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The aim of this article is to present a phenomenon of acoustic waves propagation in  

a single layer on a semi-infinite substrate from the classical theory of elasticity 

point of view, and recall the description of this phenomenon by G. W. Farnell and 

E. L. Adler issued in 1972. Additionally, the purpose is to provide tutorial-type, 

step-by-step scheme for the numerical algorithm, using matrix formalism, in order 

to calculate frequencies, velocities and polarizations of different acoustic modes 

propagating  within a  layer. It  was shown how from these calculations  elastic 

constants  of  materials  can  be  derived from fittings  into  dependencies between 

velocities  and  acoustic  wave-vectors.  The  approach  presented  is  related  to 

Brillouin  light  scattering  (BLS)  experiments.  The  BLS  experiments  provide 

information about acoustic modes frequencies, velocities and wave-vectors, thus 

supporting the fitting procedure by reduction number of the unknown parameters.

Keywords: Elastic constants, Thin layers, Sezawa and Rayleigh waves, Brillouin 

light scattering

1. INTRODUCTION

About 50 years ago, in the extensive monograph Physical Acoustics edited by Mason and 

Thurston, in the 9th volume, the chapter by G. W. Farnell and E. L. Adler under the title Elastic 

Wave Propagation in Thin Layers was published [1]. The chapter addressed many physical 

aspects of the acoustic waves propagation in thin layered structures. The approach based on the 
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classical theory of elasticity providing many details about types of possible acoustic excitations 

concentrating on the description of a single layer attached to a semi-infinite substrate. It was 

discussed there how acoustic waves are influenced by a layer thickness, densities of materials, 

and eventually by the piezoelectricity. To compare those past times achievements with actual 

development, in the field of thin layers elasticity, it can be said that the situation is similar to 

that with Newton’s laws of a motion which are still in use in solving practical problems despite 

there were invented long time ago. However, an important advantage of the current situation is 

that the Farnel and Adler formalism can now be easily employed on quite fast computers 

became available for everybody. This makes possible to write own code suited for own needs, 

using multi-parameter fitting in order to obtain information about elastic properties.

In the current paper three types of crystallographic symmetries will  be analyzed: the 

isotropic, the cubic, and the hexagonal. The mathematical formulation will  be given in the 

matrix form as  the  eigen-problem for  the  acoustic  waves motion.  The  formalism strictly 

addresses BLS spectroscopy of acoustic waves in thin films. The reason for this is the BLS 

method is a directional one. It means that in the experiments the waves can be sensed in a given 

in-plane  direction.  Thus,  after  subsequent  sample  rotations  information  about  in-plane 

anisotropies and crystallographic symmetries can be deduced.

The paper consists  of  eight  parts,  including this  introduction,  and four  appendixes  

(A-D). We start with the classical equation of motion for an acoustic wave in a continuous 

medium followed by presentation of possible solutions of the equation. Next, after use of 

boundary conditions for the top-surface and for the layer-substrate interface the problem is 

presented in a matrix form or, in other words, is reduced to the eigen-problem of the acoustic 

wave propagation in a single-layer on a semi-infinite substrate. From that moment we usually 

take advantage from information about waves frequencies and wave-vectors obtained from the 

Brillouin light scattering (BLS) experiments. This leads to the final stage of the elastic constants 

determination. The subsequent titles of chapters are informative enough, so there is no need to 

describe their contents more detailed. As we would like to outline only the method we exclude 

piezoelectricity of materials.

The scientific content of the paper is restricted to acoustic waves propagating in a thin 

layer  with  velocities  which  are  smaller  than  the  slowest  bulk  transverse  acoustic  waves 

propagating inside a material of a substrate. To deal with the case when a layer is faster than the 

substrate the different type of calculations have to be carried out. This will be a topic of a next 

paper.
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2. EQUATION OF MOTION. HOMOGENEOUS EQUATIONS IN  A  HOMOGENEOUS 
LAYER

The starting point for the solution of the problem is the second Newton’s law of motion 

written in the tensor formalism, namely∗

ijij uT ρ=, , (1)

where the strain tensor is the linearly dependent on the deformation

jklijkljij ScT ,, = .   (2)

In other words, the strain tensor-components jijT , are linear combinations of the deformations 

jklS , with the elastic constants ijklc  being the proportionality constants.

