BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

DECEMBER, 1944

A II—ORGANIC CHEMISTRY

CONTENTS

ı, Aliphatic	· · · 357	vi, Heterocyclic	375
II, Sugars and Glucosides .	361	VII, Alkaloids	383
III, Homocyclic	362	VIII, Organo-metallic Compounds	383
IV, Sterols and Steroid Sapogenin	s 373	ıx, Proteins	384
v, Terpenes and Triterpenoid Sa	pogenins 374	x, Miscellaneous Unclassifiable Substances	384

Published by the

BUREAU OF CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

(Supported by the Chemical Society, the Society of Chemical Industry, the Physiological Society, the Biochemical Society, the Anatomical Society of Great Britain and Ireland, and the Society for Experimental Biology.)

Determination 10

SODIUM

Gravimetric assay with DIHYDROXYTARTARIC ACID URANYL NICKEL ACETATE URANYL MAGNESIUM ACETATE

The separation and determination of SODIUM and many other metals forms the subject of

"ORGANIC REAGENTS FOR METALS"

4th Edition, 1943

4/- post free

The Book and the Reagents produced and distributed by

HOPKIN & WILLIAMS 16-17 ST. CROSS STREET, LONDON, E.C.I

CHEMICAL SOCIETY MEMORIAL LECTURES

VOLUME I, 1893-1900

(Reproduced by a photolithographic process)

Price 10s. 6d., postage 7d.

CONTENTS

THE STAS MEMORIAL LECTURE. By J. W. MALLETT, F.R.S. With an additional Facsimile Letter of Stas.

Delivered December 13, 1892 By T. E. THORPE, D.Sc., Delivered February 20, 1893 THE KOPP MEMORIAL LECTURE.

THE MARIGNAC MEMORIAL LECTURE. By P. T. CLEVE. 1895 THE HOFMANN MEMORIAL LECTURE. By the Rt. Hon. Lord PLAYFAIR, G.C.B., F.R.S.; Sir F. A. ABEL, Bart., K.C.B., F.R.S.; W. H. PERKIN, Ph.D., D.C.L., F.R.S.; H. E. ARMSTRONG. Delivered May 5, 1893

THE HELMHOLTZ MEMORIAL LECTURE. By G. A. FITZ-GERALD, M.A., D.Sc., F.R.S. Delivered January 23, 1896

THE LOTHAR MEYER MEMORIAL LECTURE. By P. P. BEDSON, M.A., D.Sc., F.I.C. Delivered May 28, 1896

By P. FRANKLAND, THE PASTEUR MEMORIAL LECTURE. Ph.D., B.Sc., F.R.S. Delivered March 25, 1897

. By F. R. Japp, F.R.S. Delivered December 15, 1897 THE KEKULE MEMORIAL LECTURE.

THE VICTOR MEYER MEMORIAL LECTURE. By T. E. THORPE, Ph.D., D.Sc., LL.D., F.R.S. Delivered February 8, 1900 THE BUNSEN MEMORIAL LECTURE. By Sir H. E. ROSCOB, B.A., Ph.D., D.C.L., LL.D., D.Sc., F.R.S. Delivered March 29, 1900

THE FRIEDEL MEMORIAL LECTURE. By J. M. CRAFTS. 1900 THE NILSON MEMORIAL LECTURE. By O. PETTERSSON.

Delivered July 5, 1900

Publishers: The Chemical Society, Burlington House, Piccadilly, London, W.1

BUREAU OF CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

Chairman: L. H. LAMPITT, D.Sc., F.R.I.C.

Vice-Chairman: B. A. McSWINEY, B.A., M.B., Sc.D., F.R.S.

Hon. Treasurer: F. P. DUNN, B.Sc., F.R.I.C.

Editor and Secretary: T. F. BURTON, B.Sc.

Indexer: MARGARET LE PLA, B.Sc.

JULIAN L. BAKER, F.R.I.C. G. M. BENNETT, M.A., Sc.D., F.R.I.C. H. W. CREMER, M.Sc., F.R.I.C., M.I.Chem.E.

H. J. T. ELLINGHAM, B.Sc., Ph.D., F.R.I.C. H. McCOMBIE, D.S.O., M.C., Ph.D., D.Sc. E. B. HUGHES, D.Sc., F.R.I.C.

L. A. JORDAN, D.Sc., F.R.I.C. G. A. R. KON, M.A., D.Sc., F.R.S. F.R.I.C.

SAMSON WRIGHT, M.D., F.R.C.P. F. G. YOUNG, D.Sc., Ph.D.

Assistant Editors:

J. H. BIRKINSHAW, D.Sc., F.R.I.C.* H. BURTON, M.Sc., D.Sc., F.R.I.C.

F. G. CROSSE, F.R.I.C.

A. A. ELDRIDGE, B.Sc., F.R.I.C. E. B. HUGHES, D.Sc., F.R.I.C.

W. JEVONS, D.Sc., Ph.D. SAMSON WRIGHT, M.D., F.R.C.P.* E. E. TURNER, M.A., D.Sc., F.R.I.C., F.R.S.

F. L. USHER, D.Sc. H. WREN, M.A., D.Sc., Ph.D.

* Assisted by J. D. BOYD (Anatomy), A. HADDOW (Tumours), F. O. HOWITT (Biochemistry), A. G. POLLARD (Plant Physiology and Agriculture), K. TANSLEY (Sense Organs), L. G. G. WARNE (Plant Physiology), G. P. WELLS (Comparative Physiology), V. J. WOOLLEY (Pharmacology), and F. G. YOUNG (Ductless Glands). Assisted by A. J. E. WELCH (Physical Chemistry).

PUBLICATIONS OF THE BUREAU

ABSTRACTS SECTIONS

A I-GENERAL, PHYSICAL, AND INORGANIC CHEMISTRY.

A II-ORGANIC CHEMISTRY.

A III-PHYSIOLOGY. BIOCHEMISTRY. ANATOMY,

B I-CHEMICAL ENGINEERING AND INDUSTRIAL INORGANIC CHEMISTRY.

B II-INDUSTRIAL ORGANIC CHEMISTRY.

B III-AGRICULTURE, FOODS, SANITATION, ETC.

C-ANALYSIS AND APPARATUS.

COLLECTIVE INDEXES

DECENNIAL INDEX 1923-1932.

QUINQUENNIAL INDEX 1933-1937.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II-Organic Chemistry.

DECEMBER, 1944.

I.—ALIPHATIC.

Physical properties of aliphatic compounds.—See A., 1944, I, 242. Free radicals in polymerisation processes.—See A., 1944, I, 287.

Catalytic aromatisation of branched-chain aliphatic hydrocarbons. V. I. Komarewsky and W. C. Shand (J. Amer. Chem. Soc., 1944, 66, 1118—1119).—Aliphatic hydrocarbons containing a quaternary C, which does not permit direct aromatisation, are dehydrocyclised in presence of $\rm Cr_2O_3-Al_2O_3$ catalysts to aromatic hydrocarbons, indicating that isomerisation occurs during dehydrocyclisation. Dehydrocyclisation of aliphatic hydrocarbons having a structure which allows cyclisation in > one way takes place by a mechanism permitting their direct formation. W. R. A.

Properties of synthetic lubricants. I. Synthesis and properties of λ -n-decyldocosane. S. Klos, E. Neuman-Piljat, and S. Piljat (J. Appl. Chem. Russ., 1940, 13, 1369—1374).— λ -n-Decyldocosane, b.p. 233—235°/1 mm., is obtained by reduction (H₂-Ni at 240—245°) of the alcohol derived from Et laurate and n-C₁₀H₂₁·MgBr. J. J. B.

Application of infra-red absorption spectra to determination of structure of aliphatic ethylenic hydrocarbons.—See A., 1944, I, 236.

Thermal polymerisation and cyclic dimerisation of isobutylene. J. B. McKinley (Univ. Pittsburgh Bull., 1944, 40, 185—194).—Polymerisation of isobutene at 365—430°/1280—5350 lb. per sq. in. gives a liquid (yield up to 81%) from which a cyclic dimer, 1:1:3-trimethylcyclopentane (I), b.p. 105·0° (yield up to 23%), is obtained on fractionation. 1-Hydroxy-1:3-dimethylcyclopentane (from 2-methylcyclopentanone) with dry HCl at 2° gives 1-chloro-1:3-dimethylcyclopentane, b.p. 33·2°/15 mm., which with ZnMe2 or MgMeI yields (I) for comparison. The effect of variables on the polymerisation and its mechanism are discussed.

D. G.

a-Bromo-Δβ-heptene. R. Delaby and J. Hubert (Bull. Soc. chim., 1943, [v], 10, 573—575; cf. A., 1937, I, 282).—On fractionating the product obtained from vinylbutylcarbinol, PBr₃, and C₅H₅N, pure CHBu^a:CH·CH₂Br (I) (trans), b.p. 73—74°/19 mm., is isolable, and fractions of b.p. ~60—63°/19 mm. contain some CHBu^aBr·CH·CH₂; Raman spectra of the fractions are examined. (I) and Na-Et₂O yield Δ^a-tetradecadiene, b.p. 111—114°/15 mm. (liquid bromide) (cf. Prévost et al., A., 1932, 40).

A. T. P.

Co-polymerisation of acetylene and butylene in silent electric discharge. A. D. Petrov and D. N. Andreev (J. Appl. Chem. Russ., 1940, 13, 1341—1347).— Δ^a -Octene and branched $C_{12}H_{26}$ to $C_{16}H_{34}$ are found in the polymerisate of Δ^a -butene (I). Co-polymerisation of C_2H_2 and (I) gives 30% of hydrocarbons boiling at <130° and containing acetylenic hydrocarbons, and 70% of higher-boiling hydrocarbons which at 200° are transformed into a porous rubber-like mass.

m.p. ~-30°, which passes into PhNO₂ when exposed to air. In Et₂O cyclohexene adds NO₂Cl vigorously, giving 1-chloro-2-nitrocyclohexane, b.p. 122°/9 mm. CH₂Cl·NO₂, b.p. 122—123°, is obtained from CH₂N₂ and NO₂Cl in Et₂O at 0°. Et chloronitroacetate, b.p. 88°/0·04 mm., is obtained in small yield with CH₂Cl·NO₂ from CHN₂·CO₂Et in well-cooled Et₂O. NO₂·CH₂·CO₂E is smoothly transformed by Cl₂ in H₂O into dichloronitromethane, b.p. 106—107°. Gradual addition of saturated K₂CO₃ to a mixture of CH₂O and CH₂Cl·NO₂ in H₂O affords NO₂·CHCl·CH₂·OH, converted by PCl₃ into aβ-dichloro-a-nitroethane, b.p. 124°/10 mm., and by SOCl₂ into di-β-chloro-β-nitroethyl sulphite, b.p. 147°/10 mm. CCl₃·CO₂H and CH₂Cl·CN at 135° yield trichloroacetylchloroacetamide, m.p. 96°. PhOH and NO₂Cl in cold Et₂O give only σ-NO₂·C₆H₄·OH whereas at room temp. the product is 2: 4:6:1-NO₂·C₆H₂Cl₂·OH. PhOMe and NO₂Cl afford a very unstable adduct, b.p. 32°/12 mm., which loses Cl and N, leaving PhOMe. Solid C₁₀H₈ reacts very vigorously with NO₂Cl, giving a mixture of 1-C₁₀H₇·Cl and 1-C₁₀H₇·NO₂.

Electrochemical oxidation of *n*-butyl alcohol.—Sec A., 1944, I, 289.

Preparation of silicon tetrachloride and its use as a basis for obtaining silicic acid esters.—See A., 1944, I, 291.

Action of chromia catalyst on aliphatic iso-alcohols and -aldehydes. V. I. Komarcwsky and L. G. Smith (J. Amer. Chem. Soc., 1944, 66, 1116—1117).—At atm. pressure in presence of Cr_2O_2 iso- $\text{C}_b\text{H}_1\cdot\text{OH}$ forms $\text{COBu}\beta_2$ by a condensation-dehydrogenation (c-d) process. isoAlcohols, having an a-substituted C, give no (c-d) reactions but are dehydrogenated to the corresponding aldehydes which remain unaffected at even relatively high pressures. BußCHO at higher pressure is converted into $\beta\zeta$ -dimethyl- Δ^γ -heptene and at atm. pressure into $\text{COBu}\beta_2$ in presence of Cr_2O_3 . These results support the aldol mechanism. W. R. A.

Substituted acetylenes. XLVII. Acetylenic alcohols from αβ-unsaturated aldehydes and ketones. G. F. Hennion and D. J. Lieb (J. Amer. Chem. Soc., 1944, 66, 1289—1290; cf. A., 1944, II, 29).—1: 2-Addition of CH*CNa to compounds containing C:C-CO (cf. Jones et al., A., 1943, II, 53) occurs in Et₂O-liquid NH₃ at -60°, yielding CHMe:CH·CH(OH)-C*CH (I) (46%), b.p. 66°/20 mm., y-methyl-Δδ-penten-Δα-inen-y-ol (21%), b.p. 58—59°/60 mm., y-methyl-(27%), b.p. 61—62°/25 mm., and ye-dimethyl-Δδ-n-hexen-Δα-inen-y-ol (24%), b.p. 65—66°/17 mm., and e-phenyl-γ-methyl-Δδ-penten-Δα-inen-y-ol (20%), m.p. 50—51°, b.p. 114—116°/4 mm. With HgO and a little BF₃ in MeOH, (I) gives 2: 5-dimethoxy-2: 5-dimethyl-3: 6-dipropenyl-1: 4-dioxan (22%), m.p. 119—120°. n and d for the products are recorded.

[Ethylene] glycol complexes of the light transition metals. R. Gomer and G. N. Tyson, jun. (J. Amer. Chem. Soc., 1944, 66, 1331—1333).—The under-mentioned compounds of metal salts with $(CH_2 \cdot OH)_2$ (I) are prepared. Magnetic data, which are recorded, show that all are ionic. Colours of Co^{II} compounds are independent of the geometric form. The no. of unpaired electrons is indicated by UE below. $CuSO_4$,(I) and $CuSO_4$,2(I), light blue $(UE\ 1)$; $FeSO_4$,(I), $+2H_2O$, light yellow $(UE\ 4)$; X,2(I), $+H_2O$, where $X=NiSO_4$, light green $(UE\ 2)$, $CoCl_2$, dark blue $(UE\ 3)$, or $MnCl_2$, pale rose $(UE\ 5)$; $FeSO_4$,3(I), light yellow $(UE\ 4)$; $CoCl_2$,3(I), dark blue; X,3(I), $+H_2O$, where $X=NiSO_4$, light green $(UE\ 2)$, $CoCl_2$, pink $(UE\ 3)$, or $FeSO_4$, yellowish-green; $NiSO_4$,4(I), light green $(UE\ 2)$. R. S. C.

Halogen derivatives of cineole.—See A., 1944, II, 374.

Dihydroxypropyl bismuthate, m.p. 240—245° (decomp.).—See A., 1944, III, 684.

1944, 111, 084.

αγ: βδ-Dimethylene- and βδ-methylene-D-epirhamnitol. A. T. Ness, R. M. Hann, and C. S. Hudson (J. Amer. Chem. Soc., 1941, 66, 1235—1237).—αγ: βδ-Dimethylene-D-sorbitol with p-C_δH₄Me·SO₃H in C₅H₅N at 0° and later 23° gives the ζ-p-toluenesulphonate (82%), m.p. 160—161°, $[a]_D^{20} = 10 \cdot 0^\circ$ in CHCl₃, converted by NaI in, best (90%), COMe₂ at 100° into the ζ-todide, m.p. 177—179°, $[a]_D^{20} = 21 \cdot 7^\circ$ in CHCl₃, whence H₂-Raney Ni in aq. NaOH at slightly >1 atm gives αγ: βδ-dimethylene-D-epirhamnitol (I) (89%), m.p. 182—183°, $[a]_D^{20} = 40 \cdot 9^\circ$ in H₂O. D-epiRhamnitol (prep. from methyl-β-D-epirhamnoside), conc. HCl, and 37% CH₂O at room temp. (4 days) over NaOH-H₂SO₄ give (I), $[a]_D^{20} = 40 \cdot 6^\circ$ in H₂O. Ac₂O-358

AcOH-H₂SO₄ at 0° converts (I) into γ-acetoxymethyl-βδ-methylene-Depirhamnitol aε-diacetate (87%), m.p. 116—117°, [a] $^{20}_{1}$ +5·3° in CHCl₃, converted by NaOMe-CHCl₃-MeOH into βδ-methylene-D-epirhamnitol (100%), m.p. 176—177°, [a] $^{20}_{1}$ —20·2° in H₂O, which is stable to aq. HIO₄ at 25° and in Ac₂O-C₅H₅N at 25° (3 days) yields the aγε-triacetate, m.p. 149—150°, [a] $^{20}_{1}$ —0·6° in CHCl₃, —1·8° in COMe₂. Structures are proved by the reactions described. M.p. are corr. R. S. C. are corr.

are corr.

Carbohydrate C-nitro-alcohols. α-Nitro-α-deoxy-D-mannitol. J. C. Sowden and H. O. L. Fischer (J. Amer. Chem. Soc., 1944, 66, 1312—1314).—4: 6-Benzylideneglucose with NH₂OH-EtOH at 70° gives the oxime (83%), m.p. 195° (decomp.). [a]₂²⁰ - 72° in C_bH₃N, converted by Ac₂O-NaOAc at 120—125° into 4: 6-benzylidenegluconitrile 2: 3: 5-triacetate, m.p. 135·5—136°, [a]₂²⁰ +44° in CHCl₃, which with MeNO₂ and NaOMe in MeOH at ~5° (42 hr.) yields α-nitro-δζ-benzylidene-α-deoxy-D-mannitol (I) (31%), m.p. 146—147°, [a]₂²⁰ -70·4° in H₂O (cf. Pictet et al., A., 1922, i, 4), the corresponding sorbitol derivative being sol. In 0·1N·H₂SO₄ at 70° (I) gives α-nitro-α-deoxy-D-mannitol (78%), m.p. 134·5—135°, [a]₂²⁰ -7·0° in H₂O, which gives a red colour in the Griess-Ilosvay test and reduces hot Fehling's solution. H₂-Raney Ni reduces (I) at room temp. to α-amino-δζ-benzylidene-α-deoxymannitol [oxalate, m.p. 208° (decomp.), [a]₂²⁰ -37° in H₂O], whence dil. H₂SO₄ at 70° yields α-amino-deoxymannitol [oxalate, m.p. 183—184° (decomp.), [a]₂²¹ +5·0° in H₂O]. ~8% H₂SO₄ at 35—40° converts (I) into mannose, which is isolated as phenyl- or phenyl-a-methyl-hydrazone. R. S. C. isolated as phenyl- or phenyl-a-methyl-hydrazone.

Peroxidation of ethyl ether. R. Viallard (Bull. Soc. chim., 1943, [v], 10, 512-516).—Analysis of the products formed from Et₂O and O_3 indicates the formation of dihydroperoxydiethyl oxide ozonide (I) and O_3 :O(CHMe·O₂H)₂; (I) would yield MeCHO thus: O_3 :O(CHMe·O₂H)₃ \rightarrow OH·O(:O₃)·CHMe·O₂H +MeCHO. A. T. P.

[Oxidation of disopropyl ether.] G. Wittig (Ber., 1942, 75, [B], 1301).—In reply to the statement that "monomeric ketone peroxides" have not yet been discovered (Rieche et al., A., 1943, II, 79) it is pointed out that monomeric fluorenone peroxide has been described by Wittig et al. (A., 1942, II, 49).

described by Wittig et al. (A., 1942, II, 49).

Acetyl phosphate: chemistry, determination, and synthesis. F. Lipmann and L. C. Tuttle (J. Biol. Chem., 1944, 153, 571—582).—
The synthesis of AcH₂PO₄ (I) (cf. Lynen, A., 1943, II, 250) is simplified. Ag₃PO₄+2H₃PO₄ and AcCl-Et₂O give a product which is treated with aq. Na₂CO₃ (to pH 3—3·5); AcOH is removed by Et₂O, aq. NaOH added (to pH 7), and Na₃PO₄ frozen out and filtered off from (I) at >-5°. The Ag₂ salt is prepared (cf. loc. cit.), and similarly the Ag₃ salts COEt·O·PO(OAg)₂ and COPr-O·PO(OAg)₂. From (CH₂·COCl)₂ and Ag₃PO₄-H₃PO₄ (removing (CH₂·CO₂H)₂ by EtOAc], a mixture of succinyl phosphate (40%) and diphosphate (60%) is similarly obtained. The rate of decomp. of (I) is studied under various conditions. Max. stability is at pH 5—6. The hydrolysis of (I) by 0·5n·HCl is very greatly accelerated by (NH₄)₈Mo₇O₂₄; rates are identical for (I) prepared as above or from AcCO₂H and B. delbrückii (cf. A., 1940, II, 266). Methods of determining (I), depending on MoO₄" colorimetry and on the solubility of AcCaPO₄ are described (cf. C., 1945, Part I).

Inhibition of eatalysed oxidations by hæmins.—See A., 1944, III, 838.

Inhibition of catalysed oxidations by hæmins.—See A., 1944, III, 838.

Preparation of glucose 1-phosphate. J. B. Sumner and G. F. Somers (Arch. Biochem., 1944, 4, 11—13).—A modification of the procedure of Green and Stumpf (A., 1942, III, 419), in which a preliminary digestion of dextrins with pancreatic amylase is introduced, is given.

Action of ozone on thioethers. H. Böhme and Harriet Fischer (Ber., 1942, 75, [B], 1310—1311).—The sulphide, dissolved in abs. (Ber., 1942, 75, [B], 1310-1311).—The sulphide, dissolved in aos. CHCl₃, is saturated with O₂-O₃ at 0° and the solvent is removed in vac. at room temp. or 0°. Thus are obtained: Me₂SO₂, Et₂SO₂, (Cl·[CH₃]₂)₂SO₂, PhMeSO₂, CH₂Ph·SO₂Et, and (CH₂Ph)₂SO₂. The isolation of (CH₂Ph)₂SO by use of an insufficiency of O₃ indicates the intermediate production of sulphoxides. CH₂Cl Et sulphoxide H W has b.p. 70°/0.2 mm.

New synthesis of β -keto-esters of the type, $COR \cdot CH_2 \cdot CO_2 \cdot Et$. D. S. Breslow, E. Baumgarten, and C. R. Hauser (J. Amer. Chem. Soc., 1944, 66, 1286—1288).—Treating CO₂Et-CH₂·CO₂Bu^y (I) with Mg turnings and a little CCl₄ in boiling EtOH or with Mg(OEt)₂-Et₂O and then RCOCl gives COR·CH(CO₂Et)·CO₂Bu^γ, which with a little p-C₆H₄Me·SO₃H in boiling C₆H₆ gives CMe₂·CH₂ and COR·CH₂·CO₂Et (cf. A., 1944, II, 320). Decomp. of CHBz(CO₂Et)₂ in steam gives only a poor yield of CH₂Bz·CO₂Et (cf. Bernhard, A., 1895, i, 93) and the method is not well applicable to aliphatic compounds. Prep. of (I) in 48-55% yield from CH₂(CO₂Et)₂ is described. The synthesis is applied to yield COEt·CH₂·CO₂Et (63%), Et β -keto- β -cyclohexyl- (65%), b.p. $146-150^{\circ}/18$ mm., and $-\beta$ -2-furyl-propionate (70%), b.p. $137-139^{\circ}/9$ -5 mm., CH₂Ph·CO·CH₂·CO₂Et (47%), b.p. $154-156^{\circ}/9$ mm., and CHMe:CH·CO·CH₂·CO₂Et (35%), b.p. $101-156^{\circ}/9$ mm., G., and CHMe:CH·CO·CH₂·CO₃Et (35%), b.p. $101-156^{\circ}/9$ mm. (C., cell m. $150^{\circ}/9$). CHR₁₂(CO Et) yields 105°/15 mm. (Cu salt, m.p. 159°). CHBu^a(CO₂Et)₂ yields CO₂Et·CHBu^a·CO₂b, b.p. 90—107°/9·5 mm., and thence CO₂Et·CHBu^a·CO₂Bu^y, b.p. 126—128°/15 mm., which, as above, gives Et a-benzoyl-n-hexoate, b.p. 157—161°/5 mm. (derived amide,

m.p. 153-154°). R. S. C.

Synthesis, some derivatives, and metabolism of αβ-diketo-octoic acid.—See A., 1944, II, 379.

Autoxidation of oxygen-active acids. VII. Action of molecular oxygen on methyl licanate. W. Treibs (Ber., 1942, 75, [B], 1373— 1376).—The conjugated triene system of Me licanate [γ-keto-Δθκμ. octatrienoate] (I) is responsible for the reaction between the ester and mol. O₂ whereas the CO group takes no direct part but merely acts as an accelerating catalyst. The course of the reaction is identical with that of elæostearic esters. (I) boils unchanged at 240—242°/20 mm. but after long heating at 280° shows signs of incipient cyclisation and simultaneous dimerisation. It can be kept unchanged for months at 20° in sealed vessels under N, The viscosity of (I) increases very greatly after absorption of a little O2, showing immediate mol. enlargement. The absorption of O1 by (I) and Me elæostearate (II) when spread on glass plates is found gravimetrically to be closely similar and different from that of esters with isolated double linkings. The autoxidative similarity of (I) and (II) is shown particularly by the alteration of n and d in the products. Similar results are obtained by periodic examination of the autoxidation products with MeMeI. Licanic acid and boiling Ac₂O give a polyfunctional material as a dry, very hard film in place of the expected acetate.

Production of succinic acid.—See B., 1944, II, 303.

