br-SrCO₃-H₂O gives Sr D-hydroxymethyldiglycollate (44%). The Me₄ ether, b.p. 88—93°/2 mm., [α]₁₀²⁰ –35·0° (homogeneous), with conc. HNO₃ at 100° gives l-(OMe·CH·CO₂H)₂ (cf. Asahina et al., A., 1931, 1033), isolated as Me₂ ester and diamide. (I) gives a m-nitrobenzylidene derivative, m.p. 175—175·5°. Stateschwicker of mathematical and the structure of mathematical and the property of struc Stereochemistry of methylbixin. L. Zechmeister and R. B. Escue (J. Amer. Chem. Soc., 1944, 66, 322—330).—The methylbixins (photomicrographs) corresponding sterically to naturally occurring and β -bixin are termed "natural" (I), m.p. $161-161\cdot5^{\circ}$ (corr.), and "all-trans"-methylbixin (II), m.p. 198° (corr.), respectively. Isomerisation, followed by chromatography, yields also neomethylbixin A, m.p. $190-192^{\circ}$ (corr.) (photomicrograph), B, and C, m.p. $150-151^{\circ}$ (corr.) (photomicrograph). Light is needed for development of a cis-peak. Chromatograms and adsorption data are recorded for products obtained from each isomeride (except B) by melting, keeping, refluxing, or irradiating in light petroleum, or melting, keeping, refluxing, or irradiating in light petroleum, or treating with I. (II) is very stable to light, and (I) nearly as stable, but A and C are more photosensitive. The changes, (I) $\rightleftharpoons C$ and (II) $\rightleftharpoons A$, are readily achieved, but the interconversion, (I) \rightleftharpoons (II), is very slow. The following configurations are probable: A 5-cis, (I) 2-cis, C 2:5-di-cis, and B x-cis. R. S. C. Use of trimethyl phosphate as a methylating agent. A. D. F. Toy (J. Amer. Chem. Soc., 1944, 66, 499).— $52 \cdot 7$ — $69 \cdot 5\%$ yields of ROMe are obtained by heating Me₃PO₄ with AlkOH at or just below the b.p., provided that this is $<160^\circ$. (CH₂·OH)₂ gives $37 \cdot 2\%$ of the Mc₁ ether. An excess of Me₃PO₄ increases the yield. Some olefine 210 and mixed alkyl H phosphates are formed. Me β-ethyl-n-hexyl, b.p. 159-160°, and β-heptyl ether, b.p. 139-140°, are described. R. S. C. Preparation of calcium and sodium formate.—See A., 1944, I, 182. Alkyl exchange of carboxylic esters.—See A., 1944, II, 220 Unsaturated synthetic glycerides. B. F. Daubert and H. E. Longenecker (Oil and Soap, 1944, 21, 42—46).—Previous literature and recent work by the authors and collaborators (cf. A., 1944, II, 120) on the synthesis, by modern methods, and properties of mixed unsaturated-saturated glycerides of known configuration are rewiswed, and graphs are given showing the m.p. and $n_{\rm D}$ of various series, viz., (a) unsymmetrical and (b) symmetrical mono-oleyl-disaturated (C_{10-18}) triglycerides; (c) unsymmetrical dioleyl-mono-saturated triglycerides, (d) unsaturated-saturated symmetrical mixed diglycerides. In each series the m.p. of the corresponding products obtained by hydrogenation of the unsaturated glycerides are shown for comparison. All synthetic unsaturated glycerides are shown for comparison. All synthetic unsaturated glycerides show anomalous results in cryoscopic determinations (in C₆H₆) of mol. wt., the apparent mol. wt. decreasing with increasing concn., so that extrapolation to zero concn. is necessary in order to obtain true mol. wts. Unsaturated synthetic glycerides. IV. Symmetrical mono-leo-disaturated triglycerides. F. L. Jackson, B. F. Daubert, C. G. King, and H. E. Longenecker. V. Unsymmetrical monoelaidyl-disaturated and monosaturated-dielaidyl triglycerides. B. F. Daubert (J. Amer. Chem. Soc., 1944, 66, 289—290, 290—292; cf. A., 1944, II, 120).—IV. OH·CH₂·CH(OH)·CH₂·O·CPh₃ with RCOCl (R = saturated alkyl) in CHCl₃-C₆H₅N at 0° and then HCl-light petroleum at 0° gives the αγ-diesters, which with oleyl chloride in CHCl₃-quinoline at 100° give glyceryl αγ-diacylate β-oleate, in which the acyl is n-decoate, m.p. 5—6°, n-dodecoate, m.p. 14·5—15°, n-tetradecoate, m.p. 26—27°, palmitate, m.p. 35·5—36°, and stearate, m.p. 42·5—43°. Structures are confirmed by hydrogenation to fully saturated 43°. Structures are confirmed by hydrogenation to fully saturated glycerides. V. a-Monoelaidin, forms, m.p. 58·5°, 44·0°, and 17·6° (cf. Bömer et al., A., 1937, II, 439), is obtained from isopropylideneglycerol by (a) elaidyl chloride (I) [prep. by (COCl)₂ at 70—80°], b.p. 168—170°/1 mm., in CHCl₃-quinoline and then HCl-Et₂O or (b) HCl-elaidic acid and then Et₂O-conc. aq. HCl. With saturated acyl chlorides in CHCl₃ quinoline it gives glyceryl for diagraphe, a chaidate, in which in CHCl₃-quinoline it gives glyceryl $\beta\gamma$ -diacylate α -elaidate, in which the acyl is n-tetradecoate, m.p. $39\cdot 5^{\circ}$, n-dodecoate, m.p. $27\cdot 0^{\circ}$, n-decoate, m.p. $15\cdot 0^{\circ}$, and n-octoate, m.p. $3\cdot 0^{\circ}$. α -Monomyristin and (I) in CHCl₃-quinoline give glyceryl α -acylate $\beta\gamma$ -dielaidate, in which the acyl is n-tetradecoate, m.p. $40\cdot 0^{\circ}$, n-dodecoate, m.p. $35\cdot 5^{\circ}$, and n-decoate, m.p. $25\cdot0^{\circ}$. Structures are proved by hydrogenation. Glyceryl $\beta\gamma$ -di-n-octoate a-stearate, m.p. $31\cdot5^{\circ}$, is prepared also solely from saturated acids. R. S. C. Synthesis of cetyl esters.—See A., 1944, II, 228. Preparation of unsaturated fatty acid chlorides. T. R. Wood, F. L. Jackson, A. R. Baldwin, and H. E. Longenecker (J. Amer. Chem. Soc., 1944, 66, 287—289).—Oleic, elaidic, linoleic, and linolenic acids are converted by boiling (COCI), into their acid chlorides, which are shown by their absorption spectra to contain >1% of conjugated material. Use of SOCl₂ is unsatisfactory. R. S. C. Autoxidation reactions in polyisoprenes and allied compounds. VIII. Photo-oxidation of methyl elaidate. D. A. Sutton (J.C.S., 1944, 242—243).—In ultra-violet light Me elaidate at 35° absorbs O₂ (0.2 mol.) to form a hydroperoxide, which on hydrogenation and hydrolysis followed by acetylation and fractional crystallisation gives a monohydroxystearic acid, m.p. 79°, and a OH-acid, m.p. 30-50°. Condensations. XXII. Alkylation of isopropylmalonic ester using sodium triphenylmethide. J. C. Shivers, B. E. Hudson, jun., and C. R. Hauser (J. Amer. Chem. Soc., 1944, 66, 309; cf. A., 1944, II, 120).—Adding CPh₃Na and then EtI to CHPrβ(CO₂Et)₂ in Et₂O-N₂, keeping for 7 days, decanting, removing the Et₂O, and boiling the residue with EtI in C₆H₆ gives 73% of CEtPrβ(CO₂Et)₂, b.p. 234—236°/760 mm., 118—120°/15 mm., converted by KOH-EtOH and then decarboxylation into CHEtPrβ-CO₂H (48%), b.p. 104—105°/15 mm. (anilide, m.p. 118—119°). Use of PrβI in C₆H₆-N₂ gives Et₂ diisopropylmalonate (23%), b.p. 122—124°/15 mm., converted by boiling KOH-EtOH in 18—24 hr. into the Et H ester, m.p. 71—72°, which is slowly decarboxylated by heat to give Et β-methylasisopropyl-n-butyrate, b.p. 71—72°/15 mm. Colour reactions of ascorbic acid—See A 1944 III 488 Colour reactions of ascorbic acid.—See A., 1944, III, 488. Ketones, ketonic acids, and enol-lactones. III. Enol-lactone fission. New preparation of esters of β -ketonic and $\beta\beta'$ -diketonic acids which are also $\alpha\delta$ -diketones. P. Ruggli and A. Maeder (Helv. Chim. Acta, 1944, 27, 436—443; cf. A., 1943, II, 351).—Et₂ butangular CH₂·CH₂ C:C(CO₂Et)₂ (I), is best obtained olidenemalonate, (63% yield) by addition of (CH₂·CO)₂O to CHNa(CO₂Et)₂ in boiling Et₂O. It is converted by CN·CHNa·CO₂Et in boiling Et₂O into Et₃ βε-diketo-α-cyanohexane-αζζ-tricarboxylate, an oil [Cu derivative, decomp. (indef.) ~180°], converted by NHPh·NH₂ in cold AcOH into Et 1-phenyl-3-y-keto-δ-cyano-δ-carbethoxy-n-butylpyrazol-5-one-4-carboxylate, m.p. 106—107° (green Cu compound), and in hot solution into a-4-carbethoxy-1-phenyl-3-pyrazol-5-onyl-β-4-cyano-1-phenyl-3-pyrazol-5-onylethane, m.p. 167—168°. CHAcNa·CO₂Et and 3-pyrazol-5-onylethane, m.p. $167-168^\circ$. CHAcNa·CO₂Et and (CH₂·CO)₂O in C₈H₈ at room temp. and then at the b.p. afford El₂ $\beta\delta\eta$ -tetraketodecane- $\gamma\theta$ -dicarboxylate (Et₂ succinyldiacetoacetate) (II), m.p. 48° (Cu derivative, decomp. 235°), with some Et H β -keto-a-acetyladipate, m.p. $81-82^\circ$. (II) and NHPh·NH₂ in hot 50° , AcOH afford a-di-a β -4-carbethoxy-1-phenyl-5-methyl-3-pyrazolylethane (III), m.p. $156-157^\circ$, which does not give a colour with FeCl₃. When kept overnight in Et₂O (I) and CHAcNa·CO₂Et give mainly Et₃ β -hydroxy-e-keto-a-acetyl- Δ a-hexene-a ζ 3-tricarboxylate with some (II). The latter can be accumulated by the more rapid pptn. of its Cu compound, but separation or identification is best effected through (III) and
a-4-carbethoxy-1-phenyl-3-pyrazol-5-onyleffected through (III) and a-4-carbethoxy-1-phenyl-3-pyrazol-5-onyl-β-4-carbethoxy-1-phenyl-2-methyl-3-pyrazolylethane, m.p. 114—115°. Preparation of calcium D-altronate. P. P. Regna and R. P. Caldwell (J. Amer. Chem. Soc., 1944, 66, 244—246).—Enzymic hydrolysis of citrus pectin yields D-galacturonic acid, isolated as Na Ca salt, $(C_6H_9O_7)_3NaCa$, $+6H_2O$, $[a]_1^{20}+33\cdot0^\circ$ in H_2O , which in aq. $Ca(OH)_2$ — $CaCl_2$ gives completely (owing to insolubility of the product) basic Ca and thence normal Ca δ -heto-L-galactonate, $+5H_2O$, $[a]_1^{20}-14\cdot0^\circ$ in H_2O , which with H_2 -Raney Ni in H_2O at $80^\circ/2300$ lb. yields approx. equal amounts of Ca L-galactonate, $+5H_2O$, and D-altronate, $+3\cdot5H_2O$, $[a]_2^{20}+11\cdot8^\circ \rightarrow 24\cdot8-25\cdot0^\circ$ in ~ 90 min. in N-HCl, best separated by way of the derived Cd salts. R. S. C. N-HCl, best separated by way of the derived Cd salts. Synthesis of uronic acids. II. 2:3:4-Trimethyl derivatives of mannuronic, glucuronic, and galacturonic acids. F. Smith, M. Stacey, and P. I. Wilson (J.C.S., 1944, 131—134).— α -Methylmannopyranoside in C_5H_5N with CPh_3Br gives 6-triphenylmethyl- α -methylmannoside, which with Me_2SO_4 -NaOH in $COMe_2$ affords 6-triphenylmethyl-2:3:4-trimethyl- α -methylmannoside, m.p. 149°, $[\alpha]_2^{20} + 27^\circ$ in $CHCl_3$, from which the CPh_3 is removed (HCl) to yield 2:3:4-trimethyl- α -methylmannoside. Oxidation (KMnO₄) of this compound gives 2:3:4-trimethyl- α -methylmannuronoside. Similar oxidation of 2:3:4-trimethyl- β -methylglucoside and α -methylgalactoside of 2:3:4-trimethyl- β -methylglucoside and α -methylgalactoside affords respectively 2:3:4-trimethyl- β -methyl- α -glucuronoside and a-methyl-a-galacturonoside. aby-Trimethyl-mannonolactone, m.p. 74°, $[a]_{20}^{90}+131^{\circ}\rightarrow +80^{\circ}$ (equil.) in H_2O , and -mannonamide, m.p. 142°, $[a]_{20}^{90}+5^{\circ}$ in H_2O , are described. F. R. S. Lactones of mannosaccharic acid. I. $\alpha\delta$ -Dimethyl- Δ^{γ} -mannosaccharo- $\beta\varepsilon$ -lactone methyl ester. W. N. Haworth, (Miss) D. Heslop, (Miss) E. Salt, and F. Smith (*J.C.S.*, 1944, 217—224).—Mannosaccharodilactone (I) (prep. given) shows reducing properties after treatment with alkaline reagents, correlated with an absorption band at λ 2630 A. in alkaline solution, moving to 2290 A. on acidifyband at λ 2530 Å. In alkaline solution, moving to 2290 Å. On acidlying. Methylation of (I) gives similar isomerisation. With McI and Ag₂O (I) gives Me₂ dimethylmesotartrate (II), a trimethylmannosaccharolactone Me ester, and $a\delta$ -dimethyl- Δ -mannosaccharo- $\beta\epsilon$ -lactone Me ester (III), b.p. 152—158° (bath)/0.04 mm., $[a]_D^{1\beta} = -25^\circ$ in H₂O, absorption band at λ 2290 Å. in H₂O. (III) is also obtained from (I) with CH₂N₂, or CH₂N₂ followed by MeI and Ag₂O, together with a little 6-carbomethoxy-3-methoxy-a-pyrone, m.p. 212°. The structure of (III) is confirmed by ozonisation, giving as final product mainly Me β -hydroxy-a-methoxy-a-pyropaction (IV) has 105 structure of (III) is confirmed by ozonisation, giving as final product mainly Me β -hydroxy-a-methoxyerythrosuccinate (IV), b.p. $105-110^{\circ}$ (bath) $|0.01 \text{ mm.}, [a]_{1}^{16} - 43^{\circ}$ in MeOH. On methylation (MeI and Ag₂O) (IV) gives (II), which with NH₃ in MeOH gives dimethoxy-erythrosuccindiamide. With NH₃ in MeOH (IV) yields the amide of β -hydroxy-a-methoxy-l-erythrosuccinic acid (V), m.p. 153° , not optically active in H₂O. (IV) with NH₂Me in MeOH gives the bismethylamide of (V), m.p. 136° , $[a]_{1}^{16} + 10.7^{\circ}$ in H₂O, identical with that prepared from d-araboascorbic acid (cf. A., 1944, II, 213). (III) on hydrogenation yields α dimethylamide as dimethylamide as dimethylamide as dimethylamide as α .) (III) on hydrogenation yields $a\delta$ -dimethyl- γ -deoxymannosaccharo- β elactone Me ester, b.p. 160° (bath)/0·03 mm., [a] $\frac{1}{10}$ —4° in H₂O, which affords $a\delta$ -dimethyl- γ -deoxymannosaccharodiamide (VI), m.p. 187° , [a] $\frac{10}{10}$ — 74° in H₂O (negative Weerman test). The spatial arrangement in (VI) of the OMe and H on C $_\delta$ is not yet determined. Absorption curves for (III) and a comparable l-ascorbic acid derivative are given. The diamide of $a\beta\delta$ - (or $a\gamma\delta$ -)trimethylmannosaccharic acid, m.p. 258° (decomp.), $[a]_{20}^{20}-41^\circ$ in H_2O , and the half-amide NH_4 salt of (V), m.p. 181° (decomp.), are described. D. G. Preparation of a-ketopolyhydroxy-acids. P. P. Regna and B. P. Preparation of α-ketopolyhydroxy-acids. P. P. Regna and B. P. Caldwell (J. Amer. Chem. Soc., 1944, 66, 243—244).—Dissolving D-glucono-y-lactone and a little H₃PO₄ in boiling MeOH, adding NaClO₃ and V₂O₅, shaking at 20°, and then keeping at 3° gives Me α-keto-D-gluconate, m.p. 175—176°, [α]₂²⁰ —76·8° in H₂O, hydrolysed by 2n-H₂SO₄ at 30° to the acid, which is isolated as Ca salt, +3H₂O, [α]₂²⁰ —70·8° in H₂O. Shaking K D-galactonate, KClO₃, V₂O₅, and H₃PO₄ in H₂O and isolation by way of the K salt, [α]₂³⁰ —6·0° in H₂O, gives α-keto-D-galactonic acid, m.p. 170—171°, [α]₂³⁰ —6·0° in H₂O (Me ester, m.p. 138—139°, [α]₂³⁰ —11·3° in H₂O). α-D-Glucohepto-y-lactone, neutralised with aq. Na₂CO₃, gives similarly Na α-keto-D-glucoheptonate, +H₂O, [α]₂³⁰ +45·5° in H₂O. Mixed α- and β-D-galactoheptonic acids give similarly K α-keto-D-galactoheptonic give give give M-qa-keto-D-galactoheptonic acids give give gi Mixed a- and β -D-galactoheptonic acids give similarly K a-kelo-D-galactoheptonate, $[a]_D^{20}$ $+67.5^{\circ}$ in H_2O . R. S. C. Condensations. XXIII. Acetylation of unsymmetrical aliphatic ketones with acetic anhydride in presence of boron trifluoride. C. R. Hauser and J. T. Adams (J. Amer. Chem. Soc., 1944, 66, 345–349; f. A., 1944, II, 211).—Isomeric ketones are usually obtained at 0° from COMeAlk (1 mol.) by Ac₂O (2 mols.) saturated with BF₃. Thus, COMeEt gives only (100%) CHMeAc₂; COMePr^a, n-C₅H₁₁·COMe, and n-C₆H₁₃·COMe give 90% of CHEtAc₂, CHBu^aAc₂, and n-C₅H₁₁·CHAc₂, respectively, with 10% of COAlk·CH₂Ac. COMeBu^g gives 45% of γ-acetyl-δ-methyl-n-pentan-β-one, b.p. 183—186°/750 mm. (gives no enol test or Cu salt), and 59% of CH₂Ac·COBu^g; COMePr^g gives 68% of γγ-dimethyl-n-pentane-βδ-dione, b.p. 172—174° (gives no enol or Cu salt), and 32% of CH₂Ac·COPr^g; 2-methyl-cyclohexanone gives 50% each of 6- (purple FeCl₃ colour and oily Cu salt) and 2-acetyl-2-methylcyclohexanone, b.p. 220—222° (no enol colour or Cu salt). The mixed products are analysed by their ability or inability to dissolve in NaOH or give Cu salts. R. S. C. n-Propyldi-n-butylamine. T. D. Perrine (J. Amer. Chem. Soc., 1944, 66, 312).—NHBua (2 mols.) and PraI (1 mol.) at 120° or NBua (CH₂) MgCl and aq. HCl give NPraBua, b.p. 193°/754 mm., 73—75°/8 mm. (picrate, m.p. 115·8—116·2°). R. S. C. Anhydrous tetramethylammonium compounds.—See A., 1944, I. 182. Bismethylamides of α-hydroxy-β-methoxy-d- and l-erythrosuccinic acid. (Miss) D. Heslop, (Miss) E. Salt, and F. Smith (J.C.S., 1944, 225—229).—d-Araboascorbic acid with CH₂N₂ gives αβ-dimethyl-d-araboascorbic acid (I), which with CClPh₃ in C₅H₅N yields ε-triphenylmethyl-αβ-dimethyl-d-araboascorbic acid (II), m.p. 174°, [α]₁¹⁸ -41° in CHCl₃ (gives no reaction with NH₃ in MeOH). This with MeI and Ag₂O gives ε-triphenylmethyl-αβδ-trimethyl-d-araboascorbic acid, [α]₁¹⁸ -28° in CHCl₃, hydrolysed to αβδ-trimethyl-d-araboascorbic acid, [α]₁¹⁸ -28° in CHCl₃, hydrolysed to αβδ-trimethyl-d-araboascorbic acid (III), b.p. 170° (bath)/0·02 mm., m.p. 74°, [α]₁²² +10° in H₂O, which gives αβδε-tetramethyl-d-araboascorbic acid (IV), b.p. 130° (bath)/0·02 mm., [α]₁²⁰ +9·5° in H₂O. (I), (III), and (IV) all show an absorption band at λ 2350 A. (III) on ozonisation and hydrolysis yields H₂C₂O₄ and β-methyl-d-erythronic acid (V), isolated on distillation of the Me ester as the γ-lactone (VI), m.p. 113°, [α]₁¹⁹ -108° in H₂O (no change on keeping). With NH₃ and NH₃Me respectively in MeOH (VI) gives the amide, m.p. 105°, [α]₁¹⁸ +36° in H₂O, and the methylamide, m.p. 82°, [α]₁¹⁷ +57·5° in MeOH, of (V), and with NH₃-MeOH after methylation (MeI, Ag₂O) the amide, m.p. 72°, [α]₂¹⁰ +55·5° in H₂O, of αβ-dimethyl-d-erythronic acid. On oxidation (HNO₃), esterification, and treatment with NH₂Me-MeOH, (VI) yields the bismethylamide of α-hydroxy-β-methoxy-d-erythrosuccinic acid, m.p. 136°, [α]₁¹⁸ +11° in H₂O, identical with that prepared from αδ-dimethyl-d-araboascorbic acid, a glass, which on ozonisation yields Me βγ-di-p-nitrobenzoyl-d-trythronate, m.p. 133°, [α]₁¹⁸ +29° in CHCl₂ (loses acyl groups on attempted methylation). mesoTartaric acid on partial methylation (Me₂SO₄ and NaOH) affords dl-CO₂H·CH(OH)·CH(OMe)·CO₂H, which is purified by distillation, b.p. 100—105° (bath)/0·04 mm., and crystallisation of the amide, m.p. 131°, [α]₁²⁰ -23° Structure-chemical investigations. IX. Adipdithioamide. H. Erlenmeyer and G. Bischoff (Helv. Chim. Acta, 1944, 27, 412—413).—Addition of CN·[CH₂]. CN to NaOEt in EtOH saturated with H₂S at -10° followed by heating at 70° affords adipdithioamide, m.p. 180°, which is converted by COMe·CH₂Cl into αδ-di-4-methyl2-thiazolylbutane dihydrochloride, m.p. 251°. R. S. C. Unsaturated esters of glycollonitrile. D. T. Mowry (J. Amer. Chem. Soc., 1944, 66, 371—372).—40% of OH·CH₂·CN (I), b.p. 99—100°/17 mm., is obtained by adding COMeEt and then NaCN to aq. NaHSO₃ at 0°, treating the product with 37% CH₂O + a little NaCN at 30°, and finally distilling with o-C₆H₄(CO)₂O. Adding RCOCl to CH₂O and NaCN in H₂O at 10° gives CN·CH₂ acrylate (17%), b.p. 60°/4 mm., β-methylacrylate (58%), b.p. 90—91°/10 mm., crotonate (60%), b.p. 103—104°/17
mm., β-chlorocrotonate (53%), b.p. 116°/16 mm., cinnamate (II) (73%), m.p. 63°, b.p. 164—165°/4 mm., and α-methylcinnamate (63%), b.p. 162—163°/3 mm. Adding (I) to RCOCl and NPhMe₂ in Et₂O at 10° gives (II) (75%), CN·CH₂ fumarate (45%), m.p. 83°, and mesaconate (43%), b.p. 192—193°/3 mm. #### II.—SUGARS AND GLUCOSIDES. Lead tetra-acetate oxidations in the sugar group. VII. Oxidation rates of ethyl β -D-galactofuranoside, methyl α -D-mannofuranoside, and $\gamma\zeta$ -anhydro-D-sorbitol. R. C. Hockett, M. H. Nickerson, and W. H. Reeder, tert. (J. Amer. Chem. Soc., 1944, 66, 472—474; cf. A., 1944, II, 210).—The OH attached to the ring of methyl- α -D-mannofuranoside (I) are cis and, as expected, the rate of oxidation by Pb(OAc)₄ under standard conditions is very rapid until 1 mol. has been consumed and then much slower, only traces of CH₂O being produced. The OH attached to the ring of ethyl- β -D-galactofuranoside are trans, so that they are not attacked by Pb(OAc)₄ faster than are the exocyclic C·OH; thus the rate of oxidation shows no break until >2 mols. have been consumed and CH₂O is formed in quantity (? 1 mol.). $\gamma\zeta$ -Anhydro-D-sorbitol (prep. from methyl-6-deoxy- α -D-glucopyranoside 6-iodide triacetate by way of 3: 6-anhydro-D-glucose), m.p. 108—109°, oxidises, as expected, at a rate very similar to that of (I). CH₂Ac₂ consumes 3 mols. of Pb(OAc)₄ in an unbroken reaction. R. S. C. 3:6-Anhydrogalactose. II. 2-Methyl- and 4-methyl-3:6-anhydro-a-methylgalactopyranoside. (Mrs.) P. A. Rao and F. Smith (J.C.S., 1944, 229—232; cf. A., 1940, II, 244).—a-Methylgalactopyranoside or its 6-p-toluenesulphonate (I) with p-C₄H₄Me-S0₂Cl-C₅H₅N gives a-methylgalactopyranoside 2:6-di-p-toluenesulphonate (II), m.p. 148°, [a]₁₈ +68° in C₅H₅N. This with aq. 3N-NaOH gives 3:6-anhydro-a-methylgalactopyranoside, m.p. 139°, but with N-NaOH in aq. EtOH yields 3:6-anhydro-a-methylgalactopyranoside 2-p-toluenesulphonate, m.p. 138°, [a]₁₈ +56° in CHCl₃, which with MeI and Ag₂O gives the 4-Me compound, m.p. 126°, [a]₂₃ +88° in CHCl₃, hydrolysed with NaOH in aq. EtOH at 60° to 4-methyl-3:6-anhydro-a-methylgalactopyranoside, b.p. 110° (bath)/0·03 mm., m.p. 55°, [a]₁₉ +81° in MeOH, [a]₁₆ +75° in H₂O, yielding 2:4-dimethyl-3:6-anhydro-a-methylgalactoside, b.p. 100° (bath)/0·02 mm., [a]₁₈ +75° in H₂O, which isomerises to the β-form, m.p. 83°, on treating with dry HCl. (II) with COMe₂ and H₂SO₄ gives the 3:4-CMe₂: derivative, m.p. 148°, [a]₁₉ +115° in C₅H₅N, also obtained from (I). This on methylation (MeI and Ag₂O) yields 2-methyl-3:4-isopropylidene-a-methylgalactopyranoside p-toluenesulphonate, m.p. 88°, [a]₁₉ +99° in C₅H₅N, which is hydrolysed (1% HCl in MeOH) to 2-methyl-a-methylgalactopyranoside 6-p-toluenesulphonate, [a]₂₃ +27° in EtOH, giving with NaOH in aq. EtOH 2-methyl-3:6-anhydro-a-methylgalactopyranoside, m.p. 102°, [a]₁₆ +88° in H₂O. Action of diazomethane on acyclic sugar derivatives. VI. D- [a]\frac{1}{10} + 88\circ in H_2O. Action of diazomethane on acyclic sugar derivatives. VI. D-Sorbose. M. L. Wolfrom, S. M. Olin, and E. F. Evans (J. Amer. Chem. Soc., 1944, 66, 204—206; cf. A., 1944, II, 6).—aldehydo-D-Xylose tetra-acetate (prep. from the Et2 mercaptal tetra-acetate improved; cf. A., 1932, 146), m.p. 90—91\circ, [a]\frac{27}{12} -23\cdot 3\circ in CHCl_3, by oxidation (cf. Major et al., A., 1937, II, 49) and then treatment with PCl_3 in Et2O gives D-xylonyl chloride tetra-acetate, m.p. 72—73\circ, [a]\frac{25}{12} -14\circ in CHCl_3, whence CH2N2 in Et2O yields 1-deexy-1-diazo-keto-D-sorbose tetra-acetate (92\circ), m.p. 124\circ 5-\circ [a]\frac{25}{12} +44\circ 5\circ in CHCl_3. In boiling AcOH this gives keto-D-sorbose penta-acetate (73\circ), m.p. 97\circ 5-98\circ 5\circ [a]\frac{25}{12} -2\circ 5\circ in CHCl_3 (oxime, m.p. 113—114\circ, [a]\frac{25}{12} -42\circ in CHCl_3), which, when crystallised with its L-isomeride, gives the DL-form, m.p. 83-84\circ 0\circ 0\circ N-Ba(OH)_2, hydrolyses (I) to D-sorbose (80\circ), m.p. 158—160\circ, [a]\frac{25}{12} +40\circ 5\circ in CHCl_3. 