3. THE EQUATION OF MOTION SOLUTION IN THE FORM OF PARTIAL WAVES

The assumed solution  for  the  acoustic-waves motion  in  a  thin  layer  should  include 

following types of parameters: the angular wave-frequency ω  and the wave-vector  χ  at the 

given position  ],,[ zyxr = , both  ω  and  χ  coupled together into the time-dependent wave-

phase tr ωχ −⋅ 
, next, the vector of polarization γ , the amplitude b (in general the imaginary 

quantity), and the most important for the acoustics of layers, the undersurface wave-amplitude-

changes expressed by the followings: 

)( thxi zxeu ωχχγ −+=  , (3a)

or

)( tkxibhik eeu ωγ −=  , (3b)

where in Eq. 3b the factor responsible for the amplitude modifications was extracted from the 

phase, ],0,[ bkk ⋅=χ  is the acoustic wave vector, and k is the acoustic in-plane wave vector 

derived from the BLS geometry. From the above results the assumed frame of reference for the 

acoustic waves motion. Thus, the wave-vector χ  has no y in-plane component, has the x in-

plane component parallel  to the direction of propagation, and the out-of-plane z-component 

influenced by the layer thickness h (Fig. 1).

The equation is written along the Einstein’s summation rule. Thus, a repeated subscript means summation over 
this subscript going (here) from 1 to 3 (due to 3-dimensionality of space), while, a comma before a subscript 
means a spatial  derivative.  For example,  the first  component  ( 1uρ )  of the right  hand-side  of  Eq. 1 equals:

zTyTxTTTTT jj ∂∂+∂∂+∂∂=++= /// 1111113,132,121,11,1
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Fig. 1. A frame of reference needed for the description of acoustic waves guided in the x direction, in 
the layer of thickness h, with the in-plane wave-vector component k.

However, the total solution of the wave-propagation problem should take into the account 

boundary conditions imposed on a top layer-surface as well as on the interface between a layer 

and a substrate. From that results following expressions for the total solution composed from 

partial ones:

( ) ( )[ ]txikhikbCu
n

nn
jnj vexpexp )()( −⋅



= ∑ γ ,  n=1..8,  (4a)

for the layer, and

( ) ( )[ ]txikhikbCu
m

mm
jmj vexpexp )()( −⋅



= ∑ γ ,  m=a, b, c, d, (4b)

for the substrate, where the  j subscript numerates the three spatial components of the wave 

amplitude ],,[ zyx uuuu =  ( 3,2,1 ↔↔↔ zyx ), and where v is the acoustic wave speed. The 

coefficients Cn and Cm assure of the displacements and stresses continuity at the free surface and 

at the interface between the layer and the substrate. The b in the above expressions is the unit-

less parameter. It measures, for  a given partial wave, the wave-amplitude into the direction 

normal to the surface direction. The one important point in the above derivations should be 

underlined - we do not use the unit vector 1=χ , but that vector which contains components 

derived from the BLS geometry of scattering, namely

],0,[ bkk zyx ⋅==== χχχχ .   (5)

4. THE EQUATION OF MOTION AS THE EIGEN-PROBLEM

In the next step of calculations we have to transform the equation of motion (Eq. 1) into 

the linear algebra problem. To do that all the wave amplitudes (Eqs. 3a-3b) and dependencies 

between strains and deformations (Eq. 2) have to be substituted into Eq. 1. Thank to this we 

obtain the set of following linear equations

ikkkljijkl uuc δρχχ 2v= , (6)

x
2
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x
1
=x

x
3
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which can be written for the every wave component ku . This algebraic system of homogeneous 

equations creates the eigen-problem, which admits non-null solutions only if the determinant is 

equal to zero:

0v2 =− ikljijklc δρχχ . (7)

More simply, the above equation can written as follows

0=− ikik XQ δ , (8)

where ljijklik cQ χχ=  is the characteristic matrix∗ written in an open form as 

( ) ( )
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ckbkccbkcckbkccbkcckbkcbkc

Qik ,  (9)

where we used the simplified 11-> 1, 22-> 2, 33-> 3, 23-> 4, 13-> 5, 12-> 6 notations for the 

elastic constants ikc . As for the every eigen-problem applied in physics the eigen-values and 

eigen-vectors  possess  appropriate  interpretation.  Thus,  an  eigen-vector informs about  the 

polarization components of a partial wave, while the eigen-value X inform about a speed and/or 

frequency of the wave.