Synthesis of a-bromo-aldehydes. P. Z. Bedoukian (J. Amer. Chem. Soc., 1944, 66, 1325—1327).—Converting aldehydes by boiling Ac₂O-KOAc into the enol acetates (35–80%) and adding to these in CCl₄ Br (1 mol.) and then an excess of MeOH gives CHRBr·CH(OMe)₂ (75–80%), which are stable when pure but are very sensitive to acidic impurities and in hot acid (HCl or 50% citics acid) give 25–26% of CHRBr·CHO. very sensitive to acidic impurities and in hot acid (HCl or 00% citric acid) give 25—95% of CHRBr·CHO. Thus are obtained the enol acetates of Pr\$CHO, b.p. 124—126°, n-C₆H₁₃·CHO, b.p. 88—90°/17 mm., and PhCHO, b.p. 113—115°/10 mm., CMe₂Br·CHO, b.p. 113—115° (2: 4-dinitrophenyldrazone, m.p. 116°; Me₂ acetal, b.p. 52—54°/10 mm.), n-C₅H₁₁·CHBr·CHO, b.p. 90°/17 mm. (2: 4-dinitrophenyllydrazone, m.p. 106°; Me₂ acetal, b.p. 117—119°/17 mm.), and a-bromophenylacetaldehyde, b.p. 108—109°/10 mm. (2: 4-dinitrophenylhydrazone, m.p. 139°; Me₂ acetal, b.p. 133—135°/10 mm.). R. S. C.

Action of ammonia on crotonaldehyde.—See A., 1944, II, 380. Preparation of unsaturated ketones.—See B., 1944, II, 303.

Triacetone dialcohol and its dehydration products. E. E. Connolly (J.C.S., 1944, 338—339).—The vac.-still residues from large-scale production of diacetone alcohol (I) contain s-triacetone dialcohol (\$\beta\$]. production of diacetone alcohol (I) contain s-triacetone dialcohol ($\beta\zeta$ -dimethylheptane- $\beta\zeta$ -diol- δ -one) (II) (cf. Leopold et al., G.P. 481,290), m.p. $56\cdot4^\circ$, b.p. $128^\circ/15$ mm. When distilled with syrupy H_3P0_s , (II) gives 'semiphorone'' ($\beta\zeta$ -dimethyl- Δ -hepten- β -ol- δ -one) (III) (cf. Grignard et al., A., 1929, 396). When heated with a little conc. H_2SO_4 , (II) gives phorone (IV) [H_2O which is also formed is carried. away by CHAc.CMc₂ (V) derived from CH₂Ac-CMe₂-OH in crude (II), or by excess of C_gH_g , which is added when cryst. (II) is used]. Cryst. (II) when heated under reflux with dil. H_2SO_4 gives (IV). 2:2:6:6-tetramethyltetrahydro-1:4-pyrone (VI), m.p. $12\cdot8^\circ$, b.p. $70^\circ/15$ mm. (oxime, m.p. 101°), and (III). (VI) is dehydrated to (IV). With $2:4:1-C_gH_3(NO_2)_2\cdot NH\cdot NH_2$, (I) and (V) give the same product, m.p. 177— 198° , whilst (II), (III), and (VI) give a second product, m.p. 171— 173° , different from that, m.p. 118— $188\cdot5^\circ$, obtained from (IV). obtained from (IV).

Reductone and vitamin-C. J. G. A. Griffiths (Nature, 1943, 152, 163).—(CHO), may be obtained from O3, H2O, and C2H2, and reductone from (CHO), by irradiation with ultra-violet light.

New reagent for primary and sec. amines.—See A., 1944, II, 372.

Complex compounds of cupric azide. III. Non-electrolytes with organic bases.-See A., 1944, I, 290.

Preparation, resolution, and optical properties of β -amino-n-octane. F. G. Mann and J. W. G. Porter (J.C.S., 1944, 456-461).— CrO_3 oxidation of n-octane- β -ol gives $\sim 95\%$ yield of COMe· C_6H_{13} -n, the oxime of which is reduced with Na and EtOH to pure β -amino-n-octane in 70% yield (Bz derivative, m.p. 73—74°; kydrochloride, m.p. 91-92°; phenylhydrazone, b.p. 119-120°/0.05 mm.). The Lamine is prepared by repeated recryotallication of the dramine l-amine is prepared by repeated recrystallisation of the dl-amine H d-tartrate from MeOH; similarly the H l-tartrate gives the damine. The rotations of the pure amine and its C₆H₆ solution are similar and \gg that of the EtOH solution, which is unaffected by the concn. The d- and l-amine hydrochlorides, m.p. 90—91°, are freely sol, in ionising and in non-ionising solvents, in which they are associated. They show a pronounced "acid effect," e.g., the i-amine, hydrochloride, gives of songly, deviced effect," e.g., the i-amine, hydrochloride, gives of songly, deviced effect, "e.g., the i-amine, hydrochloride, gives of songly, deviced effect," e.g., the i-amine, hydrochloride, gives of songly, deviced effect, "e.g., the i-amine, hydrochloride, gives of songly, deviced effect," e.g., the i-amine, hydrochloride, gives of songly, deviced effect, and the interest of the inter amine hydrochloride gives strongly dextrorotatory solutions in ionising solvents, e.g., H₂O, MeOH, EtOH, HCO·NH₂, the rotation in EtOH being almost independent of concn.; in non-ionising solvents, as the concn. is progressively increased, the laworotation decreases to zero, e.g., in PhMe or dioxan saturated at room temp, and becomes a dextrorotation at moderately high concns., e.g., in CH₃Cl₂, C₂H₄Cl₂, CHCl₃, C₆H₆. The d-camphorsulphonate, m.p. 162-165°, [M] +49.5°, and d-a-bromocamphorsulphonate, m.p. 180-185°, of the dl-amine are unsuitable for resolution.

H. D. W. Production of β-aminopropionic acid.—See B., 1944, II, 303.

Hydroxyleucines. H. D. Dakin (J. Biol. Chem., 1944, 154, 549-555),—isoButene oxide (excess) and NHAc·CH(CO2Et)2 in dioxan with NaOMe, followed by hydrolysis (HCl), give γ -hydroxyleucine (I), m.p. 226—228°, purified through the flavianate, m.p. 272—273°. (I) is apparently not identical with the small amount of NH₂-acid, $C_8H_{13}NO_3$, m.p. 248—250°, obtained from casein. Glycine flavianate has m.p. 244—245° (efferv.). F. R. S.

ε-Diethylaminoamyl β-dithiocarbamate, m.p. 136—138°.—See C., 1944, 167.

Preparation of nitrourea.—See B., 1944, II, 304.

Manufacture of cyanohydrins.—See B., 1944, II, 304.

Ethylenic nitriles: Δ^a - and Δ^β -octenonitrile. R. Delaby and J. Hubert (Bull. Soc. chim., 1943, [v], 10,576—580).—CHBua:CH·CH₂Br (I) or mixtures of (I) and CHBuaBr·CH:CH₂, heated slowly with CuCN to 100—105°, then at 100° for 1 hr., give trans- Δ^β -octenonitrile (II), b.p. 93—95°/20 mm., and some Δ^α -octenonitrile. Raman nitrile (II), b.p. 93—95°/20 mm., and some Δα-octenonitrile. Raman spectra of the various fractions are examined. Hydrogenation (Raney Ni-EtOH) of (II) gives C₈H₁₇·NH₂. (II) is transformed into cis-, b.p. 78—80°/15 mm. and trans-Δα-octenonitrile (III), b.p. 88—90°/15 mm. by adding to PhOH-Na₂CO₃ (previously heated at 150°) at 150° for 2 hr. HCl is introduced into (II) or (III) (mixture of cis- and trans-) and SH·CH₂·CO₂H in Et₂O for 5 hr. (method: Condo et al., A., 1937, II, 139) to yield 40—50% of the respective adduct, e.g., RCN → CO₂H·CH₂·S·CR·NH, HCl. The reaction is much more rapid in the cases of CHMe:CH·CN and CH₂·CH·CH₂·CN. With such nitriles fixation of Br is the slower the greater is the mole With such nitriles, fixation of Br is the slower the greater is the mol. A. T. P.

II.—SUGARS AND GLUCOSIDES.

Existence and significance of sugar-triose equilibrium. C. Enders and S. Sigurdsson (Naturwiss., 1943, 31, 92—93).—Determinations of the AcCHO contents of distillates from 0.2 and 2.0% solutions of sugars are used as basis for calculating the consts. of the thermodynamic equilibria which exist between sucrose (I), maltose, galactose, mannose, glucose, fructose (II), arabinose, and xylose, on the one hand, and the primary product of hydrolysis, a triose which readily (e.g., by heating) changes into AcCHO. The vals. obtained form a series decreasing in the order named, from (I) to (II), the position of the equilibria being dependent on temp., pH, and the nature of any acid present. The existence of the triose, which is possibly a hydrated form of glyceraldehyde, provides an explanation of many problems of carbohydrate chemistry.

Analysis of mixtures of 2:3:4:6-tetramethylglucose with 2:3:6-trimethyl- and dimethyl-glucoses by partition on a silica water column: small-scale method for investigating structures of glucopolysaccharides. D. J. Bell (J.C.S., 1944, 473—476).—Abs. separation of 50—200 mg. of 2:3:4:6-tetramethyl- from 2:3:6-trimethyl-glucose (I) (1—200 mols.) and dimethylglucoses is achieved by partition of a CHCl₃ extract of the aq. solution on a SiO₂-H₂O column: further extraction of the ag. solution with CHCl₃—BuOH column; further extraction of the aq. solution with CHCl3-BuOH (9:1) and partition of the extract on the same column gives (I) free from dimethylglucoses, which can be eluted with COMe, High recoveries of analytically pure sugars are obtained in both separations. The method is applied to determine the average length of unit chain in methylated derivatives of cellobiose, glycogen, and whole starch.

Enzymically synthesised crystalline sucrose. W. Z. Hassid, M. Doudoroff, and H. A. Barker (J. Amer. Chem. Soc., 1944, 66, 1416— Doudoroff, and H. A. Barker (J. Amer. Chem. Soc., 1944, 66, 1410—1419).—The phosphorylase, freed from invertase, of Pseudomonas saccharophila is kept with K glucose 1-phosphate, fructose, and Ba(OAc)₂ in H₂O at 37° and pH 6.85 for 12 hr. and then at 29° for a further 12 hr. Cooling, filtration, removal of electrolytes by chromatography and of monosaccharides by washed cells of Torula monosa, concn., and treatment with EtOH gives sucrose, [a]_D +66.5° in H₂O (cf. Doudoroff et al., A., 1943, III, 599; 1944, III, 288), identified by its osazone, X-ray spectrum, crystallo-optical properties, hydrolysis, and by its octa-acetate, m.p., 69—70°, [a]_D properties, hydrolysis, and by its octa-acetate, m.p. 69—70°, [a]_D +60° in CHCl_a. The synthesis supports the view that glucose exists in sucrose in the a-form.

R. S. C. exists in sucrose in the a-form.

Separation of methylated methylglycosides by adsorption on alumina. New method for end-group determinations in methylated polysaccharides. J. K. N. Jones (J.C.S., 1944, 333—334).—Tetramethylmethylglucoside (I), mixed with excess of trimethylmeth glucoside, in Et₂O-light petroleum (also used for elution) is separated glucoside, in Et₂O-light petroleum (also used for elution) is separated (94%) chromatographically on activated Al_2O_3 , which also effects some separation between the a- and (less strongly adsorbed) β -forms. Rice starch (II) (Hirst et al., A., 1939, II, 495) treated with MeOH-HCl and Ag_2CO_3 and chromatographed gives (I) and trimethyl β -methylglucoside; the proportion of (I) in the mixed methylglucosides obtained indicates that there are 33 glucose residues in the repeating obtained indicates that there are 33 glucose residues in the repeating

unit of (II). Banana starch (Hawkins et al., A., 1940, II, 207), similarly treated, gives (I) in proportion indicating 26 residues per unit (cf loc. cit.), with trimethyl-\(\beta\)-methylglucopyranoside. Methylated damson gum hydrolysed by MeOH-HCl gives a mixture of glucosides containing a const.-boiling mixture separated chromatographically into fractions which are hydrolysed by 0.5N-HCl to 2:3:4trimethyl-d-xylose and 2:3:5-trimethyl-l-arabofuranose; it thus contains trimethylmethyl-I-arabofuranoside and -d-xylopyranoside.

Preparation of N-d-ribityl-o-4-xylidine. M. Tishler, N. L. Wendler, K. Ladenburg, and J. W. Wellman (J. Amer. Chem. Soc., 1944, 66, 1328—1330).—d-Ribolactone, o-4-xylidine (I), and a trace of quinol at 100° give d-ribono-o-4-xylidide, m.p. 164— 165° (slight decomp.), converted by $Ac_2O-c_5H_5N$ at $>45^{\circ}$ into the tetra-acetate (II), m.p. 114— 115° , $[a]_1^{25}+16\pm1^{\circ}$ in CHCl₃, whence PCl₅ in CHCl₃ at room temp. yields the chloro-imide tetra-acetate (III), m.p. 68— 70° [reconverted into (II) by H_2O]. H_2 -Pd-BaCO₃ or $-CaCO_3$ in EtOAc or dioxan at 50— 55° /15—30 lb. reduces (III) to N-d-ribityl-o-4-xylidine tetra-acetate mp. 94— 95° (G. R.P. 550—169—55149): 1943—III. ine tetra-acetate, m.p. 94—95° (cf. B.P. 550,169, 551,491; B., 1943, II, 107, 172), also obtained (m.p. 99—100°) by hydrogenating (Pd-C) d-ribonitrile tetra-acetate and (I) in McOH-AcOH-H₂O at 5—10 lb. and hydrolysed by Ba(OMe), or NaOMe in boiling MeOH to N-d-ribityl-o-4-xylidine, m.p. 142—143°. R. S. C.

Synthesis of asebotin. G. Zemplén and L. Mester (Ber., 1942, 75, [B], 1298—1301).—Phloracetophenone 4-Me ether and acetobromoglucose in aq. COMe2 containing a small amount of NaOH give 2glucose in ad. Coshe; contenting a shall amount of NaOH give 2-glucosidophloracetophenone 4-Me ether tetra-acetate, m.p. $187\cdot5^\circ$, $[a]_{25}^{25}-46\cdot3^\circ$ in C_5H_5 N, which is condensed with $p\text{-OH}\cdot C_8H_4\cdot CHO$ by conc. KOH to 2-glucosidonaringenin 4'-Me ether. This is hydrogenated (Pd-C in 96% EtOH) to asebotin, m.p. 148° after softening, $[a]_{25}^{25}-52\cdot1^\circ$ in 55% EtOH, $-46\cdot2^\circ$ in abs. EtOH, hydrolysed by $2\cdot5\%$ HCl at 100° to phloretin 4'-Me ether, m.p. 158° and $167\cdot5^\circ$ (triacetate, m.p. $78\text{--}79^\circ$, softens at 76°).

Glucosides of 4-hydroxycoumarins.—See A., 1944, II, 345.

Gum tragacanth. S. P. James and F. Smith (Biochem. J., 1944, 38, Proc., xix).—Gum tragacanth consists of tragacanthic acid, a neutral polysaccharide, and a sterol glucoside. Hydrolysis of methylated tragacanthic acid with MeOH-HCl yields 2:3:4-trimethyl-a-methyl-l-fucoside, 2:3:4-trimethyl-, and 3:4-dimethylmethyl-d-xyloside, Me ester of 2:3-dimethylmethylgalactofuronoside, and methyl-β-methylgalactopyranoside. The acid is essentially a chain of galacturonic acid residues joined by 1: 4-a linkings. Hydrolysis of the methylated polysaccharide by MeOH-HCl yields 2:3:5-trimethylmethyl-l-arabofuranoside; 2:3-dimethylmethyll-arabopyranoside, β-methyl-l-arabopyranoside, and a dimethylhexoside. The ease of hydrolysis and the high negative val. of [a] indicate the presence of arabinose units of the furanose type in the polysaccharide, which, however, is not a simple araban. P. G. M.

Water-soluble mannan from seeds of Daubentonia drummondii.—See A., 1944, III, 856.

III.—HOMOCYCLIC.

Preparation of benzene by Kolbe's synthesis. Electrolysis of trans-1:2-dihydrophthalic acid. E. A. Pasquinelli (Anal. Asoc. Quim. Argentina, 1943, 31, 181—190).—Electrolysis (10 v., 5 amp.) of trans-1: 2-dihydrophthalic acid yields C6H6.

Nitration of toluene. Continuous partial-pressure process using nitric acid alone.—See B., 1944, II, 301.

Nitrations with nitryl chloride.—See A., 1944, II, 357.

Hydrogen chloride as a condensing agent. J. H. Simons and H. Hart (J. Amer. Chem. Soc., 1944, 66, 1309—1312).—Anhyd. HCl resembles HF as catalyst for alkylation of aromatic hydrocarbons; it yields only p-compounds. PhMe with Bu^VCl, Pr[®]Cl, or Bu^aCl and HCl at 235°/200 atm. (apparatus: C, 1944, 197) gives p-C₆H₄MeBu^V (88%), p-C₆H₄MePr[®] (67%) + C₆H₃MePr[®], (16%), and p-C₆H₄MeBu^a (15%), respectively. C₆H₆ yields similarly at 150° PhBu^V (45·5%) + p-C₆H₄Bu^V₂ (24%), at 235° PhPr[®] (48%) + p-C₆H₄Pr[®]₂ (44%), and at 195° PhBu^a (30%) + p-C₆H₄Bu^a₂ (60%). C₆H₆, cyclohexene (I), and HCl at 208° give cyclohexylbenzene (37%), cyclohexyl chloride (II) (27%), and some polymer. C₆H₆, AcCl, and HCl give no COPhMe, but BzCl at 200° leads to 4·4% of COPh₂. PhBu^V, PhOH, and HCl do not give C₆H₆ + p-C₆H₄Bu^V·OH (III). PhOH, Bu^VCl, and HCl at 75°/200 atm. give 90% of (II) but 67% is obtained by merely boiling PhOH and Bu^VCl without a catalyst; catalytic effect of HCl in the general reaction is shown by failure of PhMe and Bu^VCl to condense at 235°/575 lb. (N₂). PhOH, text. resembles HF as catalyst for alkylation of aromatic hydrocarbons; PhMe and Bu°Cl to condense at 238°/575 lb. (N₂). PhOH, tert.-C₅H₁₁Cl, and HCl at 90—160° give 72% of p-tert.-C₅H₁₁Cl, and HCl at 200—220° give 30% of (II), 40% of polymer, and 4% of a saturated hydrocarbon, b.p. 195—200°.

Catalytic aromatisation of branched-chain aliphatic hydrocarbons.

—See A., 1944, II, 357.

Thermal polymerisation and cyclic dimerisation of isobutylene.— Sec A., 1944, II, 357.

Synthesis of polyenes. IV. M. S. Kharasch, W. Nudenberg, and E. K. Fields (J. Amer. Chem. Soc., 1944, 66, 1276—1279; cf. A., 1943, II, 159).—Condensation of CH₂RHal by NaNH₂ in liquid NH₃ to (CHR:), proceeds by way of CH2R-CHRHal and depends on R being strongly electronegative and not containing reactive substituents and on the high dielectric const. of the solvent. A detailed reaction mechanism is propounded. CH₂Ph·NH₂,HCl (5%) is obtained from CH₂PhCl by KOH, NaOEt, or CHO·NHNa in liquid NH₃, or (15%) by NaNH₂ in Et₂O; CHO·NHNa in HCO·NH₂ gives CHO·N(CH₂Ph)₂ (55%); NaNH₂ in light petroleum is without effect, but in liquid NH₃ gives 100% of (CHPh:)₂. With NaNH₂ in liquid NH₃, CH₂BzBr gives (CHBz:)₂ (42%), m.p. 111°; (CH₂Br·CH:)₂ gives a polymer, CH₂Br·[CH:CH]_x·CH₂Br (100%); CHPh:CH·CH₂Cl gives a 2-diphenylhexatriene (10%), form, softens 150—160°, m.p. 165°, but an excess of NaNH₂ leads to polymeric products; (o-CH₂Br·C₆H₄)₂ gives 80% of phenanthrene; CH₂PhCl+CH₂:CH·CH₂Cl gives CHPh:CH-CH-CH₂CH₂CH-CH₂Cl gives CH₂PhCl+CH₂CH₂CMe·CH₂Cl gives CH₂PhCl+CH₂Cl gives CH₂PhCl+CH₂Cl gives CH₂PhCl+CH₂CMe·CH₂Cl gives CH₂PhCl+CH₂Cl gives CH being strongly electronegative and not containing reactive substit-

Preparation of substituted styrenes. L. A. Brooks (J. Amer. Chem. Soc., 1944, 66, 1295—1297).—o-C₆H₄Cl·CHO with MgMeBr-Et₂O gives a-o-chlorophenylethyl alcohol (76%), b.p. 109°/7 mm., converted by \$1% of KHSO₄ afid a little quinol at 200—210°/110—130 mm. into o-chlorostyrene (70%), b.p. 60—61°/4 mm. Similarly are prepared a-m-, b.p. 102—104°/3 mm., and a-p-chlorophenyl-, b.p. 87—89°/2 mm., a-o-, b.p. 117—118°/45 mm., a-m-, b.p. 120—121°/45 mm., and a-p-fluorophenyl-, b.p. 122—123°/45 mm., and a-2:5-dichlorophenyl-ethyl alcohol, m.p. 63—64°, b.p. 107—109°/2 mm., and thence m-, b.p. 62—63°/6 mm., and p-chloro-, b.p. 53—54°/3 mm., o-, b.p. 32—34°/3 mm., m-, b.p. 30—31°/4 mm., and p-fluoro-, b.p. 29—30°/4 mm., and 3:5-dichloro-styrene, b.p. 72—73°/2 mm. 3:4:1-C₆H₃Cl₂·COMe yields a-3:4-dichlorophenyl-ethyl alcohol (91%), b.p. 127—128°/2 mm., and thence 3:4-dichlorostyrene, b.p. 69—70°/4 mm. The styrenes are less stable when purified. Relative stabilities of CHAr.CH₂ are Ar=C₆H₄F > C₆H₄Cl > C₆H₃Cl₂.

Reactivity of 2-chloro-3:5-dinitrodinhenyl. C. K. Bradsher and

Reactivity of 2-choro-3:5-dinitrodiphenyl. C. K. Bradsher and S. T. Amore (J. Amer. Chem. Soc., 1944, 66, 1283—1284).—
1:2:3:5-C₆H₂PhCl(NO₂)₂ (I), best obtained (m.p. 115—116°; cf. Borsche et al., A., 1917, i, 390) from 3:5:1:2-(NO₂)₂C₆H₂Ph·NH₂ by NO·SO₃H and then aq. CuCl-HCl, differs from 1:2:4-C₈H₃Cl(NO₂)₂ owing to steric hindrance by the Ph. In boiling NaOR-ROH, (I) gives 3:5-dinitro-2-ethoxy- (II) (93%), m.p. 114—115°, and -2-methoxy-diphenyl, m.p. 113·5—114°, in boiling piperidine gives 3:5-dinitro-2-piperidinodiphenyl, m.p. 184·5—185°, and with Cu powder at 215° and then 190° gives 4:6:4':6'-tetranitro-2:2'-diphenyldiphenyl, m.p. 248—249°. CH₂(CO₂Et)₂ or CH₂Ac:CO₂Et does not react with (I); CH₂(CO₂Et)₂ in NaOEt-EtOH gives only (II). R. S. C. EtOH gives only (II).

Bond system and stereochemistry of cumulenes.—See A., 1944, I,

Dicyclohexadienes and the strain theory.—See A., 1944, I, 267.

Aromatic cyclodehydration. XVI. Phenanthrene hydrocarbons from unsymmetrical ketones. C. K. Bradsher and S. T. Amore. XVII. 9- and 10-Methyl-1:2:3:4-dibenzphenanthrene. C. K. Bradsher and L. Rapoport (J. Amer. Chem. Soc., 1944, 66, 1280, 1281—1282; cf. A., 1944, II, 130).—XVI. o-C₆H₄Ph·MgI with COR·CH₂R' and then KHSO₄ gives α-phenyl-α-2-diphenylyl-Δ^α-n-pentene (65%), m.p. 78—79°, b.p. 207—208°/8 mm., and -Δ^α-n-undecene (60%), b.p. 242—254°/5 mm., β-2-diphenyl-Δβ-n-butene (36%), b.p. 132—140°/9 mm., and -Δ^α-n-heptene (51%), b.p. 140—160°/8 mm., and thence by oxidation and cyclisation 9-phenyl-10-160°/8 mm., and thence by oxidation and cyclisation 9-phenyl-10n-propyl- (64%), m.p. 148·5—149·5°, 9-phenyl-10-n-decyl- (39%), m.p. 99—100°, 9:10-dimethyl- (39%), m.p. 142·5—143° (lit. 139°) (picrate, m.p. 193—194°), and 9-n-amyl-phenanthrene (31%), m.p. 69—70°.

1-Keto-4-methyl-1: 2:3:4-tetrahydronaphthalene and o-C₆H₄Ph-Li in boiling Et₂O give 4-2'-diphenylyl-1-methyl-1: 2-di-hydronaphthalene (64·5%), b.p. 215—218°/6—7 mm., converted by o-CO₂H·C₆H₄·CO₃H and then HBr-AcOH-H₂O into 9-methyl-9: 10-dihydro-1: 2: 3: 4-dibenzphenanthrene (89·5%), an oil (picrate, m.p. 170·5—171°), whence 30% Pd-C in CO₂ at 310—350° yields 9-methyl-1:2:3:4-dibenzphenanthrene (I) (64%), m.p. 150.5—151.5° (picrate, m.p. 207.5—208.5°). Na₂Cr₂O₇-AcOH oxidises (I) to 1:2:3:4-dibenzphenanthraquinone (proof of structure). (I) absorbs O2 fairly rapidly in air. 1-Keto-3-methyl-1:2:3:4-tetrahydronaphthalene leads similarly to 4-2-diphenylyl-2-methyl-1:2-dihydronaphthalene (65%), m.p. 77—78°, 10-methyl-9:10-dihydro(73%), m.p. 151—152° [unstable picrate, m.p. 117·5—119°; s-C₀H₃(NO₂)₂ compound, m.p. 138·5—139·5° after softening], and 1 methyl-1:2:3:4-dibenzphenanthrene (70%), m.p. $163\cdot5-164^{\circ}$ [unstable picrate, m.p. $150\cdot5-151\cdot5^{\circ}$; $s\cdot C_6H_3(NO_2)_2$ compound, m.p. $161-162^{\circ}$]. 1-Keto-3:4-dimethyl-1:2:3:4-tetrahydronaphthalene gives $4\cdot2'$ -diphenylyl-1:2-dimethyl-1:2-dihydronaphthalene, m.p. $17-210\cdot10^{\circ}$ h. = $117-210\cdot10^{\circ}$ m.g. and 0.10 diparthyl-1:1.10 diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenylyl-1:2-diphenyl-1:2 78—79-5°, b.p. 217—218°/8 mm., and 9:10-dimethyl-9:10-dihydro-1:2:3:4-dibenzphenanthrene, a resin (picrate, m.p. 154—154-5°), which is unchanged by chloranil and with Pd-C-CO₂ at 310—350° or S at 250° yields only (I).