1: 8-Bisdiazomucyldimethane tetra-acetate with 47\circ HI in CHCl_3 gives mucyldimethane tetra-acetate (78\circ), m.p. 204—206\circ. R. S. C. Preparation of $\beta\beta$ -trehalose octa-acetate. C. M. McCloskey, R. E. Pyle, and G. H. Coleman (J. Amer. Chem. Soc., 1944, 66, 349—350).—a-D-Glucosyl bromide 2:3:4:6-tetra-acetate (I) (modified prep.) and β -D-glucose 2:3:4:6-tetra-acetate [prep. from (I) by H_1O and Ag_2CO_3 in COMe, at 0° and then 50—60°] give, by Schlubach and Scheteling's method (A., 1933, 148), \Rightarrow 4% of $\beta\beta$ -trehalose octa-acetate, m.p. 180-5—181-5° (corr.), $[a]_5^{26}$ —18-4° in CHCl₃, 18-8% condensation being indicated by the reducing val. By use of Ag_2CO_3 , I, and $CaSO_4$ in EtOH the yield is raised to 10-5%, the reducing val. indicating 30—40% condensation (cf. A., 1936, 827). #### III.—HOMOCYCLIC. Action of sulphuric acid on 1-phenyl-2-alkylcyclopropanes. D. Davidson and J. Feldman (J. Amer. Chem. Soc., 1944, 66, 488—489).—Decomp. of the appropriate pyrazoline by Pt-asbestos and KOH gives 1-phenyl-cyclopropane, b.p. 174°, -2-methyl- (II), b.p. 184—186°, -2-ethyl- (II), b.p. 203—205°, and -2-isopropyl-cyclopropane (III), b.p. 213—216°. In 90% H₂SO₄ at 35—40°, (II) gives 1:1:2-trimethylindane, b.p. 208° (identified by oxidation to o-CO₂H·C₆H₄·CMe₂·COMe), but (I) and (II) give polymers. In 85% H₃PO₄ isomerisation to olefines occurs (no details are given). The cyclopropanes obey the modern version of Markovnikov's rule. R. S. C. Factors determining the course and mechanism of Grignard reactions. XII. Effect of cobaltous chloride on the reaction of magnesium methyl bromide with alicyclic chlorides. M. S. Kharasch, F. Engelmann, and W. H. Urry (J. Amer. Chem. Soc., 1944, 66, 365—367; cf. A., 1943, II, 284).—With MgMeBr-Et₂O at the b.p. (28 hr.), trans- (I) or cis-methylcyclohexane (II) gives methylcyclohexane (III) 10% and -hexene (IV) 33—34%, and isobornyl chloride (V) gives a mixture (VI) (90%) of camphene and bornylene, but only 5% interaction occurs with bornyl chloride (VII); in all cases pure CH₄ is evolved. In presence of 5 mol.-% of CoCl₂, reaction is 86—98% complete in 5 hr.; (I) and (II) give (III) 28—34%, (IV) 23—31%, and di-2-methylcyclohexyl 22—27%, and the gas contains CH₄ 77—83, C₂H₆ 9—15, and C₂H₄ 8%; cyclohexyl chloride gives cyclohexane 27, cyclohexene 29, and dicyclohexyl 26% with a gas containing CH₄ 85, C₂H₆ 9, and C₂H₄ 8%; cyclohexyl chloride 19, (VI) 44, and dibornyl 31% with CH₄ 77, C₂H₆ 15, and C₂H₄ 8%; (VII) gives camphane 15, (VI) 20, and dibornyl 63% with CH₄ 72, C₂H₆ 19, and C₂H₄ 9%. The reactions thus differ from those with aliphatic chlorides (loc. cit.). The CoCl₂ results are explained as a free radical chain reaction, the electronic strength of the radicals playing a major part in determining the nature of the products. Condensation of cyclohexanol with halogenobenzenes in presence of sulphuric acid. R. Pajeau (Compt. rend., 1942, 215, 578—580).—cycloHexanol and PhCl or PhBr in presence of $\rm H_2SO_4$ at room temp. give ~30% of p-chloro- or -bromo-cyclohexylbenzene, respectively. $\rm H_2SO_4 + 60\%$ oleum is used to give the corresponding I-derivative, which is oxidised by $\rm CrO_3$ -AcOH to p-C₆H₄I·CO₂H. Similarly prepared are 4-chloro-3-methyl-, b.p. $150^\circ/4$ mm., and 5-chloro-2-methyl-cyclohexylbenzene, b.p. $149^\circ/14$ mm. Examination of Raman spectra indicates absence of isomerides. A. T. P. "Cyclisation" of vitamin-A and allied compounds. E. G. E. Hawkins and R. F. Hunter (Biochem. J., 1944, 38, 34—37).— "Cyclised" vitamin-A (I), m.p. 77—78°, max. at 372 mμ. (E½m. 3760) has been obtained (cf. Shantz et al., A., 1943, II, 257). Failure to "cyclise" (by HCl-EtOH) β-apo-2-carotenal, axerophthylidene-acetone (II) [max. at 395 mμ. (E½m. 1460) and with SbCl₃ a max. at 735 mμ.], the C₂o-aldehyde (III) [max. at 395 and 730 mμ. (SbCl₃)] of Haworth et al. (A., 1939, II, 114), and the alcohol prepared by Pondorff reduction of (III), suggests that a terminal OH is necessary for the reaction. This is not the only necessary condition, since β-apo-2-carotenol does not cyclise. The absence of OH in (I) (cf. Heilbron et al., A., 1932, 1174) is confirmed (Zerevitinov). Axerophthylideneisopropyl alcohol [max. at 351 mμ. and 713 mμ. (SbCl₃)] [from (II) and Al(OPrβ)₃] and 0·04n-HCl-EtOH give a "cyclised" product which shows max. at 420, 395, and 372 mμ. The results are discussed in connexion with the structure of vitamin-A₂, which undergoes "cyclisation" to a substance having max. identical with those of (I), but distinguishable from (I) by the absorption band at 693 mμ. (SbCl₃) (cf. Embree et al., A., 1940, III, 321; Shantz et al., A., 1943, II, 261). "Cyclised" subvitamin-A (IV) is formed in the product of "cyclisation" of the unsaponifiable matter of acetylated shark-liver oil and of a similar liver oil which is oxidised in stages by aeration. In the latter case, (IV) is present when ≯80% of the original -A alcohol is destroyed, suggesting that (IV) is a primary oxidation product of -A, probably formed by attack of the double linking of the β-ionone ring in -A by O₂. A. T. P. spiroPentane. M. J. Murray and E. H. Stevenson (J. Amer. Chem. Soc., 1944, 66, 314).— $C(CH_2Br)_4$ and Na in molten NH_2Ac containing also NaI and Na_2CO_3 give $\sim 40\%$ of spiropentane, C_5H_8 , b.p. $38\cdot 3-38\cdot 5^\circ$; olefines which are also formed are removed by successive treatment with aq. NH_3 , aq. $AgClO_3$, and Br. The Raman spectrum and chemical inertness indicate the structure $C(CH_2)_2$. The yield is $\sim 1-5\%$ in aq. MeOH. R. S. C. 1:2:3:4-Dibenzphenanthrene and its derivatives. II. Synthetic attempts. F. Bergmann and H. E. Eschinazi (f. Amer. Chem. Soc., 1944, 66, 183—184; cf. A., 1943, II, 296).— Δ^1 -cycloHexenyl-cyclohexanone (I) and 1-C₁₀H,·MgBr in C₆H₆ give 2-hydroxy-2-anaphthyl-
$\Delta^{1'}$:2' or $-\Delta^1$: $^{\prime}$ -decahydrodiphenyl (42%), b.p. 225—230°/0·8 mm., cyclised, best by AlCl₃ in C₆H₆ at 0° and then room temp., to 9:9-spirocyclohexyl-3:4-tetrahydrobenzfluorene and an isomeride, b.p. 210—230°/0·1 mm. (picrate, m.p. 160—161°), and 250—270°/0·1 mm. (picrate, m.p. 169—170°), which with Se at 320° give 9:9-spirocyclohexyl-3:4-benzfluorene (II), b.p. 225—230°/0·05 mm. (picrate, m.p. 141—142°). With K₂Cr₂O₇-AcOH at the b.p., (II) gives the 1:2-quinone (? a p-quinonoid isomeride), m.p. 228°. The structure of (II) follows from its absorption spectrum (following abstract) and its resistance to further dehydrogenation by Se or Pd-asbestos at 350°. The oily products obtained by Rapson (A., 1941, II, 95) as by-products of triphenylene ring-closures are probably also spirans. Interaction of Mg 9-phenanthryl bromide with (I), followed by cyclisation as above and dehydrogenation by Se at 350°, gives 9:9-spirocyclohexyl-1:2:3:4-dibenzfluorene, b.p. 230—260°/0·2 mm. (brown picrate, m.p. 157—159°), with a smaller amount of 1:2:3:4:5:6:7:8-tetrabenznaphthalene [1:2:7:8-dibenzchrysene], b.p. $290-320^\circ/0\cdot1$ mm. [reddish-black picrate, m.p. $210-212^\circ$ (lit. 200°)]. R. S. C. Spectrographic characterisation of a hydrocarbon synthesised by Bergmann and Eschinazi. R. N. Jones (f. Amer. Chem. Soc., 1944, 66, 185—186).—The structure of 9:9-spirocyclohexyl-3:4-benz-fluorene (preceding abstract) follows from the resemblance of its absorption spectrum [max. at 3150 (4·45), 3250 (4·43), 3395 (4·55), 3845 (1·38), 4105 (1·61), and 4360 a. (1·69) in EtOH; figures in parentheses are $\log E_{\rm mol.}$] to that of 3:4-benzfluorene and the difference thereof from those of chrysene and 3:4-benzphenanthrene. The absorption of the 1:2-quinone [max. at 2470 (4·28), 2680 (4·32), 3330 (3·94), and 4600 a. (3·49)] renders its formula probable but not certain. Labile union of oxygen to carbon. Influence of supplementary cyclisations. C. Dufraisse and M. T. Mellier (Compt. rend., 1942, 215, 576—578).—1:9-5:10-Di-o-phenyleneanthracene and 5:6-11:12-di-o-phenylenenaphthacene are stable to light in CS₂. The unsymmetrical 5:6-diphenyl- and 6-chloro-5-phenyl-11:12-o-phenylenenaphthacene afford the normal photo-oxides (62 or 20% yield, respectively), which are decomposed at 150° and 90° to give 24% and 5% of O₂, respectively, and CO₂. A. T. P. Reaction between henzylamine and alkali metals. W. Krabbe and G. Grünwald [with E. Polzin and W. Menzel] (Ber., 1941, 74, [B], 1343—1352).—Bright colours are developed by NaNH, with NH₂R (R = OH·CPh₂·CH₂, OH·CHPh·CHPh, OH·CPh₂·CHPh, CH₂Ph, Ph·[CH₂], Ph, p-tolyl, p-C₆H₄Cl, o- and m-NO₂·C₆H₄), NH(CH₂Ph)₂, NHPh₂, N(CH₂Ph)₃, NPh₃, C₅H₅N, or piperidine. NH₂·CH₂Ph gives a very similar colour (absorption spectrum) with Li in Et₂O; the absorption and conductivity with different proportions of NH₂·CH₂Ph and Li are determined; the solution contains a ~1:1 mixture of LiNH₂ and LiNH·CH₂Ph. LiPh (prep. from PhBr) with NH₂·CH₂Ph in Et₂O yields a compound, LiBr, 2NH₂·CH₂Ph, m.p. 106°. Theoretical study of the interaction of dimethylamiliae and nitrig Theoretical study of the interaction of dimethylaniline and nitric acid. H. H. Hodgson (J. Soc. Dyers and Col., 1944, 60, 151—153).— With HNO3 at 0°, NPhMe2 gives 2:4:6:1-(NO3)3C6H2·NMe·NO2 (HNO3, d·1·52), or 2:4:6:1-(NO2)3C6H2·NHMe (d·1·42), or 2:4:1-(NO2)2C6H3·NMe2 (I) (d·1·34 and 1·2·54), or 3:5:3:5'-tetranitrotetramethylbenzidine (II) (40%) + (I) (60%) (d·1·12); no reaction occurs with HNO3 of d·1·046 and 1·024. With rise in temp., Me is expelled with HNO3 of d·1·34 and 1·2·54, but not with acid of d·1·12. NaNO2 accelerates, and CO(NH2)2 delays or inhibits, the reactions. Reactions of (II) with HNO3 (d·1·52 and 1·42) are analogous to similar reactions of NPhMe2 and (I). All the reactions are interpreted on the basis of modern electronic theory. A. T. P. Preparation of selenocarbamides from carbodi-imides. F. Zetzche and H. Pinske (Ber., 1941, 74, [B], 1022—1024).—Dicyclohexylcarbodi-imide, m.p. (microscope) 29—30°, and H₂Se in Et₂O give s-dicyclohexylselenocarbamide, decomp. 194°. Similarly are prepared s-di-p-tolyl- (I), m.p. 174° (decomp.), s-di-p-dimethylaminophenyl- (II), m.p. 183—185° (decomp. from 150°), s-di-l-menthyl-, m.p. 177° (decomp.), [a] —91·8°, and N-p-dimethylaminophenyl-N'-l-menthyl-, m.p. 147° (decomp.), [a] —38·4°, -selenocarbamide and, from the carbodi-imide salts, the monomethodide, m.p. 187—188° (decomp.), and monomethosulphate, sinters 165°, m.p. 167—170° (decomp.), of (II). Selenocarbamides are unstable in air or when treated with oxidising agents or heated at 120° in vac. Acidic decomp. of (I) in air or H₂ gives p-C₆H₄Me·NC and Se, probably by way of p-C₆H₄Me·NCSe. PhNCS decomposes (I) with pptn. of Se. Sulphanilamide.—See B., 1944, II, 149. Derivatives of sulphanilamide.—See B., 1944, III, 118. New class of medicinal; polymethine colouring matters. Buu-Hoi (Compt. rend., 1942, 215, 580—582).—p-NH₂·C₆H₄·SO₂·NH₂ (I) and CNBr in aq. C₅H₆N give α-p-sulphamylanilino-ε-p-sulphamylanilo-Δ^{cy}-pentadiene. Furfuraldehyde (II), (I), and NH₂Ph, HCl in EtOH afford the hydrochloride of α-anilino-ε-p-sulphamylanilo-δ-hydroxy-Δ^{cy}-pentadiene. Analogous hydrochlorides are obtained by replacing NH₂Ph with m- and p-C₆H₄Cl·NH₂ and -C₆H₄Br·NH₂, σ-, m-, and p-C₆H₄R·NH₂ (R = NO₂, OMe, and Me), 2:4:1-NO₂·C₆H₃Mc·NH₂, a- and β-C₁₀H₃·NH₄, 1:2-NO₂·C₁₀H₆·NH₂, p-NH₂·C₆H₄·N·NPh, and 5:2:1-NH₂·C₆H₃(OH)·CO₂H. m- and p-C₆H₄(NH₂)₂ yield compounds, [p-NH₂·SO₂·C₆H₄·N·CH·C(OH)·CH·CH·CH·NH]₂C₆H₄, 2HCl, and benzidine gives a similar derivative. (p-NH₂·C₆H₄, 2HCl, and benzidine gives a similar derivative. (p-NH₂·C₆H₄)₂SO₂. NH₂Ph, HCl, and (II) give the dihydrochloride, [NHPh-CH:CH-CH-CH-C(OH)·CH·N·C₆H₄]₂SO₂, 2HCl; β-C₁₀H₇·NH₂ reacts similarly to NH₂Ph, and diamines give more complex derivatives. Analogous compounds are obtained from NH₂Ph or β-C₁₀H₇·NH₂ and (p-NH₂·C₆H₄)₂SO. A. T. P. 1:4-Diaminocyclohexane.—See B., 1944, II, 155. Mechanism of the diazo-coupling reaction. III. Unusual coupling phenomena and their interpretation. H. H. Hodgson and E. Marsden (J. Soc. Dyers and Col., 1944, 60, 120—124).—An extension of views on the mechanism of the coupling reaction (A., 1943, II, 8; 1944, II, 75) to cover apparently anomalous examples, e.g., the weak and limited coupling of o-OH·C₀H₄·CO₂H, I:3·NO₂·C₁₀H₈·OH, and 1:5·C₁₀H₆(OH)₂, and the polycoupling of resorcinol. There are also discussed the coupling of arylamines, the diazoamino- \rightarrow aminoazo-conversion, the failure of o- or p-C₀H₄Me·NMe₂ to couple, and the coupling of aminonaphtholsulphonic acids, all from the resonance viewpoint. There is also discussed the effect of C₅H₅N in promoting the activity of weakly-coupling diazo-compounds, the diazo-exchange reaction, and the coupling of phenol ethers. Pyrolysis of lactic acid derivatives. Production of phenyl and o-tolyl acrylate. E. M. Filachione, J. H. Lengel, and C. H. Fisher (J. Amer. Chem. Soc., 1944, 66, 494—496).—Heating 80% OH·CHMe·CO₂H with AcOH, C_6H_8 , and a trace of conc. H_2SO_4 with removal of H_2O_2 gives OAc·CHMe·CO₂H (77%), converted by SOCl₂ into OAc·CHMe·COCl (82%), which with ArOH at 100° gives Ph (I) (86—88%), b.p. 143°/12 mm., and o-tolyl a-acetoxy-propionate (II), b.p. 112—113°/<1 mm. Pyrolysis of (I) at 440—600° gives up to 80% of CH_2 :CH·CO₂Ph, b.p. 63—64°/1—2 mm., and of (II) at 500—591° gives up to 75% of CH_2 :CH·CO₂· C_6H_4 Me-o, b.p. 55—57°/0·5 mm., with larger yields of AcOH and, from (I), up to 20% of styrene and some CO_2 and CO. The acrylates are stable unless washed with alkali; polymerisation yields relatively hard resins. Halogenophenols.—See B., 1944, II, 197. Diphenyl series. IV. Iodination of the acetate, benzoate, and benzenesulphonate of 4-hydroxydiphenyl. H. R. Schmidt, (Miss) C. M. Savoy, and J. L. Abernethy (J. Amer. Chem. Soc., 1944, 66, 491—494; cf. A., 1944, II, 12).—p-C₆H₄Ph-OAc with I and conc. HNO₃ in hot CCl₄ (38-3% yield) or AcOH (13-8% yield), or with ICl in AcOH (10-5% yield), gives p-C₆H₄I·C₆H₄·OAc-p. m.p. 155—156°, hydrolysed by KOH-EtOH-H₂O to p-C₆H₄I·C₆H₄·OH-p (I) (also obtained from benzidine) and obtained therefrom by Ac₂O and a little syrupy H₃PO₄. p-C₆H₄Ph-OR (R = Bz or PhSO₂) with I-HNO₃-AcOH or ICl-AcOH similarly gives p-C₆H₄I·C₆H₄·OR-p (R = Bz, m.p. 207°; p-C₆H₄Me·SO₂, m.p. 93·5° (corr.)], hydrolysed to and obtained from (I). Preparation of phenolic esters. E. Baumgarten, H. G. Walker, and C. R. Hauser (J. Amer. Chem. Soc., 1944, 66, 303—304).— RCOCl and ArOH in C_5H_5N give 4-diphenylyl (82%), m.p. 74·2—74·8°, and Ph isobutyrate (87%), b.p. $111-112\cdot2^\circ/25\cdot5$ mm., and 4-diphenylyl Et carbonate (60%), m.p. $73\cdot9-75\cdot0^\circ$. R. S. C. Nitrogenous derivatives of $dl-\gamma\delta$ -di- ρ -hydroxyphenylhexane. L. Spitzer (Gazzetta, 1942, 72, 445—450).—dl-(ρ -OH·C₆H₄·CHEt)₂ (Dodds et al., A., 1939, II, 312) in C₈H₈ with dil. HNO₃ gives $dl-\gamma\delta$ -di-(3-nitro-4-hydroxyphenyl)hexane (I), m.p. 114— 115° , with ~5% of, probably, the meso-isomeride, m.p. 226— 228° , also obtained by nitrating meso-(ρ -OH·C₈H₄·CHEt)₂. With Me₂SO₄-MeOH-KOH, (I) gives the aci-form (II), m.p. 106-5°, yellow, of $dl-\gamma\delta$ -di-(3-nitro-4-methoxyphenyl)hexane, of which the normal form (III), m.p. 107— 109° , almost colourless, is obtained by nitrating $dl-\gamma\delta$ -di-(3-nitro-4-methoxyphenyl)hexane. Hydrogenation (Pd-C) of (II) or (III) gives $dl-\gamma\delta$ -di-(3-amino-4-methoxyphenyl)hexane, m.p. 113— 115° [picrate, m.p. 130— 131° ; (COEt)₂ derivative, m.p. 106— 108°), the $d\epsilon_2$ derivative, m.p. 152— 153° , of which is oxidised by KMnO₄–MgSO₄ to 3:4:1-NHAc·C₈H₃(OMe)·CO₂H. E. W. W. Synthesis of substances with very high estrogenic activity. C. Mentzer and G. Urbain (Compt. rend., 1942, 215, 554—556).— p-OMe·C₆H₄·CH₂·CN (I) and EtBr-NaNH₂ give
a-p-anisylbutyronitrile, (?) m.p. 130° (corresponding acid, m.p. 68°, and amide, m.p. 101—102°). (I) and m-OMe·C₆H₄·[CH₂]·Br similarly afford a-p-anisyl-y-m-anisylbutyronitrile, b.p. 205—210°/3 mm., hydrolysed to the corresponding acid, which is cyclised (POCl₃) to 1-keto-6-meth-oxy-2-p-anisyl-1:2:3:4-tetrahydronaphthalene, convertible by MgMeI, followed by demethylation, into 6-hydroxy-2-p-hydroxy-phenyl-1-methyl-3:4-dihydronaphthalene (cf. Salzer, A., 1943, II, 8), which shows estrogenic activity in doses of 0·3—0·5 µg. A. T. P. Cleavage of phenol ethers by pyridine hydrochloride. V. Prey (Ber.; 1941, 74, [B], 1219—1225).—C₅H₅N,HCl (I), m.p. 144°, boils undecomposed at 218° and, acting as a strong acid, is very effective for dealkylation of ArOAlk, even for PhOMe. Heating with 3 parts of (I) at ~200° for 5—6 hr. usually gives 70—100% yields. Unstable substituents, e.g., in anethole or isoeugenol, reduce the yield to 15—20%. Ph₂O is unaffected. All OAlk of polyhydric phenol ethers are hydrolysed, but conditions can be found for partial dealkylation; e.g., for o- or m-C₅H₄(OMe)₂ use of 1·3 mols. of (I) and 5—15% of AcOH at 180—190° gives 6—75% of OMe₁-ether. R. S. C. Dissociation of hexa-arylethanes. XV. Methoxyl substituents. C. S. Marvel, J. Whitson, and H. W. Johnston (J. Amer. Chem. Soc., 1944, 66, 415—417; cf. A., 1943, II, 27).—Dissociation into free radicals, indicated by magnetic susceptibility, of OMe-substituted hexa-arylethanes is ≪ is indicated by cryoscopy (cf. Gomberg et al., A., 1923, i, 211; Lund, A., 1927, 661). This is because the ethanes are unstable, giving low "mol. wts." by dispropor- tionation. The following are reported: $m\text{-}\mathrm{OMe\cdot C_6H_4\cdot CO_2Et}$ (prep. by distilling the acid with $\text{H}_2\text{SO}_4\text{-}\mathrm{EtOH-C_6H_6}$), b.p. $130\text{--}135^\circ/15$ mm.; $p\text{-}\mathrm{OMe\cdot CPh}_2\text{-}\mathrm{OH}$, m.p. 60° (lift. $58\text{--}61^\circ$, 84° , 82°); diphenyl-m-anisyl-, m.p. $89\text{--}90^\circ$, and tri-m-anisyl-methyl chloride, m.p. $123\text{--}124^\circ$; o-, D (= dissociation for 0·1M. solutions in C_6H_6) $3\cdot8\%$, m-, D $2\cdot1\text{--}3\cdot1\%$, and $p\text{-}(\text{OMe\cdot C}_6\text{H}_4\cdot\text{CPh}_2)_2$, D $3\cdot8\text{--}5\cdot2\%$; [(o-OMe·C $_6\text{H}_4$) $_6\text{CPh}_2$), D $6\cdot8\text{--}8\cdot0\%$; $C_2(\text{C}_6\text{H}_4\cdot\text{OMe-o})_6$, D 52% (0·05M. solution); $C_2(\text{C}_6\text{H}_4\cdot\text{OMe-m})_6$, D 10%. R. S. C. o-Phenylenedioxyacetic acid and its ethyl ester. W. G. Christiansen and M. A. Dolliver (J. Amer. Chem. Soc., 1944, 66, 312).—o-C₈H₄(OH)₂ (I), CHCl₂·CO₂Et, and NaOEt (2 mols.) in EtOH-N₂ give Et o-phenylenedioxyacetate, b.p. 115—117°/12·5 mm., and thence (N-NaOH) the derived acid, m.p. 107—108°. CHCl₂·CO₂H does not condense with (I). Salts of phenolsulphonic acids.—See A., 1944, I, 182, 183. Mechanism of the reaction of (-)-phenylalkylcarbinols with hydrogen bromide. C. L. Arcus (J.C.S., 1944, 236—239).—The view of Levene et al. (A., 1939, II, 155) that the three mechanisms of substitution ($S_n i$; $S_n 2$; $S_n 1$) do not suffice to explain the rotation-temp. curves for the reactions between HBr and CHPhR·OH (R = Me, Et, Pr^a) is modified. If the part played by each mechanism in the total reaction is represented by a distribution curve about a max. at a certain temp., it is found that the algebraic sum of the optical results of the three mechanisms reproduces the experimental curves. The "domain" of each mechanism, represented by the area between its distribution curve and the temp. axis, is calc. for the three reactions. Reaction of citronellal with magnesium benzyl chloride. W. G. Young and S. Siegel (J. Amer. Chem. Soc., 1944, 66, 354—358).— Citronellal (I) and an excess of CH₂Ph·MgCl in Et₂O give 80% of a-benzylcitronellol (II), b.p. 153—156°/3 mm., but use of an excess of (I) leads to 70—80% of o-a-hydroxy-β(z-dimethyl- Δ^c - (or - Δ^c -)n-heptenyl- β '-hydroxy- γ ' η '-dimethyl- Δ^c '- (or - Δ^{η} '-)octenylbenzene (III), b.p. 234—235°/3 mm. (cf. Rupe, A., 1914, i, 131; Gilman et al., A., 1930, 1409). The structure of (III) is proved by its mol. wt. in camphor or C₈H₈, possession of 2 active H (MgMeI) (and no CO), 2 OH (quant. interaction with Ac₂O), 2 C:C (Br; H₂-Pd-BaSO₄), 2 citronellyl radicals [with CrO₃ gives 2·61—2·66 AcOH, whereas (II) gives 1·14—1·16 AcOH], oxidation by KMnO₄-C₅H₅N to o-C₆H₄(CO₂H)₂ (IV) (but no BzOH), dehydration by KHSO₄ at 160°/<1 atm. to 2:6-di-az-dimethyl- Δ^5 - (or - Δ^c -)n-hexenyl-3:4-benz- Δ^3 -dihydro-1:2-pyran, b.p. 215—217°/3 mm. [which is probably the substance isolated by Rupe (loc. cit.)], and by the different course of the following reaction. The aldol (prep. by KOH in 95% EtOH), b.p. 170·5—173°/5 mm., of (I) with CH₂Ph·MgCl gives the 'normal' 'addition product, oxidised to BzOH with only traces of (IV), and dehydrated to a partly cyclised hydrocarbon, C₂₇H₄₀, b.p. 204—206°/3 mm. and dehydrated to a partly cyclised hyarotaroon, $C_{27}H_{40}$, Electrolytic reduction of acetophenone in alkaline solution. S. Swann, jun., P. E. Ambrose, R. C. Dale, R. C. Rowe, H. M. Ward, H. D. Kerfman, and S. Axelrod (*Trans. Electrochem. Soc.*, 1944, 85, *Preprint* 9, 93—99).—Of many metal cathodes examined in connexion with the alkaline electrolytic reduction of COPhMe in presence of EtOH and KOAc, Sn gave the highest yield of pinacol isomerides; 77% yield was obtained at 85° with c.d. 0.005 amp. per sq. cm. Yields at Cr. Mo, W, Bi, Pb, Zn, Cd, Hg, and Cu cathodes were good, at Fe moderate, and at Ni, Co, and Mg poor. 1-n-Alkylcyclopentanols and their derivatives. C. R. McLellan and W. R. Edwards, jun. (J. Amer. Chem, Soc., 1944, 66, 409— 412).—cycloPentanone and MgRBr give 1-methyl-, m.p. 36°, b.p. 81°/100 mm. (p-nitro-, m.p. 83°, and 3:5-dinitro-benzoate, m.p. 115·5°), 1-ethyl-, m.p. -10° , b.p. $74\cdot5^\circ/20$ mm. (p-nitro-, m.p. $52\cdot5^\circ$, and 3:5-dinitro-benzoate, m.p. 108·3°), 1-n-propyl-, m.p. $-37\cdot5^\circ$, b.p. $83^\circ/20$ mm. (p-nitro-, m.p. $59\cdot5^\circ$, and 3:5-dinitro-benzoate, m.p. $108\cdot3^\circ$), 1-n-propyl-, m.p. $-37\cdot5^\circ$, b.p. $83^\circ/20$ mm. (p-nitro-, m.p. $59\cdot5^\circ$, and 3:5-dinitro-benzoate, m.p. 82°), 1-n-butyl-, b.p. $99^\circ/20$ mm. (p-nitro-, m.p. 31° , and 3:5-dinitro-benzoate, m.p. $124^\circ/20$ mm. (3:5-dinitrobenzoate, m.p. $86\cdot5^\circ$), 1-n-heptyl-, b.p. $136\cdot5^\circ/20$ mm. (p-nitro-, m.p. 26° , and 3:5-dinitro-benzoate, m.p. $76\cdot8^\circ$), 1-n-octyl-, m.p. $-17\cdot5^\circ$, b.p. $135\cdot5^\circ/9$ mm. (3:5-dinitrobenzoate, m.p. 77°), 1-n-decyl-, m.p. -18° , b.p. $133^\circ/7$ mm. (slight decomp.) (3:5-dinitrobenzoate m.p. 78°), 1-n-dodecyl-, m.p. 2° , b.p. $142\cdot5^\circ/3$ mm. (decomp.) (3:5-dinitrobenzoate, m.p. $81\cdot5^\circ$), condensation with PhOH (methods: Huston et al., A., 1937, II, 494; Welsh et al., A., 1938, II, 94) gives 1-p-hydroxyphenyl-1-methyl-, m.p. $95\cdot5^\circ$, ethyl-, m.p. $96\cdot3^\circ$, b.p. $137^\circ/2\cdot5$ mm. (2': $6'-Br_2$ -derivative, m.p. 97°), -n-propyl-, m.p. $67\cdot5^\circ$, b.p. $135^\circ/1$ mm. (2': $6'-Br_2$ -derivative, m.p. $104\cdot5^\circ$), -n-butyl-, m.p. $57\cdot5^\circ$, b.p. $151^\circ/2$ mm. (2': $6'-Br_2$ -derivative, m.p. 97°), -n-propyl-, m.p. $67\cdot5^\circ$, b.p. $151^\circ/2$ mm. (2': $6'-Br_2$ -derivative, m.p. 97°), -n-propyl-, m.p. $57\cdot5^\circ$, b.p. $151^\circ/2$ mm. (2': $6'-Br_2$ -derivative, m.p. 97°), -n-butyl-, m.p. $57\cdot5^\circ$, b.p. $151^\circ/2$ mm. (2': $6'-Br_2$ -derivative, m.p. 97°), -n-butyl-, m.p. $57\cdot5^\circ$, b.p. $151^\circ/2$ mm. (2': $6'-Br_2$ -derivative, m.p. 97°), -n-butyl-, m.p. $57\cdot5^\circ$, b.p. $151^\circ/2$ mm. (2': $6'-Br_2$ -derivative, m.p. 97°), -n-butyl-, m.p. $57\cdot5^\circ$, b.p. $151^\circ/2$ mm. (2': $6'-Br_2$ -derivative, m.p. 97°), -n-butyl-, m.p. $57\cdot5^\circ$, b.p. $151^\circ/2$ mm. (2': $15^\circ/2$ mm., -n-heptyl-, m.p. $150^\circ/2$ mm., and -n-octyl-cyclopentane, for the lower alkyl derivatives by the size of the cyclopentane ring but for the higher alkyl by the size of the alkyl. The phenols in which alkyl = Me—Bu are approx. equally bacteriostatic (Staph. aureus), but the higher alkyl derivatives are ineffective. R. S. C. Stereochemistry of cryptoxanthin and zeaxanthin, L. Zechmeister and R. M. Lemmon (J. Amer. Chem. Soc., 1944, 66, 317—322).—Irradiation (sunlight) of dil. solutions (1—10 mg. per 100 ml.) of cryptoxanthin (I) or zeaxanthin (II) in light petroleum causes bleaching due to stereoisomerisation, structural conversion in the conversion of the conversion in the conversion in the conversion of the conversion in the conversion is a superior of the conversion in the
