MEMBER'S CODY # BRITISH CHEMICAL AND # PHYSIOLOGICAL ABSTRACTS SEPTEMBER, 1944 ## A II—ORGANIC CHEMISTRY #### CONTENTS | I, Aliphatic | PAGE 245 | vi, Heterocyclic | PAGE 270 | |---|----------|--|----------| | II, Sugars and Glucosides | 250 | VII, Alkaloids | 280 | | III, Homocyclic | 252 | VIII, Organo-metallic Compounds | 282 | | IV, Sterols and Steroid Sapogenins | 264 | IX, Proteins | 284 | | v, Terpenes and Triterpenoid Sapogenins | 267 | x, Miscellaneous Unclassifiable Substances | 284 | Published by the #### BUREAU OF CHEMICAL AND PHYSIOLOGICAL ABSTRACTS (Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, the Anatomical Society of Great Britain and Ireland, and the Society for Experimental Biology.) # Determination COPPER Gravimetric assay with α-NITROSO-βNAPHTHOL QUINALDINIC ACID SALICYLALDOXIME Colorimetric estimation of traces with RUBEANIC ACID SODIUM DIETHYLDITHIOCARBAMATE The separation and determination of COPPER and many other metals forms the subject of "ORGANIC REAGENTS FOR METALS" 175 pp. 4th Edition, 1943 4/- post free The Book and the Reagents produced and distributed by HOPKIN & WILLIAMS 16-17 ST. CROSS STREET, LONDON, E.C.I ### CHEMICAL SOCIETY MEMORIAL LECTURES **VOLUME I, 1893-1900** (Reproduced by a photolithographic process) Price 10s. 6d., postage 7d. CONTENTS THE STAS MEMORIAL LECTURE. By J. W. MALLETT, F.R.S. With an additional Facsimile Letter of Stas. Delivered December 13, 1892 THE KOPP MEMORIAL LECTURE. By T. E. THORPE, D.Sc., F.R.S. Delivered February 20, 1893 THE MARIGNAC MEMORIAL LECTURE. By P. T. CLEVE. 1895 THE HOFMANN MEMORIAL LECTURE. By the Rt. Hon. Lord PLAYFAIR, G.C.B., F.R.S.; Sir F. A. ABEL, Bart., K.C.B., F.R.S.; W. H. PERKIN, Ph.D., D.C.L., F.R.S.; H. E. ARMSTRONO. Delivered May 5, 1893 THE HELMHOLTZ MEMORIAL LECTURE. By G. A. FITZ-GERALD, M.A., D.Sc., F.R.S. Delivered January 23, 1896 THE LOTHAR MEYER MEMORIAL LECTURE. By P. P. BEDSON, M.A., D.Sc., F.I.C. Delivered May 28, 1896 THE PASTEUR MEMORIAL LECTURE. By P. FRANKLAND, Ph.D., B.Sc., F.R.S. Delivered March 25, 1897 THE KEKULE MEMORIAL LECTURE. . By F. R. JAPP, F.R.S. Delivered December 15, 1897 THE VICTOR MEYER MEMORIAL LECTURE. By T. E. THORPE, Ph.D., D.Sc., LL.D., F.R.S. Delivered February 8, 1900 THE BUNSEN MEMORIAL LECTURE. By Sir H. E. Roscoe, B.A., Ph.D., D.C.L., LL.D., D.Sc., F.R.S. Delivered March 29, 1900 THE FRIEDEL MEMORIAL LECTURE. By J. M. CRAFTS. 1900 THE NILSON MEMORIAL LECTURE. By O. PETTERSSON. Delivered July 5, 1900 Publishers: The Chemical Society, Burlington House, Piccadilly, London, W.1 #### BUREAU OF CHEMICAL AND PHYSIOLOGICAL ABSTRACTS Chairman: L. H. LAMPITT, D.Sc., F.R.I.C. Vice-Chairman: B. A. McSWINEY, B.A., M.B., Sc.D., F.R.S. Hon. Treasurer: F. P. DUNN, B.Sc., F.R.I.C. Editor and Secretary: T. F. BURTON, B.Sc. Indexer: MARGARET LE PLA, B.Sc. JULIAN L. BAKER, F.R.I.C. G. M. BENNETT, M.A., D.Sc., F.R.I.C. E. B. HUGHES, D.Sc., F.R.I.C. H. W. CREMER, M.Sc., F.R.I.C., M.I.Chem.E. L. A. JORDAN, D.Sc., F.R.I.C. H. J. T. ELLINGHAM, B.Sc., Ph.D., F.R.I.C. G. A. R. KON, M.A., D.Sc., F.R.S. SAMSON WRIGHT, M.D., F.R.C.P. F. G. YOUNG, D.Sc., Ph.D. Assistant Editors : J. H. BIRKINSHAW, D.Sc., F.R.I.C.* H. BURTON, M.Sc., D.Sc., F.R.I.C. F. G. CROSSE, F.R.I.C. A. A. ELDRIDGE, B.Sc., F.R.I.C. E. B. HUGHES, D.Sc., F.R.I.C. W. JEVONS, D.Sc., Ph.D.† SAMSON WRIGHT, M.D., F.R.C.P. E. E. TURNER, M.A., D.Sc., F.R.I.C., F.R.S. F. L. USHER, D.Sc. H. WREN, M.A., D.Sc., Ph.D. Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Biochemistry), A. G. POLLARD (Plant Physiology and Agriculture), K. TANSLEY (Sense Organs), L. G. G. WARNE (Plant Physiology), G. P. WELLS (Comparative Physiology), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands). † Assisted by A. J. E. WELCH (Physical Chemistry). #### PUBLICATIONS OF THE BUREAU ABSTRACTS SECTIONS A I-GENERAL, PHYSICAL AND INORGANIC CHEMISTRY. B I—CHEMICAL ENGINEERING AND INDUSTRIAL INORGANIC CHEMISTRY. A II-ORGANIC CHEMISTRY. B II-INDUSTRIAL ORGANIC CHEMISTRY. A III-PHYSIOLOGY. BIOCHEMISTRY. ANATOMY. B III-AGRICULTURE, FOODS, SANITATION, ETC. C-ANALYSIS AND APPARATUS. COLLECTIVE INDEXES DECENNIAL INDEX 1923-1932. QUINQUENNIAL INDEX 1933-1937. ## BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS ### A II—Organic Chemistry. SEPTEMBER, 1944. #### I.—ALIPHATIC. Reactions of hydrocarbons with sulphuryl chloride and with sulphur dioxide-chlorine mixtures.—See A., 1944, I, 206. dioxide-chlorine mixtures.—See A., 1944, I, 206. a-Methylenic reactivity in olefinic systems. I. Prins reaction with propylene. J. W. Baker (J.C.S., 1944, 296—301).—CHMe:CH₂ with paraformaldehyde in 100% AcOH—100% H₂SO₄ at 35° gives the diacetate (I), b.p. 65°/1 mm., of OH·CHMe:[CH₂]₂·OH (II) (63·5%) (di-a-naphthylurethane, m.p. 153°), 4-methyl-1: 3-dioxan (III) | 11(%), b.p. 25°/22 mm., and 4-acetoxytetrahydro-γ-pyran (IV) (22·5%), b.p. 47·5°/1 mm. (III) with 2: 4: 1-(NO₂)₂C₆H₃·NH·NH₂ in aq. HCl yields the hydrazone of CH₂O and (II). (IV) is hydro-lysed [aq. Ba(OH)₂] to 4-hydroxytetrahydro-γ-pyran (V), b.p. 60·5°/θ·7 mm. (p-nitrobenzoate, m.p. 69°), oxidised (CrO₃) to tetrahydro-4-pyrone (VI), b.p. 73°/20 mm. (2: 4-dinitrophenylhydrazone, m.p. 186—187°). Oxidation (HNO₃) of (IV). (V); and (VI) affords CO₂H·CH₂·O·[CH₂]₂·CO₂H, m.p. 97° [diamide, m.p. 174°; Me₂ ester, b.p. 138°/24 mm.; Me ester amide (?), m.p. 73°], reduced by HI to I·[CH₂]₂·CO₂H. (II) with CH₂O in AcOH—H₂SO₄ gives (I) and (III) but no (IV). Results for a kinetic examination are given, and it is suggested that (II) and (III) are formed by acid-catalysed addition of CH₂O to the double linking but (IV) is obtained by reaction with H of Me of CHMe;CH₂ activated by conjugation. BF₃ does not catalyse the Prins reaction, but improves the catalytic efficiency of H₂SO₄. Production of a- and β -pyronene from alloocimene. L. A. Goldblatt and S. Palkin (J. Amer. Chem. Soc., 1944, 66, 655—656).—Pyrolysis (apparatus: C, 1944, Part 4) of alloocimene at, best, 400° gives a- (~30%), b.p. 54—56°/20 mm., and β -pyronene (~45%), b.p. 62—64°/20 mm. R. S. C. Conjugated systems. XXIII. Synthesis and properties of di-halogeno-derivatives of isoprene. A. A. Petrov (J. Gen. Chem. Russ., 1943, 13, 331—338).—OH-CMe₂·C:CH (I), in cold CHCl₃, with 0·75 mol. of Cl₂, yields polychloro-derivatives and 50% of OH-CMe₂·CX:CHX (II), X = Cl, trans-form, b.p. 61·5—62°/10 mm.; dehydration of the latter by P₂O₅, with short time of contact, gives 35% of αβ-dichloro-γ-methyl-Δαγ-butadiene (III), b.p. 60·5—61°/85 mm., and a yellow, powdery polymer. Bromination of (I) (accelerated by illumination), under similar conditions, yields 95% of γβ-dibromo-β-methyl-Δγ-buten-β-ol, [(II), X = Br], b.p. 91·5—92·5°/10 mm.; a higher-boiling form of (II), X = Br, was obtained, in one isolated experiment, together with the product described. (II), X = Br, is dehydrated over P₂O₅ at 100°/20 mm. to a mixture of cis- and trans-αβ-dibromo-γ-methyl-Δαγ-butadiene, b.p. 51·5—52°/10 mm. (IV) (probably trans-) and b.p. 66·5—67°/10 mm. (V). (III) and (IV), in PhMe at 100°, form sticky polymers (7—8% in 1 hr.) and, on keeping in diffused light, become viscous in 4—5 months owing to formation of soft rubber-like polymers; they do not condense with (:CH·CO)₂O. In boiling 20% KOH-EtOH, (III), (IV), and (V) yielding CH₂:CMe-C;CBr. (II), X = Cl or Br, is decomposed by alcoholic or aq. KOH to COMe₂, CHX:CHX, and CH;CX; trans-(II), X = Cl, yields trans-C₂H₂X₂. R. C. P. CH;CX; trans-(II), X = Cl, yields trans-C₂H₂X₂. R. C. P. Conjugated systems. XXIV. Reaction of isoprene with hypobromous acid and with alkyl hypoiodites. A. A. Petrov (J. Gen. Chem. Russ., 1943, 13, 481—490).—HOBr, as NHACBr (I), and isoprene (II) (1:1-5 mol.) give δ-bromo-y-hydroxy-γ-methyl-Δ^a-butene (III), b.p. 49·5°/10 mm. (33% yield on HOBr), an isoprene dibromide, m.p. 86° (yield <25%), besides oily dibromides and products of reaction of (II) with (I) itself. (III) affords with AcCl a monoacetate (IV), with Cl-compounds, whilst with Ac₂O it gives 91% pure (?) (IV), b.p. 60°—95°. Br and (III) give αβδ-tribromo-y-hydroxy-r-methybutane, b.p. 136·5°/10 mm., which is largely unchanged on treatment with Na₂Cr₂O₇ in AcOH-H₂SO₄, but with aq. 80% KOH at 120° it gives αβ-epoxy-β-methyl-Δ'-butene (70% yield), b.p. 78·5—79°/715 mm., decomposed by H₂SO₄ to tiglaldehyde. Treatment of (I) with (II) (2:1 mol.) gives αy-dibromo-βy-dihydroxy-β-methylbutane, m.p. 86°. (II) with HgO, I, and either MeOH or EtOH gives δ-iodo-y-methoxy-, b.p. 60°/10 mm., or δ-iodo-y-ethoxy-, b.p. 66·5°/10 mm., γ-y-methyl-Δ^a-butene. Preparation and purification of glucose 1-phosphate with the aid Preparation and purification of glucose 1-phosphate with the aid of ion exchange adsorbents. R. M. McCready and W. Z. Hassid 245 L (A., II.) (J. Amer. Chem. Soc., 1944, **66**, 650—563).—Potato starch is digested with crude potato phosphorylase in presence of Na phosphates, inorg. phosphates are then removed by $Mg(OAc)_2-NH_3$, and the filtrate is passed through a cation-absorbing resin, Amberlite IR-100. The resulting acid solution is then passed through an anion-absorbing resin, Amberlite IR-4; weak acids pass through but glucosel-phosphoric acid is adsorbed and subsequently recovered by aq. NH_3 and pptn. as K_2 salt, $+2H_2O$, $[a]_D$ $+78^\circ$ in H_2O . Glucose-6-fructose-6-, and glycero-phosphoric and fructose-1:6-diphosphoric acids are similarly purified. Carboxonium salts. I. Acetyl fluoborate. F. Seel (Z. anorg. Chem., 1943, 250, 331—351).—Acetyl fluoborate, $Ac[BF_4]$ (I), obtained as white crystals by direct union of AcF and BF_3 , dissociates appreciably at room temp. and completely at the b.p. of AcF. It is hydrolysed by H_2O to AcOH and HBF_4 . With dry KF it affords AcF and KBF_4 ; with other K halides in presence of ionising solvents (e.g., liquid SO_2) it
gives KBF_4 and Ac halide. With $NaNO_2$ it reacts: $NaNO_2 + 2(I) \rightarrow NaBF_4 + (NO)BF_4 + Ac_2O$. EtOH and AcOH give EtOAc and Ac_2O respectively. NO-OEt affords $NO \cdot BF_4$ and EtOAc. Warm Et_2O yields AcF and BF_3 , Et_2O , which when further heated form EtOAc, BF_3 , and EtF. (I) is an electrolyte in liquid SO_2 , A at -70° being approx. that of KI, but decreasing rapidly with rising temp. Its reactions with KI and KOAc may be followed conductometrically. Its structure is ionic, $[Ac]^+[BF_4]^-$. Allylic rearrangements. XV. Carbonation of magnesium butenyl bromide. J. F. Lane, J. D. Roberts, and W. G. Young (J. Amer. Chem. Soc., 1944, 66, 543—545; cf. A., 1944, I, 157).—Adding the Grignard solution from mixed CHMe; CH·CH₂Br (80%) + CH₂:CH·CHMeBr (20%) to solid CO₂ gives 75% of CH₂:CH·CHMe·CO₂H (I), b.p. 95·5°/35 mm. (chloride, b.p. 55—58°/110 mm.; amide, m.p. 98°, hydrogenated to CHMeEt·CO·NH₂; CHPhMe·NH₂ salt, m.p. 119·5—120·5°). Arnold's method (A., 1942, II, 142) gives 63% of (I), 13% of dibutenyl ketone, b.p. 93—94°/100 mm., smaller amounts of octadienes, b.p. 52—53°/100 mm., and a fraction, b.p. 100—115°/30 mm. R. S. C. Reduction of ester vinylogues. R. H. Baker and P. C. Weiss (J. Amer. Chem. Soc., 1944, 66, 343—345).—2-Ethylchromone is unaffected by boiling Al(OPr^{\beta})₃-Pr^{\beta}OH, as also is CHBz;CMe·OEt (I), which is largely unchanged by Al(OBu-sec.)₃ at 100°; OEt·CH:CAc·CO₂Et (II) gives a (polymerised) tar with a little dimeride. With H₂-Raney Ni, (II) at 23° gives CHMcAc·CO₂Et (50%), (I) at 118° gives OEt·CHMe·CH₂·CHPh·OH (III) (57%) and at 120° gives, after absorption of only 1 H₂, 64% of (III) + CH₂Bz·CHMe·OEt; OEt·CMe·CH·CO₂Et (IV) at 130° gives OEt·CHMe·CH₂·CO₂Et (V) (86%). With H₂-Cu chromite, (II) at 150° gives a tar, (I) at 180° gives COPhPr^a (58%), and (IV) at 170° gives (V) (45%). R. S. C. Autoxidation of β -elæostearic acid. Application of the spectrophotometer to the study of the course and the kinetics of the reaction.—See A., 1944, I, 204. Cryoscopy [and structure] of isanic acid.—Sec A., 1944, I, 169. β-Lactones and β-lactonic acids. III. Condensation of citral with malonic acid. N. S. Vulfson and M. M. Schemjakin (J. Gen. Chem. Russ., 1943, 13, 436—447).—Citral with $\mathrm{CH}_2(\mathrm{CO}_2\mathrm{H})_2$ in presence of piperidine and AcOH affords, via CMe_2 : $\mathrm{CH}\cdot[\mathrm{CH}_2]_2$: $\mathrm{CMe}\cdot\mathrm{CH}\cdot\mathrm{CH}\cdot\mathrm{C}(\mathrm{CO}_2\mathrm{H})_2$ (I), both $\mathrm{CMe}_2\cdot\mathrm{CH}\cdot[\mathrm{CH}_2]_2$: $\mathrm{CMe}\cdot\mathrm{CH}\cdot\mathrm{CH}\cdot\mathrm{CH}\cdot\mathrm{CH}\cdot\mathrm{CO}_2\mathrm{H}$, b.p. $\sim 170^\circ/15$ mm., and the βδ-dilactone of (I), viz., CMe₂:CH-[CH₂]₂·CMe·CH₂·CH·CO (II), m.p. 187°. When titrated with aq. NaOH (II) behaves as a monobasic acid: with boiling aq. NaOH both rings open and on acidification the product affords the corresponding δ -hydroxy- β -lactonic acid, m.p. 113—114° (III), with the δ -hydroxy- β -lactone, m.p. 119·5—120·5° (IV). With boiling AcCl (III) gives (II), CO₂, (IV), and the monoacetate (V) of (IV) (?), whilst on long heating with H₂O or with C₆H₆ (IV) is formed. Oxidation of (III) by aq. KMnO₄ in alkaline solution gives H₂C₂O₄ but no HCO₂H; hence the lactone ring is formed at the β -position. (IV) is unattacked by boiling Ac₂O; 246 thus the OH is on a tert. C so that it is a 8-lactone; with AcCl it gives (V), m.p. 117-118°. F. Ht. β -Lactones and β -lactonic acids. IV. Rate of fission of the β lactone ring.—Sec A., 1944, I, 204. Action of aromatic diazo-compounds on alkylacetoacetic esters as a method of preparing arylhydrazones of α-keto- and α-amino-acids. VII. Synthesis of n-valine. V. V. Feofilaktov and V. N. Zaitzeva (J. Gen. Chem. Russ., 1943, 13, 358—362).—CHPrAc·CO₂Et (I) and (J. Gen. Chem. Russ., 1943, 13, 358—302).—CHPTAC·CO₂Et (1) and PhN₂·OK, under conditions already specified (Λ ., 1940, II, 70, 85), give NHPh·N:CPr·CO₂Et (II) (35·4%) in a form, m.p. 103°, not previously described; reduction of (II) by Zn dust and HCl–EtOH, followed by treatment with $\Lambda g_2 CO_3$ and $H_2 S$, yield n-valine (III) (77·4%). Similarly, (I) and p-C₆H₄Me·N₂·OK give a mixture of two forms of a-ketovaleric acid p-tolylhydrazone (IV) (43·5%); crystallisation from $C_6 H_6$ yielded the a-form, m.p. 134—135°, and an inseparable mixture of the a- and β -forms, m.p. 123—131°. Reduction of (IV) (α - and β -forms mixed) as above gives (III) (96·4%) tion of (IV) (α - and β -forms mixed) as above gives (III) (96.4%). R. C. P. Action of aromatic diazo-compounds on substances of the type of alkylacetoacetic esters as a method for obtaining arylhydrazones of a-keto-acids and of a-amino-acids. IX. Reaction of ethyl cyclohexan-2-onecarboxylate with diazobenzene. V. V. Feofilaktov and A. Ivanov (J. Gen. Chem. Russ., 1943, 13, 457—467).—The reaction of cyclic compounds allied to monoalkylacetoacetic esters with of cyclic compounds allied to monoalkylacetoacetic esters with aromatic diazo-compounds has been studied partly to widen the scope of the method of obtaining a-NH₂-acids from monoalkylacetoacetic esters and partly to obtain a-aminodicarboxylic acids. Et cyclohexan-2-one-1-carboxylate with PhN₂Cl in acid aq. EtOH containing NaOAc affords $CO_2H \cdot [CH_2]_3 \cdot C(:N \cdot NHPh) \cdot CO_2Et$ in 98% yield, the product beng an a-form, m.p. 89·5—90°, admixed with a minor proportion of a β -form (cf. Jackson and Manske, A., 1931, 363); hydrolysis of the mixture gives a-ketopimelic acid phenylhydrazone in two forms: that predominating (I) (from a-ester?) hydrazone in two forms; that predominating (I) (from a-ester?) has m.p. 143—144°; the other form has m.p. 131—132° (cf. Linstead and Wang, A., 1937, II, 340). With HCl in aq. EtOH and Zn dust (I) gives CO₂H·[CH₂]₃·CH(NH₂)·CO₂H. F. HI. Thermal decomposition of acetaldehyde.—Sec A., 1944, I, 204. Thermal decomposition of acetaldehyde.—See A., 1944, I, 204. Preparation of ketones from nitro-olefines. (Miss) D. Nightingale and J. R. Janes (J. Amer. Chem. Soc., 1944, 66, 352—354).—AlkCHO and CH₂Alk'·NO₂ give 70—80% of OH·CHAlk·CHAlk'·NO₂, the acetate of which with boiling NaHCO₃-MeOH-H₂O gives 90—95% of CHAlk:CAlk'·NO₂, decomposed at the b.p./1 atm., reduced by Zn dust in boiling Et₂O-25% AcOH to CH₂Alk·CAlk';N·OH (usually 50—60%), whence boiling CH₂O-H₂O-H₂SO₄ yields COAlk'·CH₂Alk. The following are described, m.p. in parentheses being those of the a-naphthylurethanes. a-, b.p. 75°/2 mm. (m.p. 118—119°), and γ-nitrobutan-β-ol, b.p. 78°/17 mm. (m.p. 122—123°); a-, b.p. 85°/2 mm. (m.p. 99—100°), and γ-nitropentan-β-ol, b.p. 78°/2 mm; (m.p. 100—101°); β-nitropentan-γ-ol, b.p. 79°/2 mm. (m.p. 126°). γ-, b.p. 64°/2 mm. (m.p. 137°), and a-nitro-γ-methylbutan-β-ol, b.p. 66°/1 mm. (m.p. 97-5-98°); a-nitrohexan-β-ol, b.p. 80°/1 mm. (m.p. 103°); β-nitrohexan-γ-ol, b.p. 82°/2 mm. (m.p. 136—137°); γ-nitrohexan-δ-ol, b.p. 89°/2 mm. (m.p. 113—114°); β-nitro-δ-, b.p. 89°/2 mm. (m.p. 110—113°), and -β-methylpentan-γ-ol, b.p. 75°/4 mm.; β-nitroheptan-γ-ol, b.p. 92°/2 mm.; γ-nitroheptan-β-ol, b.p. 105°/2 mm.; β-nitroheptan-γ-ol, b.p. 92°/2 mm.; γ-nitroheptan-β-ol, b.p. 105°/2 mm.; β-nitro-β-methylhexan-γ-ol, b.p. 92°/2 mm.; γ-nitro-γ-ethylhexan-γ-ol, b.p. 87°/2 mm.; β-nitro-β-methylhexan-γ-ol, b.p. 100°/2 mm.; γ-nitro-σ-methylhexan-γ-ol, b.p. 78°/2 mm.; β-nitro-β-methylhexan-γ-ol, b.p. 100°/2 mm.; γ-nitro-ε-ethylhexan-γ-ol, b.p. 100°/2 mm.; γ-nitro-δ-heptan-δ-ol, b.p. 108°/2 mm.; β-nitro-δ-heptan-β-ol, b.p. 108°/2 mm., γ-nitro-δ-hexene, b.p. 53°/1 mm., ε-methyl-Δβ-hexene, b.p. 53°/1 mm., ε-methyl-Δβ-hexene, b.p. 53°/1 mm., ε-methyl-Δβ-hexene, b.p. 53°/1 mm., α-nitro-Δ-heptene, b.p. 57°/1 mm., and ε-ethyl-Δβ-hexene, b.p. 56°/1 mm., σ-α-ethyl-Δβ-hexene, b.p. 57°/1 mm., α-nitro-Δ-heptene, b.p. 57°/1 mm., α-nitro-Δ-α-heptene, b.p. 57°/1 mm., α-nitro-Δ-α-heptene, b.p. 57°/1 mm., α-nitro-Δ-α-heptene, b.p. 57°/1 mm.; y-oximino-e-ethylheptane, b.p. 75-79/1 mm., -decane, b.p. 81°/1 mm., -heptane, b.p. 56°/1 mm., -nonane, b.p. 70°/1 mm., -e-ethylnonane, b.p. 89—92°/1 mm., and -e-methylhexane, b.p. 55°/1 mm.; β-oximino-δ-ethylhexane, b.bp. 69°/1 mm., and -δ-ethyloctane, b.p. 81°/1 mm.; ε-ethylnonan-γ-one, b.p. 53°/1 mm. Efforts to condense the nitro-olefines with (CH2 CH), or cyclopenta- Condensation of isobutaldehyde with aliphatic ketones. Powell and F. Hagemann (J. Amer. Chem. Soc., 1944, 66, 372—376).— $Pr^{\beta}CHO$ with COMeR (R = Pr^{α} , Bu^{α} , Bu^{β} , n-amyl, or n-hexyl) in KOH-EtOH at <35° gives 35-65% of CHPr\$:CH·COR (A); only n-C₆H₁₁COMe gives a little CHPra:CBua·COMe (hydantoin derivative, m.p. 175-176°). Na in NaHCO₃-Et₂O-H₂O usually converts (A) into CHPr\$:CH·CHR·OH, but reduction is sometimes incomplete: H. PtO is always effective of Mathed A'z advantage. incomplete; H_2 -PtO₂ is always effective. β -Methyl- Δ 'n-decensione, b.p. $223-224^\circ$ (hydantoin derivative, m.p. $135-136^\circ$), with Na-EtOH gives β -methyl- Δ ^-n-decension (42%), b.p. $129\cdot5-131^\circ$ /30 mm. (3:5-dinitrobenzoate, an oil), whence O₃ gives COMe₂ (no PrβCHO) and Δ^a -octenaldehyde [semicarbazone, m.p. 169—170° (lit. 163°)]. COEt₂ and PrβCHO give CHPrβ:CMe·COEt, b.p. 176—178° (2:4-dinitrophenylhydrazone, m.p. 174—175°) (cf. Franke et al., A., 1924, i, 6). The following are described: m.p. prefixed by h are those of the derived hydantoins. CHPrβ:CH·COPra, b.p. 85—86°/25 mm.; β-methyl-Δ^γ-n-nonen-ε-one, b.p. 103—105°/25 mm. 85—86°/25 mm.; β-methyl-Δ'-n-nonen-ε-one, b.p. 103—105°/25 mm. (h m.p. 149·5—150°); βη-dimethyl-Δ'-n-octen-δ-one, b.p. 199—200°; β-methyl-Δ'-n-undecen-ε-one, b.p. 135—136°/28 mm. (h m.p. 118·5—119°); COPra·CH₂Buβ, b.p. 177—179° [semicarbazone, m.p. 144·5—203—204° (h m.p. 192—192·5°); βη-dimethyl-n-nonan-ε-one, b.p. 203—204° (h m.p.