Aromatic hydrocarbons. XXXIV. New synthesis of hexacene. E. Clar (Ber., 1942, 75, [B], 1283—1287; cf. A., 1940, II, 75).— o-C₆H₄(CO)₂O is condensed with o-xylene to o-3: 4-dimethylbenzoylene. benzoic acid, which is oxidised by KMnO₄ in alkaline solution to benzophenone-2': 3: 4-tricarboxylic acid. This passes at ~240° into the anhydride, m.p. 185—186° (lit. 175°), which is condensed with tetrahydronaphthalene by AlCl₃ in C₂H₂Cl₄ at 90° to p-o'-carboxybenzoyl-o-5: 6: 7: 8-tetrahydro-2-naphthoylbenzoic acid, which could not be obtained cryst. It is reduced by Cu-Zn in alkaline colution to the objective of the could be considered by Cu-Zn in alkaline could not be obtained cryst. It is reduced by Cu-Zn in alkaline. solution to p-o'-carboxybenzyl-o-5:6:7:8-tetrahydronaphthyl-2methylbenzoic acid, transformed by Zn dust, NaCl, and ZnCl, at 340° into a mixture from which 5: 16-dihydrohexacene (I) is isolated by fractional sublimation in CO_2/I mm. Its constitution is deduced from its orange-red colour, its absorption spectrum in C_6H_6 , and great reactivity towards (:CH·CO)₂O. In boiling xylene (I) passes into 6: 15-dihydrohexacene (II), which is pale yellow in colour, reacts more difficultly with (:CH·CO)₂O, and shows the absorption spectrum of a $C_{10}H_8$ and an anthracene complex united by $2\,\mathrm{CH}_2$. (I) and (II) have m.p. $357-370^\circ$ (vac.), ill-defined by reason of thermal transformability. Dehydrogenation of (I) or (II) gives hexacene. Pure (II) is oxidised in boiling PhNO₂ by SeO₂ to hexacene-6: 15-quinone, m.p. (indef.) 295-310°, possibly containing the -5: 16-isomeride.

Complex compounds of cupric azide. III. Non-electrolytes with organic bases.—See A., 1944, I, 290.

Photochemical investigation of dark-coloured aniline.—See A., 1944, I, 289.

Influence of alkyl groups on reaction velocities in solution. V. Formation of phenyltrialkylammonium iodides in methyl alcohol.—See A., 1944, I, 286.

Phenylthiocarbimide from phenyl azide. W. Borsche (Ber., 1942, 75, [B], 1312—1313).—PhN3 and AlCl3 in PhNO2 give N2 and a dark resin from which no definite compound could be isolated. In CS2 the products are PhNCS and "phenylthiocarbimide sulphide," CS S-S C:NPh, m.p. 155°. The first products are therefore Na and PhN.

and PhN.

Preparation and properties of derivatives of sulphamide. K. W. Wheeler [with E. F. Degering] (J. Amer. Chem. Soc., 1944, 68, 1242—1243).—SO₂(NH₂)₂ and CO₂H·CH₂·COCl in Et₂O give H malonylsulphamide, CO₂H·CH₂·CO·NH·SO₂·NH₂, m.p. 147° (decomp.; uncorr.), which in EtOH-H₂SO₄ gives (?) the Et ester, m.p. 84—85° (uncorr.). SO₂Cl₂ (2 mols.) and NHMe₃, HCl (1 mol.) at 60° give HCl and NMe₂·SO₂Cl (80%). NAlk₂·SO₂Cl with NH₂R or NHR₂ alone (exothermally) or in boiling C₆H₆ or Et₂O yields N-o-, m.p. 64·6—65·2°, and N-m-tolyl-, m.p. 47—48°, N-m-4-xylyl-, m.p. 74·7—75°, N-o-chlorophenyl-, m.p. 49·4—49·7°, and N-p-anisyl-, m.p. 56·3—56·8°, -N'N'-diethylsulphamide; N-phenyl-NN'N'-trimethylsulphamide, m.p. 45·5—46°, and -N'N'-dimethyl-N-ethylsulphamide, m.p. 31·5—32°; N-o-, m.p. 104·8—105·2°, and N-m-tolyl-, m.p. 80·5—81°, N-m-4-xylyl-, m.p. 132—132·5°, N-o-, m.p. 75·5—76°, N-m-, m.p. 88·2—88·7°, and N-p-chlorophenyl-, m.p. 56·5—57·1°, N-p-bromophenyl-, m.p. 78·8—79·3°, N-p-iodophenyl-, m.p. 56·5—57·1°, N-p-bromophenyl-, m.p. 126·7—127°, N-p-dimethylaminophenyl-, m.p. 108·6—109·3°, N-p-anisyl-, m.p. 55·6—56·2°, N-p-carbethoxyphenyl-, m.p. 125—125·4°, N-a-, m.p. 107·3—107·7°, and N-β-naphthyl-, m.p. 110—110·4°, N-pentamethylene-, m.p. 55·5—56·2°, and N-2-pyridyl-, m.p. 130·7—131·2°, -N'N'-dimethylsulphamide, NHPh·SO₂·NMe₂ and AcCl give the N-Ac derivative, m.p. 92·3—92·7°. These products are more stable than SO₂(NH₂): 92.3—92.7°. These products are more stable than $SO_2(NH_2)_2$. They are sol. without decomp. in cold, conc. H_2SO_4 . Those containing at least one H attached to N are sol. in dil. alkali. With the exceptions noted, m.p. are corr. R. S. C.

N-Chlorocarbamic esters. P. Chabrier (Ann. Chim., 1942, [xi], 17, 353—370).—Partly an account of work previously abstracted (A., 1943, II, 82). NN-Dichlorocarbamates, NCl₂·CO₂R, are prepared from NH₂·CO₂R, NaOCl, and aq. H₂SO₄ or AcOH; thus prepared is β-chloroethyl NN-dichlorocarbamate (I), m.p. 38°. NCl₂·CO₂Et (II) and styrene in C₆H₆ afford Et N-chloro-N-β-chloro-β-phenylethyl-carbamate, a liquid (not distillable), reduced by NaHSO₃ to Et N-β-chloro-β-phenylethylcarbamate, m.p. 50°, convertible by Na₂CO₃ or AgNO₂ in aq. EtOH into the corresponding β-OH-sester m.p. 85°, AgNO₃ in aq. EtOH into the corresponding β-OH-ester, m.p. 85°, or by Zn-aq. NH₃ into Ph·[CH₂]₂·NH·CO₂Et. Similarly prepared are Et N-chloro-N-β-chloro-β-m-anisyl-, and -β-methylenedioxyphenyl-a-methylethylcarbamate, and Et N-β-chloro-β-m-anisyl- and -β-methylenedioxyphenyl-a-methylethylcarbamate, and Et N-β-chloro-β-m-anisyl- and -β-methylenedioxyphenyl-a-methylethylcarbamate, and Et N-β-chloro-β-m-anisyl- and -β-methylenedioxyphenyl-a-methyl-a-methyldioxyphenyl-a-methylethylcarbamate, m.p. 76° and 114°, respectively. NCl₂·CO₂Me (III) and (C₂H₄Cl)₂S in C₆H₆ give tetrachlorodiethyl sulphide, b.p. 115°/15 mm., which decomposes to HCl and

CH₂Cl·CHCl·S·CH·CHCl. Carbazole and (III) in AcOH give tetra-chlorocarbazole, m.p. 212°; CH₂Ph·CO·NH₂ in H₂O yields phenylacetchloroamide, m.p. 120°; 3:5-diketo-6-alkyl-1:2:4-triazine in alkali affords 2:4-dichloro-3:5-diketo-6-benzyl-, m.p. 119° (explodes at 160°), and -6-phenylethyl-1:2:4-triazine, m.p. 130° (explodes at 165°); similarly prepared is 2-chloro-3:5-diketo-4:6-dibenzyl-1:2:4-triazine, m.p. 153°; 1:3-dichloro-5:5-diphenylhydantoin, m.p. 166° is obtained from diphenylhydantoin; indele-2-czylozyulic 1:2:4-triazine, m.p. 153°; 1:3-dichloro-5:5-diphenylhydantoin, m.p. 166°, is obtained from diphenylhydantoin; indole-2-carboxylic acid or its Me ester in AcOH yields probably 2:3:(?)5-trichloro-2:3-oxido-2:3-dihydroindole, m.p. 188° [Zn-AcOH give (?)5-chloro-2:3-oxido-2:3-dihydroindole, m.p. 192°], or Me 2:3:(?)5-trichloro-3-hydroxy-2:3-dihydroindole-2-carboxylate, m.p. 184°, respectively. (II) and aq. glycine give CH₂(NH·CO₂Et)₂, readily decomposed to CH₂O. NCl₂·CO₂R and NH₂·CO₂R give NHCl·CO₂R, which with NaOEt-EtOH-Et₂O afford NNaCl·CO₂R. Na Et N-chloro-carboanate, deflagrates at 140°, is prepared. NNaCl·CO₂Me and AsPh₃ in C₈H₈ give N-triphenylarsine Me carbamate, CO₂Me·N·AsPh₃, m.p. 84°, readily hydrolysed to NH₂·CO₃Me and AsPh₃O. Also m.p. 84°, readily hydrolysed to NH2 CO2Me and AsPh3O. Also prepared (method: loc. cit.) are N-carbethoxy-N-3-pyridylcarbamide, m.p. 200°, N-carbomethoxy-, m.p. 100°, and N-carbethoxy-N'-ethoxy-methyl-, m.p. 82°, N-carbomethoxy-, m.p. 65°, N-carbethoxy-, m.p. 40°, and N-carbo-β-chloroethoxy-N'-a-ethylpropyl-, m.p. 108·5°, and N-carbomethoxy-, m.p. 133·5°, and N-carbethoxy-N'-benzyl-carbamide, m.p. 20° Also N-carbomethoxy-N'-carbomethoxycarbonethoxy-, m.p. 133·5°, and N-carbethoxy-N'-benzyl-carbannae, m.p. 93°. Also prepared are ethoxymethyl-, m.p. 132° (CHPh: derivative, m.p. 167°), benzyl-, m.p. 171° (semicarbazones from COMe₂, m.p. 151°, PhCHO, m.p. 194°, p-OMe·C₈H₄·CHO, m.p. 192°, p-C₈H₄rp⁶·CHO, m.p. 174°, and CH₂Ph·CO·CO₂H, m.p. 204°), and phenyl-carbanylsemicarbazide (IV), m.p. 228° (semicarbazones from COMe₂, m.p. 214°, PhCHO, m.p. 233°, p-OMe·C₈H₄·CHO, m.p. 215°, and COPhMe, m.p. 212°). Prolonged action of N₂H₄ on NHPh·CO·NH·CO₂Me liberates NH₂Ph. Derivatives of (IV) are converted by Na-Hg into (probably) a bis(phenylcarbanylsemicarb-

Copper complexes of sulphanilamide and sulphathiazole. W. R. Todd (Arch. Biochem., 1944, 4, 343-346).-Cryst. complexes of Cu' and sulphanilamide or sulphathiazole are prepared by the action of glucose and an alkaline Cu reagent. Both complexes are stable in alkaline solution, but are insol. and unstable in org. solvents and In alkaline solution, but are insol. and unstable in org. solvents and H_2O . Mineral acid decomposes the complexes producing Cu_2O . The sulphanilamide complex, $(C_8H_8O_2N_2S)_2Cu_3(OH)_2$, decomp. $\sim 200^\circ$, darkens on drying; the sulphathiazole complex, $(C_9H_9O_2N_9S_2)Cu$, decomp. $\sim 300^\circ$, remains white, and can be obtained in white, yellow or orange crystals, identical microscopically.

E. R. S Bacterial chemotherapy. IV. Synthesis of N¹: N⁴-diacylsulphanilamides. S. Rajagopalan (Proc. Indian Acad. Sci., 1944, 19, A, 343-350).—Sulphanilamide or its N⁴-acyl derivative with the appropriate 343—350).—Sulphanilamide or its N^4 -acyl derivative with the appropriate acid chloride in C_5H_5N gives N^1 -acetyl-, m.p. $166-169^\circ$ (decomp.), N^1 -n-butyryl-, m.p. $164-168^\circ$, N^1 -n-heptoyl-, m.p. $148-152^\circ$, N^1 -palmityl-, m.p. $123-126^\circ$, N^1 -stearyl-, m.p. $127-130^\circ$, N^1 -benzoyl-, m.p. $180-183^\circ$, N^1 -hexahydrobenzoyl-, m.p. $185-187^\circ$, N^1 -cinnamoyl-, m.p. $228-231^\circ$, N^1 -a-naphthoyl-, m.p. $154-157^\circ$, N^1 -m-nitrobenzoyl-, m.p. $173-178^\circ$, and N^1 -p-nitrobenzoyl- N^4 -hexoyl-, m.p. $222-230^\circ$, and N^1 : N^4 -dihexoyl-, m.p. $164-172^\circ$, -di-n-butyryl-, m.p. $217-220^\circ$, -di-n-heptoyl-, m.p. $131-134^\circ$, -dibenzoyl-, m.p. $239-240^\circ$, -dihexahydrobenzoyl-, m.p. $248-250^\circ$, -dicinnamoyl-, m.p. $216-218^\circ$, -di-p-nitrobenzoyl-, m.p. 251° (decomp.), and N^1 : N^4 -di-p-nitrobenzoyl-sulphanilamide, m.p. 255° (decomp.), and N^1 : N^4 -di-p-nitrobenzoyl-sulphapyridine, m.p. $232-234^\circ$ (decomp.). The mechanism of the action of the sulphonamides is discussed. action of the sulphonamides is discussed.

N-Sulphanilylcarbamides.—See B., 1944, II, 304.

N¹-Sulphanilylisothiocarbamides. P. C. Guha, P. L. N. Rao, and V. Mahadevan (Current Sci., 1943, 12, 325—326).—p-NHAc·C₆H₄·SO₂Cl and NH₂·C(SR):NH,HCl (or HBr), after hydrolysis with 8—10% aq. HCl, yield N¹-sulphanilyl-propyl-, m.p. 133—134° (Ac derivative, m.p. 174°), -butyl-, m.p. 116° (Ac derivative, m.p. 157°), and -allyl-isothiocarbamide, m.p. 170° (Ac derivative, m.p. 173—174°). The Et analogue, m.p. 155—156° (Ac derivative, m.p. 180—181°), is prepared similarly (cf. Winnek et al., A., 1942, II. 400). but p-acctamidahenzenesulbhonylhenzylisothiocarbamide. 11, 400), but p-acetamidobenzenesulphonylbenzylisothiocarbamide, m.p. 171-173°, is hydrolysed to p-NH₂·C₆H₄·SO₃H and CH₂Ph·SH. A. T. P.

Sulphanilylguanidine.—See B., 1944, III, 237.

Guanidine derivatives.—See B., 1944, II, 305.

Preparation of p-substituted aromatic ethylene derivatives. R. Releff (Chem.-Ztg., 1943, 67, 81).—Heating aromatic ketones or aldehydes with MgMeBr (prep. in Et₂O, subsequently removed) in C₄H₄ gives good yields of olefine. Details are given for (p-NMc₂·C₆H₄)₂C:CH₂.

R. S. C.

Ethylenediamine derivatives having trypanocidal action. A. Funke, D. Bovet, and G. Montezin [with, in part, Viaud and Horclois] (Ann. Inst. Pasteur, 1943, 69, 358—371).—CH₂PhCl (I mol.; 12 g.) and

(CH₂·NH₂)₂·H₂O (4 mols.) in EtOH at 120° give
CH₂Ph·NH·[CH₂]₂·NH₂ (1945 F) (6 g.), b.p. 125—130°/10 mm. (dihydrochloride, mp. ~255°), and (CH₂Ph·NH·CH₂)₂, b.p. ~190°/10 mm. Similar preps., best at room temp., lead to N-p-nethyl-(2156 F), b.p. 140°/13 mm. (dihydrochloride, m.p. ~205°), N-p-ethyl- (2440 RP) [dihydrochloride, m.p. 216—218° (decomp.)], N-p-n- (1986 F), b.p. 145—150°/8 mm., and N-p-iso-propyl- (I) (1921 F) (65—70°₉O), b.p. 145—150°/8 mm., and N-p-iso-propyl- (I) (1921 F) (65—70°₉O), b.p. 145—150°/8 mm. (dihydrochloride, m.p. ~235° (decomp.)], N-p-sec.-butyl- (2463 RP), b.p. 130—135°/13 mm., N-p-benzyl- (2160 F), b.p. 200—202°/2·5 mm. (dihydrochloride, m.p. ~230°), N-p-β-phenylethyl- (2162 F), b.p. 228—235°/10 mm., N-p-cyclopentyl- (1971 F), b.p. 180—196°/14 mm., N-p-cyclohexyl- (11) (1955 F), b.p. 187—190°/7 mm., N-2 : 5- (2152 F), b.p. 155—160°/16 mm. [dihydrochloride, m.p. 255° (decomp.)], and N-2 : 4-dimethyl- (2157 F), b.p. 156—154°/13 mm., N-2 : 4-6-trinethyl- (2163 F), b.p. 160—164°/12 mm., N-2-methyl-5-iso-propyl- (1988 F), b.p. 165°/10 mm., N-4-methoxy-2-methyl-5-iso-propyl- (1988 F), b.p. 165°/10 mm., N-2-nitro-4-iso-propyl- (111) (2172 F) [dihydrochloride, m.p. ~210° (decomp.)], N-2-amino-4-iso-propyl- (2083 F) [prep. from (III) by H₂-Raney Ni in aq. EtOH] [dihydrochloride, m.p. ~220° (decomp.)], N-p-nitro-[dihydrochloride (2075 F), m.p. ~218°], and thence N-p-amino- [dihydrochloride (2075 F), m.p. 200—235°], N-p-cyano-(2097 F), b.p. 160—170°/16 mm. (dihydrochloride, m.p. ~260°), and N-p-chloro- (2115 F), b.p. 135°/2 mm., -benzylethylenediamine. Similarly are prepared N-p-xenylmethyl- (2462 RP) [dihydrochloride, m.p. ~250° (block)], N-tetrahydro-β-naphthylmethyl- (1993 F), b.p. 170—175°/0·8 mm., N-a-naphthylmethyl- (1990 F), b.p. 200°/14 mm., N-4-iso-propyl-henylethyl- (2146 F), b.p. 156—160°/24 mm., and N-β-p-iso-propyl-phenylethyl- (2166 aminocthylaminomethyl)-m-xylene (2158 F), b.p. 200—205°/1·52 mm., di-(κ-β-aminocthylaminomethyl)-m-xylene (2158 F), b.p. 20 phenyl/methane (2159 F), b.p. 250—260°/0·6 mm., and aβ-di-(x-β'-aminoethylaminomethylphenyl)ethane (2161 F), b.p. 255—268°/0·8 mm. CH₂ArCl and the appropriate diamine give δ-p-isopropylbenzyl-amino-a-diethylamino-n-pentane (1989 F) (prep. at 130°), b.p. 170—172°/8 mm. (hygroscopic dihydrochloride), 1-p-isopropylbenzyl-piperazine (1966 F), b.p. 165°/13 mm., and N-p-isopropylbenzyl-piperazine (1966 F), b.p. 165°/13 mm., and N-p-isopropylbenzylhexamethylenediamine (1994 F), b.p. 190°/1·2 mm. Heating OH·CH(CH₂Cl)₂ (1 mol.) and CH₂Ar·NH₂ (4 mols.) slowly to ~150° gives aγ-dibenzylamino- (2079 F), b.p. 217—220°/8 mm., aγ-di-p-isopropylbenzylamino- (2080 F), and aγ-di-p-cyclohexylbenzylamino-propan-β-ol (2081 F). As by-products are obtained NN'-di-p-n-[dihydrochloride (1987 F)] and NN'-di-p-iso-propylbenzyl- (1943 F), b.p. 230—240°/8 mm. (dihydrochloride), NN'-di-2:5-dimethyl-benzyl- (2153 F), NN'-di-2-nitro-4-iso-propylbenzyl- [dihydrochloride (2173 F), m.p. 2260° (decomp.)], NN'-di-p-chlorobenzyl-(2116 F), m.p. 120°, and NN'-di(tetrahydro-β-naphthylmethyl)-b.p. 240—250°/0·8 mm. [dihydrochloride (2001 F)], -chlorobenzyl-(2116 F), m.p. 120°, and NN'-di(tetrahydro-β-naphthylmethyl)-b.p. 240—250°/0·8 mm. [dihydrochloride (2001 F)], -chlorobenzyl-(2116 F), m.p. 120°, and NN'-di(tetrahydro-β-naphthylmethyl)-b.p. 240—250°/0·8 mm. [dihydrochloride (2001 F)], -chlorobenzyl-(2116 F), m.p. 120°, and NN'-di(tetrahydro-β-naphthylmethyl)-b.p. 240—250°/0·8 mm. [dihydrochloride (2001 F)], -chlorobenzyl-(2116 F), m.p. 120°, and NN'-di(tetrahydro-β-naphthylmethyl)-b.p. 240—250°/0·8 mm. [dihydrochloride (2001 F)], -chlorobenzyl-(2116 F), m.p. 120°, and NN'-di(tetrahydro-β-naphthylmethyl)-b.p. 240—250°/0·8 mm. [dihydrochloride (2001 F)], -chlorobenzyl-N-p-isopropylbenzylethylenediamine hydrochloride, m.p. 166°. BzCl and (I) in C₆H₆ give the Bz₂ derivative, m.p. 121°. With CHEt₂·CHO and then Na-C₅H₁₁·OH, (I) gives N-p-isopropylbenzyl-N'-β-ethyl-n-butylethylenediamine [dihydrochloride (1947 F), m.p. ~255° (decomp.)

p-Diazonium tertiary amines.—See B., 1944, II, 304. Phenol synthesis and catalyst.—Sec B., 1944, II, 305.

Thymol and isopropyl-m-cresols obtained from m-cresol by con-Thymol and isopropyl-m-cresols obtained from m-cresol by condensation reactions. A. E. Tschitchibabin [with C. Barkovsky] $(Ann.\ Chim.,\ 1942,\ [xi],\ 17,\ 316-334).-m-Crcsol\ (I)$ and $Pr^{\beta}OH-H_3PO_4$ $(d\ 1.8)$ at $50-60^{\circ}$ or $65-75^{\circ}$ for 20 or 14 hr., respectively, then at 18° for 36 hr., give 1:4:3- (thymol) (II), 1:6:3- (p-thymol) (III), m.p. 114° , and $1:2:3-C_0H_3MePr^{\beta}\cdot OH$ (o-thymol) (IV), m.p. 69° [NO-derivative, m.p. 178° (block)]. (I) and H_2SO_4 $(d\ 1.84)$ at $120-125^{\circ}$ for 2-3 hr., followed by $Pr^{\beta}OH$ at $70-85^{\circ}$, give (III) + (IV); the use of 100% H_2SO_4 or 35% oleum at $\sim 80^{\circ}$ yields (II) + (III); $C_6H_2MePr^{\beta}_2\cdot OH$ (V) are also formed. Many experiments under varying conditions are recorded. The isomerides obtained depends on the relative amounts of m-cresolsulphonic acids formed. depends on the relative amounts of m-cresolsulphonic acids formed, the concn. of H_2SO_4 , and duration of heating. (II) and (III) are isolable from (I)-Pr BOH and H_2SO_4 -Na $_2S_2O_7$ at 60— 70° . 3:1:4-OH·C $_8H_3$ Me·SO $_3$ H (A., 1942, II, 223) and Pr BOH -100% H_2SO_4 at 65— 70° for $3\cdot 5$ hr. afford 10% of (IV), 13% of (III), and (V); 3:1:6-OH·C $_8H_3$ Me·SO $_3$ H gives 25% of (II), 12% of (III), and (V), and the 4:6-disulphonic acid yields some (II), (III), and (IV); in all cases, neutral products are also formed. (I)-Pr B Cl-AlCl $_3$ -C $_2$ H $_4$ Cl $_2$ at -11° to -13° gives (II), (III), and a little 1:3:5depends on the relative amounts of m-cresolsulphonic acids formed,

C₆H₃MePr^{\$.}OH (m-thymol) (VI), m.p. 51°; (VI) increases in amount as the temp. of reaction rises, and is the main product at room temp. The most stable C₆H₃MePr^{\$}·OH is (VI), which can be obtained from the other isomerides and AlCl₂ at 30°. (III) [and (VI)] is unchanged on heating at 350—400°, but in presence of ZnCl₂-fuller's earth at the same temp., conversion into (VI) occurs.

Condensation of tert.-butyl chloride with m-cresol and of isopropyl chloride with m-4-xylenol. A. Tschitchibabin and C. Barkovsky (Ann. Chim., 1942, [xi], 17, 349—352).—Bu⁷Cl, m-cresol (I), and AlCl₃ in C₃H₄Cl₂ at -13° (7 hr.), then at room temp. (15 hr.), yield (probably) 5-tert.-butyl-m-cresol, m.p. 50°, b.p. 128°/13 mm.; with H₃PO₄-Bu⁷OH, (I) yields 1: 4: 3-C₄H₃MePr⁶-OH, m.p. 23° (cf. A., 1976) and a small amount of pricomoridal probabils 1.6.2. 1936, 602), and a small amount of an isomeride, probably $1:6:3-C_8H_3MeBu^{\gamma}OH$. m-4-Xylenol and $Pr^{\beta}Cl$ -AlCl₃- $C_2H_4Cl_2$ at 9—12° give (?)5-isopropyl-, m.p. 46—47°, and a diisopropyl-m-4-xylenol, m.p. 99°.

cycloHexyl sulphite.—See A., 1944, II, 318.