conversion is a superior of the conversion in the conversion is a superior of the conversion in the conversion is a superior of the conversion in the conversion is a superior of the conversion in the conversion is a superior of the conversion in the conversion is a superior of the conversion in the conversion is a superior of the conversion in the conversion is a superior of the conversion in the conversion is a superior of the conversion in the conversion is a superior of the conversion in the conversion is a superior of the conversion in the conversion is a superior of the conv into other pigments, and cleavage to colourless or almost colourless substances; these changes occur in the order stated but overlap; they are faster for (II) than for (I). I in light petroleum (also melting or keeping or refluxing in solution in the dark) causes isomerisation, but light (even for a few see) is reached for development of ation, but light (even for a few sec.) is needed for development of a cis-peak. Adsorption orders and absorption max. are detailed. The following structures are probable: neocryptoxanthin B 6-cis, U 3- or 9-cis, and A 6: x-di-cis-cryptoxanthin; neozeaxanthin A 6-cis, B 5-cis, and C (? 6: x-)di-cis-zeaxanthin. R. S. C. Cyclitol series. VII. Cyclitol (mytilitol) of mussels and related substances. T. Posternak (Helv. Chim. Acta, 1944, 27, 457—468; cf. Jansen, A., 1931, 791; Ackermann, A., 1921, i, 764).—Mytilitol (I) is (A) and isomytilitol (II) is (B). (I), m.p. 266—268° (slight decomp.) (hexa-acetate, two forms, m.p. 181° and ~170° and 181° after re-solidification), gives 1 mol. of AcOH when oxidised by CrO₃, showing it to be a C-methylinositol; under like conditions quercitol does not afford AcOH appreciably. (I) is obtained synthetically by the action of a large excess of MgMeI followed by Ba(OH), on either form of the penta-acetate of scyllomesoinosose (III); it is accompanied by a small proportion of (II). Either penta-acetate and CH₂N₂ in well-cooled CHCl₃-Et₂O affords penta-acetoxymethylenecyclohexane oxide (IV), m.p. 213°, hydrogenated (A.) (B.) (PtO₂ in glacial AcOH) to isomytilitol penta-acetate, m.p. 226—228°. This is resistant towards CrO₃-AcOH and Ac₂O-C₅H₅N at room temp. and is hydrolysed [Ba(OH)₂-MeOH] to (II), rhombs or occasionally long needles, m.p. 225—226° [hexa-acetate (boiling Ac₂O containing conc. H₂SO₄ or, preferably, ZnCl₂), m.p. 188—189°]. (III) and CH₂N₂ give pentahydroxymethylenecyclohexane oxide (V), gradual decomp. >250° in a capillary, m.p. 244—247° (block), hydrogenated to (II). Boiling Ac₂O containing anhyd. FeCl₃ or ZnCl₂ converts (IV) or (V) into the hepta-acetate, m.p. 158—159°, of hydroxymytilitol (VI) (also +0.5H₂O), m.p. 247° after softening. With boiling Ac₂O-NaOAc or -KOAc, (IV) gives the hexa-acetate (VII), m.p. 185—186°, of hydroxyisomytilitol (VIII), m.p. 223°, transformed by boiling Ac₂O-ZnCl₂ into the hepta-acetate, m.p. 191—192°. (IV) and HBr-AcOH at room temp. give bromo-isomytilitol penta-acetate, m.p. 219—220°, which with Ac₁O-H₂SO₄ yields a peracetate, m.p. 191°, and with KOAc gives (VII). Hydroxyisomytilitol penta-acetate mono-p-toluenesulphonate, m.p. 187—188° (decomp.; rapid heating) [from (IV) and anhyd. p-C₆H₄Me·SO₂H in CHCl₃), NaI, and COMe₂ at 110° afford iodoisomytilitol penta-acetate, m.p. 227—231°. (I) is oxidised by HIO₄ less rapidly than (II), thus proving that all the successive OH groups in (I) are trans- to one another. Similar differences in the rate of oxidation are found for scyllitol and meso-inositol and for (VI) and (VIII), respectively. Organic sulphur compounds. New sulphide and its derivatives. A. Cabra Fernández and M. Cabanzón Martínez (Anal. Fis. Quím., 1942, 38, 400—404).—CHPhPr°Cl with K₂S-EtOH gives di-a-phenyln-butyl sulphide, b.p. 160—165°/40 mm. (sulphoxide, m.p. 50°; sulphone, m.p. 56—57°). F. R. G. Coupling $\alpha\beta$ -unsaturated compounds with diazonium salts. C. F. Koelsch and V. Boekelheide (J. Amer. Chem. Soc., 1944, 66, 412—415).—When ArN₂Cl reacts with CHR.CHR' in presence of the aq. Coupling αβ-unsaturated compounds with diazonium salts. C. F. Koelsch and V. Boekelheide (J. Amer. Chem. Soc., 1944, 66, 412—415).—When ArN₂Cl reacts with CHR.CHR' in presence of the aq. NaOAc and CuCl₂, the first reaction is reversible formation of NAr.N-OAc, followed by irreversible dissociation into Ar₂. AcO₂ and N₂. Then follow the reactions, (i) Ar₂ + CHR.CHR' → CHARR-CHR' (A), (ii) Cu⁺⁺ + (A) → Cu⁺ + CHARR-CHR' (B), and (iii) Cu⁺⁺ + AcO₂ → Cu⁺⁺ + OAc⁻. The direction of addition of Ar₂ in (i) is governed by the natures of R and R'. The final reaction is (B) + Cl⁻ → CHARR-CHR'Cl (C) or (B) → H⁺ + CArR.CHR', according to the natures of R and R'. If R' = CO₂H, (C) is formed; if R = CO₂H, (B) is decarboxylated. Since the rate of evolution of N₂ varies for different olefines, formation of a complex must precede formation of NAr.N-OAc. Yields are poor and much tar is formed. CHMe.CH-CO₂Et (I) and β-C₈H₄Cl-N₂Cl (II) etc. (in COMe₃ at 20°) give Et α-chloro-β-p-chloro-phenyl-n-butyrate (34%), b.p. 125—140° [2—3 mm., converted by KOH-MeOH into p-C₈H₄Cl-CMe.CH-CO₂H (II), mp. 134° (turbid; clear at 138·5°) [also obtained from p-C₈H₄Cl-CMe(OH)·CH₂·CO₂Et, b.p. 160—162° [11 mm], partly converted by warm conc. H₂SO₄ into a stereoisomeride, m.p. 92—99° (lit. 94°). Non-formation of CHMeCl-CH(C₈H₄Cl-p)·CO₂Et in the condensation is proved by boiling the crude product in NPhEt₂, hydrolysing the resulting ester, hydrogenating (H₂-Raney Ni; NaOH; 40 lb.), and treating with PCl, and then with AlCl₃ in C₄H₆, which gives mainly (40%) 3-methylindanone. PhN₂Cl and (I) etc. at 20—35° give CHPhMe·CHCl·CO₂He and 2: 4: 1·C₈H₄Cl₂ChMe·CHCl·CO₂Me (20%) (cf. A., 1939, II, 262), converted by KOH-MeOH into β-2: 4-dichlorophenylerotonic acid, m.p. 126—127°, which is hydrogenated (Raney Ni; aq. NaOH) to CHPhMe·CH₂·CO₂H. CHMe·CH-CO₂Me (20%) (cf. A., 1939, II, 262), converted by KOH-MeOH into β-2: 4-dichlorophenylerotonic acid, m.p. 126—127°, which Reactions of tert.-butyl cinnamate and benzoate with magnesium phenyl bromide. F. Frostick, E. Baumgarten, and C. R. Hauser (J. Amer. Chem. Soc., 1944, 66, 305).—Adding CHPh:CH·CO₂Bu^γ (0·115) to MgPhBr (0·23 mol.) in Et₂O and then boiling gives only (44%) Bu^γ ββ-diphenylpropionate, m.p. 55·5—55·6°, identified by hydrolysis. Bu^γOBz (0·3) and MgPhBr (0·5 mol.) in Et₂O at room temp. and then the b.p. give CPh₃·OH (41%) and BzOH (10%), but not CMe₂:CH₂ or PhBu^γ. R. S. C. [Alkyl exchange of] carboxylic esters. II. F. Adickes and V. Krawczyk (Ber., 1941, 74, [B], 1389—1394).—Occurrence of the exchange, RCO₂Et + MeOH \rightarrow RCO₂Me + EtOH, cannot be predicted from the nature of R. It occurs readily (70% in 8 hr. at the b.p. with 10 mols. of anhyd. MeOH) with Et 2-hydroxythionaphthen-1-carboxylate S-dioxide (I) (derived Me ester, m.p. 177—180°), fairly readily (~5—10%) with CH(CO₂Et)₃, CN·CHPh·CO₂Et, (CO·CO₂Et)₂, or Et 1-bromo-2-keto-1:2-dihydrothionaphthen-1-carboxylate S-dioxide (? Me hemiacetal, m. p. 90°), slightly (~1—3%) with CN·CPh(CO₂Et)₂ or the Me ether of (I), and not with C(CO₂Et)₄. Et, fumarate and r-tartrate, (*C-CO₂Et)₂. CO₂Et·CH₂·NH₂·HCl, CN·CH₂·CO₂Et, OH·CPh₂·CO₂Et, CPh₂F·CO₂Et, Et nicotinate, and 2-hydroxy- or 2-methoxy-coumarone-1-carboxylate. R. S. C. Hydrogenolysis of benzyl esters in contact with nickel catalysts. Y. R. Naves (Helv. Chim. Acta, 1944, 27, 261—268).—Esters of CH₂Ph·OH suffer rapid hydrogenolysis in contact with Raney Ni at room temp. and < atm. pressure, whereas esters of alcohols and phenols apparently closely related to CH₂Ph·OH are changed slowly pnenois apparently closely related to CH₂Ph·OH are changed slowly or not at all. A possible means is afforded of evaluating CH₂Ph esters in essential oils, natural perfumes, etc. CHPh·CH·CO₂CH₂Ph readily absorbs 2 H₂ at 30° with formation of PhMe and Ph·[CH₂]₂·CO₂H; after union with 1 H₂ the product contains PhMe, Ph·[CH₂]₂·CO₂CH₂Ph, and Ph·[CH₂]₂·CO₂H but no CHPh·CH·CO₂H. The product of the reaction at 135—140°/10atm. is (CH₂Ph·CH·CO₂H)₃. Hydrogenolysis in contact with Raney Ni in presence of EtOH or EtOAc of CH-Ph acetate laurate succipate hereoate and salicylate EtOAc of CH2Ph acetate, laurate, succinate, benzoate, and salicylate is rapid and complete at a low temp. CH, Ac CO, Et behaves individually on account of the simultaneous decomp. of CH₂Ac·CO₂H. Diagon inhibits and NPhMe₂ retards hydrogenolysis. There is little Dioxan inhibits and NPhMe2 retards hydrogenolysis. hydrogenolysis of anisyl, p-tolylcarbinyl, p-cuminyl, dl-phenylmethyl, b.p. 72-73°/4 mm. [not identical with the product thus described by Kenyon et al. (A., 1933, 604)], or phenylethyl-carbinyl acetate, and 'practically no hydrogenolysis with phenyldimethylcarbinyl acetate, b.p. 81—82°/2·8 mm., Ph·[CH₂]₂ acetate or phenylacetate, or CH₂Ph·CO₂·C₆H₄Me-p. Cinnamyl cinnamate, trans-isoeugenol acetate, and eugenol benzoate are hydrogenated without appreciable hydrogenolysis. Complex of nickel with toluamidoxime. L. Malatesta and R. Pizzotti (Gazzetta, 1942, 72, 564—567).—Ni(OAc)₂ and p-C₆H₄Me·C(NH₂):N·OH in KOH-EtOH, followed by H₂O₂, give not a Ni^{IV} (Kuras, Chem. Zentr., 1942, 113, I, 2244), but a Ni^{II} compound, C₆H₄Me·C N:Ni^{II} Ni^{II} N(:O). N:NH NI^{II} NH₂ C·C₆H₄Me, which is similar to that obtained by Malatesta (Canada 1040 NO NO NI) similar to that obtained by Malatesta (Gazzetta, 1940, 70, 842) from NH₂·CPh:N·OH; with HCl it evolves N₂. E. W. W. Action of formaldehyde on m-hydroxybenzoic acid. I. C. A. Buehler, T. A. Powers, and J. G. Michels (J. Amer. Chem. Soc., 1944, 66, 417—418).—m-OH-C₈H₄·CO₂H (I) and 40% CH₂O in conc. HCl-H₂SO₄ at 30—40° give 3-hydroxyphthalide (CO = 1) (II), m.p. 254° [Me (III), m.p. 127°, and Et ether, m.p. 170°; acetate, m.p. 96—97°], and a substance, m.p. 175°. KOH-KMnO₄ at 60—75° converts (III) into 3:1:2-OMe·C₈H₃(CO₂H)₂ [Me₂ ester, 120], 3—74° (lit. 71°)]. Br and (I) in AcOH at 50° give 3:4:6:1-0H·C₈H₂Br₂·CO₂H, the Me ether, m.p.
205° (lit. 202—203°), of which with CH₂(OMe)₂-conc. HCl-H₂SO₄ at 50—55° gives 4:6-dibromo-3-hydroxyphthalide, m.p. 146°, reduced to (II) by H₂-Raney Ni at 150—200°/500 lb. R. S. C. Derivatives of di-iodohydroxybenzoic acids.—See B., 1944, II, 156. Reactions of o-substituents during stilbene syntheses. kactions of o-substituents during stindene syntheses. E. Macovski, J. Georgescu, and C. Bachmeyer (Ber., 1941, 74, [B], 1279—1284).—2:1:4-CN·C₆H₃Me·NO₂ with 30% H₂O₂ in boiling MeOH-H₂O-KOH gives 4-nitro-o-toluamide (Me = 1) (I), m.p. 175° (resistant to NaOMe-MeOH at room temp.), which with NaOMe-PhCHO-MeOH at room temp. gives 4-nitrostilbene-2-carboxylamide (II), m.p. 263° (partial decomp.), and with o-NO₂·C₆H₄·CHO (III)—NaOMe-MeOH gives 4: distinct them? carboxylamide m.p. 292° With *MeOH gives 4: 2'-dinitrostilbene-2-carboxylamide, m.p. 228°. With [III] at 140—150°, [I] gives o-nitrobenzylidene-NN'-bis-4'-nitro-toluamide, m.p. 253°, but with RCHO-NaOMe-MeOH at room temp. gives 4-nitro-, m.p. 206° [with, in one experiment, (II)], and 4: 2'-dinitro-stilbene-2-carboxylic acid, m.p. 210°. R. S. C. dinitro-stilbene-2-earboxylic acid, m.p. 210°. Reaction of γ-anisyl-γ-butyrolactone with potassium cyanide. 6-Methoxy-1:2:3:4-tetrahydro-2-naphthoic acid. C. C. Price and W. Kaplan (J. Amer. Chem. Soc., 1944, 66, 477—478).—p-OMe·C₈H₄·CO·[CH₂]₂·CO₂H (prep. modified to give a 95% yield), m.p. 144°, when esterified by boiling with EtOH in a Soxhlet extractor with removal of H₂O by CaC₂ in the thimble and then heated with Al(OPr^β)₃-Pr^βOH with very slow removal of COMe₂, gives 79% of cryst. γ-p-anisyl-γ-n-butyrolactone. Interaction thereof with KCN at 210° (N₂) involves rearrangement, yielding β-cyano-γ-p-anisyl-n-butyric acid (I), m.p. 116-5° (corr.) (cf. Blaise, A., 1897, i, 323), the structure of which is proved as follows. With HF at 100° (not H₂SO₄ or, as chloride, AlCl₃) and then conc. H₂SO₄ at room temp. (1 week), (I) gives 4-keto-6-methoxy-1: 2: 3: 4-tetrahydro-2-naphthoamide, m.p. 178° (corr.) [oxime, m.p. 217—219° (corr.)], reduced by 10% Pd-C-H₂ in EtOH at 41 lb. to 6-methoxy-1: 2: 3: 4-tetrahydro-2-naphthoamide (II) (68%), m.p. 141° (corr.). Theace HCl-H₂O-AcOH at the b.p. yields the acid (III) (85%), m.p. 151° (corr.), not demethylated by KOH-EtOH or HBr-AcOH-H₂O. S at 210—245° converts (II) into a thioamide, which with KOH-EtOH gives 6: 2-OMe·C₁₀H₆·CO₂H, m.p. 194—196° (lit. sinters 190°, m.p. 209°) [amide, m.p. 220—221° (lit. 219°)]. R. S. C. Haloform reaction Haloform reaction. R. T. Arnold, R. Buckles, and (Miss) J. Stoltenberg (J. Amer. Chem. Soc., 1944, 66, 209—210).—In aq. MeOH the haloform reaction applied to Ac compounds may lead directly to Me esters owing to the intermediate CO·CCl₃ reacting faster with MeOH than with H₂O (cf. acid chlorides). 5-Methoxy-1:2:3:4 tatrahydronayhthsland Acound Alclinia Ph.NO. faster with MeOH than with H₂O (cf. acid chlorides). 5-Methoxy-1:2:3:4-tetrahydronaphthalene, Ac₂O, and AlCl₃ in PhNO₂ at 0—5° give 5-acetyl-8-methoxy-1:2:3:4-tetrahydronaphthalene (I), b.p. 164—166°/8 mm. [oxime, m.p. 136—139° (decomp.)], which with Ca(OCl)₂, KOH, and K₂CO₃ in aq. MeOH gives Me 8-methoxy-1:2:3:4-tetrahydronaphthalene-5-carboxylate (II) (80%), m.p. 63—64°, and a small amount of the corresponding acid (III), m.p. 215·5—216° [with CH₂N₂ gives (II)]. With Ca(OCl)₂ and KOH (excess) in aq. dioxan, (I) gives 7-chloro-8-methoxy-1:2:3:4-tetrahydro-naphthalene-5-carboxylic acid, m.p. 154—156°, which is obtained very rapidly by chlorination of (III) and is not obtained in the haloform reaction if the excess of KOCl is destroyed before acidification. With Br in AcOH, (I) gives 5-bromoacetyl-, m.p. 73—74°, and thence by KOAc in boiling EtOH 5-acetoxyacetyl-8-methoxy-1:2:3:4-tetrahydronaphthalene, m.p. 91—92°, hydrolysis of which did not give a pure OH·CH₂·CO derivative. Structures are proved by conversion of (II) by S at 250° into 4:1-OMe·C₁₀H₆·CO₂H. Phthaleins from phenol and naphthalene-1:2-dicarboxylic acid. M. H. Hubacher (J. Amer. Chem. Soc., 1944, 66, 255—256).—1:2-C₁₀H₆(CO)₂O, PhOH, and SnCl₄ at 113—116° give phenol-2:1-(I), 1: 2-C₁₀H_e C(C₀H₄·OH-p)₂ O (22%), m.p. 291·1—292·4° (diacetate, m.p. 223·8—225·9°; dipropionate, m.p. 162·7—163·7°), and -1:2-naphthalein (II), 2:1-C₁₀H₆ CO CO (5%), m.p. 267.5—269.5° (diacetate, m.p. 154.5—155.6°; dipropionate, m.p. 109.6—110°), converted by KOH at 240—245° into 2- and 1-C₁₀H₂·CO₂H, respectively; the colour change (to magenta) occurs at pH \sim 8.6—10.5, but the colour given by (I) is \sim 4 times as intense as that given by (II); neither colour fades in dil. acid and that of (I) resists H₂O₂. M.p. are corr. R. S. C. Derivatives of cis-3: 6-endomethylene- Δ^4 -tetrahydrophthalic acid. M. S. Morgan, R. S. Tipson, A. Lowy, and W. E. Baldwin (J. Amer. Chem. Soc., 1944, 66, 404—407).—cis-3: 6-endoMethylene- Δ^4 -tetrahydrophthalic anhydride (I) with H_2 -Raney Ni in dioxan at 45°/2050 lb. gives 97% of the H_6 -anhydride (II), m.p. 167·5—168°. The derived acids show each two well-defined breaks in the titration The derived acids show each two well-defined breaks in the titration curve, whereas $(CH_2 \cdot CO_2H)_2$ shows only one break and $o \cdot C_6H_4(CO_2H)_2$ shows only a trace of the first break. In boiling MeOH, (I) and (II) give Me H cis-3: 6-endomethylene- Δ^4 -tetrahydro-, m.p. 76—78-5°, and -hexahydro-phthalate, m.p. 77—79°, respectively. With a little $p \cdot C_6H_4Me \cdot SO_3H$ in boiling ROH, (I) gives Me_2 , b.p. 129—130°/9 mm. (indifferent to NH₃ at 0°), Et_2 , b.p. 138—140°/8 mm., and Bu^a_2 cis-3: 6-endomethylene- Δ^4 -tetrahydrophthalate, b.p. 174—176-6°/8 mm. With dry NH₃ at 170° or (NH₄)₂CO₃ at 200°, (I) gives the imide (III), m.p. 186-5—187°; (II) gives its imide, m.p. 174—175-5°, by the former method. With NH₂Ph in warm C_6H_6 , (I) gives the phenylimide, m.p. 144°; in CHCl₂, (II) gives exothermally the anilic acid, m.p. 175—176° (decomp.), readily converted into the phenylimide, m.p. 152—153°. With p-toluidine in C_6H_6 , (I) gives its p-tolylimide, m.p. 156-5—157°. With CH₂PhCl and NaOEt in boiling EtOH the imides give the unsaturated, m.p. 82-5—83-5°, in boiling EtOH the imides give the unsaturated, m.p. 82.5-83.5°, in boiling EtOH the imides give the unsaturated, m.p. $82 \cdot 5 - 83 \cdot 5^\circ$, and saturated benzylimide, m.p. $101 - 103^\circ$. In conc. aq. NH₃ at room temp. (I) or (II) gives NH_4 cis-3:6-endomethylene- Δ^4 -tetrahydro-, m.p. 172° (decomp.), and -hexahydro-phthalamate, m.p. 177° (decomp.), respectively, converted by aq. HCl at room temp. into the phthalamic acids, m.p. 136° (decomp.) and $165 - 166^\circ$ (decomp.), respectively, which in boiling H_2O give NH_4 cis-3:6-endomethylene- Δ^4 -tetrahydro-, m.p. 148° (decomp.) [derived $(NH_4)_2$ salt, m.p. indefinite], and -hexahydro-phthalate, m.p. $149 - 150^\circ$, respectively. An attempt to prepare the diamide from (III) by boiling conc. aq. NH₃ failed. With AlCl₃ in C_4H_6 at $\Rightarrow 45^\circ$, (II) gives 3-benzoylnor-camphane-2-carboxylic acid (87%), m.p. $170 - 171^\circ$, which gives no anthraquinone derivative in H_2SO_4 at 100° . R. S. C. New synthesis of phenylpropaldehyde and its nuclear homologues. L. Bert (Compt. rend., 1942, 215, 356—357).—A benzenic hydrocarbon ArH is condensed directly (Friedel-Crafts) or, more generally, indirectly through MgArBr with CH₂Cl·CH:CHCl to CH₂Ar-CH:CHCl, which is converted by cold Br or heated PCl, into CH2Ar·CHBr·CHClBr which is converted by told Bi of heatest Ci_5 into Ci_2 or $CH_2Ar\cdot CHCl\cdot CHCl_2$, respectively. Either of these when heated with NaOR (R = Me, Et, or Bu^a) gives CHAr. CH·CH(OR)₂. Hydrogenation then gives $Ar\cdot [CH_2]_2 \cdot CH(OR)_2$, hydrolysed to $Ar\cdot [CH_2]_3 \cdot CHO$. No experimental results are recorded. No experimental results are recorded. Complex behaviour of potassium permanganate towards an ethylenic function leading to a new mode of formation of p-isopropylphenylacetaldehyde. L. Bert (Compt. rend., 1942, 215, 276—277).— p-C₆H₄Pr^β·CH:CH·CH₂·OR (I) (R = Me, Et, Pr^a, Pr^β, Bu^a, Bu^β, iso-C₅H₁₁) is converted by agitation with a saturated aq. solution of KMnO₄ at room temp. into p-C₆H₄Pr^β·CH₂·CHO (II) with some p-C₆H₄Pr^β·[CH·OH]₂·CH₂·OR. When R = Bu^a or iso-C₅H₁₁ small amounts of Pr^aCO₂H or iso-C₅H₁₁·OH, respectively, are also obtained. The course of the change is (I) + 2O \Rightarrow C₆H₄Pr^β·CHO (III) + OR·CH₂·CHO (IV); (III) + (IV) (in presence of KOH from KMnO₄) \Rightarrow p-C₆H₄Pr^β·CH:COR)·CO₂H \Rightarrow (-CO₂) p-C₆H₄Pr^β·CH:CH·OR \Rightarrow (+H₂O) p-C₆H₄Pr^β·CH:CH·OH + ROH \Rightarrow (II). No experimental results are recorded. H. W. Complex behaviour of potassium permanganate towards an ethylresults are recorded. Substituted a-amylcinnamaldehydes, A. Weizmann (J. Amer. Chem. Soc. 1944, 66, 310—311).—RCHO, $n\text{-}C_5H_{12}\text{-}CHO$ (I), and piperidine in C_5H_5N at 100° give a-p-anisylidene-, b.p. 145° /0·3 mm. (semicarbaxone, m.p. 143— 145° /), a-3: 4-dimethoxybenzylidene-, b.p. 165° /0·6 mm. (semicarbazone, m.p. 175°), and a-3: 4-methylenedioxybenzylidene-n-heptaldehyde, b.p. <math>158— 159° /0·9 mm. (semicarbazone, m.p. 155°). PhCHO condenses more readily than do the above aldehydes. Vanillin and (I) do not react. R. S. C. Reaction of maleic anhydride with aromatic oximes. G. La Parola (Gazzetta, 1943, 73, 94—99; cf. A., 1937, II, 501).—(:CH·CO) $_2$ O (I) and α -p-tolualdoxime in C $_6$ H $_6$ at the b.p. give N-p-toluoylaspartic acid, m.p. 182°. With α -anisaldoxime, (I) gives N-anisoylaspartic acid, m.p. 180°. a-p-NMe $_2$ ·C $_6$ H $_4$ ·CH:N·OH and a-piperonaldoxime give the nitriles, and a-salicaldoxime the aldehyde. E. W. W. Spectroscopic study in the stereoisomeric capsanthin set. cts-Peak effect and configuration. A. Polgár and L.