192—192·5°); βη-dimethyl-n-octan-ε-one, b.p. 196—198° (semicarbazone, m.p. 78—79°; h m.p. 216—217°); β-methyl-n-decan-ε-one, b.p. 119—121°/28 mm. [nitroguanylhydrazone, m.p. 78—79·5° (decomp.); h m.p. 192—192·5°); β-methyl-n-undecan-ε-one, b.p. 126—128°/23·5 mm. [nitroguanylhydrazone, m.p. 84·5—86° (decomp.); h m.p. 175—175·5°]; δζ-dimethyl-n-heptan-γ-one, b.p. 170—173° (h m.p. 186—186·5°); β-methyl-n-nonan-ε-ol, b.p. 111·5—113°/28·5 mm. (3:5-dinitrobenzoate, m.p. 63·5—64·5°); CH₂Buβ·CHBuβ·OH, b.p. 107—108°/29·5 mm. (3:5-dinitrobenzoate, m.p. 81—82°); β-methyl-n-undecan-ε-ol, b.p. 122·5—123°/24 mm. (124—126°/24 mm.); β-methyl-n-undecan-ε-ol, b.p. 132—133°/24 mm. (135°/24 mm.). M.p. and b.p. are corr. R. S. C. Synthesis of bromoacetals. P. Z. Bedoukian (J. Amer. Chem. Soc., 1944, 66, 651—652).—Adding Br to CH₂:CH·OAc in CCl₄ at 0—10° and pouring the mixture into ROH gives bromoacetaldehyde Me₂ (80—85%), b.p. $48-49^{\circ}/14$ mm., and Et₂ acetal (75—80%), b.p. $64-65^{\circ}/16$ mm. R. S. C. Anomalous base strength of the methylamines.—See A., 1944, I, 175. Geranylamine. D. A. Sutton (J.C.S., 1944, 306).—Geranylamine hydrochloride, m.p. 145—146° (modified prep.), is a single substance, CMe2:CH·[CH2]2·CMe:CH·CH2·NH3Cl. Solubilities of symmetrical, normal aliphatic secondary amines of high mol. wt. C. W. Huerr, H. J. Harwood, and A. W. Ralston (J. Org. Chem., 1944, 9, 201—210).—The solubilities of dioctylamine, m.p. (α form) 14·60°, (β-form) 26·7° (lit. 36·5 and 34° respectively), f.p. 14·60°, didodecylamine, m.p. (α-form) 46·9° (lit. 51—53°), β-form 51·8°, f.p. 46·9°, ditridecylamine, m.p. 56·5°, f.p. 56·5°, ditetradecylamine, m.p. 60·6° (lit. 56—58°), f.p. 60·6°, dipentadecylamine, m.p. 63·3°, f.p. 63·3°, and dioctadecylamine, m.p. 72·3° (lit. 71—72°), f.p. 72·3°, have been determined in C₆H₆, cyclohexane, CCl₄, CHCl₃, Et₂O, EtOAc, BuOAc, COMe₂, COMeEt, MeOH, 95% EtOH, PrβOH, Bu°OH, and MeCN. In general, the sec. amines are more sol. in org. solvents than are primary amines of corresponding more sol. in org. solvents than are primary amines of corresponding chain length. This behaviour is apparently due to the fact that the polar group in the centre of the paraffin chain causes the m.p. of the sec. amines to be considerably < those of the primary amines containing the same no. of C atoms. If a temp. correction is made for the difference in m.p., the solubility curve of any sec. amine can be nearly superimposed on that of the primary amine of equal chain length in any given solvent. Compared in this manner, the sec. amines tend to be slightly more sol. in non-polar solvents and somewhat less sol. in the highly polar solvents than the corresponding primary amines. The solubilities of the nitriles, primary and sec. amines, which have relatively weak polar groups, tend to suggest that the shapes of the solubility curves are probably due primarily to association of the paraffin chains with the possibility that the more polar compounds such as the acids and amides may be further associated at the polar groups. The sec. amines are obtained by heating the respective primary amines with Raney Ni Metabolism of phosphorylcholine. I. Synthesis of calcium phosphorylcholine chloride containing the radioactive isotope, ³²P. R. F. phorylcholine chloride containing the radioactive isotope, ³²P. R. F. Riley (J. Amer. Chem. Soc., 1944, 66, 512—513).—Heating choline chloride (I) with P₂O₅ and 100% H₃PO₄ containing some ³²P at 165°/vac. and treating the product in H₂O with CaCl₂ and then Ca(OH)₂ to neutrality gives 63% of Ca phosphorylcholine chloride (II), C₅H₁₃O₄NClPCa,4H₂O, containing 96% of the original radioactivity. 24% of (II) is obtained by heating choline hydroxide [prep. from aq. (I) by, successively, Ag₅CO₃, Ba(OH)₂, and evaporation in vac. (N₂)] with H₃PO₄ in PhMe with removal of H₂O and treating the product in aq. EtOH with CaCl₂-Ca(OH)₂ as above. Ag₃PO₄ or Ag₂PhPO₄ with bromocholine bromide in boiling EtOH gives 65 and 89%, respectively, of neurine. Phosphorylcholine reineckate and phosphotungstate, the HgCl₂ additive compound of phosphorylcholine, C₂H₁₅O₄NP,3HgCl₂, m.p. 180—184° (cort.), dicholine phosphate reineckate, and the additive compound, m.p. 202—207°, of dicholine phosphate and HgCl₂ are prepared. R. S. C. Nitric ester of choline perchlorate, m.p. 188—189°.—See A., 1944, III, 553. Chromammines. III. Preparation of diacidodiethylenediaminosalts by thermal decomposition of triethylenediamine luteo-salts.—See A., 1944, I, 206. Spectroscopic evidence for the N.H.N linking in ethyleneimine. H. W. Thompson and G. P. Harris (J.C.S., 1944, 301—303).— Variation in the intensity of an absorption band at 3.1 μ . with the concn. of ethyleneimine in solution in CCl₄ suggests association through N·H·N linkings. Other evidence is adduced in support. Polymerisation of ethyleneimine. G. D. Jones, A. Langsjoen, M. M. C. Neumann, and J. Zomlefer (J. Org. Chem., 1944, 9, 125—147).—The polymerisation of ethyleneimine (I) is indicated to involve a bimol. reaction between (I) and ethyleneimonium or substituted ethyleneimonium ions. Dimeric (I) is identical with N-β-(aminoethyl)ethyleneimine (II), which appears to be an intermediate in the polymerisation of (I). Polyethyleneimine is regarded as a linear polyece amine of mean degree of polymerisation 25—100. as a linear polysec.-amine of mean degree of polymerisation 25—100. as a linear polysec.-amine of mean degree of polymerisation 25—100. The polymerisation of (I) is not greatly accelerated by ascaridole at 40° or 150°, Bz₂O₂ at 40°, old MeCHO at 40° or 150°, 30% H₂O₂ at 40°, K₂S₂O₈ at 40°, CuSO₄ at 40°, Cu-bronze, 5N-NaOH at 25°, Bu°Cl, o-, m-, and p-C₆H₄Cl·NO₂. Some acceleration is caused by 30% H₂O₂ at 145°, and by H₂O at the same temp. Vigorous or explosive polymerisation is caused by H₂S₂O₈ at 110°, EtOAc, EtNO₃, CuSO₄ at 145°, CH₂PhCl, CH₂CH·CH₂Cl, and Bu^γBr. The effect of HNO₃, H₂SO₄, HCl, and AcOH is detailed. The polyethyleneimines studied are obtained by use of HCl or BF₃ under varied conditions. OH·[CH₂]₂·NH₂ is converted by successive treatments with HCl and SOCl₂ into β-chloroethylamine hydrochloride, m.p. 147·5—148°: β-chloro-n-propylamine hydrochloride, m.p. mp. 147·5—148°; β-chloro-n-propylamine hydrochloride, m.p. 180—182°, and N-phenyl-β-chloroethylamine hydrochloride, m.p. 155—167°, are obtained similarly. Cl·[CH₂]₂·NH₂ polymerises slowly at room temp., rapidly at 40°, suddenly at 95°. Rapid addition of a dil solution of (I) in anhyd. Et₂O to an excess of dry HCl in Et₂O dil solution of (I) in anhyd. Et₂O to an excess of dry HCl in Et₂O gives the unstable ethyleneimine hydrochloride, which rapidly polymerises. Dimeric (I), b.p. 126—127·5°, is obtained by polymerisation of (I) in Et₂O under defined conditions and treatment of the product with NaOH. NH₂·[CH₂]₂·NH·[CH₂]₂·OH is converted by distillation under 11 mm. with aq. H₂SO₄ to incipient charring followed by 40% NaOH into piperazine hydrate, m.p. 44°, and (II), shown to be identical with dimeric (I) by prep. of the phenyl-thiccarbamate, m.p. 129—131°. A polyethyleneimine I, obtained by use of conc. HCl at -78° and then at 25° for many days, is converted (Schotten-Baumann) into the Bz derivative softens (Dennis verted (Schotten-Baumann) into the Bz derivative, softens (Dennis bar) 110°, which with HCl in CHCl₃ yields a hydrochloride and is converted into a CH₂Ph derivative (hydrochloride) by condensation with PhCHO and reduction of the product by Na and abs. EtOH. The Bz derivative, softens (Dennis bar) 111°, of a polymeride obtained by use of BF₃ and the NO-derivative of a polymeride obtained in H₂O are described. Triethylenetetramine and C₂H₄Br₂ in abs. EtOH yield heptaethyleneotamine (IV), b.p. 109—110°/ 0.5 mm. (Bz derivative, m.p. 202—220°); nonaethylenedecamine (♥) b.p. $205^{\circ}/2.5$ mm. $(Bz_n$ derivative, m.p. $75-105^{\circ}$), is obtained similarly. Attempts to determine the chain length by Van Slyke NH2-N end-group analysis, cryoscopic measurements on the polymer, and extrapolation of η data obtained with compounds of low mol. wt. are described. For this purpose (CH₂·NH₂)₂, triethylenetetramine, tetraethylenepentamine, (IV), and (V) are used. Assuming no branching, the Van Slyke results indicate a degree of polymerisation of 5 units, the cryoscopic method of 42 units, and the extrapolation method of 57 units for a HCl-polymeride. Its non-distillability and relatively high η indicate the unreliability of the NH2-N method. H. W. Derivatives of chondrosamine. M. Stacey (J.C.S., 1944, 272—274).—Chondrosamine hydrochloride (I) (new prep. from chondroitin sulphate) with Ac₂O in C₅H₅N gives (60% yield) the a-Ac₅ (II), m.p. 178°, [a]²⁰ +102° in CHCl₃, but with Ac₂O and ZnCl₂ yields (30% yield) the B-Ac₅ derivative (III), m.p. 235°, [a]²⁰ +7° in CHCl₃. (I) with AgOAc in MeOH-Ac₂O yields a-N-acetylchondrosamine monohydrate, m.p. 120—122°, [a]²⁰ +115° → 80° after 50 hr. in H₂O. (II) with boiling 2% HCl-MeOH gives N-acetyl-a-methyl-chondrosaminide, m.p. 217—218°, [a]²⁰ +170° in CHCl₃, which with Mel-Ag₂O gives the Me₃ derivative (IV), m.p. 185°, sublimes 187°, [a]²⁰ +121° in CHCl₃. With Me₂SO₄ and NaOH, (II) gives (IV), (III) gives N-acetyltrimethyl-B-methylchondrosaminide (V), m.p. 232°, sublimes 235°, [a]²⁰ +7° in CHCl₃, whilst a mixture of (II) and (III) gives (IV) and (V), separated by fractional crystallisation or vac.-sublimation. (V) is converted into (IV) in boiling HCl-MeOH as for the corresponding glucosamine derivative. (IV) on hydrolysis (aq. HCl) yields trimethylchondrosamine hydrochloride, m.p. 178°, [a]²D +114° in H₂O. A mixture of (II) and (III) with HBr-AcOH affords acetobromochondrosamine (?), m.p. 152°, which loses Br on recrystallising (EtOH), giving triacetyl-N-acetylchondrosamine monohydrate, m.p. 183°, [a]²⁰ +60° in CHCl₃. Amino-acids. III. a-Amino-n- and -iso-butyric acid. J. H. Billmann-and E. E. Parker (J. Amer. Chem. Soc., 1944, 66, 538—539; cf. A., 1944, II,
152).—NH₂·CHEt·CH₂·OH, BzCl, and Na₂CO₂ in C₆H₈ at room temp, and then the b.p. give β-benzamido-n-butyl alcohol (89—91%), m.p. 98—99°, oxidised by KMnO₄ in aq. NaOH at 40° [less well, by PbO₂, Na₂Cr₂O₇-H₂SO₄, CrO₃, (NH₄)₂S₂O₈, or HNO₃] to NHBz-CHEt-CO₂H (67—72%), m.p. 139—140°, whence L 2 (A., II.) boiling 18% HCl yields NH₂·CHEt·CO₂H (72%). NH₂·CMe₂·CH₂·OH yields similarly the N-Bz derivative (78—79%), m.p. 89—90°, and thence NHBz·CMe₂·CO₂H (91—93%) and NH₂·CMe₂·CO₂H (86%). R. S. C. Purity of synthetic dl-leucine. D. M. Hegsted and E. D. Wardwell J. Biol. Chem., 1944, 153, 167—170).—Leucine (I) and isoleucine (II) are essential for Lactobacillus arabinosus (A., 1944, III, 371). When synthetic dl-(I) is used it is found that (II) is no longer necessary, suggesting that natural l-(I) is free from (II) but that synthetic dl-(I) is not. 7 samples of commercial dl-(I) were tested by microbiological assay and 5 showed appreciable (II) activity. 3 had 10-20% of the activity of (II), and from one, (II) was isolated. Since d-leucine, tert. dl-(I), and dl-norleucine are all without (II) activity it is thought that the activity is due entirely to (II) or its optical isomerides. Action of sulphites on cystine disulphide linkages of wool. IV. Methylation of thiol groups of bisulphited wools. S. Blackburn, R. Consden, and H. Phillips (Biochem. J., 1944, 38, 25—29; cf. A., 1942, II, 426).—SH groups formed when wool is treated with NaHSO₃ are methylated by MeBr or MeI. A similar reaction occurs when wool is treated simultaneously with NaHSO3 and Me2SO4. S-Cysteinesulphonate groups are unaffected by these methylating agents. The isolation of S-methylcysteine from hydrolysates of S-methylated wools by partition chromatography of the N-acetylated NH₂-acids is described. 1-N-Acetyl-S-methylcysteine, m.p. 73—80°, [a]₁¹⁶ -37·8° in H₂O, when heated at 100—110° in vac. is converted into dl-N-acetyl-S-methylcysteine, m.p. 155—156°. J. N. A. Synthesis of homocystine and of methionine. H. R. Snyder and G. W. Cannon (J. Amer. Chem. Soc., 1944, 66, 511—512).—2:5-Diketo-3:6-di-β-chloroethylpiperazine (A., 1943, II, 72) and CS(NH₂)₂ in boiling EtOH give the di-β-isothiuronium chloride (I) (98%), darkens 250°, m.p. 255° (decomp.). Aq. NaOH at room temp. hydrolyses (I) to the (β-SH)₂ compound (not isolated), converted by FeCl₃-O₂ into the sulphide (not isolated), which in boiling conc. HCl gives homocystine (74·5%). Gradually adding aq. NaOH to (I) and Me₂SO₄ in H₂O at 0° (not other methods) gives the (β-SMe)₂ compound (75%), m.p. 226—227·5°, and thence dl-methionine (65%) (cf. loc. cit.). Allulia recomposition in the sulphide of sulph J. N. A. Allylic rearrangement in the reaction of cuprous cyanide with halides. J. F. Lane, J. Fentress, and L. T. Sherwood, jun. (J. Amer. Chem. Soc., 1944, 66, 545—548).—CHMe:CH·CH₂X or CH₂:CH·CHMeX (X = Cl or Br) with CuCN at, successively, $60-70^{\circ}$, $95-100^{\circ}$, and $150-160^{\circ}$ gives Δ^{β} -penteno- (91·5±0·5%) and a-methyl- Δ^{β} -buteno-nitrile (8·5±0·5%), both b.p. 126° (corr.); the proportions, determined by n, are independent of the nature of the org. halide. The reaction is thus by way of the ion, $CHMe^{-\alpha}CH^{-\alpha}CH^{-1}$. [CHMe--CH-CH₂]+. Binary systems formed from nitriles and halides of titanium, tin, and antimony. N. A. Puschin, M. Ristic, I. Parchomenko, and J. Ubovic (*Annalen*, 1942, 553, 278—285).—HCN and McCN with SnCl₄ give compounds of high m.p. at which they decompose so that the systems cannot be investigated by the method of thermal analysis. Mixtures of HCl and PhCN with AsCl₃, of MeCN with SnBr₄, PCl₃, AsCl₃, AsBr, and SbBr₃, and of EtCN or PhCN with SnBr₄ remain liquid at room temp. Thermal analysis shows the existence of the following compounds, the crystallisation temp. being given in parentheses: TiCl₄,EtCN (100°); TiCl₄,2PhCN (180°); TiCl₄,2PhCN (153°); SnCl₄,2EtCN (109°); TiCl₄,2PhCN (109°); SnCl₄,2C₅H₄Me·CN-p, (153°); SnCl₄,2EtCN (76·5°); SnCl₄,2PhCN (109°); SnCl₄,2-C₅H₄Me·CN-o; (73°); SnCl₄,2C₆H₄Me·CN-m (97°); SnBr₄,C₅H₄Me·CN-o (53°); SbCl₃,C₅H₄Me·CN-p (32°). Sbl₃ and PhCN do not afford a mol. Ketone series. II. Condensation of monoketones with cyanoacetic acid. D. M. Trachtenberg and M. M. Schemjakin (J. Gen. Chem. Russ., 1943, 43, 477—480).—CN·CH₂·CO₂Et reacts with ketones in presence of piperidine for 3 hr. at $110-125^{\circ}$: CN·CH₂·CO₂Et + CORR' \rightarrow CRR':CH·CN. The ketones and yields of nitrile in each case are: COMePr, 70%; COMePrβ, 56% of βγ-dimethyl- Δ^{α} -pentenonitrile, b.p. 70—75°/165 mm.; COMeBu, 61% of β-methyl- Δ^{α} -hexenonitrile, b.p. 194—196°; COMe·C₆H₁₃, 65%, b.p. 128—130°/100 mm.; mesityl oxide, 70% of βδ-dimethyl- $\Delta^{\alpha\gamma}$ -hexadienonitrile. F. HI. #### II.—SUGARS AND GLUCOSIDES. Interpretation of reactions in the carbohydrate field in terms of consecutive electron displacement. H. S. Isbell (J. Res. Nat. Bur. Stand., 1944, 32, 45—59).—The general viewpoint is that the peculiar properties of systems involving double linkings may be explained by the migration of electron pairs in the mol. from points of high electron density to points of lower electron density with the addition and elimination of ions. Consideration of apparently unrelated complex reactions of the carbohydrates shows that the formation of the products may be explained by a few simple reactions involving shifts of electron pairs; these include enolisation, de-enolisation, and double decomp. Mechanisms are presented for the formation of the saccharic acids by the action of alkali on sugars, of unsaturated lactones from OH-acids, of diacetylkojic acid from acetylated glucosone hydrate, for the conversion of glucal triacetate into ψ -glucal diacetate, of ψ - into iso- and proto-glucal, and of tetramethylalicosene into ω -methoxymethylfurfuraldehyde, for the formation of lævulic acid from ω -hydroxymethylfurfuraldehyde and from 2-deoxypentoses and of furfuraldehyde from trimethylpentoses, Reaction of glucose with amines. E. Mitts and R. M. Hixon (J. Amer. Chem. Soc., 1944, 66, 483—486).—Except when R = H, the rate of hydrolysis of glucosylamines, 'CH(OH)-CH(NHR)-O, parallels the basic dissociation const. of NH₂R; when R = alkyl, equilibrium in \$2% aq. solution is established in 20 hr. at room temp. after 40% hydrolysis, but when R = aryl, only 8% of hydrolysis has occurred after 90 hr. and when R = acyl, the amides are stable even in acid (at room temp.). The Amadori rearrangement (to 'CO-CH₂*NHR) occurs only when R = aryl, and acid conditions are ideal for prep. of glucosylalkylamines: the Bu, n-amyl, n-heptyl, and dicyclohexyl derivatives are prepared from glucose (I mol.) and amine (2 mols.) in 0.5n-HCl at 70—75°; other derivatives are prepared from 1 mol. each of glucose and base in boiling MeOH or EtOH (cf. A., 1944, II, 37). 2-Methylglucose (I) with NHPh·NH₂ and a drop of AcOH in H₂O at room temp. give 2-methylglucosylphenylhydraxine, m.p. 176—177°, but on further reaction at the b.p. gives glucosephenylosazone; however, with p-toluidine in H₂O at 100° (I) gives only 2-methylglucosyl-ptoluidine, m.p. 150—151°, which does not rearrange or condense further. Hydrogenation (Raney Ni) of the (even non-cryst.) glucosylalkylamines in MeOH, EtOH, or aq. EtOH at, usually, 70—83°/800—1300 lb. gives cryst. alkylglucamines, 'CH(OH)-CH₂*NHR (cf. loc. cit.), which are stable to strong acid or alkali and to heat and can be titrated electrometrically with dil. acid; the intermediate alkyl derivatives are surface-active. The following new or revised data (cf. loc. cit.) are recorded. Glucosyl-n-hexa-, m.p. 106—107° after softening, and -n-octa-decylamine, m.p. 104—105° after softening, N-n-Butyl-, m.p. 127—128°, N-n-amyl-, [a]²⁶—13·8° in 50% EtOH. N-n-hexadecyl-, m.p. 123—124° after softening, N-n-octadecyl-, m.p. 118—119° after softening, N-isopropyl-, m.p. 126—127° after softening, lafter softening, N-107-popylenediglucamine, m.p. 105—135—137°. 1-Aminoglucose, m.p. 120—121°, [a]²⁶+19·1° i Large-scale preparation of D-altrose. D-Altroseoxime and its rate of mutarotation. R. C. Hockett and L. B. Chandler (J. Aner. Chem. Soc., 1944, 66, 627—628).—Prep. of cryst. D-altrose (oxime, m.p. $143-144^{\circ}$, $[a]_{2}^{24\cdot9}-64\cdot0^{\circ}\rightarrow -9\cdot8^{\circ}$ in $H_{2}O$, from D-lactose (cf. Richtmyer et al., A., 1935, 1355) is modified to give $3\cdot7\%$ over-all yield. R. S. C. Preparation of mannose. E. K. Narayanan (Indian J. Med. Res., 1941, 29, 1—6).—Complete hydrolysis to mannose of the polysaccharide in ivory-nut meal requires 10 hr. boiling with N-H₂SO₄ or 15 hr. heating at 105°. About 7% of the total sugar is thereby destroyed. S. E. M. Magnitude of "unit chains" of liver-glycogen of rabbits supplied with glucose, fructose, and sucrose.—See A., 1944, III, 606. Glycosides sensitive to alkali. Glucosides of nitro-alcohols. B. Helferich and M. Hase (Annalen, 1943, 554, 261—268).—Presence of NO₂, like that of SO₃H, in immediate propinquity to the glycosidic linking renders the glycosides very sensitive to alkali and hence enables them to reduce Fehling's solution immediately. Even under mild conditions the glucose liberated by alkaline hydrolysis immediately darkens. NO₂ remote from the glycosidic linking does not cause sensitiveness to alkali. The action of Ag₂CO₃ on a solution of acetobromoglucose (I) and NO₂:[CH₂]₂·OH in CHCl₃ at room temp. leads to β-nitroethyl-β-d-glucoside tetra-acetate, m.p. 119—120° (corr.), [a]₁¹⁰⁻⁶—15·8° in CHCl₃, which could not be hydrolysed to the free glucoside; replacement of Ag₂CO₃ by Ag₂O and CaSO₄ gives (?) β-nitroethyl-a-d-glucoside tetra-acetate, m.p. 139—140° (corr.), softens at ~125°, [a]₁¹⁰⁻⁸ +37·5° in CHCl₃. NO₂·CH(CH₂·OH)₂, (I), and Ag₂CO₃ in anhyd. Et₂O yield β-nitropropane-αγ-dioldi-β-d-glucoside tetra-acetate, m.p. 179·5—180·5° (corr.), [a]₂¹⁰⁻⁸ -25·8° in CHCl₃. NO₂·C(CH₂·OH)₃, (I), and Ag₂CO₃ in EtOAc afford
β-nitro-isobutanetriol-β-d-glucoside (nitroisobutylglycerol-β-d-glucoside) tetra-acetate, m.p. (anhyd.) 132—134° (corr.), (+1H₂O), m.p. 94·5—96°, [a]₁¹⁰ -31·2° in MeOH; under similar conditions but with substitution of COMe₂ for EtOAc the product appears to be NO₂·C(CH₂·OH)₂·CH₂·O·CMe₂·O·C₈H₇O(OAc)₄, m.p. (very indef.) 154—156°/corr.), [a]₂¹⁰ -8·8° in CHCl₃; the substances are converted by Ac₂O and C₈H₅N at 0° and subsequently at room temp. into the corresponding hexa-acetates, m.p. 147—148° (corr.), [a]₂¹⁰ -24·1° in CHCl₃, and m.p. 144—146°, [a]₂²⁰⁻⁶ -18·1° in CHCl₃. δ-Nitro-n butanol- β -d-glucoside tetra-acetate (II), m.p. 139—141° (corr.), $[a]_D^{21}$ —18·7° in CHCl₃, is obtained from the corresponding I-compound and AgNO₂ in boiling C_eH₆; it reduces Fehling's solution only after hydrolysis and is converted by NaOH into the amorphous glucoside, re-acetylated to (II). Cerebroglucoside, m.p. 185° , $[\alpha]_D^{14}-11\cdot3^\circ$ in C_5H_5N , from spleen, its H_2 -derivative, m.p. $\sim 188^\circ$, $[\alpha]_D^{27}-2\cdot6^\circ$, and lignoceryldihydrosphingosine.—See A., 1944, III, 549. Chemistry and biochemistry of plant materials. IX. Formation of dihydroflavonol and flavonol and synthesis of chalkoneflavanoue-flavonol glucosides. L. Reichel and J. Steudel (Annalen, 1942, 553, 83–97).—Resacetophenone-4-glucoside (I) is used in further syntheses. Resacetophenone, α-acetobromoglucose, and 10% NaOH in COMe, at room temp. afford resacetophenone-4-glucoside tetracetate (cf. Müller, Diss., Karlsruhe, 1938), m.p. 130–131°, [α]₂₀²⁰ –29·7° in COMe, hydrolysed by gradual addition of Na to its solution in abs. MeOH to (I), m.p. 198–200°, [α]₂₀²⁰ –86·9° in COMe, PhCHO, (I), and 2N-NaOH give 2': 4'-dihydroxychalkone-4'β-d-glucoside (II), m.p. 195–197°, (+1H₂O), [α]₂₀²⁰ –53·9° in COMe, hydrolysed by acid to 2': 4'-dihydroxychalkone, m.p. 147–148°. (II) is oxidised by alkaline H₂O₂ to 3: 7-dihydroxyflavone-7-β-d-glucoside, m.p. 223–225°, [α]₂₀²⁰ –90·1° in dioxan, slowly hydrolysed by acid to 7-hydroxyflavonol, m.p. 252–254°. (II) is converted by dil. NaOH-aq. EtOH into 7-hydroxyflavanone-7-β-d-glucoside, m.p. 184–187°, (+1H₂O), [α]₂₀²⁰ –102·6° in COMe, also obtained slowly from (I), PhCHO, and NaOH in aq. EtOH at room temp. and hydrolysed by acid to 7-hydroxyflavanone, m.p. 182–184°. iso-Vanillin, (I), and NaOH at room temp. yield 3: 2': 4'-trihydroxy-4-methoxychalkone-4'-β-d-glucoside (4-methylbutein-4'-glucoside), m.p. 212–214°, (+1·5H₂O), [α]₂₀²⁰ –45·2° in COMe, oxidised by alkaline H₁O₂ to 3: 7: 3'-trihydroxy-4'-methoxyflavone-7-β-d-glucoside, m.p. 254–255° (decomp.), [α]₂₀²⁰ –59·3° in C₄H₅N, and converted by a little NaOH in aq. MeOH into 7: 3'-dihydroxy-4'-methoxyflavanone-7-β-d-glucoside, m.p. 208–211°, (+1H₂O), [α]₂₀²⁰ –84·3° in 50% COMe, ... Chemistry and biochemistry of plant materials. X. Synthesis of flavanoneglucosides under physiological conditions. L. Reichel and R. Schickle (Annalen, 1942, 553, 98—102).—Negative results are obtained by the attempted condensation of hydroxyacetophenones with hydroxybenzaldehydes to hydroxychalkones or hydroxyflavanones under physiological conditions so that the biosyntheses of these compounds does not occur in this manner. Since these compounds are found in plants almost exclusively as glucosides it is highly improbable that the latter are formed in the cell from aglycone and sugar under the influence of carbohydrases. The authors have therefore examined the possibility that glycosides of the OH-compounds condense with one another and that the sugar residues are partly or wholly removed from the products by sp. enzymes; glycosides may then be resynthesised from these secondary aglycones. Resacetophenone-4-β-d-glucoside (I) and PhCHO at pH 8·3 give a 20% yield of 7-hydroxyflavanone-7-β-d-glucoside, m.p. 184—187°, in 83 days; small additions of carotene are used as an antioxidant of PhCHO. 4'-Hydroxyflavanone-4'-β-d-glucoside, m.p. 218—220°, [a]½ -37·4° in dioxan, is obtained in 19% yield at pH 8·0 in 103 days from σ-OH-C₆H₄-COMe and ρ-hydroxybenzaldehyde-β-d-glucoside, m.p. 156—158° (obtained by hydrolysis of the tetraacetate, m.p. 144—145°, prep. from ρ-OH-C₆H₄-COMe and 2:4-dihydroxybenzaldehyde-4-β-d-glucoside, m.p. 218—220°, [a]½ -102·1° in H₂O, afford 2':4'-dihydroxyflavanone-4'-β-d-glucoside, m.p. 180—183° (decomp.), (+2H₂O), [a]½ -47·1° in abs. MeOH; at pH 7·6 the yield is 23°% after 40 days and at pH 8·3 it is only 12% after 63 days. (I) and isovanillin-β-d-glucoside afford 7:3'-dihydroxy-4'-methoxyflavanone-7:3'-β-d-diglucoside, m.p. 220—224°, [a]½ -124·3° in quinoline (also + 2H₂O); the yield is 20·4% in 83 days at pH 7·5 and 14·6% in 80 days at pH 8·4. H. W. #### III.—HOMOCYCLIC. Isomerisation of polymethylene hydrocarbons under the influence of aluminium chloride. X. Isomerisation of methylcycloheptane. M. B. Turova-Polak and P. L. Rappoport (J. Gen. Chem. Russ., 1943, 13, 353—357).—Over Pt-C at 305—310°, methylcycloheptane (I) is isomerised and dehydrogenated directly, in 94% yield, to xylene (p-, with a small proportion of m-). Bromination of (I) in the presence of AlBr₃ yields tetrabromoxylene, m.p. 253°. Addition of AlCl₃ to (I) causes a rapid rise of temp. and conversion of (I) into 1:4-dimethylcyclohexane, containing a very small amount of the 1:3- and a trace of the 1:2-compound. Carbon rings. XXXV. Preparation of cycloundecane from benzosuberane. P. A. Plattner (Helv. Chim. Acta, 1944, 27, 801—810).—Gradual addition of Ph·[CH_{2]4}·COCl in much CS₂ to AlCl₃ in boiling CS₂ affords benzosuberone, b.p. 138—139°/12 mm., in 87% yield. This is reduced (Clemmensen-Martin) to benzosuberane (I), b.p. 99·8—100°/13 mm., m.p. -1·5°, which is hydrogenated (PtO₂ in AcOH or Raney Ni-H₂ at 180°/145 atm.—EtOH) to hexahydro- benzosuberane (dicyclo-[0:4:5]-undecane), b.p. 88·5—89°/11 mm. Ozonisation then yields mainly dicyclo-[0:4:5]-undecan- Ozonisation then yields mainly dicyclo-[0:4:5]-undecan1-ol (II), b.p. 118—120°/13 mm., m.p. 30—31° (dinitrobenzoate, m.p. 201°), with minor amounts of cycloundecane-1:6-dione (III), b.p. 110—115°/0·1 mm. [dioximu(IV), m.p. 232—234° (decomp.); disemicarbazone, m.p. 218°]; a semicarbazone, m.p. 154°, of a dicyclic monoketone is also isolated. Addition of MnO₂ favours the formation of (II) but unchanged material in considerable proportion remains. (II) is converted by anhyd. ZnCl₂ at 140° into dicyclo-[0:4:5]undecene (III), b.p. 90—91°/12 mm., which when ozonised in 50% AcOH at -10° affords (III). More conveniently (III) is divergenation of (IV) by by hydrogenation of (I) by Ca hexammine. Reduction of (IV) by Na and C_5H_{11} OH leads to a mixture of amines from which 1:6-Ma and $C_5 R_{11}^{-1}$ Orlineas to a mixture of aimnes from which 1 solution diaminocycloundecane, b.p. $156-158^{\circ}/12$ mm., is readily isolated through the sparingly sol. carbamate. It gives a dihydrochloride, decomp. $230-260^{\circ}$ with partial sublimation, dipicrate, m.p. $233-235^{\circ}$, and an Ac_2 derivative, m.p. $252 \cdot 3-252 \cdot 5^{\circ}$. It is methylated to 1: 6-tetramethyldiaminocycloundecane dimethiodide, decomp.312-313°; the corresponding quaternary base is decomposed thermally into cycloundecadiene, which is readily hydrogenated (PtO₂ in EtOH– Et_iO at room temp.) to cycloundecane, b.p. 91—91·3°/12 mm., Binary system, tin tetrachloride-m-dinitrobenzene. E. Hertel (Annalen, 1942, 553, 286—288; cf. A., 1933, 27).—In reply to Puschin et al. (A., 1943, II, 4) it is stated that in the examination of the system TiCl₄-m-C₆H₄(NO₂)₂ the authors have so worked that in the region up to 50 mol.-% of TiCl₄ the compound 2TiCl₄,C₆H₄(NO₂)₂ is invariably formed in the primary crystallisation from the undercooled melt either spontaneously or by seeding. The eutectic between the phases 2TiCl_1 , $C_6H_4(NO_2)_1$ and $m \cdot C_6H_4(NO_2)_2$ happens to be at ~ 50 mol.-% of TiCl. Lack of suitable seeding material has prevented the discovery of other phases. Valency tautomerism or mesomerism with $\omega\omega'$ -tetraphenylpolyenes. G. Wittig and B. Fartmann (Annalen, 1943, 554, 213-240). Chemical and physical methods of discriminating between valency tautomerism and mesomerism are discussed at the instances of p-vinylenedi(triphenylmethyl) (I), p- (II) and m- (III) -azoditriphenylmethyl. (p- C_0H_4Bz - CH_2)₂ is converted by Br in boiling PhNO₂ into pp'-dibenzoylstilbene, m.p. 234—235°, transformed by the successive action of LiPh in anhyd. Et₂O and H₂O into pp'-di(hydroxydiphenylmethyl)stilbene, m.p. 218—218-5°, which with HCl gives pp'-di(chlorodiphenylmethyl)stilbene, decomp. 213—216° when heated from 100° or decomp. 234° (bath preheated to nearly 234°). This with MeOH in hot dioxan gives pp'-di(methoxydiphenylmethyl)stilbene. when heated from 100° or decomp. 234° (bath preheated to nearly 234°). This with MeOH in hot dioxan gives pp'-di(methoxydipheny l-methyl) stilbene, m.p. 178—179°, and is dehalogenated by Cu powder (apparatus see C., 1944, Part 4) to (I), m.p. 252—255°. Its solutions are immediately decolorised by O₂ without manifestation of the Schmidlin phenomenon. p-NO₂·C₂·H₄·CPh₂·Cl, m.p. 92—93°, is converted by NaOAc and AcOH into the corresponding carbinol [IV], reduced by Zn dust and NaOH in aq. EtOH to pp'-di(hydroxy-diphenylmethyl) hydrazobenzene (V) which, on account of its instability, is immediately oxidised to pp'-di(hydroxydiphenylmethyl)-avobenzene (VI), m.p. 218—219°, either by Br and NaOH or, preferably, by CrO₃ in aq. AcOH. Electrolytic reduction of (IV) at a Pt cathode gives pp'-di(hydroxydiphenylmethyl)-azoxybenene, m.p. 177—179°, and then (very slowly) (VI). (VI) is transformed by HCl in C₁·H₄ containing a little AcCl into pp'-di(chlorodiphenylmethyl)azo-benzene, decomp. 242° [corresponding (OMe)₂-derivative, m.p. 200—201°, softens at 198°], converted by Cu powder in C₄·H₄, PhMe, or CCl₄ 201°, softens at 198°], converted by Cu powder in C_6H_6 , PhMe, or CCl_4 into (II),
almost black crystals, m.p. 252—255°, which markedly depresses the m.p. of (I). Solutions of (II) are immediately and non-recurringly decolorised by air with the formation of complex peroxides $\cdot O \cdot O \cdot CR_2 \cdot C_6H_4 \cdot N \cdot N \cdot C_6H_4 \cdot CR_2 \cdot O \cdot O \cdot CR_2 \cdot \cdots$. Formation by use of Cu powder and behaviour towards air indicate a diradical Structure for (II), the possible quiponoid structure expressed by its structure for (II); the possible quinonoid structure, suggested by its formation by dehydration of (V), is negatived by its prolonged stability towards dil. H_2SO_4 at 60° , which also brings evidence against a tautomerism of two valency isomerides in solution. Since the magnetic properties of the analogous (I) exclude the possibility that these polyenes exist solely in the diyl form it appears highly probable that internal valency compensation has occurred between the conjugated systems of a quinone and a diradical and therefore that the polyene mol. is in a condition intermediate between the that the polyene mol. is in a condition intermediate between the limiting structures of a quinone and a diyl. COPh-C₈H₄·NO₂·m is transformed by PCl₅ at 120—130° into m-nitrobenzophenone dichloride, m.p. 66°, converted by AlCl₃ and C₈H₆ into m-nitrotriphenylmethyl chloride, m.p. 92—93°, which with NaOAc yields the carbinol, m.p. 75°. This is reduced electrolytically (Pb anode; Ni cathode) to mm'-di(hydroxydiphenylmethyl)azobenzene, m.p. 174—176°, which is converted by HCl and AcCl in CHCl₃ into mm'-di-(chlorodiphenylmethyl)azobenzene, m.p. 206—208° [corresponding (OMe)₂-derivative, m.p. 200—201°], transformed by Cu powder in absence of air and light into (III), which could not be obtained cryst. Its solutions are pale brown with a tendency towards green resembling Its solutions are pale brown with a tendency towards green resembling in shade and depth those of CPh₃. (III) behaves as a true diradical dissociated to only a slight extent; at 80° the colour becomes considerably more intense but the original shade is regained on cooling. The structure of (I), (II), and (III) is confirmed by their conversion into the corresponding dichlorides by PhICl₂. With Li-diphenylamine in Et2O the dichlorides yield the corresponding diyls. solutions of (I) and (II) mixed crystals of the compounds are obtained. (I) and (III) do not yield cryst. materials and definite products could not be isolated from (II) and (III). 254 The dependence of absorption spectrum on temp. opens a new way for discriminating between mesomerism and valency tautomerism. In 0.0001M. solution the varying colour of the solutions with temp. is obvious; association is excluded since the solutions obey Beer's law. The violet-blue colour of (I) passes into blue at -70° and becomes non-characteristic at 100° . (II) is more violet than (I); on cooling the colour is displaced towards shorter λ , on heating towards longer λ ; at 100° it appears almost carmine-red. Difficulties due to apparatus prevent quant. measurements within such wide limits but between 15° and 55° the absorption max. ~590 m μ . for (I) and ~575 m μ . for (II)] is displaced towards shorter λ with increase of temp. Optical measurements could not be made with (III) since its max. lies at the short-wave border of the visible spectral region. Hydrogenation of anthracene by tetrahydronaphthalene. M. Orchin (f. Amer. Chem. Soc., 1944, 66, 535—538).—In presence of Pd-C in an open tube, 1:2:3:4-tetrahydronaphthalene (I) at 225— 230° evolves much H2. Presence also of anthracene (II) decreases evolution of H_2 , which is utilised for hydrogenation of the (II) to mainly 1:2:3:4-tetra- (III) with some 9:10-di- (IV) and s-octa-hydroanthracene. The amounts of H_2 and hydrogenated products depend on the temp. and ratio of (I) to (II). Reaction in a sealed tube is similar. The di- and octa-hydroanthracene are formed by disproportionation of the H₄-compound, a reaction which is shown to be reversible. With Raney Ni in boiling EtOH, (II) or (IV) gives a good yield of (III). In presence of Pd-C cyclohexenone acts as a dihydrophenol and with (II) gives 30% of (III). These reactions show the need for caution in determining the primary products of hydrogenation of, e.g., coal. Chromatographic separation of (III) and (IV) on Al O is described. and (IV) on Al2O3 is described. Hydroanthracenes and hydrophenanthrenes. II. J. W. Cook, (Miss) N. A. McGinnis, and S. Mitchell (J.C.S., 1944, 286—293; (Miss) N. A. McGillins, and S. Mitchell (J.C.S., 1944, 280—293; cf. A., 1939, II, 103).—trans-Hexahydroanthrone $[(NO_2)_1$ -, m.p. $130\cdot5-131\cdot5^\circ$, and $(NH_2)_1$ -derivative, m.p. $165-166^\circ$] is reduced (Zn-HCl) to trans-as-octahydroanthracene (I), m.p. $63-64^\circ$, and a little (?) hexadecahydro-9: 9'-dianthryl, m.p. $245-250^\circ$, but with H_2 -PtO₂ yields (I) and 9-hydroxy-trans-as-octahydroanthracene, m.p. 136° giving a hexahydroanthracene m.p. 63° 66° on debydration. 136°, giving a hexahydroanthracene, m.p. 63—66°, on dehydration. Sulphonation of (I) gives the Na sulphonate, converted by fusion with KOH into ar-hydroxy-trans-as-octahydroanthracene, m.p. 104°, with KOH into ar-hydroxy-trans-as-octahydroanthracene, m.p. 104°, affording trans-cyclohexane-1: 2-diacetic acid, m.p. 166—167°, on oxidation (KMnO₄). With AlCl₃ (I) yields a perhydroanthracene (II), m.p. 204°, and on catalytic hydrogenation (PtO₂) gives a perhydroanthracene (III), m.p. 39—40°, or (Raney Ni) at 200°/150 atm. a perhydroanthracene (IV), m.p. 89—90°. Hydrogenation of s-octahydroanthracene yields (Raney Ni) a mixture of (III) and (IV) and (PtO₂) a perhydroanthracene (V) (completely cis?), m.p. 61·5—63°. With AlCl₃ (V) is converted into (III) and (III) into (IV). (II) and (IV) are not dehydrogenated by Se or Pd but (V) with Se affords anthracene. AlCl₃ with crude as-octahydrophenanthrene (VI) (from cyclisation of 1-β-phenylethyl-Δ¹-cyclohexene with AlCl₃) at 50—70° effects cis-trans-isomerisation, oxidation (CrO₃) of the at 50-70° effects cis-trans-isomerisation, oxidation (CrO₃) of the at 50—70° effects cis-trans-isomerisation, oxidation (CrO₃) of the product giving trans-9-keto-as-octahydrophenanthrene, m.p. 95—96° (oxime, m.p. 176—177°), but at 125—130° tetrahydronaphthalene, (II), and (IV) are obtained. Structures are suggested for (II), (III), and (IV). 2-β-Phenylethylcyclohexylacetyl chloride (corresponding p-phenylphenacyl ester, m.p. 75—77°) with AlCl₃ in PhNO₂ gives a dibenzecyclooctanone (2:4-dinitrophenylhydrazone, m.p. 242—244°), and with SnCl₄ in C₆H₆ a lactone, C₁₅H₂₀O₂, m.p. 67—68°. 2-Benzylcyclopentylacetyl chloride with AlCl₃ yields 1:2:3:4:7:8:9:10-ctahydro-5:6-benz-7-azulone, m.p. 56° (2:4-dinitrophenylhydrazone, m.p. 169—170°), giving the octahydrobenzazulol, m.p. 128—129°. m.p. 169—170°), giving the octahydrobenzazulol, m.p. 128—129°, dehydration of which gives 1:2:3:4:9:10-hexahydrobenzazulene, m.p. 29—35°, affording 1:2:3:4:7:8:9:10-octahydrobenzazulene, m.p. 29—30°, on hydrogenation. M.p. are corr. D. G. Influence of n-alkyl groups on the rate of a cyclisation reaction. E. Berliner (J. Amer. Chem. Soc., 1944, 66, 533—535).—Cyclisation of o-CHPhMe C₆H₄·COR to dialkylanthracenes in boiling 48% of o-CHPhMe·C₆H₄·COR to dialkylantinacenes in boling HBr-AcOH depends on the nature of R (cf. Bradsher et al., A., 1943, II, 95), k being R = Me 4·6, Et 1·8, Pr^a 0·99, Bu^a 0·35, n-amyl 0·36, n-C₆H₁₃ 0·36, Ph 0·16, and CH₂Ph 0·91 × 10⁻² min. With a cold the rate for R = Me is greatly reduced. Ring-0.36, \$\textit{n-C_6H_{13}}\$ 0.36, \$\text{Fit}\$ 0.40, \$\text{Rint}\$ 0.61 \times 10^{-1}\$ Min. With less conc. acid the rate for \$R\$ = Me is greatly reduced. Ring-closure probably occurs by way of \$o\$-CHMePh-C_6H_4-C+R-OH\$, the rate being governed by the inductive effect of \$R\$. Adding \$o\$-C_6H_4Cl-COCl\$ in \$C_6H_4\$ to \$AlCl_3-C_6H_4\$, keeping at room temp., and then boiling gives \$o\$-C_6H_4Cl-COPh\$ (85.7%), m.p. 43—44°, b.p. 178—180°/14—15 mm. (lit. an oil), whence MgMeCl yields \$o\$-C_6H_4Cl-CPh:CH_2(770') b.p. 164—166°(17 mm. H-Rapey Ni in FtOH at 1 at m. (77%), b.p. 164-166°/17 mm. H2-Raney Ni in EtOH at 1 atm. then yields a-phenyl-a-o-chlorophenylethane, b.p. 158°/12 mm., which with CuCN and C₅H₅N (bath at 250—260°) gives o-CN·C₈H₄·CHPhMe (75·7%), b.p. $190-191^{\circ}/17-18$ mm. With, successively, MgRCl-C₈H₆, 20% aq. NH₄Cl, and boiling HCl-COMe₂-H₂O this gives o-a-phenylethyl-aceto- (75·5%), b.p. $184-186^{\circ}/16-17$ mm., -propio-b.p. $189-190^{\circ}/16-17$ mm., -n-butyro-, b.p. $194-197^{\circ}/14-15$ mm., -n-valero-, b.p. $205-206^{\circ}/17-18$ mm., -n-hexo-, b.p. $209-212^{\circ}/15-16$ mm., -n-hepto-, b.p. $217-219^{\circ}/14-15$ mm., and -\alpha-phenylethylbenzo-phenone, m.p. $47-48^{\circ}$, b.p. $216-219^{\circ}/7-8$ mm. Cyclisation (cf. above) yields 9-methyl-10-ethyl-, m.p. $143\cdot2-144^{\circ}$ (picrate, m.p. $137\cdot8-138\cdot4^{\circ}$), -10-n-propyl-, m.p. $97\cdot8-98\cdot6^{\circ}$ (picrate, m.p. $125\cdot5-126\cdot2^{\circ}$), -10-n-butyl-, m.p. $78\cdot2-78\cdot8^{\circ}$ (picrate, m.p. $91\cdot8-92\cdot8^{\circ}$), -10-n-amyl-, m.p. $71-71\cdot8^{\circ}$ (picrate, m.p. $85\cdot4-86\cdot2^{\circ}$), and -10-n-hexyl-, m.p. $65\cdot8-66\cdot5^{\circ}$ (semipicrate, m.p. $85\cdot4-86\cdot2^{\circ}$), and -10-n-hexyl-, m.p. $113\cdot5-114\cdot5^{\circ}$ (lit. 112°) (picrate, m.p. $125\cdot2-126^{\circ}$), and 9-benzyl-10-methyl-, m.p. $167\cdot8-168\cdot6^{\circ}$, -anthracene. M.p. are corr. Aryl and aralkyl carbamides. J. S. Buck, R. Baltzly, and A. E. Ardis (J. Amer. Chem. Soc., 1944, 66, 311—312).—NH₂·CO·NH·NO₂ and NHRR' (reaction incomplete for o-substituted amines) give N-phenyl-N-β-hydroxyethyl-, m.p. 110°, and N-m-4-xylyl-, m.p. 73—74°, N-5-chloro-o-tolyl-, m.p. 93°, N-5-bromo-o-tolyl-, m.p. 88·5—89°, N-4-chloro-o-tolyl-, m.p.