Nitration of p-diphenylyl acetate. S. E. Hazlet, D. A. Stauffer, L. C. Hensley, and H. O. Van Orden (J. Amer. Chem. Soc., 1944, 66, 1245—1247).—p-C₆H₄Ph·OAc (I) is more difficult to nitrate than p-C₆H₄Ph·OH. With conc. HNO₃ in AcOH at 100° (6 hr.) and then room temp. (2 days) it gives some 4:3:5:1-OH·C₆H₂(NO₂)₂·C₆H₄·NO₂-\$\psi\$ (II), and other conditions usually give only (II). Adding (I) to HNO₃ (d 1·479) in AcOH at 100° gives (II) and a small amount of 4-nitro-4'-acetoxydiphenyl, m.p. 138—139°. Steric effects are responsible for these results and the difference Steric effects are responsible for these results and the difference from bromination. 3-Nitro-, m.p. 85—86°, 3:5-, m.p. 129—130°, and 3:4'-dinitro-, m.p. 137—138°, and 3:5:4'-trinitro-, m.p. 148— 149°, -4-acetoxydiphenyl are obtained from the phenols by boiling Ac.O-NaOAc. R. S. C. Ac2O-NaOAc.

Action of hydriodic acid on phenolic pinacols and pinacolins. Action of hydriodic acid on phenolic pinacols and pinacolins. Synthesis of estrogenic compounds. E. Adler, H. von Euler, and G. Gie $(Arkiv\ Kemi,\ Min.,\ Geol.,\ 1944,\ 18,\ A,\ No.\ 1,\ 21\ pp.).— [OH·C₈H₄·CMe(OH)]₂ is converted by red P and HI <math>(d\ 1.96)$ at 135— 140° in presence or absence of AcOH into PhOH, meso- $\beta\gamma$ -4:4'-dihydroxydiphenylbutane (I), m.p. 231— 233° (diacetate, m.p. 138— 140° ; sparingly sol. Na salt), a compound (II), $C_{18}H_{18(16)}O_2$, m.p. 174— 175° (diacetate, m.p. 117— 118.5° ; dibenzoate, m.p. 151— 161.5°), and r- $\beta\gamma$ -4:4'-dihydroxydiphenylbutane (III), m.p. 139— 139.5° (also + CHCl₃) (dibenzoate, m.p. 144— 145°). These compounds are also prepared similarly from $\gamma\gamma$ -di-p-hydroxyphenylbutan- β -one (IV), m.p. 130° , which therefore represents the first step in the β-one (IV), m.p. 130°, which therefore represents the first step in the change. The next step is not γγ-di-p-hydroxyphenylbutan-β-ol, m.p. β-one (IV), m.p. 130°, which therefore represents the first step in the change. The next step is not γγ-di-p-hydroxyphenylbutan-β-ol, m.p. 147—148° (obstinately retains solvent of crystallisation; dibenzoate, m.p. 163—164°), obtained by reducing (IV) with Na and C₅H₁₁·OH at 140°, since this does not give (I), (II), or (III) with P-HI. Reduction of (β-OH·C₆H₄·CMe.)₂ (V) gives mainly resin from which (I) can be isolated in very small amount. The smooth production of (III) from (V) and H₂-Pd in AcOH establishes the constitution of the former. [β-OH·C₆H₄·CEt(OH)]₂ with red P and HI affords PhOH, δ-p-hydroxyphenylhexan-γ-one, m.p. 67—68° [monobenzoate, m.p. 66—67°; oxime (? mixture of forms), m.p. 84—86°, softens at 74°], and a substance, C₁₈H₂₀₍₂₂O₂, m.p. 226—227° (slight decomp.) (diacetate, m.p. 102—104°, softens at 101°). The mechanism of the reactions is discussed (see also A., 1944, III, 810).

Proportion of the final substance of the social kylstill controls to dial kylstill bostrols.—

Rearrangement of isodialkylstilbæstrols to dialkylstilbæstrols.— See B., 1944, III, 216.

(A) Mechanism of the cleavage of ethers of the anisole type by (a) Mechanism of the cleavage of ethers of the anisole type by Grignard mixtures. (B) Action of Grignard solutions on a-bromo-ketones. A. Schönberg and R. Moubasher (J.C.S., 1944, 462—463).—(a) PhOMe and related substances undergo fission with Et₂O-Mg halides, resembling that with Grignard mixtures: PhOMe + MgHal₂ \rightarrow [MgHal·OPhMe]+Hal⁻ \rightarrow PhO·MgHal + MeHal. Et₂O-MgI₂ is more effective than Et₂O-MgBr₂ at 200—220°. PhO·CH₂·CH:CH₂ with Et₂O-MgBr₂ at 95° (in CO₂) similarly gives PhOH and CH₂:CH·CH₂Br.

(B) COPh·CPh.Br with MgI₂ (not MgBr₂) in boiling Et₂O, or MgBr₂ in warm PhOMe, gives COPh·CHPh₂. Analogous reactions with a-Br-ketones and Grignard mixtures is attributed to the MgHal, present.

Reduction by dissolving metals. I. A. J. Birch (J.C.S., 1944, 431-436).—Methoxyalkyl-(A) and alkyl-benzenes with Na in liquid NH₃ in presence of MeOH, EtOH, or tert.- C_6H_{11} OH as proton source undergo a 1: 4-addition of 2 H [the products from (A) being converted into Δ^2 -cyclohexenones with dil. acid and determined with converted into $\Delta^2.cyelo$ bexenones with dil. acid and determined with $2:4:1-(NO_2)_2C_6H_3\cdot NH\cdot NH_2$ or $NH_2\cdot CO\cdot NH\cdot NH_2$. (A) also give $\sim 10\%$ of the phenol by demethylation. $a\cdot C_{10}H_7\cdot ONa$ with $tert.-C_5H_{11}\cdot OH$ thus gives 5:8-dihydro-a-naphthol, m.p. 74° ; Na alone gives little reduction. $\beta\cdot C_{10}H_7\cdot ONa$ gives $2\cdot keto\cdot 1:2:3:4$ -tetrahydronaphthalene, b.p. $140^\circ/13-14$ mm.; in absence of alcohol some of an ar-dihydro- $2\cdot methoxynaphthalene$, b.p. $145-150^\circ/14$ mm, is obtained after methylation (Me_2SO_4) of the alkali-sol. product. $a\cdot C_{10}H_7\cdot CO_2Na$ is readily reduced in absence of alcohol to 1:4-m.p. 75° , and, after treatment with 20% NaOH at 100° (bath), 3:4-dihydro-a-naphthoic acid, m.p. 112° .

Reducing m-C₆H₄Me·OMe (I) in presence of MeOH yields 1-methyl-Δ¹-cyclohexene and 3-methyl-2: 5-dihydroanisole, b.p. 170—171°, characterised as 3-methyl-Δ²-cyclohexenone [semicarbazido-semicarbazone, m.p. 210° (decomp.); 2: 4-dinitrophenylhydrazone, m.p. 173°]; in absence of MeOH ~50% of (I) is converted into m-C₆H₄Me·ONa. 6-Methoxy-1: 2: 3: 4-tetrahydronaphthalene gives 2-keto-Δ¹: 9-octahydronaphthalene (MgMeI-CuBr gives cis-2-keto-9-methyldecahydronaphthalene), but no ketonic product was obtained from the 6-methoxy-5-methyl derivative. Amongst other compounds similarly prepared, the following are new: 2: 6-, m.p. 210—211°, 4: 6-, m.p. 175°, and (?) 3: 4-dinethyl-Δ²-cyclohexenone-semicarbazone, m.p. 193°; (?) 3: 6-dimethyl-Δ²-cyclohexenone-semicarbazone, m.p. 134°; 6-methyl-Δ²-cyclohexenone-2: 4-dinitrophenylhydrazone, m.p. 134°; 6-methyl-Δ²-cyclohexenone-2: 4-dinitrophenylhydrazone, m.p. 122—126°; 5-keto-Δ⁴: 9-tetrahydrohydrindene-semicarbazone, m.p. 228—230°, and -2: 4-dinitrophenylhydrazone, m.p. 197—198°. With EtOH, reduction converts m-xylene into 2: 5-dihydro-m-Δ1-cyclohexene and 3-methyl-2: 5-dihydroanisole, b.p. 170-171° 198°. With EtOH, reduction converts m-xylene into 2:5-dihydro-mxylene (ozonolysis yielding CH₂Ac₂) [nitrosochloride, m.p. 123° (decomp.); nitrolpiperidine, m.p. 137°], p-xylene into (? 2:5-)dihydro-p-xylene (nitrosochloride, m.p. 98°; nitropiperidine, m.p. 133°), tetrahydronaphthalene into 1:2:3:4:5:8-hexahydronaphthalene (nitrosochloride, m.p. 91°), and p-cymene into a product (25–30%) containing γ -terpinene (nitrosochloride, m.p. 110°; nitrolpiperidine, m.p. 144°). A rule correlating reduction products with the position of substituents is stated. P. T. C. of substituents is stated.

Oxidation [of dienes].—See A., 1944, II, 317.

Photochemical properties of 1:4-dimethoxy-9:10-diphenylanthracene.—See A., 1944, I, 290.

Colchicine and related compounds. Synthesis of 2:3:4:5-, 2:3:4:6-, and 2:3:4:7-tetramethoxy-9-methylphenanthrene.
—See A., 1944, II, 314.

o-p'-Nitrobenzamidophenol: a correction. L. C. Raiford and N. N. Crounse (J. Amer. Chem. Soc., 1944, 66, 1240—1241).—o-NH₂·C₆H₄·OH and p-NO₂·C₆H₄·COCl (I) in dioxan-NPhMe₂ (cooling) give o-p'-nitrobenzamidophenol (II) (77%), m.p. 202—203°, converted by (I) in CHCl₃-C₅H₆N exothermally into o-p'-nitrobenzamidophenol (IVI) and the compound of the by (1) In Color and the compound, m.p. 219—220°, supposed by Tingle et al. (A., 1907, i, 209) to be (II) was (III), but the mother-liquors obtained by their method contain some (II), m.p. 203—204°. o-NH₂·C₆H₄·OMe and (I) in C₅H₅N-dioxan give o-p'-nitrobenzamidoanisole, m.p. 145·5—146°, also obtained from (II) by No CMa Mal Mach by NaOMc-MeI-MeOH.

Structure and properties of azo- β -naphthol dyes. V. N. Ufimtzev (Compt. rend. Acad. Sci. U.R.S.S., 1943, 39, 351—353).—Absorption curves are compared for the azo- and hydrazone forms of 4:1curves are compared for the azo- and hydrazone forms of 4 - NPh.N·C₁₀H₅·OH and 1-p-sulphobenzeneazo- β -naphthol (Na and Na, salt, +2H₂O), and 1-m-sulphobenzeneazo-2-naphthol-3-carboxy-anilide (Na, +H₂O, and Na, salt, +1·5H₂O). The Na and Na, salts are formed in neutral aq. solution and EtOH-NaOEt, respectively; in dil. aq. or EtOH alkali the Na and Na, salts are in equilibrium. The difference in structure of α , and α -azonaphthol dues is annarent The difference in structure of o- and p-azonaphthol dyes is apparent from the shift of the absorption max. which occurs on salt formation and ionisation. With p-azo-dyes, the shift is towards the long-wave side; with o-azo-dyes it is to the opposite side in accordance with a chelate structure.

Bacterial chemotherapy. V. Synthesis of phenolic azo-dyes derived from sulphonamides. S. Rajagopalan (Proc. Indian Acad. Sci., 1944, 19. A, 351—356).—The following are prepared from p-NHR·SO₂·C₆H₄·N₂Cl and the appropriate phenol: mono- and dip-sulphamylbenzeneazoresorcinol; p-sulphamylbenzeneazo-thymol, -phloroglucinol, -a-naphthol, and -3-phenanthrol; 2: 4-dihydroxy-4-guanidinosulphonyl-, -4'-2"-pyridyl-, -4'-2"-thiazolyl-, and -4'-2"-thiazolinyl-sulphamylazobenzene; 8-hydroxy-5-p-2'-thiazolylsulphamylbenzeneazonuinoline. F. R. S. amylbenzeneazoquinoline.

Azo-compounds from o-nitrothiophenol and its methyl ether. C. Simons and L. G. Ratner (J.C.S., 1944, 421—422).—o-NO₂·C₆H₁·SH (I) with n-C₆H₁₁·ONa in C₆H₁₁·OH at 130° gives Na₂ azobenzene 2: 2'-disulphinate (II), which gives a pink free acid [dimorphous (probably) Me₂ esters, m.p. 135° and 195°, with CH₂N₂]. Acid or alkaline reduction of (II) or the Me esters failed to give o-NH₂·C₆H₄·SO₂H. o-NO₂·C₆H₄·SMe (III) with C₅H₁₁·ONa similarly gives no sulphone but 2: 2'-di(methylthiol)-azobenzene, m.p. 155°, and -azoxybenzene, m.p. 78—80° (separated by chromatographic analysis), with some o-NH₂·C₆H₄·SMe. Enolisation of the NO₂ group of (I) may occur; this cannot occur with (III). Azo-compounds from o-nitrothiophenol and its methyl ether. group of (I) may occur; this cannot occur with (III).

Sulphones.—See B., 1944, III, 238.

Vinyl alcohols. XI. β-Phenyl-β-mesitylvinyl alcohol. R. C. Fuson, N. Rabjohn, and D. J. Byers. XII. Oxidation of aa-diarylethylenes. R. C. Fuson, M. D. Armstrong, W. E. Wallace, and J. W. Kneisley (J. Amer. Chem. Soc., 1944, 66, 1272—1274, 1274—1276).—XI. β-Phenyl-β-mesitylvinyl alcohol (I) resembles CMes₂·CH·OH (Mes = mesityl here and below). α-Phenyl-β-mesitylethylene glycol (cf. Weinstock, Thesis, 1936), m.p. 144—146°, is obtained from COPh·COMes by H₂-Cu chromite in EtOH at 150°/2200 lb. or from COPh·COMes or COMes·CHPh·OH by H₂-PtO₂;

with H₂SO₄-AcOH it gives CH₂Mes·COPh but with boiling conc. HCl-AcOH yields (I), m.p. 114—115°. (I) is unchanged at 175°, in conc. aq. NH₃ at 100° gives di-β-phenyl-β-mesitylvinyl ether, m.p. 172—174°, is not affected by O₂ in Et₂O or light petroleum (23 hr.), P. I or hot KOH MoOH but glywlyd decembers i acirc with MoOH. P-1, or hot KOH-MeOH, but slowly decomposes in air; with MgMeI it yields 0.87 CH₄. With HCI-EtOH or -MeOH it gives the Et, b.p. 169-170°/2 mm., or Me ether, m.p. 44-45°, b.p. 144-145°/ 0.1 mm. (oxidised by SeO₂ in boiling dioxan to COPh-COMes), respectively. In Ac₂O-C₅H₅N at room temp. (I) gives the acetate (II), m.p. 91—92°, with BzCl-C₅H₆N-CHCl₃ at the b.p. and then room temp. gives the benzoate, m.p. 117—117·5°, and with H₂-Raney Ni in EtOH at 150°/1700 lb. yields β-phenyl-β-mestylethyl alcohol, b.p. 170. 173°/4 mm. 170—173°/4 mm. (p-nitrobenzoate, m.p. 124—125°). (I) is oxidised by O₃ in CHCl₃ to CHPhMes·CO₂H [also obtained similarly from (II)] and COPh·CHMes·OH, by KMnO₄-COMe₂ to a saturated compound, C₃₄H₃₄O₂, m.p. 152—153° (decomp.), by NaOCl to COPh·COMes, by H₂ 2-NaOH-MeOH-H₂O to COPhMes, and by CrO to a cill content of a curbown (C. H. O), m.p. CrO₃ to an oil and small amounts of a compound, (C₁₂H₁₂O)_z, m.p. 204—205° (decomp.), and COPh COMes. (I) has absorption max. at 2.76 and 2.84 μ . due to the OH.

XII. O₃ converts some sterically hindered CAr₂:CH₂ into CAr₂:CH₂OH. Thus, CPhMes:CH₂ gives (I), m.p. 114—115° (corr.), and small amounts of COPh-COMes and CHPhMes:CO₂H, and a-isodurylstilbene gives β-phenyl-β-isodurylvinyl alcohol (III) (20%), m.p. 121·5—122°, and phenylisodurylacetic acid (IV), m.p. 198—198·5°. With Ac₂O-C₅H₅N, (III) gives the acetate, m.p. 93—93·5°, with MgMeI gives 1 CH₄, and with H₂-Raney Ni in EtOH at 50°/1000 lb. gives β-phenyl-β-isodurylethyl alcohol, m.p. 72—73°. (IV) is also obtained from accountry (IV) by CH-CH-PCO 1 and Section of the section o Ib. gives β -phenyl- β -isodurylethyl alcohol, m.p. $72-73^\circ$. (IV) is also obtained from isodurene (V) by OH-CHPh-CO₂H and SnCl₄ or, by way of its Et ester, m.p. $57\cdot5-58^\circ$, b.p. $188-189^\circ/6$ mm., by CHPhBr-CO₂H etc. O₃ converts p-C₆H₄Me-CMes:CH₂ into p-tolyl-mesitylacetic acid, m.p. $211-212^\circ$, but no vinyl alcohol is obtained. CH₂Ph-COCl-AlCl₃ converts (V) into isoduryl CH₂Ph ketone, m.p. $60\cdot5-61^\circ$ [and (?) di(phenylacetyl)isodurene, m.p. $137-137\cdot5^\circ$], oxidised by SeO₂ and a little H₂O in boiling dioxan to syn- and anti-Ph isoduryl diketone, m.p. (VI) $65-66^\circ$ (oxime, m.p. $87-87\cdot5^\circ$) and $63-63\cdot5^\circ$ (oxime, m.p. $129\cdot5-130^\circ$) or vice versa. isoDurylglyoxal, C₈H₆, and AlCl. at room temp. give 2:3:4:6-letramethylbenzoin. 03-03'8' (oxime, m.p. 123'8-130') of vice versa: commission, C₆H₆, and AlCl₃ at room temp. give 2:3:4:6-tetramethylbenzoin, m.p. 92-93° (dibenzoate, m.p. 133-135°, of the enediol), oxidised by I-NaOMe in boiling MeOH to (VI). H₂-Range Ni in EtOH at

Acyloxyaralkyl nitriles.—See B., 1944, II, 305.

Antibacterial action of derivatives and analogues of p-aminobenzoic acid. O. H. Johnson, D. E. Green, and R. Pauli (J. Biol. Chem., 1944, 153, 37—47).—See A., 1944, III, 830. The following are stated to be new (analyses given) but no details of prep. are recorded: 4-amino-2-acetamidobenzoic acid, m.p. 205°; p-acetamidomethylbenzoic acid, m.p. 191°; 2-p-aminobenzamidothiazole, m.p. 257. 257—258°; p-aminobenzoyl-1-glutamic acid; 5-nitrothiophen-2-carboxylamide, m.p. 191°; 5-aminothiophen-2-carboxylamide hydrochloride; 5-acetamido-2-thienyl Me ketone, m.p. 270°; 2-amino-thiazole-5-carboxylic acid, m.p. 191°. M.p. are corr. E. C. W.

150—175°/2000 lb. reduces (VI) to a-phenyl-β-isodurylethylene glycol, m.p. 131·5—132°, whence boiling, conc. HCl-AcOH yields (III).

Preparation and catalytic reduction of γ -nitro- β -butyl p-nitro-benzoate.—See A., 1944, II, 317.

Oxidation of aromatic amino-acids, tyrosine, tryptophan, and phenylalanine. B. B. Drake and C. V. Smythe (Arch. Biochem., 1944, 4, 255—263).—Phenylalanine is not oxidised by KMnO₄ or cerox (Ce^{III} NH₄ sulphate). Tryptophan shows no end-point with 4 equivs. of either oxidant. Tyrosine shows an end-point with 3 equivs. of cerox; the impure oxidation product was isolated, some of its properties are described, and an oxidation mechanism is suggested.

Mono-iodotyrosine. C. R. Harington and (Mrs.) R. V. Pitt Rivers (Biochem. J., 1944, 38, 320—321).—Diazotisation [Ba(NO₂)₂ in dil. H₃SO₄] of 3-amino-l-tyrosine and treatment with KI and Cu h_2SO_4) of 3-amino-t-tyrosine and treatment with K1 and Cubronze gives 3-iodo-1-tyrosine, m.p. $204-206^\circ$ (decomp.), $[a]_D^{20}-4\cdot 4^\circ$ in N-HCl. 3-Nitro-d1-tyrosine, m.p. $214-215^\circ$ (decomp.) (prep. from d1-tyrosine and dil. HNO₃ at <25°), is reduced to the NH_2 -compound, m.p. 288° (decomp.), and converted into the I-derivative (+H₂O), m.p. $200-201^\circ$ (decomp.), which appears to be identical with the compound obtained by Ludwig et al. (A., 1939, II, 369). That isolated by Herriott (A., 1942, III, 172) is not identical with either of the compounds. of the compounds.

In-vitro formation of thyroxine from di-iodotyrosine.—See A., 1944, III, 728.

Acetolysis of esters. S. G. Cohen (J. Amer. Chem. Soc., 1944, 66, Acetolysis of esters. S. G. Cohen (J. Amer. Chem. Soc., 1944, 66, 1395—1397).—After boiling in AcOH-Ac₂O (35:2 by vol.) for 20 hr. 17% of Bu^vOBz was recovered, 87% of the remainder was isolated as BzOH, but only 8.6% of Bu^vOAc was formed. After keeping for 2 days with a little p-C₆H₄Me·SO₃H (I) in Ac₂O-AcOH atroom temp. only 25% of Bu^vOBz is recovered, and of the remainder 65% is obtained as Bu^vOAc, 61% as BzOH, and 6.5% as CMe₃·CH₂; acetolysis is rapid at the b.p. (76% in 2.5 hr.) but no Bu^vOAc is obtained. With (I) in boiling Ac₂O-AcOH for 24 hr. 69.7% of

PrBOBz is unchanged and of the remainder 57% appears as BzOH and 58% as PrBOAc; EtOBz and MeOBz are substantially (88%) unchanged under these conditions and no ROAc or BzOH is obtained. PraCO2Et is unchanged by KOAc in boiling Ac2O-AcOH, but only 55% of CCl₃·CO₂Bu is recovered after similar treatment, 65% of the remainder being obtained as BuOAc. CCl₃·CO₂Bu is unaffected by (I) in AcOH at 115°. Reaction mechanisms are

Derivatives of dialkoxyphthalides. R. H. F. Manske and A. E. Ledingham (Canad. J. Res., 1944, 22, B, 115—124).—2:3:1-(OMe)₂C₆H₃·CO₂H, HCl, and 40% CH₂O yield 3:4-dimethoxy-6-chloromethylphthalide (CO=2) (I), m.p. 106°, di-(4:5-dimethoxy-3-carboxy-2-hydroxymethylbenzyl) ether dilactone, m.p. 213°, and a little meconine. Reduction (Zn-HCl-EtOH) of (I) affords 3:4-dimethoxy-6-methylphthalide, m.p. 127°, also prepared from 2:3:5:1-(OMe)₂C₆H₂Me·CO₂H, CH₂O, and HCl. 3:2:1-OMe·C₆H₃(OEt)·CO₂H with CH₂O-HCl yields 4-methoxy-3-ethoxy-6-chloromethylphthalide (II), m.p. 130°, hydrolysed (H₂O) to the 6-OH·CH₂ derivative, m.p. 120°, and converted by MeOH-NaCN into 4-methoxy-3-ethoxy-6-cyanomethylphthalide, b.p. 145°/2 mm., m.p. 132°, which is hydrolysed (NaOH) to 4-methoxy-3-ethoxy-6-carboxymethylphthalide, m.p. 151°. Reduction of (II) with Zn-HCl-EtOH gives 4-methoxy-3-ethoxy-6-methylphthalide (III), m.p. 119°. 2:5:3:1-OH·C₆H₂Me(OMe)·CHO (IV), m.p. 77° (improved prep.; lit., an oil) (oxime, m.p. 165°), is methylated (Me₂SO₄-NaOH) to gives 4-methoxy-3-ethoxy-6-methylphthalide (III), m.p. 119°. 2:5:3:1-OH·C₈H₂Me(OMe)·CHO (IV), m.p. 77° (improved prep.; lit., an oil) (oxime, m.p. 165°), is methylated (Me₂SO₄-NaOH) to 2:3-dimethoxy-5-methylbenzaldehyde, m.p. 40° (oxime, m.p. 99°), which with CH₂(CO₂H)₂, C₅H₅N, and piperidine gives 2:3-dimethoxy-5-methylcinnamic acid, m.p. 188°, reduced (Na-Hg) to β-2:3-dimethoxy-5-methylcinnamic acid, m.p. 168°, prepared by ethylation of (IV) followed by CH₂(CO₂H)₂ etc., is reduced (Na-Hg) to β-3-methoxy-2-ethoxy-5-methylphenylpropionic acid, m.p. 100°. Oxidation (KMnO₄) of 3:5:2:1-OMe·C₆H₂Me(OEt)·CHO gives 3-methoxy-2-ethoxy-5-methylbenzoic acid, m.p. 89°, which with CH₂O-HCl yields (III). Creosol acetate with AlCl₃ in PhNO₂ at 80° gives 3-hydroxy-4-methoxy-6-methylacetophenone, m.p. 129°, with a little of the 3:4-(OH)₂-derivative, m.p. 169°, both of which with Me₂SO₄-NaOH give 3:4-dimethoxy-6-methylacetophenone, m.p. 76°. This yields oximino-3:4-dimethoxy-6-methylacetophenone, m.p. 152°, hydrolysed (NaOH) to 3:4:6:1-(OMe)₂C₆H₂Me·CO₂H. The following are also described; 3-methoxy-2-ethoxycinnamic acid, m.p. 152° [from the aldehyde and CH₂(CO₂H)₂], reduced (Na-Hg) to β-3-methoxy-2-ethoxyphenylpropionic acid, m.p. 186°, reduced to β-4-methoxy-3-ethoxy-2-methylcinnamic acid, m.p. 184°, reduced to β-4-methoxy-3

Iodinated acyltaurines.—See B., 1944, III, 237.

Sulphamide-amidines. I. p-Sulphamylbenzamidine and related compounds. R. Delaby and J. V. Harispe (Bull. Soc. chim., 1943, [v], 10, 580—584).—p-CN¹C₆H₄·SO₂·NH₂ and HCl in abs. EtOH at 0° give the hydrochloride, m.p. ~174° (freshly prepared; loses HCl when kept and melts at 182—183°), of the imino Et ether, m.p. 157°, converted by NH₃ in abs. EtOH into p-sulphamylbenzamidine, m.p. 251° (hydrochloride m.p. 242°) m.p. 251° (hydrochloride, m.p. 242°).