Zechmeister (J. Amer. Chem. Soc., 1944, 66, 186—190).—The fine structure of the absorption spectrum of capsanthin in hexane is obliterated by adding as little as 2% of EtOH and in abs. EtOH no structure at all is visible. 32 isomerides are possible, 5 of the ethylenic linkings being capable of trans \rightarrow cts isomerisation. Isomerisation by I, insolation, and melting is investigated. Light is needed for development of a cts-peak. The customary considerations lead to the structures: neocapsanthin A 6-cis, B 5- or 7-cis, and C di-cis. R. S. C. Isomerisation of aromatic ketones with aluminium chloride. G. Baddeley (J.C.S., 1944, 232—236; cf. A., 1943, II, 264).—The isomerisations are of two types, viz., (A) those resembling the isomerisation of o-hydroxyaryl alkyl ketones, the mobile alkyl moving isomerisations are of two types, viz., (A) those resembling the isomerisation of o-hydroxyaryl alkyl ketones, the mobile alkyl moving intramolecularly into the adjacent position, and (B) those involving migration (possibly intramol.) of the CO group. Migrations of alkyl in C₀H₄ homologues, phenols, aryl and hydroxyaryl ketones are related to one another, and to the Jacobson reaction. o-C₄H₄Me·COMe (Semicarbazone, m.p. 212°) and AlCl₃ (2 mols.) at 170° for 1·5 hr. give p-C₅H₄Me·COMe (I) (85%) (type B) (semicarbazone, m.p. 208°), and no type A product. In presence of m·5-xylenol (II) at 160°, the yield of (I) is halved owing to formation of 2:4:5:1-OH·C₆H₂Me₂·COMe (III); the production of an acylating agent is thus possibly responsible for (I). o-C₆H₄Me·COEt similarly yields the p-isomeride (83%). 2:5:1-C₅H₄Me₂·COMe gives the 3:5:1-isomeride (77%) (A) (semicarbazone, m.p. 219°) and 8% of the 3:4:1-compound (IV) (B) [no (IV) is formed if (II) is present in the reaction mixture]. o-C₆H₄Et·COMe (semicarbazone, m.p. 182°) and AlCl₃ yield the m-isomeride (70%) (A) (semicarbazone, m.p. 182°) and AlCl₃ yield the m-isomeride (70%) (A) (semicarbazone, m.p. 182°) and AlCl₃ yield the m-isomeride (70%) (a) (semicarbazone, m.p. 182°) and a little of the p-compound (2:4-dinitrophenylhydrazone, m.p. 185°; semicarbazone, m.p. 191°). 2:5:1-C₆H₃Et₂·COMe (2:4-dinitrophenylhydrazone, m.p. 185°); semicarbazone, m.p. 105°) yields the 3:5:1-compound (83%) (A) (2:4-dinitrophenylhydrazone, m.p. 185°); semicarbazone, m.p. 202°) and AlCl₃ or AlBr₃ (3 mols. at 150°) give 80% of (IV); AlCl₃ + (II) give (III) also. 2:4:6:1-C₆H₂Me₂·COMe and AlCl₃ afford the 3:4:5:1-isomeride (87%) (A) (semicarbazone, m.p. 217°) and 2:5:1-C₆H₃Me₂·COPh (at 190°) yields the 3:5:1-compound (90%) (A) -Phydroxyacetophenones undergo isomerisations of type B only, and complete isomerisation of 4:2:1-into 2:4:1-OH·C₆H₃Me₂·COMe is achieved with slightly >1 mol. of AlCl₃. 2:5:1-C₆H₃Me₂·COMe i isomerisation occurring under conditions where there is no reagent isomerisation occurring under conditions where there is no reagent capable of producing type A. 1-Keto-5: 8-dimethyl-1: 2: 3: 4-tetrahydronaphthalene (\mathbf{V}), b.p. $164^{\circ}/20$ mm. (semicarbazone, m.p. 222°), yields the 5: 7-Me₂ compound (90%) (A) (semicarbazone, m.p. 245°), but 4: 7-dimethyl-a-hydrindone (\mathbf{VI}), m.p. 77°, is unchanged with AlCl₃. Ketones with no alkyl group o- to CO do not isomerise. All the o-alkylaryl ketones and (\mathbf{V}), but not (\mathbf{VI}), are hydrolysed by $\mathbf{H}_3\mathbf{PO}_4$ at 180° , CO being detached from the nucleus. The rigid and planar structure of (\mathbf{VI}) suggests that the isomerisation of an aromatic ketone requires the propulsion of CO out of the plane of the aromatic nucleus. An explanation is given why isomerisation an aromatic ketone requires the propulsion of CO out of the plane of the aromatic nucleus. An explanation is given why isomerisation of type A is accelerated by alkyl para to the one which migrates. AlBr₃ (3 mols.) at 150° isomerises 6:2:4:1- to 2:4:5:1-OH·C₆H₉Mc₂·COMe. AlCl₃ does not isomerise homologues of PhCN. The following are new: 3:5-dimethylbenzophenone, m.p. 70°; semicarbazones, m.p. 205°, 226°, and 143°, of m·C₆H₄Me·COMe, 1-keto-1:2:3:4-tetrahydronaphthalene, and p-C₆H₄Pr^a·COEt (VII), respectively; (VII) and 2:5:1-C₆H₃Pr^a·COMe give 2:4-dinitrophenylhydrazones, m.p. 147° and 75°, respectively. A. T. P. Factors determining the course and mechanism of Grignard reactions. XIII. Effect of metallic halides on the reaction of sterically hindered acid halides with magnesium methyl iodide. M. S. Kharasch, R. Morrison, and W. H. Urry (J. Amer. Chem. Soc., 1944, 66, 368—371; cf. A., 1944, II, 215).—Adding MesCOCl (Mes = mesityl) to MgMeI gives good yields of COMeMes, but the reverse addition gives 25% of COMeMes and 50% of (MesCO)₂ (cf. Fuson et al., A., 1938, II, 445). Use of very pure Mg or allowing the MgMeI solution to age increases the proportion of COMeMes, as also does addition of 1 atom-% of Cu or, better, 1 mol.-% of MnCl₂, FeCl₃, or CuCl. MgMeBr gives 87% of COMeMes, but addition of CoCl₂ leads to much (MesCO)₂, an effect shown less markedly with MgMeI. A free radical chain mechanism is proposed. R. S. C. Acetylation of 1:2-dimethylnaphthalene. P. A. Plattner and A. Ronco (Helv. Chim. Acta, 1944, 27, 400—403).—1:2- $C_{10}H_6Me_2$, b.p. 135— $137^\circ/13$ mm. (picrate, m.p. 129— 130°), is obtained homogeneous (76% yield) by the successive action of Li and Me₂SO₄ on 2:1- $C_{10}H_8Me$ Br in Et₂O. It is converted by AcCl and AlCl₃ in CS₂ or PhNO₂ into 3:4-dimethyl-1-naphthyl Me ketone (I), b.p. 135— $137^\circ/0.3$ mm. (picrate, m.p. 134— 135° ; semicarbazone, m.p. 225°). The constitution of (I) is established by its oxidation (NaOBr) to 3:4-dimethyl-1-naphthoic acid, m.p. $226-227^{\circ}$ (Me ester, m.p. 49°), also obtained by converting $4:1:2\cdot C_{10}H_5BrMe_5$ by CuCN at 260° into 3:4-dimethyl-1-naphthonitrile, m.p. $120-121^{\circ}$, and subsequent hydrolysis with boiling 25% KOH-EtOH. M.p. are corr. Molecular rearrangements of phenyl styryl ketone oxides. J. Algar and J. McKenna (Proc. Roy. Irish Acad., 1944, 49, B, 225—249).—COAr·CH:CHAr' with H₂O₂-aq. EtOH-NaOH gives the oxide, which is rearranged by 50% H₂SO₄ at room temp. into COAr·CHAr'·CHO. This is converted into the corresponding pyrazole by EtOH-NHPh·NH₂. The following are described: Ph 3:4-dimethoxystyryl ketone oxide, m.p. 87—89°; o-, m.p. 114—115°, and p-anisyl p-methoxystyryl ketone oxide, m.p. 151°; α-phenyl-β-p-anisylpropane-ay-dione, m.p. 115° (uncorr.); α-phenyl-β-3:4-methylenedioxystyryl ketone oxide, m.p. 151°; α-phenyl-β-3:4-methoxyphenylpropane-ay-dione, m.p. 108—109°; α-phenyl-β-0-anisylpropane-ay-dione, m.p. 108—109°; α-phenyl-β-0-anisylpropane-ay-dione, m.p. 113—114°; α-phenyl-β-0-anisylpropane-ay-dione (an oil; Cu salt, m.p. 190—195°, softening at 185°); β-phenyl-α-p-anisylpropane-ay-dione, m.p. 135—136°; β-phenyl-α-o-anisylpropane-ay-dione (I) [an oil; Cu salt (+EtOH), m.p. 243° (decomp.), softening at 240°]; α-0-anisyl-β-p-anisylpropane-ay-dione [an oil; Cu salt m.p. 221—222° (decomp.), softening at 214°]; α-0-anisyl-β-3:4-methylenedioxyphenylpropane-ay-dione [an oil; Cu salt m.p. 275°) (uncorr.; decomp.)]; α-0-anisyl-β-3:4-dimethoxyphenylpropane-ay-dione; β-phenyl-α-2:4-dimethoxyphenylpropane-ay-dione (II) [an oil; Cu salt (+EtOH), m.p. 200—210° after softening]. 1:5-diphenyl-4-p-anisyl-, m.p. 150—151°, -4-3':4'-methylenedioxyphenyl-π.p. 199°, and -4-3':4'-dimethoxyphenyl-, m.p. 163°, 1:4-diphenyl-5-p-anisyl-, m.p. 183°, and 1-phenyl-4:5-di-p-anisyl-pyrazole, m.p. 173°. Small yields of isoflavone and 7-hydroxyisoflavone are obtained from (I) and (II), respectively, by AlBr₃ in bolling C₆H₄. Prolonged refluxing of (I) gives a compound, m.p. 147·5—148-5°, probably o-OH·C₆H₄·CO·CPh:CHPh. M.p. are corr. except where stated. Functional aptitude of the methyl group. VIII. Formation of anilides by the action of nitroso-derivatives on compounds with an active methyl group. L. Chardonnens and P. Heinrich (Helv. Chim. Acta, 1944, 27, 321—332; cf. A., 1940, II, 160).—Certain secondary products of the condensation of activated Me groups with NO-compounds are shown to be anilides and not nitrones. 3:4:1. NO₂·C₈H₂Me·COPh and p-NO·C₈H₄·NMe₂ afford 2-nitro-4-benzoylbenzaldehyde-p'-dimethylaminoanil, m.p. 174—175°, and 3-nitrobenzophenone-4-carboxy-p-dimethylaminoanilide (I), m.p. 217°. Similarly PhNO yields 3-nitrobenzophenone-4-carboxy-p-dimethylaminoanilide (I), m.p. 217°. Similarly PhNO yields 3-nitrobenzophenone-4-carboxy-p-dimethylaminoanilide (IV), m.p. 82°), the chloride of which with NH₂Ph (or p-NMe₂·C₆H₄·NH₂) in C₆H₅Naffords (I) [or (II)]. The minor compound from 3:3'-dinitro-4-methylbenzophenone (III) and p-NO·C₆H₄·NMe₂ is 3:3'-dinitrobenzophenone-4-carboxy-p-dimethylaminoanilide (IV), m.p. 234° (cf. A., 1939, II, 428); the -anilide (V), m.p. 190°, is obtained similarly from PhNO. (III) and PhCHO in presence of piperidine afford trans(?)-3:3'-dinitro-4-styrylbenzophenone, m.p. 168°, also obtained from the isomeride, m.p. 155—156°, by the action of a little I in boiling PhNO₂; it is oxidised by CrO₃ in AcOH at 70° to 3:3'-dinitrobenzophenone-4-carboxytic acid, m.p. 193—194°, also obtained from (III) and HNO₄ (d 1·15) at 155—165°; it is converted through its chloride into the Me ester, m.p. 124°, (IV), and (V). 2-Nitro-4-benzoylbenzaldehyde and NHPh-OH in boiling EtOH afford the N-Ph derivative, m.p. 136°, of 2-nitro-4-benzoylbenzaldoxime, isomerised by calcined Na₂CO₃ in boiling EtOH to (II). 2-Nitro-4-m-nitrobenzoylbenzylidene-p-dimethylaminoanil in C₈H₈ is hydrolysed by aq. HCl to 2-nitro-4-m-nitrobenzoylbenzaldehyde, m.p. 142·5° [phenylhydrazone, m.p. 218·5° (decomp.)], converted by NHPh-OH into the N-Ph derivative, m.p. 157°, of 2-nitro-4-m-nitrobenzoylbenzaldoxime which is isomerised H. W. Normal and ψ-structures of 8-benzoyl-1-naphthoic acid and derivatives. H. E. French and J. E. Kircher (J. Amer. Chem. Soc.. 1944, 66, 298—300).—Crystallisation of
8:1-C₁₀H₆Bz·CO₂H (A) from EtOH, 70% AcOH, or CHCl₃ gives a form (I), m.p. 110° (Mason, A., 1925, i, 33, 34), but from xylene, cyclohexane, or PhMc gives a form (II), m.p. 129—130° (Knapp, A., 1936, 726). After heating at 90°, (I) gives a form, m.p. 154°. (I) or (II) in CHCl₃ or (II) after boiling in cyclohexane has absorption max. at 3081—3120 and 3252—3297 A., thus resembling 8:1-C₁₀H₆CPh₂O (III) (max. at 3092 and 3275 A.) but not $1:8-C_{10}H_6Bz_2$ (max. at 2190 A.). (III), its ditolyl analogue, and $1:8-C_{10}H_6(CO)_2O$ show a blue fluorescence in ultra-violet light, but (VI) and (VII) (below) appear greyish-white; (A), its toluoyl analogue, and (\overline{V}) (below) appear blue. Thus, (A) exists in solution largely as $8:1-C_{10}H_{*}$ COCOOO. With SOCl₂, (I) gives a product which by crystallisation from C₆H₆ gives a-chloro-a-phenyl-1: 8-naphthalide (IV), m.p. 125—127° (absorption max. at 2961, 3074, and 3251 A.), converted by EtOH into the a-OEl-compound (Et 8-benzoyl-1-naphthoate \(\psi\)-ester) (V), m.p. 166° (absorption max. at 3085 and 3259 A.) (cf. Mason, loc. cit.). The Ag salt of (A) with EtI gives Et 8-benzoyl-1-naphthoate (normal form) (VI), m.p. 134° [absorption max. at 2946 A.; cf. 1:8-C₁₀H₆(CO₂Et)₂ (VIII), max. at 2950 A.]. (V) and (VI) are separated by chromatography (Al₂O₃; C₆H₆-light petroleum), whereby it is proved that crude (V), prepared from (IV), contains some (VI). The crude oily chloride from (I) reacts with EtOH more readily than crude oily chloride from (I) reacts with EtOH more readily than does pure (IV) and gives mainly (VI); the crude product thus contains much 8:1-C₁₀H₈Bz·COCl. With C₆H₆-AlCl₂, (IV) gives 25—50% of (III); the oily chloride gives HCl and tars. R. S. C. Structure of pyrethrolone and related compounds. II. T. F. West (J.C.S., 1944, 239—242; cf. A., 1944, II, 136).—(+)-Pyrethrolone (I) with Me₂SO₄-Et₂O-KOH gives a Me ether (II), b.p. 87°/0·3 mm., | $a_1^{20} + 97 \cdot 3^{\circ}$ in EtOH [regenerated from its semicarbazone (III), m.p. $183 - 184^{\circ}$, $[a]_D^{20} - 82^{\circ}$ in C_5H_5N , by aq. KHSO₄-Et₂O], whereas the semicarbazone, m.p. 208° , of (I) with MeOH-H₂SO₄ yields dl-pyrethrolone Me ether (IV), b.p. $85^{\circ}/0.2$ mm. (semicarbazone, m.p. $190 - 197^{\circ}$, $[a]_D \pm 0^{\circ}$ in C_5H_5N). (III) with Me₂SO₄-H₂SO₄ gives (IV). (II) and (IV) are probably stereoisomeric; neither is reducible by the Ponndorf-Meerwein method. An explanation for the failure of HC4 2C:CH-CH2-CH:CHMe derivatives of (I) to undergo Diels-Alder condensation (cf. LaForge, et al., A., 1938, II, 372) is based on the postulation of a cis-configuration for the pentadienyl side-chain. A new formulation (A) for (I) is proposed. A. T. P. Preparation of substituted cyclopentanones. Catalytic hydrogen- Preparation of substituted cyclopentanones. Catalytic hydrogenation of (III) $a\beta$ -unsaturated carbonyl compounds, (IV) 2: 3-diphenyl- Δ^3 -cyclopentenone. H. A. Weidlich and M. Meyer-Delius (Ber., 1941, 74, [B], 1195—1212, 1213—1218).—III. Catalytic hydrogenation of C:C•CO in acid is an ionic reaction, occurring by 1:2-addition to the C:C or C:O; in alkaline solution the reaction is at. and occurs by 1:4-addition. Hydrogenations listed below are by H_2 -PdO₂ in EtOH; "acid" and "alkali" denote addition of a little conc. HCl or KOH-EtOH, respectively. In alkali CHPh:CH•COPh gives Ph•[CH₂]*COPh (100%) and in acid gives [CH₂]*Pl₂ (100%). Reduction of CHPh:CH•CHO in alkali becomes very slow after absorption of 1 H, and a good yield of very slow after absorption of 1 H₂ and a good yield of Ph₂[CH₂]₂·CHO is obtained (cf. lit.). 4-Hydroxy-3: 4-diphenyl-Ph'[CH₂]₂·CHO is obtained (cf. lit.). 4-Hydroxy-3: 4-diphenyl-Δ³-cyclopentenone (anhydroacetonebenzil), m.p. 146—147°, b.p. 190°/0·4 mm. [2:4-dinitrophenylhydrazone, m.p. 262° (decomp.)], in alkali absorbs 1 H₂, giving a partly dehydrated mixture, whence by dehydration in boiling AcOH, 3:4-diphenyl-Δ³-cyclopentenone (I), m.p. 108—109° [semicarbazone, m.p. 219° (decomp.); 2:4-dinitrophenylhydrazone, m.p. 252° (lit. 259—260°) (decomp.)] is chicked in cold 2.5 Hydrochydration (decomp.)] (decomp.)], is obtained; in acid ~2.5 H₂ are absorbed, yielding (I) and 1:2-diphenyl-Δ¹-cyclopentene, b.p. 119°/0.4 mm., the structure of which is proved by oxidation to αε-diphenyl-n-pentane-αε-dione, m.p. 64.5—65°. In alkali or acid (I) yields only cis-3:4-diphenyl-cyclopentanone, m.p. 106°. Dimerisation during hydrogenation occurs by way of C·CH·C·OH which either adds I H or dimerises, and will thus occurs the state of the control will thus occur only when reduction is slow, i.e., in alkaline solution; thus, CO(CH:CHPh)₂ in acid gives CO([CH₂]₂·Ph)₂ (2:4-dinitro-phenylhydrazone, m.p. 115—117°) and OH·CH([CH₂]₂·Ph)₂, but in alkali gives Ph·[CH₂]₂·CO·CH:CHPh and (CHPh:CH·CO·CH₂·CHPh)₂. The steric course of reduction may be predicted in simple cases: 1:2-addition in acid resembles simple hydrogenation of an isolated C:C and leads to the energy-licher cis-form: 1:4-addition in alkali leads to CH-C'COH ketonis. ticher cis-form; 1: 4-addition in alkali leads to CH-C:C-OH, ketonisation of which leads to the energy-poorer trans-form. E.g., $3-\beta$ -naphthyl- Δ^2 -cyclopentenone-2-acetic acid (as Me ester) in alkali maphthyl- Δ^2 -cyclopentenone-2-acetic acid (as Me ester) in alkali rapidly absorbs 1 H₂ to yield cis-3-β-naphthylcyclopentanone-2-acetic acid, m.p. 106°, b.p. 192°/0·3 mm., the trans-form of which was obtained by Koebner et al. (A., 1939, II, 75) by H₂-Pd-SrCO₃; their x-norequilenin was similarly a trans-form. Cyclisation of [CH₂]₄Bz₂ gives 2-benzoyl-1-phenylcyclopentanol (II) and thence 1-benzoyl-2-phenyl- Δ^2 - (III), m.p. 97° (2:4-dinitrophenylhydrazone, m.p. 132—140°), and $-\Delta^1$ -cyclopentene (IV), m.p. 42° (2:4-dinitrophenylhydrazone, m.p. ~165–170°) (cf. Bauer, A., 1914, i, 701). (II) is a mixture: trans-elimination of H₂O from the trans-form gives (IV). hydrazone, m.p. ~165—170°) (cf. Bauer, A., 1914, i, 701). (11) is a mixture; trans-elimination of H₂O from the trans-form gives (IV), whereas (III) is derived from cis-(II). In alkali, (III) or (IV) gives only trans-2-benzoyl-1-phenylcyclopentane, m.p. 75—76° (2:4-dinitrophenylhydrazone, m.p. 129—130°), but in acid gives cis-1-phenyl-2-a-hydroxybenzylcyclopentane, m.p. 104—106°, oxidised by CrO₃ to cis-1-phenyl-2-benzoylcyclopentane, m.p. 42—43° (2:4-dinitrophenyl-hydrazone, m.p. 132—134°). IV. Hydrogenation of 2:3-diphenyl-Δ²-cyclopentenone (V) in alkaline FtOH in presence of Pd gives trans-2:3-diphenylcyclo- alkaline EtOH in presence of Pd gives trans-2: 3-diphenylcyclo- pentanone (VI), m.p. 97° (semicarbazone, m.p. 192°) (cf. Burton et al., A., 1939, II, 567), but in EtOH + 1 drop of conc. HCl gives cis-1:2-diphenylcyclopentane (VII), (VI), and, sometimes, trans-trans-2:3-diphenylcyclopentanol (VIII), m.p. 110—112° [oxidised by CrO₃-AcOH to (VI)]. The alkaline reduction and formation of (VIII) and compared to the relation of the conformation conformati (VII) in acid conforms to the rules laid down above; formation of (VI) and (VIII) in acid is due to hindrance by the 2 Ph slowing reaction so that 1: 4-addition occurs. In presence of CH(OEt)₃, addition to the O is largely prevented and hydrogenation in acid gives, by way of the ketal, cis-2: 3-diphenylcyclopentanone, m.p. 71° (semicarbazone, m.p. 189—190°), as well as some (VI). In presence of PtO₂ in acid, (V) gives trans-cis-2: 3-diphenylcyclopentanol (IX), b.p. 142—144°/0·3 mm., oxidised to (VI) by CrO₃-AcOH. R. S. C. Dehydrogenation of cyclohexanols [to cyclohexanones].—See B., 1944, II, 156. Derivatives of 5-methoxyhydrindene and 6-methoxy-1:2:3:4tetrahydronaphthalene. Synthesis of β -2-carboxy-5-methoxyphenylpropionic acid. W. S. Johnson, J. M. Anderson, and W. E. Shelberg (J. Amer. Chem. Soc., 1944, 66, 218—222).—m-OH·C₆H₄·CHO, CH₂(CO₂H)₂, and a little piperidine in C₅H₅N at 100° give m-OH·C₆H₄·CH·CO₂H, m.p. 194—195°, hydrogenated (PtO₂; MeOH) to m-OH·C₆H₄·[CH₂]₂·CO₂H, m.p. 111·8—112·5°, which in HF gives 5· (85%) (I), m.p. 184—185·5° [semicarbazone, m.p. 222—222·5° (decomp.; bath preheated at 215°); acetate, m.p. 92·8—33·2°], and 7-hydroxy-1-hydrindone (13%), m.p. 110·5—111·5° [semicarbazone, m.p. 240—241° (decomp.); 2:4-dinitro-, m.p. 282—284° (decomp.; uncorr.), and p-nitro-phenylhydrazone, m.p. 209—211·5° (decomp.; bath preheated at 200°)], which is also obtained in 78% yield from 5-methoxyhydrindene by CrO₂ in AcOH-H₂O at 5—10° and then room temp. With NaOMe and HCO₂Et in C₆H₄-N₂, (II) gives 5-methoxy-2-hydroxymethylene-1-hydrindone (III) tetrahydronaphthalene. Synthesis of β -2-carboxy-5-methoxyphenyl-H₂O at 5—10° and then room temp. With NaOMe and HCO₂Et in C₈H₆-N₂, (II) gives 5-methoxy-2-hydroxymethylene-1-hydrindone (III) (98%), m.p. 138—138·5° (decomp.) (purple FeCl₃ colour) [bis-2: 4-dinitrophenylhydrazone, m.p. 223—226° (decomp.; bath preheated at 220°)], which at 140—150° gives HCO₂H and 5-methoxy-2-1'-keto-5'-methoxy-2'-hydrindenylidenemethyl-1-hydrindone, m.p. 213—215° (decomp.; bath preheated at 205°), and with NH₂OH,HCl in AcOH at room temp. gives di-(1-keto-5-methoxy-2-hydrindenylidenemethyl)-hydroxylamine (IV) (90%), m.p. 216—218° (decomp.; bath preheated at 214°). The supposed nitrile of Robinson et al. (A., 1939, II, 511) is probably a similar bimol, hydroxylamine derivative. With is probably a similar bimol. hydroxylamine derivative. With is probably a similar bimol. hydroxylamine derivative. With $\mathrm{Br-Et_2O}$, (II) gives 2-bromo-5-methoxy-1-hydrindone (95%), m.p. $107.8-108.5^\circ$ [2:4-dinitrophenylhydrazone, m.p. $202.5-204.5^\circ$ (decomp.; bath preheated at 195°)], converted by conc. aq. NaCN in boiling EtOH into 2-cyano-5-methoxy-1-hydrindone (V) (73%), m.p. $96-96.5^\circ$ [2:4-dinitrophenylhydrazone, m.p. $217.5-219.5^\circ$ (decomp.; bath preheated at 215°); semicarbazone, m.p. $219.5-220^\circ$ (decomp.; bath preheated
at 214°)], which could not be obtained from (III) or (IV). 6-Methoxy-1:2:3:4-tetrahydronaphthalene and $\mathrm{Pb}(\mathrm{OAc})_4$ in AcOH at room temp. give exothermally (cooling required) 1-acetoxy-6-methoxy-1:2:3:4-tetrahydronaphthalene (62%), b.p. 118.5° /0.5 mm., which is unstable, particularly in presence of required) 1-acetoxy-6-methoxy-1:2:3:4-tetrahydronaphthalene (62%), b.p. 118·5° [0·5 mm., which is unstable, particularly in presence of traces of acid, and with a little KHSO₄ at 120° rapidly gives AcOH and 7-methoxy-1:2-dihydronaphthalene (VI), b.p. 94—95° [2—3 mm. 48% HBr converts (VI) into a dimeride (? 7-methoxy-3-6'-methoxy-1':2':3':4'-tetrahydro-1'-naphthyl-1:2-dihydronaphthalene), m.p. 75·5—76·5°, supposed by Long et al. (A., 1942, II, 96, m.p. 73—74°) to be (VI). \$B-2-Carboxy-5-methoxyphenylpropionic acid, m.p. 203·5—204°, is obtained from (IV) by boiling 2% aq. NaOH (61% yield), from (V) by boiling 5% KOH (88% yield), and from (VI) by KMnO₄ in COMe₂ at 0—3° and then room temp. (40% yield), and is cyclised to (II) by distilling with BaO. Unless otherwise stated, m.p. are corr. R. S. C. Introduction of the angular methyl group. II. cis- and trans-8-Methyl-1-hydrindanone. W. S. Johnson (J. Amer. Chem. Soc., 1944, 66, 215—217; cf. A., 1943, II, 330).—cis-1-Keto-2-benzylidene-9-methyldecahydronaphthalene (I) with KMnO₄ (excess) in COMe₂ at 2—4° and then 0° gives crude β-2-carboxy-2-methylcyclohexylpropionic acid, m.p. 99·5—103°, converted by distillation with BaO at 300—320° into cis-8-methyl-1-hydrindanone, m.p. 34·5—36°, b.p. 106°/20 mm. (oxime, m.p. 87—88°; 2 : 4-dinitrophenylhydrazone, m.p. 140·5—141°), which only slowly gives the semicarbazone, m.p. 224·5—225·5° (decomp.) (cf. lit.). The transisomeride of (I) gives similarly trans-β-2-carboxy-2-methylcyclohexylpropionic acid, m.p. 179—180°, and thence trans-8-methyl-1-hydrindanone, b.p. 109°/20 mm. (oxime, m.p. 115—115·5°; 2 : 4-dinitrophenylhydrazone, m.p. 146·5—147°, resolidifies, remelts 153·5—154°), which readily forms the semicarbazone, m.p. 242—243° (decomp.) (cf. lit.). M.p. are corr. comp.) (cf. lit.). M.p. are corr. Synthesis of 5-hydroxy-1-keto-6: 7-dimethoxy-3-ethyl-1:2:3:4-tetrahydronaphthalene. K. Wallenfels (Ber., 1941, 74, [B], 1428—1433).—2:3:4:1-(OMe)₃C₆H₂·CHO (I) (improved prep.), b.p. 161—163°/10 mm., (PraCO)₂O, and PraCO₂K at 180° give 2:3:4-trimethoxy-a-ethyleinnamic acid (II), m.p. 117°. CHEtBr-CO₂Et, (I), Zn, and a trace of I in boiling C₆H₆ give an Et ester, m.p. 62°, b.p. 176—177°/3 mm., hydrolysed to (I) by boiling 10% KOH-EtOH. H₂-Pd-BaSO₄ reduces (II) in AcOH to a-2:3:4-trimethoxybenzyln-butyric acid, b.p. 156—157°/0·05 mm., which with boiling SOCl₂-C₄H₆ gives the acid chloride and thence the oily CHN₂-ketone. With A g₁O-MeOH at 50° and then the b.p. this gives the Me ester, b.p. 128—130°/0·1 mm., hydrolysed by boiling 2N-NaOH to β -2:3:4-128—130°/0·1 mm., hydrolysed by boiling 2n-NaOH to β-2:3:4-trimethoxybenzyl-n-valeric acid, b.p. 152—153°/0·05 mm., which with SOCl₂-light petroleum and then SnCl₄-C₆H₆ gives 1-keto-5:6:7-trimethoxy-, b.p. 121—122°/0·05 mm., or with AlCl₃ in CS₂ at 0° and then the b.p. gives 5-kydroxy-1-keto-6:7-dimethoxy-3-ethyl-1:2:3:4-tetrahydronaphthalene (III), m.p. 115°. With SeO₂ in AcOH or EtOH, (III) gives a red dye, 1:3:2:5:6:7:4-OC₁₀HEt(OH)₂(OMe)₂:O (absorption max. at 553 mμ.), sol. in NaHCO₃ with a violet and in NaOH with a blue colour, reduced by Na₂S₂O₄ to the colourless quinol and converted by CH₂N₂ into the lighter-coloured (OMe)₂-quinone, insol. in NaHCO₃ or NaOH, which lighter-coloured (OMe)₄-quinone, insol. in NaHCO₃ or NaOH, which in boiling, dil. HCl gives 1:3:5:2:6:7:4-O:C₁₀HEt(OH)(OMe)₃·O, insol. in NaHCO, but sol. in NaOH with a red colour. Ketones, ketonic acids, and enol-lactones. IV. cyclo-Pentane-1:3-diones. P. Ruggli and J. Schmidlin (Helv. Chim. Acta, 1944, 27, 499—502).—2:4-Diphenylcyclopentane-1:3-dione (I), m.p. 204— 205°, has been obtained by a second method (cf. Eskola, Diss., Helsinski, 1937). Like other supposedly cyclopentane-1: 3-diones, it possesses unusual properties which may be proper to these compounds or indicative of a different structure. CO(CH₂Ph)₂ and Et₂C₂O₄ give 3:5-diphenylcyclopentane-1:2:4-trione, m.p. 190—192°, hydrogenated (Raney Ni-EtOH at 50°) to 5-hydroxy-2:4-diphenylcyclopentane-1:3-dione (II), m.p. 173—175° (decomp.), which phenylcyclopentane-1: 3-tuone (11), in.p. 113—115 (decomp.), mach dissolves in cold Na₂CO₃ and is converted by Ac₂O-C₃H₅N at room temp. into a diacetate, m.p. 114·5—115·5°. Dehydration of (II) in anhyd. glycerol at 185—190° leads to 3: 4-diphenyl-Δ⁴-cyclopentene-1:3-dione, m.p. 146—146-5°, which dissolves in warm dil. NaOH, does not give a colour with FeCl₃, and is hydrogenated (Raney Ni in C6H6 at room temp.) to (I). Labile union of oxygen to carbon. Photo-oxidation of hetero-coerdianthrone. C. Dufraisse and M. T. Mellier coerdianthrone. C. Dufraisse and M. T. Mellier (Compt. rend., 1942, 215, 541-543).