5. THE Z-COMPONENT OF THE ACOUSTIC WAVE VECTOR 

Usually, in solving the bulk-acoustics problem the 2vρ=X  eigen-value is treated as an 

unknown quantity. For the thin layers however, this quantity is directly accessible form the BLS 

experiment. In the experiment the dependencies between amplitudes of waves and a depth in 

the layered structure are not accessible. This is why, in a next step, we should solve Eq. 7 with 

the  zχ  vector-component being the  unknown quantity.  Thank to  this  we  can  obtain  the 

( )ρχχχ ,v,, ijklxzz c=  dependencies, or similarly,  we solve the equation of motion in respect to 

the  b’s in  order  to  obtain  the  ( )ρχ ,v,, ijklx cbb =  dependences. Obviously,  both  steps  are 

equivalent as the simple kbz =χ  relation is evident.

Next,  taking  again  the  0v2 =− ikljijklc δρχχ  equation,  substituting  to  it  the 

( )ρχχχ ,v,, ijklxzz c=  or  ( )ρχ ,v,, ijklx cbb =  expressions,  we  obtain  equation  with  clearly 

This  is  elastic  part  of  the  (4x4)  matrix  which,  with  the  exclusion  of  electric  phenomena  due  to  the 
piezoelectricity of material, thus, possesses here the (3x3) dimension.
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visible polarization vectors ( )ρχγ ,v,, ijklx c
 for a given partial wave. This is visible below (Eq. 

10).

0v2 =
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γ
γ
γ

δρχχ .    (10)

6. THE MATRIX OF BOUNDARY CONDITIONS

The problem seems to be still unsolved due to unknown partial waves amplitudes nC  (Eq. 

4a) and  mC  (Eq. 4b), but  importantly, due to  the lack of fitting to the measured acoustic 

velocities.

In the previous chapters we outlined method of solutions for speeds and polarizations of 

acoustic  waves. Now, the boundary conditions must be imposed in order to  calculate  C’s 

amplitudes and to determine elastic constants from the fitting. The boundary conditions have 

the  form of  homogeneous  algebraic equations for  the  layer and the  substrate  and can be 

represented by the following matrix-form equation:

0
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xG (11)

In the Mason and Thurston monograph [1] all the possible (twelve) boundary conditions are 

ordered as follows∗:

A. Mechanical transverse:

1) continuity of the transverse displacement at the interface ( )(
2

)(
2

sl uu = at z=0),

2) continuity of the transverse shear stress at the interface ( )(
32

)(
32

sl TT = at z=0),

3) vanishing of the transverse shear stress at the free surface ( )(
32

lT at z=h),

We will  keep this  order  in followed derivations,  however  please keep in mind that  the order of  C’s,  in the 
columnar matrix of Eq. 11, is correlated with the boundary conditions list, below. Please, keep in mind also that 
C’s subscripts (1…8) and (a, b, c, d) are exactly the same as those from Eqs. 4a-4b.
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B. Electrical:

4) continuity of the normal component of the electrical displacement at the interface (

)(
3

)(
3

sl DD = at z=0),

5) continuity of the electrical potential at the interface ( )()( sl φφ = at z=0),

6) continuity of the normal component of the electrical displacement at the free surface (

( )hkD ll )(
0

)(
3 φε= , and )/(03 zD hzhz ∂∂−= >> φε  with )](exp[)()( hzkhlhz −−=> φφ ),

C. Mechanical sagittal:

7) continuity of the longitudinal displacement at the interface ( )(
1

)(
1

sl uu = at z=0),

8) continuity of the vertical displacement at the interface ( )(
3

)(
3

sl uu = at z=0),

9) continuity of the sagittal shear stress at the interface ( )(
31

)(
31

sl TT =  at z=0),

10) continuity of the vertical compressional stress at the interface ( )(
33

)(
33

sl TT =  at z=0),

11) vanishing of the sagittal shear stress at the free surface ( 0)(
31 =lT at z=h),

12) vanishing of the vertical compressional stress at the free surface ( 0)(
33 =lT at z=h).