Theory of biogenesis of lichen depsides and depsidones. T. R. Seshadri (*Proc. Indian Acad. Sci.*, 1944, 20, A, 1—14).—Lichen depsides and depsidones are considered to arise from a common source, 2:3:5:1-CHO·C₆H₂(OH)₂·CH₂·OH, which originates from aldol condensation between a hexose and a biose with elimination of H2O. Oxidation and reduction lead to various modifications of this unit and increase in the length of the side-chain arises from condensation with simple sugars and reduction. Depsides are formed by the combination of two of these units. β -Orcinol derivatives are obtained by nuclear methylation by CH₂O and this reaction in general takes place prior to depside formation, though the other possibility is not altogether excluded as far as the left half of the mol. is concerned. Depsidones come last in the evolution; they are based on depsides and require oxidation or dehydrogenation involving $C_{(5)}$ which is para to the activating OH. Nuclear oxidation also occurs without leading to depsidone formation; either $C_{(5)}$ or $C_{(5)}$ is involved and meta-depsides result. Oxidation intovices ing the left half is also possible and is represented by diploschistesic acid. The occurrence of orcinol and psoromic acid is attributed to decarboxylation occurring in the plant.

Preparation of homophthalyl and 4-aminohomophthalyl cyclic hydrazides. W. F. Whitmore and R. C. Cooney (J. Amer. Chem. Soc., 1944, 66, 1237—1240).—o-CO₂H·C₆H₄·CH₂·CŌ₂H (I), readily obtained in 58% yield from indene by K₂Cr₂O₇-H₂SO₄-H₂O at the b.p., with AcCl or, better, Ac₂O gives the anhydride (II), which with N₂H₄, H₂O in boiling EtOH yields cyclic homophthalhydrazide (III) (80%), m.p. 298—300°. (III) could not be obtained from the Me, ester or imide of (I) and the diacid chloride of (I) could not be Mc₂ ester or imide of (I) and the diacid chloride of (I) could not be prepared. (III) behaves as a monoenol towards aq. NaOH (phenolphthalein); it gives no Ac derivative but in boiling AcOH gives

N-aminohomophthalimide, m.p. 147—148° (N'-Ac derivative, m.p. 239—240°), which is also obtained from (II) by N₂H₄,H₂O in boiling AcOH. 2:4:1-CO₂H·C₆H₃(NO₂)·CH₂·CO₂H [obtained from (I) by fuming HNO₃ or, better, KNO₃-H₂SO₄] in boiling AcCl gives the anhydride (70%), m.p. 154—155°, which with N₂H₄,H₂O in AcOH at 100° gives cyclic 4-nitrohomophthalhydrazide (70%), amorphous, m.p. 248—250° (decomp.), reduced by H₂-Raney Ni in aq. NaOH to cyclic 4-aninohomophthalhydrazide, m.p. 210—212° (decomp.; rapid heating) or decomp. ~200—320° (slow heating) (N⁴-Ac derivative, m.p. >320°). With H₂O₂-NaOH the cyclic hydrazides are much less luminescent than is phthalhydrazide. R. S. C.

Nitrones. III. Condensation of 2:4:6-trinitrotoluene with arylnitroso-compounds. I. Tănăsescu and I. Nanu (Ber., 1942, 75, [B], 1287—1292; cf. A., 1939, II, 323).—Contrary to Radulescu et al. (A., 1939, II, 537), nitrones and not additive NH₂OH compounds are formed from 1:2:4:6-C₆H₂Me(NO₂)₃ (I) and o-C₆H₄Me·NO in p-NO·C₆H₄·NMe₂ (II). (I) and o-C₆H₄Me·NO in boiling EtOH containing Na₂CO₃ or piperidine or in C₆H₆N containing I at 40—50° afford 2:4:6-trinitrophenyl-N-o-tolylnitrone, m.p. 147—148° (explosion), the constitution of which follows from its behaviour when heated, its partial hydrolysis by HCl to 2:4:6:1-(NO₂)₃C₆H₂·CHO (III), and its isomerisation by AcCl in hot COMe₂ to 2:4:6-trinitrobenz-o-toluidide, m.p. 259° (decomp.) (Ac derivative, m.p. 200°), identical with the product obtained from 2:4:6:1-(NO₂)₃C₆H₂·COCl and o-toluidine in boiling C₆H₆. 2:4:6-Trinitrophenyl-N-m-tolylnitrone, m.p. 157° (explosion), obtained similarly, is isomerised to 2:4:6-trinitrobenz-m-toluidide, m.p. 209·5° (Ac derivative, m.p. 185°). Similarly 2:4:6-trinitrophenyl-N-p-tolylnitrone, m.p. 151° (explosion), is isomerised to 2:4:6-trinitrobenz-toluidide, m.p. 217° (Ac derivative, m.p. 210°). With NHPh·NH₂ in acid solution all these nitrones afford 2:4:6:1-(NO₂)₃C₆H₂·CH:N·NHPh in small yield. Hydrolysis is accompanied by a marked phenolic odour. (I) and (II) gives the somewhat unstable 2:4:6-trinitrophenyl-N-p-dimethylaminophenylnitrone, characterised by its tendency towards explosion and hydrolysis to (III) and p-NH₂·C₆H₄·NMe₂.

Synthesis of aromatic amino-aldehydes and amino-ketones. W. Hao-Tsing (J. Amer. Chem. Soc., 1944, 66, 1421—1422).—When NH₂Ph is gently heated with HCN-HCl-Et₂O, a brown oil is pptd., which, when further heated at 250—300° and then boiled in aq. KOH, gives p-NH₂·C₆H₄·CHO. NH₂Ph with MeCN-HCl-Et₂O similarly gives p-NH₂·C₆H₄·COMe. Reagents and conditions must be anhyd. The oily intermediates are probably NH:CR·NHPh, rearranged by heat to p-NH₂·C₆H₄·CR:NH, which is hydrolysed by the KOH. The reaction may be general. R. S. C.

Structure of o-hydroxybenzaldazines. H. von Euler, E. Adler, and J. Ettlinger (Arkiv Kemi, Min., Geol., 1944, 17, A, No. 16, 15 pp.).—1:4:2:6-OH-C₀H₂Me(CHO)₂ (I) and COEt·NH·NH₂ or (CO·NH·NH₂)₂ in dil. EtOH give respectively hydroxyvvitinaldehyde-di(propionylhydrazone) (II), m.p. 239—241° (also +2AcOH), and amorphous polyhydroxyuvitinaldehydedi(oxalylhydrazone) (III), no definite m.p. (II) is converted readily by boiling dil. mineral acid into hydroxyuvitinaldazine (IV), m.p. 278—280°, best obtained by the gradual addition of N₂H₄,2HCl in 50% EtOH to (I) in the same solvent. Under similar conditions (III) affords polyhydroxyuvitinaldazine (V), decomp. >360°, also obtained from (I) and N₂H₄,H₂O in EtOH or, preferably, in presence of AcOH; it has pronounced indicator properties. (IV) is sparingly sol. in dil. NaOH, freely in KOH; it cannot be methylated by CH₂N₂ or KOH-Me₂SO₄ and does not give an Ac derivative. The stability of (IV) and (V) towards dil. mineral acids suggests the possibility of a quinonoid structure, which, however, is less probable for (V). This hypothesis is strengthened by the less intense colour of methoxyuvitinaldazine (VI), m.p. 234—235°, and the amorphous polymethoxyuvitinaldazine (VI), m.p. 236

2:3:5:8-Tetramethoxy-6:7-dimethyl-1-naphthaldehyde. R. Adams and Z. W. Wicks (J. Amer. Chem. Soc., 1944, 66, 1315—1316).—Attempts to prepare OH-naphthaldehydes having the properties of gossypol failed. Pure o-xyloquinone and $[CH_2:C(OMe)]_2$ at 140° give 6:7-dimethoxy-2:3-dimethyl-1:4-naphthaquinone (I) (77—82.5%), m.p. 248—249° (lit. 241—242°), which by hydrogen-

ation (H₂-Raney Ni; MeOH; $50^{\circ}/1500$ lb.) and thereafter immediate methylation (Me₂SO₄-KOH-H₂O-Na₂S₂O₄) yields 1:4:6:7-tetramethoxy-2:3-dimethylnaphthalene (73%), m.p. $151-152^{\circ}$. With HCO·NPhMe and POCl₃ at the b.p. this gives 2:3:5:8-tetramethoxy-6:7-dimethyl-1-naphthaldehyde (67%), m.p. $135-136^{\circ}$, which yields normally a phenylhydrazone, m.p. $156-157^{\circ}$, and oxime, m.p. $155-156^{\circ}$ (with boiling Ac₂O yields 2:3:5:8-tetramethoxy-6:7-dimethyl-1-naphthonitrile, m.p. $122\cdot5-123^{\circ}$). Reductive acetylation of (I) gives 1:4-diacetoxy-6:7-dimethoxy-2:3-dimethylnaphthalene (91%), m.p. $180\cdot5-181^{\circ}$. No cryst. phenols could be obtained from the OMe-products. M.p. are corr.

Cinnamylideneacetone tetrabromide. P. Duquénois and Z. Sezer (Rev. Fac. Sci. Islanbul, 1943, 8, A, 158—159).—
CHPh:CH:CH:COMe and Br in Et₂O give a red oil from which cinnamylideneacetone tetrabromide, m.p. 173.5° (slight decomp.) (cf. Diehl et al., A., 1885, 1221), is isolated by repeated crystallisation from EtOH.

H. W.

Synthesis of model substances for the ligninsulphonic acids. Synthesis of α-phenylacetone-α-sulphonic acid and propioveratrone-α-sulphonic acid. A. von Wacek, K. Kratzl, and A. von Bézard (Ber., 1942, 75, [B], 1348—1357).—CHPhAcBr, from CH₂PhAc and Br in anhyd. Et₂O, is converted by KCNS in EtOH into α-thiocyano-α-phenylacetone (I), m.p. 51—52°, and by KSAc and KSBz in EtOH into α-acetylthiol- (II), b.p. 167—158°/12 mm., m.p. 31°, and α-benzoylthiol-, m.p. 58°, -α-phenylacetone, respectively. (II) is smoothly hydrolysed by alkali (but not by acid) to α-thiol-α-phenylacetone (III), m.p. 108—110° (Hg derivative, m.p. 124—126°). Chlorination of an aq. suspension of (I) gives, in proportion varying with the experimental conditions, CHPhAcCl, unchanged material, and an α-thiocyano-α-chlorophenylacetone, m.p. 56·5°. Similar treatment of (II) affords CHPhAcCl and somewhat impure (?) αα-dichloro-α-phenylacetone, m.p. 120—125° (oxidation gives BzOH). Oxidation of (III) with NaOCl in C₆H₆—Et₂O-H₂O gives the disulphide, m.p. 108°, and a residue converted into an unidentified benzylthiuronium salt, m.p. 164°. Similar treatment of (II) appears to give no disulphide; mixtures of benzylthiuronium salts which cannot be separated are obtained. A well-stirred mixture of CHPhAcBr and boiling aq. Na₂SO₃ gives Na α-phenylacetone-α-sulphonate, m.p. 204—206°, isolated through the benzylthiuronium salt, m.p. 140—141°. Similarly bromopropioveratrone affords Na propioveratrone-α-sulphonate (corresponding benzylthiuronium salt, m.p. 153°).

New reagent for primary and secondary amines. A. J. Birch (J.C.S., 1944, 314-315).—cycloHexene nitrosochloride warmed with C_5H_5N gives $1-(2'-oximinocyclohexyl)pyridinium chloride <math>(+H_2O)$, m.p. 125° , which when heated in 10% Na $_2CO_3$ with the hydrochloride of the base gives 2-oximinocyclohexyl derivatives (m.p. in parentheses) of the following: NHMe $_2$ (120°), NH $_2$ Pr a (72°), NH $_2$ Bu a (81°), NH $_2$ Bu b (73°), NH $_2$ Bu v (91°), NHEt $_2$ (63°), morpholine (118°), and $n-C_7H_{15}$ NH $_2$ (66°). The derivative from piperidine has new m.p. 116° (lit. 119°). cycloHexylamine gives 2-oximinodicyclohexylamine, m.p. 145° .

Synthesis of possible degradation products of metathebainone. II. H. L. Holmes and L. W. Trevoy (Canad. J. Res., 1944, 22, B, 109—114; cf. A., 1944, II, 281).—(CH₂·CO)₂O and veratrole yield (method: Fieser et al., A., 1937, II, 20) β-3:4-dimethoxy- (I) and some β-4-hydroxy-3-methoxy-benzoylpropionic acid (II), m.p. 131—131-5°, reduced (Clemmensen) to γ-4-hydroxy-3-methoxy-phenylbutyric acid, m.p. 114—116°. (II) with KOH-Et₂SO₄ gives β-3-methoxy-4-ethoxy-benzoylpropionic acid, m.p. 139—140° (lit. 136—137°), the orientation of which is proved by oxidation (KMnO₄) of the Et ester to 3:4:1-OMe·C₈H₃(OEt)·CO₂H, also prepared from vanillin. Prepo (I) is modified to give 83%. M.p. are corr. J. D. R.

Stereochemistry of cyclanes. XII. Polybenzylcyclohexanones; isolation of four o-dibenzylcyclohexanones of which three are almost certainly 2:6-derivatives. R. Cornubert, P. Anziani, M. André, M. de Demo, and G. Morelle (Bull. Soc. chim., 1943, [v], 10, 561—565; cf. A., 1939, II, 164).—The 2:6-dibenzylcyclohexanone (I), new m.p. 105° (oxime, m.p. 123°; semicarbazone, m.p. 164—165°) (cf. A., 1939, II, 324), prepared by benzylation of 2-benzylcyclohexanone, could not be obtained by hydrogenating dibenzylidene-cyclohexanone, could not be obtained by hydrogenating dibenzylidene-cyclohexanone; the latter method affords isomerides, m.p. 122° and 55°, of (I) (cf. A., 1934, 279), convertible by CH₂PhCl-NaNH₂-Et₂O into 2:2:6-tribenzyl-, m.p. 61—62°, and 2:2:6:6-tetrabenzyl-cyclohexanone (II), m.p. 174°. (II) is also obtained by dibenzylating (I) or the 2:2-isomeride, m.p. 69—70° (cf. A., 1932, 161). (I) is not isomerised by HCl. With Na-EtOH, (I) yields probably an impure sec. alcohol, but with H₂-PtO₂-Et₂O it gives probably a 2:6-dihexahydrobenzylcyclohexanol (phenylurethane, m.p. 132—134°).

Synthesis of compounds related to santonin. (Miss) K. D. Paranjape, N. L. Phalnikar, B. V. Bhide, and K. S. Nargund (*Proc. Indian Acad. Sci.*, 1944, 19, A, 381—384).—α-(2-Hydroxy-4-formyl-3-ketocyclohexyl)propiolactone, COMe₂, and EtOH-NaOEt give α-1-hydroxy-7-keto-Δ⁵: 8-hexahydro-2-naphthylpropiolactone, m.p. 91°; COMeEt similarly affords the corresponding 8-Me derivative, m.p. 111°. α-(2-Hydroxy-4-formyl-3-keto-4-methylcyclohexyl)propiolactone

condenses similarly with COMe₂ to a-1-hydroxy-7-heto-10-methyl- Δ^5 : *hexahydro-2-naphthylpropiolactone, m.p. 141° (semicarbazone, m.p. 201°). F. R. S.

3:4-Benzfluorenones. I. Effect of groups on their formation and their fission with alkali. F. G. Baddar and M. Gindy (J.C.S., 1944, 450—452).—Factors governing the point of cleavage of 3:4-benzfluorenones and mode of cyclisation of 1-phenylnaphthalene-2'-carboxylic acids are of polar, and not steric, origin. 4:2-C₁₀H₆I·OMe (I) and o-C₆H₄I·CO₂Me with Cu-bronze at 200—210° give 3-methoxy-1-phenylnaphthalene-2'-carboxylic acid, m.p. 191—192°, cyclised (P₂O₅-C₆H₆) to 1-methoxy-3:4-benzfluorenone, m.p. 148—150°, and 2-methoxymesobenzanthrone (little). 3:1:2-C₆H₃I(CO₂Et)₂ with 1-C₁₀H₇I and Cu-bronze at 210° (bath) gives 1-phenylnaphthalene-2':3'-dicarboxylic acid, m.p. 178—179° (slow), 1C²-193° (rapid heating) [Me₂ ester, m.p. 133—134°; anhydride (II), m.p. 179—180°]. Cyclisation of (II) (CS₂-AlCl₃) yields 3:4-benzfluorenone-8-carboxylic acid (III), m.p. 276—276·5° (little), and mesobenzanthrone-8-carboxylic acid, m.p. 262—263° (lit. 254—255°) (Me ester, m.p. 173·5—174·5°). 1-Phenylnaphthalene-2:4'-dicarboxylic acid (IV), m.p. 265—266° (from p-C₆H₄I·CO₂Me and 1:2-C₁₀H₆Br·CO₂Me), gives on ring-closure (chloride with AlCl₃-CS₂) only 3:4-benzfluorenone-7-carboxylic acid (V), m.p. 323—324°. (III) with KOH at 225—230° gives 1-phenylnaphthalene-2:3'-dicarboxylic acid, m.p. 255—256°, whilst (V) gives a mixture of (IV) and (probably) 1-phenylnaphthalene-2':4'-dicarboxylic acid. (I) is obtained (diazo-method) in poor yield from 4:2-NH₂·C₁₀H₆·OMe (Ac derivative, m.p. 179°); 2-hydroxy-1:4-naphthaquinone [which may arise from 1:4-C₁₀H₆(OH)₂] is isolable from the many byproducts. Et 3-p-toluenesulphonamidophthalate has m.p. 147—148°. P. T. C.

2-Methyl-2-phytyl-2:3-dihydro-1:4-naphthaquinone.—See B. 1944, III, 218.

Hydrolysis of quinoneoximes. W. T. Sumerford and D. N. Dalton (J. Amer. Chem. Soc., 1944, 66, 1330—1331).—Hydrolysis of quinone mono-oximes by $\mathrm{Cu}_2\mathrm{O}$ (1 mol.) in boiling $\mathrm{HCl}\text{-}\mathrm{COMe}_2\text{-}\mathrm{H}_2\mathrm{O}$ -methylcellosolve or in $\mathrm{HCl}\text{-}\mathrm{COMe}_2\text{-}\mathrm{H}_2\mathrm{O}$ at room temp. gives good yields (55—92% in 9 out of 11 examples) of the parent quinone. The methods of Karrer et al. (A., 1939, II, 335) and Tseng et al. (A., 1934, 1005; 1944, II, 166) are less satisfactory. R. S. C.

Molecular compounds of the quinhydrone type in solution. L. Michaelis and S. Granick (J. Amer. Chem. Soc., 1944, 66, 1023—1030).—The absorption of light (λ 300—550 m μ .) by solutions containing mixtures of a quinone (Q) with a benzenoid substance (B) that combine to form a compound of the quinhydrone type is due almost entirely to the compound, and has been used to detect and obtain a relative measure of the extent of such combination with various pairs of components. It is assumed that the concn. m of the compound is always small compared with that of the components, so that the association const. k=m/[Q][B] can be taken to refer to the initial concns. of Q and B. The measured optical absorption $[I_0-I)/I_0]$, after correction (often negligible) for the components, is divided by the known val. of [Q][B] to obtain $\varepsilon_{\rm st}$, which is related to the mol. extinction coeff. $\varepsilon_{\rm mol}$, for the compound by $\varepsilon_{\rm rt}=k\varepsilon_{\rm mol}$, the vals, of $\varepsilon_{\rm st}$ are then $\propto m$, although the abs. val. of m is not known. The following pairs of substances were studied in EtOH and, sometimes, in C_0H_0 , light petroleum, or 0·05N-HCl: (a) p-O: C_0H_0 -O(I)—quinol, (I)—resorcinol, p-O: C_0C_1 -O-I0me, duroquinone-duroquinol; (b) (I)—PhOH, (I)—p-OH- C_0H_1 -OMe; (c) (I)—s- c_0H_3 -(OH)₃; (d) (I)—PhOR, (I)—p-O₀H₄(OR)₂ (R = Me, Et). Combination occurs in all the mixtures, and is \propto both [Q] and [B]; hence the compound formed is in every case QB. Since the substances in groups (a), (b), and (c) form solid compounds QB, QB_2 , and Q_2B respectively, whilst those in (d) form no solid compounds, it appears that the fructure of the compounds formed in solution differs from that of the solids. H linkings are not necessary, and the affinity of (I) for a phenol is approx. the same as for its ethers. It is suggested that combination in solution involves a planar superposition of the rings.

Naphthaquinone 2: 3-oxides.—See B., 1944, II, 305.

Dithymoquinone. L. I. Smith and R. W. H. Tess (J. Amer. Chem. Soc., 1944, 66, 1323—1325).—Dithymoquinone (prep. described) is probably (I). It is unchanged by H₂SO₄ (little) in Ac₂O, CPrβ-CO-CH-CMe-CO-CH by AcCl or PCl₃ at room temp, H₂SO₄-MeOH, or FeCl₃-EtOH at the b.p. It is resinified by HBr-AcOH and converted by Na₂S₂O₄ slowly into thymoquinol. It has no characteristic absorption. R. S. C.

IV.—STEROLS AND STEROID SAPOGENINS.

Steroids and specificity of the Pettenkofer reaction. I. Qualitative studies. G. W. Kerr and W. M. Hoehn (Arch. Biochem., 1944, 4, 155—158).—The Schmidt modification (A., 1942, III, 755) of Pettenkofer's reaction was applied to 43 steroids; 12 give a positive result. All steroids with OH at C₍₇₎, or a group easily converted into

OH, give a positive result as well as Δ^3 -, Δ^5 -, and Δ^8 -monocholenic acids and their esters. $a\beta$ -Unsaturated ketones gave a negative result. Dehydro-*trans*-androsterone gave a positive result. E. R. S.

Preparation and properties of ergosteryl iodide. A. Jendrassik (Biochem. Z., 1941—1942, 311, 402—407).—Ergosterol with I powder in a little CHCl₃ at room temp. gives a stable iodide, $C_{28}H_{44}OI_2$ ($+H_2O$), m.p. 92° (absorption max. at 370 and 298 m μ .), which has no antirachitic power (daily dose 2 μ g.) even after irradiation, and is converted by Na₂S-CHCl₃-0·In-HCl (little) into an I-free compound, m.p. 127° [not pptd. by digitonin; absorption max. at 275 m μ .; no antirachitic power (daily dose 2 μ g.) even after irradiation].

Bile acid derivatives .- See B., 1944, III, 216.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Halogen derivatives of 1:8-cineole. R. Delaby and A. Billuart (Bull. Soc. chim., 1943, [v], 10, 567—573).—Cineole (I) is chlorinated by Cl₂-CCl₄-aq. CaCO₃ in sunlight or artificial light (cf. Gandini, A., 1933, 830; 1937, II, 295). Raman spectra of resulting fractions, b.p. (a) 118—121°, (b) 121—123°, (c) 123—125°, (d) 125—127°, and (e) 127—129°, all at 50 mm., are examined; (a) and (b) and some of (c) probably contain cis- and trans-2-chlorocineole, and (d) and (e) the 3-isomeride, but no definite conclusions are reached. Dehalogenation is difficult, but prolonged boiling (90 hr.) with AcOH and AgOAc or KOAc gives some OAc-derivative, b.p. 118—123°/50 mm., hydrolysed by boiling NaOH-MeOH to cineolic alcohol, b.p. 108—111°/9 mm. (allophanate, m.p. 169°; two phenylurethanes, alcohols). (I) and Br-CCl₄-aq. CaCO₃ yield some cis- or/and trans-2-bromocineole, b.p. 93—95°/4 mm. Oxidation of l-pinene or d-apinene by BzO₂H-CHCl₃ gives the respective oxides. Similarly prepared is aβ-oxidoheptan-y-ol, b.p. 86—89°/10 mm., which is hydrolysed by boiling H₂O (+HCl) to n-butylglycerol, m.p. 53-6°. Similarly, vinylisobutylcarbinol (allophanate, m.p. 147-5°) affords the oxide, b.p. 93—97°/20 mm., hydrolysed to isobutylglycerol, b.p. 173—174°/16 mm.

Rearrangement of santenonequinone. R. N. Chakravarti (Current Sci., 1944, 13, 158).—dl-Santenonequinone with conc. H₂SO₄ gives 2: 3-dimethylcyclohexan-1-one-4-carboxylic acid (I), m.p. 132° (semicarbazone, m.p. 191°), which is oxidised (HNO₃) to α-methylbutane-αβδ-tricarboxylic acid, m.p. 181—182°, also obtained by condensing Cl·[CH₂]₂·CO₂Et with CO₂Et·CHMe·CH(CN)·CO₂Et followed by hydrolysis. Et αβ-dimethylacrylate with CN·CH₂·CO₂Et and NaOEt affords a Na salt, which with Cl·[CH₂]₂·COEt yields Et γ-cyano-αβ-dimethylfentane-αγε-tricarboxylate, b.p. 200—204°/6 mm. is on hydrolysis and subsequent esterification gives Et αβ-dimethyl-pentane-αγε-tricarboxylate, b.p. 178°/7 mm., which is cyclised (Na) to Et 2: 3-dimethylcyclohexan-1-one-4: 6-dicarboxylate, b.p. 170°/8 mm., hydrolysed to (I).