166—167°, N-3-bromo-p-tolyl-, m.p. 116°, N-4-bromo-2-ethylphenyl-, m.p. 95°, N-p-ethylphenyl-, m.p. 122—124°, N-2-bromo-4-ethylphenyl-, m.p. 114°, and N-5-bromo-o-phenetyl-N-ethylcarbamide, m.p. 124—124·5°, N-benzyl-, m.p. 135°, N-p-methoxy-benzyl-, m.p. 140—141°, N-3-chloro-4-methoxybenzyl-, m.p. 169—169·5°, N-3-bromo-4-methoxybenzyl-, m.p. 178°, N-β-3-chloro-4-methoxyphenyl-ethyl-N-methylcarbamide, m.p. 116·5—117°, N-5-bromo-o-tolyl-N-n-propyl-, m.p. 94·5—95·5°, N-4-chloro-o-tolyl-N-n-butyl-, m.p. 79·5—80°, and N-benzyl-N-n-butyl-carbamide, m.p. 61—62°. EtNCO and the appropriate amine give N-5-bromo-o-tolyl-N'-ethyl-, m.p. 230—232°, and N-m-4-xylyl-NN'-diethyl-carbamide, m.p. 76°. o-C₈H₄Et·NEt·CO·NH₂ with BzCl-NaOH or -C₈H₆N gives NN-di-benzoyl-N'-o-ethylphenyl-N'-ethylcarbamide, m.p. 128—129°. The following amines are prepared by standard methods: NHRMe in which R = 4:3:1-OMe·C₆H₃Cl·CH₂ (hydrochloride, m.p. 202—203°), -OMe·C₆H₃Er·CH₂ (hydrochloride, m.p. 215—216°); NHREt in which R₂H₃Er·CH₂ (hydrochloride, m.p. 215—216°); NHREt in benzoyl-N'-o-ethylphenyl-N'-ethylcarbamide, m.p. 128—129°. The following amines are prepared by standard methods: NHRMe in which R = 4:3:1-OMe·C₆H₃Cl·CH₂ (hydrochloride, m.p. 201—201·5°), -OMe·C₆H₃Br·CH₂ (hydrochloride, m.p. 196°), and -OMe·C₆H₃Cl·[CH₂]₂ (hydrochloride, m.p. 196°), and -OMe·C₆H₃Br·[CH₂]₂ (hydrochloride, m.p. 215—216°); NHREt in which R = 2:4:1-C₆H₃MeCl, b.p. 136°/13 mm., -C₆H₃MeBr, b.p. 96—99°/0·25 mm., and -C₆H₃EtBr, b.p. 135°/3 mm., 4:2:1-C₆H₃MeBr, b.p. 137°/17 mm., and -C₆H₃EtBr, b.p. 107°/3 mm., 2:5:1-C₆H₃MeCl, b.p. 141°/27 mm., and -OEt·C₆H₃Br, b.p. 111°/0·25 mm., and p-C₆H₄Et, b.p. 122—123°/22 mm.; 2:5:1-C₆H₃MeCl·NHBu°, b.p. 125°/1 mm. M.p. are corr. R. S. C. Metabolism of 2:4:6-trinitrotoluene (a-T.N.T.). H. J. Channon, G. T. Mills, and R. T. Williams (Biochem. J., 1944, 38, 70—85).—2:6:2':6'-Tetranitro-4:4'-azoxytoluene, m.p. 215—216°, is obtained by oxidation of 2:6:1:4-(NO₂)₂C₆H₂Me·NH·OH with K₂Cr₂O₇ and H₂SO₄ or, preferably, of 2:6:1:4-(NO₂)₂C₆H₂Me·NH₂-EtOH gives (I), converted into its Bz, m.p. 263—264°, and PhSO₂ (II), m.p. 175—177°, derivatives. Electrolytic reduction of a-T.N.T. affords a mixture of dinitroaminotoluenes (III) from which after benzoylation 2:4-dinitro-6-benzamidotoluene, m.p. 216—217°, is isolated. (III) is more conveniently separated into its components by treatment with PhSO₂Cl and C₅H₅N, which leads to the isolation of 2:4-dinitro-6-dibenzenesulphonamidotoluene, m.p. 222°, and (II) (m.p. 177—178°). These are hydrolysed to 2:4-dinitro-6-aminotoluene, m.p. 176° (Ac derivative, m.p. 159—160°), and (I), respectively. (See also A., 1944, III, 606, and C., 1944, I18.) H. W. p-Hydroxylaminobenzenesulphonamide, its acetyl derivatives and diazotisation reaction. H. Bauer and S. M. Rosenthal (J. Amer. Chem. Soc., 1944, 66, 611—614).—p-NO₂·C₆H₄·SO₂·NH₂ and Zn dust in NH₄Cl-EtOH-H₂O at 45—52° give p-OH·NH·C₆H₄·SO₂·NH₂ (I) (63—88·5%), m.p. 143—144° (decomp. 148—158°) (lit. 139·5—140·5°), the mother-liquors from which with FeCl₃ yield p-nitrosobenzenesulphonamide, decomp. 155—268°. With NaNO₂-aq. HCl₂ (I) gives the N⁴-NO-, m.p. 120°, with Ac₂O gives the N-Ac₂ m.p. 228° (cannot be diazotised), but with Ac₂O in much H₂O gives mainly the O-Ac derivative (II), m.p. 138° (readily diazotised). p-NO₂·C₆H₄·CO₂H and Zn dust in NH₄Cl-NaOH-H₂O at 15—20° give p-hydroxylaminobenzoic acid (III) (31%), darkens ~240°, m.p. >300° [N-Ac, m.p. 210° (decomp.), and N-NO-derivative, decomp. when heated]. In AcOH the products obtained from (I), (II), (III), and NHPh·OH by HNO₂ contain 23, 63—67, 45%, and a trace, respectively (determined colorimetrically), of diazo-compound. Addition of Ac₂O prior to treatment of (I), (III), and NHPh·OH increases these amounts to 48, 63, and 10%, respectively. Use of this reaction to determine (I) in body fluids is liable to error owing to interference by other labile compounds. $N^4\text{-Benzoyl-}N^1\text{-acetylsulphanilamide.}$ C. P. Lo and L. J. Y. Chu (J. Amer. Chem. Soc., 1944, 66, 660).— $N^4\text{-Benzoyl-}N^1\text{-acetylsulphanilamide,}$ m.p. 262—263°, is obtained from the $N^4\text{-Bz}$ derivative, m.p. 285—286° (lit. 280°), by $\text{Ac}_2\text{O-C}_5\text{H}_5\text{N}$ at 100° and from the $N^1\text{-Ac}$ derivative by $\text{BzCl-C}_5\text{H}_5\text{N}$ at 100°. The $N^1N^4\text{-Bz}_2$ derivative, m.p. 260° (decomp.) (cf. lit.), is also prepared. R. S. C. Substituted phenols.—See B., 1944, II, 222. Reaction of phenols with tert.-butyl chloride. S. C. Burket and R. Q. Brewster (Trans. Kansas Acad. Sci., 1943, 46, 133—135).— Bu³Cl and various o- and p-C₆H₄R·OH either do not react (in presence of C₅H₅N and, occasionally, CaCO₃) or give CMe₂:CH₂ and unchanged phenol (with NaOEt or CaCO₃). 5: 2: 1-C₆H₃MeCl·OH, p-CMe₂Et·C₆H₄·OH, and p-C₆H₄Bu³·OH (using CaCO₃) give their Bu³ ethers, b.p. 265—270°/740 mm., 270—275°/740 mm., and 255—260°/740 mm., respectively. M. H. M. A. Phenylcarbamyl derivatives of alkylated phenols. M.p. and X-ray powder diffraction data. J. B. McKinley, J. E. Nickels, and S. S. Sidhu (Ind. Eng. Chem. [Anal.], 1944, 16, 304—308).—Phenylwethanes of the following phenols are prepared: p-chloro-, m.p. 148·5°, p-nitro-, m.p. 156°, 4-chloro-2-tert.-butyl-, m.p. 133°, p-tert.butyl-, m.p. 148·5°, 4-methyl-2-\(\textit{garman}\) m.p. 198·5°, p-tert.butyl-, m.p. 108°, 2-methyl-4(or 6)-tert.-butyl-, m.p. 139·5°, 2-methyl-6(or 4)-tert.-butyl-, m.p. 189°, 3-methyl-4(or 6)-tert.-butyl-, m.p. 133°, 4-methyl-2-tert-butyl-, m.p. 155°, p-phenyl-, m.p. 167·5°, o.m.p. 111·5°, and p-, m.p. 145·5°, -cyclohexyl-, 4-methyl-2-tert.-amyl-, m.p. 124°, 3-ethyl-4(or 6)-tert.-butyl-, m.p. 156°, 4-ethyl-2-tert.butyl-, m.p. 134°, 2:3-dimethyl-4(or 6)-tert.-butyl-, m.p. 216°, 2:4-dimethyl-6-tert.-butyl-, m.p. 173°, 2:5-dimethyl-4-tert-butyl-, m.p. 144°, 2:6-dimethyl-4-tert-butyl-, m.p. 160°, 3:4-dimethyl-6-tert.-butyl-, m.p. 142°, 3:5-dimethyl-2:6-diethyl-, m.p. 226°, 2-methyl-3:5-dissopropyl-, m.p. 198·5°, 4-methyl-3:5-dissopropyl-, m.p. 198·5°, 4-methyl-3:5-dissopropyl-, m.p. 171·5°, 4-cyclohexyl-2-tert.-butyl-, m.p. 170°, 3-ethyl-4:6-ditert.-butyl-, m.p. 171·5°, 4-cyclohexyl-2-tert.-butyl-, m.p. 170°, 3-ethyl-4:6-ditert.-butyl-, m.p. 182·5°, 2:3-dimethyl-4:6-diterl-butyl-phenol, m.p. 216°. X-Ray diffraction data (interplabutyl-phenol, (int p-Bromoaniline salts of monoaryl sulphates. D. H. Laughland and L. Young (J. Amer. Chem. Soc., 1944, 66, 657—658).—KArSO4 with p-C₆H₄Br·NH₂, HCl in H₂O give p-C₆H₄Br·NH₂ Ph, o-anisyl, p-C₆H₄Br, p-tolyl, and a-C₁₀H₇ sulphate, which are unstable and have ill-defined m.p. R. S. C. Dialkylstilbæstrols.—See B., 1944, III, 142. Synthesis of two dihydroxyterphenyls. C. C. Price and G. P. Mueller (J. Amer. Chem. Soc., 1944, 66, 632—634).—Dropping o-C₈H₄(C₈H₄·N₂Cl-p)₂ in H₂O into boiling H₂O-steam gives 4: 4"-dihydroxy-0-terphenyl (98%), m.p. 230·2—231·2° (corr.) [diacetate, m.p. 186—186·4° (corr.); Me₂ ether, m.p. 104·8—106·4° (corr.)]. p-C₈H₄(C₈H₄·NO₂-p)₂ with H₂-Raney Ni in C₈H₆ at 100°/2000 lb. gives the (NH₂)₂-compound, m.p. 240—244° [dihydroxyloride darkens 315°, m.p. 355—370° (decomp.)], whence 4: 4"-dihydroxy-p-terphenyl (I), m.p. 375° [diacetate, m.p. 244·3—245·3° (corr.); Me₂ ether (II), m.p. 273—275°], is obtained as above but in very poor yield. p-OMe·C₈H₄·MgBr (III) and 1: 2-dibromocyclohexane in Et₂O and later boiling Bu₂O give (II), and 4: 4"-dimethoxydiphenyl (IV), m.p. 174·5—175·6°. Hydrolysis of (II) to (I) by KOH-EtOH at 200° and then oxidation by KMnO₄-NaOH gives p.C.H.(CO2H), (proof of structure). (III) and (IV) in Bu2O and then at 140° give a small amount of (II) and homologues. Selective hydrogenation of eugenol and isoeugenol in presence of Raney nickel. B. Gauthier (Compt. rend., 1943, 217, 28-30).— Raney nickel. B. Gauthier (Compt. rend., 1943, 217, 28—30).— Eugenol (I) and H₂—Raney Ni at room temp. yield dihydroeugenol (II), b.p. 133—135°/19 mm. (formate, b.p. 140°/12 mm.; acctate, b.p. 149—150°/14 mm.; propionate, b.p. 154—155°/12 mm.; isobulyvate, b.p. 158°/15 mm.; bulyvate, b.p. 164°/13 mm.; isovalerate, b.p. 170°/13 mm.; p-nitrobenzoate, m.p. 76°; cinnamate, m.p. 88°; phenylurethane, m.p. 122°; diphenylylurethane, m.p. 104—105°); at 60—65°, hydrogenation yields (II) and a little octahydroeugenol. isoEugenol is hydrogenated (as above) only slowly at 20°. EtOH accelerates hydrogenation in both cases [(I) > (II)]. A. T. P. Condensation of vanillin substitution products with nitromethane. L.C. Raiford and D. E. Fox (J. Org. Chem., 1944, 9, 170—174).— β-Nitrostyrenes are best obtained by gently boiling a solution of vanillin or its substitution products and MeNO₂ in AcOH consaining NH₄OAc, less frequently by keeping a solution of these reactants in abs. EtOH at room temp, for several days. β -Nitro-3:4-dimethoxystyrene, m.p. 140—141°, and the 2-, m.p. 134—135°, 5, m.p. 190—191°, and 6-Br-, m.p. 168—169°, 5:6-Br₂-, m.p. 166—167°, 2-, m.p. 188—189°, and 5-NO₂-, m.p. 183—184°, and 5-bromo-2-nitro-, m.p. 169—170°, -derivatives of β -nitro-4-hydroxy-3-methoxystyrene are described. Treatment of these compounds with Br saturates the side-chain and introduces Br at C₂, if OH is with Br saturates the side-chain and introduces Br at C₍₅₎ if OH is attached to C₍₄₎, thus giving aβ-dibromo-β-nitro-α-5-bromo-4-hydroxyattached to $C_{(4)}$, thus giving $a\beta$ -dibromo- β -nitro-a-5-bromo-4-hydroxy-3-methoxy-phenylethane (I), m.p. 127° , -a-5: 6-dibromo-4-hydroxy-3-methoxy-phenylethane (II), m.p. 126— 128° after softening, and -a-3:4-dimethoxy-phenylethane (III), m.p. 113— 114° (+0·5CS₂) (lost at \sim 65°/1 hr.). (I) is transformed by repeated crystallisation from EtOH or by boiling EtOH containing NaOAc into β : 5-dibromo- β -nitro-4-hydroxy-3-methoxy-styrene, m.p. 166— 167° , whilst (II) under similar conditions gives β : 5: 6-tribromo- β -nitro-4-hydroxy-3-methoxy-styrene, m.p. 175— 176° . At room temp. NaOAc in
EtOH transforms (III) into β -bromo- β -nitro-3: 4-dimethoxy-styrene, m.p. 110— 120° . Oxidation of the condensation products or their Br adducts with KMnO4 causes loss of Br from the side-chain and gives the related aldehyde. When veratraldehyde is used as initial material. related aldehyde. When veratraldehyde is used as initial material, oxidation of the condensation product gives the related acid, thus emphasising the retarding effect of p-OH. H. W. Condensation of cyclohexene oxide, 1:2-dichlorocyclohexane, and $\gamma\delta$ -dichlorohexane with anisole. C. C. Price and G. P. Mueller [J. Amer. Chem. Soc., 1944, 66, 628—631).—Passing BF₃ into cyclohexene oxide (I) and PhOH at 40—70° gives trans-1:2-dihydroxy-cyclohexene (II) trans-1:2-d mp. 164—166°). Passing BF₃ into (I) and PhOMe at 50° gives psychology-glohexane (III) and a little p-cyclohexylphenol (3:5-dinitrobenzoate, m.p. 164—166°). Passing BF₃ into (I) and PhOMe at 50° gives psychologylanisole (III) (8%), 1:3-di-p-anisylcyclohexane (IV), form, b.p. 160—165°/1 mm., and m-di-p-anisylbenzene [4:4"-di-methoxy-m-terphenyl] (V), m.p. 197—198° (corr.), also obtained in poorer yield from (II). Similar products are obtained from 1:2-displayers/lebayane and PhOMe by AlClast 5°, but an isometric poorer yield from (II). Similar products are obtained from 1: 2-dichlorocyclohexane and PhOMe by AlCl₃ at 5°, but an isomeride (VI), m.p. 102·8—104°, of (IV) is also obtained. Formation of (III), (IV), and (V) probably results by disproportionation of 3-p-anisyl-Δ¹-cyclohexene. 10% Pd-C at 300° converts (IV) or (VI) into (V). KOH-EtOH at 200° converts (VI) into 1: 3-di-p-hydroxy-phenylcyclohexane (VII) (97%), m.p. 229—232° (diacetate, m.p. 14·5—75·5°), but (IV) gives an oil. With KOH-EtOH at 200° or HI-AcOH, (V) gives 4: 4"-dihydroxy-m-terphenyl (VIII), m.p. 182—183° (diacetate, m.p. 130·1—131·5°), but KOH-EtOH occasionally yields a substance, C₂₀H₃₈O₂, +0·5EtOH, m.p. 66—67·5°. KMnO₄-NaOH oxidises (VIII) to m-C₈H₄(CO₂H)₂. Pd-C and a trace of Zn dust at 250° convert (VII) into m-C₆H₄Ph₂. (CHEtCl)₂ with PhOMe and AlCl₃ in light petroleum at the b.p. and then Me₂SO₄-20% aq. NaOH gives 1% of hexestrol Me₂ ether, m.p. 142—143° (corr.). (VII) and (VIII) have no estrogenic and (VII) has no androgenic activity. Absorption spectra of 1:2-benzenthracene and some methoxyderivatives.-See A., 1944, I, 164. Syntheses of compounds related to vitamin-K. II. 4'-Hydroxy-3'-alkylnaphthalene-1'-azobenzene-4-sulphonamides. E. J. H. Chu, Z. I. Shen, T. L. Chien, and T. S. Tuan (J. Amer. Chem. Soc., 1944, 66, 653).—a-C₁₀H₂·O·COR with ZnCl₂ or SnCl₄ at 140—150° gives good yields of 1:2-OH·C₁₀H₆·COR (formed also in minor amounts by AlCl₃). 2:1-C₁₀H₆Alk·OH and p·NH₂·SO₂·C₆H₄·N₂X in aq. AcOH give 4'-hydroxy-3'-ethyl- (73%), m.p. 249°, -n-propyl- (69%), m.p. 251°, -n- (66%), m.p. 280°, and -iso-butyl-, a gum, -n-amyl- (56%), m.p. 260°, and -β-phenylethyl- (51%), m.p. 261°, -naphthalene-1'-azobenzene-4-sulphonamide, which have no inhibitory effect on growth of B. coli, Slaph. aureus, or Strept. pyogenes. 2:1-Ph-[CH₂]₂·C₁₀H₆·OH has m.p. 77—78° (decomp.) and gives a picrate, m.p. 179—180° (decomp.). 1:2-OH·C₁₀H₆·COR (R = Pr⁶ and Bu^a; not Me) are obtained from the 1:4-isomerides by boiling and Bu^a; not Me) are obtained from the 1:4-isomerides by boiling 35% NaOH. R. S. C. Aralkyl iodides and alcohols.—See B., 1944, II, 221. Rearrangement of β -amino-alcohols with heat and alkali. B. K. Campbell and K. N. Campbell (J. Org. Chem., 1944, 9, 178—183).— Three aryl-substituted β -NH₂-alcohols rearrange to ketimines under the influence of heat and CaO; the change is shown to occur probably through the corresponding ethyleneimines. β-Amino-aaprobably through the corresponding ethyleneimines. β-Amino-aadiphenylpropan-α-ol is converted by CaO under N₂ at 270° into CPh₂:NEt (I), b.p. 154—159°/10 mm., m.p. 58—59°; at 130—230° the amine is scarcely affected. (I) is readily hydrolysed by 6N-HCl at room temp. to COPh₂ and NH₂Et, and is reduced by Na and abs. EtOH to CHPh₂:NHEt (II), b.p. 142°/8 mm. (I) is obtained by passing dry NH₂Et over CPh₂:NPh and a little NH₂Ph,HBr at 230°, and (II) from MgPhBr and CHPh:NEt. 2: 2-Diphenyl-3-methylethyleneimine is transformed into (I) in presence of CaO at 230°, and (II) from MgPhBr and CHPh:NEt. 2:2-Diphenyl-3-methylethyleneimine is transformed into (I) in presence of CaO at 250—260° or in its absence at 175—205°. β-Amino-α-phenyl-α-p-tolylethanol and CaO at 260° afford Ph p-tolyl hetmethylimine, b.p. 165—169°/13 mm., also obtained from NPh:CPh·C₆H₄Me-p, NH₂Ph, HBr, and dry NH₂Me at 200—210°; it is readily hydrolysed to COPh·C₆H₄Me-p and NH₂Me. It is reduced by Na and abs. EtOH to N:p-dimethylbenzhydrylamine, b.p. 169—172°/16 mm. [hydrochloride, m.p. 186—187° (lit. 199—201°); α-naphthylcarbamyl derivative, m.p. 171·5—172·5°], also obtained from CHPh:NMe and p-C₆H₄Me·MgBr. NH₂·CHPh·CPh₂·OH is partly rearranged by CaO at 260° to CPh₂:N·CH₂Ph, hydrolysed to COPh₂ and CH₂Ph·NH₂. H. W. Quinoidation of triaryl compounds: (A) hydroxyphenyldiphenylylcarbinols, (B) hydroxydiphenylydiarylmethyl cations. L. C. Anderson and W. A. Fisher (J. Amer. Chem. Soc., 1944, 66, 589—593, 594—597).—(A) Introduction of 1 or 2 p-C₆H₄Ph into p-OH·C₆H₄·CAr₂·OH (A) causes a high and broad absorption band at ~3800 mm.⁻¹, similar to that of Ph₂ and due to C_8H_4Ph ; this band covers the benzenoid absorption of (A) (Ar = Ph). Diphenylquinomethanes do not give the 3800 mm.⁻¹ band, wherefore it is concluded that the C_8H_4Ph structure is different and that ab- -0-:CPh- sorption of fuchsones in Et2O is due largely to a structure (B). p-C.H.Ph.CPhCl. (I) and PhOH at p-OH·C₆H₄·CPh(C₆H₄Ph-p)·OH (II) (acetate, m.p. 134—136°) contaminated with p-C₆H₄Ph-COPh and (p-OH·C₆H₄)₂CPh·C₆H₄Ph-p. taminated with \$p\$-C_6H_4Ph*COPh and \$(p\$-OH*C_6H_4)_2CPh*C_6H_4Ph-p\$. At 130—140°/vac. (II) is dehydrated to \$phenyl-p\$-diphenylquino-methane (III), m.p. 166—167°, whence warm 70% AcOH yields the quinonoid form (IV), m.p. 139—140°, of (II). Passing CO2 into a solution of (III) or (IV) in 2.5% NaOH gives the benzenoid form, m.p. 155—157°, of (II). AlCl3 in boiling C6H6, converts the Me ether of (II) into (IV), m.p. 134—140°. PhOH and (I) in boiling dry C6H6 (1 hr.) give diphenoxyphenyl-p-diphenylylmethane, m.p. 149—150°, but PhOH and (I) alone at 100° (5 days) give 4: 4'-dihydroxytriphenyl-p-diphenylylmethane (55%), softens 157°, m.p. 163—165° (diacetate, m.p. 168—170°, clear at 187°). By similar reactions (\$p\$-C6H4Ph)_2CCl2 [prep. from CO(C6H4Ph-p)2 by PCl5] gives \$p\$-hydroxyphenylbisdiphenylylcarbinol, quinonoid, m.p. 106—107.5°, and benzenoid forms, m.p. 124—126° (acetate, m.p. 149—152°), bis-p-diphenylylquinomethane, m.p. 140—155° (slow heating) or 159—161.5° (bath preheated at 150°), diphenoxybis-p-diphenylylmethane, m.p. 118—120°, and di-p-hydroxyphenylbis-p-diphenylylmethane, m.p. 253—255.5° (diacetate, m.p. 256—258°). (B) Absorption spectra are recorded for (B) Absorption spectra are recorded for p-p'-OR·C₆H₄·C₆H₄·CArAr'·OH (C) (R = H or OMe; Ar and Ar' = Ph or p-C₆H₄Ph) in AcOH-H₂SO₄. Comparison with the spectra of p-C₆H₄Ph·CPh₂·OH and p-C₆H₄Ph·CPh(C₆H₄·OMe-p)·OH (V) indicates that C₆H₄Ph is quinonoid when R in (C) is Me. (C) (Ar = Ar' = Ph; R = H) does not exist in a quinonoid form and gives no diphenyldiphenylylquinomethane. (V) is prepared from p-OMe·C₆H₄·MgBr (VI) and p-C₆H₄Ph·COPh and from the phenol by Me₂SO₄. CO(C₆H₄Ph-p)₂ and (VI) in boiling Et₂O-C₆H₆ give p-anisylbis-p-diphenylylcarbinol, m. p. 146°. p-OH·C₆H₄·C₆H₄·COPh-p and MgPhBr in boiling C₆H₆-Et₂O give diphenyl-4'-hydroxy-p-diphenylylcarbinol, m. p. 224—227° (acctate, m. p. 154—156·5°), which is also obtained by AlCl₃-C₆H₆ from its Me ether, m.p. 108—109° (prep. from p-OMe·C₆H₄·C₆H₄·COPh-p by MgPhBr). p-C₄H₄Ph·COCl (prep. from the acid by SOCl₃), p-C₆H₄Ph·OMe, and AlCl₃ in (CHCl₂)₂ at -10° to room temp. give p-C₆H₄Ph·4'-methoxy-p-diphenylyl ketone (VII) (50—65%), m.p. 246—248°, with 10—25% of p-C₆H₄Ph·6-methoxy-3-diphenylyl ketone, m.p. 127—130°. MgPhBr and (VII) in boiling Et₂O give phenyl-p-diphenylyl-4'-methoxy-p-di-(B) Absorption spectra are recorded for and (VII) in boiling Et₂O give phenyl-p-diphenylyl-'-methoxy-p-diphenylylcarbinol, m.p. 141—143°. p-OMe·C₆H₄·C₆H₄·C₆H₄·C₇-p-diphenylylcarbinol, m.p. 141—143°. p-OMe·C₆H₄·C₆H₄·C₇-p-(prep. from the p'-COMe compound by KMnO₄ or NaOI) gives, best in a Soxhlet apparatus over H₂SO₄-MeOH, its Me ester, which with an excess of p-C₆H₄Ph·MgBr gives bis-p-diphenylyl-4'-methoxy-p-diphenylylcarbinol, m.p. 130—132°. R. S. C. Reductions with nickel-aluminium alloy and aqueous alkali. IV. Carbon-carbon double linking. E. Schwenk, D. Papa, B. Whitman, and H. F. Ginsberg (J. Org. Chem., 1944, 9, 175—177).—Examples of the reduction of conjugated, isolated, and cyclic double linkings using Ni-Al alloy and aq. alkali are afforded by CHPh.CH·CO₂H, maleic, crotonic, oleic, and sorbic acid, p-OH·C₆H₄·CH.CHPh, p-OH·C₆H₄·CH.CPh·CO₂H, p-OMe·C₆H₄·CH.CPh·CO₂H, CHPh.C(C₆H₄·OMe)·CO₂H, CHPh.C(C₆H₄·OH)·CO₂H, cyclohexyl- ideneacetic (I), $a-\Delta^1$ -cyclohexenyl- and p-hydroxy- Δ^1 -cyclohexenyl-cinnamic acid. Δ^5 -3(β)-Hydroxyætiocholenic acid is recovered unchanged and the reduction of Δ^1 -cyclohexenylacetic acid is so incomplete as to suggest a preliminary partial isomerisation to (I). The cyclopentene ring of chaulmoogric acid is quantitatively reduced. Stilbæstrol gives the hexæstrols, m.p. $184-185^\circ$ and $126-128^\circ$, in 30 and 50% yield respectively. The following appear new: a-phenyl- β -p-antsylpropionic acid, m.p. $108-109^\circ$; β -phenyl- α -p-hydroxyphenyl-ap-anisylpropionic acid, m.p. $108-109^\circ$; β -phenyl- α -p-hydroxyphenylpropionic acid, m.p. $158-159^\circ$; α -p-hydroxyphenylcinnamic acid, m.p. $221-222^\circ$; α -cyclohexyl- β -phenyl-, m.p. $70-71^\circ$, and
β -p-hydroxyphenyl-, m.p. $180-181^\circ$, -propionic acid. α -p-Anisylcinnamic acid has m.p. $152-153^\circ$ (lit. $132-133^\circ$). Steroids and sex hormones. XCVIII. Preparation of β-trans-4-hydroxycyclohexyl-Δ°β-butenolide. E. Hardegger, P. A. Plattner, and F. Blank (Helv. Chim. Acta, 1944, 27, 793—800).—CNa₂(CO₂Et)₂ and CH₂Cl·Ch₂·CO₂Et give Et₄ pentane-ayye-tetracarboxylate (I), b.p. 157—160°/high vac., cyclised by Na to Et₃ cyclohexanone-2: 4: 4-tricarboxylate (II), b.p. 187—189°/water pump vac., with some Et cyclohexanone-4-carboxylate, b.p. 137°/water pump vac. (II) in C₆H₆ is hydrolysed by aq. NaOH at room temp. to cyclohexanone-4: 4-dicarboxylic acid, m.p. 147·5—149·5°. (I) is converted by successive treatment with Na, EtOH, and C₆H₆ at 100° followed by hydrolysis into cyclohexanone-4-carboxylic acid (III), m.p. 67—68°, which is reduced (H₂, Raney Ni, N-NaOH) to cis-4-hydroxy-hexahydrobenzoic acid, m.p. 150·5—161° (Me ester), converted by boiling Ac₂O into the lactone, m.p. 128° (lit. 109—110°). Na-Hg, or (less well) H₂-PtO₂-AcOH, reduces (III) to trans-4-hydroxyhexahydrobenzoic acid, m.p. 119—120° (Me ester and its benzoate, m.p. 92—94°). This is converted by boiling AcCl-Ac₂O-AcOH into trans-4-acetoxyhexahydrobenzoic acid, m.p. 139—140° (Me ester, m.p. 45·5—46·5°), and thence (SOCl₂) into the chloride and diazoketone, decomp. 86—87°, which passes in AcOH at 100° into trans-4-acetoxycyclohexyl OAc·CH₂ ketone (IV), m.p. 67—68° (semicarbazone, m.p. 167—168°). (IV) is readily transformed by Zn and CH₂Br·CO₂Et followed by acetylation into β-acetoxy-β-trans-4-acetoxycyclohexyl-Δ°β-butyrolactone, m.p. 142—142·5°, which passes at 225—240°/water pump vac. into β-trans-4-acetoxycyclohexyl-Δ°β-butenolide, m.p. 88—89°, giving a positive Legal test. β-trans-4-Hydroxycyclohexyl-Δ°β-butenolide has m.p. 95—95·5°. Synthetic anthelmintics. IX. \(\gamma \circ -6 \) Methoxy-m-tolyl- and \(\gamma \circ -p \) anisyl-a-alkylbutyrolactones. S. V. Mehta, J. J. Trivedi, K. V. Bokil, and K. S. Nargund (\(J. Univ. Bombay, 1944, 12, A, Part 5, 33 - 35 \). The appropriate alkylsuccinic anhydride and \(\sigma \chi \chi_4 \) MeOMe (Friedel-Crafts) give \(\gamma \chi \text{keto-}\gamma \chi -6 \chi \text{methoxy-m-tolyl-a-ethyl-}, \) m.p. 99° (semicarbazone, m.p. 179°), \(-a \cdot -n -propyl-\, m.p. 96 - 97^\) (semicarbazone, m.p. 159°), \(\text{and } \alpha -a -n -amyl-butyric acid, \) m.p. 40-45° (purified through its \(Et \) ester, \(\text{b.p.} 260 - 265^\sigma /60 \) mm.), converted (method: A., 1942, II, 257) into \(\gamma \chi -6 \) methoxy-m-tolyl-a-ethyl-, m.p. 63-64°, \(-a \cdot -p -propyl-\), m.p. 93°, \(\text{and } -a -n -amyl-butyrolactone, \) m.p. 38-39°, \(\text{b.p.} \) 258°/28 mm., respectively. Similarly prepared from \(\rho \) OMeC_4H_4·CO·CH_2·CHAlk·CO_3H (A., 1944, II, 78) are \(\gamma -p -a -n -i \) p2°, \(-a -n -propyl-\, m.p. 98 - 99^\, -a -n -amyl-\, m.p. 92^\, -a -n -hexyl-\, m.p. 98^\, -a -n -tetradecyl-\, m.p. 79-80^\, and \(-a -n -n \) hexadecyl-butyrolactone, m.p. 95-96°. Action of diszohenzene on alkylacetoacetic esters as a method of Action of diazobenzene on alkylacetoacetic esters as a method of preparing phenylhydrazones of a-keto- and a-amino-acids. VIII. Synthesis of tyrosine. V. V. Feofilaktov, V. N. Zaitzeva, and K. I. Sirotkina (J. Gen. Chem. Russ., 1943, 13, 363—372).—Methods of synthesis of tyrosine are reviewed and a new procedure is described. To a stirred mixture of CH₂Ac·CO₂Et (10% excess) and NaOEt in EtoH at room temp., p-OMe·C₆H₄·CH₂Cl (prep. from PhOMe, CH₂O, and HCl in presence of ZnCl₂) was added dropwise, and the mixture then heated at 100° (bath) for 3 hr.; the resulting Eta-p-methoxybenzylacetoacetate (76·2%), b.p. 160—161°/3 mm., was added gradually with vigorous stirring to an equiv. of aq. PhN₂·OK and, after an additional 4 hr. stirring, the product extracted with Et₄O. Hydrolysis (aq. EtoH-KOH) of the Et₄O-sol. ester gives p-anisylpyruvic acid phenylhydrazone (I) (75·3%), dimorphic from C₄H₄-ligroin (b.p. 90—94°) (1:1), less sol. a-form, platelets, m.p. 158—159°, and predominating β-form, needles, m.p. 150°. (I) (crude or once crystallised) was reduced with Zn dust and HCl-EtoH, the EtoH evaporated in a vac., the residue ground with Ag₂CO₃, and then extracted with boiling H₂O. The aq. extracts, freed from metals with H₂S, were evaporated and crystallised from H₂O to give 55—58% of p-OMe·C₆H₄·CH₂·CH(NH₂)·CO₂H (II), m.p. 262° (scaled tube). (II) with boiling HI (b.p. 126°) for 5 hr. gives tyrosine (95·6%). Raman spectra of salicylic acid and aspirin.—See A., 1944, I, 165. Nitro- and nitroamino-derivatives of o-chlorobenzoic acid. H. Goldstein and G. Preitner (Helv. Chim. Acta, 1944, 27, 612—615; cf. A., 1938, II, 13, 98).—6:2:5:1-NO₂·C₆H₂Cl(NH₂)·CO₂H in EtOH-conc. H₂SO₄ is converted by iso-C₅H₁₁·O·NO at -10°, followed by a little Zn dust at the b.p., into 6:2:1-NO₂·C₆H₃Cl·CO₂H (I), also obtained by oxidising 1:2:6-C₆H₃MeCl·NO₂; lower yields of very impure product are obtained by diazotisation in H₂O and adding EtOH. The chloride (SOCl₂) of (I) yields the Me, m.p. 94-95 (lit. $80-82^\circ$), and Et ester, m.p. $49-50^\circ$, the amide, m.p. $186-187^\circ$, and anilide, m.p. $176-177^\circ$. $1:2:5\cdot C_9H_3$ McCl·NHAc and HNO₃ (d 1·4 mixed with d 1·52) at $\Rightarrow 15^\circ$ give a mixture of mainly 2-chloro-4-nitro- (II), m.p. 113° , and a little 2-chloro-6-nitro-5-acetamidotoluene (III), m.p. $152-153^\circ$; the proportion of (III) is increased by using HNO₂ (d 1·52) in AcOH at $5-10^\circ$. (II) is oxidised (aq. KMnO₄ + MgSO₄) to 2-chloro-4-nitro-5-acetamidobenzoic acid, m.p. 214° , hydrolysed by boiling dil. HCl to the $5\cdot NH_2$ -acid, m.p. $239-240^\circ$ (decomp.). Similarly (III) gives $6:2:5:1-NO_2 \cdot C_9H_2 \cdot Cl(NHAc) \cdot CO_2 \cdot H$. M.p. are corr. H. W. N-Substituted piperonylamides. S. I. Gertler and W. F. Barthel (J. Amer. Chem. Soc., 1944, 66, 659—660).—Piperonyl-ethyl-, m.p. 87—88°, -n-propyl-, m.p. 86—87°, and -n-amyl-amide, m.p. 104—105°, -m-chloro-, m.p. 110·5—112·5°, -o-, m.p. 109·5—110°, -m-, m.p. 116—117°, and -p-bromo-anilide, m.p. 222—222·5°, are prepared. M.p. are corr. R. S. C. Attempted syntheses of hemipinic acid from guaiacol. C. Weizmann and L. Haskelberg (J. Org. Chem., 1944, 9, 121—124).—2:3:1-OH·C₆H₃(OMe)·CO₂H, m.p. 200°, is obtained in good yield from dry o-ONa·C₆H₄·OMe and CO₂ at 200° whereas at 230° it is accompanied by 2:3:1:4-(OH)₂C₆H₂(CO₂H)₂, m.p. 308°. With Br in AcOH or CHCl₃ at room temp. it affords 5-bromo-2-hydroxy-3-methoxybenzoic acid, m.p. 211° [Me ester, m.p. 122° (acetate, m.p. 95°), obtained similarly from 2:3:1-OH·C₆H₃(OMe)·CO₂Me]. Bromination of 3:2:1-OMe·C₆H₃(OAc)·CO₂Me in AcOH containing anhyd. NaOAc, in CHCl₃, or without solvent leads to Me 6-bromo-3-methoxy-2-acetoxybenzoate, m.p. 124°, hydrolysed (aq. EtOH–NaOH) to 6-bromo-2-hydroxy-3-methoxybenzoic acid, m.p. 150°, which with NaCN and CuCN in 50% EtOH at 180° gives isovanillic acid, also obtained from 5-bromoguaiacol, NaCN, and CuCN under the same conditions. Diene-addition reactions. II. Reaction of 6:6-pentamethylene-fulvene with maleic anhydride. R. B. Woodward and H. Baer (J. Amer. Chem. Soc., 1944, 66, 645—649; cf. A., 1943, II, 119).—6:6-Pentamethylenefulvene and (:CH·CO)₂O in C₆H₆ at 5° give the endo-(I), m.p. 132°, and some of the exo-adduct (II), C₁₅H₁₆O₃, m.p. 93·0—93·5°, but at higher temp. more and more (II) is obtained (cf. Alder et al., A., 1937, II, 321; Kohler et al., A., 1935, 852). H₂-PtO₂ in EtOH reduces the cyclohexene CH:CH of (I) or (II) to give the endo- (III), m.p. 146°, and exo- H_2 -adducts (IV), m.p. 103—104°, respectively; resistance of the cyclohexylidene CC accords with the views of Linstead et al. (A., 1943, II, 62). Dissolving (III) or (IV) in MeOH and adding 10% aq. NaOH until alkaline to phenolphthalein gives the Me H endo-, m.p. 114° (Et H ester, m.p. 104·5—105°), or exo- H_2 -ester, m.p. 118°, and thence the Me_2 endo-(V), a gum, and exo- H_2 -ester (VI), m.p. 65°, respectively. (II) and EtOH similarly give the corresponding Et H ester, m.p. 137—137·5°. (V) and (VI) are both cis-esters, for both are isomerised by NaOMe-MeOH at the b.p. to the trans- Me_2 H_2 -ester, m.p. 75°, whence HCl-AcOH yields the trans-dicarboxylic acid, m.p. 230—232° (decomp.). Hydrolysing (IV) by boiling AcOH- H_2 O and then adding Br gives the Br-lactone-acid (VII), m.p. 146·5—147·5° (decomp.), but (III) gives the bromo-hydroxy-acid (VIII), m.p. 162— 153° (decomp.), this difference proving the stereochemical configurations. (I) dissociates in, e.g., EtOAc or C_6H_6 , slowly when cold and rapidly when heated, but (II) is stable, which accounts for the variation (above) in the ratio (I): (II) produced. The modes of addition and the differences are discussed on electronic and energetic grounds. R. S. C. 9-Acylfluorenes and derived vinylamines. I. Von and E. C. Wagner (J. Org. Chem., 1944, 9, 155—169).—The formation of 9- acylfluorenes by alkali-induced condensation of esters with the reactive CH2 of fluorene (I) has been extended to the 9-Ac compound. Fluorene-9-aldehyde (II) is obtained by similar use of 1-formylpiperidine, showing the ability of the latter to function as an aquo-ammono-ester of HCO₂H. The attempted ester condensation (for the prep. of CHO-derivatives) gives tarry products when applied to cyclopentadiene and indene whilst reaction does not occur with xanthene or acridan. The products from (I) and its 2:7-Br₂xanthene or acridan. The products from (I) and its 2:7-Br₂-derivative and NH₃ are shown to be enamines and di-9-fluorenyl-methyleneamines. (II), b.p. 169—172°/2 mm. [prep. from (I), KOMe, and HCO₂Et or, less well, by use of Na, NaOMe, or CPh₃Na], polymerises when kept. 2:7-Dibromofluorene-9-aldehyde, m.p. 180—181° (corr.), is converted by BzCl and NaOH into the enol benzoate, m.p. 221° (corr.), and by NH₂Ph in EtOH into the anil, m.p. 226—227°