—Irradiation of heterocoerdianthrone (7': 7") (I) (in CS2) causes rapid oxidation with disappearance of the violet colour, and formation of the photo-oxide (II) (cf. Scholl et al., A., 1932, 617), reconverted into (I), with evolution of O_2 , at 150°. In C_5H_5N (6 hr.), followed by heating with C, (I) yields (II) and the 9: 10-dihydroxy-9:10-dihydro-derivative (III). Colourless solutions of (II) in C_5H_5N in sunlight become similar in colour to that observed with (I) in C_5H_5N . Change of solvent and use of C partially transforms (II) into (III); after irradiation of (I) in C_5H_5N for 3 min., (II) is formed but is more difficult to purify. Substituted naphthaquinones.—See B., 1944, II, 197. Optically active a-phylloquinone (vitamin- K_1). P. Karrer, H. Simon, and E. Zbinden (Helv. Chim. Acta. 1944, 27, 317—319).—a-Phylloquinone (I), obtained by condensation of 2:1:4- $C_{10}H_5$ Me(OH)₂ with natural phytol and anhyd. $H_2C_2O_4$ in dioxan followed by Ag_2O in $Et_2O + Na_2SO_4$, has $[a]_D^{20} \sim -0.4^{\circ} \pm 0.04^{\circ}$ in C_8H_6 . Dihydro-a-phylloquinone diacetate, obtained from (I) and Zn dust in $Ac_2O-C_5H_5N$, has $[a]_D^{20} \sim +1.5^{\circ}$ to $+1.65^{\circ}$ or $\sim 1.8^{\circ}$ in EtOH, when derived from phytol with $[a]_D + 0.06^{\circ}$ or $+0.2^{\circ}$. H. W. (A) Structure of hydroxyanthraquinones in their salts. Homopolar (pseudo-)ammonium salts. Mesomerism. (B) Formation of [substituted ammonium salts in solution in their basic components and of metal complex salts with ammonia and amines. R. Scholl [(A) with P. J. Dahll]. (0) Structure of anthraquinol-1-carboxy-lactones and their salts. R. Scholl, K. Meyer, and C. Seer (Ber., 1941, 74, [B], 1129—1170, 1171—1181, 1182—1189).—(A) Salts are prepared containing: 1-hydroxyanthraquinone and 1 mol. of NH₃, NH₂R (R = Me, Et, and Pr^a here and below), NHMP₂ and NH₃, NH₂R (K = Me, E., and PI here and below), NH₂R, NH₂R, NH₂E₁; 2-hydroxyanthraquinone and 1 mol. of NH₃, NH₂R, NH₂R, NMe₃, NEt₃, and 1-ethylpiperidine (I); alizarin and 1 mol. of NH₃, NH₂Et, NH₂Pr^a, NHR₂, NMe₃, NEt₃, (I), and C₅H₅N, or 2 mols. of NH₃ and NH₂Me; hystazarin with 2 mols. of NH₃ and piperidine; quinizarin and 1 mol. of NH₃, NH₂Et, NH₂Pr^a, NHMe₂, or NHEt₂, or mols. of NH₂Me; anthrarufin and 1 mol. of NH₂ or 2 mols. of NH₂R; anthraflavin and 1 mol. of NHPr^a₂, NMe₃, NEt₃, or (I), and 2 mols. of NH₃, NH₂R, or NHR₂; purpurin and 1 mol. of NHR₂, NR₃, or (I), 2 mols. of NH₃, NH₂Et, or NH₂Pr^a, 2·5 mols. of NH₃, or 3 mols. of NH₂Me; when no salt is recorded in these series, none could be obtained. Prep. was by gaseous NH₃ or by an excess of the liquid amine at room temp. or 20° above its b.p. Colours of the salts are of three types, yellow to orange-red or brown, pink to red, or bluish-violet to blue. Colour in solution often differs from that of the solid and light-coloured solids (or base-free anthraquinone) often separate from dark-coloured solutions. The colour of solutions is often reversibly changed by addition of a second solvent. The depth of colour and tendency to salt-formation decrease for any one anthraquinone from primary through sec. to tert. bases; salt-formation thus involves linkings R.O.H←NR,. Differences in colour are due to existence of the separate mesomeric forms, e.g., the series (A)-(B)-(C)-(D) and $(E)-(\hat{F})-(G)$; these are termed electrotropic forms. Salts, solid or in solution, may exist as equilibria with one form largely preponderating. The yellow-orange forms are wholly or mostly the "el.-benzoid" form (A), (E), etc., and may be written, e.g., $(A \leftrightarrow B)$; the blue or violet forms are mainly or wholly (D), (G), etc., termed "el.-quinoid," and may be written $(A \leftrightarrow D)$ etc.; the red forms are (B) or (C) and (F), are termed "el.-carbeniates," and may be written $(E \leftrightarrow F)$ and (E) are the conditions the transfer of (E) and (E) and (E) are the conditions the transfer of (E) and (E) and (E) are the conditions the transfer of (E) and (E) are the conditions the transfer of (E) and (E) are the conditions the transfer of (E) and (E) are the conditions the transfer of (E) and (E) are the conditions etc.; decision between (B) and (C) for the red 1-OH-compounds is impossible. Metal lakes are similarly considered to be, e.g., $(H \leftrightarrow l)$, $J \longleftrightarrow K$) (M = metal) etc. (B) The colour of solutions of hydroxyanthraquinones in bases or mixed bases is used to determine the "activity" of the bases. These activities are in the same qual. order as the dielectric consts. so long as the latter do not vary greatly. (c) Salts of anthraquinol-1-carboxylactones which are capable of electropism in the way outlined above are orange, red, or blue according to the nature of the base, solvent, or mixture of solvents; their general colour behaviour resembles that of hydroxyanthraquinones. Thus, red salts of anthraquinol-1-carboxylactone (A., 1930, 1588) are el.-lactoid (
$L \leftrightarrow M$) and blue salts are el.-furoid $(L \longleftrightarrow M)$. Absorption spectra support this view. #### IV.—STEROLS AND STEROID SAPOGENINS. Water-in-oil emulsifying agents. Π. Synthesis of cholesteryl and cetyl esters. E. L. Cataline, L. Worrell, S. F. Jeffries, and S. A. Aronson (J. Amer. Pharm. Assoc., 1944, 33, 107—108; cf. Powers et al., B., 1940, 402).—The following were prepared from the acid (0·02), alcohol (0·02 or 0·04), and p-C₆H₄Me·SO₃H (0·0015 mol.) in C₆H₆ (150 ml.) at 130—140° (bath) for 3 hr.: cholesteryl n-butyrate, m.p. 102° (clears at 110°), n-hexoate, m.p. 98—99°, laurate, m.p. 91—92°, myristate, m.p. 80° (86°), palmitate, m.p. 89—90°, stearate, m.p. 82—83°, and H succinate, m.p. 175—175-5°; dicholesteryl oxalate, m.p. 226—227°, succinate, m.p. 175—175-5°; and adipate, m.p. 195° (222°); cetyl laurate, m.p. 40—41°, myristate, m.p. 47—48°, palmitate, m.p. 53—54°, stearate, m.p. 56-5-7°, and λ-hydroxystearate, m.p. 68—69°; dicetyl oxalate, m.p. 56·5—57°, succinate, m.p. 58·5—59°, and adipate, m.p. 56·5—57°. The use of these substances for emulsions is discussed. Bromination of cholesteryl benzoate. H. Bretschneider, Z. Földi, F. Galinovsky, and G. von Fodor (Ber., 1941, 74, [B], 1451—1455).—Cholesteryl benzoate (I) and Br in CHCl₃ at 1° give stereoisomeric dibromides (II), m.p. 138—140° (after sintering), 136·5—137·5° (vac.), $[a]_1^{18} - 40\cdot31^\circ$ in CHCl₃, and (III), m.p. 158—160° (decomp.), $[a]_1^{20} + 80^\circ$ in CHCl₃ (cf. Obermüller, A., 1891, 298; Dorée et al., A., 1916, i, 261; Petrow, A., 1937, II, 417). The structure of (II) is proved by its normal mol. wt. (cryoscopic in C_6H_6), behaviour as a single substance on chromatography (Al₂O₃), reduction to (I) by H_2 -Pd-C in Et₂O, and by conversion into (III) by heating in EtOH. In boiling C_6H_6 or CHCl₃. (II) or (III) gives an equilibrium mixture containing 79—83% of (III) as judged by [a]. The 5:5′-dibromo-3:3′-dibenzoyloxy-6:6′-dicholestanyl of Petrov (loc. cit.) is (III). Steroids and sex hormones. XCIV. Introduction of a hydroxyl group in position 5 of the sterol skeleton by hydrogenation of 5:6-or 4:5-oxido-compounds. P. A. Plattner, T. Petrzilka, and W. Lang (Helv. Chim. Acta, 1944, 27, 513—524).—Hydrogenation of cholesteryl acetata a oxide (I) leads smoothly to the production of cholesteryl acetate a-oxide (I) leads smoothly to the production of 5-OH-compounds, whereas a similar treatment of the β -compounds gives 6-OH-derivatives, whilst the oxido-O and that attached to Cu) are in part removed. Hydrogenation of 4:5- or 5:6-oxides in the steroid series gives a means of introducing OH at C(5). course of the change appears to depend considerably on expericourse of the change appears to depend considerably on experimental conditions, the configuration of the oxide, and the presence of substituents at vicinal C atoms. (I) is hydrogenated homogeneously (PtO₂ in AcOH) to 5-hydroxy-3(β)-acetoxycholestane (II), m.p. 185—185.5°, [a]_D +12.5°, +10.7° (c = 0.83, 0.423) in CHCl₃, which gives a very stable chromate with CrO₃ in AcOH, hydrolysed [as is (II)] to $3(\beta)$: 5-dihydroxycholestane (III), m.p. 224—225°, [a]_D +20.6°, +16.9° (c = 0.477, 0.860) in CHCl₃, converted by boiling Ac₂O (2 hr.) into (II) and by AcCl-NPhMe₂ in boiling CHCl₃ into the $3(\beta)$: 5-diacetate, m.p. 140—141°, [a]_D +31.8° (c = 1.220) in CHCl₃. (III) is oxidised by CrO₃ in 90% AcOH at room temp. to 5-hydroxy-3-ketocholestane, m.p. 205—208°, [a]_D +40.0° in CHCl₃, dehydrated by boiling Ac₂O to Δ 4-cholestenone. The product obtained by the action of per-acids on cholesteryl acetate is an obtained by the action of per-acids on cholesteryl acetate is an additive compound (A), m.p. $114-115^\circ$, of (I) and cholesteryl acetate β -oxide (IV), m.p. $113-114^\circ$, $[a]_D - 1 \cdot 0^\circ$ ($c = 1 \cdot 004$) in CHCl₃, separable into its components by chromatography over A_1O_3 . (A) is also obtained from cholestane-3: 5: 6-triol. (IV) is hydrolysed (boiling 0.5N-NaOH-MeOH) to cholesterol β-oxide, m.p. hydrolysed (bolling 0-0N-NaOH-MeOH) to cholesterol β -oxide, m.p. 132°, $[a]_D + 10 \cdot 3^\circ$ ($c = 0 \cdot 509$) in CHCl₃, and is hydrogenated (PtO₂ in AcOH) to cholestane (V), m.p. 80—81°, cholestanyl 3(β)-acetate (VI), m.p. 109—110°, and 6-hydroxy-3(β)-acetoxy- (VII), m.p. 143—144°, $[a]_D - 6 \cdot 6^\circ$ in CHCl₃ [oxidised to 6-keto-3(β)-acetoxy-, m.p. 128—129°], acetylated (Ac₂O-C₅H₅N at room temp.) to 3(β): 6-diacetoxy-, m.p. 137·5—138·5°, -cholestane. Hydrogenation (PtO₂N) (COH) (α) AcOH) of (A) with subsequent chromatography leads to (V), (VI), and (VII) with a mixture probably of (VI) and (II). Absorption of H₂ by (A) is not observed in presence of PtO₂-EtOAc, PtO₂-EtOH, Raney Ni in EtOH or EtOH + a little conc. NaOH, Pd-CaCO₂ in EtOAc, or PtO₂ in EtOAc containing a little AcOH. 5:6-Oxido-tholestane, m.p. $79\cdot7$ — $80\cdot5^\circ$, $[a]_D$ — $55\cdot9^\circ$ in CHCl₃, is hydrogenated to (V) and a non-cryst. product, oxidised (CrO_3) in AcOH at room to (V) and a non-cryst. product, oxidised (CrO₃ in AcOH at room temp.), and then separated into cholestan-6-one, m.p. 98—99°, and 5-hydroxycholestane, m.p. $109-110^\circ$, $[a]_D+11\cdot2^\circ$, $+9\cdot3^\circ$ (c=0.89, 0.92) in CHCl₃. 4:5-Oxidocholestane ["coprostene oxide"], m.p. 95—96°, $[a]_D+80\cdot3^\circ$ in CHCl₃, is hydrogenated (PtO₂ in AcOH) to 5-and 4-, m.p. $187-187\cdot5^\circ$, $[a]_D+2\cdot8^\circ$ in CHCl₃, -hydroxycholestane. Cholesterol α -oxide has $[a]_D^{3d}-43\cdot1^\circ$ in C_6H_6 (cf. lit.). M.p. are corr. H. W. Steroids and sex hormones. XCIII. Hydrogenation of the two oxides of trans-dehydroandrosterone acetate. L. Ruzicka and A. C. Muhr (Helv. Chim. Acta, 1944, 27, 503—512).—trans-Dehydroandrosterone acetate is converted by o-CO₂H·C₆H₄·CO₃H in CCl₄ into a-[I], m.p. 222—224°, [a]₁¹⁴ —12° in CHCl₃, [a]₁¹⁶ —12·4° in COMe₂, and β-(II), m.p. 186—187°, [a]₁¹⁶ +40·7° in CHCl₃, +47° in COMe₂, 5: 6-oxido-3(β)-acetoxyandrostan-17-one. (I) is hydrogenated (PtO₂ II) ACOH) to 5: 17 dihydrogen 3(β) acetoxyandrostan-17-one. -5.6-oxido-3(β)-acetoxyandrostan-17-one. (I) is hydrogenated (PtO₂ in AcOH) to 5: 17-dihydroxy-3(β)-acetoxyandrostane (III), m.p. 192—197°, oxidised (CrO₃ in AcOH) to 5-hydroxy-3(β)-acetoxyandrostane (IV), m.p. 152·5—153·5° and 162·5—163·5° after resolidification, [a]₃ +59·3° in CHCl₃, which is stable towards Ac₂O-C₆+₅N and B₂Cl-C₅+₅N in the cold and is hydrolysed (K₂CO₃ in aq. MeOH) to 3(β): 5-dihydroxyandrostan-17-one, m.p. 281—282° (vac.; partial sublimation), [a]₃ +92·8° in MeOH; this is oxidised [Al(OBu²)₃ in abs. COMe₂-dioxan] to Δ⁴-androstene-3: 17-dione, m.p. 171—172·5°, [a]₃ +190·5° in CHCl₃. Partial hydrogenation (PtO₂ in AcOH) of (I) gives unchanged material, and (IV) which is reduced to (III), whereas partial hydrogenation in EtOH affords α-5: 6-oxido-17-hydroxy-3(β)-acetoxyandrostane, m.p. 146—147° and 152·5—153·5° after resolidification, [a]₃ -66° in CHCl₃ [yielding α-5: 6-oxido-3(β): 17-diacetoxyandrostane, m.p. 165—166°, [a]₃ -69·3°, hydrogenated to (III)]. Total hydrogenation (PtO₂ in AcOH or, more slowly, in EtOH) of (II) leads to 17(a)-hydroxyandrostane (V), m.p. (M) genated to (III)]. Total hydrogenation (PtO₂ in AcOH or, more slowly, in EtOH) of (II) leads to 17(a)-hydroxyandrostane (V), m.p. $164-166^\circ$, $[a]_D^{40}+13\cdot 1^\circ$ in CHCl₃, oxidised to androstan-17-one (VI), m.p. $119\cdot 5-120\cdot 5^\circ$, $[a]_D^{40}+87\cdot 8^\circ$ in CHCl₃; partial hydrogenation (PtO₂ in AcOH) gives unchanged material, (V), (VI), and 6:17-dihydroxy-3(β)-acetoxyandrostane, m.p. $204-207^\circ$, oxidised (CrO₂ in AcOH) to 6:17-diketo-3(β)-acetoxyandrostane, m.p. $203-205^\circ$, $[a]_D^{18}+39\cdot 2^\circ$ in CHCl₃. Steroid ketones.—See B., 1944, III, 119. Steroid ketones.—See B., 1944, III, 119. Steroids and sex hormones. XCV. Preparation of 2-keto-, 2(a)-and 2(β)-hydroxy-cholestane. L. Ruzicka, P. A. Plattner, and M. Furrer (Helv. Chim. Acta, 1944, 27, 524—530).—3-Keto-2-cholestanylpyridinium bromide is converted by ρ-NO-C₆H₄·NMe₂ and N-NaOH in CHCl₃-EtOH at 20° into the corresponding nitrone, C₃₅H₅₄O₂N₂, m.p. 178—179° (decomp.), converted by 2N-HCl-Et₂O into form A, m.p. 135—137°, [a]_D +75° in CHCl₃ (cf. Stiller et al., A., 1938, II, 193), of 2:3-diketocholestane; this is converted by Ac₂O-C₅H₅N at 100° into the enol acetate A, m.p. 138—139°, [a]_D +96° in CHCl₃, hydrolysed to homogeneous Δ³-2-ketocholesten-3-ol. This with ρ-C₆H₄Me·SO₂Cl in C₅H₅N at 20° gives the 3-p-toluene-sulphonate (I), m.p. 161—162°, [a]_D +83° in CHCl₃, which is converted by NaI in anhyd. COMe₂ at 160° into Δ³:5-cholestadien-2-one, m.p. 121·5—122·5°, [a]_D —62° in CHCl₃ [hydrogenated (PtO₂ in AcOH) and then oxidised (CrO₃) to cholestan-2-one (II), m.p. 130·5—131·5°, [a]_D +49° in CHCl₃, also obtained by hydrogenation (Raney Ni in EtOH at 70°) and subsequent oxidation of (I)]. Oxidation 131·5°, $[a]_D$ +49° in CHCl₃, also obtained by hydrogenation (Raney Ni in EtOH at 70°) and subsequent oxidation of (I)]. Oxidation of (II) by CrO₃ in 90% AcOH at 60° affords the dicarboxylic acid, $C_{27}H_{46}O_4$, m.p. 194—196° (Me₂ ester, m.p. 59—60°), obtained by Windaus et al. (A., 1915, i, 678) by oxidation of cholestanol. (II) is hydrogenated (PtO₂ in AcOH) to $2(\beta)(?)$ -hydroxycholestane, m.p. 154—155°, $[a]_D$ +33° in CHCl₃, the configuration assigned to which is based on its precipitability with digitonin. With Na and EtOH (II) affords 2(a)(?)-hydroxycholestane, m.p. 178—180°, $[a]_D$ +36° in CHCl₃ (no ppt. with digitonin). M.p. are corr. H. W. Lumiestrone. A. Butenandt, A. Wolff, and P. Karlson (Ber., 1941, 74, [B], 1308—1312).—Irradiating (ultra-violet) estrone (I) in dioxan-N₂ gives lumiæstrone (II), m.p. $268-269^{\circ}$, $[a]_{2}^{21}-43^{\circ}$, $[a]_{3}^{15^{\circ}}-45^{\circ}$ in dioxan [acetate, m.p.
$89-90^{\circ}$; Me ether (III), m.p. $129-130^{\circ}$, $[a]_{2}^{23}-28^{\circ}$ in CHCl₃], which gives an oxime, m.p. $200-202^{\circ}$, and semicarbazone (IV), m.p. 273° (micro), only with difficulty. NaOEt-EtOH at $190-200^{\circ}$ reduces (IV) to deoxolumiæstrone, m.p. 170° (micro), only with difficulty. 170—171°, which could not be obtained by irradiating deoxocestrone. Pd-black at 260° converts (I) into d-isoequilenin (14-epiequilenin), m.p. 267—258°, [a]₁₀²⁰ +152° in dioxan (cf. A., 1939, II, 76), but converts (II) into l-isoequilenin, m.p. 256—258°, [a]₁₀²⁰ -151° in dioxan (dl-compound, m.p. 222—223°) (cf. A., 1940, II, 225). Na-Pr^aOH reduces (III) to lumiastradiol Me ether, m.p. 137—138°, [a]₁₀²⁰ +15·5° in CHCl₃. Since Pd-black isomerises C₍₁₄₎, irradiation of (I) probably isomerises $C_{(13)}$, so that (II) is 13-epiæstrone, but inversion at $C_{(9)}$ may also have occurred. R. S. C. Conversion of Δ^4 -cholestene-3: 6-dione into cholestan-3-ol-6-one by partial reduction. H. Bretschneider (*Ber.*, 1941, 74, [B], 1361—1363).—1 mol. of H_2 is rapidly and a second mol. more slowly absorbed by Δ^4 -cholestene-3: 6-dione. After 2 mols, have been absorbed in presence of Paper Ni in ELOH cholesten 2 at 8 one is absorbed in presence of Raney Ni in EtOH, cholestan-3-ol-6-one is obtained; partial hydrogenation in presence of 20% Pd-C in AcOH gives cholestane-3: 6-dione. Oxidation of cholestenone by oxygen. Formation of progesterone. H. Bretschneider (Ber., 1941, 74, [B], 1360—1361).—O₂ is blown into cholestenone (4 pts.) and V₂O₅ (1 pt.) at 170°; alkali-sol. products are removed. Shaking the Et₂O-solution of the residue repeatedly with conc. HCl removes substances, whence chromatography yields progesterone. Diginin. III. Degradation of diginigenin to a hydrocarbon diginane. C. W. Shoppee (*Helv. Chim. Acta*, 1944, 27, 246—260; cf. A., 1943, II, 151).—Direct oxidation of diginigenin (I) gives mix-A., 1943, 11, 151).—Direct oxidation of diginigenin (1) gives mixtures of neutral and acid products from which individuals cannot be isolated. Treatment of (I) or its semicarbazone with N₂H₄,H₂O-NaOEt in EtOH at 180° leads to a mixture (II) of substances from which deoxodiginigenin (III), C₂₁H₃₀O₃, m.p. 163—164° (hydrate, m.p. 86°), [a]_D¹⁵—71·5°±4° in COMe₂, is most readily isolated. The presence of a sec. OH in (III) is established by the isolation of an acetate, m.p. 61—62°, hydrolysed to (III), but the functions of the remaining, non-reactive O atoms are not elucidated. (III) does not reduce Ag₂O-NH₃ at 20° and gives negative Raudnitz-Pului, Legal, and Zimmermann tests. Under energetic conditions Puluj, Legal, and Zimmermann tests. Under energetic conditions it does not afford an oxime. (III) is readily hydrogenated (PtO₂ in AcOH) to dihydrodeoxodiginigenin (IV), m.p. 190—191°, [a]₁¹⁶ +7·9°±2° in COMe₂ (acetate, an oil), which does not give a yellow colour with C(NO₂)₄. N₂H₄ and alkali yield resinous products or unchanged material from (IV). CrO₃ smoothly oxidises (IV) to dihydrodehydrodeoxodiginigenin (V), m.p. 178—179°, [a]₁¹⁶ +21·5°±2·5° in COMe₂ (oxime, m.p. 159—160), reduced (Wolff-Kishner) to dihydrodeoxydeoxodiginigenin, m.p. 113—115°, becomes opaque at 60—70°, [a]₁¹⁶ +10°±3° in COMe₂, which retains only the two non-reactive O of (I) and does not give a cryst. product with Ac₂O at 200°. (V) is reduced (Clemmensen) and subsequently hydrogenated (PtO₂ in AcOH) to a liquid substance, C₂₁H₃₂₍₃₄₎O, which does not give a yellow colour with C(NO₂)₄ and has not been further studied since isomerisations may have occurred in its production. Puluj, Legal, and Zimmermann tests. Under energetic conditions studied since isomerisations may have occurred in its production. Chromatographic purification of (II) leads also to Δ^{l} -dihydroxyketo-diginene (VI), $C_{21}H_{32}O_3$, m.p. 147° , $[a]_{1}^{17}-24^{\circ}\pm2^{\circ}$ in COMe₂, which gives a non-cryst. diacetate, hydrolysed to (VI). CO does not appear present in (VI), which gives negative Raudnitz-Puluj, Legal, and Zimmermann tests. (VI) gives a marked yellow colour with C(NO₂)₄ and is readily hydrogenated to the saturated dihydroxyketodiginane (VII), m.p. 195—196°, [a]_M¹ —20°±3° in COMe₂, which yields a non-cryst. diacetate, hydrolysed to (VII). CrO₃ oxidises (VII) to (impure) triketodiginane, which gives a 2:4-dinitrophenylhydrazone, m.p. (indef.) 120°, and a dioxime, softens 180—200° (decomp.), and probably contains the non-reactive :CO of (I). The residue left after (II) has been freed as completely as possible from (III) and (VI) gives after hydrogenation (PtO₂ in AcOH) dihydroxydiginane (VIII), plates which become opaque at ~105°, are converted without melting into needles at 140—142° and then have m.p. 153—154°, or, after sublimation, m.p. 155—156°, [a]_M²² +25·4°±2° in CHCl₃; the non-cryst. diacetate is hydrolysed to (VIII). CrO₃ oxidises (VIII) smoothly to diketodiginane, m.p. 140—141°, [a]₀¹ +39·5°±2° in COMe₂ (bis-2:4-dinitrophenylhydrazone, m.p. 185°), reduced (Wolff-Kishner) to diginane, C₂₁H₃₆, m.p. 75—77°, [a]₀³⁰ +24°±4°, [a]₀³⁴ +27·5°±4° in CHCl₃. M.p. are corr. (block); limit of error ~±2°. H. W. Diginin and diginigenin. IV. C. W. Shoppee (Helv. Chim. Acta, 1944, 27, 426—435; cf. preceding abstract).—The experimental results do not justify the consideration of diginigenin (I) as a steroid but they can all be brought into harmony with the structure (A) (R=H) for (I) and $(R=C_7H_{13}O_3)$ for diginin. Such a formulation expresses the possible biogenetic relationship with the steroid digitalis saponins and sapogenins. The observation that mild oxid- genins. The observation that mild oxidation of (I) and its monoacetate does not yield well-defined acids indicates that the CO group is present as ketone in the group indicates that the CO group is present as ketone in the group indicates that the CO group is present as ketone in the group indicates that the CO group is present as ketone in the group indicates that the CO group is present as ketone in the group indicates that the CO group is present as ketone in the group indicates that the Cook in the literature with this arrangement show, like (I), strong reducing action and positive reactions with 1:4-C₁₀H₈(OH)₂ and according to Legal and Zimmermann. The latter reactions are characteristic of activated CH₂ and are not shown by derivatives of (I) obtained by hydrogenation or reduction (Wolff-Kishner). The presence of CH₂·CO· in (I) is confirmed by the isolation of piperonylidenediginigenin (monohydrate, m.p. 128—131°). Diginigenin monoacetate is hydrogenated (PtO₂ in AcOH at 17°) to tetrahydrodiginigenin monoacetate (II), prisms, m.p. 174°, or needles, m.p. 156°, slowly converted by Ac₂O in C₅H₅N into the diacetate, m.p. 120—121°, [a]₁¹/₁ +17°±2° in COMe₂. (II) is oxidised by CrO₃ in AcOH at 15° to the amorphous dihydrodiginigenin monoacetate (semicarbazone, m.p. 226°), which has strong reducing power and gives the three colour changes. Energetic acetylation converts it into a non-cryst., unsaturated compound, apparently an enol diacetate, since it is transformed by ozonisation followed by treatment with hot H₂O into a cryst. acid, C₂₃H₃₂O₇, m.p. 302—304°, the Me ester, m.p. 203—204°, of which does not react with 2:4-dinitrophenylhydrazine sulphate and reduces Ag₅O-NH₃ when heated but not appreciably at 20°. Hexahydrodiginigenin diacetate (III) is quantitatively hydrolysed to the parent compound, which is converted by short treatment with boiling Ac₂O into the monoacetate, m.p. 83°, and with Ac₂O and C₅H₅N at 100° into a non-cryst. diacetate possibly identical w #### V.—TERPENES AND TRITERPENOID SAPOGENINS. Factors determining the course and mechanism of Grignard reactions. XII.—See A., 1944, II, 215. Triterpene resinols and related acids. XVI. Preliminary examination of a major oxidation product of the β -amyrin group. N. Mower, J. Green, and F. S. Spring (J.C.S.. 1944, 256—260).—Oxidation of either β -amyrenonyl acetate, $C_{32}H_{50}O_3$, or β -amyradienonyl acetate (II), $C_{32}H_{48}O_3$, with SeO₂ gives an acetate (II), $C_{32}H_{48}O_5$ ("O₅-acetate"), m.p. 252—253°, $[a]_{2}^{23}+35^{\circ}$ ($c=2\cdot 1$). Similar oxidation of corresponding benzoates gives the benzoate, $C_{37}H_{48}O_5$, m.p. 262—263°, $[a]_{2}^{21}+42^{\circ}$ ($c=2\cdot 0$). Oxidation (H₂CrO₄) of β -amyradienyl-II acetate yields (II) with some (I). Treatment of (II) with KOH affords, in high yield, a yellow amorphous product, acetylation of which does not regenerate (II) but a diacetate, $C_{22}H_{42}O_8$ (?), m.p. 249—251°, $[a]_{2}^{22}+149^{\circ}$ ($c=0\cdot 7$). Hydrolysis (MeOH-HCl) of (II) gives the parent alcohol, $C_{30}H_{44}O_4$, m.p. 280·5—281·5°, reacetylated to (II). It is shown that (II) does not contain either a OH or reactive CO and is resistant to catalytic hydrogenation. This new type of oxidation product is found to be characteristic of the β -amyrin group; SeO₂ treatment of either Me ketoacetyloleanolate or H_2 CrO₄ oxidation of Me acetyldehydro-oleanolate affords an acetate, $C_{33}H_{46}O_7$, m.p. 253—254°, $[a]_{10}^{15}+15\cdot 9^{\circ}$ in C_5H_5N), which is an exact analogue of (II). Hydration of camphene to isoborneol. L. M. Pesin, E. T. Beljanina, and V. A. Pavlovskaja (J. Appl. Chem. Russ., 1943, 16, 129—133).—Hydration of camphene (1 part), m.p. 42°, by "Kontakt" (petroleum sulphonic acids) (3 parts) at 50° (12 hr.) yielded up to 90% of crude cryst. *iso*borneol, m.p. 186°. The best results are obtained by freeing the "Kontakt" from mineral oil but not from $\rm H_2SO_4$. V. B. Camphyl compounds.—See B., 1944, II, 198. 4-Camphorylthiosemicarbazide and 4-camphorylsemicarbazide. J. A. McRac and W. H. Stevens (Canad. J. Res., 1944, 22, B, 45—52).—Camphorylthiocarbimide (I) (from camphoryldithiocarbamic acid and BzCl-C₅H₅N, or HNO₂) with N₂H₄,H₂O in EtOH at 0° gives a little