Sesquiterpenes. LXIV. Addition of acetylenedicarboxylic ester, azodicarboxylic ester, and maleic anhydride to caryophyllene. P. A. Plattner and L. Werner [with, in part, N. Clauson-Kaas] (Helv. Chim. Acta, 1944, 27, 1010—1016).—Adducts of the type A (R = •N(CO₂Et)·NH·CO₂Et, ·C(CO₂Me)·CH·CO₂Me, or ·CH·CO are

described. Caryophyllene B (I) and (CCO₂Me)₂ at 180° according to experimental conditions give varying amounts of polymeric compounds, possibly of the non-homogeneity of (I). A mixture of stereoisomerides is probably present in the monomeric condensation product, which gives the dicarboxylic acid (II), C₁₂H₂₆O₄, m.p. 122—123°, [a] +77·2° in CHCl₃, in only 25% yield. (II) affords a non-cryst. Me₂ ester, b.p. 180—190°/1 mm., [a]_p +79·3° in CHCl₃, which gives a yellow colour with C(NO₂)₄. (II) is hydrogenated to a non-cryst. H₆-acid, the Me₂ ester, b.p. ~180°/1 mm., a_p -11°, of which is converted by Mg, MeI, and NH₂Ph into the dianilide, m.p. 228° (vac.), [a]_p +39° in COMe₂, identical with the trans-tetrahydrodicarboxyanilide obtained from (I) and (CH·CO)₂O therefore have the same C skeleton and must be produced by a similar reaction scheme. (I) and (N·CO₂Et)₂ react rapidly at room temp. but only ~15% of the product could be isolated as the cryst. adduct, C₂₁H₃₄O₄N₂, m.p. 139°, [a]_p +39° in CHCl₃; this evolves 2 CO₂ when hydrolysed by acid but does not yield cryst. products. The behaviour of (N·CO₂Et)₂ indicates the presence of CC·C in (I). Unknown catalytic influences appear to affect the reaction between (I) and (CH·CO)₂O; the yield of additive product is increased by prolongation of the change and by use of an increased proportion of anhydride, but the quantities of polymeride are also thereby increased. Unchanged (I) resembles the original material in d and n but [a]_p is appreciably lower. Feebly dextrorotatory fractions may be obtained from it by distillation. M.p. are corr.

Triterpenes. LXXXVIII. Friedelin and cerin. L. Ruzicka, O. Jeger, and P. Ringnes (Helv. Chim. Acta, 1944, 27, 972—988; cf. Drake, A., 1936, 1386).—The presence of the group ·CH₂·CH₂·CO·CH·CH< in friedelin (I) and cerin (II) which is now established shows that the structure of the terminal ring in these established shows that the structure of the terminal ring in these compounds differs from that of the oleanolic series. The isolation of (I), m.p. $248-250^\circ$ (open capillary), $264-265^\circ$ (vac.), $\lceil a \rceil_D - 27.8^\circ$, and of (II), m.p. $250-254^\circ$ (open capillary), $\lceil a \rceil_D - 41.2^\circ$, from cork is described. enolFriedelin benzoate (III) has m.p. $246-249^\circ$ (open capillary), $265-266^\circ$ (high vac.), $\lceil a \rceil_D + 64.1^\circ$. (I) is reduced by N₂H₄,H₂O-NaOEt in EtOH at $200-220^\circ$ to friedelan, m.p. $243-244^\circ$, $\lceil a \rceil_D + 41.8^\circ$, saturated towards $C(NO_2)_4$ and identical with the compound obtained by Clemmensen's method. Under with the compound obtained by Clemmensen's method. Under different conditions, oxidation of (I) by CrO₃ in AcOH gives varied proportions of friedelonic acid (IV) (Me ester, m.p. $153-154\cdot5^\circ$, $[a]_D + 11\cdot8^\circ$) and friedelindicarboxylic acid (V), $C_{30}H_{50}O_4$, m.p. 288° (decomp.), $[a]_D + 21\cdot4^\circ$ [Me₂ ester, m.p. $174-176^\circ$, $[a]_D + 9\cdot8^\circ$; anhydride (VI), m.p. $264-265^\circ$ (decomp.), $[a]_D + 74\cdot6^\circ$]. (II) is oxidised by CrO_3 (=6 O) in $ACOH-CCl_4$ at room temp. to (V) and enolfriedelandione, $C_{30}H_{48}O_2$, m.p. $265-267^\circ$, $[a]_D + 18\cdot5^\circ$ (acetate, m.p. $283-285^\circ$, $[a]_D + 3^\circ$; benzoate, m.p. $301-303^\circ$, $[a]_D + 25\cdot7^\circ$; quanaxaline derivative m.p. $244-248^\circ$) which gives a dark brown quinoxaline derivative, m.p. 244-246°), which gives a dark brown colour with FeCl₃ and a feebly positive test with $C(NO_2)_4$. (III) is oxidised by CrO_3 in AcOH at 100° to (IV) and enolfriedelandione benzoate, m.p. $302-304^\circ$ (decomp.), $[a]_D + 24\cdot 1^\circ$. Thermal decomp. of (VI) leads to an amorphous norfriedelanone (VII) and a fraction, m.p. $231-232^\circ$, $[a]_D - 83\cdot 7^\circ$, also obtained by subliming (VI) at 210°/high vac., showing that CO of (I) lies in a terminal ring (VI) at 210°/high vac., showing that CO of (1) lies in a terminal ring of the skeleton. SeO₂ in boiling AcOH oxidises (VII) to norfriedelenone, C₂₀H₄₆O, m.p. 260—261°, [a]_D—108°, reduced (Clemmensen) to (VII), whereas in dioxan at 200° the oxidation product is norfriedelenedione (VIII), C₂₀H₄₄O₂, m.p. 269—270°, [a]_D +241° (quinoxaline derivative, m.p. 240—240·5°), which is saturated towards C(NO₂)₄, does not give a colour with FeCl₃, cannot be acetylated, and is greatly decomposed by KOH-MeOH. (III) is oxidised by SeO₂ in dioxan at 170° to (VIII) also obtained by the similar oxidise SeO2 in dioxan at 170° to (VIII), also obtained by the similar oxidation of enolfriedelandione benzoate. Pb(OAc)₄ or H₂O at 80° oxidises (VIII) to a compound, C₂₉H₄₄O₃, m.p. 236·5—237°, [a]_D —40·9°, which does not give a colour reaction with C(NO₂)₄ or FeCl₃ and is unaffected by 5% KOH-EtOH at 100°. (VIII) is transformed by Br in AcOH into nordibromofriedelenone, m.p. 197° (decomp.), $[a]_D$ +63·6°, transformed by boiling KOH-McOH to enolnor-friedelenedione, m.p. 260—261°, $[a]_D$ +179·5° [acetate, m.p. ~256° (decomp.), $[a]_D$ +208°]. M.p. are corr. $[a]_D$ are in CHCl₃. H. W.

Saponins and sapogenins. XXV. Norechino- and isonorechino-cystenedione. J. F. Carson, D. B. Cosulich, and C. R. Noller. XXVI. Conversion of echinocystic acid into oleanolic acid. D. Frazier and C. R. Noller. XXVII. Structure of triterpenoids. C. R. Noller (J. Amer. Chem. Soc., 1944, 66, 1265—1267, 1267—1268, 1269—1271; cf. A., 1944, II, 343).—XXV. isoNorechino-cystenedione (I) is unchanged by hot Ac₂O-C₅H₅N and, except for a little tar-formation, by McI-Ag₂O, but with boiling Ac₂O-KOAc or HCI-MeOH or -EtOH gives norechinocystenedione (II), m.p. 203—205°, [a]²⁹₂₉ -94·2°, [a]²⁸₂₄₆₀ -113° in dioxan [dioxime, m.p. 246—249° (decomp.; bath preheated at 225°), [a]²³₂₅ -127° to -128°, [a]²⁵₃₄₆₀ -136° in dioxan]. With BuSH-HCl (but not either alone) in hot EtOH, (I) gives a conjugated, isomeric dione (III), m.p. 236—

249 (decomp., bath preheated at 22b), [a]₅ = 12l to -128, [a]₅ = 136 in dioxan]. With BuSH-HCl (but not either alone) in hot EtOH, (I) gives a conjugated, isomeric dione (III), m.p. 236—242°, [a]₂ +45·3°, [a]₅ = 56·1° in CHCl₃ [oxime, m.p. 269—271° (decomp.; bath preheated at 200°), [a]₅ = 23·4° in dioxan], having absorption max. at 252 mμ. (log ε 4·10). Purification of (II) gives a product having a single absorption max. at 294 mμ. (log ε 1·98) (cf. A., 1939, II, 517); the impurity is not (III), since prolonged treatment of (II) with alkali yields only a small amount of (I). The change, (I) — (II), is thus reversible.

XXVI. Me echinocystate acetate, in which the OH β to the CO₂H is free, with MeSO₂Cl-C₅H₅N gives Me echinocystate acetate methanesulphonate (IV), decomp. ~165°, which with NaI in COMe₂ at 100° gives Me anhydroechinocystate acetate (V), m.p. 192—193°, [a]₃ +19·5°, [a]₅ +22·2° in CHCl₃, hydrolysed by hot, cone. HCl—MeOH to Me anhydroechinocystate (VI), m.p. 177°, resolidifies, remelts at 192—193°, or, after drying at 110°, m.p. 192—193°, [a]₂ +18·3°, also obtained directly from (IV) by MeOH at 140°. Hydrogenation (PtO₂; AcOH) of (VI) or (V) gives Me oleanolate, m.p. 199—200°, [a]₅ +73·2°, [a]₅ +69·7°, [a]₆ +86·7° in CHCl₃, and the acetate thereof, m.p. 219—220°, [a]₅ +69·7°, [a]₆ +86·7° in CHCl₃, respectively. Thus echinocystic acid (VII) differs from oleanolic acid only in containing an OH β to the CO₂H.

only in containing an OH B to the CO2H.

XXVII. Current formulæ for the triterpenoids of the β-amyrin series are inadequate for (II), (VII), and various absorption spectra. Absorption max. at 258, 248, and 241 m μ . (log ϵ 4.31, 4.47, and 4.42, respectively) are recorded for the Me keto-ester, C₃₁H₄₆O₃, derived from (VII).

VI.—HETEROCYCLIC.

Crossed Cannizzaro reactions—benzaldehyde and furfuraldehyde. S. E. Hazlet and R. B. Callison (J. Amer. Chem. Soc., 1944, 66, 1248—1250).—Shaking 1 mol. each of PhCHO and furfuraldehyde

with aq. NaOH gives a ~5:3 mixture of CH₂Ph·OH and furfuryl alcohol and a mixture (~3:5) of BzOH and 2-furoic acid. For analysis see C., 1945, Part 1.

Antibacterial substance from Aspergillus clavatus. F. Bergel, A. L. Morrison, A. R. Moss, and H. Rinderknecht (J.C.S., 1944, 415—421).—An antibacterial substance, clavatin (I), m.p. 109.5— 110.5°, has been isolated from A. clavatus metabolism solution, and is identical with claviformin and most probably with patulia. Additional evidence is presented for its structure which confirms the formulæ advanced by Raistrick et al. (cf. A., 1944, III, 219). The results of oxidative and other degradations suggest the existence of predominant tautomeric forms such as anhydro-4-hydroxy-5-hydroxymethyl- and -5:6-dihydro-1:2-pyran-6-carboxylic acid. (I) is acylated and etherified under unusually mild conditions, form-(1) is acylated and etherified under unusually mild conditions, forming a monoacetate, monobenzoate, m.p. $143.5-144.5^{\circ}$, and Me₁ ether, m.p. $69-71^{\circ}$; (I) forms an oxime, m.p. $152-153^{\circ}$ (decomp.) (monoacetate, m.p. $82-84^{\circ}$). Hydrogenation (=3-4 H₂) (H₂-Pd-C) of (I) in EtOH-H₂O gives a lactone (?) and other products. With HBr the crude hydrogenation product yields a small amount of a lactone monobromide, $C_7H_{11}O_2Br$, b.p. $175-180^{\circ}/15$ mm. (piperidino hydriodide, $C_{12}H_{22}O_2NI$, m.p. $170-171^{\circ}$), hydrogenated to β -(a'-bromo-n-propyl)butyrolactone, which affords a phenylhydrazide identical with that from β -n-propylbutyrolactone. Ozonolysis of (I) gives HCO₂H and glyoxal and traces of $H_2C_2O_1$. HCl (dry azide identical with that from \$p\$-n\$-propyloutyrolactorie. Ozonovso of (I) gives HCO_2H and glyoxal and traces of $H_2C_2O_4$. HCl (dry) with (I) in EtOH at -10° affords an oil, $C_{11}H_{17}O_3Cl$, b.p. $114-116^\circ/0.15$ mm. [2:4-dinitrophenylhydrazones (from EtOH), m.p. $168-170^\circ$ (decomp.), and (from MeOH), m.p. $164-166^\circ$ (decomp.) (not identical)], hydrolysed with dil. acid to 3-chloromethylenetetralydro- γ -pyrone-2-carboxylic acid, m.p. $129-130^\circ$ (2:4-dinitrophenylhydrazone, m.p. $189-190^\circ$). This acid with HI yields ε -iodo- γ -keto-hydrazone acid and on hydrogenation (H.-Pd-C) gives 3-methyltetrahexoic acid and on hydrogenation (H2-Pd-C) gives 3-methyltetrahydro-y-pyrone-2-carboxylic acid (S-benzylthiuronium salt, m.p. 149hydroy-pytone-2-tenooxyte acta (3-benzythiuronium salt, in.p. 149-150°; p-phenylphenacyl ester, m.p. 125—127°; 2:4-dinitrophenylhydrazone, m.p. 197—199°). The latter acid with HI forms edi-iodo-γ-keto-β-methylhexoic acid, m.p. 103—105°, hydrogenated to γ-keto-β-methyl-n-hexoic acid (S-benzylthiuronium salt, m.p. 144-5-145.5°) 145.5°).

Triacetone alcohol and its dehydration products.—See A., 1944, II, 360.

4-Hydroxy-3-methylcoumarin oxime, m.p. 95°,--See A., 1944, III,

Optically active tocols and degradation products of phytol and phytadiene. P. Karrer, A. Kugler, and H. Simon (Helv. Chim. Acta, 1944, 27, 1006—1009).—Slight dextrorotation of εη-dimethyltocol acetate in EtOH and of the eθ-compound in substance is observed but the activity of the $\eta\theta$ -derivative remains uncertain; the substances are derived from natural phytol. Oxidation (Na₂Cr₂O₇-50% H₂SO₄) of Me δθμ-trimethyltridecyl ketone (obtained by ozonolysis of natural d-phytol) affords d- $\delta\dot{\theta}\mu$ -trimethyltridecoic acid (I), b.p. 138—144° (bath)/high vac. (p-bromophenacyl ester, m.p. 53°; p-xenylamide, m.p. 99—100°). Phytadiene is ozonised to (I), CH₃O, and small amounts of MeCHO; it therefore consists mainly of ${\rm Bu}^\beta\cdot [{\rm CH}_2]_2\cdot {\rm CHMe}\cdot [{\rm CH}_2]_3\cdot {\rm CHMe}\cdot [{\rm CH}_2]_2\cdot {\rm CH}\cdot {\rm CMe}\cdot {\rm CH}\cdot {\rm CH}_2,$ small proportion of $\operatorname{Bu}^{\beta} \cdot [\widehat{\operatorname{CH}}_2]_2 \cdot \operatorname{CHMe} \cdot [\operatorname{CH}_2]_3 \cdot \operatorname{CHMe} \cdot \operatorname{CH}_2 \cdot \operatorname{CH} \cdot \operatorname{CHe} \cdot \operatorname{CHMe}.$ H. W.

Reaction between quinones and metal enolates. XIX. Structure of diduroquinone. L. I. Smith, R. W. H. Tess, and G. E. Ullyot (J. Amer. Chem. Soc., 1944, 66, 1320—1323; cf. A., 1944, II, 103)—Diduroquinone (I), m.p. 207.5—208°, obtained from duroquinone by a little KOH in 95% EtOH at room temp. (cf. Rugheimer et al., A., 1896, i, 68), is probably 7-hydroxy-2:3:5:6:8:4a:9a-heptamethyl-4a:9a-dihydroxanthen-1:4-quinone. With MgMeI it gives 0.81 CH₄ and 2.05 mols, are added, but this is unreliable since its Et ether (prep. by EtBr-KOH in boiling EtOH), m.p. 130—131°, adds 1.84 MgMeI and gives 0.52 CH₄. With hot Ac₂O, (I) gives an acetate (II), +xEtOH, m.p. (dried at 100°) 132—133°. FeCl₃ in boiling EtOH oxidises (I) to 6-hydroxy-5-3':4':6'-trimethyl-2':5'-benzquinon-1'-ylmethyl-2:3-dimethyl-5:6-dihydro-p-benzoquinone (III), m.p. ~132—138°, reduced by Na,S,O₄ to 6-hydroxy-5-3':6' benzquinon - I' - ylmethyl - 2: 3-dimethyl - 5: 6-dihydro-p-benzoquinone (III), m.p. ~132—138°, reduced by Na₂S₂O₄ to 6-hydroxy-5-3': 6' dihydroxy - 2': 4': 5'-trimethylbenzyl - 2: 3-dimethyl - 5: 6-dihydro-p-benzoquinone (IV), m.p. ~144—149°, whence H₂SO₄-MeOH at room temp. regenerates (I). M.p. of (III) and (IV) are approx. and variable owing either to decomp. or steric isomerism. SOCl₂ at the b.p. converts (I) into substances, m.p. 153—155° and 136—138°. (I) converts (I) into substances, m.p. 153-155° and 136-138°. gives no oxime or dinitrophenylhydrazone, is resinified by boiling KOH-EtOH or conc. H_2SO_4 at $60-65^\circ$, is unaffected by HCl-AcOH or HBr-AcOH, and in HI-AcOH gives duroquinol, which is also obtained by H_2 -Cu chromite in EtOH, Zn-AcOH, Zn-HCl, or (?) Na-Hg-EtOH (not by Na₂S₂O₄) and from (III) by Zn-AcOH. (I) has an absorption max. at ~290 m μ . (ϵ ~3000). R. S. C.

4:4-Dimethyl-5-ethoxymethyl-m-dioxan.—See B., 1944, II, 306.

Synthesis of cantharidin and deoxycantharidin. (Miss) K. D. Paranjape, N. L. Phalnikar, B. V. Bhide, and K. S. Nargund (*Proc. Indian Acad. Sci.*, 1944, 19. A, 385—388).—(CMeAc·CO₂Et)₂ (from

CNaMeAc·CO₂Et and I in C_8H_8) with Br in CS_2 -AlCl₃ (trace) gives El_2 aa'-di-(bromoacetyl)-aa'-dimethylsuccinate, m.p. 55°, which with Ag at 120—150° gives Et₂ 3:6-diketo-1:2-dimethylcyclohexane-1:2-dicarboxylate (I) (di-p-nitrophenylhydrazone, m.p. 143°). Reduction (Zn-Hg) of (I) followed by hydrolysis and steam-distillation affords 1:2-dimethylcyclohexane-1:2-dicarboxylic anhydride [de-oxycantharidin]. Reduction of (I) with Al(OPr β)₃ yields Et₂ 3:6-dihydroxy-1:2-dimethylcyclohexane-1:2-dicarboxylate (acid, m.p. 99°), which with conc. H_2SO_4 gives 3:6-oxido-1:2-dimethylcyclohexane-1:2-dicarboxylate (acid, m.p. 99°), which with an authentic specimen of cantharidin. F. R. S.

Pyrrolidines and piperidines.—See B., 1944, II, 306.

Preparation of derivatives of pyrrole and pyridine by hydrogenation. H. A. Adkins, I. A. Wolff, A. Pavlic, and E. Hutchinson (J. Amer. Chem. Soc., 1944, 66, 1293—1295).—Hydrogenolysis of C-NH₂ occurs readily when β, but not when γ, to the N of pyrrole or C₂H₆N. Pyrrole with MgEtBr and then AcCl in Et₂O gives 2-acetylpyrrole, m.p. 88—89°, the oxime, m.p. 144—145°, of which with H₂-Raney Ni in dioxan or EtOH at 130°/200 atm. gives 2-α-aminoethylpyrrole (56%), which decomposes when distilled and is isolated as Bz derivative, m.p. 149—150°. 3-α-Oximinoethylpyridine at 100° gives similarly 3-α-aminoethylpyridine (74%), b.p. 112—113°/12 mm., 233°/740 mm. [phenylthiocarbamide derivative, m.p. 139—140°; picrate, m.p. 204—205°; platinichloride, m.p. 280° (decomp.)], and di-(α-3-pyridylethyl)amine (11%), b.p. 152—153°/1 mm. [platinichloride, m.p. 292° and 161—163°; picrate, m.p. 205° (decomp.)]. The oxime, m.p. 197—198°, of Et 3-acetyl-2: 4-dimethylpyrrole-5-carboxylate (I) (prep. from CH₂Ac₂, OH·N:CAc·CO₂Et, and Zn dust in AcOH) with H₂-Raney Ni at 130°/200 atm. gives Et 2: 4-dimethyl-3-a-aminoethylpyrrole-5-carboxylate (80%), isolated as Bz derivative, m.p. 179—180°, and converted by distillation into Et 2: 4-dimethyl-3-vinylpyrrole-5-carboxylate, m.p. 110·5—112°, b.p. 145—148°/3 mm. 3:5-Diacetyl-2:4-dimethylpyrrole gives the 5-mono-oxime, m.p. 240° (decomp.), hydrogenated at 140—150° to 3-acetyl-2:4-dimethyl-5-ethylpyrrole (30—36%), m.p. 159—160° (?106—107°). Hydrogenation of (I) at 170° gives Et 2:4-dimethyl-3-ethylpyrrole-5-carboxylate at 130° gives Et 2:4-dimethyl-3-ethylpyrrole-5-carboxylate at 130° gives 3-pyridylmethylamine (42%), b.p. 112°/18 mm. [picrate, m.p. 210—211° (decomp.); dihydrochloride, m.p. 222°; p-nitrobenzoyl derivative, m.p. 188—189°), and di-3-pyridylmethylamine (48%), b.p. 147—148°/? mm. (platinichloride, m.p. 222°; p-nitrobenzoyl derivative, m.p. 188—189°), and di-3-pyridylmethylamine (48%), b.p. 147—148°/? mm. (platinichloride, m.p. 2300°; picrate, m.p. 218—220°). Et β-keto

Absorption spectra of pyrrole-blue A and B.—See A., 1944, I, 265.

Chemistry of bivalent and tervalent rhodium. VI. Pyridine complexes of rhodous halides. F. P. Dwyer and R. S. Nyholm (J. Proc. Roy. Soc. New South Wales, 1942, 76, 275—280).—RhCl₃ with KBr and C₈H₅N followed by H₃PO₂ at 100° gives hexakis-pyridine rhodous bromide, converted by HBr at 0° into the bromo-pentakis compound (iodide), which with aq. HBr affords dibromo-tetrakis-pyridine rhodoum. EtOH-HBr with the latter compound yields dibromo-hexakis-pyridine \(\mu \) dibromodirhodium, which on long boiling with EtOH-HBr is converted into a mixture of bis-pyridinium-tetrabromotetrakis-pyridine \(\mu \) dibromodirhodium and tetrakis-pyridinium-hexabromotis-pyridine dibromodirhodium (both red-brown) and a highly H₂O-sol. compound hexakis-pyridinium-octabromodibromodirhodium. The hexakis compounds are yellow. In the chloride and iodide series certain of the compounds could not be isolated. Hexakis-and chloropentakis-pyridine rhodous chloride, bis-pyridinium tetrachlorotetrakis- and tetrakis-pyridinium hexachlorotes-pyridine \(\mu \) dichlorodirhodium, and hexakis- and iodopentakis-pyridine rhodous iodide are described.

Co-ordination compounds derived from nicotinylacetone. F. Lions, B. S. Morris, and E. Ritchie (J. Proc. Roy. Soc. New South Wales, 1942, 76, 294—303).—Nicotinylacetone (I) (picrate, m.p. 155°) forms a methiodide, m.p. 184°, which with NaOEt gives a betaine. (CH₂·NH₂)₂ with (I) yields ββ'-ethylenediaminobis(propenyl-3-pyridyl ketone), m.p. 170°. The following complexes are described: Cu nicotinylacetonate, chars at >320°, bisnicotinylacetonae Cu chloride, m.p. 190°, and sulphate chars at ~280°, Cu bisnicotinylacetone a-bromocamphor-π-sulphonate (which could not be resolved), Zn nicotinylacetonate, chars at >300°, bisnicotinylacetonae Zn chloride, m.p. 140°, and sulphate, m.p. >300°, Zn bisnicotinylacetonate a-bromocamphor-π-sulphonate (non-resolvable), Ni bisnicotinylacetonate, chars at >300°, bisnicotinylacetonate, bisnicotinylacetone Co chloride, bisnicotinylacetone Ag nitrate, m.p. 121°, FeIII nicotinylacetonate, bisnicotinylacetone Ag nitrate, m.p. 121°, FeIII nicotinylacetonate, abnormal), trisnicotinylacetone FeIII chloride, m.p. >300° (mol. wt. abnormal), trisnicotinylacetone CrIII chloride, m.p. >300° (mol. wt. abnormal), trisnicotinylacetone ecfilichloride (+4H₂O), m.p. 105°, Cu bisnicotinylacetonate methiodide (+4H₂O), m.p. 188° [Zn (+6H₂O), m.p. 146°, and Be complexes, m.p. 214°], Cu ethylenediamine bisnicotinylacetonate (+H₂O), m.p. 167° (dihydrochloride, m.p. 200°),

and Zn, m.p. 228° (dihydrochloride, m.p. 253°), Ni (+H₂O), m.p. 258° (dihydrochloride, m.p. 276°), and Co (+6H₂O) complexes, m.p. 165° [dihydrochloride, m.p. 242° (decomp.)]. F. R. S.

Pyridine-3-acetic esters and quaternary compounds.—See B., 1944, II, 306.

Biochemical and bacteriostatic actions of salicylic acid and salicylnicotinylamide. H. von Euler and B. Högberg [with H. Hasselquist] (Arkiv Kemi, Min., Geol., 1944, 17, B, No. 14, 8 pp.).— Salicylnicotinylamide, m.p. 205°, is obtained in 35% yield by the interaction of σ -OH·C₆H₄·CO·NH₂ and nicotinyl chloride hydrochloride in C₅H₅N at 110° (see A., 1944, III, 844). H. W.

Preparation of pyridine-2:5-dicarboxylic acid. T. O. Soine (f. Amer. Pharm. Assoc., 1944, 33, 223—224).—Quinaldine (20 c.c.) in conc. $\rm H_2SO_4$ (40 c.c.) is oxidised by cautious addition of $\rm HNO_3$ (~300 c.c.) with ultimate heating to 230—240°; 7—8 hr. are required. The crude dicarboxylic acid (14.5 g.) is pptd. by addition of 50% NaOH almost to complete neutralisation and cooling to room temp. Decolorising with C and crystallising from $\rm H_2O$ gives the pure acid, m.p. 238° [Me₂ ester, m.p. 161—163°; diamide, m.p. 310—313° (decomp.)]. F. O. H.