(corr.). 9-Acetylfluorene, m.p. 74·5—75·5° (corr.), obtained from (I), KOMe, and EtOAc in anhyd. Et₂O, gives a somewhat unstable phenylhydrazone, m.p. 138—139° (corr.; decomp.), and an apparently stable oxime, m.p. 137° (corr.); it liquefies when kept in a desiccator at room temp. and then solidifies to the dimeride, an apparently stable oxime, m.p. 137° (corr.); it liquefies when kept in a desiccator at room temp. and then solidifies to the dimeride, m.p. 247—248° (corr.), which does not react with NHPh·NH₂. It does not condense with NH₂Ph or piperidine in dry C₆H₆ or Et₂O at 0° leads to 9-aminomethylenefluorene (III), m.p. 146—147° after softening, with a smaller proportion of di-9-fluorenylmethyleneamine (IV). (III) becomes discoloured when kept in a desiccator, immediately reduces KMnO₄, is indifferent to 10% NaOH at 100°, is immediately converted into (IV) by acid, and is monomeric in freezing C₆H₆. With dry HCl in Et₂O it yields the hydrochloride, chars without melting ~300°. (III) and Ac₂O in a vac. over NaOH and CaCl₂ afford 9-acetamidomethylenefluorene, m.p. 204·5—206° (corr.), which could not be cyclised to the isoquinoline derivative by P₂O₅ in PhMe. Ozonolysis of (III) in CHCl₃ and treatment of the ozonide with H₂O at 100° gives fluorenone (V) and HCO·NH₂ (identified by conversion by o-NH₂·C₆H₄·CO₂H into 3: 4-dihydro-4-quinazolone, m.p. 212—213°). (III) is transformed by Br in CHCl₃ followed by H₂O into NH₄Br and 9-bromofluorene-9-aldehyde (VI). (IV) is obtained synthetically from (III) and (III) in C₆H₈. (IV) is obtained synthetically from (II) and (III) in CsHs. Ozonolysis of (IV) gives (V) and diformamide and brominolysis yields (VI). Not quite homogeneous 2: 7-dibromo-9-aminomethylene-fluorene (VII), m.p. 212° (Dennis bar), undergoes brominolysis to fluorene (VII), m.p. 212° (Dennis bar), undergoes brominolysis to 2:7:9-tribromofluorene-9-aldehyde (VIII), m.p. 236-237° (corr.; decomp.), also obtained from the 2:7-Br₂-aldehyde. (VII) is converted by glacial AcOH at 100° or, readily, by dil. H₂SO₄ into di-2:7-dibromo-9-fluorenylmethyleneamine, m.p. $>300^{\circ}$, converted by Br in CHCl₃ followed by hydrolysis into (VIII). 9-Acetyl-fluorene and NH₃ in dry Et₂O at 0° give 9- α -aminoethylidenefluorene of α -methyl- $\Delta^{9\alpha}$ -fluorenemethylamine (IX), m.p. $124.5-126.5^{\circ}$ (corr.; decomp.) after softening, which rapidly darkens and becomes oily decomp.) after softening, which rapidly darkens and becomes oily in a desiccator at room temp. (IX) is hydrolysed by 4% H₂SO₄ at room temp. to a mixture of monomeric and dimeric acetylfluorene. The Ac derivative of (IX) has m.p. 180.5—181.5° (corr.). Structure of aldehydo-acids and their tautomeric transformations. M. M. Schemjakin (J. Gen. Chem. Russ., 1943, 13, 290-300).—The properties of aldehydo-acids (A) and their reactions are reviewed from the point of view of ionotropy. The conditions under which one or other tautomeric form of (A) reacts and the influence of structural and external factors are described. Evidence is adduced to support the view that isolated, cryst. (A) are OH-lactones. following compounds were tested with freshly prepared fuchsin-SO, reagent: o-CHO·C₆H₄·CO₂H showed coloration in 5—10 sec. and max. intensity in 1—2 min.; opianic acid showed coloration in 5—10 sec. and max. in 2—3 min.; CHO·CBr·CO₂H showed coloration in ½—1 min. on undissolved solid but only after ½ hr. in solution and the intensity increased very slowly; CHO·CPh·CH·CO₂H showed coloration in ½—1 min. showed coloration in 2-3 min. on undissolved solid and intensity again increased very slowly; nitro-opianic acid (I) showed no coloration in 24 hr. In MeOH solution, bromo-opianic acid forms the OH-lactone Me ether (\$\psi\$-Me ester) (low yield) at room temp. in \$1\frac{1}{2}\$ months or at the b.p. in \$4-5\$ hr.; CHO-CBr:CBr-CO₂H similarly forms the \$\psi\$-ester at room temp. in 1 month. (I) with excess of principles for \$5\$ in further both. piperidine for 5 min. (water-bath), dilution with EtOH, and cooling to 0° for 1—2 hr. gives its dipiperidide, m.p. 160—161° (60—70%, including the less pure product recovered from the mother-liquor by evaporation at room temp.). Polyenes. I. Synthesis and absorption spectra of the ionylidene-acetones and related compounds. W. G. Young, L. J. Andrews, and S. J. Cristol (J. Amer. Chem. Soc., 1944, 66, 520—524).—Absorption spectra in 95% EtOH (max. in brackets below) indicate that a- (I) and β -ionone (II) yield polyenes without isomerisation. (I) [227 (ϵ 12,850) and 296 m μ . (ϵ 1950)] and (II) [296 (ϵ 8600) and 222 m μ . (ϵ 7640)] with Zn-CH₂Br·CO₂Et give OH-esters, which distil unchanged (β -ester, b.p. 153·5—155·5°/2—3 mm.) (cf. Karrer et al., A., 1932, 852) but with KHSO₄ at 150° give Et α -, b.p. 162·5°/5—7 mm. [272 (ϵ 14,700) and 236 m μ . (ϵ 11,800)], and β -ionylideneacetate, b.p. 162·3—164·5°/6 mm. [283 m μ . (ϵ 18,950)], hydrolysed by KOH-EtOH to the derived α - [267 m μ . (ϵ 17,650)] and β -acids (III), liquid [294 (ϵ 13,700) and 260 m μ . (ϵ 12,900)] and cryst. (m.p. 124°) form [283 m μ . (ϵ 17,700)] (cf. loc. cit.). With PCl₃ and then CdMe₂-Et₂O these give a- (IV), b.p. 135·5—138°/2·5 mm. [285 m μ . (ϵ 14,500)], and β -ionylideneacetone (V) [ζ -2:6:6-trimethyl- Δ^2 - and - Δ^1 -cyclohexenyl- δ -methyl- $\Delta^{\gamma\epsilon}$ -hexadien- β -one, respectively], b.p. 131—132°/2·5 mm. [285 m μ . (ϵ 11,600)]. Slowly distilling (I) and (II) with CN·CH₂·CO₂Me and a little NH₂Ac and NH₄OAc in AcOH gives Me a-cyano- δ -2:6:6-trimethyl- Δ^2 -, b.p. 154·5—157·5°/1·5 mm. [292·5 m μ . (ϵ 16 1001) and - Δ^1 -cyclohexenyl-154·5—157·5°/1·5 mm. [292·5 mμ. (ε 16,100)], and -Δ¹-cyclohexenyl-β-methyl-Δα-pentenoate, b.p. 165—168°/2 mm. [353 (ε 12,000) and β-methyl-Δ^a-pentenoate, b.p. 165—168° [2 mm. [353 (ε 12,000) and 286 mμ. (ε 10,300)], respectively, hydrolysed to the derived a-, an oil [286 mμ. (ε 14,300)], and β-acid, m.p. 160—163° (decomp.) (lit. an oil) [332 (ε 12,500) and 275 mμ. (ε 8700)], respectively. Decarboxylation then yields δ-2: 6: 6-trimethyl-Δ²-, b.p. 147·5—150° [3 mm. [262·5 mμ. (ε 18,900)], and -Δ¹-cyclohexenyl-β-methyl-Δαγ-pentadienonitrile, b.p. 138—140° [3 mm. [300 (ε 12,500) and 256 mμ. (ε 14,500)] [hydrolysed to (III), m.p. 122—125°, by KOH-EtOH], also obtained from (I) and (II), respectively, by CN·CH₂·CO₂H. With MgMcI-Et₂O or LiMe, these give (IV) and (V), respectively. (IV) gives a semicarbazone, m.p. 162·5—164°, but (V) gives an oil with NH·CO·NH·NH₂ or NH₂OH, although it reacts with Girard's reagent T. The structures of (IV) and (V) are proved by ozonolysis to isogeronic and geronic acid, respectively. In presence of PtO₂ in EtOH, (IV) and (V) absorb 3 H₂. NaOCl converts (I) and (II) into α-, an oil [<212·5 mμ. (ε>10,100)], and β-cyclocitrylideneacetic acid, m.p. 106—108° [277 mμ. (ε 9240)] (absorbs 1·96 H₂). (V) similarly gives (III), m.p. 122—124°. Pinacols and ninacolone from n-methoxyacetonbenone. C. C. Pinacols and pinacolone from p-methoxyacetophenone. C. C. Price and G. P. Mueller (J. Amer. Chem. Soc., 1944, 66, 634—636).—Electrolytic reduction of p-OMe·C₆H₄·COMe (I) in KOAc-EtOH-Electrolytic reduction of p-OMe·C₈H₄·COMe (I) in KOAc-EtOH-H₂O (in absence or presence of EtOAc) gives βγ-dihydroxy-βγ-di-p-anisyl-n-butane (90%), forms, m.p. (II) 122—123° and (III) 168—169°. (III) is also obtained by Al-Hg in moist Et₂O. Pb(OAc)₄—AcOH rapidly oxidises (II) to (I). A drop of H₂SO₄ in Ac₂O rearranges (II) or (III) to αα-di-p-anisylethyl Me ketone (IV) (63%), m.p. 69·7—71·5°, cleaved by KOH at 170—180° to (p-OMe·C₆H₄)₂CHMe, m.p. 70—72° (lit. 59·4°). The structure of (IV) is proved by conversion of its oxime, m.p. 192—194° (insol. in alkali), by PCl₅-Et₂O into (p-OMe·C₆H₄)₂CCH₂, m.p. 141—143°. R. S. C. Lignin and related compounds. LXXIX. Synthesis and properties of γ-hydroxy-α-3: 4-dimethoxyphenylpropan-β-one. H. É. Fisher, M. Kulka, and H. Hibbert. LXXX. Ethanolysis of α-acetoxy-α-4-acetoxy-3-methoxyphenylpropan- β -one and its relation to lignin structure. L. Mitchell and H. Hibbert. LXXXI. Properties of a-bromo-a-4-acetoxy-3-methoxyphenylpropan-β-one and relation to lignin structure. L. Mitchell, T. H. Evans, and H. Hibbert. LXXXII. Synthesis and properties of ay-diacetoxy-a-4-acetoxy-3methoxyphenylpropan-β-one and γ-chloro-α-acetoxy-α-4-acetoxy-3-methoxyphenylpropan-β-one and their relation to lignin structure. J. A. F. Gardner and H. Hibbert (J. Amer. Chem. Soc., 1944, 66, 598—601, 602—604, 604—607, 607—610; cf. A., 1944, II, 176).— 598—601, 602—604, 604—607, 607—610; cf. A., 1944, II, 176).— LXXIX. The properties of γ-3: 4-dimethoxyphenylpropan-α-ol-β-one (I) (which is synthesised) confirm the authors' views on lignin components. 3: 4: 1-(OMe)₂C₆H₂·CO₂H (prep. from the aldehyde by aq. KMnO₄ in 90% yield) gives (SOCl₂) the chloride, m.p. 70—71°, and thence (CH₂N₂) the CHN₂ ketone, m.p. 76—77° (lit. 75°), converted by Ag₂O-MeOH-CO₂ at 55—60° into Me homoveratrate (72%), b.p. 110—113°/3 mm. The derived acid with SOCl₂ and then CH₂N₂-C₆H₆ yields a CHN₂ ketone, which added (in EtOH) to H₂O at 70° gives (I), b.p. 150—160° (bath)/0·05 mm. (semicarbazone, m.p. 123—124°; known acetate, m.p. 55—56°). Boiling 5% H₂SO₄ in 24 hr. or 72% H₂SO₄ at room temp. in 2 hr. gives 19·5 and 62·5%, respectively, of polymer from (I). (I) is very sensitive to alkali; in 1% aq. NaOH at 100° (24 hr.) it gives 54% and in 3% aq. NaOH at room temp. gives 80%, but in 3% NaOH-EtOH-H₂O (1:1) gives only 17% of polymer. It is unchanged (75% recovered) by boiling 5% aq. KOAc-CO₂ (12 hr.), but in 2% HCl-EtOH-CO₂ (48 hr.) gives 3:4:1-(OMe)₂C₆H₃·CO·CHMe·OEt (28%) and -(OMe)₂C₆H₃·CH(OEt)·COMe (52%). LXXX.
Ethanolysis of a-acetoxy-a-4-acetoxy-3-methoxyphenyl-propan-β-one (II) supports the authors' views on lignin structure. LXXX. Ethanolysis of α-acetoxy-α-4-acetoxy-3-methoxyphenyl-propan-β-one (II) supports the authors' views on lignin structure. (II) is obtained (80%) from 3:4:1-OMe·C₆H₂(OAc)·CHBr·COMe by AgOAc in 1:1 aq. dioxan at room temp. and has m.p. 97—98°. Ethanolysis first removes the labile Ac and then causes rearrangement. Thus, 2% HCl-EtOH-CO₂ at the b.p. (48 hr.) gives 3:4:1-OMe·C₆H₃(OH)·CO·CHMe·OEt (54·6%), -OMe·C₆H₃(OH)·CH(OEt)·COMe (16·7%), -OMe·C₆H₃(OH)·CO·COMe (7·3%), and -OMe·C₆H₃(OH)·CO·COMe (1·3%), and polymers (10%). LXXXI. Further evidence is provided by the properties of LXXXI. Further evidence is provided by the properties of a-bromo-α-4-acetoxy-3-methoxyphenylpropan-β-one (III). 4-Λευτοχy-3-methoxyphenylacetone (prep. from the 4-OH-compound by Ac₂O-10% aq. NaOH at 0—10°), m.p. 47—48° (semicarbazone, m.p. 168—169°), with Br and a little Bz₂O₂ in CHCl₃ at <10° gives (III) (73%), m.p. 100—101° (semicarbazone, m.p. 180—181°), which with Ag₂SO₄ in 1:2 aq. dioxan-N₂ at room temp. gives 100% of AgBr, 35% of a polymer [? of 3:4:1-OMe·C₄H₂(OAc)·CH(OH)·COMe], and 60% of a mixture, whence removal of diketone as Ni glyoxime salt and subsequent hydrolysis yields $3:4:1\text{-OMeC}_8\text{H}_3(\text{OH})\cdot\text{CO}\cdot\text{COMe}$ (IV) (44%) and -OMe·C₈H₃(OH)·CH₂·COMe (V) (27%). (IV) and (V) are probably formed by way of (CHArAC)₂CO and, possibly, OCHAr·CMe(OH) O. $3:4:1\text{-OMe}\cdot\text{C}_8\text{H}_3(\text{OH})\cdot\text{CO}\cdot\text{CHMe}\cdot\text{OH}$ and a little (IV) are also obtained from (II) by boiling BaCO3-H2O-N2, and from (III) by boiling 5% aq. KOAc. LXXXII. Reactions described below indicate that compounds, OH·CHAr·CO·CH₂·OH ⇒ COAr·CH(OH)·CH₂·OH, may perhaps form building units of lignin to a limited extent. Treatment of 3: 4:1-OMe·C₈H₃(OH)·CH(OH)·CN with HCl-EtOH at -10° and subsequent hydrolysis gives the Et ester (24%), m.p. 77°, and thence (2% NaOH; N₂) 4-hydroxy-3-methoxymandelic acid, m.p. 133°, the diacetate, +H₂O, m.p. 142°, of which with SOCl₂ in boiling C₆H₆ (105 min.; not longer) gives the diacetate acid chloride, m.p. 72°, and thence a-acetoxy-y-diazo-a-4-acetoxy-3-methoxyphenylpropan-β-one (88%), m.p. 129—130°. This does not react with cold AcOH but with AcOH-AcO-N, at the big gives and diacetoxy-and acetoxyone (88%), m.p. $129-130^\circ$. This does not react with cold Acum but with AcOH-Ac₂O-N₂ at the b.p. gives $\alpha\gamma$ -diacetoxy-a-4-acetoxy-3-methoxyphenylpropan- β -one (VI) (77%), b.p. $65-70^\circ$ /0·025 mm., and with HCl-Et₂O-C₆H₈ at 0° gives γ -chloro-a-acetoxy-a-4-acetoxy-3-methoxyphenylpropan- β -one (VII) (81%), m.p. $110-111^\circ$. In boiling NaOAc-AcOH-CO₂, (VII) gives 75% of Ni glyoxime salt and thence by $12\text{N-H}_2\text{SO}_4$ at room temp. (IV). With boiling 2% HCl-EtOH-CO₂, (VI) gives 66% of polymer and 8% of (IV), with boiling 2% H₂SO₄ gives $8\cdot6\%$ of polymer. R. S. C. Synthesis of a-mesitylpropiomesitylene. R. C. Fuson, N. Rabjohn, W. J. Shenk, jun., and W. E. Wallace [with in part, Q. F. Soper, C. H. McKeever, S. Melamed, and J. L. Marsh] (J. Org. Chem., 1944, 9, 187-192).-A synthesis from mesitylacetonitrile (I) with other unsuccessful attempts is recorded. Et mesitylacetale, b.p. 152—153°/22 mm., is obtained from the acid chloride and EtOH, from the acid and EtOH containing ρ-C₆H₄Me·SO₃H, and, with a substance, C₂₂H₂₈ON, m.p. 236—237°, from (I) and boiling H₂SO₄-EtOH. It could not be caused to react with CH₂O or EtOAc but with Et₂C₂O₄ it yields a compound regarded as Et₂ mesitylmalonate, m.p. 49—80°, which could not be methylated. (I) fails to condense with CH₂O but is readily transformed by EtOAc in EtOH-NaOEt into a-mesitylacetoacetonitrile, m.p. 117—118°, converted by MeI and NaOH in EtOH into the O-Me derivative, b.p. 152—156°/3—4 mm. This is hydrolysed by boiling AcOH-H₂SO₄ to mesityl-acetone, m.p. 60—61°, also obtained (impure) from s-C₆H₃Me₃, COMe·CH₂Cl, and AlCl₂ or from (I) and a large excess of MgMeI. HCO₂Et, (I), and NaOEt in boiling EtOH afford β-hydroxy-a-mesitylacrylonitrile, m.p. 131·5—132·5° or 126·5—127·5° after several hr. (benzoate, m.p. 127—128°, unaffected by H₂ in presence of PtO₂), converted by NH₂Ph in boiling EtOH into β-anilino-a-mesitylacrylonitrile, m.p. 151·5—153°. MeCHO and Mg mesityl bromide give (?) di(mesitylmethylcarbinyl) ether, m.p. 94—95°; treatment of the crude condensation product with HCl in dry Et₂O followed by Mg and then 2: 4: 6: 1-C₆H₂Me₃·COCl lead to mesitoic acid and (?) βγ-dimesitylbutane, m.p. 139—140°. s-C₆H₃Me₃. CHMeCl·COCl, and AlCl₃ in CS₂ at 5° yield unstable a-chloropropiomesitylene, b.p. 99—100°/1·5 mm. [3: 5: (NO₂)₃-derivative, m.p. 127·5—128·5°]; β-chloro-3:5-dinitropropiomesitylene has m.p. 190—191·5°. Addition of (I) to NaNH₂ in Et₂O leads to a-mesitylpropionitrile, b.p. 160—165°/35 mm., hydrolysed by boiling glacial AcOH-conc. H₂SO₄ to a-mesitylpropionic acid, m.p. 102—103° (amide, m.p. 100—101°). This with SOCl₂ followed by s-C₆H₃Me₂ and AlCl₂ gives a-mesitylpropiomesitylene, b.p. 160—165°/1—2 mm., m.p. 74—75°. (I), NaNH₂, and CH₂PhCl yield β-phenyl-a-mesityl-propionitrile, b.p unsuccessful attempts is recorded. Et mesilylacetate, b.p. 152—153°/22 mm., is obtained from the acid chloride and EtOH, from Rearrangement of arylamides of aromatic and aliphatic acids under the action of aluminium chloride. D. N. Kursanov (J. Gen. Chem. Russ., 1943, 13, 286—289).—NHPhAc and NHPhBz with AlCl₃ at 200° for 1 hr. and 5 hr. respectively, give tarry products containing p-NH₂·C₆H₄·COR [R = Me (12%), R = Ph (5%)]. NHPhAc and AlCl₃, in presence of PhMe at 200° in a sealed tube for 2 hr., yield $16\cdot2\%$ of p-C₆H₄Me·COMe, indicating that the rearrangement proceeds through preliminary cleavage of the acyl group. R. C. P. Volatile vegetable substances. XXIX. Isolation of a tricyclic isomeride of ionone. Y. R. Naves and P. Bachmann (Helv. Chim. Acta, 1944, 27, 645—649).—Treatment of the portion of the products of cyclisation of ψ-ionone which does not react with NaHSO₃ with Girard's reagent P gives a mixture, b.p. 92—94°/4·6 mm., of ketones, which affords a semicarbazone, m.p. 209—209·5°, hydrolysed to tricycloionone (I), b.p. 90—90·5°/4 mm., the colour reactions of which are described. The tricyclic character of (I) is established by physical evidence. (I) gives a δ-phenylsemicarbazone, m.p. 186·5—187°, and a 2:4-dinitrophenylhydrazone, m.p. 151·1—152°. (I) is reduced by Na and boiling EtOH to tricycloionol, b.p. 98—99°/2·5 mm. (acetate, b.p. 95—96°/1·2 mm.), which is not hydrogenated (PtO₂ in AcOH at 60°). NaOI and (I) do not give CHI₃. H. W. Three coloured isomeric forms of benzaurins and phthaleins. Structure of form A. P. Ramart-Lucas (Compt. rend., 1943, 217, 24—26).—The fuchsone structure for benzaurin is discussed (cf. A., 1939, II, 260, 321). Nature of the isomerism of the three coloured forms of benz-Nature of the isomerism of the three coloured forms of benzaurins and phthaleins. Possible metamorphosis of derivatives. P. Ramart-Lucas (Compt. rend., 1943, 217, 114—116; cf. A., 1939, II, 321).—Absorption spectra of benzaurin (I), its Me ether (II), p-CPh₂·C₆H₄·O, (p-OMe·C₆H₄)₂CPh·OH, CPh₃·OH, and CHPh₃ are compared. (II), like (I), can exist in three forms, one of which (fuchsone, quinonoid form) exists in neutral, and one in acid, medium. A theory based on differing electronic states of the central C is suggested. central C is suggested. Synthesis of p-benzoquinone. J. H. Billman, B. Wolnak, and D. K. Barnes (f. Amer. Chem. Soc., 1944, 66, 652).—93—95% of p-O:C₆H₄·O is obtained by adding NH₄VO₃ to quinol and NaClO₃ in 2% H₂SO₄ at 40—42° (30 min.) and then cooling. R. S. C. Easy method for the preparation of dianthraquinone. Action of pyridine on dianthranol and dianthrone. A. Schönberg and A. F. A. plyridine on mathranol and mathrone. A. Schönleig and A. F. A. Ismail (J.C.S., 1944, 307).—Oxidation of dianthranol (I) with p-O:C₆H₄:O in COMe₂ at room temp. gives dianthraquinone (approx. quant. yield) with quinhydrone. Dianthrone (II) or (I) with C₅H₅N affords a compound, C₃₈H₂₈O₂N₂, m.p. 190° (efferv.), remelts 229°, which with HCl-EtOH forms (II). #### IV.—STEROLS AND STEROID SAPOGENINS. Chromatography and mesomerism in the sterol series. reaction. P. Meunier (Compt. rend., 1943, 217, 78—80).—The red colour of cholesterol (I) in CHCl₃-H₂SO₄ is attributed to mesomerism. This is supported by the production of some $\Delta^3:5$ -cholestadiene, m.p. 79° (absorption max. at 229, 235, and 245 mµ.) (cf. Schoenheimer et al., A., 1936, 1105), in addition to dicholesteryl ether, from (I) (method: Bills et al., A., 1926, 981). A. T. P. Steroids and sex hormones. XCVII. Relationships between constitution and optical activity in the cholic acid series. P. A. Plattner and H. Heusser (Helv. Chim. Acta, 1944, 27, 748—757).— The observation of Bernstein et al. (A., 1942, II, 177) that changes in the side-chain of the sterois have little influence on $[M]_D$ is confirmed; the effect is very small when such changes occur at a distance from the asymmetric $C_{(20)}$ and when a new centre of asymmetry is not developed. The behaviour of Me cholate on partial or complete acetylation shows that the contributions to [M]of the asymmetric centres at $C_{(3)}$, $C_{(2)}$, and $C_{(12)}$ are largely independent of one another. Marked differences are found for the or the asymmetric centres at C₍₃₎, C₍₇₎, and C₍₁₂₎ are largely independent of one another. Marked differences are found for the free, partly acetylated acids. It appears therefore that unpredictable influences also play a part. The relative independence of the asymmetric centres at C₍₇₎ and C₍₁₂₎ of the sterol skeleton is shown by observations of the effect of introducing OH groups into lithocholic acid. The following are described: Me triacetylcholate, m.p. 90·5—91°, [a]₂¹⁴ +81·8° in EtOH, [a]₂¹⁷ +76·8° in CHCl₃; Me