dicamphorylthiocarbamide, m.p. 176°, and (80%) yield) 4-camphorylthiosemicarbazide (II), m.p. 168° (corr.), [a]_p +17·34° in CHCl₃. (II) with dil. HCl or NaOH at room temp. yields the anhydride, m.p. 239°, [a]_p +281·5° in CHCl₃, which, by conversion into its Ag derivative and treatment with MeI, gives the monomethylanhydride, m.p. 107°, [a]_p -57·4°. (II) with BzCl in C₅H₅N yields the 1-benzoate, m.p. 225°, and with PhNCO N-anilinoformyl-N'-camphorylaminothioformylhydrazine, m.p. 139—148° (decomp.). (II) with the corresponding aldehyde in EtOH gives benzylidene-, m.p. 215—216°, [a]_p +68·6° in CHCl₃, p. m.p. 234°, [a]_p +105·2° in CHCl₃, and m-nitrobenzylidene-, m.p. 140°, anisylidene-, m.p. 1148—149°, [a]_p +83·8° in CHCl₃, and 3 · 4-diethoxybenzylidene-, m.p. 111—113°, [a]_p +34·6° in CHCl₃, -camphorylthiosemicarbazone, but many aldehydes and ketones do not give cryst. products. The possible use of (II) as resolving agent for dl-carbonyl compounds is thus limited. (I) with ArNH·NH₁ in hot EtOH gives the corresponding -4-camphorylthiosemicarbazides: 1-o-, m.p. 171°, [a]_p +34·6° in CHCl₃, and 1-p-tolyl-, m.p. 226°, [a]_p +231·6° in CHCl₃, (decomp., on keeping), 1-p-bromophenyl-, m.p. 227° (decomp.), [a]_p +15·2° in EtOH, 1-(2' · 4-dinitrophenyl-, m.p. 218°, 1-β-naphthyl-, m.p. 191°, [a]_p +51·1° in CHCl₃, in all of which the 1-position assigned to the aryl group is tentative. (I) with NPh₂·NH₂ gives 1 · 1-diphenyl-4-camphorylzhiosemicarbazide, m.p. 223°, [a]_p -26·9° in CHCl₃. Camphorylzhiosemicarbazide, m.p. 223°, [a]_p -26·9° in CHCl₃. Camphorylzhiosemicarbazide, m.p. 223°, [a]_p -26·9° in EtOH, and m-, m.p. 178°, and p-nitrobenzylidene-semicarbazones, m.p. 223°, and other non-cryst. semicarbazone #### VI.—HETEROCYCLIC. Action of sodium cyanide on methyl γ-bromo-αα-dimethylaceto-acetate. C. F. Koelsch (J. Amer. Chem. Soc., 1944, 66, 306—307).—Contrary to Lawrence (J.C.S., 1899, 75, 417) and Conrad et al. (A., 1899, i, 258; 1900, i, 475), CH₂Br-CO-CMe₂·CO₂Me and NaCN give Me β-cyano-βγ-epoxy-αα-dimethyl-n-butyrate (not CN·CH₂·CO-CMe₂·CO₂Me), since hydrolysis yields 4-hydroxy-2-keto-3: 3-dimethyltetrahydrofuran-4-carboxylic acid (I) (not the 5-carboxylic acid), m.p. 213—217° (Me ester, m.p. 104—105°), the structure of which is proved by synthesis. OAc·CH₂·CO-CMe₂·CO₂Me (stable when heated with K₂CO₃ or kept; cf. lit.) and boiling HCl-EtOH give 2: 4-diketo-3: 3-dimethyltetrahydrofuran (86%), b.p. 200—210°/740 mm., 103—107°/6 mm., which with aq. HCl-NaCN gives an oily cyanohydrin, hydrolysed to (I) by boiling 20% HCl. Furfurylamines.—See B., 1944, II, 198. 5-Hydroxy- and -methoxy-flavylium salts. L. R. Row and T. R. Seshadri (Proc. Indian Acad. Sci., 1944, 19, A, 141—145).—Condensation of γ-resorcylaldehyde and its Me ether (improved preps.) in EtOAc-HCl with the appropriate substituted COPhMe gives 3:5:4'-trihydroxy-, m.p. >300°, 3:4'-dihydroxy-5-methoxy-, m.p. 258—260°, 3:5:3':4'-tetrahydroxy-, m.p. >300°, and 3:5:3':4':5'-pentahydroxy-flavylium chloride, m.p. >300°. These substance exhibit negligible fluorescence even in conc. H₂SO₄. The structural factors which affect fluorescence in flavylium salts are discussed; comparison is made with coumarins. F. R. S. Benzopyrylium salts. IV. Nitration of 2:3-diphenylbenzopyrylium perchlorate. R. L. Shriner and R. B. Moffett (J. Amer. Chem. Soc., 1944, 66, 301—302; cf. A., 1942, II, 109).—The position of NO₂ entering 2-phenylflavylium perchlorate (I) is governed by electronic considerations on the assumption that the salt has carbenium structure. In fuming HNO₃ at 0°, (I) gives crude 3-p-nitrophenylflavylium perchlorate (II) (53·5%), m.p. ~217° (decomp.), and thence the ferrichloride (III), m.p. 136—137°. Pure (II) (93·5%), m.p. 235—237° (decomp.), and thence (III), m.p. 137—138°, is obtained from p-NO₂·C₈H₄·CH₂·COCl. o-OH·C₈H₄·CHO (IV), HCl (gas), and 72% HClO₄ in AcOH. In H₂SO₄-HNO₃ at <0° and thence 45°, (I) or (II) gives 3'nitro-3-p-nitrophenylpyrylium perchlorate (V) (>90%), m.p. 258—258·5° (decomp.), also obtained from (IV). p-NO₂·C₆H₄·CH₂·CO·C₆H₄·NO₂-m, HCl, and 72% HClO₄-AcOH. In boiling MeOH, (V) gives 2-methoxy-2-m-nitrophenyl-3-p-nitrophenyl-Δ³-chromene, m.p. 178—179° (177·5—178·5°). R. S. C. Santonin series. I. Two new desmotroposantonins and two new desmotroposantonous acids. M. Huang, C. P. Lo, and L. J. Y. Chu (J. Chinese Chem. Soc., 1943, 10, 126—135).—Santonin (I) and Dioxan diphosphate. E. Baer (J. Amer. Chem. Soc., 1944, 66, 303).—Dioxan (I) (vapour or liquid) and $\rm H_3PO_4$ give (exothermally il liquids) dioxan 1: 4-diphosphate, sinters 78°, m.p. 83—87° (scaled tube), sol. in many org. solvents, dissociating in $\rm H_2O$, stable at room temp. or, for a short time, at 150°, giving at 175° (I) and a little MeCHO, and with $\rm Na_2HPO_4$ (2·2 mols.), $\rm K_3PO_4$, or $\rm Na_3PO_4$ (l·1 mol.) at 120—130° yielding (I) quantitatively. R. S. C. Aldol condensation. III. Aldol-aldehyde addition products and their derivatives. R. H. Saunders and M. J. Murray (f. Amer. Chem. Soc., 1944, 66, 206—208).—Aldolisation of CHRR'CHO leads to 1:3-dioxans (cf. A., 1944, II, 4), which with Ac2O-C5H5N at room temp. yield 6-acetoxy-2:4-dimethyl-, b.p. 85·5°/10 mm., -5-enethyl-2:4-diethyl-, b.p. 100°/7 mm., -5-ethyl-2:4-di-n-propyl-, b.p. 100°/7 mm., -5-ethyl-2:4-di-n-propyl-, b.p. 100°/7 mm., -1:3-dioxan. d₄²⁵, [M]₂₅²⁵, and Raman spectra are recorded for these products and for 6-hydroxy-2:4-dimethyl-, -5-ethyl-2:4-di-n-propyl-, and -5-methyl-2:4-diethyl-1:3-dioxan, b.p. 91·5°/7 mm. The strongest line (at 834 cm.-1) is due to the symmetrical breathing of the ring and a line at 1750 cm.-1 to the ester-CO of the OAc. Compounds containing a neopentyl group show a strong line between 750 and 800 cm.-1 Anhyd. 1% HCl-MeOH at room temp. converts (I) into 6-methoxy-5:5-dimethyl-2:4-dissopropyl-1:3-dioxan, b.p. 110°/20 mm. Further aldolisation of OH-CHPr\$-CMe₂·CHO being impossible, dissociation into Pr\$CHO occurs, which then yields 6-hydroxy-5:5-dimethyl-2:4-dissopropyl-1:3-dioxan and "paraldol" (the derived dimeric aldol), m.p. ~105—107°. Alkyl exchange of carboxylic esters.—See A., 1944, II, 220. Compounds of copper sulphate with pyridine. T. L. Chang and P. F. Hu (J. Chinese Chem. Soc., 1943, 10, 113—115).—CuSO₄,5H₂O in aq. C_5H_5N and hot $C_5H_5N-95\%$ EtOH, on cooling, give Cu^{II} sulphate tetrapyridine monohydrate (I), $CuSO_4,4C_5H_5N,H_2O$. The use of relatively more EtOH affords complexes, $CuSO_4,3C_5H_5N,3H_2O$ (II) and $CuSO_4,2C_5H_5N,2H_2O$ (III); excess of 95% EtOH converts (I) or (II) into (III), and all the complexes lose C_5H_5N in air. Pyridine acids.—See B., 1944, II, 198. Condensation of 2- and 4-methylpyridine derivatives with cinnamaldehyde. E. Späth, G. Kubiczek, and E. Dubensky (Ber., 1941, 74, [B], 873—879).—In absence of ZnCl₂ (cf. Proske, A., 1909, i, 413) this condensation at 150—160° sometimes gives partly the butenol as well as the butadiene. 2-Methylpyridine and CHPh:CH·CHO [I] give α-phenyl-δ-2-pyridyl-Δα-buten-γ-ol (II), m.p. 148°, and Δαν-butadiene, m.p. 123—124° (picrate, m.p. 222°), hydrogenated (Pd-black; AcOH) to δ-phenyl-α-2-pyridyl-n-butan-β-ol, m.p. 36·5—37° (picrate, m.p. 107—109°), and -n-butane (picrate, m.p. 113—114°), respectively. 4-Methylpyridine and (I) give α-phenyl-δ-4-pyridyl-Δα-buten-β-ol, m.p. 115—116°, and only traces of α-phenyl-δ-4-pyridyl-Δα-buten-β-ol, m.p. 157·5—159° [the sole product (m.p. 161—162°) in presence of Ac₂O at 170°]; hydrogenation (Pd-black; MeOH) then gives δ-phenyl-α-4-pyridyl-n-butan-β-ol (picrate, m.p. 109—110°). 2: 6-Dimethylpyridine and (I) give α-phenyl-δ-6-methyl-2-pyridyl-n-butan-β-ol (picrate, m.p. 117—118°) and α-phenyl-δ-6-methyl-2-pyridyl-n-butane (picrate, m.p. 117—118°) and α-phenyl-δ-6-methyl-2-pyridyl-n-butane (picrate, m.p. 87—88°); both condensation products are oxidised to BzOH and 6-methylpyridine-2-carboxylic acid, m.p. 128—129°. 2-Methylquinoline and (I) give only α-phenyl-δ-2-quinolylbutadiene, m.p. 119° [picrate, m.p. 244° (decomp.)], reduced as above to α-phenyl-δ-2- quinolyl-n-butane, an oil (picrate, m.p. 123—124°). Pd-black at 150° converts (II) into a-phenyl-8-2-pyridyl- Δ^a -buten-y-one, m.p. 132—133° (picrate, m.p. 110—111°). R. S. C. 1-Arylaminopyridines. III. Influence of substituents [on the] constitution of anhydro-bases. W. Schneider and W. Riedel (Ber., 1941, 74, [B], 1252—1278).—Treating COArMe with H_2SO_4, H_2O and Ac_2O , first cold and then at $50-80^\circ$, gives 2:4-diaryl-6-methylpyrylium salts, which with NHAr'·NH2 in hot C_4H_4 give 1-arylamino-2:4-diaryl-6-methylpyridinium salts (A). Heating (A) with alcoholic alkali gives highly coloured anhydro-bases which change to brown to red 2:4-diaryl-6-o-aminobenzylpyridines (B). The structure of (B) is shown by conversion of (B; aryl = Ph) into the o-NHBz-derivative, the o-NBz·NO-compound from which in boiling C_4H_6 gives an indazole derivative. The time taken for the anhydrobase to pass into (B) under standard conditions varies from 1·3 to 320 min., according to the substituents present in Ar and Ar'. It is assumed that the anhydro-bases exist as coloured (C) in equilibrium with (D) (by way of H-bridged ring intermediates) and that only (D) isomerises to (B). The electronic nature of the substituents is shown to account semi-quantitatively for the variations in the time required for the change (D) \(\rightarrow (B) \). The colour of the anhydro-base solutions accords approx. with the relative amounts of (C) believed to be present. The following are described. 2: 4-Di-p-., m.p. 228° (corresponding sulphoacetate, m.p. 195°), and -m-tolyl-, m.p. 209°, 2: 4-di-p-, m.p. 254° (decomp.), and -m-bromophenyl-, m.p. 182°, and 2: 4-di-p-, m.p. 225°, and -m-chlorophenyl-, m.p. 189°, -6-methylpyrylium iodide. 2: 4-Di-p-tolyl-6-ethylpyrylium sulphopropionate, m.p. 195° (decomp.), and iodide, m.p. 232·5°. 1-Anilino-2: 4-di-p-anisyl-, m.p. 155°, -p-, m.p. 166°, and -m-tolyl-, m.p. 190·5°, -p-,
m.p. 184·5°, and -m-bromophenyl-, m.p. 196·5°, -p-, m.p. 160·5°, and -m-chlorophenyl-, m.p. 181°, -6-methylpyridinium iodide. 1-p-Toluidino-2: 4-di-p-anisyl-, m.p. 161°, -p-, m.p. 172°, and -m-tolyl-, m.p. 154·5°, -p-bromophenyl-, m.p. 151°, -p-, m.p. 131°, and -m-chlorophenyl-, m.p. 153·5°, -6-m-ethylpyridinium iodide. 1-p-Bromoanilino-2: 4-di-p-anisyl-, m.p. 180°, -6-methylpyridinium iodide. 1-m-Toluidino-2: 4-di-p-tolyl-, m.p. 164°, and -2: 4-di-p-chlorophenyl-, m.p. 179°, -pyridinium iodide. 2: 4-Di-p-anisyl-, m.p. 137°, -p-, m.p. 126°, and -m-tolyl-, m.p. 181°, -p-, m.p. 164°, and -m-bromophenyl-, m.p. 139·5°, -p-, m.p. 150°, and -m-chlorophenyl-, m.p. 134°, -6-o-aminobenzylpyridine. 2: 4-Di-p-anisyl-, m.p. 134°, -p-, m.p. 152°, and -m-tolyl-, m.p. 140°, -p-bromophenyl-, m.p. 165°, -p-, m.p. 162°, and -p-bromophenyl-, m.p. 156°, -6-2'-amino-4'-methylbenzylpyridine. 2: 4-Di-p-anisyl-, m.p. 165°, -p-, m.p. 162°, and -p-bromophenyl-, m.p. 156°, -6-2'-amino-4'-bromobenzylpyridine. 2: 4-Di-p-tolyl-, m.p. 166°, -6-2'-amino-4'-bromobenzylpyridine. 2: 4-Di-p-tolyl-, m.p. 122°, and -p-chlorophenyl-6-2'-amino-3'- or -5'-methylbenzylpyridine, m.p. 160°. 1-Anilino-, 1-p-toluidino-, m.p. 145°, and 1-p-bromoanilino-2: 4-diphenyl-6-e-thylpyridinium iodide with alkali give b New case of opening of the isatin ring. G. Jacini (Gazzetta, 1942, 72, 510—514).—Isatin-3-imide with aq. $\mathrm{NH_3-H_2O_2}$ gives o-carboxylamidophenylcarbamide (I) (picrate, m.p. 340°), which when heated decomposes to give 2:4-dihydroxyquinazoline (II). (I) is also obtained from o-NH₂·C₆H₄·CO·NH₂ (III) and KCNO in AcOH, or from (II) and EtOH-NH₃ at 100°. Isatin and aq. $\mathrm{NH_3-H_2O_2}$ give o-NH₂·C₆H₄·CO₂H. Biuret and (III) at \geqslant 145° give dianthranylbiuret, m.p. 315°, easily hydrolysed to (II). E. W. W. Carbon-alkylation with quaternary ammonium salts. Synthesis of compounds containing the β-indolemethylene group. H. R. Snyder, C. W. Smith, and J. M. Stewart (J. Amer. Chem. Soc., 1944, 66, 200—204).—CH₂Ar·NR₃Hal reacts with CHXNa·CO₂R (X = CN, Ac, or CO₂Et) to give CH₂Ar·CHX·CO₂R, the yield depending largely on the conditions. CH₂Ar·NR₂ does not react unless X = CO₂Et, in which case the yield is poor. CH₂Ph·NPhMe₂Cl (I) with CHNaAc·CO₂Et (II) in boiling EtOH gives 60% of CH₂Ph·CHAc·CO₂Et (2:4-dinitrophenylhydrazone, m.p. 71·5°), and with CHNa(CO₂Et)₂ (III) thus gives 37·6% of CH₂Ph·CH(CO₂Et)₂ (IV). With (III) in EtOH, 32, 36, 22, 36, 20, and 26% of (IV) are obtained from (I) at 115° or 130°, benzylmethylpiperidinium iodide (V) at 120° or 135°, or benzylmethylpiperidinium chloride at 135° or 130°, respectively, with notable amounts of (CH₂Ph)₂C(CO₂Et)₂ (identified by hydrolysis and decarboxylation), but NPhMe₂ does not react at 130°. CH₂Ph·NPhMe₂·OEt and (III) at 150° and then 110° give 51·3% of (IV). In absence of solvent at 110° and then 110° give 51·3% of (IV). In absence of solvent at 110° and then 140° (III) and (I) give 79%. (V) and (III) in Bu₂O give 77% of (IV). 3-Dimethylaminomethylindole (VI) (prep. improved), m.p. 127—128°, and MeI-EtOH at room temp. and then 0° give the methiodide (VII), which with (III) in Bu₂O at 110° and then 145° gives 85% of Et a-carbethoxy- β -3-indolylpropionate (85%), m.p. 62°, whence boiling 30% aq. NaOH yields the dicarboxylic acid (VIII), m.p. 178° (decomp.) (diamide, m.p. 206°), decarboxylated at 180—190° to β -3-indolylpropionic acid (IX), m.p. 132—133°. CN·CHNa·CO₂Et and (VII) give similarly an oil (87%) and thence by hydrolysis (IX). K₂Ag(CN)₃ and (VII) in boiling H₂O give an oil, hydrolysed by boiling 20% aq. KOH to 3-indolylacetic acid (46%; 11·4% by KCN), m.p. 164·5—165·5°. (III) and (VI) at 120—150° give, after hydrolysis, 41% of (VIII). Pyridines and quinolines.—See B., 1944, II, 130. Doebner reaction. IV. R. Ciusa (Gazzetta, 1942, 72, 567—570).— p-NH₂·C₆H₄·SO₂·NH₂ with AcCO₂H and PhCHO in EtOH gives 4-p"-sulphamylanilo-5-keto-2-phenyl-1-p'-sulphamylphenylpyrrolidine, m.p. $260-263^{\circ}$, and a solution which with Na₂CO₃ gives 6-sulphamyl-2-phenylquinoline-3-carboxylic acid [Na salt (+2H₂O)]. Using p-NH₂·C₆H₄·SO₂·NH·C₅H₄N, the product is a cinchonic acid, C₂₂H₁₅O₄N₃S, m.p. 157°. E. W. W. Action of sulphur on heterocyclic compounds: carbazole thio-compounds. (Signa.) L. Raffa (Gazzetta, 1942, 72, 557—563).—Carbazole (I) and S at ~240° give a product from which CS₂ extracts dicarbazyl disulphide, m.p. 218—221° (Bz₂ derivative, m.p. 160—170°); the CS₂-insol. portion yields on extraction with COMe₂ dicarbazyl trisulphide [Bz₂ derivative, m.p. 205—210° (decomp.)]; the residue contains a product, C₂₄H₁₄N₂S₅ (Bz₂ derivative, m.p. 218—222°), converted by hot 0·5N-NaOH into a product, C₂₄H₁₄N₂S₄. The product from (I), Mg, and EtBr does not react with S. E. W. W. The product from (I), Mg, and EtBr does not react with S. E. W. W. Cyclisation in the benzquinoline series. W. S. Johnson and F. J. Mathews (J. Amer. Chem. Soc., 1944, 66, 210—215).—8-2-Naphthylimino-n-pentan-β-one (prep. from β-C₁₀H₇·NH₂, CH₂Ac₂, and CaSO₄ at 100°), m.p. 98-5—99°, in conc. H₂SO₄ at 100° gives 2: 4-dimethyl6: 7-benzquinoline-x-sulphonic acid (I) (91%) and 2: 4-dimethyl6: 6-benzquinoline (II) (4%), m.p. 128-5—129° (Reed, A., 1887, 681), in conc. H₂SO₄ at 60° gives 2: 4-dimethyl-6: 7-benzquinoline (III) (83%), dimorphic, m.p. 93—93·8° and 74·5—75·5° (Coombes, A., 1888, 968, m.p. 66—67°), and 2% of (I), and in HF at room temp. gives only (90%) (II). (II) is obtained in 70% yield by hydrolysis of (I) by 10% (vol.) H₂SO₄ at 220°. Structures are proved by the following reactions. With aq. K₂Cr₂O₂ in boiling AcOH, (II) gives 5: 6-phthaloyl-2: 4-dimethylquinoline (IV) (48%), m.p. 215—216°, photosensitive, which in Na₂S₂O₄ gives a deep purple vat, with Zn dust, Ac₂O, and H₂SO₄ gives the quinol diacetate (37%), m.p. 198—199°, and is very readily converted by KMnO₄ in 20% (vol.) H₂SO₄ into o-C₆H₄(CO₂H₁₂.—1:2-C₁₀H₆Me·NH₂ (improved prep.), m.p. 49—50°, gives similarly δ-1-methyl-2-naphthylimino-n-pentan-β-one, m.p. 93—94·8°, which in HF gives 2: 4: 8trimethyl-6: 7-benzquinoline (V), m.p. 126·2—127°, oxidised as above to (IV). (II) and (V) are readily sulphonated [the SO₂H derivative of (V) is described], give yellow hydrochlorides, m.p. 324—325° (decomp.; uncorr.) and 295—296° (decomp.; bath preheated at 250°) after darkening and 253—256° (decomp.; bath preheated at 240°) after darkening and 253—256° (decomp.; bath preheated at 240°) after darkening and 253—256° (decomp.; bath preheated at 240°) after darkening and 253—266° (decomp.; bath preheated at 260°) after darkening and 253—266° (decomp.; bath preheated at 260°) after darkening and 253—266° (decomp.; bath preheated at 260°) after darkening and 253—266° (decomp.; bath preh Thiobarbituric acids.—See B., 1944, III, 119. Thiobarbituric acids.—See B., 1944, III, 119. Preparation of N-mono- and unsymmetrically di-substituted piperazines. R. Baltzly, J. S. Buck, E. Lorz, and W. Schön (J. Amer. Chem. Soc., 1944, 66, 263—266).—Monosubstituted piperazine derivatives are obtained in good yield by the appropriate reagent (unless otherwise stated, 1 mol. in 50—100% MeOH or EtOH). CH₂ArCl gives 1-benzyl- (I), b.p. 127—130°/2 mm. (dihydrochloride, m.p. 253°), 1-p-anisylmethyl-, b.p. 150°/2·5 mm. [dihydrochloride, m.p. 263° (decomp.)], and 1-p-chlorobenzyl-piperazine, b.p. 140—142°/2·5 mm. [dihydrochloride, m.p. 296° (decomp.)]. Ph·[CH₂]·Br or n·C₁₂H₂₈Br (0·7 mol.) gives 1-β-phenylethyl-, b.p. 150—152°/8 mm. (dihydrochloride, m.p. 252°), or 1-n-dodecyl-piperazine, b.p. 140°/0·25 mm. (dihydrochloride, decomp. >220°). (CH₂)·O (0·5—0·66 mol.) gives 1-β-hydroxyethylpiperazine, b.p. 122—123°/10 mm. (dihydrochloride, m.p. 189·5°). ClCO₂Et in 95% EtOH at ≯50° (cooling) gives 1-carbethoxy- (hydrochloride, m.p. 145°) and 1:4-dicarbethoxy-piperazine, m.p. 49°. Ac₂O in AcOH at 48—54° gives 1-acetylpiperazine (hydrochloride, m.p. 183°). These products carbethoxy-piperazine, m.p. 49°. Ac₂O in AcOH at 48—04 gives 1-acetylpiperazine (hydrochloride, m.p. 183°). These products yield, by further reaction: 1-benzoyl-4-phenyl-, m.p. 245°, -4-β-phenylethyl-, m.p. 246°, -4-p-chlorobenzyl-, m.p. 265°, and -4-p-anisylmethyl-, m.p. 234°, 1-phenylacetyl-4-p-anisylmethyl-, m.p. 225°, and -p-chlorobenzyl-, m.p. 241°, -piperazine hydrochloride; 1-benzyl- 4-methyl- (II), m.p. 250° (decomp.), -4-ethyl- (III), m.p. 250° (decomp.), -4-n-dodecyl-, decomp. > 250° [dimethiodide, m.p. 225° (decomp.), of the derived base], -4-β-hydroxyethyl-, m.p. 225°, -4-3′: 4′-dimethoxyphenacyl-, decomp. 250—270°, and -4-3′: 4′-dihydroxyphenacyl-, decomp. 250°, 1-p-chlorobenzyl-4-3′: 4′-dihydroxyphenacyl-, decomp. >200°, and 1-p-anisyl-4-3′: 4′-dihydroxyphenacyl-, decomp. >230—231°, -piperazine dihydrochloride; 1: 4-di-n-dodecyl-piperazine dihydrochloride; 1-β-benzoyloxyethyl-piperazine dihydrochloride, m.p. 208—210°, and -4-ethylpiperazine dihydrochloride, m.p. 245° (decomp.); 1-benzyl-4-β-benzoyloxy-, m.p. 245°, -4-β-p-acetamidobenzoyloxy-, m.p. 229° (decomp.), -4-β-p-chlorobenzoyloxy-, m.p. 242°, -4-β-p-nitrobenzoyloxy-, m.p. 236—237°, -ethylpiperazine dihydrochloride, m.p. 258—260° (decomp.); (by means of PhNCO) 4-p-chlorobenzylpiperazine-1-carb-(decomp.); (by means of PhNCO) 4-p-chlorobenzylpiperazine-1-carboxylanilide hydrochloride, m.p. 258° (decomp.); (by means of oxylanilide hydrochloride, m.p. 258° (decomp.); (by means of NH₂·CO·NH·NO₂) 4-p-chlorobenzyl-, m.p. 265°, 4-benzyl-, m.p. 238·5—239°, 4-β-hydroxyethyl-, m.p. 177°, and 4-β-benzyloxyethyl-, m.p. 205° (decomp.), -piperazine-1-carboxylamide hydrochloride. SMe·C(NH₂):NH,HX and (I) in 65% EtOH give 1-guanyl-4-benzyl-piperazine sulphate, m.p. 200° (decomp.), and (in EtOH, followed by MeI-MeOH) 4-methiodide hydriodide, m.p. 219—220° (decomp.). BrCN (I mol.) and (I) (2 mols.) in Et₂O and then alone at 150—160° give 4:4'-dibenzyl-1'-dipiperazinylcarbinide hydrobromide, m.p. 229°. Heating (Cl·[CH₂]₂)₂O and (I) gives 4-benzylmorpholine-4': 1-spiro-piperazinium
1-chloride 4-hydrochloride, m.p. >280°. Hydrogenation (Pd-C) of (II) and (III) gives 1-methyl-, +H₂O, m.p. 110°, and 1-thyl-piperazine dihydrochloride, m.p. 203—205°, respectively, and (PtO₂) of (IV) and (V) gives 1-benzyl-, decomp. >210°, and 1-panisylmethyl-4-β-hydroxy-3': 4'-dihydroxyphenylethylpiperazine dihydrochloride, m.p. 175°. Piperazines.—See B. 1944 II 147 Piperazines.—See B., 1944, II, 147. Pyrazole synthesis. VII. Reactivity of carbonyl groups in asymmetric β -diketones. R. Fusco [with (Signa.) R. Pizzotti] (Gazzetta, 1942, 72, 411—423).—Hexane- $\beta\delta$ -dione in NaOMe-MeOH-Et₂O with 1942, 72, 411—423).—Hexane-β-dione in NaOMe-MeOH-Et₂O with p-NO₂·C₆H₄·NH·N·CBr·CO₂Et gives the Et ester (I), m.p. 174°, of 4-propionyl-1-p-nitrophenyl-5-methylpyrazole-3-carboxylic acid (II), m.p. 230° (decomp.). With HNO₃ (d 1·41), (I) or (II) gives 1-p-nitrophenyl-5-methylpyrazole-3: 4-dicarboxylic acid (III) (A., 1939, II, 451). The expected isomeride of (I), Et 4-acetyl-1-p-nitrophenyl-5-ethylpyrazole-3-carboxylate, was not isolated; the mother-liquor in which it should be contained was however evidend by HNO to in which it should be contained was, however, oxidised by HNO₃ to 1-p-nitrophenyl-5-ethylpyrazole-3: 4-dicarboxylic acid (IV), m.p. 250°. Heptane-γε-dione, treated as above, gives the Et ester (V), m.p. 124°, of 4-propionyl-1-p-nitrophenyl-5-ethylpyrazole-3-carboxylic acid (VI), m.p. 169° (decomp.); either (V) or (VI) with HNO₃ gives (IV). Similarly heptane-βδ-dione gives Et 4-n-butyryl-1-p-nitrophenyl-5-methylpyrazole-3-carboxylate, m.p. 114°, oxidised to (III), with a product, containing Et 4-acetyl-1-p-nitrophenyl-5-propylpyrazole-3-carboxylate, oxidised to 1-p-nitrophenyl-5-propylpyrazole-3:4-dicarboxylic acid (VII), m.p. 228°. Similarly nonane-δζ-dione gives Et 4-butyryl-1-p-nitrophenyl-5-propylpyrazole-3-carboxylate, m.p. 94°, oxidised to (VII). Octane-γε-dione (prepared either from EtCO₂Et and COMePt or from PrCO₂Et and COMePt) gives a mixture of Et 4-propionyl-1-p-nitrophenyl-5-propyl- and 4-butyryl-1-p-nitrophenyl-5-propyl- and 4-butyryl-1-p-nitrophenyl-5-ethyl-pyrazole-3-carboxylate, oxidised to (IV) + (VII). Phenoxyacetylacetone similarly treated gives a mixture of the Et in which it should be contained was, however, oxidised by HNO, to phenyl-5-ethyl-pyrazole-3-carboxylate, oxidised to (IV) + (VII). Phenoxyacetylacetone similarly treated gives a mixture of the Etester, m.p. 144°, of 4-acetyl-1-p-nitrophenyl-5-phenoxymethylpyrazole-3-carboxylic acid (VIII), m.p. 147—148°, and Et 4-phenoxyacetyl-1-p-nitrophenyl-5-methylpyrazole-3-carboxylate (not isolated). With NaOBr, (VIII) gives 1-p-nitrophenyl-5-phenoxymethylpyrazole-3: 4-dicarboxylic acid, m.p. 233° (with decomp. to the 4-carboxylic acid, m.p. 193—194°). The results suggest that the reactivity of ketonic groups is in the order CO·CH₂·OPh > Ac > COEt > COPr. The reaction between CH₂Ac·CO·CO₂R and 2NH₂OH,HCl, if carried out in alkaline media, followed by heating with conc. HCl. gives mainly in alkaline media, followed by heating with conc. HCl, gives mainly 3-methylisooxazole-5-carboxylic acid (through the dioxime?); in acid media the product is mainly 5-methylisooxazole-3-carboxylic Synthesis and hydrogenation of 1:8-naphthyridine homologues. E. Ochiai and K. Miyaki (Ber., 1941, 74, [B], 1115—1126).—Substitution of one ring of 1:8-naphthyridine by Me reduces the susceptibility of that ring to catalytic hydrogenation (cf. A., 1939, II, 452). 2:6-Diaminopyridine, CH₂Ac₂, and ZnCl₂ at 120—130° give 7-amino-, m.p. 220° (Ac derivative, m.p. 300°), and thence (NaNO₇-40% H₂SO₄) 7-hydroxy- (I), m.p. 251°, and (POCl₃; 140°) 7-chloro 2:4-dimethyl-1:8-naphthyridine (II), m.p. 146—147°. Boiling 20% NaOMe-MeOH converts (II) into 7-methoxy-2:4-dimethyl-1:8-naphthyridine, m.p. 65° (picrate, m.p. 188–189°). With H-20% NaOMe-MeOH converts (II) into 7-methoxy-2: 4-dimethyl-1: 8-naphthyridine, m.p. 65° (picrate, m.p. 188—189°). With H₁-Ni-kieselguhr in EtOH at 170—180°/110 atm., (I) yields 2: 4-dimethyl-3: 4-dihydro-1: 8-naphthyrid-2-one, m.p. 175—180°. With H₁-Pd-C in 10% MeOH-KOH, (II) yields, first, 2: 4-dimethyl- (III), m.p. 85—86° (hydrochloride, decomp. 240°; picrate, decomp. 204—206°; methiodide, +H₂O, m.p. 93—94°; platinichloride, decomp. 242—244°; aurichloride, decomp. 