Thus, those twelve boundary conditions yield twelve equations. Just from that results 

number of  Cn and  Cm coefficients (comp. again Eqs. 4a-4b); in a general case the eight  Cn 

coefficients for a layer and the four  Cm coefficients for a substrate. It is also convenient to 

present a graphical equivalence of Eq. 11 and the above list of the boundary conditions in order 

to show positions of terms responsible for different types of acoustic excitations guided in the 

layer (Fig. 2).

Boundary
conditions ↓ m=a n=1 n=2 m=b n=3 n=4 n=5 n=6 n=7 n=8 m=c m=d

Order of C’s
↵ amplitudes

1 L L L 0 0 0
2 L L L 0 0 0
3 0 L L 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 RS RS RS RS RS RS
8 0 0 0 RS RS RS RS RS RS
9 0 0 0 RS RS RS RS RS RS

10 0 0 0 RS RS RS RS RS RS
11 0 0 0 0 RS RS RS RS 0 0
12 0 0 0 0 RS RS RS RS 0 0

Fig. 2. Graphical representation of the boundary condition matrix Gik equivalent to Eq. 11. Regions 
responsible for electrical phenomena are in grey. A part  of determinant describing Love modes is 
marked by ‘L’ symbol, while a part responsible for Rayleigh and Sezawa modes is marked by the ‘RS’ 
symbol.  At  some  places  the  matrix-elements  always  equal  zero.  Both  the  order  of  the  boundary 
conditions and the order of the C’s amplitudes were adopted from [1].
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However, for  the  problem with  the  electrical  part  omitted  (m=b,  n=3,  4  omitted – 

compare the electrical boundary conditions 4 through 6) the problem is reduced for the 9x9 [Gik] 

matrix (see Appendix D). For example, for the cubic layer on the hexagonal substrate it equals 

to∗
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Next, going more into the specific situation, for the system with only Rayleigh and Sezawa 

modes (the in-plane polarized Love modes don’t exist or are decoupled from the Rayleigh and 

Sezawa modes in that case) the [Gik] matrix simplifies to the 6x6 matrix (m=a, n=1, 2 indexes 

for Love modes are omitted in this case).

The G-matrix mathematical-treatment is again narrowed to the linear algebra problem. 

This is why, keeping in mind that the final purpose of our calculations is to derive elastic 

constants  for  the  layered structure from fittings  to  the  data  obtained experimentally,  the 

det[G]= 0  equation should be is  solved along with Eq. 11 -  for given set  of physical and 

geometrical properties (ρ,  cijkl,  h) of the structure, and for the values of  k obtained from the 

scattering geometry. Thus, the det[G] = 0 equation, as a matter of fact, has the only speed as an 

unknown parameter, thus, the equation roots give the dispersion relations vcomputed(k) = ω/k for 

all the acoustic modes. These roots can be found looking for the minima of det[G] expression as 

the function of speeds v.

Summarizing; in a general case from the following condition

0)1212(det =
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xGik (13)

We changed order of rows and columns in the |Gik| determinant in comparison to original description by Farnell 
and Adler [1], however as it is known, the value of determinant does not change after such modifications. The 
C’s positions in the columnar matrix (comp. Eq. 11) also have to be changed accordingly.
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elastic constants of the structure and dispersion relations can be determined. Additionally, in a 

case of nonpiezoelectric materials, used for a layer and for a substrate, from the following 

equation

dcmn
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the  C’s amplitudes for the Rayleigh and Sezawa waves can be determined, while the Love 

modes amplitudes can be obtained from the following matrix equation
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Eventually, if the Sezawa and Rayleigh modes are not decoupled from the Love modes we have 

to use Eq. 11 against Eqs. 14-15. Thus, from Eqs. 14-15 or Eq. 11  the values of all the  C-

amplitudes can be found, apart from an arbitrary overall multiplicative factor (the excitation 

amplitude  of  the  modes).  In  other  words  the  C-amplitudes determine the  shape  of  the 

displacement field of a given mode.