triformylcholate, m.p. 133·5—134·5°, [a]₂¹⁵ +90·0° in EtOH, [a]₂¹⁷ +86·0° in CHCl₃; 3(a)-hydroxy-7(a): 12(β)-diacetoxycholanic acid, m.p. 202—203°, [a]₂¹⁵ +71·6° in EtOH (Me ester, m.p. 57—59°, [a]₂¹⁵ +72·0° in EtOH, +63·7° in CHCl₃); 12(β)-hydroxy-3(a): 7(a)-diacetoxycholanic acid, m.p. 261—263°, [a]₂¹⁷ +49·8° in EtOH (Me ester, m.p. 182—183°, [a]₂¹⁶ +35·3° in EtOH, +31·0° in CHCl₃); Me 7(a): 12(β)-dihydroxy-3(a)-acetoxycholanate, m.p. 149·5—150°, [a]₂¹⁶ +52·8° in EtOH, [a]₂¹⁶ +47·6° in CHCl₃; 12-keto-3(a): 7(a)-diacetoxycholanic acid, m.p. 229—230°, [a]₂¹⁷ +86·5° in CHCl₃ (Me ester, m.p. 177—178·5°, [a]₂¹⁷ +83·5° in CHCl₃); chenodeoxycholanic acid, m.p. 1740—141·5°, [a]₂¹⁷ +12·5° in CHCl₃ (Ba salt); 3(a): 7(a)-diformoxycholanic acid, m.p. 132·5—133·5° and 180—182°, [a]₂¹⁶ +31·0° in EtOH. Rile acids and related substances XXIX. Derivative of his- Bile acids and related substances. XXIX. Derivative of hisnordeoxycholic acid and of 3(a):11(a)-dihydroxybisnorcholanic acid. A. Lardon and T. Reichstein (Helv. Chim. Acta, 1944, 27, 713—726).—Me $3(a):12(\beta)$ -dihydroxybisnorcholanate (Me bisnordeoxy-726).—Me $3(a):12(\beta)$ -dihydroxybisnorcholanate (Me bisnordeoxycholate) (I) is cautiously oxidised by CrO₃ in AcOH to Me 3:12-diketobisnorcholanate, m.p. $139-141^{\circ}$, $[a]_{13}^{13}+82\cdot1^{\circ}\pm2^{\circ}$ in COMe. Partial acetylation of (I) by Ac₂O in boiling C₆H₈ affords Me $12(\beta)$ -hydroxy-3(a)-acetoxybisnorcholanate, m.p. $198-199^{\circ}$, $[a]_{13}^{13}+54\cdot7^{\circ}\pm1\cdot5^{\circ}$ in COMe₂, oxidised (CrO₃ in AcOH) to the 12-ketoester, m.p. $168-170^{\circ}$, $[a]_{22}^{130}+93\cdot9^{\circ}\pm1\cdot5^{\circ}$ in COMe₂. Energetic acetylation (Ac₂O-C₅H₃N at 100°) of (I) yields Me $3(a):12(\beta)$ -diacetoxybisnorcholanate, m.p. $169-170^{\circ}$, $[a]_{22}^{13}+84\cdot4^{\circ}\pm1^{\circ}$ in COMe₂, partly hydrolysed (1° 0 HCl-MeOH at 16° 0 to Me 3(a)-hydroxy- $12(\beta)$ -acetoxybisnorcholanate, m.p. $137-138^{\circ}$, $[a]_{22}^{130}+73\cdot2^{\circ}\pm1^{\circ}$ in COMe₂, oxidised to the 3-keto-ester (II), m.p. $136-137^{\circ}$, $[a]_{22}^{13}+64\cdot8^{\circ}\pm1\cdot5^{\circ}$ in COMe₂, and an unidentified by-product, $C_{25}H_{38}O_{5}$, m.p. $164-165^{\circ}$, $[a]_{22}^{15}+73\cdot4^{\circ}\pm1\cdot5^{\circ}$ in COMe₂. Alkaline hydrolysis and esterification (CH₂N₂) of (II), particularly if the conditions are not too drastic, leads mainly to Me $12(\beta)$ -hydroxy-3-ketobisnor-cholanate, m.p. $204-206^{\circ}$, $[a]_{22}^{13}+38\cdot6^{\circ}\pm1\cdot5^{\circ}$ in COMe₂, with some Me 12(β)-hydroxy-3-ketobisnor-20-isocholanate [only obtained amorphous but identified by conversion into the acetate, m.p. 169—171°, and oxidation to the 3: 12-(CO)₂-compound, double m.p. 116—118° and 140—141°], and by-products, m.p. 142—144° (oxidised to a compound, C₂₃H₃₄O₄, m.p. 181—183° and m.p. 177—179° (similarly oxidised to a substance, C₃₃H₃₄O₄, m.p. 164—166°). Me 3-keto-12(β)-benzoyloxy-, m.p. 135—136°, [a]₁₃·4-6·8°±1·5° in COMe₂, and Me 3(a): 12(β)-dibenzoyloxy-, m.p. 170—171°, -bisnorcholanate are described. (I) is converted by anthraquinone-2-carboxyl chloride in abs. C₅H₅N-PhMe at 100° into Me 3(a): 12(β)-dianthraquinone-Y-carboxybisnorcholanate, m.p. 221—223° [accompanied under less drastic conditions by the 12(β)-hydroxy-3(a)-anthraquinone-2'-carboxy ester, m.p. 271—273°], hydrolysed by KOPh in boiling EtOH-dioxan to the 3(a)-hydroxy-12(β)-anthraquinone-2'-carboxy ester [acetate (A), m.p. 116—118°, becomes opaque at ~100°]. Thermal fission of the above monobenzoate or of Me 3-keto-12(β)-anthraquinone-2'-carboxy ester [acetate (A), m.p. 116—118°, becomes opaque at ~100°]. Thermal fission of the above monobenzoate or of Me 3-keto-12(β)-anthraquinone-2'-carboxy ester [acetate (A), m.p. 116—118°, becomes opaque at ~100°]. Thermal fission of the above monobenzoate or of Me 3-keto-12(β)-anthraquinone-2'-carboxy ester [acetate (A), m.p. 116—118°, becomes opaque at ~100°]. Thermal fission of the above monobenzoate or of Me 3-keto-12(β)-anthraquinone-2'-carboxy ester [acetate (A), m.p. 116—118°, becomes opaque at ~100°]. Thermal fission of the above monobenzoate or of Me 3-keto-12(β)-anthraquinone-2'-carboxy ester [acetate (A), m.p. 116—118°, acetoxy-12(β)-acetoxy-12 described. M.p. are corr. (block); limits of error $\pm 2^{\circ}$. H. W. Degradation of bile acid derivatives. R. P. Jacobsen (J. Amer. Chem. Soc., 1944, 66, 662).—Bile acids are degraded in good yield by the following reactions. CHRMe·[CH₂]·COCl [+CdPh₂] \rightarrow CHRMe·[CH₂]·COPh \rightarrow mixed CHRMe·CH₂·CHBr·COPh \rightarrow CHRMe·CH₂·CH(OAc)·COPh \rightarrow CHRMe·CH₂·CH(OH)·COPh \rightarrow CHRMe·CH₂·COCOPh (65—70%) \rightarrow CHRMe·CH:C(OAc)·COPh \rightarrow CHRMe·CO₂H. The following are described: cholophenone [Ph norcholyl ketone], +0·5H₂O, m.p. 174—176·5°, [a]^{2b} +26° [triacetate, m.p. 120·3—121°, [a]^{2b} +79°; 2:4-dinitrophenylhydrazone, m.p. 221—222·5°; oxime, m.p. 214—217° (decomp.)]; 23(? B)-bromocholophenone triacetate, +H₂O, m.p. 108·5—111·5°, [a]^{2b} +95°; 23(? a)-acetoxycholophenone triacetate, +0·5H₂O, m.p. 180—182°, [a]^{2b} -10°; Ph bisnorcholyl diketone triacetate, m.p. 166—169° (after drying, 161·5—166°), [a]^{2b} +92° (the 7:12-diacetate has m.p. 201—203·5°, [a]^{2b} +80°); 3-phenyl-2-bisnorcholyl-quinoxaline triacetate, m.p. 217—218·5°. [a] are in CHCl₃. R. S. C. Adsorption of cestrone, cestriol, and a-cestradiol on a chromato- Adsorption of estrone, estriol, and a-estradiol on a chromatographic column. B. F. Stimmel (J. Biol. Chem., 1944, 153, 327—553).—Strongly phenolic may be separated from weakly phenolic estrogens by means of a liquid chromatogram using activated Al₂O₃, the weakly phenolic being eluted by a 9:1 C₈H₈-MeOH mixture and the strongly phenolic by a 4:1 mixture. The Al₂O₃ is inactivated by the process and its subsequent use is inadvisable. H. G. R. synthesis of compounds related to sex hormones. W. E. Bachman and R. D. Morin (J. Amer. Chem. Soc., 1944, 66, 553—557).—5:6:7:8-Tetrahydro-1-naphthylamine (prep. from a-C₁₀H₁·NH₂ by Na and fusel oil in 84% yield) gives (diazo-reaction) the 1-I-derivative (66%), b.p. 153—158°/20 mm., and thence, successively, [Grignard; (CH₂)₂O] β-5:6:7:8-tetrahydro-1-naphthylethyl alcohol (57%), b.p. 125—135°/0·4 mm., (PBr₃) the derived bromide (62%), b.p. 113—118°/0·05 mm., [CHNa(CO₂Et)₂; then hydrolysis and heating at 180°] y-5:6:7:8-tetrahydronaphthyl-1-butyric acid (65%), m.p. 94—95°, and (acid chloride; SnCl₄) 1-keto-s-octahydrophenanthrene (I) (88%), m.p. 80·5—82°. Me₂C₂O₄ and (I) give Me 1-keto-s-octahydrophenanthrene-2-cyloxylate (89%), m.p. 103—104°, converted by heating with powdered, soft glass at 180° into Me 1-keto-s-octahydrophenanthrene-2-carboxylate (88%), m.p. 83—85°, which with NaOMe and MeI in MeOH-C₆H₆ gives Me 1-keto-2-methyl-s-octahydrophenanthrene-2-carboxylate, m.p. 77—78° (derived acid, m.p. 87—88°). The Reformatsky reaction then gives Me 1-hydroxy-2-carbomethoxy-2-methyl-s-octahydro-1-phenanthrylacetate (78—81%), m.p. 102—103° [converted by hot KOH-MeOH-H₂O into the 2-Me derivative of (I)], which with SOCl₂-C₃H₅N and then KOH-EtOH-H₂O gives 2-carboxy-2-methyl-s-octahydro-1-phenanthrylideneacetic acid (92%), m.p. 140—141° (gas). This or an unpurified solution of it with 2% Na-Hg in aq. KOH gives 2-carboxy-2-methyls-octahydro-1-phenanthrylacetic acid, a- (40-43%), m.p. $218-219^\circ$, and β -form (46-50%), m.p. $162-163^\circ$, the Me_2 esters (prep. by CH₂N₂), a-, m.p. $70\cdot5-71^\circ$, and β -form, m.p. $81\cdot5-82\cdot5^\circ$, of which hot NaOH-MeOH-H₂O give 2-carbomethoxy-2-methyl-s-octahydro-1-phenanthrylacetic acid (95-98%), a-, m.p. $121-122^\circ$, and β -form, m.p. $141-142^\circ$. Arndt-Eistert reactions then yield Me β -2-carbomethoxy-2-methyl-s-octahydro-1-phenanthrylpropionate, a- (75%), m.p. $63\cdot5-64\cdot5^\circ$, and β -form, an oil, cyclised by NaOMe in boiling C_6H_6 to Me 1:2:3:4-tetrahydro-17-equilenone-16-carboxylate, a- (90%), m.p. $124-125^\circ$ (greenish-brown FeCl₃ colour), and β -form (85%), m.p. $121-122^\circ$ (greenish-brown FeCl₃ colour), which in boiling HCl-AcOH-H₂O-N₂ give 1:2:3:4-tetrahydro-17-equilenone, a- (88%), m.p. $72-73^\circ$ (semicarbazone, m.p. $243-244^\circ$), and β -form (79%), m.p. $114-115^\circ$ (vac.) [semicarbazone, m.p. $274-275^\circ$ (vac.)] (cf. Marker et al., A., 1940, II, 95), converted by S at 210° into the a- and β -forms, respectively, of 17-equilenone. $2-C_{10}H_7$ -OMe and $(CH_2\cdot CO)_2$ O give $6:2-OMe\cdot C_{10}H_4\cdot CO\cdot[CH_2]_2\cdot CO_2H$, m.p. $147-148^\circ$, the Et ester, m.p. $107\cdot5-108^\circ$, of which affords (Reformatsky) the lactone (II) (84%), m.p. $121-122^\circ$, of a-Me a'-H β -hydroxy- β -6-methoxy-2-naphthyladipate. Hot N-aq. NaOH-MeOH 2-C₁₀H₇:OMe and (CH₂:CO)₂O give 6: 2-OMe·C₁₀H₈·CO·[CH₃]₂·CO₂H₇, m.p. 147—148°, the Et ester, m.p. 107·5—108°, of which affords (Reformatsky) the lactone (II) (84%), m.p. 121—122°, of a-Me a'-H β-hydroxy-β-6-methoxy-2-naphthyladipate. Hot N-aq. NaOH-MeOH converts (II) into β-6-methoxy-2-naphthyl-Δα-butene-αδ-dicarboxylic acid (III) (98%), m.p. 194—195°, the Me₂ ester, b.p. 190°/0·05 mm., of which yields by cyclisation 3-6'-methoxy- (80%), m.p. 125—126°, and thence (boiling HCl-AcOH-H₂O-N₂) 3-6'-hydroxy-2'-naphthyl-Δ²-cyclopentenone (IV), m.p. 252—253° (vac.) {Me ether, m.p. 169—170° [semicarbazone, m.p. 250—251° (vac.), reduced by NaOMc-EtOH at 180° to the known 1-6'-methoxy-2'-naphthylcyclopentene, m.p. 141—142°]; semicarbazone, m.p. 260—262°
(vac.)}. 2% Na-Hg in aq. KOH reduces (III) to β-6-methoxy-2-naphthyladipic acid, m.p. 164—165°, the Me₂ ester, b.p. 180—190°/0·05 mm., of which by successive cyclisation, hydrolysis, decarboxylation, and demethylation affords 3-6'-hydroxy-2'-naphthylcyclopentanone (83%), m.p. 176—176-5° (semicarbazone, m.p. 212—213°), also obtained from (IV) by H₂-Pd-C in AcOH- By similar reactions β-C₁₀H₇·CO·[CH₂]₂·CO₂H gives the lactone, m.p. 111—112°, of a-Me a'-H β-hydroxy-β-2-naphthyladipate, β-2-naphthyl-Δ^a-butene-αδ-dicarboxylic acid, m.p. 179—180° (Me₂ ester, b.p. 170—180°/0·05 mm), 3-2'-naphthyl-Δ^a-cyclopentenone (V), m.p. 126—127° [semicarbazone, m.p. 240—241° (lit. 244°)], 1-2'-naphthylcyclopentene, β-2-naphthyl-adipic acid, m.p. 153—154°, and 3-2'-naphthylcyclopentanone, m.p. 65—66° (lit. 61°) [semicarbazone, m.p. 199—199-5° (lit. 196—197°)]. 2-Chloroacetyl-5: 6: 7: 8-tetrahydro-2-naphthyl-Δ^a-cyclopentenone, m.p. 82—82-5° [semicarbazone, m.p. 235—236°; and thence by Pd-C-N, at 320° (V)], β-5: 6: 7: 8-tetrahydro-2-naphthyl-Δ^a-cyclopentenone, m.p. 159-5—160°, and 3-5': 6': 7': 8'-tetrahydro-2'-naphthyl-adipic acid, m.p. 159-5—160°, and 3-5': 6': 7': 8'-tetrahydro-2'-naphthylcyclopentenone, m.p. 73—74° (semicarbazone, m.p. 207—208 Steroids and sex hormones. XCVI. Rearrangement products of 2-acetoxycholestan-3-one. L. Ruzicka, P. A. Plattner and M. Furrer (Helv. Chim. Acta, 1944, 27, 727—737).—2-Acetoxy- (I) and 2-hydroxy-cholestan-3-one (II) are shown to be very labile compounds. Catalytic hydrogenation (Pt) of (I) in neutral or acidic solution affords a mixture (III) of compounds from which cholestan-1-yl acetate, m.p. 80—81°, [a]_D +9·5° in CHCl₃, is isolated in small amount. It is hydrolysed by boiling KOH-MeOH to cholestan-1-ole (IV), m.p. 165·5—166° [a]_D +14° in CHCl₃ (benzoate, m.p. 107—108°, [a]_D +0·2° in CHCl₃), oxidised (CrO₃ in AcOH) to cholestan-1-one (V), m.p. 120—120·5°, [a]_D +41° in CHCl₃, which is reduced (N₂H₄, H₂) and Na in C₅H₁₁·OH at 190°) to cholestane (VI). The constitution of (V) is based on its non-identity with any known cholestanone. The following also are isolated from (III): acetoxycholestanol-A, m.p. 168—169°, [a]_D +41° in CHCl₃ (acetate, m.p. 161—162°, [a]_D +33° in CHCl₃; benzoate, m.p. 180—182°; p-tolucnesulphonate, m.p. 146·5—147·5°), oxidised (CrO₃) to acetoxycholestanone-A, m.p. 145—146°, [a]_D +1° in CHCl₃, which greatly depresses the m.p. of (I); acetoxycholestanol-B, m.p. 182·5—183·5°, and ·C, m.p. 174—176°; (?) cholestane-2: 3-diol, m.p. 196—197°, and a mixture of various diols. Reduction (Clemmensen) of (I) gives (VI) exclusively. The following are obtained by reduction (Wolff-Kishner) of (I): (VI) with smaller proportions of (IV), cholestan-4-ol, m.p. 189·5—190° (acetate, m.p. 112·5—113°, [a]_D +16° in CHCl₃; benzoate, m.p. 117·5—118°), oxidised to cholestan-4-one, m.p. 99—99·5°, [a]_D +29·5° in CHCl₃, a cholestan-2-ol (the presence of which is established by oxidation to cholestan-2-one), and two azines, C₃₄H_{2p}N₂, m.p. 235—242° (decomp.) and 200—210° (decomp.). Hydrolysis of (I) in C₄H₄ with K₂CO₃ in aq. MeOH gives (II) in moderate yield with large amounts of a (?) 3-hydroxycholestan-4-one (VII), m.p. 173—175° softens at 171°, [a]_D +14· Acetoxycholesten-2-one is hydrogenated (Raney Ni in EtOH) to $3(\beta)$ -acetoxycholestan-2-one (IX), m.p. 145.5— 146.5° , $[a]_D$ +73° in CHCl₃ [oxime (X), m.p. 178— 179.5° (decomp.)], reduced (Wolff-Kishner) to (VI). Alkaline hydrolysis (KOH-MeOH) of (X) yields $3(\beta)$ -hydroxycholestan-2-oneoxime, m.p. 207— 208° (decomp.). NaOH-MeOH at 20° converts (IX) into $3(\beta)$ -hydroxycholestan-2-one, m.p. 104.105° [-1.65° in CHCl oxidized to the disorboxyliz axid 104—105°, [a]_D +65° in CHCl₃, oxidised to the dicarboxylic acid, m.p. 193—195°, of Windaus *et al.* M.p. are corr. H. W. Constituents of the adrenal cortex and related substances. LXVII. Attempted preparation of etiocholane-3(a): $12(\beta)$ -diol-17-one by systematic degradation. B. Koechlin and T. Reichstein (Helv. Chim. Acta, 1944, 27, 549—566; cf. A., 1944, II, 106).—Five known methods and one new one have been applied to the degradation of derivatives of etiocholanic acid or pregnan-20-one to derivatives of etiocholan-17-one and particularly to the prep. of etiocholane-3(a): $12(\beta)$ -diol-17-one (I). This has been obtained only from pregnane-3(a): $12(\beta)$ -diol-20-one by the method of Marker et al. (A., 1942, II, 230, 264) but the yield is unsatisfactory. Unsuccessful attempts to obtain cryst. diphenyl-3(a): $12(\beta)$ -diacetoxyætiocholattempts to obtain cryst. diphenyl-3(a): 12(β)-diacetoxyætiocholanylcarbinol or the corresponding methene from Me ætiodeoxycholate (cf. A., 1941, II, 140) are described; a cryst. by-product, $C_{30}H_{40}O_5$, m.p. 152—153°, has been isolated. Treatment of allopregnane-3(β)-ol-20-one acetate with MgMeBr and subsequent acetylation affords 20-methylallopregnane-3(β): 20-diol 3-monoacetate (II), needles which pass into hexagonal plates at 185—190°, m.p. 200—202°, in good yield (cf. Butenandt et al., A., 1935, 1033). m.p. 200—202°, in good yield (cf. Butenandt et al., A., 1935, 1033). (II) loses H_2O in boiling AcOH, giving mainly 20-methyl- Δ^{20} -allopregnene- $3(\beta)$ -ol acetate (III), m.p. 111— 114° , $[a]_b^{16} \pm 0^\circ \pm 2^\circ$ in COMe₂, with smaller quantities of an isomeride (IV), m.p. 65— 67° , $[a]_b^{16} -57\cdot 2^\circ \pm 1\cdot 5^\circ$ in COMe₂, and traces of 20-methyl- Δ^{17} -allopregnen- $3(\beta)$ -ol acetate, m.p. 144° . (II) sublimes unchanged at 145° (bath)/high vac., but is partly dehydrated by repeated distillation at $210^\circ/12$ mm., whereby the main product is (III). This is formed almost exclusively from (II) and $POCl_3$ - C_5H_5N at 130° , and (IV) is almost the sole product of the action of P_2O_5 (in C_5H_5) or of HCO_2H on (II). The consitution of (III) is deduced from its ozonisation to allopregnan- $3(\beta)$ -ol-20-one acetate: it is hydrogenated ozonisation to allopregnan-3(β)-ol-20-one acetate; it is hydrogenated ozonisation to allopregnan-3(β)-ol-20-one acetate; it is hydrogenated to 20-methylallopregnan-3(β)-ol acetate, m.p. $124-125^\circ$. (IV) is hydrolysed to the corresponding alcohol, m.p. $144-145^\circ$ after a transformation at ~140°. Ozonisation of (IV) gives some acidic products but mainly neutral material from which a substance, $C_{14}H_{38(40)}O_{4(5)}$, m.p. $186-188^\circ$, [a] $\frac{1}{3}$ +22·1° \pm 3° in dioxan, is isolated which does not react with NH₂·CO·NH·NH₂. Attempted chromatographic purification of this material by Al₂O₃ leads to compounds, $C_{24}H_{38}O_4$, m.p. $156-161^\circ$, and $202-205^\circ$. (IV) is hydrogenated (PtO₂ in AcOH) to a substance, $C_{24}H_{40}O_2$, m.p. $81-84^\circ$, which does not give a yellow colour with $C(NO_2)_4$. Ag $3(\beta)$ -acetoxy-mtioallocholanate is largely unattacked by Br in CCl₄ at room temp. and subsequently at incipient boiling. Addition of Br-AcOH to and subsequently at incipient boiling. Addition of Br-AcOH to allopregnan-3(β)-ol-20-one acetate in AcOH containing HBr and treatment of the product with KOH-MeOH gives neutral products which, after acetylation, afford Me 3(β)-acetoxy-17-methylætioallo-cholanate, m.p. 200—202°, which does not give a colour with C(NO₂)₄ and acidic products from which after methylation, acetylation, ozonolysis, and hydrolysis androstan-3(β)-ol-17-one, m.p. 175°, is obtained in \sim 7% yield. A similar series of changes starting from pregnane-3(α): 12(β)-diacetoxy-17-methylæticallocholanate, m.p. 163—165°, and the diacetate, m.p. 160—162°, [α] $_{0}^{16}$ +186·3° \pm 2° in COMe₂, of (I). Gradual addition of N2OFt, FtOH to a solution of all operane 3(α)-ol-20-one addition of NaOEt-EtOH to a solution of allopregnane-3(β)-ol-20-one acetate and PhCHO in abs. RtOH gives 21-benzylideneallopregnan- $3(\beta)$ -ol-20-one acetate, m.p. $211-214^{\circ}$ (lit. $207-209^{\circ}$), $[a]_{10}^{16}+75\cdot 5^{\circ}$ $\pm 2^{\circ}$ in dioxan, and an isomeride, prisms, m.p. $150-152^{\circ}$, or hexagonal leaflets, m.p. $150-152^{\circ}$ after transformation at 147° ; either isomeride is converted by PCl₅ in C_6H_6 at 50° followed by ozonolysis into androstan-3(β)-ol-17-one. A similar change cannot be effected starting from 21-benzylidenepregnane-3(a): $12(\beta)$ -diol-20-one diacetate, m.p. 119—121°, $[a]_b^{16}$ +200-5° ±2° in dioxan. H. W. #### V.—TERPENES AND TRITERPENOID SAPOGENINS. Oil of lavender. III. Monoterpene alcohols and acids present as esters in French oil of lavender. C. F. Seidel, H. Schinz, and P. H. Müller (Helv. Chim. Acta, 1944, 27, 663—674).—Fractions, b.p. >100°/11 mm., of French oil of lavender have been examined. The following alcohols have been isolated: l-linalool (I), b.p. 84— The following alcohols have been isolated: l-linalool (I), b.p. 84—85°/11 mm., $a_{\rm D}=16\cdot8^{\circ}$ (phenylurethane, m.p. $61-62^{\circ}$); geraniol (II), b.p. $115-116^{\circ}/14$ mm. (allophanate, m.p. $115-116^{\circ}$; 3:5-dinitrobenzoate, m.p. $60-61^{\circ}$); nerol (III), (diphenylurethane, m.p. $55-62^{\circ}$); d-citronellol (IV), b.p. $104-105^{\circ}/11$ mm. (allophanate, m.p. $105-106^{\circ}$, $[a]_{\rm D}+2\cdot50^{\circ}$ in MeOH); d-borneol (V), m.p. $203-204^{\circ}$; cumin alcohol (VI), b.p. $124^{\circ}/13$ mm. (allophanate, m.p. $184-185^{\circ}$; 3:5-dinitrobenzoate, m.p. 96°). (I), (II), and (III) are present in free and esterified forms, (V) and (VI) only as free alcohol, and (IV) only as ester. The identity of (VI) is confirmed by the prep. of it (and its derivatives) by reduction of cuminol with Al(OPr^{β})₃ and by its synthesis from $C_{a}H_{a}$ and Pr^{β} Br through p-C₆H₄PrβBr and p-C₆H₄Prβ-MgBr + CH₂O.
The higher fatty acids include d-CHMeEt-CO₂H, b.p. 75—77°/10 mm., a_D +11° (thiuronium salt, m.p. 147—148°, [a]_D +3·6° in MeOH), n-C₆H₁₁·CO₂H (thiuronium salt, m.p. 154—155°; anilide, m.p. 95—96°), an incompletely identified heptoic acid (thiuronium salt, m.p. 150—151°), tiglic acid, m.p. 63—64°, probably an unsaturated C₈ acid (thiuronium salt, m.p. 160—151°), a monocyclic, singly unsaturated acid, C₉H₁₄O₂, hydrogenated to a saturated acid, b.p. 130—135°/10 mm., a_D +3·4° (poorly cryst anilide; thiuronium salt, C₁,H₂₆O₂N₂S, m.p. 154—155°), B2OH, and an unidentified acid, C₁₀H₁₂O₂ (possibly a phenylbutyric acid) (thiuronium salt, m.p. 184—185°). Coumarin and umbelliferone Me ether are also present. Me ether are also present. New transition from camphor to homocamphor. H. Rupe and C. Frey (Helv. Chim. Acta, 1944, 27, 627—645; cf. A., 1940, II, 136).— The vigorous reaction between CH₂N₂ and camphorquinone gives a mixture from which the solid 4-methoxy-3: 4-dehydrohomocamphor (I), m.p. 54—55°, crystallises, leaving CH₂·CMe·CO the liquid variety (II). (I) and (II) give oximes, m.p. 195—196° and 185—185·5° respectively. Either icorporate is converted by Errin CHCl CMe₂CH CH2 CH-COMe Either isomeride is converted by Br in CHCl, CH₂·CH—C·OMe at room temp. into 3-bromo-4-methoxy-3:4-dehydrohomocamphor, m.p. 104—105°, and by an excess of Br into 3:3-dibromo-4-ketocamphor, C₈H₁₄COCBr₂ (III), m.p. 153—154°. (II) does not give homogeneous products with MgEtBr or MgPhBr. Hydrolysis of (I) or (II) leads to the strongly acidic 4-hydroxy-3: 4-dehydrohomocamphor (IV), m.p. strongly acidic 4-hydroxy-3: 4-dehydrohomocampnor (IV), m.p. 218—222°, and since the production of a new asymmetric C is excluded it appears that (I) and (II) are cis-trans isomerides, (I) being the trans variety. (IV) and Br in CHCl₃ yield 3-bromo-hydroxy-3: 4-dehydrohomocamphor, m.p. 189—191°, whilst (IV) and Br vapour yield (III). (IV) is transformed by p-NO₂·C₆H₄·COCl at 160° into the p-nitrobenzoate, m.p. 120—122°, and by boiling EtOH-H₂SO₄ into the Et ether, b.p. 142—146°/12 mm., m.p. 70—72°. With NHPh·NH₂ in EtOH (IV) gives a phenylhydrazone, m.p. 181° (colourless leaflets or red prisms into which the leaflets slowly pass), With NHPh·NH₂ in EtOH (IV) gives a phenylhydrazone, m.p. 181° (colourless leaflets or red prisms into which the leaflets slowly pass), but not a di-phenylhydrazone. 4-Ketohomocamphordioxime has m.p. 209° (decomp.). (IV) is converted by EtO·NO into 4-keto-3-oximinohomocamphor, m.p. 107—109°. PhCHO (1 mol.) reacts with (IV) (2 mols.) in C₅H₅N containing piperidine at 100° or in NaOMe-MeOH to give the substance, C₂₀H₃₅O₄, m.p. 146—149°. In C₅H₅N-piperidine at room temp. and then at 100°, p. NMe₂·C₆H₄·CHO and (IV) afford 4-keto-3-p-dimethylaminobenzylidenehomocamphor, m.p. 152·5—153°. Under similar conditions o-NO₂·C₆H₄·CHO gives 4-keto-3-o-nitrobenzylidenehomocamphor, m.p. 140—142° (decomp.), and a compound, C₂₉H₃₅O₆N. With PhN₅Cl (IV) yields 4-ketohomocamphor-3-phenylhydrazone, m.p. 117—118°. (IV) is comparatively easily oxidised by KMnO₄ to a-ketoepihomocamphoric acid (V), m.p. 125°, which passes when distilled in a vac. into CO and camphoric anhydride (VI). (V) gives a p-nitrobenzylthiuronium salt, m.p. 181—182°, and a dinitrophenylhydrazone, m.p. 192—193° (decomp.). (V) is reduced (Na-Hg) to a-hydroxy-epihomocamphorolactone, m.p. 202—204° (monohydrate, m.p. 171—173°, softens at 150°; p-nitrobenzylthiuronium salt, m.p. 171—172°). (VI) is obtained by oxidation of (IV) with CrO₃. (IV) is hydrogenated (Ni in dil. EtOH containing Na₂CO₃ at room temp.) to 3:4-dehydrohomocamphor (VII), m.p. 173—175° (oxime, m.p. 143·5—145°; dinitrophenylhydrazone, m.p. 181—184°). With Br in CHCl₂ (VII) gives 3:4-dibromohomocamphor, m.p. 103° (decomp.). Hydrogenation (Ni) of (VII) leads to homocamphor (VIII), m.p. 192—293°). Hydrogenation (H₂ at 60—70°)90 atm., Ni in aq. EtOH) of (IV) gives (VII) and a dimeric compound, m.p. 276—279°. (IV) is not hydrogenated in presence of Pd-C, with Na-Hg, or with Zn and AcOH; Clemmensen reduction affords non-homogeneous products (IV) is transformed by NH₂Me at 100° and later at 140—150° into 4-methylamino-3:4-dehydrohomocamphor [nitrosoamine, m.p. 1 (colourless leaflets or red prisms into which the leaflets slowly pass), 4-methylamino-3: 4-dehydrohomocamphor [nitrosoamine, m.p. 167° (decomp.); picrate, m.p. 178—180°], obtained similarly but less advantageously from (II). Vals. of [a]²⁰ in C₈H₆ for (I), (II), (IV), (VII), and (VIII) are recorded. Sesquiterpenes. LXIII. Alcohols, hydrocarbons, and oxides of the sesquiterpene series from French oil of lavender. C. F. Seidel, P. H. Müller, and H. Schinz (Helv. Chim. Acta, 1944, 27, 738—747). —The following have been isolated from a fraction (2.7 kg.), b.p. —The following have been isolated from a fraction (2.7 kg.), b.p. >100°/11 mm., from 19.25 kg. of French oil of lavender: a probably primary, possibly sec., probably tricyclic alcohol, $C_{15}H_{24}O$, b.p. 96°/0-07 mm., occurring in the free form and giving a poorly cryst. allophanate, m.p. 183—187°; an unesterified monocyclic primary alcohol, $C_{15}H_{28}O$, b.p. $107^\circ/0-07$ mm., $a_D = 25\cdot6^\circ$, hydrogenated (PtO₂ in EtOAc) to a H_4 -alcohol, b.p. $\sim 100^\circ/0-04$ mm., which is saturated towards $C(NO_2)_4$, oxidised to an aldehyde, b.p. $100-110^\circ/0-04$ mm. (non-cryst. semicarbazone and 2:4-dinitrophenylhydrazone), and gives a small amount of CH₂O when ozonised; a primary dicyclic alcohol (D, $C_{12}H_{24}O$, b.p. $100-105^\circ/0-04$ mm. a primary dicyclic alcohol (I), $C_{18}H_{24}O$, b.p. $100-105^{\circ}/0.04$ mm., $a_D - 66.96^{\circ}$ (allophanate, m.p. $188-189^{\circ}$), which is hydrogenated to a H_4 -compound (allophanate, m.p. $178-179^{\circ}$), oxidised to an aldehyde, b.p. 95—100°/0·05 mm.; a tricyclic diol, $C_{15}H_{28}O_{2}$, m.p. 150—151° (present as an ester), saturated towards $C(NO_{2})_{4}$ and Br-CS₂ and indifferent to PtO₂ in AcOH, found in the residues from (I); free cadinol (II), identified as cadinene dihydrochloride; free bisabolol containing 5% of (II); caryophyllene, identified as the dihydrochloride and as caryophyllene alcohol; cadinene (III), identified as the dihydrochloride; a dicyclic, cryst. oxide, $C_{15}H_{24}O$, m.p. 62—63°, $[a]_D - 67\cdot85^\circ$ in CHCl₃, hydrogenated (PtO₂ in EtOAc) to a saturated oxide, $C_{15}H_{28}O$, b.p. 140—141°/11 mm., and separated from the hydrocarbons by adsorption on SiO₂ gel; cedrene could not be identified. Dehydrogenation of hydrocarbon fractions containing (III) and (IV) by Se at 340° gives cadalene (V) and 1:6- $C_{10}H_8Me_2$ (VI). To check the possibility of the production of (VI) by elimination of Pr β from (V), isozingiberene [a hydrocarbon allied to (III)] is dehydrogenated at various temp. Some (VI) is invariably produced in addition to (V), the yield increasing with increasing temp. of dehydrogenation. At 380° the elimination of Pr β is complete so that (V) can no more be detected. Isolation of partheniol, parthenyl cinnamate, and other constituents from guayule resin. E. D. Walter (J. Amer. Chem. Soc., 1944, 66, 419—421).—An Et₂O extract of the exudate of Parthenium argentamm, Gray, in 80% alcohol deposits parthenyl cinnamate (~20%) [photomicrograph], m.p. 125—126°, also obtained in similar yield by keeping a COMe₂ extract of guayule rubber (cf. Alexander, A., 1911, i, 897). Hydrolysis of the ester yields cinnamic acid and partheniol, C₁₈H₂₈O, m.p. 131° (photomicrograph), which yields no 3:5-dinitrobenzoate or phenylurethane and in 90% HCO₂H at room temp. gives a formate, b.p. 215° (decomp.)/755 mm. Crystallooptical properties of the alcohol are reported. Air-dried foliage or the whole shrub yields to warm COMe₂ a resin including ~0.25% of a wax (C 80.18, H 13.25%), m.p. 76°, which is also obtained from rubber from the retted or unretted shrubs. The alcohol and acid are also obtained by hydrolysing COMe₂ extracts of the rubber from retted or whole shrubs or of the foliage, yields of the alcohol being ~2.5%, ~2%, and <1%, respectively. Steam-distilling a COMe₂ extract of the rubber gives an oil, b.p. 244—245°/750 mm., [a]²⁵ —17.92°; distilling the resin in vac. gives cinnamic acid and fractions varying from b.p. 70—78°/1 mm., [a]²² —6.84°. This hydrocarbon may have been formed by dehydration of partheniol. Triterpenes. LXXXVII. Transformation products of lanosterol. L. Ruzicka, E. Rey, and A. C. Muhr (Helv. Chim. Acta, 1944, 27, 472—489).—Lanosterol (I) contains an unsaturated side-chain with at least 4 C which terminates in the 'CMe₂ group. In structure of this side-chain and in behaviour of the part of the mol. which contains the non-reactive double linking. (I) is identical with elemadienolic acid. The unsaponifiable matter of the mol which contains the non-reactive double linking. (I) is identical with elemadienolic acid. The unsaponifiable matter of the wool fat of sheep is extracted with COMe, and the fatty alcohols are removed chromatographically. The mixture is freed from cholesterol by repeated treatment with boiling MeOH. Chromatographic methods of separating the "isocholesterol" (II) thus obtained are less satisfactory than the older acetate method, which leads to the following substances: lanosteryl acetate (III), m.p. 113-5—114-5°, [a]½+55-2°, hydrolysed to (I), m.p. 140—141°, [a]½+5-85-2° (benzoate, m.p. 191°; 3:5-dinitrobenzoate, m.p. 201°); dihydrolanosteryl acetate, (IV), m.p. 122—123°, [a]½+60-3°, hydrolysed to dihydrolanosteryl acetate, (IV), m.p. 126—157-5°, [a]½+66-2°; a]½+65-9°, whence γ-lanosterol (VI), m.p. 156—157-5°, [a]½+66-2°; a]½+85-9°, whence γ-lanosterol (VI), m.p. 156—157-5°, [a]½+66-2°; a]30-steryl acetate, m.p. 174—176°, [a]½+76-9°. The main product of the dehydrogenation of (II) by Se at 350° is 1:7:8-trimethylphenanthrene; a homologue which could not be obtained pure appears to be also present with a hydrocarbom, (?) C₂₀H₂₀, m.p.