Aminosulphanilamidopyridines.—See B., 1944, III, 186.

Catalytic hydrogenation of hydroxy-pyridines and -quinolines and their esters. C. J. Cavallito and T. H. Haskell (J. Amer. Chem. Soc., 1944, 66, 1166—1171).—Aroyl esters of 2- and 4-hydroxypyridine and -quinoline are more readily hydrolysed than those of by the other OH-bases. The 4-acyloxy-compounds must be prepared under anhyd. conditions. The ester linkage of 2-acyloxyquinoline is weakened by 4-Me. Esters described below are prepared from ArCOCl with the OH-compound at 150° or in C_5H_5N at 100° or with the Na derivative thereof in Et_2O . Hydrogenation (Pd; dioxan or, ArCOCl with the OH-compound at 150° or in C₅H₅N at 100° or with the Na derivative thereof in Et₂O. Hydrogenation (Pd; dioxan or, sometimes, EtOH; 55°) of alcohols and esters of these series is reported; its course is various. 2-Hydroxypyridine gives 2-piperidone (I), but 3- (II) and 4-hydroxypyridine are unaffected. 1-Hydroxyisoquinoline gives 1-keto-1:2:3:4-tetrahydroisoquinoline (III), m.p. 73° (lit. 71°). 3-, 5- (IV), 6-, 7-, and 8-Hydroxy-quinolines give the corresponding hydroxy-1:2:3:4-tetrahydro-quinolines give the corresponding hydroxy-1:2:3:4-tetrahydro-quinoline gives 2-keto-1:2:3:4-tetrahydroquinoline (V), and 4-hydroxy-(VI), 2-hydroxy-4-methyl- (VII), and 4-hydroxy-2-methyl-quinoline (VIII) are unchanged. 2-Benzoyloxypyridine, m.p. 47° (lit. 42°), gives PhMe and (I): 3-benzoyloxypyridine, m.p. 51°, is unchanged: 4-benzoyloxypyridine, m.p. 79°, gives PhMe and 4-hydroxypyridine. 2-β-Naphthoyloxypyridine, m.p. 116°, gives 2-C₁₀H,Me and (I). 2-p-Benzyloxybenzoylpyridine, m.p. 116°, gives 2-gives p-cresol and (I). 2-3':4':5'-tribenzyloxybenzoylpyridine, m.p. 180—185°. 2-Benzoyloxyguinoline, m.p. 95°, gives PhMe and (V); 4-benzoyloxyquinoline, m.p. 131°, gives PhMe and (VI); 3-, m.p. 67°, 5-, m.p. 93°, 6-, m.p. 118° (lit. 230°), and 7-benzoyloxyquinoline, m.p. 85° (lit. 88°), give the derived benzoyloxy-1:2:3:4-tetrahydroquinolines, m.p. 116°, gives 8-hydroxy-1-benzoyl-1:2:3:4-tetrahydroquinoline, m.p. 118°, gives 8-hydroxy-1-benzoyl-1:2:3:4-tetrahydroquinoline, m.p. 118°, gives 8-hydroxy-1-benzoyloxy-2-benzoyloxy-4-methylquinoline, m.p. 125°, gives PhMe and (VI). 2-3':4':5'-Tribenzyloxy-y, m.p. 117°, and 2-3':4':5'-tribenzyloxy-y-1:2:3:4-tetrahydroquinoline, m.p. 161°. 2-Hydroxy-8-benzoyloxy-y-1:2:3:4-tetrahydroquinoline, m.p. 161°. 2-Hydroxy-8-ben hydroxybenzoyl-1:2:3:4-tetrahydroquinoline, m.p. 161°. 2-Hydroxy-8-benzoyloxyquinoline, m.p. 208°, gives 2-keto-8-benzoyloxy-1:2:3:4-tetrahydroquinoline, m.p. 167°, also obtained with PhMe from 2:8-dibenzoyloxyquinoline, m.p. 108°. 1-Benzoyl-8-benzoyloxy-1:2:3:4-tetrahydroquinoline, m.p. 146°, is also described. (II) is obtained from 3-aminopyridine by NaNO₂ in conc. H₂SO₄, later warm. NH₂Ph (1) and CO₂Et·CO·CH₂·CO₂Et (1 mol.) at 40—50° and then room temp. give an anil, which in mineral oil at 250° gives Et kynurenate (~60%), whence hydrolysis (4% aq. NaOH; gives the acid, m.p. 280°) and decarboxylation (mineral oil; 270°) gives (VI). (IV) is obtained from the NH₂-compound by a diazo-reaction. (VI). (IV) is obtained from the NH₂-compound by a diazo-reaction. (VIII) is obtained by condensing NH₂Ph with CH₂Ac·CO₂Et and heating the product in oil at 250—260°. R. S. C.

Synthesis of oxindole. F. J. Di Carlo (J. Amer. Chem. Soc., 1944, 66, 1420).—o-NO₂·C₆H₄·CH₂·CO·CO₂H (prep. from o-C₆H₄Me·NO₂ by Et₂C₂O₄-NaOEt in hot EtOH and then hot aq. EtOH), m.p. 119—120°, with H₂O₂ gives o-NO₂·C₆H₄·CH₂·CO₂H, hydrogenation of which (AcOH; 50 lb.; PtO₂) gives oxindole (I) (88%) or (less PtO₂) 75% of (I) and some 1:2-dioxindole, o-C₆H₄·CH₂·N·OH (II), m.p. 198—199° (brucine salt, m.p. 223°). (II) is unaffected by H₂-PtO₂; thus, the intermediate is o-OH·NH·C₆H₄·CH₂·CO₂H, which

suffers either ring-closure to (II) or further hydrogenation to (I).
R. S. C.

Dialkylaminoalkyl derivatives of substituted quinolines and quinaldines. A. M. Van Arendonk and H. A. Shonle (J. Amer. Chem. Soc., 1944, 66, 1284—1285).—4-Chloro-6-methoxyquinoline and the appropriate diamine in boiling p-cymene yield 4-β-diethylaminoethylamino-, +H₂O, m.p. 77—78° (hygroscopic dihydrochloride), 4-β-diisobutylaminoethylamino- (dihydrochloride, m.p. 250—252°), 4-γ-diethylamino-n-propylamino-, +2H₂O, m.p. 165—170°, 4-δ-diethylamino-a-methyl-n-butylamino- (dihydrochloride; picrate, m.p. 180—182°), 4-δ-N-methyl-N-butylamino-a-methyl-n-butylamino-(dihydrochloride, +xH₂O, m.p. 90—91°), 4-δ-N-isopropyl-N-isobutylamino-a-methyl-n-butylamino- (dihydrochloride, m.p. 157—160°), 4-δ-diisobutylamino-a-methyl-n-butylamino- (dihydrochloride, +xH₂O, m.p. 104—106°), 4-γ-piperidino-, m.p. 134—135°, and 4-γ-2'-pipecolino-n-propylamino-, m.p. 135—137°, -6-methoxyquinoline. Boiling 40% HBr then yields 4-β-diethylaminoethylamino-, m.p. 245—246°, 4-β-diisobutylaminoethylamino- (dihydrochloride, +2H₂O, m.p. 138—140°), 4-δ-diethylamino-a-methyl-n-butylamino-, m.p. 164—166°, -6-hydroxyquinoline. 4-β-Diethylaminoethylamino-, m.p. 145—147°, and 4-γ-diethylamino-n-propylamino-, m.p. 125—147°, and 4-γ-diethylamino-n-propylamino- (dihydrochloride, and 1900) m.p. 126 - 126°) (a pathylamino-propylamino-) and 126 - 126°) (a pathylamino-propy Dialkylaminoalkyl derivatives of substituted quinolines and quin- $145-147^\circ$, and 4- γ -diethylamino-n-propylamino- (dihydrochloride, $+2H_2O$, m.p. $125-126^\circ)$ -6-methoxy-2-methylquinoline are similarly prepared.

Substituted quinolines. II. 2-Arylquinolines. III. 2-Arylquinolines from fluoranthene and thionaphthen. N. P. Buu-Hoi and P. Cagniant (*Rec. trav. chim.*, 1943, 62, 713—718, 719—722).—II. Conolines from fluoranthene and thionaphthen. N. P. Buu-Hoi and P. Cagniant (Rec. trav. chim., 1943, 62, 713—718, 719—722).—II. Condensation in boiling alcoholic KOH of isatin (I) with the corresponding aryl Me ketone (prep. from hydrocarbon, AcCl, and AlCl₃) gives 2-(p-cyclohexylphenyl)-, m.p. 279—280°, 2-a-naphthyl-, m.p. 214°, 2-\(\beta\)-anphthyl-, m.p. 240°, 2-\(\beta\)-anthryl-, m.p. 291—292° (decomp.), 2-(3'-pyrenyl-)-, decomp. >300°, and 2-(2'-chrysenyl-)-, decomp. >300°, and 2-(2'-chrysenyl-)-, decomp. >262°, -cinchonic acid. These on decarboxylation by fusion in vac. yield 2-(p-cyclohexylphenyl)- (II), m.p. 135° (picrate, m.p. 162°), 2-a-naphthyl-, b.p. 210°/0·1 mm., m.p. 90—91° (picrate, m.p. 187°), 2-\(\beta\)-naphthyl-, m.p. 164° (picrate, m.p. 176—177°), 2-\(\beta\)-anaphthyl-, m.p. 164° (picrate, m.p. 260° (decomp.), and 2-(2'-chrysenyl)-, m.p. 145° (picrate, m.p. 260° (decomp.), and 2-(2'-chrysenyl)-, m.p. 185° (picrate, m.p. 225°), -quinoline. (II) with Se at 350° affords 2-diphenylylquinoline; 2-(5'-acenaphthyl)quinoline, m.p. 122° (picrate, m.p. 231—232°), is described.

III. Fluoranthene with AcCl and AlCl₃ in CS₂ gives 12-acetyl-fluoranthene (III), b.p. 210°/0·1 mm., m.p. 68° (semicarbazone, m.p. 240°; oxime, m.p. 166°, giving 12-acetamidofluoranthene by Beckmann transformation). (III) with (I) affords 2-(12'-fluoranthyl)-cinchonic acid, m.p. >310°, decarboxylated to 2-(12'-fluoranthyl)-cinchonic acid, m.p. 229—230° (decomp.), and thence 2-(3'-thionaphthenyl)quinoline, b.p. 290°/0·1 mm., m.p. 186° (picrate, m.p. 201°).

D. G.

Complex compounds of cupric azide. III. Non-electrolytes with organic bases.—See A., 1944, I, 290.

Hydroacridones. Synthesis and dehydrogenation. R. A. Reed (J.C.S., 1944, 425—426).—cycloHexanone with o-NH₂·C₆H₄·CO₂H (I) gives 1:2:3:4-tetrahydroacridone, m.p. 370° (lit. 358°), whilst with the appropriate methylanthranilic acid, 9-, m.p. 346°, 8-, m.p. 378° (picrate, m.p. 208—209°), 7-, m.p. 374°, 6-, m.p. 355° (picrate, m.p. 165—185°), and 10-methyl-1:2:3:4-tetrahydroacridone, m.p. 170—172° (picrate, m.p. 209—210°), are obtained. The methyltetrahydroacridones are dehydrogenated with Cu in air at 360° to tetrahydroacridones are dehydrogenated with Cu in air at 360° the corresponding methylacridones. 3-Methylcyclohexanone with (I) affords 2-methyl-1:2;3:4-tetrahydroacridone [picrate, m.p. 212° (decomp.)] (cf. Perkin et al., A., 1925, i, 64), the constitution being proved by dehydrogenation; 2-methylcyclohexanone with (I) yields the 1-Me compound, m.p. 305° (picrate, m.p. 183—184°).

Reaction between histidine and formaldehyde. A. Neuberger (Biochem. J., 1944, 38, 309—314).—Histidine (I) with 2 or more mols. of CH₂O at 37° gives 1(?1')-hydroxymethyl-1': 2': 5': 6'-tetrahydropyrido-4': 3'-4: 5-glyoxaline-6'-carboxylic acid (+H₂O), insol. in H₂O, m.p. 210—215° (decomp.), [a]_D $-84\cdot6$ ° in NaOH (1·1N.), which with HCl gives CH₂O and the unmethylolated acid (+2H₂O), m.p. 277°, [a]_D $-122\cdot4$ ° in N-NaOH, also obtained from (I) and 1 mol. of CH₂O, and decarboxylated to 1': 2': 5': 6'-tetrahydropyrido-4': 3'-4: 5-glyoxaline, which with NaOH-BzCl affords 3: 4-dibenzamido-N-benzoyl-1: 2: 5: 6-tetrahydropyridine, m.p. 215°. The dissociation consts. of the two compounds have been measured and compared with those of (I). The kinetics of the reaction are examined and the CH₂O titration of (I) is discussed. F. R. S. examined and the CH₂O titration of (I) is discussed.

Glyoxalines.—See B., 1944, III, 217.

Synthesis, some derivatives, and metabolism of ay-diketo-n-octoic acid. A. L. Lehninger (J. Biol. Chem., 1944, 153, 561—570).— COMeBu $^{\alpha}$ (I) and Et₂C₂O₄ in NaOEt-EtOH at the b.p., followed by H₂SO₄, give the Et ester (II), b.p. 138— $139^{\circ}/13$ mm., of ay-diketo-octoic acid (III), liquid (Ba salt). The structure of (II) is established by condensation with NHPh-NH₂ to the Et ester of an acid oxidised to 1-phenylpyrazole-3: 5-dicarboxylic acid. In 2N-NaOH at the

b.p., (III) gives (I) and $H_2C_2O_4$. In EtOH with aq. Cu(OAc)₂, (II) gives a chelated Cu derivative, $C_{20}H_{30}O_8Cu$, m.p. $135-137^\circ$. With $2:4-(NO_2)_2C_6H_3:NH\cdot NH_2$ and conc. HCl, (II) gives the Et ester, m.p. $186-187^\circ$, of $1-(2':4'dinitrophenyl)-5(3)-butylpyrazole-3(5)-carboxylic acid, m.p. <math>204^\circ$ (decomp. from 185°), which is similarly obtained from (III). With semicarbazide hydrochloride, the Na call (IV) of (IVI) gives the surface of the Na salt (IV) of (III) gives 1-carboxylamido-5(3)-butylpyrazole-3(5)-carboxylic acid, decomp. from 80-82° (clear melt at 160-165°), hydrolysed by boiling H₂O to 5-butylpyrazole-3-carboxylic acid, m.p. 166—167°, also obtained from (III) and N₂H₄. Intestinal absorption of aq. (IV) by rats is small. (IV) does not affect the O₂ uptake of surviving rat tissue slices in PO₄"—saline buffer, possibly owing to low diffusability, since it causes a slight increase in O2-uptake by minced or homogenised liver. (III) is decarboxylated only very slowly by yeast decarboxylase, and inhibits the yeast decarboxylation of $AcCO_2H$. Hexadecan- β -one condenses with $Et_2C_2O_4$ to give a C_{20} -diketo-ester. E. W. W. a C20-diketo-ester.

Production of riboflavin deficiency with phenazine analogues of riboflavin. D. W. Woolley (J. Biol. Chem., 1944, 154, 31—37).—Amino-5-ribitylamino-o-xylene with picryl chloride and NaOAc in aq. EtOH at room temp. gives 2': 4': 6'-trinitro-2-ribitylamino-4: 5-trinitro-2-ribitylamino-biology. dimethyldiphenylamine, which on boiling with NaOAc in EtOH yields 1:3-dinitro-7:8-dimethyl-5-ribityl-5:10-dihydrophenazine, m.p. $218-220^{\circ}$ (decomp.), reduced (Sn-20% HCl or autoclaving in presence of reduced Fe) to the corresponding $(NH_2)_2$ -compound. The diamino- and, to a smaller extent, the dinitro-phenazine derivative produce riboflavin deficiency in bacteria and mice, respectively (cf. A., 1944, III, 752).

N-Chlorocarbamic esters.—See A., 1944, II, 364.

Guanamine derivatives.—See B., 1944, II, 249.

5-Sulphanilamidotetrazole. K. A. Jensen and O. R. Hansen (Rec. trav. chim., 1943, 62, 658—660; cf. Veldstra and Wiardi, ibid., (Rec. trav. chim., 1943, 62, 658—660; CI. Veidstra and Wiard, 1914., 627).—The compound, m.p. 170°, obtained from 5-aminotetrazole (I) and p-NHAc·C₆H₄·SO₂Cl (II) in C₅H₅N gives AcOH, p-NH₂·C₆H₄·SO₃H, CO(NH₃)₂, and N₃H with aq. NaOH, and is claimed to be 5-acetylsulphanilamidotetrazole (III). The compound, m.p. 202°, from (I) and (II) in aq. Na₂CO₃, which with aq. NaOH affords p-NHAc·C₆H₄·SO₃H and (I), is considered to be 1- or 2-acetylsulphanilyl-5-aminotetrazole. (I) with p-NHAc·C₆H₄·SO₂F in C.-H.N does not yield (III). C₅H₅N does not yield (III).

Sulphanilamide derivatives. II. 5-Sulphanilamidotetrazole. H Veldstra and P. W. Wiardi (Rec. trav. chim., 1943, 62, 661—671).— In reply to the preceding abstract the authors claim that 5-acetyl-sulphanilamidotetrazole exists in three tautomeric forms. 5-Aminotetrazole (I) with p-NHAc·C₆H₄·SO₂Cl (II) in C₅H₅N gives tetrazoloneacetylsulphanilylimide(-5) (III), m.p. 166° (170° on rapid heating), which behaves like a monobasic acid on titration. In aq. Na₂CO₃ (I) and (II) yield β-5-acetylsulphanilamidotetrazole monohydrate (IV), m.p. 202° (on further purification 207°). (III) with aq. NaOH affords α-5-acetylsulphanilamidotetrazole monohydrate (V), m.p. 207°. (IV) and (V) show no depression for mixed m.p., and both react as dibasic acids, but are differentiated by electrometric titration curves and ultra-violet absorption spectra. Hydrolysis of (IV) and (V) (aq. NaOH) gives the same (mixed m.p.) 5-sulph-anilamidotetrazole, m.p. 202—203°; (III) yields N₃H and NH₂·C₆H₄·SO₂·NH·CN (?).

(A) Action of ammonia on crotonaldehyde. (B) Salts and deriv-(a) Action of ammona on crotonaldenyde. (b) Salts and derivatives of tricrotonylidenetetramines. M. Delépine (Compt. rend., 1943, 216, 649—652, 697—701).—(A) At only slightly >0° CHMe:CH-CHO (210) and 22% aq. NH₃ (350 g.) give a syrup with only small amounts of crystal, but subsequent keeping at room temp. and then heating at 100° gives tricrotonylidenetetramine-a, C₁₂H₂₄N₄, +6H₂O (I) (50—60 g.), m.p. ~70°, resolidifies, and an isomeride-b (II) (160—170 g.), (from H₂O) +6H₂O or (from COMe₂) +4H₂O, m.p. ~65° (instantaneous), b.p. 150°/3 mm. (cf. Wurtz, A.) 14H₂O, m.p. ~65° (instantaneous), b.p. 150°/3 mm. (cf. Wurtz, A., 1879, 780; Combes, A., 1883, 1079). They are separated by crystallisation or by the extreme insolubility of the hydrochloride of (I) in HCl. Over $\rm H_2SO_4$ in vac., (I) and (II) give anhyd. forms, m.p. 102° , and an oil, respectively, which are rapidly reconverted into hydrates in air.

into hydrates in air.

(B) (I) and (II) give ppts. with Zn, Cd, Hg, Cu, Fe, Co, Al, Cr, Pb, and Sn salts. The following salts and derivatives prove the tribasicity of the compounds (cf. Kudernatsch, A., 1900, i, 337): (I),2AgNO₃,+3H₂O; (II),2AgNO₃,+2H₂O; (I trihydrochloride, insol.; (II) dihydrochloride, sol.; 2(I),3H₂PtCl₈,+12H₂O [the sulphate of (II) is a glass]; 2(I),3H₂PtCl₈,+12H₂O, sol.; 2(II),3H₂PtCl₈,+12H₂O, insol.; 2(II),3H₂PtCl₈,+12H₂O; trireineckates of (I) and (II); 4(I),3H₃Fe(CN)₆,+32H₂O, insol.; 4(II),3H₄Fe(CN)₆,+28H₂O; (I),H₃Fe(CN)₆,+4H₂O; (II),H₃Fe(CN)₆,+H₂O; iridi- and rhodi-cyanides isomorphous with the ferricyanides; tripicrate of (I) [+4H₂O; m.p. ~152° (block)] and of (II) [+3H₂O; m.p. 145—152° (block)]; (NO)₃-derivative, m.p. ~240° (block) or (in a tube) deflagrates at ~210°, of (I) [that of (II) is amorphous]; N-Cl₃-derivative, m.p. ~76° (tube) or deflagrates

at 70° (instantaneous), of (I) and amorphous, deflagrates at ~40°, of (II). R. S. C.

Constitution of tricrotonylidenetetramines. M. Delépine (Compt. rend., 1943, 216, 785—789).—A mechanism is proposed for the formation of tricrotonylidenetetramines (I) from CHMc.CH.CHO, whereby the latter (3 mols.) and NH₃ give

(III); Ag₂O, followed by H₂S, then gives (III), m.p. 190°. (I) (β form) does not similarly give (III). (I), heated progressively from 160° to 250—280°, loses NH₃ and ~10% of 2-methyl-5-ethylpyridine is obtained. The a and β forms of (I) probably have the 3 Me groups in different positions.

A. T. P.

Synthesis of purine nucleosides. VII. Further observations on the synthesis of pyrimidines from esters and malondiamidine. G. A. Howard, B. Lythgoe, and A. R. Todd (J.C.S., 1944, 476—477).— The pyrimidine synthesis from esters and malondiamidine (I) (cf. Kenner et al., A., 1944, II, 59) has limited val. since no pyrimidine formation occurs with (I) and Et n-butyrate, malonate, pyruvate, and urethane, and N-acetyl-, phenyl-, and NN-dimethyl-urethane. EtoBz and (I) give 4:6-diamino-2-phenylpyrimidine, m.p. 195—196°; Et₂CO₃ gives 4:6-diamino-2-hydroxypyrimidine pyrimidine; CICO₂Et yields 4:6-diamino-2-hydroxypyrimidine hydrochloride, and Et₂CO₄, 4:6-diaminopyrimidine-2-carboxylic acid, m.p. >360°. NaOAc and Ac₅O convert (I) into 4:6-diacetamido-2-methylpyrimidine (+H₂O), m.p. 232°.

Bile pigments. XXXI. Intermediate products in the conversion of hæmins into bile pigments. E. Stier (with, in part, (Miss) K. Gangl] (Z. physiol. Chem., 1942, 272, 239—272).—Coproverdohæmin ester is catalytically hydrogenated (Pd in anhyd. HCO₂H at 70—75°) to coproporphyrin I Me, ester, identified spectroscopically; the main product is coproglave billy ester (I) mp. 202°. The nonmain product is coproglaucobilin ester (I), m.p. 202°. The non-homogeneous course of the oxidation of the copro-ester pyridinehæmochromogen (II) is shown by the isolation of (I) from the HCl-MeOH mother-liquors of hydroxycopro-ester chlorohæmin by means of Et₂O. Oxidation of (II) with H₂O₂ at 55—60° and then with O₂ followed by treatment with HCl-MeOH gives a very complex mixture of pigments which does not contain (I); a pigment is present which gives a Zn salt which is spectroscopically identical with the In salt of dimethoxyætioglaucobilin, but could not be isolated. Similar results are recorded with the meso-ester pyridinehæmochromogen. Successive treatments of the meso-Me, ester pyridinehamochromogen in C₂H₅N with H₂O₂ at 55—60° and BzCl, after removal of Fe by Fe(OAc)₂-HCl and treatment with Et₂O, gives benzoyloxymesoporphyrin Me₂ ester (III), m.p. (indef.) 197—199°, softens at 175°, which is probably a mixture of four isomerides. It is identical spectroscopically with benzoyloxycoproporphyrin. With $Zn(OAc)_2$ in boiling $COMe_2$ -MeOH it affords the complex $C_{43}H_{44}O_6N_4Zn$, m.p. 232°. Catalytic hydrogenation in AcOH followed by re-oxidation gives only initial material whereas in hot HCO_2H mesoporphyrin and hydroxymesoporphyrin are also produced in small amount. (III) is stable towards HCl-MeOH but Cadily hydrolyced by Na OMe under N_1 setterification of the product readily hydrolysed by NaOMe under N₂; esterification of the product with CH₂N₂ causes complete decomp. but use of HCl-MeOH leads to a hydroxymesoporphyrin Me₂ ester (IV) (not-isolated), spectroscopically identical with hydroxycoproporphyrin ester. The ethereal solution of (IV) is evaporated to dryness and the residue is treated with Fc(OAc)₂-NaCl at 100° for 30 sec., thus giving the hydroxymesophemic Me order which could not be obtained cryst. hydroxymesohæmin Me₂ ester, which could not be obtained cryst.; spectroscopically it is identical with hydroxycoprohæmin ester. It is transformed by air in C5H5N at room temp. followed by boiling HCl-MeOH into glaucobilin ester which could not be obtained cryst. or as the Zn salt; the yield is very small and a mixture of much red-violet pigments also results. Protohæmin Me $_2$ ester and N $_2$ H $_4$ in aq. C_5H_5N at 60° give non-cryst. protohæmochromogen-pyridine-Mezester, from which Fe is removed by dissolution in AcOH-HCl [1:1] and which is free from meso- or hæmato-porphyrin. It is converted by the successive actions of H₂O₂ and BzCl in C₅H₅N into benzoyloxyprotoporphyrin Me₂ ester, m.p. 219°, softens at 195°, catalytically hydrogenated (Pd in dioxan) to benzoyloxymesoporphyrin Me, ester and hydrolysed by NaOMe in MeOH-dioxan under N₂ at 70° to hydroxyprotoporphyrin Me₂ ester, which could only be obtained in solution. It is transformed into the amorphous hydroxy-protohæmin Me₂ ester (yield 25—35%), converted by O₂ in C₂H₆N followed by HCl-MeOH into (?) tetramethylhæmatoglaucobiling which could not be obtained cryst, in very poor yield. Rhodohamin Me_2 ester and N_2H_4 , H_2O in C_5H_5N at 80° afford rhodopyridine-hamochromogen Me_2 ester $(+2C_5H_5N)$, m.p. 195° , softens at 182° , transformed by H_2O_2 followed by BzCl into benzoyloxyrhodoporphyrin

Me₂ ester, m.p. 205°, softens at 200°, which resembles chloroperphyrin e₄ and e₆ in spectrum. Phyllohæmin Me ester gives successively the pyridinehæmochromogen and benzoyloxyphylloporphyrin Me ester, m.p. 224° (indef.), softens at 210°, the spectrum of which is displaced somewhat towards the red in comparison with those of phyllo- and dibenzoyloxycopro-porphyrin and identical in type with that of the last substance; it is hydrolysed to hydroxyphylloporphyrin Me ester, sol. in Et₂O to a blue solution and giving an ill-defined spectrum. Benzoyloxycoproporphyrin ester is transformed by Fe(OAc)₂ and NaCl into the chlorohæmin, C₄+H₄₈O₁₀N₄ClFe, m.p. 222°, transformed by N₂H₄,H₂O in C₅H₆N at 60° into a-benzoyloxycopro I ester hæm, m.p. 120—125°. The corresponding pyridinehæmochromogen is converted by H₂O₂ in C₅H₆N followed by Fe(OAc)₂ and HCl into dibenzoyloxycoproporphyrin I Me₄ ester, m.p. 266°, softens at 200°.