Summarizing again this  step  of  calculation,  it  can be  said,  that  the  elements of  the 

G-matrix are dependent on:

- the physical properties (mass density ρ and elastic constants (cijkl) of the layer(s),

- the geometrical properties (thickness h) of the layer(s),

- the acoustic-wave propagation direction χx = k (the χz = kb is known from the eigen-

equation of Q-matrix), 

- the acoustic-wave speed v.

7. FITTING ELASTIC CONSTANTS

As it was yet written, the velocities of acoustic waves from the previous chapter, are 

function of k, and depend parametrically on the density, the elastic constants and the thickness

(ρ, cijkl, h):
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v = vcomputed(k, ρ, cijkl, h).          (16)

Doing in this final stage the fitting we should do the followings [3]:

– select a subset of parameters - typically the cijkl of the layer,

– assume definition of a mesh of values of these parameters,

– identify  the  most  probable  values  by  the  common least  squares  fitting  procedure  to 

minimize  the [Σ(vcomputed – vmeasured)2] expression.

As an example consider hypothetical situation when experimental BLS data do not ensure 

us if we dealt with an isotropic or a hexagonal film deposited onto the well known isotropic 

substrate.

In terms of the elements of the tensor of elastic constants  cij, the isotropy of the layer 

implies (here we uses simplified, 2-indexed description of elastic constants – see explanation 

below Eq. 9): c11 = c22 = c33,      c12 = c13 = c23,    c44 = c55 = c66 = (1/2)(c11 - c12), and all the 

others cij = 0, meaning that the tensor is fully determined by two independent values (typically 

taken as c11 and c44).

In  hexagonal  symmetry of  the  layer  the  equalities  c11  =  c22,  c13  =  c23,  c44  =  c55,

c66 = (1/2)(c11 - c12)  hold true, but the eventual film anisotropy allows that  c33 ≠ c11 = c22,

c12 ≠ c13 = c23,  c44 = c55 ≠ c66,  meaning that  full  determination of the tensor requires five 

independent values –  these can be taken as:  c11,  c33,  c12,  c13 and  c44.  Computations  in  the 

hexagonal symmetry can be performed starting with isotropic properties, identified by c33 = c11,  

c13 = c12, c44 = (1/2)(c11 - c12) equations, and then, relaxing these equalities, treating c33, c13 and 

c44 as additional free parameters, beside c11 and c12.

The possibility of finding the five elastic constants depends on the sensitivity of the 

computed velocities to their values. As it was written in previous chapters, for given values of 

the substrate properties the computed velocities of the acoustic modes are functions of the film 

properties (mass density ρ, thickness h, several independent elastic constants cij), of the wave-

vector k and of the mode (the branch of the dispersion relation), which can be indicated by a 

mode index j: ),,,(vv hck ijjj ρ= .

The sensitivity function of a computed speed vj to a given parameter p can be estimated 

by the partial derivative  ∂v/∂p, numerically computed as  ∆v/∆p, or better by the logarithmic 

derivative ∂(log v)/∂(log p), numerically computed as (∆v/v)/(∆p/p). Then, we have to sample 

the velocities vj at a discrete set of wave-vectors k∗. Thus, we can compute a mode specific 

sensitivity to parameter p as

in-plane acoustic wave vector
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∑ ∆
∆
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k kpkp
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N )(/)(

)(v/)(v1
(17)

These sensitivities to a given parameter (one of the cij) often turn out to be numerically of the 

same order for the various modes (although in some cases they have opposite signs for different 

modes). It is therefore reasonable to compute a global sensitivity
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⋅
j k

jj

kj kpkp

kk

NN )(/)(

)(v/)(v11
. (18)

For example, for a hypothetical case, these global sensitivity indexes can have the following 

values:

Tab. 1. Numerical sensitivity of elastic constants, treated as free parameters, to the experimental 
data fitting.

parameter C11 C12 C44 C13 C33

sensitivity 0.24 ~ 0 0.11 0.07 0.16

Firstly, these values are not high - they mean that a 1% change of c11 causes a change of 

velocity of 0.24%, and a 1% change of c13 causes a change of velocity of only 0.07%; they show 

that c11 and c33 are likely to be better determined, since they have the higher sensitivities, while 

c12 cannot be determined, since the velocities of the acoustic modes are insensitive to its value.