237-5—238-5°, which appears to be a homologue of chrysene according to its absorption in the ultra-violet. Ozonisation of (III) and subsequent fission of the ozonide by boiling H₁O gives COMe₂ (identified as the ρ-nitrophenylhydrazone) and, after methylation, Me acetyltrinorlanosterate, m.p. 168—170°, hydrolysed to trinorlanosteric acid, m.p. 257-5-259-5° (Me ester, m.p. 152-5-154-5°). The readily hydrogenated double linking of (I) is theref $C_{30}H_{50}O_4$, m.p. $194\cdot5-196^\circ$, $[\alpha]_D^{20}+86\cdot7^\circ$ (non-cryst. Me_2 ester), which passes at $280-310^\circ/\text{vac}$. of H_2O pump into nordihydrolano-stenone, m.p. $113\cdot5-115^\circ$, $[\alpha]_D^{20}+124\cdot8^\circ$ [oxime, m.p. 202° (decomp.)]. Dihydrolanostenone, m.p. $118-119^\circ$, $[\alpha]_D^{18}+70\cdot2^\circ$, gives an oxime, m.p. $169-171^\circ$, and a semicarbazone, m.p. $236-238^\circ$ (vac.; decomp.), which is converted by NaOEt-EtOH at 180° into dihydrolanostene, $C_{30}H_{52}$, m.p. $72\cdot5-73\cdot5^\circ$, $[\alpha]_D^{16}+104^\circ$, which gives an intense yellow colour with $C(NO_2)_4$; it is transformed by HCl in CHCl₂ into iso-dihydrolanostene, m.p. $79\cdot5-80\cdot5^\circ$, $[\alpha]_D^{15}+36^\circ$. (VI) is dehydrogenated (Cu powder) to γ -lanostenone, m.p. $128-129^\circ$, $[\alpha]_D^{16}+45\cdot6^\circ$ (oxime, m.p. $188\cdot5-190\cdot5^\circ$), converted through the semicarbazone, m.p. $222-225^\circ$, into γ -lanostene, m.p. $93-94\cdot5^\circ$ $[\alpha]_D^{16}+75\cdot5^\circ$. M.p. are corr. and, unless otherwise stated, observed in open capillaries. $[\alpha]_D$ are in CHCl₃. Triterpene group. XI. Non-saponifiable matter of Lactucarium germanicum. J. C. E. Simpson (J.C.S., 1944, 283—286).—The non-saponifiable matter of L. germanicum is shown to be a complex mixture of triterpene alcohols; the substances, lactucerin, lactucon, α - and β -lactucerol, and α - and β -lactucol, isolated by previous workers were mixtures. Taraxasterol, β -amyrin, and a monohydric alcohol, germanicol, $C_{30}H_{50}O$, m.p. $176-177^\circ$, $[a]_{17}^{17}$ $+5\cdot8^\circ$ (acetate, m.p. $274-276^\circ$, $[a]_{19}^{20}$ $+18\cdot1^\circ$; benzoate, m.p. $269-270^\circ$, $[a]_{19}^{19}$ $+39\cdot0^\circ$), have been isolated. Rotations are in CHCl3. F. R. S. #### VI.—HETEROCYCLIC. Configuration of $a-\beta\zeta$ -epoxy- Δ^{γ} -heptene- γ -carboxylic [2:6-dimethyl-5:6-dihydro-1:2-pyran-3-carboxylic] acid. M. Delépine and G. Amiard (Compt. rend., 1942, 215, 309—312; cf. A., 1942, II, 248).—Decarboxylation of the $\beta\zeta$ -epoxyheptane- γ -carboxylic acids could not be effected by prolonged heating alone or with Raney Ni or in quinoline containing Cu chromite at 250°, the only observed result being the transformation of the isomeride, m.p. 92°, into that of m.p. 89°. dl-2:6-Dimethyl-5:6-dihydro-1:2-pyran-3-carboxylic acid is decarboxylated by Cu chromite-quinoline at 250° to dl-2:6-dimethyl-5:6-dihydro-1:2-pyran, b.p. 115—117°/atm. pressure. Similarly the d-acid (I) affords (\dotplus)-2:6-dimethyl-5:6-dihydro-1:2-pyran (II), $[a]_D + 49\cdot7^\circ$ or $+41\cdot1^\circ$ in Et₂O. The possibility that (I) is intermediately isomerised to 2:6-dimethyl-5:6-dihydro-1:4-pyran-3-carboxylic acid is excluded by the observation that this acid (l-form) is decarboxylated to (-)-2:6-dimethyl-5:6-dihydro-1:4-pyran (III), $[a]_D - 73\cdot5^\circ$. (III) (dl-form) is transformed by H₂O at 75° into heptan- β -ol- ζ -one (semicarbazone, m.p. 105°, or dihydrate, m.p. 62°), whilst the optically active material gives an active keto-alcohol, $[a]_D \sim -1\cdot6^\circ$ (anhyd. semicarbazone, m.p. 103°, $[a]_D -15^\circ$ in H₂O). Under similar conditions there is no reaction with (II). Hydrogenation (PtO₂ in Et₂O) of the unsaturated compounds leads to dl-, b.p. 114°/762 mm., and (+)-, b.p. 113·5—115°, $[a]_D + 0\cdot53^\circ$, -2:6-dimethyltetrahydropyran. Evidence of the reality of the optical activity is afforded. Synthetic experiments in the benzpyrone series. VIII. Transformations of 5-hydroxycoumarin derivatives. B. Krishnaswamy, K. R. Rao, and T. R. Seshadri (Proc. Indian Acad. Sci., 1944, 19, A, 5—13; cf. A., 1942, II, 170).—5-Hydroxy-4:7-dimethylcoumarin (I), obtained from orcinol and CH₂Ac-CO₂Et in conc. H₂SO₄ at room temp. (overnight) or 100° (1 hr.) or in HCl-EtOH, is converted by CH₂:CH-CH₂Br and K₂CO₃ in boiling COMe, into the allyle ether, m.p. 127—128°, which at 160—165° gives 5-hydroxy-4:7-dimethyl-6-allylcoumarin (II), m.p. 178—179°, at 195—200° gives 4:7-dimethyl-6-allylcoumarin (II), m.p. 18—179°, at 195—20° gives 4:7-dimethyl-6-allylcoumarin, m.p. 239—240°. The structure of (II) is proved by conversion into (III) at 215—220°. In MeOH, (II) gives a HgCl₂ additive compound, m.p. 228—229°, converted by aq. KI-I at 100° into 4:7-dimethyl-5'-iodomethyl-, m.p. 166—167°, and thence (Na-EtOH) 4:7:5'-trimethyl-\Delta'-dihydrofurano-2':3'-5:6-coumarin, m.p. 205—206°. The difference of this compound from (III) proves the ring-structure of (III). 7-Allyloxy-5-methylcoumarin (prep. as above), m.p. 78—79°, at 200—205° or, less well, 230—240° gives 7-hydroxy-5-methyl-8-allylcoumarin, m.p. 174—175°. The acetate, m.p. 199—200° (lit. 195°), of (I) with AlCl₃ at 130—170° gives 5-hydroxy-6-acetyl-4:7-dimethyl-coumarin, m.p. 177—178°. The result of Fries rearrangement in the coumarin series depends on the nature and position of substituents and on the experimental conditions. R. S. C. Azo-dye formation by 5-hydroxycoumarins. S. Rangaswami and K. R. Rao (*Proc. Indian Acad. Sci.*, 1944, 19, A, 14—16).—With 1 mol. of $p\text{-NO}_2\text{·C}_0H_4\text{·N}_2\text{Cl}$ at 0° 5-hydroxy-7-methyl- or -4: 7-dimethyl-coumarin in NH₃-EtOH-H₂O or 7-hydroxy-5-methylcoumarin in aq. Na₂CO₃ gives monoazo-dyes, but with >2 mols. gives mixed mono- and bis-azo-dyes. R. S. C. Anthochlor pigments. V. Pigments of Coreopsis grandiflora, Nutt. II. T. A. Geissman and C. D. Heaton (J. Amer. Chem. Soc., 1944, 66, 486—487; cf. A., 1943, II, 274).—5:6-Dimethoxy-2-coumaranone [prep. from 3:4:5:1-(OH)₂C₆H₂·CO·CH₂Cl by Me₂SO₄- Na₂CO₃-H₂O), m.p. 122—123°, and 3:4:1-(OMe)₂C₆H₃·CHO (I) in warm NaOH–EtOH–H₂O give 5:6:3':4'-tetramethoxybenzylidene-2-coumaranone (84%), m.p. 156—157°, identical with leptosidin Me₃ ether. 3:4:5:1-OH·C₆H₂(OMe)₂·COMe and (I) in warm NaOH–EtOH–H₂O give 2:3:4-OH·C₆H₂(OMe)₂·CH:CH·C₆H₃(OMe)₃-3:4, m.p. 121—122° (lit. 119°), cyclised in boiling HCl–EtOH–H₂O to 7:8:3':4'-tetramethoxyflavanone, m.p. 143·5—144° (and a small amount of another substance), identical with the Me₂ ether of the naturally occurring flavanone. R. S. C. Synthesis of hibiscetin. P. R. Rao, P. S. Rao, and T. R. Seshadri (Proc. Indian Acad. Sci., 1944, 19, A, 88—92).—2:6:1:4-(CH₂Ph·O)₂C₆H₂(OMe)₂ with OMe·CH₂·CN, ZnCl₂, and HCl in Et₂O and then H₂O at 100° gives 2:6-dihydroxy-3:6:ω-trimethoxyacetophenone (I), m.p. 150—151°, by way of its semi-solid ketimine hydrochloride (formed with a by-product, m.p. 110—112°). The ZnCl₂ is responsible for the hydrolysis, since this does not occur in absence of ZnCl₂. 3:4:5:1-(OMe)₃C₆H₂·CO₂Na, [3:4:5:1-(OMe)₃C₆H₂·CO]₂O, and (I) at 175—180°/vac. give a moderate yield of 7-hydroxy-3:5:8:3':4':5'-hexamethoxyflavone, m.p. 238—240°, whence Me₂SO₄-NaOH yields hibiscetin Me₂ ether, hydrolysed by boiling HI-Ac₂O to hibiscetin (A., 1942, II, 327). R. S. C. Constitution of belmacamgenin and belmacamdin. S. Wang and M. Hu (J.C.S., 1944, 307).—From the powdered root of Belmacamda, there has been isolated belmacamdin (I), m.p. $>300^{\circ}$, which is hydrolysed (HCl-EtOH) to belmacamgenin (II), m.p. 227° , and glucose. (II) is probably a pentahydroxymonomethoxyisoflavone and it forms an Ac derivative, m.p. $184-185^{\circ}$, and Me_2 ether, m.p. 162° . Methylation of (I) followed by hydrolysis (HCl-EtOH) yields a compound, m.p. 165° , identical with 7: 3'-dimethylirigenin Oxidation of catechin to cyanidin: applications of the reaction. J. Lavollay and M. Vignau (Compt. rend., 1943, 217, 86—88).—Oxidation of catechin (I) to cyanidin is effected, without protecting the OH groups (cf. Appel et al., A., 1935, 757), by adding Fe₂(SO₄)₃, K₃Fe(CN)₈, CuO, MnO₂, KClO₃, NaBO₃, or K₂S₂O₈, in conc. H₂SO₄ to (I) in COMe₂; the diluted mixture is extracted with iso-C₅H₁₁OH. Possible applications of the reaction are discussed. A. T. P. Auroxanthin. II. P. Karrer and J. Rutschmann (Helv. Chim. Acta, 1944, 27, 320).—Auroxanthin, m.p. 203°, obtained in very small amount from the blossoms of the yellow pansy, is $C_{40}H_{56}O_4$. Micro-hydrogenation indicates the presence of 9 double linkings. Acetylation (Ac₂O in C_5H_5N) appears to cause profound changes. Dioxans.—See B., 1944, II, 157. Reactions of anthocyanins with molybdate. H. Blaschko (Proc. Biochem. Soc., 1944, 38, xxxii—xxxiii).—Colour develops only on addition of NH₄ molybdate to solutions in 1% HCl of anthocyanins that contain free vicinal OH groups, e.g., cyanidin and delphinidin. Thiochroman derivatives with tocopherol structure. P. Karrer and P. Leiser (Helv. Chim. Acta, 1944, 27, 678—684).—m-2-Xylenol is converted by H₂SO₄,H₂O at 100—110° into 1:2:6:4-OH·C₆H₂Me₂·SO₂Na, which with ClCO₂Et and NaOH affords Na O-carbethoxy-2:6-dimethylphenol-4-sulphonate. The corresponding sulphonyl chloride, m.p. 127°, is reduced by Zn dust and HCl in EtOH to 4-thiol-2:6-dimethylphenol (I), m.p. 86°. This with phytol in boiling HCO₂H yields 6-hydroxy-5:7-dimethyl-2-δθμ-trimethyl-tridecylthiochroman (5:7-dimethylthiotocol), isolated as the acetate (II), b.p. 190—205°/0·001 mm. Condensation of (I) with CMe₂·CH·CH₂·OH [prep. from CMe₃·CH·CHO and Al(OPrβ)₃ described] gives 6-hydroxy-2:2:5:7-tetramethylthiochroman (III), b.p. 120—125°/0·002 mm. Trimethyl-p-benzoquinonemonoxime, m.p. 182°, is reduced (Na₂S₂O₄ in hot EtOH) to 4:2:3:6:1-NH₂·C₆+Me₃·OH, which affords 2:3:6:1-C₆+H₂Me₃·OH when
diazotised and heated with Zn dust. This yields 1:2:3:6:4-OH·C₆+Me₃·SO₃Na, converted by ClCO₂Et and NaOH into Na O-carbethoxy-2:3:6-trimethylphenol-4-sulphonate (+1H₂O). The corresponding sulphonyl chloride gives 4-thiol-2:3:6-trimethylphenol, m.p. 87° (Pb salt), which yields 6-hydroxy-5:7:8-trimethyl-2-δθμ-trimethyltridecylthiochroman (IV), b.p. 215—225° (bath)/0·001 mm. (II), (III), and (IV) like the tocopherols have marked reducing power and are oxidised by FeCl₃, AuCl₃, or AgNO₃. With FeCl₃ in presence of 2:2'-dipyridyl they appear to require 3 equivs. of oxidising agent probably on account of the conversion of thiol into disulphide. Oxidation with AuCl₃ is apparently not homogeneous. (II) is without vitamin-E action and is not antagonistic to a-tocopherol acetate. Pyrolysis of xanthopinacol and related compounds. A. Schönberg and A. Mustafa (J.C.S., 1944, 305-306).—When heated in CO_2 , xanthhydrol gives H_2O , xanthen (I), and xanthone (II); dixanthhydryl ether forms (I) and (II); xanthopinacol affords H_2O , (I) and (II), and thioxanthhydrol yields thioxanthen, thioxanthone, and dithiodixanthylen. Synthesis of compounds of the indole and trimethylenepyrrole type. Buu-Hoï and P. Cagniant (Compt. rend., 1943, 217, 26—28).— ω-Δ²-cycloPentenyl-ωω-dimethylacetophenone, b.p. $165-168^\circ/12$ mm., or -ω-methyl-ω-ethyl-, b.p. $180-182^\circ/10$ mm., or -ω-methyl-ω-benzyl-acetophenone, b.p. $232-235^\circ/10$ mm. (from ω-Δ²-cyclopentenyl-ω-methylacetophenone, b.p. $158-160^\circ/10$ mm., and BzCl), is converted by NaNH₂ in boiling PhMe into 4:5-trimethylene-3:3-dimethyl-, m.p. $89-90^\circ$, b.p. $158-162^\circ/13$ mm., -3-methyl-3-ethyl-, b.p. $180-182^\circ/12$ mm., and -3-benzyl-3-methyl-2-pyrrolidone, b.p. $232-236^\circ/9$ mm., respectively. With the last-named compound, some β-Δ²-cyclopentenyl-γ-phenyl-propane, b.p. $137-140^\circ/10$ mm., is isolable. ω-Δ²-cyclopentenyl-ωω-dimethylacetophenone, b.p. $182-185^\circ/14$ mm. gives 2-keto-3:3-dimethyloctahydroindole, m.p. $127\cdot5-128^\circ$. 4-cycloPentenylphenylacetonitrile, b.p. $165-168^\circ/10$ mm., obtained from 4-chlorocyclopentane and 4-chloro Synthetic analgesics. I. Synthesis of basic benzofuran derivatives and certain 4-phenylpiperidine compounds. F. Bergel, J. W. Haworth, A. L. Morrison, and H. Rinderknecht. II. New synthesis of pethidine and similar compounds. F. Bergel, A. L. Morrison, and H. Rinderknecht. III. Action of hydrogen halides on ethers of aa-bis-(β'-hydroxyethyl)phenylacetonitrile. F. Bergel, A. L. Morrison, and H. Rinderknecht. IV. Synthesis of 3-substituted piperidines and pyrrolidines. F. Bergel, N. C. Hindley, A. L. Morrison, and H. Rinderknecht (J.C.S., 1944, 261—265, 265—267, 267—269, 269—272).—I. Acetylpæonol, paraformaldehyde (I), and NHMe, HCl 269—272).—I. Acetylpæonol, paraformaldehyde (I), and NHMe₂,HCl in EtOH give β-dimethylamino-2-acetoxy-4-methoxypropiophenone hydrochloride (II), m.p. 175°, hydrolysed (HCl) to the -2-OH-compound (III), m.p. 166—167°. Similarly pæonol with C₅H₁₁N,HCl and (I) affords β-piperidino-2-hydroxy-4-methoxypropiophenone hydrochloride, m.p. 188—189°. CH₂BzBr and (III) with KOH do not form a coumarone but yield CH₂Bz·NMe₂ with some 2-hydroxy-4-methoxyphenyl vinyl ketone, isolated as the 2:4-dimitrophenylhydrazone, m.p. 244—245°. Et 5-methoxy-2-acetylphenoxyacetate, (I), and NHMe₂,HCl give Et 2-β-dimethylaminopropionyl-5-methoxyphenoxyacetate (IV), m.p. 149° (-piperidino-compound, m.p. 134°), and the corresponding acid, m.p. 197° (-piperidino-compound, m.p. 183—184°), is similarly prepared. Ac₂O-NaOAc with (IV) causes disruption of the mol. Addition of Br in AcOH to (II) leads to a-bromo-β-dimethylamino-2-acetoxy-4-methoxypropiophenone hydro-bromide, m.p. 161°, of which the -2-OH-compound, m.p. 179°, with K₂CO₃-COMe₂ affords the unstable 2-dimethylaminomethyl-6-methox a-bomo-β-amethylamino-2-action y-4-methoxypoprophenome hydroschoride, m.p. 161°, of which the 2-0H-compound, m.p. 179°, with K₂CO₃-COMe₂ affords the unstable 2-dimethylaminomethyl-6-methoxycoumaranone hydrochloride, m.p. 144—145° (picrate, m.p. 123—124°; polymeric substance, C₁₂H₁₄O₃NCI). o-Vanillin with CH₂AcCl and KOH-EtOH gives 7-methoxy-2-acetylcoumarone, m.p. 92°, which with (I) and C₃H₁₁N, HCl affords 2-β-piperidinopropionyl-7-methoxy-coumarone hydrochloride, m.p. 170—172° (picrate, m.p. 158—150°). The azlactone, m.p. 167—169°, of 2-benzyloxybenzaldchyde with NaOH in N₂ yields 2-benzyloxyphenyl-pyruvic acid, m.p. 119—120° converted through the oxime into the -acetonitrile (V), m.p. 75—77°. o-CN-C₄H₄-CH₂-CN is similarly obtained from the azlactone, m.p. 154—156°, of 2-OMe-C₈H₄-CHO, and 2:3-dimethoxyphenylacetonitrile, b.p. 158—160° |12 mm., from the azlactone, m.p. 167—168°, of 2:3-(OMe)₂C₈H₃-CHO. (Cl·[CH₂]₂)₂NH, NaNH₂, and (V) in PhMe give 4-(2'-benzyloxyphenyl)-1-methylpiperidine-4-nitrile hydrochloride, m.p. 220—221°, which with HCl (sealed tube) affords the hydrochloride of 4-(2'-hydroxyphenyl)-1-methylpiperidine-4-carboxylic acid lactone (+0·5H₂O), m.p. 260—263°. The corresponding acetonitriles yield respectively 4-(2':3'-dimethoxyphenyl)-1-methylpiperidine-4-nitrile, m.p. 107—110°, and 4-(2'-hydroxy-3'-methoxyphenyl)-1-methylpiperidine-4-nitrile, m.p. 97—99°, which with MgMeI affords 4-acetyl-4-(2'-methoxyphenyl)-1-methylpiperidine with Na-EtOH gives 4-phenyl-1-methyl-1-methylpiperidine (Picrate, m.p. 139—240°), identical with that obtained by decarboxylation of the corresponding 4-carboxylic acid. 4-(2'-Hydroxyphenyl)-1-methylpiperidine-4-nitrile and Na-EtOH form 4-phenyl-1-methylpiperidine (picrate, m.p. 239—240°), identical with that obtained by decarboxylation of the corresponding 4-carboxylic acid. 4-(2'-Hydroxyphenyl)-1-methylpiperidine-4-nitrile is reduced (H₂-PdCl₂) to bis-(4-phenyl-1-methylpiperidine-4-nitrile is reduced (H₂-PdCl₂) to bi K2CO3-COMe2 affords the unstable 2-dimethylaminomethyl-6-meth- 11. CH₂Cl·OMe with (CH₂)₂O and HgCl₂ give Me β-chloroethyl formal, b.p. 134—139°; β-chloroethyl Et formal, b.p. 62—65°/50 mm., is similarly prepared. CH₂Ph·CN with NaNH₂ and Cl·[CH₂]₂·O·CH.CH₂ affords aa-bis-(β'-vinyloxyethyl) phenylacetonitrile (VII), b.p. 125—135°/0·15 mm., hydrolysed (HCl) to aa-bis-(β'-hydroxyethyl) phenylacetonitrile, m.p. 96—98° [also obtained by mild acid hydrolysis of aa-bis-(β'-methoxymethoxyethyl) phenylacetonitrile, b.p. 147—155°/0·05—0·1 mm.], which with SOCl₂ and NPhEt₂ yields the aa-bis-(β'-chloroethyl) compound, m.p. 52°. This nitrile condenses with NH₂Me in EtOH (scaled tube) to 4-phenyl-1-methyl-piperidine-4-nitrile, which is identical with that obtained by Eisleb's method (cf. *Ber.*, 1942, 75, 1435), and is hydrolysed to the Eisleb's method (cf. Ber., 1942, 75, 1435), and is hydrolysed to the 4-carboxylic acid. From the acid, the hydrochlorides of the Pr^a, m.p. 181—183°, Prβ, m.p. 192—195°, OH·[CH₂]₂, m.p. 195—200°, allyl, m.p. 155—158°, and cyclohexyl esters, m.p. 234—236°, are prepared; the Et ester is pethidine. A similar series of reactions leads to aa-bis-(β'-vinyloxyethyl)-, b.p. 135—140°/0·1 mm., and -(β'-hydroxyethyl)-o-tolylacetonitrite, m.p. 95—100°, 4-(o-tolyl)-1-methylpiperidine-4-nitrile [hydrochloride, m.p. 279—280°; picrate, m.p. 265° (decomp.)], and Et 4-(o-tolyl)-1-methylpiperidine-4-carboxylate, b.p. 175°/11 mm. (hydroidide, m.p. 175—176°). III. CH₂Ph·CN, NaNH₂, and Br·[CH₂]₂·OEt in PhMe give aa-bis-(β'-ethoxyethyl)phenylacetonitrile, b.p. 120—123°/0·05 mm., which with aq. HBr (sealed tube) forms a-phenyl-a-(β'-bromoethyl)-butyrolactone, b.p. 140—142°/0·2 mm. (Cl-compound, an oil), converted by piperidine into the -piperidino-compound, b.p. 154°/0·1 mm. weight of the piperidine into the piperidino-compound, an oil), converted by piperidine into the piperidino-compound, b.p. 154°/0·1 mm. (hydrochloride, m.p. 217—217°). Aq. HCl and (VII) afford α-phenylα-(β'-hydroxyethyl) butyrolactone, b.p. 172°/0·1 mm. 4-Phenylpentamethylene oxide-4-nitrile and aq. HBr (sealed tube) yield phenylα-α-bis-(β'-bromoethyl) acetic acid, m.p. 118° [also obtained from (VII) and HBr], which with EtOH-HCl followed by NH₂Me gives weightiding. pethidine. and HBr], which with EtOH-HCl followed by NH₂Me gives pethidine. IV. CH₂Ph·NHMe and Br·[CH₂]₃·Cl give benzylmethyl-γ-chloropropylamine (VIII), b.p. 137—138°/16 mm. CH₂Ph·CN and bromoactal with NaNH₂ in Et₂O afford β-cyano-β-phenylpropaldehyde diacetal, b.p. 120—121°/0·2 mm., which is hydrolysed (HCl in N₂) to β-cyano-β-phenylpropaldehyde, b.p. 109—111°/0·1 mm. CH₂Ph·CN and benzylmethyl-β-chloroethylamine (IX) with NaNH₂ yield γ-benzylmethylamino-α-phenylbutyronitrile, b.p. 158°/0·1 mm. (reinecket) (III) (Philippy) (Philipp Tetra- and hexa-hydronicotinic acid as growth-promoting factors for Staphylococcus aureas and Bacillus proteus vulgaris. H. von Euler, B. Högberg, P. Karrer, H. Salomon, and H. Ruckstuhl (Helv. Chim. Acta, 1944, 27, 382—390).—The isolation of 1:2:5:6-tetrahydronicotinic acid (I), its 1-Me derivative, and arecoline from technical residues is described. Me 1:2:5:6-tetrahydronicotinate hydrochloride is converted by NaNO2 and HCl into the NO-derivative of the ester, transformed by liquid NH3 into 1-nitroso-4-amino-piperidine-3-carboxylamide, m.p. 172° (hydrochloride, m.p. 227—228°). (I), CICO2Et, and Na2CO3 give 1-carbethoxy-1:2:5:6-tetrahydronicotinic acid, m.p. 78°, converted by successive treatments with SOCl2 and NH3-Et2O into 1-carbethoxy-1:2:5:6-tetrahydronicotinamide, m.p. 136—137°, from which CO2Et could not be removed without involving 'CO·NH2. (See also A., 1944, III, 616.) Tetra- and hexa-hydronicotinic acid as growth-promoting factors Heterocyclic ketones. IV. Properties of aa-dihalogeno-derivatives of heterocyclic nitrogen compounds. E. I. Elkina and M. M. Schemjakin (J. Gen. Chem. Russ., 1943, 13, 301—303).—2:2-Dichloro-N-methyldihydropyridine (I) and the corresponding quinoline derivative react immediately with H₂O to form N-methyl-2-pyridone and N-methylcarbostyril respectively. (I) is converted by
liquid NH₂ into 2-imino-N-methyldihydropyridine, and by NH₂Ph into the corresponding anilo-derivative. Oxidation of nicotine to nicotinic acid. N. A. Vasiunina, A. A. Beer, and N. A. Preobrashenski (J. Appl. Chem. Russ., 1943, 16, 206—210).—5 g. of nicotine (I) + 25 ml. of 27% HNO₃ are added dropwise to 180 ml. of 27% HNO₃ at 98°, and the mixture is kept at 98° for 3 hr. (yield 70%). 5 g. of (I) + 20 ml. of H₂O are slowly introduced into KMnO₄ 20 g. in H₂O 80 g. at 70°, KMnO₄ crystals are slowly added to the solution, and the mixture is kept for 1 hr. at 80—85° (yield 80%). 5 g. of (I) + 50 ml. of 35% H₂SO₄ are added within 1 hr. to 41 g. of MnO(OH)₂ + 100 ml. of 35% H₂SO₄ at 100—105° (yield 75%). J. J. B. Isolation of the nicotinamide formed from asparagine and glutamic acid. M. R. Bovarnick (J. Biol. Chem., 1944, 153, 1—3; cf. A., 1944, II, 116).—Pure nicotinamide has been isolated by extraction of the mixture formed by heating solutions of asparagine and glutamic acid with Et₂O, followed by repeated recrystallisation of the extract from C6H6. Nicotinamides.-See B., 1944, II, 157. Sulphanilamide derivatives. F. S. Spring and E. P. H. Young (J.C.S., 1944, 248—249).—Sulphanilamide derivatives with alkyl attached to N¹ are prepared, to test their tuberculocidal properties, but they are inactive. Adipamide and Br-33% aq. NaOH at 100° (bath), followed by cold p-NO₂·C₆H₄·SO₂Cl (I) or p-NHAc·C₆H₄·SO₂Cl (II) in Et₂O, give NN'-di-(p-nitrobenzenesulphonyl)- (III), m.p. 201°, or NN'-di(acetylsulphanilyl)-tetramethylenediamine (IV), m.p. 233° (sinters at 218°) respectively. (III) is converted by Sp. in boiling (II) in Et₂O, give NN'-di-(p-nitrobenzenesulphonyl)- (III), m.p. 201° or NN'-di(acetylsulphanilyl)-tetramethylenediamine (IV), m.p. 233° (sinters at 218°), respectively. (III) is converted by Sn in boiling HCl-EtOH into NN'-disulphanilylletramethylenediamine, m.p. 205° (hydrochloride, m.p. 241°), also obtained from (IV) and boiling HCl-EtOH. n-C₁H₃₅'NH₂ and (I) in Et₂O yield heptadecyl-p-nitrobenzenesulphonamide, m.p. 90·5°, converted by Sn-HCl into N¹-n-heptadecylsulphanilamide, m.p. 118°, also prepared by hydrolysis of its N⁴-Ac derivative, m.p. 128°, obtained from (II) in Et₂O. 2-n-Propylaminopyridine and (II) in dry C₅H₅N give N¹-2-pyridyl-N¹-n-propylsulphanilamide, m.p. 108°. 2-Aminopyridine (V) and NaNH₂-C₅H₅N, followed by n-C₅H₁₁Br (2 days at room temp. then reflux for 3 hr.), yield 2-n-amylaminopyridine, m.p. 43°, b.p. 130-135°/12 mm. (picrate, m.p. 121°), converted by (II) in C₅H₅N into the N⁴-Ac derivative, m.p. 83°, hydrolysed to N¹-2-pyridyl-N¹-n-amylsulphanilamide, m.p. 74-75°. 2-Cetylaminopyridine, b.p. 210-220°/12 mm., m.p. 67° (wax) (picrate, m.p. 84°); gives, through the N⁴-Ac derivative, m.p. 88°, and aq. NaOH-EtOH, N¹-2-pyridyl-N¹-cetylsulphanilamide, m.p. 77°. 2-Octadecylaminopyridine, b.p. 180-185°/0-01 mm., m.p. 66-67° (waxy), affords N¹-2-pyridyl-N¹-cotadecylsulphanilamide, m.p. 70-71°. (V), NaNH₂, and xylene at 100° (bath), then geranyl-N¹-2-pyridylsulphanilamide, m.p. 75-76°. n-C₁₈H₃,Cl, 6-amino-2-methylpyridine, and NaNH₂ (2 days) yield 2-octadecylamino-6-methylpyridine, b.p. 205°/0-25 mm., m.p. 46° (bicrate, m.p. 101°), which gives, through the N⁴-Ac derivative. 2-octadecylamino-6-methylpyridine, b.p. 205°/0·25 mm., m.p. 46° (picrate, m.p. 101°), which gives, through the N¹-Ac derivative, m.p. 84°, N¹-2-(6-methylpyridyl)-N²-octadecylsulphanilamide, m.p. 77—78°. A. T. P. Synthesis of dl-tryptophan. H. R. Snyder and C. W. Smith (J. Amer. Chem. Soc., 1944, 66, 350—351).—CH₂(CO₂Et)₂ with, successively, NaNO₂-H₂O-AcOH at 20°, H₂-Pd-C-EtOH at 1500 lb., and Ac₂O-EtOH gives NHAC-CH(CO₂Et)₂, the Na derivative of which the treat state is 2 independent. and Ac₂O-ELOH gives NAAC-CH(C₂Et)₂, the Na derivative of which, when treated with 3-indolylmethyltrimethylammonium iodide (I) (A., 1944, II, 234) in xylene-dioxan at 92°, raised gradually to 125°, gives Et a-acetamido-a-carbethoxy-β-3-indolylpropionate, m.p. 158°. Hot aq. NaOH then gives the corresponding NHAc-acid, m.p. 144·5° (decomp.), which in boiling H₂O gives acetyl-dl-tryptophan and thence, by hot aq. acid, dl-tryptophan, the yield being 45° calc on the indole used to prepare (I) ~45% calc. on the indole used to prepare (I). Synthesis of tryptophan. N. F. Albertson, S. Archer, and C. M. Suter (J. Amer. Chem. Soc., 1944, 66, 500).—3-Indolyldimethylethylammonium iodide with CRNa(CO₂Et)₂ (R = H, NHAc, or NHBz) (cf. Snyder, A., 1944, II, 234) gives Et α-carbethoxy-β-3-indolylpropionate, α-acet-, m.p. 157°, and α-benz-amido-α-carbethoxy-β-3-indolylpropionate, m.p. 142°, and thence the derived dicarboxylic acids, m.p. 187—189°, 135—137° (decomp.), and 85—90° (decomp.), respectively, and by decarboxylation (180—200°) thereof β-3-indolylpropionic acid, m.p. 128—130°, and its α-NHAc- and α-NHBz-derivatives, whence tryntophan is obtained in yields up to 359′. derivatives, whence tryptophan is obtained in yields up to 35% calc. on the indole used. R. S. C. Isatin and ammonia. III. Enlargement of the isatin into the quinazoline ring. G. Jacini (Gazzetta, 1943, 73, 85—88; cf. A., 1944, II, 234).—Isatin-3-anil and similar compounds in 10% NaOH with 20% aq. NH₃ and H₂O₂ give 3-phenyl-, m.p. 276°, 3-o-tolyl-, m.p. 246°, 3-p-aminophenyl-, m.p. 311°, 3-p-anisyl-, m.p. 229°, and 3-a-naphthyl-2: 4-diketotetrahydroquinazoline, m.p. 268°. Isatin-3-p-anisylimide has m.p. 229°. Condensations with Michler's ketone (formation of dyes). H. L. Kehlstadt (Helv. Chim. Acta, 1944, 27, 685—701).—The condensation Kenistadt (Heiv. Chim. Acta, 1944, 27, 686—701).—The condensation of $CO(C_6H_4\cdot NMe_2-p)_2$ (I) with 2-methylquinoline (II) and analogous substances and the reactions of the product with organo-metallic compounds are described. (I), (II), and $AlCl_2$ at 170° yield aa-di-pp'-tetramethyldiaminodiphenyl- β -2-quinolylethylene (III), m.p. 178— 179° ; condensation with $ZnCl_2$ is less satisfactory. The presence of unchanged (I) in (III) can be detected by the formation of an immediate blue colour when a solution of (I) is reduced by Na-Hg and then acidified (AcOH). (III) is yellow but becomes orange when exposed to sunlight. (III) gives strongly coloured salts involving the ring N and nearly or completely colourless salts involving the N in NMe₂. There are obtained the yellowish triperinvolving the N in NMe₂. There are obtained the yellowish triper-chlorate, decomp. 238°, red monoperchlorate, m.p. 238°, dark monoperchlorate, m.p. 200° (decomp.), styphnate, almost colourless, very unstable hydrochloride, and a dark red, non-hygroscopic, cryst. hydrochloride, m.p. 210°, methiodide, decomp. 170°, ferrocyanide, and an adduct with Me₂SO₄. (III) dyes mordanted cotton in brownish-red shades. (I), (II), and NaNH₂ at 140—150° give 2-quinolylmethyldi-pp-tetramethyldiaminodiphenylcarbinol (IV), m.p. 187°, becomes yellow. (IV) is not readily converted into a dye. It is stable towards cold mineral acids, gives a colourless, cryst. perchlorate, m.p. (indef.) 180°, and can be cryst. Short warming with org. acids, preferably HCO₂H, leads to pure (III). MgPhBr could not be added to (III). LiPh and highly purified (III) yield a product which, after decomp. with dil. acid, gives a green solution resembling malachite-green (V) and darkening when heated. It appears definite that the addition of the third Ph leads to a system in which the tenaciousness of the Ph residues is inadequate so that appreciable if not considerable hydrolysis to $OH \cdot CPh(C_8H_4 \cdot NMe_2)_2$ occurs. Attempts to determine the (V) which is formed lead to the disclosure that union with LiPh is never complete. (V) cannot be separated by crystallisation and iodometric, titanometric, coloribe separated by crystansation and fodometric, ittailometric, colorimetric, and chromatographic assays are unsatisfactory, but (V) can be determined by treatment with NH₃ in CHCl₃, alcoholysis of the product, and titration of the NH₃ produced. An optical method is also described. (III) is reduced (H₂ at 70—80°/120 atm.; Ni in EtOAc-EtOH-H₂O) to ac-di-pp'-tetramethyldiaminodiphenyl-β-1:2:3:4-tetrahydro-2-quinolylethane (VI), m.p. 106—107°, while colorides salts (very hygroscopic hydrochloxide m.p. 100°) gives colourless salts (very hygroscopic hydrochloride, m.p. 190°) and with CH₂Br·CO₂Et a material, decomp. 100—110°. As sec. base it affords a Bz derivative, m.p. 153—154°, and a NO-amine, but it could not be acetylated. The amorphous, hygroscopic methiodide, m.p. 154—156°, and yellow picrate, softens 148—158°, are described. (VI) is readily oxidised by PbO₂ or chloranil but the dark green-blue product is not a dye. (I) and CH-2Ph-MgCl in the dark green-blue product is not a dye. (I) and CH₂Ph·MgCl in C_eH_e afford a-phenyl-ββ-di-pp'-tetramethyldiaminodiphenylethylene (VII), m.p. 131°, which gives a dark blue-green solution in AcOH becoming colourless on addition of mineral acid. (VII) yields a colourless hydrochloride, m.p. 190—192°, a yellow picrate, m.p. 182—190° (decomp.), and a yellow methiodide, m.p. 195°. It is reduced (H₂ at 80—90°/115 atm.; Ni in EtOAc-EtOH-H₂O) but not by Na and EtOH to a-phenyl-ββ-di-pp'-tetramethyldiaminodiphenylethane (VIII), m.p. 131·5—132·5° (colourless perchlorate, m.p. 207—211° (decomp.); yellow picrate, m.p. 186°; pale yellow methiodide, m.p. 212°), also obtained in very poor yield from CH₂Ph·CHO, NPhMe₂, and ZnCl₂ in boiling PhMe. (VIII) gives a green-blue or iodide, m.p. 212°], also obtained in very poor yield from CH₂Ph·CHO, NPhMe₂, and ZnCl₂ in boiling PhMe. (VIII) gives a green-blue or violet colour when oxidised by PbO₂ or chloranil respectively. OH·CH(C₆H₄·NMe₂)₂ (IX) and (II) in boiling AcOH afford αα-di-pp'-tetramethyldiaminodiphenyl-β-2-quinolylethane, m.p. 130—132° (colourless triperchlorate; brown-red formate, m.p. 57—58°; colourless methiodide, m.p. 153—155°), oxidised by PbO₂ to a dark red solution; it is hydrogenated to (VI). (IX) and