166—167°), and then 2: 4-dimethyl-5: 6: 7: 8-tetrahydro- (IV), m.p. 118° (picrate, m.p. 207°; Ac derivative, m.p. 42—43°), -1: 8-naphthyridine, but with H₂-PdO-CaCO₃ and a trace of Pd-C in 5% KOH-MeOH gives only (III) and with H₂-PtO₂ in AcOH or H₂-Raney Ni in cyclohexane-EtOH at 120—190°/70 atm. gives only (IV). (IV) is unaffected by H₂-PtO₂ in AcOH at 110 atm. but with Na-EtOH gives dl-2: 4-dimethyldecahydro-1: 8-naphthyridine, m.p. 92—93° (Ac₂ derivative, b.p. 135—145°/0·02 mm.). CH₂Cl·COMe and (IV) in a little EtOH give an adduct, C₁₆H₂₂O₂N₂Cl, m.p. 181—182°, converted by aq. Na₂CO₃ into (IV) and the indolizine (V), a resin (blue Ehrlich test). 2:7-Dichloro-4-methyl-1:8-naphthyridine with H₂-PdO-CaCO₃ and a trace of Pd-Cin 10% KOH-MeOH gives 4-methyl-1:8-naphthyridine (VI) (~70%), b.p. 147—148°/0·05 mm. (picrate, decomp. 204—205°; perchlorate, m.p. 180—181°), and some 2- or 7-chloro-4-methyl-1:8-naphthyridine, m.p. 104°. H₃-PtO₂ in AcOH reduces (VI) to 4-methyl-5:6:7:8- (VII) (4 parts), m.p. 102—103° (picrate, decomp. 248°; Bz, m.p. 105—106°, and NO₂-derivative, m.p. 217—218°; ? nitrate, m.p. 124—125°) (cf. Seide, A., 1927, 62), and -1:2:3:4-tetrahydro-1:8-naphthyridine (VII) (1 part), m.p. 62—63° (Bz derivative, m.p. 86—87°). (VII) is unaffected by H₂-PtO₂ in AcOH at 66 atm., but with Na-C₈H₁₁OH (not Na-EtOH) (VII) or (VIII) gives 4-methyldecahydro-1:8-naphthyridine, m.p. 87° (picrate, decomp. 210°). Ketones, ketonic acids, and enol-lactones. III.—See A., 1944, Ketones, ketonic acids, and enol-lactones. III.—See A., 1944, II, 211. Fission of indolacylpyridinium salts by alkalis. I. G. Sanna (Gazzetta, 1942, 72, 357—363; cf. Babcock et al., A., 1933, 74; Kröhnke, ibid., 591).—With PhCHO and 25% NaOH, 2'-indolacylpyridinium bromide in aq. EtOH gives indole-2-carboxylic acid and phenacylpyridinium bromide (I). 3-Methyl-2-indolacyl bromide, m.p. 210° (Ag salt) (obtained from CH₂Br-COBr and the MgBr derivative of indole), with C₅H₅N gives 3'-methyl-2'-indolacylpyridinium bromide, m.p. 245°, which with NaOH and PhCHO gives 3-methylindole-2-carboxylic acid and (I). 2'-Pyrrolacylpyridinium bromide, m.p. 215°, similarly gives pyrrole-2-carboxylic acid and (I). E. W. W. Indole a-ketoaldonitrones. I. Preparation of ketoaldehydes of the pyrrole and indole series. G. Sanna (Gazzetta, 1942, 72, 363 the pyrrole and indole series. G. Sanna (Gazzetta, 1942, 72, 363—370):—Indolacylpyridinium bromide (I) with PhNO in EtOH at -5° and N-NaOH gives 2-aniloacetylindole N'-oxide (I), m.p. 215°, converted by 10% NaOH into 2-indolylglyoxylic acid. With 0-ln-H₂SO₄, (II) gives 2-phenylhydroxylaminoglycollylindole, m.p. 93°, reconverted into (II) by keeping over P₂O₅. With NHPh·NH₂ in EtOH, (II) gives a mixture, m.p. 223°, of the α- and β-phenylhydrazones of indolylglyoxal (III). With NH₂Ph in EtOH, (II) gives the bisaniline derivative, m.p. 132°, of (III). With p-No·C₄H₄·NMe₂ (IV), (I) gives 2-p-dimethylaminoaniloacetylindole N'-oxide, m.p. 228°, which with 25% H₂SO₄ (V) gives the hydrate of (III). 2'-Methyl-3'-indolacylpyridinium bromide and (IV) [PhNO?] gives 3-phenylhydroxylaminoglycollyl-2-methylindole, which gives a mixture, m.p. 115°, of methylindolylglyoxalphenylhydrazones (additive product, m.p. 138°, with H₂SO₄), and a bisaniline derivative. 3'-Methyl-2'-indolacylpyridinium bromide and (IV) [PhNO?] give 3'-Methyl-2'-indolacylpyridinium bromide and (IV) [PhnO?] give aniloacetyl-3-methylindole N'-oxide, m.p. 238°, which readily decomposes to 3-methylindole-2-carboxylic acid, and with (V) gives phenylhydroxylaminoglycollyl-3-methylindole, m.p. 137°. Synthesis of optical sensitisers. isoCyanines substituted in position III. V. A. Alexeeva (J. Appl. Chem. Russ., 1943, 16, 95—104; d. B., 1938, 141).—11 dyes of the general formula 1:1'-dimethyla. B., 1938, 141).—11 dyes of the general formula 1:1'-dimethyl-4X-isocyanine iodide were prepared. Groups at X and respective p.p. are: Me (a), 233°; Me (γ), 255°; Et, 258° (decomp.); Ph, 46°; OH, 230°; OMe, 323° (decomp.); OEt, 233° (decomp.); HPh, 281° (decomp.); Cl, 268° (decomp.) [6-Me derivative, 234° (decomp.)]; I, 273—274° (decomp.). Comparison of the methods of prep. described by Kaufmann (A., 1912, i, 503) and Hamer (J.C.S., 1921, 119, 1440) showed that the method of the former save better yields. However, the OH-compound is obtainable only by Hamer's method and the OMe-compound only by Kaufmann's. Efforts to introduce the NH₂, NHMe, and NHPh·NH groups in position 4 were unsuccessful. Position 4 were unsuccessful. Triazines.—See B., 1944, II, 158, 198. Chemistry of nucleotides. J. M. Gulland (J.C.S., 1944, 208—17).—Tilden lecture, surveying progress over the past five years. Over 100 literature references are given. D. G. isoOxazole group. XI. Nitrodimethylisooxazole. A. Quilico and C. Musante (Gazzetta, 1942, 72, 399—411).—4-Nitro-3:5-dimethylisooxazole (I) in dil. aq. NaOH with RN₂Cl gives, with ring-opening and -closing, 5-benzeneazo-2-phenyl- (II), m.p. 135—136°, and 5-politeneazo-2-p-tolyl-, m.p. 165—166°, -4-methyl-2:1:3-triazole 3-oxide. In aq. SnCl₂-HCl, (II) gives 5-amino-2-phenyl-4-methyl-2:1:3-triazole, new m.p. 92—93° (Ac derivative, m.p. 148—149°; Bz. derivative, m.p. 144—145°; :CHPh derivative, m.p. 119—120°; CO-NHPh derivative, m.p. 240°). With PhCHO in EtOH, followed by NHEt₄. (I) gives 4-mitro-5-styryl-3-methylisooxazole (III), m.p. 153° (dibromide, m.p. 167—168°), which on keeping, especially in sunlight, gives a dimeride, m.p. 201—202°. Similarly 4-nitro-5-p-methoxy-, m.p. 163—164°, -5-(3': 4'-methylenedioxy)-, m.p. 208—209°, -5-m-, m.p. 230—231°, and -p-nitro-, m.p. ~220°, and -5-dimethyl-amino-styryl-, m.p. 193—194°, and
-5-cinnamylidenemethyl-3-methyl-isooxazole, m.p. ~204—205°, are obtained from the corresponding aldehydes. With SnCl₂-HCl-EtOH, (III) gives 4-amino-5-styryl-3-methylisooxazole (IV), m.p. 122° [Bz derivative (V), m.p. 176°; Ac₂ derivative, m.p. 111—112°; -azo-β-naphthol, m.p. 185—186°]. KMnO₄-COMe₂ oxidises (V) to 4-benzamido-3-methylisooxazole-5-carboxylic acid, m.p. 176—177° (Me ester, m.p. 125—127°), which with conc. HCl gives the hydrochloride of 4-amino-3-methylisooxazole (cf. A., 1943, II, 74). The hydrochloride of (IV) with ice and aq. NaNO₂, followed by HCl, gives, after heating, 4-chloro-5-styryl-3-methylisooxazole (VI), m.p. 75° (dibromide, m.p. 135°), with PhCHO and a yellow product (CHPh:CH-CO-CHCl-COMe?), decomposed by NaOH to CHPh:CH-CO₂H. K₂Cr₂O₇-H₂SO₄ oxidises (VI) to 4-chloro-3-methylisooxazole-5-carboxylic acid, m.p. 158—159° (Ag salt). E. W. W. Rehaviour of 4-nitro-derivatives of isooxazole. Transformation Behaviour of 4-nitro-derivatives of isooxazole. Transformation into pyrazole derivatives. C. Musante (Gazzetta, 1942, 72, 537—548).—4-Nitro-3:5-dimethylisooxazole with NHPh NH₂ (I) in EtOH 3-methylpyrazole, which with SnCl₂-HCl, followed by NaOH and PhCHO, gives 4:5-bis(benzylideneamino)-1-phenyl-3-methylpyrazole (?), m.p. 161°, and when heated with 20% NaOH and acidified gives 4-nitro-1-phenyl-3-methylpyrazol-5-one (?). With N₂H₄, (III) gives 4-nitro-5-amino-3-methylpyrazole, m.p. 228° (Ac derivative, m.p. 180°; -5-azo-β-naphthol, darkens from 250°). 5-Methyliso-oxazole does not react with (III) or N₂H₄ under the above conditions, but with (III) at the b.p. for 15 hr. gives some 5-amino-1-phenyl-3-methylpyrazole. 4-Nitro-3-phenyl-and -3-methyl-iso-oxazole give resinous products. 5-Phenyl-3-methyl-iso-oxazole give resinous products. oxazole give resinous products. 5-Phenyl-3-methyl:sooxazole with H₂SO₄-HNO₃ (d 1·40) gives 5-p-nitrophenyl-, m.p. 180° (oxidised to p-NO₂·C₆H₄·CO₂H), reduced to 5-p-aminophenyl-3-methylisooxazole, m.p. 151—152° (hydrochloride, m.p. 250°; Ac, m.p. 241°, Bz, m.p. 235°, and CHPh., m.p. 155°, derivatives; -azo-β-naphthol, m.p. 194°; -azoacetylacetone, m.p. 196—197°). E. W. W. Heterocyclic syntheses. V. L. Panizzi (Gazzetta, 1943, 73, 99-Heterocyclic syntheses. V. L. Lanzache Heterocyclic syntheses. V. L. Lanzache Heterocyclic syntheses. V. L. Lanzache Heterocyclic Science (105).—3-Phenyl-5-dichloromethylisooxazole with NaOEt-EtOH at 140—160° gives 3-phenylisooxazole-5-aldehyde (I), m.p. 75—76° [oxime, m.p. 165—166°; phenylhydrazone, m.p. 153—154°; p-nitrophenylhydrazone, m.p. 233—234° (decomp.); anil, m.p. 133—134°], oxidised by K₂Cr₂O₇-H₂SO₄ to the -5-carboxylic acid, m.p. 179—180°, also obtained with 3-phenylisooxazolyl-5-carbinol (Bz derivative, m.p. 74—75°) from (I) and hot 20% NaOH. With benzenesulphonhydroxamic acid and NaOH-EtOH, (I) gives 3-phenylisooxazolyl-5-carboxylhydroxamic acid, m.p. 170° (decomp.); with CH₂N₂ in Et₂O, 5-acetyl-3-phenylisooxazole, m.p. 103—104° [p-nitrophenyl-hydrazone, m.p. 228—229° (decomp.)]; with MeNO₂ and MeOH-NaOMe, a-nitro-β-3-phenyl-5-isooxazolylethylene, m.p. 87—88°. CH(OEt)₂·CO₂Et and COMe₂, with Na in Et₂O, give aa-diethoxy-acetylacetone, b.p. 90—91°/4 mm. (Cu salt, m.p. 124—125°), which with NH₂OH gives 3-methylisooxazole-5-aldehyde. E. W. W. 105).-3-Phenyl-5-dichloromethylisooxazole with NaOEt-EtOH at Morpholinomethyl derivatives of carbamide and substituted carbamides. W. I. Weaver, J. K. Simons, and W. E. Baldwin (J. Amer. Chem. Soc., 1944, 66, 222—225).—OBz·[CH₂]₂·NH₂.HCl and CO(NH₂)₂ (I) at 130—140° give β-benzoyloxyethylcarbamide (36%), m.p. 122—124°. Morpholinomethyl alcohol (II) (1) and (I) (1 mol.) at 80—90° give 92%, morpholinomethyl alcohol (II) (1) and (1) (1 mol.) at 80—90° give 92%, morpholine (III), (I), and paraformaldehyde (IV) (equiv. amounts) in boiling dioxan give 84%, and methylenebismorpholine and (I) in boiling dioxan give 33%, of morpholinomethylcarbamide (V), m.p. 162—163°. s-Di(morpholinomethyl)carbamide (VI), m.p. 163—164°, is obtained from (I) by 2 mols. of boiling (II) (95%), and from (I) (1 mol.), (III) (2), and (IV) (2 mols.) in boiling dioxan (90% yield). Prep. of (VI) (60% yield) from CO(CH₂·OH)₂ by (III) (excess) in boiling H₂O and failure of NHR·CO·NHR' to condense with (II) proves the symmetrical nature of (VI) and the products named proves the symmetrical nature of (VI) and the products named below. Hot 10% NaOH hydrolyses (V) or (VI) to (III); Zn-HCl reduces (V) or (VI) to 1-methylmorpholine, which is also obtained with (I) from (V) by H₂-PtO₂ in EtOH. Ac₂O and (V) at 100° with (I) from (V) by H_2 -PtO₂ in EtOH. Ac₂O and (V) at 100° give acetylmorpholine (VII) and a substance, ? [•CH₂·N•CO·N•CH₂·]_x, m.p. 235—236°. In AcOH, (V) and (VI) give picrates, m.p. 162—163·3° and 163—164°, respectively, but in EtOH or H_2 O give picrates which gradually decompose to regenerate (V) and (VI) when recrystallised. (V) yields, usually in H_2 O, N-morpholino-methyl-N'-methyl-, m.p. 124·4—125·4°, -ethyl-, m.p. 109·6—110·8°, -n-, m.p. 89·2—90°, and -iso-propyl-, m.p. 126·8—128°, -allyl-, m.p. 104—105°, -n-, m.p. 109—109·6°, -iso-, m.p. 112—112·6°, -sec.-, m.p. 111—112°, and -tert.-butyl-, m.p. 137·8—138·8°, -sec.-, m.p. 107—108·4°, and -tert.-anyl-, m.p. 107·4—109°, -ayclohexyl-, m.p. 138—139°, - β -hydroxyethyl-, m.p. 118—119·8°, and - β -benzoyloxymethyl-, m.p. 125·4—127·6°, -carbamide, N-phenyl-, m.p. 149·4—149·8° (picrate, m.p. 156—158°), N-benzyl-, m.p. 149·3—149·8°, and N-acetyl- (VIII), m.p. 161—161·8° (picrate, m.p. 195°), -N'-morphol-inomethylcarbamide. Good yields of morpholinomethylthiocarbamide. m.p. 141·4—142°, succin-, m.p. 109·6—110·4° (picrate, m.p. 188—189°), and phthal-morpholinomethylimide, m.p. 117·8—118·8° (picrate, m.p. 205°), benzene-, m.p. 81·6—82·6°, and p-toluene-sulphomnorphot-inomethylamide, m.p. 109·6—111·2°, are obtained. (RCO)₂O and (VIII) at 100° give N-acetyl-N'-acetoxy-, m.p. 144·6—145·2° [and (VII)], and N'-butyroxy-methylcaybamide, m.p. 116·8—117°. 1-Carbamylmorpholine, m.p. 131.6-133°, is also prepared. Condensation of xanthhydrol with hydroxyquinolines. (Signa.) L. Monti and M. Delitala (Gazzetta, 1942, 72, 520—524).—4-Hydroxy2-methylquinoline in AcOH with xanthhydrol (I) in EtOH gives 4-hydroxy-3-xanthyl-2-methylquinoline, m.p. 300—305° (decomp.). 4-Hydroxy-3-xanthyl-2: 8-dimethyl-, decomp. from 290—292°, 4-hydroxy-6-methoxy-3-xanthyl-2:methyl-, decomp. from 295—300°, 3-hydroxy-4-xanthyl-, m.p. 240—242° (Ac derivative, m.p. 190—192°), 5-hydroxy-8-xanthyl-, decomp. 195—200°), 6-hydroxy-5-xanthyl-, m.p. 260—262° (Ac derivative, m.p. 214—215°), 8-hydroxy-5-xanthyl-, m.p. 193—195°, and 2: 7-dihydroxy-8-xanthyl-4-methyl-quinoline (Ac derivative decomp. 205—200°) m.p. 193—193°, and 2: 1-anyaroxy-8-xaninyt-4-memyt-quinotine (Mc derivative, decomp. from 205—210°, m.p. 215—220°) are obtained similarly. 2-Hydroxy-4-methyl- and 2-hydroxy-6-methoxy-4-methyl-quinoline do not condense with (I), nor do alkyloxy- or acetoxy-quinolines. An improved prep. of 2:7-dihydroxy-4-methyl-quinoline from m-NH₂·C₈H₄·OH and CH₂Ac·CO₂Et (C₅H₅N) is described. E. W. W. Thiazoles.—See B., 1944, II, 131. Cyanines etc.—See B., 1944, II, 160. 3:6-Epoxycyclohexene from furan and ethylene. W. Nudenberg and L. W. Butz (J. Amer. Chem. Soc., 1944, 66, 307—308).—Furan, C₂H₄, and a trace of quinol at 150—155°/1100—1200 lb. (cf. A., 1942, II, 167) give 3: 6-epoxy-Δ¹-cyclohexen (5—8%), b.p. 118—119°, which with PhN₃ gives 3: 6-epoxy-1'-phenyl-1': 2': 3'-triazol-NPh-CH-CH-CH NPh-CH-CH-CH₂ 0 , m.p. 166-167° (corr.). inocyclohexane, NN--CH-CH -CH. and with H2-PtO2 in McOH and then Ac2O-ZnCl2 yields 1:4-diacetoxycyclohexane. Condensation reactions of xanthhydrol [with heterocyclic compounds containing active NH groups]. (Signa.) L. Monti (Gazzetta, 1942, 72, 515—520).—Xanthhydrol (I) and 4-hydroxyquinazoline in AcOH give 3-xanthyl-4-quinazolone, m.p. 198—200°. 2-Hydroxybenziminazole with (I) in AcOH-EtOH gives 1-xanthyl-, m.p. 268—283—285°. 2-Thiolbenziminazole and (I) in AcOH-EtOH give 270°, or with excess of (I) gives 1: 3-dixanthyl-benziminazolone, m.p. (1:1) 1-xanthyl-, m.p. 252—254°, or (1:2) 1: 3-dixanthyl-benziminazolthione, m.p. 260—262°. Rhodanine and (I) give 3-xanthylrhodanine, m.p. 190-192°. Synthesis of vitamin- B_1 . A. I. Gravin (J. Appl. Chem. Russ., 1943, 16, 105—117).—From a survey of the literature it is concluded that a suitable industrially applicable method for the synthesis of vitamin- B_1 is the condensation (in CHBr₃) of 4-amino-2-methyl-5-bromomethylpyrimidine hydrobromide (\tilde{I}) with 4-methyl-5- β -hydroxyethylthiazole (II). (I) is obtained by condensing acetamidine with Et formylsuccinate, and converting the product by aminding with Et formylsucchate, and converting the product by P_2O_5 into the chloride and then, by NH_3 , into 4-amino-2-methyl-pyrimidyl-5-acetamide. This is converted (Hofmann) into the amine and then (HNO₂) the OH-derivative; HBr then gives (I). (II) is obtained by condensing γ -chloro- α -acetoxypentan- δ -one with $(NH_4)_2COS_2$, yielding 2-thiol-4-methyl-5- β -acetoxyethylthiazole, which is oxidised by H_2O_2 to (II). The entire synthesis is divided into 1.7 stages for each of which yields and experimental details into 17 stages, for each of which yields and experimental details are given. Action of sulphur on heterocyclic compounds: indole and pyrrole Action of sulphur on neterocyclic compounds: Indoe and pyrrole thio-compounds. (Signa.) L. Raffa (Gazzetta, 1942, 72, 549—557).— 3-Methylindole and S at 115—125° give a substance, C₂7H₂₃N₃S₂, probably 2:3-di-(2':2''-indotylsutphiao). S: 3:3':3''-trimethylindole, m.p. 215—217° #### VII.—ALKALOIDS. Strychnos alkaloids. XXVIII. Emde degradation of vomicine. H. Wieland and W. Weisskopf [with, in part, R. Huisgen] (Annalen, 1943, 555, 1—9).—Treatment of vomicinium methosulphate in 3N-AcOH containing NaOAc with Na-Hg at 60—70° leads to
methylvomicine I (I), m.p. 232·5°, [a]_D +156·5°, and methylvomicine II (II), m.p. 240°, [a]_D +126° [methiodide, m.p. 206° (decomp.)], which gives a violet colour with FeCl₂ and suffers opening of the lactam ring when boiled with 20% KOH-MeOH. (II) contains 1 OMe and 1 NMe and is hydrogenated (PtO₂ in 4N-AcOH) to a H₄-derivative (picrate, m.p. 142—144°). (II) is demethylated by boiling 40% HBr to a substance, C₂₂H₂₇O₄N₂Br, m.p. >300°. (I) in 60% H₂SO₄ is reduced at a Pb cathode to methylomicidine I, m.p. 230° (decomp.), becomes brown at >225°. The Emde degradation of the methylogic I. (III) m.p. 230° (decomp.), becomes brown at >225°. The Emde degradation of the methiodide of (I) leads to dimethylvomicine I (III), m.p. 92° [perchlorate, m.p. 250° (decomp.)], which is rapidly decomposed without yielding a cryst. product by boiling 25% HBr of HCl. Boiling 40% HBr transforms (I) into the OH-base (IV), C₂₂H₂₆O₄N₂, m.p. 272° (methiodide, m.p. ~215°; benzoate, m.p. ~227°, sinters at 218°; CHPh. derivative, m.p. 208—210°), in which OH is not tert. since (IV) is converted by Ac₂O at 180° into a non-cryst. acetate which regenerates (IV) when hydrolysed, can be distilled almost unchanged at 290°/high vac., and is indifferent to SOCI. Demethylated (I) is hydrogenated (PtO₂ in 2N-AcOH) to a compound which gives a picrate, m.p. 218°. Electrolytic reduction of (III) at a Pb cathode leads to dimethylvomicidine I, m.p. 236° (slight decomp.). The methiodie of (III) is transformed by KOH-(slight decomp.). The methiodide of (III) is transformed by KOH-McOH at 110—120° into NMe₃ and an isomeric dimethylvomicine methiodide, m.p. 278° (slight decomp.). Emde degradation of the methiodide of (II) gives partly (II) and partly dimethylvomicine II (V), m.p. 184°, the lactam ring of which is readily opened by KOH-MeOH. (V) is hydrogenated (PtO₂ in 2N-NaOH) to a H₂-derivative, m.p. 165° [methiodide, m.p. 290° (decomp.)], and is reduced at a Pb cathode to dimethylvomicidine II, m.p. 236°. H. W. Strychnos alkaloids. XXIX. Constitution of deoxyvomicine. R. Huisgen and H. Wieland (Annalen, 1943, 555, 9—25).—Colourless deoxyvomicine (I) is converted by boiling HBr-AcOH containing red P into tert-bromodihydrodeoxyvomicine (II), decomp. 235°. becomes discoloured at >165°, re-converted into (I) by Zn dust in AcOH but transformed by these reagents in boiling MeOH into dihydrodeoxyvomicine (III), m.p. 209°, [a]\frac{12}{2} +245° in CHCl₃, +221° in EtOH. This is also obtained through a Br-base from dihydrovomicine and HBr but could not be derived by direct hydrogenation of (I). (II) is re-converted into (I) by boiling C_5H_5N or by anhyd. NaOAc in boiling AcOH. (I) has therefore the partial formula A (R = CHMe) and appears to be the deoxy-derivative of isovomicine (IV), formed from vomicine (V) under the influence of HBr and having the structure A (R = CH·CH₂·OH). Actually (IV) is converted into (I) by replacement CH₂ of OH by Br, which is exchanged for H by Zn dust and AcOH. The formation of (IV) from (V) takes place through this Br-compound in analogy to the production of isostrychnine from bromodeoxystrychnine. In the prep. of deoxyisostrychnine from bromodeoxystrychnine. In the prep. of deoxyvomicine from (V) by HI in AcOH the yellow variety (VI) is obtained, converted into the more stable (I) by alkalis, by distillation in a high vac., or by protracted heating with solvents. (VI) and (I) differ in m.p., $[a]_{D}$, ultra-violet absorption, and reactions but are catalytically hydrogenated to the saturated base $C_{22}H_{30}O_2N_2$ among other products. The isomerism of (I) and (VI) appears to be caused by differing arrangement of the double linkings, which in (I) is as shown in A since on ozonisation (I) gives >80% of the quantity of MeCHO (as dinitrophenylhydrazone) calc. for 1 mol. (V) also gives MeCHO but more slowly and in much lower yield. The double linking in the lactam ring is $\beta\gamma$ to CO (not $\alpha\beta$ as assumed previously) since (I) contains a reactive CH₂. Whereas (V) and strychnine only condense with PhCHO under the influence of albali this condensation occurs with (I) (III) and (IV) in presence differ in m.p., [a]D, ultra-violet absorption, and reactions but are alkali, this condensation occurs with (I), (III), and (IV) in presence of piperidine (benzylidenedeoxyvomicine has m.p. 198—199°). (VI) is not immediately derived from (V) and HI, which directly yield iododihydrodeoxyvomicine II hydriodide, m.p. 214° (decomp.) Attempts to isolate the free base are accompanied by elimination of HI and formation of (VI). Replacement of I by H by use of Zn dust in cold HI affords dihydrodeoxyvomicine II (VII), m.p. 168°. [a]20 +345° in CHCl₃ [hydrochloride (VIII), m.p. 235° (decomp.) after becoming pink]. (VIII) is reduced at a Pb cathode to dihydrodeoxyvomicine II, m.p. 269° (decomp.). (VII) is not identical with dihydrodeoxyvomicine I (IX) (CHPh derivative, m.p. 222°) obtained from dihydrodeoxyvomicine. The two deoxyvomicines and HI of the different isologibal deoxyvomicines. The adduct from (VII) to give different iododihydrodeoxyvomicines. The adduct from (VI) is identical with the intermediate product of the prep. of (VI) from (V). Like this base that derived from (I) passes by loss of HI into the original material. This occurs less readily than in the yellow $$H \stackrel{N}{C} \subset H_2$$ $H \stackrel{N}{C} \subset H_2$ $Et \quad I \quad Et$ $(E) \quad (C) \quad (D)$ series but still so easily (with NaOAc) that there can be no doubt about the attachment of I to tert. C. The isomerism of the hydriedides is epimeric (cf. B and C). That derived from (VI) is C, thus leading to D from (VI). (III) is hydrogenated (PtO₂ in 2n-AcOH) to tetrahydrodeoxyvomicine (X), m.p. $246-247^{\circ}$ [methiodide, m.p. 222° (decomp.), $[a]_D^{21} + 210^{\circ}$ in CHCl₂; :CHPh derivative, m.p. 247° , obtained by use of 20% NaOH but not of piperidine], and deoxyvomicine B (XI), m.p. $185-186^{\circ}$, $[a]_D^{20} + 270^{\circ}$ in CHCl₃. The change proceeds more rapidly in glacial AcOH but leads exclusively to (X), which is also obtained by hydrogenation (PtO₂ in EtOH) of (II) and primary bromodihydrodeoxyvomicine. (X) and (XI) are (II) and primary bromodihydrodeoxyvomicine. (X) and (XI) are electrolytically reduced in 60% H₂SO₄ at a Pb cathode to tetrahydroxyvomicidine-A, m.p. 250—251° (decomp.), softens at 240°, and -B, m.p. (indef.) ~200°. The isomerism of (X) and (XI) depends on the union of the carbocyclic CH₂ (E.) and heterocyclic 6-membered rings (cf. E) in the cis- or trans-position. Fission of the oxide ring of CH CH— (I) by H halides proceeds similarly with (V), strychnine (XII), brucine, and their H₂-bases. An apparent exception appears to be afforded by (XII), which with HI under drastic conditions gives tetrahydrodeoxystrychnine. Under milder, precisely specified conditions (XII) gives deoxy-strychnine, m.p. 197—198°, softens at 195—196°. (XII) has a semicyclic double linking and when ozonised affords MeCHO (as 2:4-dinitrophenylhydrazone) in 90% yield. apostrychnine, $C_{21}H_{20}ON_2$, m.p. 242—244°, is obtained as by-product of the action of HBr on (XII). Physostigmine [eserine] and related substances. IV. Chemical studies on physostigmine breakdown products and related epinephrine derivatives. S. Ellis (J. Pharm. Exp. Ther., 1944, 79, 364—372).— Methods are described for the prep. of eseroline, rubrespine (I), eserine-blue, eserine-brown, and adrenochrome (II). Measurements of absorption spectra of (I), (II), and 2-iodoadrenaochrome indicate that (I) contains a substituted 2:3-dihydroindole-5:6-quinone group and is thus structurally related to (II), the oxidation product of adrenaline. Structure of monocrotaline. XI. Proof of the structure of retronecine. R. Adams and N. J. Leonard (*J. Amer. Chem. Soc.*, 1944, 66, 257—263; cf. A., 1944, II, 147).—Retronecine is proved to be 7-hydroxy-1-hydroxymethylpyrrolizidine, CH₂—CH(OH)·CH·C(CH₂·OH)—CH, by synthesis of retronecanone (II) Adding replace w NO CH COCkto A methylicial in the control of the structure of retronecanone (III). (II). Adding molten m-NO₂·C₆H₄·COCl to 4-methylpiperidine (prep. from 4-methylpyridine by H₂-Raney Ni at 210°/150—300 atm.), b.p. 126—129°, and aq. NaOH at 35—40° gives 1-m-nitrobenzoyl-4-methylpiperidine, m.p. 72—73°, oxidised by boiling aq. KMnO₄ to dl-8-m-nitrobenzamido-β-methyl-n-valeric acid (III) (57%), m.p. 103—105°, which with quinidine in EtOH-Et₂O gives the l- (IV) (36%) and d-acids, m.p. 113—114°, [a]₃²⁰ -5·0±0·2°, +5·3±0·2°, respectively, in EtOH [quinidine salt of (IV), m.p. 125—126·5° (corr.), [a]₃²⁰ +111·5° in EtOH]. Br and red P at 90° convert (III) into the crude, oily a-Br-acid (V) with some dl-3:3-dibromo-1-m-nitrobenzoyl-4-methyl-2-piperidone (VI), m.p. 152—153° (corr.). Boiling Ac₂O cyclises (III) to 1-m-nitrobenzoyl-4-methyl-2-piperidone (VII), m.p. 102—103°, which with Br and a trace of PCl₃ in ChCl₃ in light yields (VI). (IV) yields similarly 1-(VII), m.p. 167—168° (corr.), [a]₃²⁰ -20·2±0·2° in C₆H₅N, and oily l-(V). In N-NaOH at 37°, dl- or l-(V) gives dl- and l-1-m-nitrobenzoyl-3-methylpyrrolidine-2-carboxylic acids, oils, which with boiling 3N-aq. HCl and then boiling HCl-EtOH (V) gives dl- and l-1-m-nitrobenzoyl-3-methylpyrrolidine-2-carboxylic acids, oils, which with boiling 3N-aq. HCl and then boiling HCl-EtOH yield Et dl-, b.p. 90—915/17·5 mm. (picrate, m.p. 112·5—114°), and 1-3-methylpyrrolidine-2-carboxylate, b.p. 97—98°/23 mm. [a] $_{\rm c}^{28}$ ~0° in EtOH, which add CH $_{\rm c}$ CH·CO $_{\rm c}$ Et (in presence of a trace of quinol) at the b.p. to yield Et dl- (97%), b.p. $163\cdot5$ — $165\cdot5$ °/18 mm. (picrate, m.p. 98—99°), and 1- β -2-carbethoxy-3-methyl-1-pyrrolidino-propionate, b.p. 170—171°/25 mm., [a] $_{\rm c}^{30}$ —34·9±0·5° in EtOH. Cyclisation by K in xylene-C $_{\rm c}^{4}$ H $_{\rm c}^{4}$ then affords dl-, b.p. 96·5—98°/18 mm. [picrate, m.p. 189—190° (corr.); methiodide,