Secondly, the  null  sensitivity  to  c12 is  not  surprising,  since  c12 gives  the  T1 stress 

component due to the S2 strain component T1 = c12 S2 , but in the acoustic modes being probed 

S2 is always null: axes have z=x3 normal to the surface, and x=x1 in the surface and directed 

along the propagation direction, such that the displacement is proportional to C(z)exp[i(k.x -ω.

t)] and has no dependence on y=x2. Taking into account the null sensitivity to c12, the fit of the 

computed dispersion relations to the measured ones is performed with four free parameters, 

leaving c12 fixed at the value found by the isotropic approximation to the analyzed data.

The global sensitivity can be evaluated also for the other parameters involved in the 

computation of  ),,,(vv hck ijjj ρ= .  For the properties of a substrate such sensitivity is not 

relevant, since in practice largely accepted values of mass densities and elastic properties can be 

adopted  from  literature  data  (for  example  for  silicone).  Similarly,  the  wave-vector  k is 

determined with good precision by the scattering geometry. Instead, the film mass density ρ and 

thickness  h can  be  measured by  other  methods,  like  XRD,  and  might  be  affected  by 

uncertainties, whose effects can be  assessed  by  the  sensitivity  indexes. Such indexes can 

sometimes equal to higher values than those of the elastic constants global sensitivities. For 

example for the heavy layer which less stiff than the substrate (silicon) we can obtain
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Tab. 2.  Numerical sensitivity  of  the layer density  and the layer thickness,  treated as  free 
parameters, to the experimental data fitting.

parameter ρ h
sensitivity 0.49 0.40

This is not surprising: the stiffness of the acoustic modes comes mainly from the substrate, the 

stiffness of the film being only minor, while the inertia of the acoustic mode comes mainly from 

the film. A change of the film elastic constants modifies only a minor contribution to stiffness, 

while a change of its density or thickness modifies the major contribution to inertia, and has a 

larger effect.

These sensitivities must be kept in mind. A change of 1% of the film density causes a 

change of velocities similar to that induced by a change of 2-4 % of the elastic constants. This 

means that a 1% error in the measurement of density or thickness causes an error of 2-4 % of 

the  elastic  constants.   Importantly, the  sensitivities  can be treated as  criterion  in  order  to 

distinguish  crystallographic  symmetry of  the  film:  lower  values  of  the  elastic  constants 

sensitivities leading to better fitting to the experimental dispersion relations ),,,(vv hck ijjj ρ=  

enable the choice between isotropic and/or different symmetries identification.

8. FINAL REMARKS

The main aim of present efforts relied on fitting of the calculated acoustic modes speeds 

to experimental data obtained in Brillouin light scattering experiments. Besides this we could 

conclude about crystallographic symmetries of the layer guiding the modes. Finally, it  was 

possible to obtain values of elastic constants from the fitting using boundary condition. In Fig. 3 

a typical example of the fitting to experimental BLS data is given. Points are surrounded by 

uncertainties which are much smaller to be visible within the figure scale.



Molecular and Quantum Acoustics vol. 27, (2006) 61

Fig. 3. Dependencies between velocities and the wave-vector for the Rayleigh mode (R) and Sezawa 
modes (S1…4) guided in a thin slow layer deposited onto a faster substrate.

It is a hope of authors that provided analysis of thin layers elasticity associated with the 

guided acoustic modes will support the large community of solid state scientists, especially 

those who are not familiar with the Brillouin light scattering.
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In  the  book  “Brillouin  spectroscopy  in  crystal  lattices”,  eigen-problems  for  isotropic,  cubic  and  hexagonal 
symmetries have been presented [2]. However,  the calculations were done for unit wave-vectors  1|| =χ .  The 
results from book can be transformed for the ],0,[ 321 bkk ⋅==== χχχχ  approach if the every eigen-value will 
be multiplied by the k2, while in the every solution for b’s the X (eigen-value) will be substituted by X/k2 in order 
to obtain zχ . In the Appendixes the calculations for the Qik matrix elements , the X eigen-values, the γ  eigen-

vectors, and the zχ  components (b-amplitudes) for the isotropic, cubic and hexagonal symmetries are provided.