Ætioxanthoporphinogen is transformed by HBr-AcOH at 140—150° into hydroxyætioporphyrin I, decomp. 255°. Similarly, meso-xanthoporphinogen is converted into hydroxymesoporphyrin IX, m.p. 255—256°, which with HCl-MeOH at room temp. yields the Me₂ ester, m.p. 171°. It is therefore possible to obtain a-hydroxy-porphyrins and bile pigments from xanthoporphinogens and hence the presence of O attached to the a-CH in the xantho-compounds is confirmed.

Helix pomatia hæmocyanin.—See A., 1944, III, 838.

Analgesics derived from oxazolidine-2: 4-dione. M. A. Spielman (J. Amer. Chem. Soc., 1944, 66, 1244—1245).—Oxazolidine-2: 4-dione with Me₂SO₄-aq. NaOH (not p-C₆H₄Me·SO₃Me) at <40° gives 3-methyloxazolidine-2: 4-dione, m.p. 128°. 3: 5-Dimethyl-, b.p. 140—144°/50 mm., 3: 5: 5-trimethyl- (I), m.p. 46°, b.p. 78—80°/5 mm., 3: 5-dimethyl-5-ethyl-, b.p. 101—102°/11 mm., 3-methyl-3: 5-diethyl-, b.p. 105—108°/11 mm., 3-methyl-3: 5-diethyl-, b.p. 105—108°/11 mm., 3-methyl-3: 5-diethyl-, b.p. 105—108°/1 mm., 3-methyl-3: 5-diethyl-oxazolidine-2: 4-dione, m.p. 95°, are similarly obtained. Use of EtI and the Ag salt in Et₂O at room temp. (3 days) gives 5: 5-dimethyl-3-ethyl-oxazolidine-2: 4-dione, m.p. 61°. These products are analgesic but not hypnotic, notably (I), which is comparable with aspirin and has very low toxicity. 3: 5: 5-Trimethylhydantoin (similarly prepared), m.p. 149°, has no pharmacological action, and 3: 5: 5-trimethylthiazolidine-2: 4-dione (similarly prepared), m.p. 49—51°, is weakly hypnotic. (I) is monoacidic to NaOH (phenolphthalein), yielding this a-hydroxyisobutyrmethylamide, m.p. 78—79°. 5: 5-Pentamethyleneoxazolidine-2: 4-dione, m.p. 110—112°, is prepared from Et 1-hydroxycyclohexanecarboxylate and NH:C(NH₂)₂ in EtOH, subsequent hydrolysis being by hot 15% HCl. R. S. C.

Amino-alcohols. 3-Piperidyl derivatives. A. Burger, R. W. Alfriend, and A. J. Deinet (j. Amer. Chem. Soc., 1944, 66, 1327—1328).—Pyridine-3-carboxyl chloride, b.p. 75— $77^{\circ}/7$ mm. (readily hydrolysed in moist air), with $\mathrm{CH_2N_2}$ — $\mathrm{Et_2O}$ and then 48% HBr gives cryst. 3-bromoacetylpyridine hydrobromide (82%), which with morpholine (3 mols.) in $\mathrm{Et_2O}$ yields 3-morpholinoacetylpyridine (83%), m.p. 64— 68° (dihydrochloride, m.p. 197— 198° ; dipicrate, m.p. 158— 162°). Al $\mathrm{(OPr}^{\beta})_3$ then yields β -morpholino-a-3-pyridylethyl alcohol (25%) (dihydrochloride, m.p. 211° ; dipicrate, m.p. 166°), hydrogenated (PtO₂; EtOH) to β -morpholino-a-3-piperidylethyl alcohol (45%) (dihydrochloride, m.p. 256— 257°). R. S. C.

Sulphonamidothiazoles.—See B., 1944, III, 218.

Methine and cyanine colouring matters.—Sec B., 1944, II, 308, 338.

Fluorocyanine, blue pigment from Cypridina scales.—See A., 1944, III, 745.

Resynthesis of dethiobiotin from diaminopelargonic acid. D. B. Melville (J. Amer. Chem. Soc., 1944, 66, 1422).—Passing COCl₂ into ζ_η -diamino-n-nonoic acid sulphate (I), micro-m.p. 245—246°, in 10% aq. Na₂CO₃ gives 66% of dethiobiotin (II), micro-m.p. 156—158°, which is fully active in promoting the growth of yeast. (I) is approx. one tenth as active as (II). R. S. C.

Structure-chemical investigations. XI. Reactive behaviour of dithioamides towards tribromotriacetylbenzene. G. Bischoff, O. Weber, and H. Erlenmeyer (Helv. Chim. Acta, 1944, 27, 947—948). — $C_4Ac_3Br_3$ and PhCS·NH₂ in EtOH at 100° afford 1:3:5-tri-(4-phenyl-2-thiazolyl)benzene, m.p. 195°. Complex compounds, becomping discoloured at ~230° or ~250° (decomp.), are obtained from $C_6Ac_3Br_3$ and adip- or oxal-dithioamide. H. W.

Structure-chemical investigations. XII. Thiazole derivatives from terephthaldithioamide. H. Erlenmeyer, W. Büchler, and H. Lehr (Helv. Chim. Acta, 1944, 27, 969—970).—p-C₆H₄(CS·NH₂)₂ with boiling CH₂AcCl gives 1:4-di-(4'-methyl-2'-thiazolyl)benzene, m.p. 166° (picrate, m.p. 212°), and with COPh-CH₂Br in PhNO₂ at 200° affords 1:4-di-(4'-phenyl-2'-thiazolyl)benzene, m.p. 225°. (CO-CH₂Br)₂ in PhNO₂ appears to give a complex product, m.p. >360°. H. W.

VII.—ALKALOIDS.

Cleavage of trigonelline. J. Weijlard, M. Tishler, and J. P. Messerly (J. Amer. Chem. Soc., 1944, 66, 1319—1320).—Trigonelline is unaffected by inorg. sulphides, sulphites, or thiosulphates, BrCN, HNO₂, CrO₃, HNO₃, HClO₄, or heating at 290°, but with conc. HCl at 250° (cf. Jahns, A., 1888, 166) or C₅H₅N,HCl at 200—204° gives 83% of nicotinic acid. Use of C₅H₅N,HCl leads also to methylpyridinium chloride. Quinoline hydrochloride is also effective.

R. S. C.

Alkaloids of Duboisia leichhardtii. W. Mitchell (J.C.S., 1944, 480—482).—D. leichhardtii contains l-hyoscyamine (1.97%), l-hyoscine (0.06%), dl-hyoscine (0.05%), norhyoscyamine (0.01%), and "base D" (0.06%), isolated as the hydrobromide (I), C13H23O2N,HBr, m.p. 231° (corr.) (mixture of isomerides). iso-Valeryltropěine hydrobromide, m.p. 225—227° (corr.), is not identical with (I). Probably at least two distinct types of Duboisia have appeared in commerce.

F. R. S.

Mode of action of quinine and quinidine. II. Synthesis of 9-hydroxy-6'-methoxyrubans. P. Rabe and W. Schuler (Ber., 1943, 76, [B], 318—321).—(++)(--)-6'-Methoxyruban-9-ol (I) exists as hexahydrate and in forms, $+2H_2O$, m.p. $94-95^\circ$, and anhyd., m.p. 172°, and gives a very insol. mono-, $+6H_2O$, m.p. $\sim 120^\circ$, resolidifies, remelts at $\sim 240^\circ$ (decomp.), and a more sol. di-hydrochloride, $+5H_2O$, m.p. $\sim 242^\circ$, and sulphate, $+4\cdot5H_2O$, m.p. 192° (decomp.). The (+-)(-+)-compound (II), a glass, gives a sulphate, $+6H_2O$, m.p. $86-87^\circ$ (foams), but its hydrochloride is sol. The isomerides are thus separable. KOH converts (II) in boiling C_5H_{11} ·OH into (I). Reports in the literature are confirmed that (I) is active in canary malaria, whereas the (++)- and (--)-compounds are inactive.

Structure of a new metabolic derivative of quinine. J. Mead and J. B. Koepfli (J. Biol. Chem., 1944, 154, 507—515).—The cryst. metabolic product (I), m.p. $247\cdot5-248\cdot5^\circ$, [a] $_D^{25}-65\cdot5^\circ$ in EtOH, derived from quinine (cf. Kelsey et al., A., 1944, III, 680) is probably l-2'-hydroxy-6'-methoxy-3-vinylruban-9-ol. Potentiometric titration and absorption spectra for (I) and quinine are given. Hydrogenation (H₂-PtO₂) indicates one olefinic linking, and ozonisation affords CH₂O. (I) forms a monomethiodide, m.p. $276-277^\circ$ (decomp.), and a benzenesulphonyl derivative, $C_{58}H_{68}O_{18}N_4S_3$, m.p. $180-181^\circ$, reconverted into (I) after mild acid hydrolysis. Attempts at oxidation have afforded no recognisable product. The evidence in favour of the constitution of (I) is discussed. M.p. are corr. F. R. S.

[Alkaloids of] Mahonia nepalensis DC. (Berberis nepalensis, Spreng). R. Chatterjee (J. Amer. Pharm. Assoc., 1944, 33, 210—212; cf. A., 1944, III, 856).—The root contains 0.48% of umbellatine and 0.02% of nepratine (I), C₁₉H₂₁O₆N, decomp. >200° without melting [hydrochloride; platinichloride (decomp. without melting)]. Colour reactions for (I) with alkaloidal reagents are tabulated.

F. O. H.

Synthesis of *l*-roemerine. L. Marion and V. Grassie (*J. Amer. Chem. Soc.*, 1944, 66, 1290—1292).—ο-C₆H₄Me·NO₂, Et₂C₂O₄, and NaOEt in EtOH—Et₂O give ο-NO₂·C₆H₄·CH₂·CO·CO₂Et, oxidised by H₂O₂-NaOH, later at 50°, to ο-NO₂·C₆H₄·CH₂·CO₂H (38·6%), m.p. 139—140°. The derived chloride and 3:4:1-CH₂O₂·C₆H₃·[CH₂]₂·NH₂ (modified prep.) give o-nitrophenylacet-β-3:4-methylenedioxyphenylethylamide (74·4%), m.p. 120°, converted by PCl₅ in CHCl₃ at room temp. into 6:7-methylenedioxy-1-o-nitrobenzyl-3:4-dihydroisoquinoline, m.p. 164·5°, the methiodide, m.p. 262°, of which with Zn dust in hot aq. HCl gives 6:7-methylenedioxy-1-o-nitrobenzyl-2-methyl-1:2:3:4-tetrahydroisoquinoline dihydrochloride (55·4%), m.p. 283—284°. With NaNO₂ in 2N-H₂SO₄ at room temp. and then 100° this gives dl-roemerine [dl-5:6-methylenedioxyaporphine] (I), m.p. 85—87° (hydrochloride, m.p. 274°; picrate, m.p. 197°) (and a by-product, C₁₈H₁₉O₃N, m.p. 133·5°). The methiodide, m.p. 221°, of (I) with boiling KOH—MeOH gives the dl-methine, m.p. 81° (methiodide, m.p. 280°). d-and then l-tartaric acid yield successively l-, forms, m.p. 87° and (stable) 102°, [a]_D —79·9° in EtOH [d-tartrate, m.p. 264·5° (decomp.); methiodide, m.p. 224·5°], and d-roemerine, m.p. 102°, [a]_D +80·2° in EtOH [l-tartrate, m.p. 264·5° (decomp.); methiodide, m.p. 280·5.

Isolation of hypaphorine from Argentine species of Erythrina.—See A., 1944, III, 856.

VIII.—ORGANO-METALLIC COMPOUNDS.

Arsanilic acids.—See B., 1944, III, 186.

Some new ethyl and phenyl silicon fluorides. H. J. Emeléus and C. J. Wilkins (J.C.S., 1944, 454—456).—Ethyltri-, b.p. $-4\cdot4^{\circ}/760$ mm., diethyldi,- b.p. $60\cdot9^{\circ}/760$ mm., phenyltri-, b.p. $101\cdot8^{\circ}/760$ mm., and diphenyldi-fluorosilane, b.p. $242\cdot8^{\circ}/603$ mm., are prepared from

 ZnF_2 and the corresponding chlorides, or from HF and the oxycompounds. Vals. of d and v.p. are given; the latent heats of vaporisation of the first three are 6181, 7623, and 8750 g.-cal. per mol., respectively. The resistance of the compounds to hydrolysis rises rapidly with increase in the no. of org. groups. F. R. S.

IX.—PROTEINS.

Conversion of some spheroproteins into linear proteins by deamination. III. B. Jirgensons (J. pr. Chem., 1943, [ii], 162, 224—236]. —Proteins (I) (casein, albumin, edestin, hæmoglobin) are treated with aq. AcOH-NaNO₂ and the products dissolved in 0.05N-NaOH (II). The η of the solutions is 10-100 times that of (I). At low concn. (c), with excess of (II), Z_{η} [= $(\eta-1)/c$] decreases with increasing c. With excess of (II), η decreases with time, but only slowly when c is low. All the degraded proteins have approx. equal Z_{η} , and behave similarly, suggesting that (I) have been degraded into units of approx. equal chain-length. E. W.W.

Viscosity measurements of solutions of deaminated proteins. B. Jirgensons (J. pr. Chem., 1943, [ii], 162, 237—244).—Serum-albumin and -globulin and gliadin are deaminated and η of solutions in 0·02×NaOH determined. Z_{η} of the products are similar to those of other deaminated proteins (see preceding abstract). Z_{η} of the product of deaminating gelatin (I) is $< Z_{\eta}$ of (I), but approx. equals that of the other products, which have much greater aminodicarboxylic acid content. Thus Z_{η} depends on the unit length of the deamination products rather than on their CO₂H content. E. W. W.

Neglected constituent of proteins, a-amino-n-butyric acid. W. C. Tobie (Nature, 1943, 152, 249).—Preliminary work suggests that a-amino-n-butyric acid ("quadrine") may occur widely in proteins. Prolonged acid hydrolysis liberates N from the synthetic material, and protein hydrolysis must be enzymic. The name "isoquadrine" is suggested for a-aminoisobutyric acid.

E. R. R.

Elucidation of structure of proteins. E. Husemann (Chem.-Zig., 1943, 67, 24—28).—A review. W. McC.

Physical and chemical properties of casein from various animal species. E. Kovács (Biochem. Z., 1940, 306, 74—76; cf. Gróh, A., 1934, 1119).—Examination of caseins from the milk of cow, sheep, goat, horse, and ass shows that the tyrosine, tryptophan, P, and S contents, [a]3, and max. and min. absorption of ultra-violet light are subject to species variations of sufficient magnitude to permit identification of unmixed specimens. The magnitude is not sufficient to permit detection or determination of one casein in admixture with another or others or to detect adulteration in curds.

W. McC.

Composition of casein in milk.—See A., 1944, III, 818.

Cleavability of keratins treated with hot β -naphthol by proteinases.—See A., 1944, III, 840.

Structure and reactivity of wool keratin. XIII. Keratin fibres shortened by heat.—See A., 1944, III, 818.

Chromosomin, a protein constituent of chromosomes.—See A., 1944, III, 819.

Analysis of a partial hydrolysate of gramicidin by partition chromatography with starch. R. L. M. Synge (Biochem. J., 1944, 38, 285—294).—Specimens of gramicidin (I) from two different sources have been compared in respect of a no. of properties and further information has been obtained about the ultimate hydrolysis products. Preliminary data are provided on the use of raw potato starch as a medium for partition chromatography of free NH₂-acids and peptides. Analysis by this method of a partial hydrolysate of (I) has given alanine and l-valylglycine, the latter in a yield embodying > half of the glycine of (I). The optical form of the valine residues of (I) is discussed in the light of new evidence and it is probable that d-valine residues will be discovered to be structural components of (I).

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Phenol groups in lignin. K. Freudenberg and H. Walch (Ber., 1943, 76, [B], 305—308).—Aryl toluenesulphonates are converted by N₂H₄ into p-C₆H₄Me·SO₂·NH·NH₂ and thence into N₂H₄ p-toluenesulphonate, which is determined by addition of the derived acid to CO(CH:CHPh)₂. This method shows the following contents of phenolic OH in the named varieties of lignin: cuproxam-1·5, HCl-1·8, technical HCl-lignin 1·9, lignin of ligninsulphonic acid 2·5, and deacetylated AcOH-lignin 3·0. R. S. C.

Substance, m.p. 260—270° (acetyl derivative, m.p. 192—194°), from black currants.—See A., 1944, III, 783.

INDEX OF AUTHORS' NAMES, A II

DECEMBER, 1944.

ADAMS, R., 371.
Adkins, H. A., 377.
Adker, E., 367, 371.
Alfriend, R. W., 382.
Amore, S. T., 363.
André, M., 372.
Andreev, D. N., 357.
Anziani, P., 372.
Armstrong, M. D., 368.

Armstrong, M. D., 368.

Baddar, F. G., 373.
Barker, H. A., 361.
Barkovsky, C., 366, 367.
Baumgarten, E., 359.
Bedoukian, P. Z., 360.
Bell, D. J., 361.
Bergel, F., 376.
Bézard, A. von, 372.
Bhide, B. V., 372, 376.
Billuart, A., 374.
Birch, A. J., 367, 372.
Bischoff, G., 382.
Böhme, H., 360.
Borsche, W., 364.
Bovet, D., 366.
Bradsher, C. K., 363.
Brooks, L. A., 363.
Büchler, W., 362.
Buger, A., 382.

Caoniant, P., 379.
Callison, R. B., 375.
Carson, J. F., 375.
Cavallito, C. J., 378.
Chabrier, P., 364.
Chakravarti, R. N., 374.
Chatterjee, R., 383.
Clar, E., 364.
Clauson-Kaas, N., 374.
Cohen, S. G., 369.
Connolly, E. E., 360.
Cooney, R. C., 370.
Cornubert, R., 372.
Cosulich, D. B., 375.
Crounse, A. A., 368.

DAKIN, H. D., 361.

Dalton, D. N., 373. de Demo, M., 372. Degering, E. F., 364. Deinet, A. J., 382. Delaby, R., 357, 361, 370, 374. Delépine, M., 380, 381. Di Carlo, F. J., 378. Doudoroff, M., 361. Drake, B. B., 369. Duguénois, P., 372. Dwyer, F. P., 377.

EMELÉUS, H. J., 383. Enders, C., 361. Erlenmeyer, H., 382. Ettlinger, J., 371. Euler, H. von, 367, 371, 378.

Fields, E. K., 363. Fischer, H., 359. Fischer, H. O. L., 359. Frazier, D., 375. Freudenberg, K., 384. Funke, A., 365. Fuson, R. C., 368.

GANGL, K., 381. Gie, G., 367. Gindy, M., 373. Gomer, R., 368. Granick, S., 373. Grassie, V., 383. Green, D. E., 369. Griffiths, J. G. A., 360. Guha, P. C., 365.

Hann, R. M., 358.
Hansen, O. R., 380.
Hao-Tsing, W., 371.
Harington, C. R., 369.
Harispe, J. V., 370.
Hart, H., 362.
Haskell, T. H., 376.
Hasselquist, H., 378.
Hassid, W. Z., 361.
Hauser, C. R., 359.
Hazlet, S. E., 367, 375.
Hennion, G. F., 358.
Hensley, L. C., 367.
Hogberg, B., 378.

Hoehn, W. M., 373. Holmes, H. L., 372. Horclois, 365. Howard, G. A., 381. Hubert, J., 357, 361. Hudson, C. S., 358. Husemann, E., 384. Hutchinson, E., 377.

James, S. P., 362. Jeger, O., 375. Jendrassik, A., 374. Jensen, K. A., 380. Jirgensons, B., 384. Johnson, O. H., 369. Jones, J. K. N., 361.

KARRER, P., 376. Kerr, G. W., 373. Kharasch, M. S., 363. Klos, S., 357. Kneisley, J. W., 368. Koepdi, J. B., 383. Komarewsky, V. 1., 357, 358. Kovacs, E., 384. Kratzl, K., 372. Kühnel, M., 357. Kugler, A., 376.

Ladenburg, K., 362. Ledingham, A. E., 370. Lebninger, A. L., 379. Lehr, H., 382. Lieb, D. J., 358. Lions, F., 377. Lipmann, F., 359. Lythgoe, B., 381.

McKinley, J. B., 357.
Mahadevan, V., 366.
Mann, F. G., 360.
Manske, R. H. F., 370.
Marion, L., 383.
Medville, D. B., 383.
Melville, D. B., 383.
Messerly, J. P., 383.
Mester, L., 362.
Michaelis, L., 373.
Mitchell, W., 383.
Morelle, G., 372.

Morrison, A. L., 376. Moss, A. R., 376.

NANU, I., 371.
Nargund, K. S., 372, 376.
Ness, A. T., 358.
Neuberger, A., 379.
Neuman-Piljat, E., 357.
Noller, C. R., 375.
Nudenberg, W., 363.
Nyholm, R. S., 377.

PARANJAPE, K. D., 372, 376. Pasquinelli, E. A., 382. Pauli, R., 389. Pavlic, A., 377. Petrov, A. D., 357. Phalnikar, N. L., 372, 376. Piljat, S., 357. Platiner, P. A., 374. Porter, J. W. G., 360.

Rabe, P., 383.
Rabjohn, N., 368.
Raiford, L. C., 368.
Raiford, L. C., 368.
Rajagopalan, S., 365, 368.
Rapoport, L., 363.
Ratner, L. G., 368.
Reed, R. A., 379.
Rinderknecht, H., 376.
Ringnes, P., 376.
Ritchie, E., 377.
Rivers, R. V. P., 369.
Roleff, R., 385.
Ruzicka, L., 375.

Schönberg, A., 367.
Schuler, W., 383.
Seshadri, T. R., 370.
Sezer, Z., 372.
Shand, W. C., 367.
Sigurdsson, S., 361.
Simon, A., 376.
Simons, C., 368.
Simons, J. H., 362.
Smith, F., 362.
Smith, L. G., 358.
Smith, L. I., 373, 376.

Smythe, C. V., 369. Somers, G. F., 359. Sowden, J. C., 359. Spielman, M. A., 382. Stauffer, D. A., 367. Steinkopf, W., 357. Stier, E., 381. Sumerford, W. T., 378. Sumner, J. B., 359. Synge, R. L. M., 384.

Tănăsescu, I., 371.
Tess, R. W. H., 373, 376.
Tishler, M., 362, 383.
Tobie, W. C., 384.
Todd, A. R., 381.
Todd, W. R., 365.
Treibs, W., 360.
Trevoy, L. W., 372.
Tschitschibabin, A. E., 366, 367.
Tuttle, L. C., 359.
Tyson, G. N., jun., 358.

Ufimtzev, V. N., 368. Ullyot, G. E., 376.

VAN ORDEN, H. O., 367. Veldstra, H., 380. Viallard, R., 359. Viaud, 365.

WACEK, A. VON, 372.
Walch, H., 384.
Wallace, W. E., 368.
Weber, O., 382.
Weijlard, J., 383.
Wellman, K. W., 362.
Wendler, N. L., 362.
Werner, L., 374.
Whitmore, W. F., 370.
Wiardi, P. W., 380.
Wicks, Z. W., 371.
Wilkins, C. J., 383.
Witting, G., 359.
Wolff, I. A., 377.
Woolley, D. W., 380.

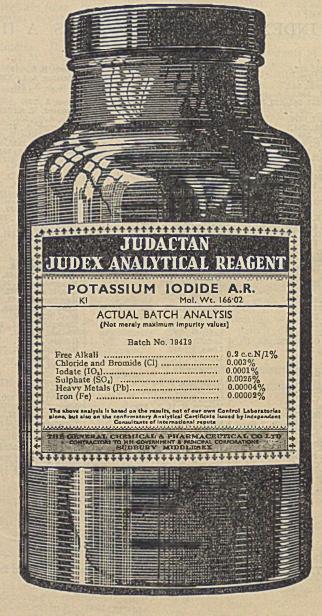
ZEMPLÉN, G., 362.

ERRATUM.

Abstracts A II, 1944.

Col. Lines.

87 32-33 For "The ash, insol. in 2ν-HCl, contains" read "The ash (insol. in 2ν-HCl 6.6%) contains."


JUDACTAN

ANALYTICAL REAGENTS WITH ACTUAL BATCH ANALYSIS

ACTUAL

ANALYSIS

BATCH

subjected to INDEPENDENT ANALYSIS before

label is printed

Each Batch

You are invited to compare the above actual batch analysis with the purities

guaranteed by the specifications of any competing maker in this country or abroad

THE GENERAL CHEMICAL & PHARMACEUTICAL CO. LTD.

Chemical Manufacturers, Judex Works, Sudbury, Middlesex