m.p. $149\cdot5$ —150·5° (corr.)], and l-7-keto-1-methylpyrrolizidine [=(II)] [identified as oxime, m.p. 166—167° (corr.), [a] $_{\rm c}^{30}$ —77·3±1·5° in EtOH, oxime picrolonate, m.p. 209—211° (corr.), l-menthhydrazide, m.p. $176\cdot5$ ° (corr.), [a] $_{\rm c}^{29}$ —83·2±0·5° in EtOH, and other derivatives, and by conversion into retronecanol methiodide acetate, m.p. 215—216° (corr.) (lit. 207—208°), [a] $_{\rm c}^{29}$ —87·4±1·0° in MeOH]. H $_{\rm c}$ -PtO $_{\rm c}$ 216° (corr.) (lit. 207—208°), $[a]_D^{28} - 87.4 \pm 1.0^\circ$ in MeOH]. H_2 -PtO₂ reduces (II) in EtOH to an oily isomeride, $[a]_D^{39} - 9.5^\circ$ in EtOH [picrate, m.p. 218—219° (corr.; decomp.); acetate methiodide (VIII), m.p. 210—212° (corr.), $[a]_D^{29} + 7.5^\circ$ in EtOH], of retronecanol and in EtOH + a little conc. HCl gives an isomeride {picrate, m.p. 230—230° (corr.), acetate bicrate m.p. 178.55 –179.5° (corr.) 232° (corr.; decomp.); acetate picrate, m.p. 178·5—179·5° (corr.), and methiodide [=(VIII)], m.p. 210·5—211·5° (corr.)}. Hydrogenation (PtO₂) of (VII) in EtOH yields a dl-7-hydroxy-1-methylpyrrolizidine [picrate, softens 210°, m.p. 218·5—219·5° (corr.; decomp.); picrolonate, m.p. 182·5—183·5° (corr.)]. R. S. C. #### VIII.—ORGANO-METALLIC COMPOUNDS. Amidino-arsenicals. II. Tervalent arsenicals. F. Linsker and M. T. Bogert (J. Amer. Chem. Soc., 1944, 66, 191-192; cf. A., (A., II.) 1943, II, 284).—p-CN·C₀H₄·AsO₂H₃ in 2N-NaOH with, successively, KI, H₂SO₄ (excess), and SO₂ at ≯10° gives p-cyanophenylarsinous acid (I) (85%), softens 230°, m.p. 234° (decomp.; corr.), also obtained [80%, m.p. 230—240° (decomp.)] from p-NH₂·C₀H₄·AsO₂CH₄O₂, m.p. 26° (decomp.) list m.p. 100° (decomp.) list resting the derived tained [80%, m.p. 230—240° (decomp.)] from p-NH₂·C₈H₄·AsO,2H₂O, m.p. 98° (decomp.) [lit. m.p. 100° (decomp.)], by treating the derived diazonium chloride with CuSO₄–KCN, purification being by dissolution in N-NaOH and pptn. by NH₄Cl. HCl-EtOH-Et₂O converts (I) at 0° into the imino-ether hydrochloride (95%), softens 150°, m.p. 152° (decomp.), hydrolysed by 10% NH₃-EtOH at 60° to p-amidinophenylarsinous acid hydrochloride, m.p. 210° (decomp.), whence HCl or HBr at 0° yields dichloro-p-amidinophenylarsine hydrochloride, sinters 202°, m.p. 208° (decomp.), or the dibromo-arsine hydrobromide, m.p. 219° (decomp.), respectively. p-Arsinibenzimino ether hydrochloride, m.p. 130° (decomp.), is also described. Preparation of phenylarsinoxides. VI. p-Arsinoxidobenzoylearbamide and related compounds. H. G. Steinman, G. O. Doak, and H. Eagle. VII. p-Arsinoxido-compounds containing amide groups. VIII. Arsonic acids and arsinoxido-compounds containing the azolinking, G. O. Doak, H. G. Steinman, and H. Eagle (J. Amer. Chem. Soc., 1944, 66, 192—194, 194—197, 197—200; cf. A., 1942, II, 337).—VI. p-COCl·C₆H₄·AsCl₂ (I) does not yield p-COCl·C₆H₄·AsO by any direct method; with Na urethane in Et₂O (not C₆H₆ or CH) is trivial. II, 337).—VI. p-COCl·C₆H₄·AsCl₂ (I) does not yield p-COCl·C₆H₄·AsO by any direct method; with Na urethane in Et₂O (not C₆H₆ or C₆H₆N) it gives Et di-p-arsinoxidobenzoylcarbamate. p-Nitrobenzoylisocarbimide (II) [prep. from p-NO₂·C₆H₄·COCl (III) by AgNCO in boiling C₆H₆], m.p. 209—210°, with NH₂·[CH₂]₂·OH in C₆H₈ gives N-p-nitrobenzoyl-N'-β-hydroxyethylcarbamide (30%), m.p. 186—187°, hydrogenated (method: Stevinson et al., A., 1935, 1139, in this and similar cases) to the NH₂-derivative, m.p. 230·5—231·5°, which yields (Bart) the p-AsO₂H₂·, m.p. 238—238·5° (decomp.), and thence (SO₂) the amorphous p-AsO-derivative (not obtainable from p-AsO₃H₂·C₆H₄·COCl by AgNCO etc.). NH₂·CH₂·C+(CH(OH)·CH₂·OH and (II) give N-p-nitrobenzoyl-N'-βγ-dihydroxy-n-propylcarbamide (22%), m.p. 197—199°, whence H₂-Raney Ni yields only p-NH₂·C₆H₄·CO·NH₂. Boiling (II) and CO(NH₂)₂ in C₆H₆ gives α-p-nitro- (50%), m.p. 203—205°, and thence α-p-amino- (90%), sinters ~270°, and α-p-arsono-benzoylbiuret, m.p. >360°. Boiling AsCl₂·C₆H₃·Me·COCl with CO(NH₂)₂ and hydrolysing the product gives p-arsinoxido-" α "-tolucylcarbamide, decomp. >272°. N-p-Arsinoxyoxidoanilinoacetcarbamide, amorphous, m.p. 166—168° (decomp.), is obtained by reducing the AsO₃H₂-compound by SO₂. NH₂·CO·CH₂·NH₂,HCl (IV) and (III) in aq. NaHCO₃ give p-nitrobenzamidoacetamide, m.p. 239—240° (decomp.), reduced to the p-NH₂-derivative, m.p. 228° (decomp.) (sulphate, decomp. >250°), whence the Bart reaction yields the p-AsO-derivative, m.p. 211—213° (decomp.); this does not yield the p-AsO-derivative, decomp. >285°, which is obtained from (I) and (IV) in aq. Na₂CO₃. N-Glycylglycine and (I) in N-KOH give amorphous N-p-arsinoxidohippurylglycine, decomp. >220°, which, by way of the Ag salt, yields the glycine and (I) in N-KOH give amorphous N-p-arsinoxidohippuryl-glycine, decomp. >220°, which, by way of the Ag salt, yields the amorphous Me ester, decomp. >240°, and thence the amide, decomp. >240°. β-Alanine amide (prep. from CN-CH₂·CO·NH₂ by H₂-Raney glycine, decomp. >240°, which, by way of the Ag sait, yields the amorphous Me ester, decomp. >240°. β-Alanine amide (prep. from CN·CH₂·CO·NH₂ by H₂-Raney Ni in EtOH), m.p. 149°, gives similarly β-p-arsinoxidobenzamido-propionamide, m.p. 283—285° (decomp.). Glycine amide yields similarly p-arsenoxido-" a "-toluamido-, m.p. 133° (decomp.), and p-arsenoxidobenzenesulphonamido-acetamide, amorphous, m.p. 193—195° (decomp.). Amorphous N-p-arsono-, m.p. 326·5°, and N-p-arsinoxido-benzoylcarbamide, m.p. 270—271°, are also described. VII. m-5-Xylidine gives (Bart) m-5-xylylarsonic acid (18%), m.p. 222—223°, oxidised. by KMnO₄ to the sall, KHX,H₂X [X = (CO₂H)₂C₆H₃·AsO₃], decomp. >300°, whence PCl₃-PCl₅ and then cold, aq. NH₃ yields 5-arsenoxidoisophthalic acid, +2H₂O, amorphous, m.p. 224—225°. The derived Me₂ ester, m.p. 255°, with NH₃ at 100° gives the diamide, +H₂O, a glass, softens 75°. 5-Nitro-o-tolylarsonic acid (prep. by Scheller-Bart reaction), m.p. 240°, yies 5-nitro- and thence 5-amino-2-arsonobenzoic acid, m.p. >360°, which affords (method: Doak et al., A., 1941, II, 272, but using CuCN) impure 5:1:2-CN·C₆H₃(CO₂H)·AsO₃H₂, decomp. >300°, whence 6-arsinoxido-isophthalanic acid, +H₂O, m.p. 236·5—237·5°. Similarly are prepared 4-nitro-o-tolylarsonic acid, m.p. 235-236°, 4-amino-, +H₂O, decomp. 220° [lit., anhyd., m.p. 120° (decomp.)], and 4-cyano-2-arsonobenzoic acid, decomp. >351°, 4-arsono-, m.p. >360°, and 4-arsinoxido-terephthalamic acid, m.p. 221·5—222·5°. 2:1:4-NO₂·C₆H₃(CO₂H)·AsO₃HK gives (PCl₅-POCl₃) the acid chloride, converted by cold, aq. NH₃ into 2-nitro-4-arsinoxidobenzamide, m.p. 162—163° (decomp.), which with 30% H₂O₂ gives 3-nitro-4-carbanylphenylarsonic acid, decomp. >270°. This is hydrogenated to 4-carbanyl-marsanilic acid, decomp. >270°. This is hydrogenated to 4-carbanyl-marsanilic acid, decomp. >270°. This is hydrogenated to 4-carbanyl-marsanilic acid, decomp. >270°. This is hydrogenated to 5-arsonosalicylate, softens 193°, suf at 0° gives 4-hydroxy-3-carbanylphenylarsonic acid, decomp. >330°, and thence 5-arsinoxidosalicylamide, +0.5H₂O, m.p. 222—223°. 4-Hydroxy-5-carbamyl-m-arsanilic acid (similarly prepared) gives an unstable dichloroarsine hydrochloride, m.p. 177—178°. p-CN·C₈H₃·AsO₃H₂ with SO₂-HI-H₂SO₄ gives p-arsinobenzonitrile, amorphous, m.p. 195·5—197·5°, whence HCl-Et₂O-95% EtOH at 0° gives p-dichloroarsinobenzimino Et ether hydrochloride, +H₂O, m.p. 141°, hydrolysed by NaHCO₃ to p-arsinoxidobenzimino Et ether, +H₂O, amorphous, m.p. 184·5—185°. p-AsCl₂·C₆H₁·COCl (VI) with 3:1:2-NH₂·CH₂·CH(OH)·CH₂·OH and Na₂CO₃ in aq. COMe₂ +H₂O, amorphous, m.p. 184·5—185°. p-AsCl₂·C₆H₁·COCl (VI) with 3:1:2-NH₂·CH₂·CH(OH)·CH₂·OH and Na₂CO₃ in aq. COMe₂ gives p-arsinoxidobenz-βy-dihydroxypropylamide, amorphous, decomp. >250°, with N₂H₄,H₂O in C₅H₆N-C₅H₆ gives s-di-p-arsinoxidobenzoylhydrazine, amorphous, decomp. >360°, and with CN·CH₂·NH₂,H₂SO₄ in Na₂CO₃ gives p-arsinoxidobenzoyanomethylamide, amorphous, decomp. >265°, oxidised by I to the arsonic acid, m.p. 251—252° (decomp.). Similarly (VI) with (CH₂·NH₂)₂ or NHAc·NH₂ gives s-di-p-arsinoxidobenzothylenediamide, amorphous, decomp. 270—272° (decomp.), respectively. Glycylacetanilide-p-dichloroarsine hydrochloride is obtained from the NO₂-compound and is hydrolysed to the AsO-compound. N-p-Toluoylarsanilic acid (prep.: Schotten-Baumann), m.p. >360°, with KMnO₄-MgSO₄-H₂O gives p-C₆H₄(CO₂H)₂(100%). p-C₆H₄(COCl)₂ and σ-NH₂·C₆H₄·AsO₃H₂ (VII) give NN'-terephthaloyldiarsanilide (25%), amorphous, decomp. >250°, and p-arsonoterephthalanilic acid (5%), m.p. >360° (cf. G.P. 191,548). p-CN·C₆H₄·COCl (prep. from the acid by SOCl₂ and C₅H₅N in Et₂O) and (VII) give N-p-cyano-, amorphous, m.p. >360°, converted by 3% H₂O₂ into N-p-carbamyl-benzoylarsanilic acid, m.p. >360°, whence the amorphous arsine oxide, m.p. 319°, is obtained. p-NH₂·C₆H₄·SC₆H₄·NO₂-p gives (Scheller-Bart) p-p'-nitrophenylthiolphenylarsonic acid (39%), m.p. 291—292°, and thence the NH₂-acid, decomp. >190°, and (Sandmeyer) the CN-acid (32%), decomp. >200°, whence H₂O₂ yields p-p'-carbamylbenzenesulphonyl-phenylarsonic acid, m.p. 310·5°. VIII. ArN₂Cl couples with o- and m-OH·C₆H₄·AsO₃H₂ in the position b- to OH: when the OH is b- to the AsO₂H₃ patial re- phenylarsonic acid, m.p. 310·5°. VIII. ArN₂Cl couples with o- and m-OH·C₆H₄·AsO₃H₂ in the position p- to OH; when the OH is p- to the AsO₃H₂, partial replacement of AsO₃H₂ by ArN₂ and then further coupling occur, the amounts of three reactions depending largely on the pH. The Bart and Scheller-Bart reactions can also be used with azobenzene derivatives. 2-Hydroxy-5-, m.p. 257·3°, and 5-hydroxy-2-benzene-azophenylarsonic acid, m.p. 237·5°, are obtained by coupling in NaHCO₃ or NaOH; they are converted by hydrogenation (Raney Ni) and then reduction in HCl into 4-amino-2-, m.p. 183—183·4°, and 5-amino-4-dichloroarsinophenol hydrochloride, m.p. 128—128·2°, respectively. p-OH·C₆H₄·AsO₃H₂ (VIII) at pH 5·8—6·6, 7·3—7·4, or 8·5—9·5 (respective yields in parentheses) gives p-PhN₂·C₆H₄·OH 8.5-9.5
(respective yields in parentheses) gives p-PhN2.C4H2.OH (36.9, 39.4, 9.4), 4-hydroxy-3-benzeneazophenylarsonic acid (0.5, 5.9, 0), m.p. 290° (obtained in 40% yield by a Scheller-Bart reaction), and 2:4:1-(PhN₂)₂C₆H₃·OH (4·6, 12·2, 27·8%). (VIII) does not couple with ρ-N₂Cl·C₆H₄·CO₂H or m-C₆H₄Me·N₂Cl. 2:4:1-(OH)₂C₆H₃·ASO₃H₂ at pH 7·6—7·9 or 8·5—9·5 gives 84 and 5·6%, respectively, of 2: 4-dihydroxy-3: 5-dibenzeneazophenylarsonic acid, respectively, of 2:4-dihydroxy-3:5-dibenzeneazophenylarsonic acid, m.p. 268°, with, in the latter case, mixed phenoic 4:1-OH·C₁₀H₈·AsO₃H₂ (**IX**) at pH 7·1-7·4 gives 4:1-PhN₂·C₁₀H₈·OH (34·4%), (PhN₂)₂C₁₀H₅·OH (33·8%), and 4-hydroxy-1-benzeneazonaphthylarsonic acid (**X**) (20%), m.p. 245°. 4-Amino-1-naphthylbenzoate (prep. from the NO₂-ester by H₂-Raney Ni in EtOH or from the NH₃-ester hydrochloride by NH₃), m.p. 107·2-107·6°, gives (Scheller-Bart) 4-arsono-1-naphthylbenzoate (19%), m.p. 199·8-200°, whence cold HCI-MeOH yields (**IX**) (57%) and MeOBz. H₂-Raney Ni reduces the Na₁ salt of (**X**) to 2-amino-1-naphthol-4-arsonic acid, decomp. when heated, whence 4-hydroxy-1: 4-a-naphth-isooxazine-6-arsonic acid is prepared. Bart, or, better, Bart-4-arsonic acia, decomp. When heated, whence 4-hydroxy-1: 4-a-naphth-isooxazine-6-arsonic acid is prepared. Bart, or, better, Bart-Scheller, reactions yield p-PhN₂·C₈H₄·AsO₃H₂, m.p. 332·5—333·5°, p-toluene-p'-azophenyl- (XI), m.p. >360°, and 4-hydroxy-3-benzene-azophenyl-arsonic acid, but failed with p-5-amino-2-hydroxyazobenzene-4'-sulphonic acid (Na salt of the Ac derivative) and its amide (Ac derivative). Oxidising (XI) by KMnO₄ gives p-p'-arsono-benzeneazobenzoic acid, m.p. >360°, converted by PCl₅-POCl₃ and then aq. NH₂R into p-p'-arsinoxidobenzeneazobenz-amide, decomp. >260°, and -β-hydroxyethylamide, decomp. >275°. p-AsO₃H₂·C₆H₄·N₂Cl and o-NHAc·C₆H₄·OH give p-3'-acetamido-, m.p. 224·8—225·2°, and thence (HCl-MeOH) p-3'-amino-4'-hydroxy- benzeneazophenylarsonic acid, decomp. when heated. Mercuripurine derivatives of phthalimide. G. Carrara and E. Mori (Gazzetta, 1943, 73, 113—116).—Allylphthalimide [new prep. from $C_eH_4(CO)_2O$ and allylamine] and $Hg(OAc)_2$ in MeOH at the b.p. give N- β -acetatomercuri- γ -methoxy-propylphthalimide, m.p. 139—140°, which with theophylline gives a-phthalimido- γ -methoxy- β -propylmercuritheophylline, m.p. 225—226°. E. W. W. #### IX.—PROTEINS. Strometin.—See A., 1944, III, 450. #### X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES. Formation of "excess material" in the treatment of wood with sodium chlorite and its significance for the chemistry of wood and lignin. G. Jayme, L. Eser, and G. Hanke (*Naturwiss.*, 1943, 31, 275—276).—Subjection of the solutions obtained by treating wood with NaClO₂ to dialysis and electrodialysis yields from pine 10·13% of material with 8·62% OMe and 22·30% lignin residue and from poplar 9·42% of material with 6·84% OMe and 25·05% lignin residue. In these cases the excess material amounts to 7·87% and 7-06% respectively; this consists of a mixture of substances with short chains the individual fractions of which give varying amounts of residue in the customary lignin determination. The observations are explained by assuming the presence of a polysaccharide of the baryon type of the presence hexose type or its precursor substituted mainly with guaiacyl residues, two aromatic residues being united to each pyranose ring by the loss of 1.5-2 mols. of H_2O or 0.5-2 atoms of O. H. W. Isolation of euphol and a-euphorbol from euphorbium. G. T. Newbold and F. S. Spring (J.C.S., 1934, 249-252).—Two crystmonohydric alcohols have been isolated by the chromatographic method from euphorbone, an amorphous solid obtained from One of these is identical with a-euphorbol (cf. Bauer euphorbium. et al., A., 1931, 847), m.p. $126-127^{\circ}$, $[a]_{1}^{17} \pm 0^{\circ}$ in CHCl₃ [acetate, m.p. $124-125^{\circ}$, $[a]_{1}^{15.5} \pm 0^{\circ}$ in CHCl₃; benzoate, m.p. $133-135^{\circ}$, $[a]_{1}^{15.5} + 15^{\circ}$ in $C_{8}H_{8}N$; acetate dibromide, m.p. $169-171^{\circ}$ (decomp.)], which contains at least two double bonds, the acetate being reduced which contains at least two double bonds, the acetate being reduced to dihydro-a-cuphorbyl acetate, m.p. 133—135°, $[a]_{\rm b}^{15}$ —15° in C_8H_8N . The second component is euphol, $C_{30}H_{50}O$ (?), m.p. 116°, $[a]_{\rm b}^{19.5}$ +32° in CHCl₃, containing two double bonds, one of which is relatively inert; it gives an acetate, m.p. 109°, $[a]_{\rm b}^{19.5}$ +41° in CHCl₃, benzoate, m.p. 137—139°, $[a]_{\rm b}^{18.5}$ +59° in C_5H_5N , acetate dibromide, m.p. 138·5—139·5°, $[a]_{\rm b}^{20}$ +23·5° in CHCl₃, and dihydroeuphol, m.p. 120°, $[a]_{\rm b}^{18.5}$ +34° in CHCl₃ (acetate, m.p. 123·5—124°, $[a]_{\rm b}^{19}$ +34·5° in CHCl₃, and benzoate, m.p. 160—161°). Biochemistry of Eidamella spinosa.—See A., 1944, III, 502. Folic acid. I. Concentration from spinach. H. K. Mitchell, H. K. Mitchell, and R. J. Williams. II. Adsorption. E. H. Frieden, H. K. Mitchell, and R. J. Williams. III. Chemical and physiological properties. H. K. Mitchell and R. J. Williams. IV. Absorption spectra. H. K. Mitchell (J. Amer. Chem. Soc., 1944, 66, 267—268, 269—271, 271—274, 274—278; cf. A., 1941, III, 1066).— 267—268, 269—271, 271—274, 274—278; cf. A., 1941, 111, 1066).— 1. The filtrate obtained from pulped spinach (1000 lb.) by H_2O at 30—35° and then the b.p. is adjusted to pH 3·0—3·2, treated with "Super-cel," filtered, and stirred with C. The C is clutted with boiling 2·55% aq. NH₃, which is then stirred with C pretreated with aq. NH₂Ph and then H_2O . Elution by boiling 8% aq. NH₂Ph, extraction with Et₂O, and adjustment of pH to 3·0—3·2 are then followed by a similar adsorption and elution. Finally follow successive putn by Ph(OAc), elution of the ppt by boiling ag (NH) SO. followed by a similar adsorption and clution. Finally follow successive pptn. by Pb(OAc)₂, elution of the ppt, by boiling aq. (NH₄)₂SO₄, pptn. by aq. AgNO₃ at pH 6.5, elution by boiling aq. NH₄Cl, pptn. by Lloyd's reagent, elution by 5% aq. NH₃, adsorption on Al₂O₃, fractional elution by NH₃=MeOH-H₂O, pptn. by HCl at 0°, redissolution in aq. NH₃, adsorption on Al₂O₃, and elution and pptn. as above. Thus are obtained 1·2 mg. of amorphous folic acid (I) having a potency 137,000 times as great as Wilson liver fraction B when tested as growth stimulant for Streptococcus lactis R. Other procedures are less effective procedures are less effective. II. Impure (I) is readily eluted from C on which it has been adsorbed, but pure (I) is tenaciously retained. Retention of pure (I) is rendered less severe by pretreatment of the C by adsorbable substances. Adsorption isotherms confirm the dual nature of the adsorption; equilibrium is reached only slowly. Similar isotherms for riboflavin and thiochrome on C indicate similar phenomena. III. (I) is readily inactivated by oxidation, reduction, acid, alkali, dry heat, light, acylation, esterification, methylation, benzylation, HNO₂, NaOBr, Br, etc., but the mol. wt. and absorption spectra (and thus chemical structure) are often little affected by these changes. The mol. wt. determined by diffusion and analyses. spectra (and thus chemical structure) are often into ancector of these changes. The mol. wt., determined by diffusion, and analyses indicate $C_{18}H_{18}O_8N_5$ as approx. formula. (I) is required for the growth of 4 yeasts, but the relative amounts of different concentrates required for yeasts and bacteria may vary. Thymine (1 μ g. per ml.) may replace (I) for S. lactis R, as also may 10 μ g. per ml. of 9 other pyrimidine derivatives, but numerous other compounds are ineffective. (I), having potency 75,000, has one fifth of the antianæmia activity of xanthopterin (II). IV. Absorption spectra and the effect of pH thereon are very similar for (I) and (II), indicating a similar structure. Results are recorded also for other pyrimidine derivatives. Purification affects the spectra, but inactivation has much less effect. For (I), (II), etc. sudden changes in adsorption at pH ~2.5 and ~9 are due to electronic shifts and tautomerism, respectively. ## INDEX OF AUTHORS' NAMES, A II AUGUST, 1944. ABERNETHY, J. L., 217. Adams, J. T., 213. Adams, R., 241. Adickes, F., 220. Alexeeva, V. A., 237. Algar, J., 224. Ambrose, P. E., 218. Anderson, J. M., 226. Arcus, C. L., 218. Arnold, R. T., 221. Aronson, S. A., 228. Azelrod, S., 218. Bachmeyer, C., 221. Baddeley, G., 223. Baer, E., 233. Baer, E., 233. Baldwin, A. R., 211. Baldwin, W. E., 222, 238. Baltzly, R., 236. Baltzly, R., 236. Baltzly, R., 236. Bergmann, F., 215. Bergmann, F., 215. Berr, L., 222. Binden, E. Z., 209. Bischoff, G., 213. Boekelheide, V., 220. Bogert, M. T., 241. Bretschneider, H., 228, 230. Buck, J. S., 235. Buckles, R., 221. Buehler, C. A., 221. Buehler, C. A., 221. Butenandt, A., 230. Butz, L. W., 239. Buu-Hol, 216. Cabanzón Martinez, M., 220. Cabra Fernández, A., 220. Caldwell, B. P., 212. Cartara, G., 244. Cataline, E. L., 228. Chanan, H. H., 209. Chang, T. L., 233. Chardonnens, L., 224. Christiansen, W. G., 218. Chu, L. J. Y., 232. Ciusa, R., 236. Coleman, G. H., 214. Conley, M., 210. Dahll, P. J., 227. Dale, R. C., 218. Daubert, B. F., 211. Davidson, D., 214. Delitala, M., 239. Dienes, M. T., 210. Doak, G. O., 242. Dolliver, M. A., 218. Dubensky, E., 233. Dufraisse, C., 216, 227. EAGLE, H., 242. Edwards, W. R., jun., 218. Ellis, S., 241. Engelmann, F., 215. Erlenmeyer, H., 213. Ernst, J. L., 213. Eschinazi, H. E., 215. Escu, R. B., 210. Eser, L., 243. Evans, E. F., 214. Feldman, J., 214. Filachione, E. M., 217. Fisher, C. H., 217. Fletcher, H. G., jun., 210. Fodor, G., 228. Földi, Z., 228. French, H. E., 224. Frieden, E. H., 244. Frostick, F., 220. Furrer, M., 230. Fusco, R., 236. GALINOVSKY, F., 228. Georgescu, J., 221. Gravin, A. I., 239. Green, J., 231. Grünwald, G., 216. Gulland, J. M., 237. Hanke, G., 243. Hatch, L. F., 209.
Hauser, C. R., 213, 217, 220. Hawkins, E. G. E., 215. Haworth, W. N., 212. Heinrich, P., 224. Henne, A. L., 209. Heslop, D., 212, 213. Hockett, R. C., 210, 214. Hodgson, H. H., 216. Hu, P. F., 233. Huang, M., 232. Hubacher, M. H., 222. Hudson, B. E., jun., 211, Huisgen, R., 239, 240. Hunter, R. F., 215. Jackson, F. L., 211. Jayme, G., 243. Jeffries, S. F., 228. Johnson, W. S., 226, 235. Johnston, H. W., 217. Jones, R. N., 216. Kaplan, W., 221. Karlson, P., 230. Karrer, P., 209, 227. Kerfman, H. D., 218. Kharasch, M. S., 215, 223. King, C. G., 211. Kircher, J. E., 224. Koelsch, C. F., 220, 232. Krabbe, W., 216. Krawczyk, V., 220. Kubiczek, G., 233. Lang, W., 229. LaParola, G., 222. Lemmon, R. M., 219. Lengel, J. H., 217. Leonard, N. J., 241. Linsker, F., 241. Lo, C. P., 232. Longenecker, H. E., 211. Lorz, E., 236. Lowy, A., 222. Lowy, A., 222. McCloskey, C. M., 214. Macovski, E., 221. McLellan, J., 224. McLellan, C. R., 218. McRae, J. A., 232. Maeder, A., 211. Malatesta, L., 221. Malatesta, L., 221. Marvel, C. S., 217, 218. Marvel, C. S., 217, 218. Mathews, F. J., 235. Mellier, M. T., 216, 227. Menzer, C., 216. Mayer, K., 227. Menzer, W., 216. Meyer, K., 227. Meyer-Delius, M., 225. Michels, J. G., 221. Mitchell, H. K., 214. Miyaki, K., 236. Moffett, R. B., 232. Moore, A. C., 209. Morgan, M. S., 222. Mori, E., 244. Morrison, R., 223. Mower, N., 231. Mower, N., 231. Muhr, A. C., 229. Murray, M. J., 215, 233. Musante, C., 237, 238. Naves, Y. R., 220. Newbold, G. T., 244. Nickerson, M. H., 214. Nudenberg, W., 239. Ochiai, E., 236. Olin, S. M., 214. Overberger, C. C., 218. PAJKAU, R., 215. Panizzi, L., 238. Pavlovskaja, V. A., 231. Perrine, T. D., 213. Pesin, L. M., 231. Petrzilka, T., 229. Pinske, H., 216. Pizzotti, R., 221, 236. Plattner, P. A., 223, 229, 230. Polgár, A., 223. Polzin, E., 216. Posternak, T., 219. Powers, T. A., 221. Prelog, V., 209. Prey, V., 217. Price, C. C., 221. Pyle, R. E., 214. Quilico, A., 237. RAFFA, L., 235, 239. Ramsden, H. E., 210. Rao, P. A., 214. Reeder, W. H., 214. Regna, P. P., 212. Riedel, W., 234. Ronco, A., 223. Row, L. R., 232. Rowe, R. C., 218. Ruggli, P., 211, 227. Ruzicka, L., 229, 230. SALT, E., 212, 213. Sanna, G., 237. Saunders, R. H., 233. Savoy, C. M., 217. Schmidlin, J., 227. Schmidt, H. R., 217. Schneider, W., 234. Schön, W., 235. Scholl, R., 227. Seer, C., 227. Seshadri, T. R., 232. Shelberg, W. E., 226. Shivers, J. C., 211. Shoppee, C. W., 230, 231. Shriner, R. L., 232. Siegel, S., 218. Simon, H., 209. Simons, J. K., 238. Skinner, G. S., 213. Smith, C. W., 234. Smith, F., 212, 213, 214. Snell, E. E., 244. Snyder, H. R., 234. Spitzer, L., 217. Spring, F. S., 224, 231. Stacey, M., 212. Steinman, H. G., 242. Stevenson, E. H., 217. Stevens, H., 232. Stevenson, E. H., 217. Stewart, J. M., 234. Stoltenberg, J., 221. Sutton, D. A., 211. Swann, S., jun., 218. TAYLOR, J. H., 213. Tipson, R. S., 222. Toy, A. D. F., 210. URBAIN, G., 217. Urty, W. H., 215, 223. WALKER, H. G., 217. Ward, H. M., 218. Weaver, W. I., 238. Weidlich, H. A., 225. Weisskopf, W., 239. Weizmann, A., 222. West, T. F., 225. Whitson, J., 217. Wieland, H., 239, 240. Williams, R. J., 244. Wilson, P. I., 212. Wolff, A., 230. Wolfrom, M. L., 214. Wood, T. R., 211. Young, W. G., 218. ZALÄN, E., 209. Zbinden, E., 227. Zechmeister, L., 210, 219, 233. Zetzsche, T., 216. # JUDACTAN ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS Each Batch subjected to INDEPENDENT ANALYSIS before label is printed You are invited to compare the above ACTUAL BATCH **ANALYSIS** guaranteed by the specifications of any actual batch analysis with the purities | competing maker in this country or abroad THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD. Chemical Manufacturers, Judex Works, Sudbury, Middlesex