phenylmethyl-pyrazolone in AcOH at 100° afford tetramethyldiaminodiphenyl-phenylmethylpyrazolylmethane, m.p. 185—195° (much decomp.), oxidised to a blue solution by PbO₂ and to a violet-red solution by chloranil. chloranil. Derivatives of 10-chlorobenz(g) quinoline [8-chloro-6:7-benz-quinoline]. F. H. Gerhardt and C. S. Hamilton (f. Amer. Chem. Soc., 1944, 66, 479—480).—β-C₁₀H₇·NHAc and Cl₂ give 1:2-C₁₀H₆Cl·NHAc (I), which with HNO₃ (d 1·49) at -10° gives 1-chloro-5- (II), m.p. 183—185°, and -8-nitro-2-acetnaphthalide (III), m.p. 188—190°, but in AcOH at room temp. some 1-chloro-6-nitro-2-acetnaphthalide (IV), m.p. 221—223°, is formed. (II) (80%), (III) (65%), and (IV) (76%) are also prepared by chlorinating the appropriate NO₂·C₁₀H₆·NHAc. With glycerol, H₂SO₄, and As₂O₅, (I) gives 8-chloro-6:7-benzquinoline [10-chlorobenz(g)quinoline] (V) (34%), m.p. 138—140°, which with HNO₃ (d 1·49) at -18° gives 10-chloro-6-nitro- (VI) (45%), m.p. 211—212°, and -9-nitro-benz(g)quinoline (VII), and 10-chloro-7-nitrobenz(g)quinoline (VII), and 10-chloro-7-nitrobenz(g)quinoline (VIII), and (IV) give (VI), (VIII), and 10-chloro-7-nitrobenz(g)quinoline (VIII), and (IV) give (VII), (VIII), and 10-chloro-7-nitrobenz(g)quinoline (VIII), and (IV) give (VIII) (4%), m.p. 243—245°, respectively. With morpholine and a little KI or with piperidine, (V) at 150° yields 10-morpholine (6%) (v.) with morpholine and a little KI or with piperidine, (V) at 150° yields 10-morpholino- (6%), m.p. 160—161°, and 10-piperidino-benz(g)quinoline (8%), m.p. 97—99°, respectively. Morpholine and a trace of Cubronze convert (VI) and (VIII) at the b.p. into 6- (5%), m.p. 156—158°, and 7-nitro-10-morpholinobenz(g)quinoline (3%), m.p. 202—204°. NHEt₂ does not react with (V) (VI) or (VIII) 156—158°, and 7-nuro-10-morpholinoenz(g)quinoline (5%), In.p. 202—204°. NHEt₂ does not react with (V), (VI), or (VIII). Passing Cl₂ into (V) in CHCl₃ gives 5: 10-dichlorobenz(g)quinoline (71%), m.p. 213—215° (cf. loc. cit.), the structure of which is proved by oxidation (CrO₃-AcOH) to benz(g)quinoline-5: 10-dione [1-aza-anthraquinone], m.p. 278—280°. With CrO₃-AcOH at the b.p. (VI) gives 6-nitrobenz(g)quinoline-5: 10-dione [6-nitro-1-azaanthraquinone] (42%), m.p. 243—245°, and with boiling Fe-AcOH-H₂O gives 10-chloro-6-aminobenz(g)quinoline (30%), m.p. 181—183° R. S. C. Derivatives of 1:10-phenanthroline. F. Richter and G. F. Smith (J. Amer. Chem. Soc., 1944, 66, 396—398).—Yields in Skraup reactions (As₂O₅-H₂SO₄; 130—135°) quoted below are dependent on optimum conditions which are defined. 2:4:1-NO₂·C₆H₃Cl·NH₄ (43·1 g.) gives 6-chloro-8-nitro- (47—48 g.), m.p. 159°, and thence 6-chloro-8-amino-quinoline, m.p. 73°, and 5-chloro-1:10-phenanthroline (56%), m.p. 123° (cf. Kuczynski et al., A., 1937, II, 118). 2:4:1-NO₂·C₆H₃Br·NH₂ (54·3 g.) gives 6-bromo-8-nitro- (60 g.), m.p. 170°, and thence 6-bromo-8-amino-quinoline, m.p. 78°, and 5-bromo-1:10-phenanthroline (I) (46%), m.p. (+H₂O) 86° or (anhyd.) 119°. The so-called (I) (m.p. 215°) of F.P. 804,454 must have a different structure. 4:2:1-NO₂·C₆H₃Me·NH₂ (38 g.) gives 8-nitro(38—40 g.), m.p. 121—122°, and thence 8-amino-6-methylquinoline, m.p. 73°, and 5-methyl-1:10-phenanthroline (II) (66%), m.p. 114°, b.p. 280—282°/13 mm. (picrate, m.p. 203—204°). The Me of (II) facilitates nitration (HNO₃-H₂SO₄; 120°), which yields a 5-NO₄compound, m.p. 268—270°. Syntheses in the carbazine series. H. Goldstein and G. Huser Syntheses in the carbazine series. H. Goldstein and G. Huser (Helv. Chim. Acta, 1944, 27, 616—619; cf. A., 1928, 647).—o-C₆H₄Me·NH·C₆H₄·CO₂H-p is converted by MeOH-conc. H₂SO₄ into the Me ester, m.p. 48·5°, which with MgPhBr in Et₂O yields 2-p-tolylaminotriphenylcarbinol, m.p. 164·5°; this is dehydrated by glacial AcOH containing HCl to 5:5 diphenyl-3-methyl-5:10-dihydroacridine, m.p. 217°. Similarly Me N-p-anisylanthranilate, m.p. 53·5°, yields successively 2-p-anisidinotriphenylcarbinol, m.p. 123°, and 3-methory-5:5-diphenyl-5:10-dihydroacridine, m.p. 213—214° and 3-methoxy-5: 5-diphenyl-5: 10-dihydroacridine, m.p. 213-214°. Me N-β-naphthylanthranilate, m.p. 53°, is converted into 2-β-naphthylaninotriphenylcarbinol, m.p. 132—133°, and thence into 5:5-diphenyl-5:10-dihydro-3:4-benzacridine, m.p. 260—261°. M.p. are Thiobarbituric acids.—See B., 1944, III, 119. Pyrrole series. XI. Effect of substituents on the structure of dipyrrylmethenes. Relationships between dipyrryl- and triphenylmethane dyes. K. J. Brunings and A. H. Corwin (J. Amer. Chem. Soc., 1944, 66, 337—342; cf. A., 1943, II, 72).—By electronic influences passage of dipyrrylmethyl bromides (A) into dipyrrylmethyl promides and the base of hydrolymethyl promides in the structure of struc methene anhydro-bases or hydrobromides is favoured by substitution of the pyrryl by Me and hindered by substitution by CO.Et. By preventing planar alignment (and thus resonance), 5-CO₂Et is much more effective than 3- or 4-CO₂Et, and 1-Me hinders the transformation. In extreme cases (A) exist as such and yield carbinols and carbinol ethers, but are converted into methene stannichlorides by SnCl₄; in less extreme cases (A) do not exist as such but with KOH-EtOH give the carbinol ether, though accordingly ether. as such but with KOH-EtOH give the carbinol ether, though aq. KOH may give the carbinol or methene anhydro-base. (A) thus resemble triphenylmethyl halides; in the latter series steric reasons as above account for the lack of effect of o-substituents. Et₃ 3:5'-tetramethyldipyrrylmethene-4:4'-dicarboxylate hydrobromide (prep. from the methane by Br-CCl₄) with Ca(OH)₂ in CHCl₃ gives the red anhydro-base, m.p. 189—190° (decomp.). Et₄ 4:5:4':5'-tetramethyldipyrrylmethene-3:3'-dicarboxylate hydrobromide, similarly prepared, gives similarly the orange-red anhydrobase, m.p. 164—165° (decomp.). Et₂ 3:4:3':4'-tetramethyldipyrrylmethene-5:5'-dicarboxylate hydrobromide (I) (prep. as above), decomp. 160—165°, gives no anhydro-base but with, e.g., H₂O gives 5:5'-dicarbethoxy-3:4':3':4'-tetramethyldipyrrylcarbinol, decomp. 185—186°, and in boiling MeOH gives the Me ether, m.p. 169—170° (decomp.), thereof, both reconverted into (I) by HBT-CCl₄. Et₃ 3:5:4'-trimethyldipyrrylmethene-4:3':5'-tricarboxylate hydrobromide (similarly prepared) with KOH-MeOH gives the carbinol Me ether but with Ca(OH)₂-CHCl₃ gives the methene anhydro-base, m.p. 125—126° (decomp.). The appropriate methane with BT-CCl₄ gives 3:5:3':5'-tetracarbethoxy-4:4'-dimethyldipyrrylmethyl bromide, m.p. 132—133° (decomp.), which becomes coloured in hot C₄H₄ gives 3:5:3':5'-tetracarbethoxy-4:4'-dimethyldipyrrylmethyl bromide, m.p. 132—133° (decomp.), which becomes coloured in hot C₆H₄ and colourless again on cooling, colours filter-paper and textile becomes only weakly coloured in conc. H₂SO₄, but with SnCl₄ in CHCl₃ gives a colour (the methene stannichloride), destroyed by H₂O. The appropriate methane and Br-CCl₄ in complete absence of H₂O give 4:3':5'-tricarbethoxy-1:3:5:1':4'-pentamethyldipyrrylmethyl bromide, m.p. 135—136° (red), which gives brilliant colours in conc. H₂SO₄ or HClO₄ or with SnCl₄-CHCl₃, and in boiling McOH gives the carbinol Me ether, m.p. 93—94°. R. S. C. Molecular rearrangements of phenyl styryl ketone oxides.—See A., 1944, II, 224. Some basically substituted derivatives of benziminazole and lupinane. G. R. Clemo and G. A. Swan (J.C.S., 1944, 274—276). -4-Nitro-3-(ε-diethylamino-β-amyl)aminoanisole, prepared from 3bromo-4-nitroanisole, is identical with the product obtained from 3:4-dinitroanisole (cf. Toptschiev, A., 1936, 838). 4-Bromo-3-nitroanisole with δ -amino- α -diethylaminopentane and Cu (trace) give 3-nitro-4-(ε-diethylamino-β-amyl)aminoanisole, b.p. 195—200°/2 mm., reduced (SnCl₂-HCl) to the 3-NH₂-compound (I), b.p. 180—195°/2 185°/2 mm. 4-Amino-3-(ε-diethylamino-β-amyl)aminoanisole (II) with HCO2H affords 1-(ε-diethylamino-β-amyl)-6-methoxy-benziminaiole, b.p. 190°/1.5 mm. (dipicrolonate, m.p. 193°), and with Ac₂O yields the -2-methylbenziminazole, b.p. 190°/1.5 mm. (dipicrolonate, m.p. 230°). Similarly, (I) with HCO₂H gives 5-methoxy-1-(ε-diethylamino-β-amyl)benziminazole, b.p. 195°/2 mm. (picrate, m.p. 161°), and with Ac₂O forms the 2-Me derivative, b.p. 195°/2 mm. (dipicrate, m.p. 198°) m.p. 198°). 11-Bromolupinane condenses similarly to give 11-(ε-di-ethylamino-β-amyl)aminolupinane, b.p. 165—167°/2 mm. (tripicrolon-ale, m.p. is 166—172°). Condensation of (II) with CH₂Ac₂ affords a base, C21H38O2N3, b.p. 175°/1.5 mm. Reaction between aromatic diamines and dicarboxylic acids. I. o Phenylenediamine and phthalic anhydride. B. A. Porai-Koschitz and M. M. Antoschulskaja (J. Gen. Chem. Russ., 1943, 13, 339—352). -o-C₆H₄(NH₂)₂ (I) and o-C₆H₄(CO)₂O (II) (1:1 mol.) at 120—130° (oil-bath) gave 70% of benzoylenebenziminazole (III), m.p. 209.5—210° (extracted from the cooled melt with Ac₂O), diphthaloyl-ophenylenediamine (IV), and o-di-2-benziminazolylbenzene (V); (IV) and (V) are insol. in Ac_2O and were separated by treatment with dil. HCl, crystallisation, and distillation. The use of C_0H_0 for the extraction and crystallisation of (III) leads to an impure product, indicating the presence in the melt of o-2-benziminazolylbenzoic acid, which is converted into (III) by Ac₂O. (IV), m.p. 296·5—297°, and diphthaloyl derivatives of other diamines are best prepared by slowly adding (I) to 7 mols. of boiling (II); the cooled melt is extracted with boiling 20% aq. Na₂CO₃, washed with H₂O, extracted with hot EtOH to remove (III), and cryst. from glacial AcOH. (V), m.p. 414—416°, was prepared in 70% yield by fusing together (I) and (II) (4:1 mol.) at 185—190° (oil-bath), extracting the melt with boiling aq. Na₂CO₃ and then with boiling dil. HCl; slow crystallisation of the acid extract and decomp. of the HCl salt, or direct neutralisation of the acid extract with NH₃, gave the base, which was purified by extraction with boiling polychlorobenzene, b.p. 183—187°, followed by C₆H₆, and final
sublimation. Fusion of (III) with excess of (I) at 195° gave (V) in 92·6% yield; of (IV) with (I) (1:1 mol.) at 230—240° gave 30·9% of (III) together with (V); of (IV) with excess of (I) at 195° did not react, but addition of (III) to excess of boiling (II) gave 10% of (IV); (V) did not react with (II) under similar conditions, nor in the presence of C₆H₆N or piperidine. R. C. P. indicating the presence in the melt of o-2-benziminazolylbenzoic R. C. P. N⁴-Substituted sulphonamides. J. Finkelstein (J. Amer. Chem. Soc., 1944, 66, 407—408).—The appropriate sulphanilamido-compound and CH₂Cl-COCl in C₅H₅N give p-CH₂Cl-CO·NH·C₆H₄·SO₂·NH₂, m.p. 211—213°, 2-N⁴-chloroacetylsulphanilamido-pyridine, m.p. 192—193°, -thiazole, m.p. 205—206°, -4-methylthiazole, m.p. 231—232°, and -pyrimidine, m.p. 208—210°, converted by conc. aq. NH₃ at 40° into the glycyl derivatives, m.p. (I) 216—218°, 220—221°, 215—216°, 205—206°, and 238—240°, respectively. The substance, m.p. 260°, of Pollak et al. (A., 1931, 1283, m.p. 256—258°), supposed to be (I), is iminobis-N⁴-acetylsulphanilamide. 2-N⁴-Hexoylsulphanilamido-pyrimidine, m.p. 193—194°, -thiazole, m.p. 193—195°, and pyrimidine, m.p. 214—215°, are also prepared. The drugs have low toxicity and may be useful therapeutically (preliminary data low toxicity and may be useful therapeutically (preliminary data only are given). R. S. C. only are given). only are given). R. S. C. Heterocyclic compounds containing nitrogen. LII. Pyridylisatogens. P. Ruggli and H. Cuenin (Helv. Chim. Acta, 1944, 27, 649—662).—2-Methylpyridine, o-NO₂·C₆H₄·CHO, and Ac₂O at 170—175° give 2-nitrostilbazole, m.p. 100—101° [hydrochloride, m.p. 213—215° (decomp)]; the dibromide, m.p. 181° (picrate, m.p. 174°), loses Br when treated with C₅H₅N, piperidine, KOH-EtOH, AgOAc, or AgOBz. The corresponding dichloride, m.p. 143·5—144° [hydrochloride, m.p. 176° (decomp.); picrate, m.p. 167—168° (decomp.)], is converted by prolonged boiling with C₅H₅N into μ-chloro-2-nitrostilbazole, m.p. 61·5—62° [hydrochloride, m.p. 160—165° (decomp.); picrate, m.p. 128—128·5°], and by boiling KOH-MeOH into 2-nitro-tolazole (I), m.p. 54·5—55°, [picrate, m.p. 171—171·5°; hydrochloride, m.p. 158°, resinifies when kept; very hygroscopic sulphate, m.p. 73—76°; dibromide hydrobromide, m.p. 250—252° (decomp.)]. (I) is transformed into 2-2'-pyridylisatogen (II) m.p. 182° [also +1CHCl₃; picrate, m.p. ~177° (decomp.); hydrochloride, m.p. 195—196°; sulphate, m.p. 215° (decomp.); oxalate, m.p. 160°; methiodide, m.p. 182°; additive compound, m.p. 119—120°, with H₄SO₃], slowly by insolation in C₅H₅N, rapidly by PhNO (functioning at "stoicheiometric catalyst"). (II) and NH₂OH,HCl in boiling EtOH afford the C-oxime, m.p. 215—217° (decomp.), reduced by Zn dust in boiling AcOH to which Ac₂O is subsequently added to 3-acetamido-2-pyridylindole (III), m.p. 189°, or, if addition of Ac₂O is omitted, to 3-amino-2-pyridylindole, m.p. 240°, softens at 100° and blackens at ~170°. (II) and NHPh·NH₃ in EtOH at ≯40° evolve N₂ and give 1:3-alihydroxy-2-2'-pyridylindole (indolone hydrate) (IV), m.p. 163—165° (decomp.), softens >140° (hydrochloride), with a small proportion of 2-2'-pyridylindole (V), m.p. 186° [picrate, m.p. 202° (decomp.)], which is the main product from (II) and NHPh·NH₃ in boiling EtOH; the oxime, m.p. 179—180° (blackens), is reduced (Zn dust-AcOH-Ac₂O) or catalytically in presen m.p. 129.5-130.5°, also obtained from (IV) and (V). In absence of Ac₂O (II) affords indolone indoxyl, C₆H₄ CO CR O C C₆H₄ NH (R = C_bH₄N), decomp. (indef.) 210—230° [picrate, m.p. 205—207° (decomp.)], also obtained by reduction of (II) with KI-HCl. (II), (IV), or (V) yields with piperidine in boiling EtOH an adduct, C₁₈H₁₉ON₃, m.p. 184—185°; when treated with NaOH it gives piperidine, with 2N-HCl at 40° it gives (IV), and in cold dioxan it slowly yields (V) and a red resin. It is reduced (Zn dust-AcOH-Ac₂O) to (VI). (II) is transformed by H₂SO₄-EtOH at 100° into (?) 2-pyridylisoisatogen, m.p. 105—107°. H. W. Hydrogenation-dehydrogenation reactions involving compounds of ammono-aldehyde, ammono-acetal, and aquo-ammono-aldehyde types. P. J. McLaughlin and E. C. Wagner (J. Amer. Chem. (I) into the dihydroquinazoline (II) is confirmed and extended. Conversion of the intermediate tetrahydroquinazoline (III) into the dihydroquinazoline (II) is confirmed and extended. is a crossed Cannizzaro reaction in which (I) or the trimer of p-C₆H₄Me-N:CH₂ (IV) functions as proton-acceptor; this function is exercised by dissociation into (IV) or, in acid at a lower temp, the cation thereof. The reaction is shown to be irreversible and independent of H₂O, air, or picric acid (used as precipitant). The proton-acceptor may also be CHPh:NPh, methylenebispiperidine, NPh:CH·NHPh, p-C₆H₄Me·NH·CHO, or HCO·NH₂ (i.e., substances of aldehydic or ammono-aldehydic type), but not NPh:CMe·NHPh, NHPhAc, or NH₂Ac. Sources of acid may be, in order of decreasing efficiency, p-C₆H₄Me·NH₂,HCl, NMe₃,HCl, the hydrochloride of (II), piperidine hydrochloride, or NH₄Cl, which, except for NH₄Cl, accords with their activities as proton donors. Heterocyclic compounds containing nitrogen. LI. New linear benzodipicoline, 2:6-dimethyl-1:5-anthrazoline. P. Ruggli and henzodipicoline, 2:6-dimethyl-1:5-anthrazoline, P. Ruggli and F. Brandt (Helv. Chim. Acta, 1944, 27, 274—291; cf. A., 1938, II, 460).—Derivatives of 2:6-dimethyl-1:5-anthrazolone (cf. A) are described. 1:4:2:5-C₆H₂Me₂Cl₂ (I) (prep. from p-xylene and Cl₂ in presence of Fe powder and absence of light described) is converted by dry Cl₂ in strongly irradiated C₆H₂Cl₄ at 120—130° into 2:5:1:4-C₆H₂Cl₂(CHCl₂)₂, b.p. 313°, m.p. 72·5—74°, converted by NH₂Ph at 100° into the tetra-anilino-compound, darkens >260°, and hydrolysed by conc. H₂SO₄ at 170° to 2:5:1:4-C₆H₂Cl₂(CHCl₂)₂, b.p. 313°—140° in light in absence of solvent or catalyst affords 1:4:2:3:5:6-C₆Me₂Cl₄, m.p. 217·5°, and in strongly illuminated, technical C₆H₃Cl₂ at 120—130° gives 2:3:5:6-tetrachloro-1:4-dichloromethylbenzene, m.p. 174·5—175° (dianilino-compound, m.p. 170°). 2:5-Dichloro-1:4-di(trichloromethylbenzene, m.p. 193°, is obtained by chlorinating (I) in illuminated C₂HCl₅ at 130—145°. Gradual addition of Br to (I) at 120—180° and finally at 210° yields 2:5:1:4-C₆H₂Cl₂(CHBr₂)₂, hydrolysed to (II). Gradual addition of Br to illuminated 1:4:2:5hydrolysed to (II). Gradual addition of Br to illuminated 1: 4: 2: 5-C₆H₂Me₂Br₂ (prep. from p-xylene described) containing I at 120° and finally at 170° gives 2: 5-dibromo-1: 4-di(dibromomethyl)benzene, m.p. 162—163°, hydrolysed by H₂SO₄,H₂O at 130—140°/25 mm. to 2: 5-dibromoterephthalaidehyde (III), m.p. 189—190-5° (corresponding dianil, m.p. 234·5—235°). (III) is converted by NH₂Ac at 135—140° into 2: 5-dibromoterephthalaitetra-acetamide, darkens at 305° and carbonises at a higher temp. and by 6.C. H.MarSO NH. Co. 135—140° into $^{\circ}2$: 5-dibromoterephthalletra-acetamide, darkens at 305° and carbonises at a higher temp., and by p-C₆H₄Me·SO₂·NH₂, Cu powder, CuBr, and K₂CO₃ in PhNO₂ according to conditions into 5-bromo-2-p-toluenesulphonamido-, m.p. 183—185°, or 2: 5-di-p-toluenesulphonamido- (IV) -terephthalaldehyde, m.p. 241—243° (decomp.) [dipiperidine salt, decomp. 140°, reddens at 110°; dianil, m.p. 297° (decomp.)]. (IV) is transformed by CH₂Ac·CO₂Et in presence of piperidine at 70° into Et₂ 2: 5-di-p-toluenesulphonamidoterephthalylidenediacetoacetate (V), m.p. 216—217° (decomp.), becomes discoloured at 210°, which with NH₂Ph at 100° affords a compound, C₅₄H₄₈O₄N₆S₂, m.p. 299—301° (decomp.). (V) with conc. H₂SO₄ at 27—32° suffers one-sided ring-closure to Et 6-amino-3-carbethoxy-2-methylquinoline-7-methenylacetoacetate (VI), m.p. 219— 3-carbethoxy-2-methylquinoline-7-methenylacetoacetate (VI), m.p. 219-220° (picrate, decomp. 215—220°, softens at 200°), hydrolysed to the dicarboxylic acid (VII), decomp. >280° (Na₂ salt). Under more drastic conditions conc. H₂SO₄ causes two-sided ring-closure of (V) to 2: 6-dimethyl-1: 5-anthrazoline-3: 7-dicarboxylic acid (2: (3: 5-dicarboxylic 6-dimethyldimethyl-lin-p-benzodipyridine-3: 7-dicarboxylic acid), decomp. ~320°, becomes brown at 280°, also obtained from (VI) and (VII). This is decarboxylated by Cu powder and Cu chromite in quinoline at 215° to 2:6-dimethyl-1:5-anthrazoline, needles, m.p. 238—239° (decomp.), or apparently hydrated leaflets, which give solutions in dil. HCl or H₂SO₄ from which it is repptd. by Na₂CO₃ but not by dil. HCl or H₂SO₄ from which it is repptd. by Na₂CO₃ but not by NaOAc. It gives a cryst. oxalate, perchlorate, chromate, and picrate, decomp. ~263°, becomes discoloured at 250°, a (CHPh!)₂, m.p. 267°, and a di-p-dimethylaminobenzylidene, decomp. 340°, derivative. (IV) is transformed by COPhMe at 190—197° into 2:6-diphenyl-1:5-anthrazoline, m.p. 284—285° (picrate, m.p. 283°). H. W. Tetrahydrotriazines.—See B., 1944, II, 158. Morpholinomethylurea.—See B., 1944, II, 157. be obtained. $a\beta$ -Diamino-ketones. II. Reactions of thalline and open-chain sec. amines with a-bromo- β -amino-ketones. N. H. Cromwell, J. A. Caughlan, and G. F. Gilbert (J. Amer. Chem. Soc., 1944, 66, 401—403; cf. A., 1944, II, 171).—Interaction of a-bromo-\beta-heterocyclic amino-β-phenylpropiophenone (or the COMe compound) with openchain sec. bases gives poor yields of mixed diamino-ketones, mainly owing to steric reasons. p-OMe·C_eH₄·NH₂, FeSO₄, p-OMe·C_eH₄·NO₂, glycerol, and H₂SO₄ at the b.p. give 6-methoxyquinoline (53%), m.p. 18—20°, b.p. 182—184°/34 mm., which with H₂-Cu chromite in EtOH at 180°/1800 lb. gives 6-methoxy-1:2:3:4-tetrahydroquinoline (93%), m.p. 42—43°, b.p. 127—130°/1 mm. (picrate, m.p. 164—165°). a-Bromo-β-piperidino-β-phenylpropiophenone (I) with the appropriate amine in EtOH at 70° gives a-piperidino-β-6-methoxy-1:2:3:4-tetrahydroquinolino-β-phenylpropiophenone (85%), m.p. 150—160°; similarly are prepared a-morpholino-β-6-methoxy-1:2:3:4-tetrahydroquinolino-propiophenone (68%), m.p. 143°,
a-piperidino-(39%), m.p. 124°, and a-morpholino-β-6-methoxy-1:2:3:4-tetrahydroquinolino-β-phenylethyl Me ketone (40%), m.p. 126°. CH₂Ph·NHMe and (I) in 1:3 EtOH-Et₂O at room temp. (12 hr.) and then 0° (2 days) give β-N-methylbenzylamino-a-piperidino-β-phenylpropiophenone (36%), m.p. 138—140°, hydrolysed by 15%, H₂SO₄ at 100° to ω-piperidinoacetophenone; similarly are prepared a-piperidino-β-N-methyl-N-β-hydroxyethylamino-β-phenylpropiophenone (10%), m.p. amino-β-phenylpropiophenone (or the COMe compound) with openone (30%), m.p. appending the model of the control Further 2-p-nitrophenyl-4-alkyloxazol-5-ones. P. Karrer and C. Christoffel (Helv. Chim. Acta, 1944, 27, 622—623; cf. A., 1943, II, 187).—dl-Phenylalanine in 2n-NaOH is converted by p-No₂·C₈H₄·CoCl in Et₂O into 2-p-nitrophenyl-4-benzyloxazol-5-one, m.p. 162°, which with NaOH-Et₂OH gives a dark violet colour becoming blue on addition of C₈H₃N; N-p-nitrobenzoylalanine, m.p. 168·5°, is obtained as by-product. Similarly, dl-valine affords 2-p-nitrophenyl-4-isopropyloxazol-5-one, m.p. 92°. The colour of the alkali salts of the oxazolones in different media shows great variations which do not appear related to the dielectric const. of the ations which do not appear related to the dielectric const. of the liquids. Chemotherapy of bacterial infections. IX. Synthesis of some sulphathiazole derivatives. K. Ganapathi. X. 2-Acetsulphanilimido-3-acetsulphanilylthiazolone and 2-diacetsulphanilylamido-thiazole. New route to sulphathiazole. C. V. Deliwala, K. Ganapathi, and M. V. Shirsat (*Proc. Indian Acad. Sci.*, 1943, 18, A, 355—359, 360—363).—IX. The Na salt of sulphathiazole condenses with the appropriate alkyl bromide or iodide in EtOH to give 2-(p-aminobenzenesulphonimido)-3-methyl-, m.p. 244—246°, -ethyl-, m.p. 183—185°, -n-butyl-, m.p. 186—188°, -isoamyl-, m.p. 201—203°, -n-hexyl-, m.p. 156°, -β-hydroxyethyl-, m.p. 154—156°, -β-ethoxyethyl-, m.p. 150—152°, -acetonyl-, m.p. 202°, and -carboxymethyl-thiazolone, m.p. 184—185°. Of these compounds only the Me derivative shows good therapeutic activity. X. 2-Aminothiazole condenses with acetylsulphanilyl chloride in H₂O or suspension in presence of NaHCO₃, CaCO₅, or BaCO₃ to yield 2-diacetsulphanilylamidothiazole, m.p. 128—129°, which in boiling EtOH isomerises to 2-acetsulphanilimido-3-sulphanilylthiadethiazole. azolone. These two products are hydrolysed by acid or alkali to sulphathiazole in good yield. Synthesis of the aluminium and the magnesium salts of thiolbenzthiazole. K. D. Petrov and A. M. Fedortschenkova (J. Appl. Chem. Russ., 1943, 16, 211—213).—The salt, $Al(OH)(C_7H_4NS_2)_2$, H_2O , from $^*Al_2(SO_4)_3$ and a saturated solution of thiolbenzthiazole (I) in NaOH, is easily hydrolysed. The salt, $Mg(C_7H_4NS_2)_2$, is prepared from (I) and MgO at 160— 170° . J. J. B. Preparation of the zinc salt of thiolbenzthiazole and its trans-Preparation of the zinc salt of thiolbenzthiazole and its transformation during vulcanisation of rubber. K. D. Petrov (J. Appl. Chem. Russ., 1943, 16, 214—218).—A saturated solution of thiolbenzthiazole (I) in 1% NaOH with a 2.5% solution of $Zn(OAc)_2$ yields the salt, $Zn(C_7H_4NS_2)_2$ (II), which with 0.05 part of S in boiling xylene gives ZnS, (I), and a little dibenzthiazolyl disulphide (III), and with H_2S in C_6H_6 gives ZnS and (I). From rubber vulcanised by means of (II) and S, $COMc_2$ extracts (I). Probably, during vulcanisation (II) reacts with S, giving (III), which with H_2S forms (I) and active S, causing vulcanisation. J. J. B. Synthesis and constitution of vitachrome. P. Karrer and M. C. Sanz (Helv. Chim. Acta, 1944, 27, 619—621).—(CS·NH₂)₂ and COMe·CHCl·[CH₂]₂·OH at 120° afford 4:4'-dimethyl-5:5'-di- β -hydroxyethyl-2:2'-dithiazolyl (vitachrome) (I), m.p. 180°, which when pure forms completely colourless needles with pure blue fluorescence in ultra-violet light. Its formation by irradiation of 2-chloro-4-methyl-5- β -hydroxyethylthiazole is due to dissociation of this compound into Cl atoms and residual radicals which become dimerised. Similarly COMe·CHCl·[CH₂]₂·OAc affords vitachrome diacetate, m.p. 116—116·5°. The destruction of the fluorescence of (I) by aq. Na2S2O4 (restored by shaking with air) is not due to the formation of a non-fluorescent reduction product since Na. 4: 4'-dimethyl-2: 2'-dithiazolyl-5: 5'-dicarboxylate does not evolve CO2 when treated with Na, S2O4. Structure-chemical investigations. X. Reactive behaviour of dithioamides of aliphatic dicarboxylic acids. H. Lehr and H. Erlenmeyer (Helv. Chim. Acta, 1944, 27, 489—493).—(CS·NH₂)₂ and (CH₂·NH₂)₂,H₂O (1:2) in boiling EtOH yield 2-β-aminoethylaminothioformyl-iminazoline [-glyoxalidine], decomp. 250—255° (picrate, m.p. 284—285°), readily transformed by an excess of (CH₂·NH₂)₂,H₂O m.p. 284—285°), readily transformed by an excess of (CH₂·NH₂)₂, H₂O into di-2-\$\Delta^2\$-iminazolinyl. CH₂·NH C·C NH-CH₂, m.p. 290—298° (cf. Forssel, A., 1891, 1003). Adipdithioamide (I) and (CH₂·NH₂)₂, H₂O in EtOH or in absence of solvent afford \$\alpha\$6-di-2-\$\Delta^2\$-iminazolinyl-butane, m.p. 209—210° (picrate, m.p. 207°); the monomeric character of the products is remarkable. (I) and (CO·CH₂Br)₂ in abs. EtOH at room temp. give the chain polymer, (C₁₀H₁₀N₂S₂)_n, softens at 230° and then decomposes gradually. (I) and CH₂BzBr readily yield \$\alpha\$6-di-4-phenyl-2-thiazolylbutane, m.p. 89° (hydrobromide, m.p. 288°). CH₂BzBr and (CS·NH₂)₂ yield 4:4'-diphenyl-2:2'-dihiazolyl, m.p. 222°, from which a picrate or hydrobromide could not be obtained. 2:2'-Dithiazolyl compounds. P. Karrer, P. Leiser, and W. Graf (Helv. Chim. Acta, 1944, 27, 624—625).—(CS·NH₂)₂ and COMe·CH₂Cl in boiling EtOH afford 4:4'-dimethyl-2:2'-dithiazolyl, m.p. 136°. Similarly (CS·NH₂)₂ and CHAcCl·CO₂Et at 120° give Et₂ 4:4'-dimethyl-2:2'-dithiazolyl-5:5'-dicarboxylate, m.p. 186°, hydrolysed to the acid, decomp. >310°. (CS·NH₂)₂ and (CO·CH₂Br)₂ in EtOH yield a polythiazole compound of high mol. wt. The in EtOH yield a polythiazole compound of high mol. wt. The compounds resemble vitachrome in giving a very pronounced fluorescence in ultra-violet light; in conc. H₂SO₄ the fluorescence is intense in daylight. Cyanine type dyes.—See B., 1944, II, 160. #### VII.—ALKALOIDS. Synthesis of dl-heliotridane (1-methylpyrrolizidine). V. Prelog and E. Zalán (*Helv. Chim. Acta*, 1944, 27, 531—534).—Addition of OPh-[CH₂]₂·CHMe·CN (I) to Mg y-ethoxypropyl bromide in Et₂O OPh·[CH₂]₂·CHMe·CN (I) to Mg γ-ethoxypropyl bromide in Et₂O leads to a-phenoxy-η-ethoxy-γ-methylheptan-δ-one, b.p. 100—110°/0·2 mm., the oxime, b.p. 150°/0·1 mm., of which is reduced by Na and abs. EtOH to δ-amino-a-phenoxy-η-ethoxy-γ-methylheptane, b.p. 190—191°/12 mm. The hydrobromide is transformed by 66% HBr at 100° into aη-dibromo-δ-amino-γ-methylheptane hydrobromide, which with dil. aq. NaOH affords dl-1-methylpyrrolizidine (dl-heliotridane) [picrate, m.p. 234—236°; styphnate, m.p. 196—197°; picrolonate, m.p. 162—163°; aurichloride, m.p. 200—201° (decomp.)]. The salts resemble closely those of the natural l-heliotridane. Only one of the two possible racemates appears to be produced. OMe·[CH₂]₂·Br, CHMe(CO₂Et)₂, and NaOEt-EtOH yield Et₂ methylβ-methoxyethylmalonate, b.p. 111—126°/11 mm., hydrolysed and decarboxylated to γ-methoxy-α-methylbutyric acid (II), b.p. 114—120°/11 mm., which is less suitable than (I) as initial material for the above synthesis. (II) is converted (SOCl₂) through the chloride into the amide, m.p. 45—47°, and anilide, m.p. 102—103°. Alkaloids. I. Oxidation of papaverine to papaveraldine (xanthaline) by selenium dioxide. K. N. Menon (*Proc. Indian Acad. Sci.*, 1944, 19, A. 21—22).—This oxidation is readily effected by SeO₂ in AcOH at 100°. R. S. C. Isolation of Iupinine from technical anabasine sulphate. A. Sadikov and G. Lazurevski (J. Gen. Chem. Russ., 1943, 13, 319—321).—Anabasine (I) and lupinine (II) in the fraction of b.p. 136—139°/12 mm., obtained by Orekhov's method (A., 1931, 498; 1932, 405) from Anabasis aphylla, were separated by stirring and heating the mixture, dissolved in PhMe or light petroleum, with Na. When reaction was complete (I½—2 hr.), the mixture was cooled and the yellow Na lupinate filtered off and washed with PhMe or light petroleum. This may be used directly for synthesis or decomp. with H₂O to regenerate (II) (yield 97%). The mother-liquor after distillation yields (I). Light petroleum gave better results than PhMe. results than PhMe. Alkaloids of Ammothamnus lehmanni, Bge. A. Sadikov and G. Lazurevski (J. Gen. Chem. Russ., 1943, 13, 314—318).—Stems and leaves were extracted with EtOH containing 2% of NH₃. The extract, after evaporation, acidification, and removal of tar, extract, after evaporation, addition, and removal of tar, was saturated with KOH and extracted first with $\rm Et_2O$ and then $\rm CHCl_3$ (extracts A and B respectively). Evaporation of extract A gave 0.45% (on dry plant) of pachycarpine + sophocarpine (I). Evaporation of extract B and extraction of the residue with $\rm COMe_2$ left a yellow powder (0.05%), from which was separated, by fractional pptn. from acid solution and recrystallisation from $\rm COMe_2$, an alkaloid, animothamnine, $C_{1b}H_{24}O_3N_2$, m.p. $199-201^\circ$, $a'=0^\circ$ [picrate, m.p. $212-214^\circ$ (decomp.); hydriodide, m.p. $183-189^\circ$]. The total yield of crude alkaloids from the roots was $0\cdot12\%$; $0\cdot8\%$ of $H_2C_2O_4$ was also separated from the plant. (I) is a good insecticide. R. C. P. Alkaloids of Lycopodium species. V. L. obscurum, L. R. H. F. Manske and L. Marion (Canad. J. Res., 1944, 22, B, 53-55).—The following have been isolated from L. obscurum var. dendroideum (Michx.) D. C. Eaton: lycopodine, obscurine, alkaloid L13 (cf. Marion et al., A., 1944, II, 147), alkaloid L16, C_{1e}H₂₅ON (perchlorate, m.p. 221°), and alkaloid L17, C_{1e}H₂₇O₃N (perchlorate, m.p. 296°). All m.p. are corr. Synthesis of possible degradation
products of metathebainone. I. H. L. Holmes and L. W. Trevoy (Canad. J. Res., 1944, 22, B, 56— 65).-7-Methoxy-3: 4-dihydro-2-naphthoic acid (I), m.p. 149.5improved general method of prep.), is dehydrogenated (S) to 7-methoxy-2-naphthoic acid, m.p. 195—196°, and condenses with (CH₂:CH)₂ to 3-methoxy-, m.p. 126—127°, and with (CH₂:CMe)₂ to 3-methoxy-6: 7-dimethyl-5: 8: 9: 10: 13: 14-hexahydrophenanthrene-14-carboxylic acid (II), m.p. 137.5—138.2°. The Et ester of (I) with (CH₂:CMe)₂ gives the Et ester of (II), b.p. 187°/2 mm. The acid chloride of (II) could not be converted into the corresponding aldehyde. The relationship of these hydrophenanthrenes to possible degradation products of morphine and metathebainone is discussed. M.p. are corr. F. R. S. Cinchona alkaloids. VI. Configuration of $(-)-\gamma$ -methyl- δ -ethyl-hexane.—See A., 1944, II, 209. Cinchona alkaloids. V. Configuration of the asymmetric carbon atoms 3, 4, and 8 of the Cinchona alkaloids. V. Prelog and E. Zalān (Helv. Chim. Acta, 1944, 27, 535—545).—The configuration [A] [R = CH:CH₂, R' = OMe·C₅H₅N·CH(OH)·] with the two hydrocarbon residues in the endo position is assigned to the dextrorotatory $$(A.) \quad \begin{array}{c} H \\ CH \\ CH_{2}CH_{2} \\ H_{2}C \\ CH_{3}CH_{2} \\ H_{2}C \\ CH_{3}CH_{2} \\ H_{2}C \\ CH_{3}CH_{2} \\ H_{3}C \\ CH_{3}CH_{2} \\ H_{4}C \\ CH_{3}CH_{2} \\ CH_{5}CH_{2} CH_{5}CH_{2}$$ alkaloids, cinchonine and quinidine, and the structure (B) [R = CH:CH₂; R' = C₉H₆N·CH(OH)·] to the lævorotatory cinchonidine and quinine. Cincholoipone Et ester (I), b.p. $81\cdot5-84^{\circ}/0.04$ mm., $137-138^{\circ}/11$ mm., $[a]_{1}^{12}$ + $16\cdot75^{\circ}$ to $16\cdot85^{\circ}\pm0.05^{\circ}$ (cf. Kaufmann et al., A., 1917, i, 50), obtained by the degradation of cinchonine or by hydrogenation of meroquinine Et ester, is converted into its hydrochloride, m.p. $159-160^{\circ}$, $[a]_{2}^{12}-9\cdot3^{\circ}\pm1^{\circ}$ in EtOH, $[a]_{2}^{12}-7\cdot0^{\circ}\pm1^{\circ}$ in $H_{2}O$; the hydrochloride of the free base has m.p. $202-203^{\circ}$, $[a]_{2}^{13}-4\cdot6^{\circ}\pm1^{\circ}$ in $H_{2}O$. The ester is reduced by Na and abs. EtOH to 3-ethyl-4- β -hydroxyethylpiperidine, b.p. $103-108^{\circ}/0.02$ mm., $[a]_{2}^{13}+13\cdot1^{\circ}\pm0.4^{\circ}$ in EtOH, which with fuming HBr at 110° gives 3-ethyl-4- β -bromoethylpiperidine hydrobromide, m.p. 115gives 3-ethyl-4-β-bromoethylpiperidine hydrobromide, m.p. gives 3-ethyl-4- β -bromoethylpiperidine hydrobromide, m.p. $115-117^{\circ}$, $[a]_{1}^{19} - 16\cdot9^{\circ}\pm0.5^{\circ}$ in EtOH. This is converted by Zn dust and AcOH at 80–90° into cis(+)-3: 4-diethylpiperidine, b.p. 70° / 12 mm., $[a]_{2}^{29} + 26\cdot0\pm0.6^{\circ}$ in EtOH, $+37\cdot7^{\circ}\pm0.6^{\circ}$ in CHCl₃ (picrate, m.p. $110\cdot5-111^{\circ}$). The N-Bz derivative, b.p. 136° /0.2 mm., is transformed by PBr₅ into (+)-az-dibromo- β y-diethylpentane (I), b.p. $127-134^{\circ}$ /12 mm., $[a]_{2}^{121} + 11\cdot64^{\circ}\pm0.02^{\circ}$ in substance, $[a]_{3}^{19} + 11\cdot8^{\circ}\pm0.3^{\circ}$ in EtOH, converted by H₂ (Raney Ni in alkaline solution) into (-)-y-methyl- δ -ethylhexane, a liquid, $[a]_{3}^{19} - 11\cdot70^{\circ}$ to $-12\cdot05^{\circ}\pm0.06^{\circ}$ in substance, $[a]_{3}^{17} - 9\cdot1^{\circ}\pm0.6^{\circ}$ in CHCl₃. The space arrangement of this methine can be transferred therefore to C₍₃₎ of the cinchona alkaloids. (I) is converted by CH₂(CO₂Et)₂ and NaOEt in EtOH at 120° into Et_2 (-)-cis-3: 4-diethylcyclohexane-1: 1-dietarboxylate, b.p. $116-121^\circ$ /0·1 mm. The corresponding acid, m.p. $163-164^\circ$, $[a]_0^1$ -11·2° \pm 1° in CHCl₃, is decarboxylated at 180° to the non-cryst. cis-3: 4-diethylcyclohexanecarboxylic acid, [a] 6 -2.13° the hone-ryst. cis-3. **Latethylyclohexanetarboxytic acta, $[a]_{\overline{b}} = 2^{13} \pm 0.05^{\circ}$, the Ag salt of which is converted by Br in dry, boiling CCl, into 1-bromo-cis-3: 4-diethylcyclohexane, b.p. $136-156^{\circ}$ (bath)/ 12 mm., $[a]_{\overline{b}} = 1.41^{\circ} \pm 0.5^{\circ}$ in EtOH. This is converted by H₂ (Raney Ni in EtOH containing NaOEt) into cis-1: 2-diethylcyclohexane, $[a]_{\overline{b}} = 0^{\circ}$. Since the two asymmetric C are not disturbed division to the state of during these reactions and could not have been racemised the Et groups are in the cis position to one another. The cis relationship of the residues R and R' at $C_{(3)}$ and $C_{(4)}$ of the products of the degradation of the cinchona alkaloids is thus established. The configuration at $C_{(8)}$ follows the observation (on models) that only compounds in which the hydrocarbon residues at $C_{(3)}$ and $C_{(8)}$ are in the endo relationship can give compounds with ether rings. M. D. are corr. H. W. Partial Hofmann degradation of emetine and its dehydrogenation to emetamine. A. Ahl and T. Reichstein (Helv. Chim. Acta, 1944, 27, 366—381).—The results are compatible with but do not establish the constitutional formulæ proposed for emetine (I) by Spath et al. (A., 1927, 471) and Brindley et al. (ibid., 682) but cannot be recon- ciled with the formula of Staub (Diss., Zürich, 1927). (I) in Et₂O is transformed by 10% KOH and Ac₂O at room temp. into N-acetylemetine, m.p. 97—99° [methiodide (II), m.p. 213—216°; methochloride, m.p. 192—195°; methoaurichloride, m.p. 127—129°; methoplatinichloride, m.p. 213—217° (decomp.)]. (II) is converted by Ag₂O and solid KOH followed by cautious thermal decomp. and reacetylation into the amorphous methine base C. H. O. N. fivethiodide (III) ation into the amorphous methine base, $C_{32}H_{44}O_5N_2$ [methiodide (III), m.p. 239—240°; methochloride, m.p. 217—225°; methoaurichloride, m.p. 137—141°]. Hofmann degradation of (III) followed by reacetylation leads to a base (methoaurichloride, m.p. 111—118°), the methiodide, $C_{34}H_{49}O_5N_2I$, m.p. (indef.) 165—175°, of which is degraded under strictly defined conditions into NMe3 and a neutral compound (IV), C₃₁H₃₀O₅N, in which the originally tert. N is completely absent whilst the sec. N remains unchanged as its Ac derivative. Oxidation whilst the sec. N remains unchanged as its Ac derivative. Oxidation of (IV) by KMnO₄-COMe₂ gives m-hemipinic acid (V) as sole isolable compound whereas with KMnO₄-dil. H₂SO₄ the products are (V) and 4:5-dimethoxyphthalonimide (VI), needles, m.p. 269-275° (decomp.), or occasionally granules which are converted into needles at 200°, obtained by Hermanns (Diss., Freiberg i. Br., 1915) by the oxidation of (I) with CrO₃. The structure of (VI) is confirmed by its prep. by oxidation of 6:7-dimethoxytetrahydroisoquinoline or its Ac derivative, m.p. 104—105°. Dehydrogenation (Pd-C) of (I) at 190—200° gives considerable amounts of amorphous products, 6:7-dimethoxy-1-methylisoquinoline, m.p. 106—107° (picrate, m.p. 6: 7-dimethoxy-1-methylisoquinoline, m.p. 106—107° (picrate, m.p. 266—267°), and emetamine, 2 forms m.p. 138—139° and 153—154°, [a] + 11·1° in abs. EtOH (picrate, m.p. 149—151°). M.p. are corr. (block); limit of error ±2°. Steroids and sex hormones. XCII. Stereoisomeric dihydrosolanidines. V. Prelog and S. Szpilfogel (Helv. Chim. Acta, 1944, 27, 390—400).—The isolation of four stereoisomeric dihydrosolanidines 390—400).—The isolation of four stereoisomeric dihydrosolanidines and of the two corresponding saturated parents emphasises the stereochemical similarity of solanidine (I) and cholesterol and strengthens the probability that (I) is (A). (I) is hydrogenated (PtO₂ in AcOH) to solanidan-3(β)-ol (II), m.p. 220°, [α]₁^β, +28·2° ±4° (acetate, m.p. 196°, [α]₁^β, +16·5° ±2°; p-toluenesul-phonate (III), m.p. 169·5—170°). (II) is oxidised [Al(OPh)₃-COMe₂-C₆H₆] to solanidan-3-one, m.p. 210—212°, [α]₁^β +45·8°±2°, hydrogenated (PtO₂-AcOH) to (II) but converted by similar (Na in boiling xylene) followed by pptn. with digitonin, whereby (II) is isolated. B₂O₃ at 300°/high vac. transforms the allo-alcohols into Δ^2 - (or Δ^3 -)allosolaniden, m.p. $145\cdot5-146\cdot5^\circ$, $[\alpha]_D^{20}+34\cdot0^\circ\pm3^\circ$, hydrogenated (PtO₂ in AcOH) to allosolanidan, m.p. $140-142^\circ$, $[\alpha]_D^{18}+34\cdot8^\circ\pm4^\circ$. M.p. are corr. $[\alpha]_D$ are in CHCl₃. H. W. #### VIII.—ORGANO-METALLIC COMPOUNDS. Stereochemistry of organic derivatives of phosphorus. I. Synthesis of acidic and basic dissymmetric tertiary phosphines. Optical resolution of phenyl-p-(carbomethoxy)phenyl-n-butylphosphine sulphide. W. C. Davies and F. G. Mann (J.C.S., 1944, 276—283).—p-C₆H₄Br·PCl₂ and HgPh₂ in N₂ give phenyl-p-bromophenyl-chlorophosphine (I), b.p. 203—204°/11 mm., which with Cl₂ followed by H₂O affords the -phosphonic acid, m.p. 174·5°, and with MgEtBr yields the -ethylphosphine, b.p. 136—138°/005 mm. MgBr·C₆H₄NMe₂ (special conditions of prep.) with (I) leads to phenyl-p-bromophenyl-p-dimethylaminophenylphosphine (II), m.p. 107—108° (also obtained by using the Li derivative), which with S in CS₂ forms the sulphide, m.p. 126°. The methodide, m.p. 158—159°, of this sulphide is produced with difficulty and reacts to give the metho-d-camphorsulphonate, m.p. 224—226° (decomp.), methobromide Me alcoholate, m.p. 145°, and metho-d-a-bromocamphorsulphonate, m.p. 198—199°. thesis of acidic and basic dissymmetric tertiary phosphines. Optical m.p. 145°, and metho-d-a-bromocamphorsulphonale, m.p. 198—199°, which could not be resolved. Phenyl-p-bromophenyl-p-dimethyl-aminophenylphosphine selenide has m.p. 135·5—136·5°. Mg 2-bromopyridine with (I) affords phenyl-p-bromophenyl-2-pyridylphosphine, m.p. 90—91° (picrate, m.p. 132°), converted into the sulphide, m.p. 109° [methiodide, m.p. 132—134° (decomp.)], which is too weakly basic for salt formation, as is also the sulphide, m.p. 115—116°, of the -3-pyridyl derivative [picrate, m.p. 143—144° (decomp.)]. p-OMe·C₈H₄·PCl₂ (III) with MgEtBr gives p-anisyldiethylphosphine (methiodide, m.p. 132—133°, lit. 91°), which is hydrolysed (HI)
to the p-hydroxyphenyl compound, b.p. 168—176°/19 mm. (methiodide, m.p. 168—169°). HgPh₂ and (III) yield phenyl-p-anisyl-chlorophosphine (IV), b.p. 137°/0·03 mm., which with MgBu°Br leads to the -n-butylphosphine, b.p. 139—141°/0·025 mm. This after hydrolysis (HI) with BzCl gives phenyl-p-benzoyloxyphenyl-n-butylphosphine, m.p. 91° (oxide, m.p. 136°), which forms the sulphide, m.p. 66—67°, hydrolysed to the hydroxysulphide, m.p. 97—98°. This sulphide condenses with CH₂Br·CO₂Et to phenyl-p-(carboxymethoxy)phenyl-n-butylphosphine sulphide, which with d-CHPhMe·NH₃Cl gives the salt, cryst. to the d-a-phenylethylamine salt of the sulphide, m.p. 209—210°, decomposed (H₂SO₄) to the l-sulphide, [M]₁₀¹⁶ —9·7° in C₆H₈ (l-NH₄ salt). From the mother-liquor is obtained the l-amine d-acid salt, m.p. 209—210°, decomposed to the d-sulphide, [M]₁₀¹⁶ +9·6° in C₆H₈ (d-NH₄ salt, [M]₁₄¹⁶ +12·2° in H₂O₁. MgEtBr and (IV) give phenyl-p-anisyl-ethylphosphine, b.p. 137°/0·1 mm. (methiodide, m.p. 114—115°), hydrolysed to the -p-hydroxy-phenyl compound, b.p. 160—175°/0·1 mm. (Bz derivative, m.p. 79—80°; benzoyloxyphosphine sulphide, m.p. 83—84°), which with S followed by CH₂Br·CO₂Et leads to phenyl-p-(carboxymethoxy)phenyl-ethylphosphine sulphide, m.p. 84° (Na salt; 1-phenylethylamine salt, m.p. 206—207°; d-sec.-butylamine salt, m.p. 189—190°; d-amino-camphor salt, m.p. 166—168°), which could not be resolved. MgPraBr and (IV) yield phenyl-p-anisyl-n-propylphosphine, b.p. 163-5°/0·3 mm. (methiodide, m.p. 114°), which with MgBr·C₃H₄Me affords the -p-tolylphosphine, m.p. 116—118° (p-chlorophenacyl bromide, m.p. 199°). Phenyl-p-bromophenyl-p-anisylphosphine, m.p. 71°, is similarly prepared. NH₄ palladochloride and (II) give dichlorobis(phenyl-p-bromophenyl-p-dimethylaminophenylphosphine)-palladium, partial m.p. 247—249°. Dichlorobis(phenyl-p-bromophenylethylphosphine)palladium, m.p. 172·5—174° (decomp.), is similarly prepared and both compounds appear to be homogeneous. PCl₃ and Mg 2-bromopyridine give tri-2-pyridyl-phosphine, m.p. 113—114°; the -arsine, m.p. 85°, is similarly obtained. The compounds are formulated abcP→X, where a, b, and c are unlike arylor alkyl groups, and X is oxide, sulphide, or selenide, and one compound has been resolved. Sulphides and sulphones derived from p-thiolphenylarsonic acid. J. F. Morgan and C. S. Hamilton (J. Amer. Chem. Soc., 1944, 66, 874—875).—p-NH₂·C₆H₄·[CH₂]₂·OH (prep. from the NO₂-compound by H₂-Raney Ni in COMe₂), m.p. 43—44°, b.p. 232—235° (decomp.)/38 mm. (hydrochloride, m.p. 170°), gives (Bart) p-β-hydroxyethylthiolphenylarsonic acid, dimorphic, m.p. 120·5—121° and 132—133°. p-AsO₃H₂·C₈H₄·SCN in boiling 10% NaOH gives an acid, ? p-SH·C₆H₄·AsO₃H₂, which with the appropriate halide in boiling NaOH-H₂O or -EtOH yields p-γ-hydroxy-n-propyl-, m.p. 116·3—117·5°, p-β-ethoxyethyl-, m.p. 121—122°, p-β-β'-hydroxy-cthoxyethyl- (Na salt, m.p. >250°), p-acetonyl-, m.p. 172·5°, p-carboxymethyl- (I), m.p. 192° (lit. 187°, 248—250°), p-carbethoxymethyl-, m.p. 123° [some (I) is also obtained], and p-2'-amino-4'-pyrimidyl-(II), m.p. 131·5—132°, -thiolphenylarsonic acid and 4-nitro-, m.p. 183°, and thence (H₂-Raney Ni in aq. NaHCO₃) 4-amino-4'-arsono-diphenyl sulphide, m.p. 211·5° (decomp.). 27·5% H₂O₂ oxidises these compounds [except (II), which decomposes] to p-β-hydroxy-ethane-, m.p. 182·5—184·5°, p-β-β'-hydroxyethoxyethoxyethane- (Na salt, m.p. 180·5°), p-acetone-, m.p. 202·5—203·5°, p-carboxymethane-, m.p. 188·5—184·5°, p-β-β'-hydroxyethoxyethoxyethane- (Na salt, m.p. 189°, and p-carbethoxymethane-, m.p. 165—166°, -sulphonyl-phenylarsonic acid and 4-nitro-, m.p. >250°, and 4-amino-4'-arsono-diphenyl sulphone, m.p. 229—230° (decomp.). M.p. are determined in a preheated bath to minimise anhydride formation. F. S. C. Factors determining the course and mechanism of Grignard reactions. XIV. Replacement of halogen atoms of aromatic halides with hydrogen atoms by the action of Grignard reagents and cobaltous chloride. M. S. Kharasch, D. C. Sayles, and E. K. Fields (J. Amer. Chem. Soc., 1944, 66, 481—482; cf. A., 1944, II, 223).—In presence of 5 mol.-% of CoCl₂, dihalogenated C₆H₄ derivatives are reduced by MgRBr (R = Mc, Et, or Ph) in Et₂O to the monohalogenated compound (usually 40—55%) or, if a large excess of MgRBr is used, to the hydrocarbon; polymerides are also formed. Polycyclic aryl bromides with MgBu^aBr give 44—62% of hydrocarbon, but p-C₆H₄PhBr gives also 1.3% of dixenyl. Use of MgPhBr gives also much Ph₂. Mg p-xenyl or 9-phenanthryl bromide with EtBr and CoCl₂ gives 100% of dixenyl and diphenanthryl, respectively. A free radical mechanism is postulated. R. S. C. IX.—PROTEINS. Methylation and acetylation of wool, silk fibroin, collagen, and gelatin. S. Blackburn and H. Phillips (Biochem. J., 1944, 38, 171—178; cf. B., 1941, II, 338).—Acetylation of wool with Ac₂O diminishes the extent of subsequent methylation of free CO₂H by Me₂SO₄, MeBr, or MeI. When wool and silk fibroin are treated with Ac₂O in MeOH, methylation of free CO₂H groups and N- and O-acetylation occur simultaneously. Peptide methylation of wool and esterification of its free CO₂H are not prevented by previous treatment with borax, HNO₂, or CH₂O. Esterification is increased if amide groups are removed by acid hydrolysis. Me₂SO₄ esterifies free CO₂H and causes peptide methylation of collagen, H₂SO₄ becoming covalently linked to proteins. When MeBr or MeI replaces Me₂SO₄, esterification occurs but peptide methylation takes place slowly or not at all. Reaction of casein with formaldehyde. V. Behaviour of the ε -amino-group of lysine and of the peptide groups. H. Nitschmann and H. Hadorn (Helv. Chim. Acta, 1944, 27, 299—312).—The ε -NH₂ of lysine (I) is primarily involved in the action of CH₂O on casein (II) at pH 5.6 and room temp. Comparison of the abilities of deaminated and ordinary (II) to unite with CH₂O and the diminution of the Van Slyke N caused by CH₂O tanning indicate that CH₂O and the free NH₂ of (I) react in the ratio 1:1. It is established that the amount of H₂O formed is equiv. to the CH₂O which reacts with (I). In addition to the NH₂ of (I), other groups are present in (II) which react with CH₂O in a weakly acid medium. These are probably peptide groups but their reaction with CH₂O is not accompanied by condensation, at any rate in the cold. The tanning action of CH₂O (loss of solubility; diminution of the ability to swell) appears to depend on the formation of CH₂ bridges between the NH₂ of (I) and the peptide groups whereby the protein mols. are united by main valencies. Blue chromo-protein of eggs of goose-barnacle.—See A., 1944, III, 537. ## X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES. Fundamental chemistry of lignin. K. Freudenberg (Svensk Kem. Tidskr., 1943, 55, 20; Chem.-Ztg., 1944, 68, 39—42).—A lecture. R. S. C. Colour reactions of lignin and their use in analytical chemistry. P. M. Isakov (J. Appl. Chem. Russ., 1943, 16, 234—240).—Drop reactions on newspaper paper (containing lignin) are different from those on filter-paper. Solutions of AuCl₃ give a black and of NH₄VO₃ a greenish-black spot. SnCl₂ and H₂PtCl₆ produce a stable orange spot. SnCl₂ and AgNO₃ form first AgCl and then Ag which is dissolved by Hg(NO₃)₂ solution. Picric acid and SnCl₅ form picramic acid. Co(NO₃)₂ gives a stable blue spot with KCNS and an azure spot with picric acid. Fe(NO₃)₃ and K₃Fe(CN)₆ give Turnbull's blue. Aq. NH₂Ph gives a yellow and aq. benzidine an orange coloration. Dil. HNO₃ can be used as a sympathetic ink. I. J. B. J. J. B. Constitution of shellac. Increased yield of aleuritic acid. B. S. Gidvani (J.C.S., 1944, 306).—By a new method of separation, the yield of aleuritic acid has been increased to nearly 43%. The previous formulæ for shellac resin may not be correct and shellolic acid is possibly not a primary product of hydrolysis. F. R. S. Dyes from Ammothamnus lehmanni, Bge. A. Sadikov and G. Lazurevski (J. Gen. Chem. Russ., 1943, 13, 309—313).—The crude dye from this Central Asiatic plant (obtained by extraction with alkali and acidification of the extract, in 14% yield from roots, 4% from stems and leaves), after fractional extraction with alkali, was divided into two parts by extraction with EtOAc. The sol. part, after purification by pptn. from EtOH, yielded an orange-red amorphous compound, C₁₆H₂₂O₄ (I), m.p. 96—98° (Ac₃ derivative, m.p. 107—109°); the insol. portion, recryst. from EtOH, yielded dark red plates, decomp. >360°, of an acidic compound (II, probably C₁₆H₂₂O₇N₂. (I) is pptd. from faintly alkaline solution by CO₂ and gives a dark green coloration with FeCl₃; distillation of (I) with Zn dust gave no recognisable products, oxidation with alkaline KMnO₄ gave H₂C₂O₄, and fusion with NaOH yielded phloroglucinol and AcOH. The similarity of (I) and tetrahydro-a-mangostene is indicated. (I) and (II) are acid dyes, satisfactory for silk. Chemical examination of root of Centaurea behen (Linn.). P. N. Bhargava and S. Dutt (Proc. Indian Acad. Sci., 1944, 19, A, 163—166).—Extraction of the root of C. behen ("behman") with EtOH affords "behnin," $C_{23}H_{43}O_2$ -OMe, sinters 72°, m.p. 79—80° (tetrabromide, m.p. 67°), which has properties of a $\Delta^{a\beta}$ -unsaturated lactone. #### INDEX OF AUTHORS' NAMES, A II. SEPTEMBER, 1944. Aul., A., 281. Albertson, N. F., 274. Amlard, G., 270. Anderson, L. C., 258. Andrews, L. J., 261. Antoschulskaja, M. M., 277. Archer, S., 274. Ardis, A. E., 255. Ardis, A. E., 255. BACHMANN, P., 263. Bachmann, W. E., 265. Bacr, H., 260. Baker, J. W., 245. Baker, R. H., 246. Baltzly, R., 255. Barnes, D. K., 264. Barthel, W. F., 260. Bauer, H., 266. Bedoukian, P. Z., 248. Beer, A. A., 273. Berliner, E., 254. Bhargava, P. N., 284. Billman, J. H., 249, 264. Billman, J. H., 249, 264. Blackburn, S., 250, 284. Blank, F., 259. Blaschko, H., 271. Bokil, K. V., 259. Bovarnick, M. R., 274. Brewster, R. O., 256. Brunings, K. J., 276. Buck, J. S., 255. Burket, S. C., 256. Buu-Hoi, 271.
Bull-Hoi, 271. CAGNIANT, P., 271. Campbell, B. K., 258. Campbell, K. N., 258. Campoell, K. N., 258. Cannon, G. W., 250. Caughlan, J. A., 279. Chandler, L. B., 251. Channon, H. J., 255. Charmbury, H. B., 255. Chien, T. L., 257. Chien, T. J. 41., 257. Chu, L. J. Y., 256. Clemo, G. R., 276. Consden, R., 250. Cook, J. W., 254. Corwin, A. H., 276. Cristol, S. J., 261. Cromwell, N. H., 279. Cuenin, H., 277. DAVIES, W. C., 282. Delépine, M., 270. Deliwala, C. V., 279. Dutt, S., 284. ELKINA, E. I., 273. Erlenmeyer, H., 280. Euler, H. von, 273. Evans, T. H., 262. FARTMANN, B., 253. Fedortschenkova, A. M., 279. Fedortschenkova, A. M., 279 Fentress, J., 250. Feofilaktov, V. V., 247, 259. Fields, E. K., 283. Finkelstein, J., 277. Fisher, H. E., 262. Fox, D. E., 257. Freudenberg, K., 284. Frey, C., 268. Furrer, M., 266. Fuson, R. C., 263. GANAPATHI, K., 279. Gardner, J. A. F., 262. Gardner, J. A. F., 262. Gauthier, B., 257. Geissman, T. A., 270. Gerhardt, F. H., 275. Gertler, S. I., 260. Gilbert, G. F., 279. Ginsberg, H. F., 258. Goldblatt, L. A., 245. Goldstein, H., 259, 276. Graf, W., 280. Graf, W., 280. HADDRN, H., 284. Hagemann, F., 247. Hamilton, C. S., 275, 283. Hardegger, E., 259. Harwood, H. J., 248. Hase, M., 251. Haskelberg, L., 260. Hassid, W. Z., 245. Heaton, C. D., 270. Hegsted, D. M., 250. Helferich, B., 251. Hertel, E., 253. Heusser, H., 264. Hibbert, H., 262. Hixon, R. M., 251. Hockett, R. C., 251. Hockett, R. C., 251. Hoberg, B., 273. Holmes, H. L., 281. Hu, M., 271. Huerr, C. W., 248. Huser, G., 276. Isakov, P. M., 284. Isbell, H. S., 250. Ismail, A. F. A., 264. Ivanov, A., 247. JACINI, G., 271. Jacobsen, R. P., 265. Jones, G. D., 249. KARRER, P., 271, 273, 279, 280. Kehlstadt, H. L., 273. Kbarasch, M. S., 283. Koechlin, B., 267. Krishnaswamy, B., 270. Kulka, M., 262. Lane, J. F., 246, 250. Langsjoen, A., 249. Lardon, A., 264. Laughland, D. H., 256. Lavollay, J., 271. Lavollay, J., 271. Lazurevski, G., 280, 284. Lehr, H., 280. Leiser, P., 271, 280. Lo, C. P., 256. Lo, C. P., 256. McCready, R. M., 245. McGinnis, N. A., 254. McKeever, C. H., 263. McKinley, J. B., 256. McLaughlin, P. J., 278. Mann, F. G., 282. Manske, R. H. F., 281. Marsh, J. L., 268. Mchat, S. V., 259. Mclamed, S., 263. Menon, K. N., 280 Meunier, P., 264. Mills, G. T., 255. Mitchell, L., 262. Mitchell, S., 254. Mitts, E., 251. Morgan, J. F., 283. Morin, R. D., 265. Mueller, G. P., 256, 257, 262. Muller, P. H., 267, 268. Muhr, A. C., 269. Mustafa, A., 271. Naraynan, E. K., 251. NARAYANAN, E. K., 251. . Nargund, K. S., 259. Naves, Y. R., 263. Neumann, M. M. C., 249. Nickels, J. E., 250. Nightingale, D., 247. Nitschmann, H., 284. ORCHIN, M., 254. Palkin, S., 245. Papa, D., 258. Parchomenko, I., 250. Parker, E. E., 249. Petrov, A. A., 245. Petrov, K. D., 279. Phillips, H., 250, 284. Plattner, P. A., 252, 259, 264, 266. Porai-Koschitz, B. A., 277. Powell, S. G., 247. Preitner, G., 259. Prelog, V., 280, 281, 282. Preobrashenski, N. A., 273. Price, C. C., 256, 257, 262. Puschin, N. A., 250. Puschin, N. A., 250. RABJOIN, N. P., 263. Raiford, L. C., 257. Ralston, A. W., 248. Ramart-Lucas, P., 264. Rangaswami, S., 270. Rao, P. R., 271. Rao, P. S., 271. Rapoport, P. L., 252. Reichel, L., 252. Reichel, L., 252. Reichel, E., 276. Riley, R. F., 264, 267, 281. Rey, E., 269. Richter, F., 276. Riley, R. F., 248. Ristic, M., 260. Roberts, J. D., 246. Rosenthal, S. M., 266. Ruckstuhl, H., 273. Ruggli, P., 277, 278. Rupe, H., 268. Rutschmann, J., 271. Ruzicka, L., 266, 269. SADIKOV, A., 280, 284. Sadikov, A., 280, 284. Salomon, H., 273. Sanz, M. C., 279. Sayles, D. C., 283. Schemjakin, M. M., 246, 250, 261, Schemjakin, M. M., 249, 273. Schickle, R., 252. Schinz, H., 267, 268. Schönberg, A., 264, 271. Schwenk, E., 258. Scel, F., 246. Scidel, C. F., 267. Seshadri, T. R., 270, 271. Shen, Z. I., 257. Shenk, W. J., jun., 263. Sherwood, L. T., jun., 250. Sidhu, S. S., 266. Simpson, J. C. E., 270. Sirotkina, K. I., 259. Smith, C. W., 274. Smith, G. F., 276. Snyder, H. R., 250, 274. Soper, Q. F., 283. Spring, F. S., 274. Stacey, M., 249. Steudel, J., 252. Stimnel, B. F., 265. Suter, C. M., 274. Sutton, D. A., 248. Swan, G. A., 276. Szpilfogel, S., 282. Thompson, H. W., 249. Trachtenberg, D. M., 250. Trevoy, L. W., 281. Trivedi, J. J., 259. Tuan, T. S., 257. Turova-Polak, M. B., 252. Unovic, J., 250. Vasiunina, N. A., 273. Vignau, M., 271. Von, I., 260. Vulíson, N. S., 246. WALLACE, W. E., 263. Walter, E. D., 269. Wagner, E. C., 266, 278. Wang, S., 271. Wardwell, E. D., 250. Weiss, P. C., 246. Weizmann, C., 260. Whitman, B., 258. Williams, R. T., 255. Williams, R. T., 255. Wolnak, B., 264. Woodward, R. B., 260. Wright, C. C., 255. Wright, C. C., 255. Young, E. P. H., 274. Young, L., 256. Young, W. G., 246, 261. Zaitzeva, V. N., 247, 259. Zalan, E., 280, 281. Zomlefer, J., 249. # JUDACTAN ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS Each Batch subjected to INDEPENDENT ANALYSIS before label is printed You are invited to compare the above actual batch analysis with the purities ACTUAL BATCH **ANALYSIS** guaranteed by the specifications of any competing maker in this country or abroad THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD. Chemical Manufacturers, Judex Works, Sudbury, Middlesex