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Applying rer Haar, Alfrey, and Grass approximations, we have ca/cułate 

disfributions oj viscoelastic relaxation limes for re/axafion functions given by 

Schiessel et al. Fractional tkrivatives calculus has been applied to Maxwell 

motki oj viscoelasticity and it has been proved by means oj the Gross jormuła 

that fractional tkrivatives brought about appearance oj continuous spectrum oj 

visoelastic relaxation frequencies. The width oj this spectrum tkpends on the 

value oj the fractional parameter ". 
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I. INTRODUCTION 

161 

In dynamics of complex materials, relaxation proce.ses deviating from the cIassicaI 

exponential Debye behaviour are often encountered [1-4] . Such situation is in the case of 

stTess relaxation in viscoelastic materials. polymers, in critical gels, in the charge carrier 

transport in amorphous semiconductors, in dielectric relaxation, in attenuation of seismic 

waves, in transient photoconductivity etc. Viscoelastic phenomena are experimentally .tudied 

by two methods. In !he first one stress changes of material. cau.ed by applied harmonie 

changes of strain is studied , and one obtain. as a result the complex elastic modulu. of 

investigated material. In the second one time changes of stress in materia! , produced by unit 

jump of strain in the form of Heaviside functions, are investigated , and as a resułt the sa 

called relaxation function is obtained. According to the work [I, 2, 4] , experimentally 

observed decay of tbe relaxation function with increase in time tbat elapsed from the moment 

ofunitjump ofstrain, may often be described by tbe following formu!ae : 

<1>1 (t) oc exp(- (t/J.1)") (I) 
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or 

(2) 

where et and II &re fractional numbers from the range: O < et < I. O < Il < I . More 

complex behaviours of viscoelastic materiał s may ałso be exhibited [2]. typilied by changes 

from one form of power law relsxation function decay to another • for instance if motion of 

polymer segments are restricted by linite exlensions of!he investigated system. 

2. THE RELAXATION FUNCTION AS A LAPLACE 1NTEGRAL 

The relaxation function is a conlinuous. decreasing function which for 1 ~ 00 

diminishes to O .Thus it can be represented in integrał form as [4] : 

00 

<1>(1) = <1>(0) j N(t)exp(-I It)dt 
O 

(3) 

where N(t) denotes!he distribution function ofrelaxation times. Introducing the relaxation 

frequency s = lit . and the frequency function: 

M(s) = <I>(O)N(II s)1 s2 

eq. (3) is transformed into the form ofLaplace integrał: 

00 

<1>(1) = jM(s)exp(-ls)ds 
O 

(4) 

(5) 

3. APPROXIMATION METHODS FOR THE DETERMINATlON OF THE 

RELAXATION SPECTUM 

The relsxation spectrum can be determined rigorously by means of the inverse Laplace 

transform of the above formula only if the relaxation function is known in !he form of 

analytical expression over the entire lime scale from O to 00 . But not ałl values contribute 

to the integraI to the same extent. The weighing factor exp(-Is) reduces !he influence of!he 

far-olfend ofthe spectrum upon a given <1>(1). Measurements ofrelaxation function provide 

however only a set of experimental data, plots in a graph, which extend over a limited interval 

oflime only. For this reason, many attempts were made to obtain an approximation methods 

for determination the relaxation spectrum [4] . In !his work we have considered three of!hem. 

In !he Alfrey approximation, it is assumed!hat exp(-Is) in !he formula (5) may be 

approximated by: 



Mo/ecu/ar and Quantum Acoustics vol. 24, (2003) 

exp( -ts) = 1 for s ,;,1 1 t 

exp(- ts)=O for s > l l t 

In this approximation the eq. (5) takes the form: 

lit 
<I>(t) = IM(s)ds 

O 

and after a simpJe calcuJation, one obtains from eq. (4) and eq. (7) the following formula: 

<I>(O)N(t) = _ d<I>(t) 
dt 

Ter Haar has assumed the following approximation: 

sexp( -ts) = Ii(s - 11 t) 1 t2 

which applied to eq. (5) changes it to the form: 

00 

<I>(t) = IM(s)(li(s -lIt)1 t)ds = M(1 1 t)1 t 
O 

from which it results the following formuJa: 

According to Gross, the following assumption may be made: 

exp(- ts)=I - ts if s ,;, llt 

exp(-ts) = O if s >lIt 

under which the eą . (5) takes the form : 

l i t 
<I>(t) = IM(s)(1- ts)ds 

O 

and after simpłe calcułations it results from eq. (4) and eq. (\3): 

2 
<I>(O)N(t) = t d <I>(t) 

dt2 
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(6) 

(7) 

(8) 

(9) 

(lO) 

(11) 

(12) 

(13) 

(14) 

Using the above mentioned approximations , distributions of relaxation times N(t) have 

been estimated for media in which rełaxation functions are given by formułae (I) and (2).In 

Fig. ł distributions ofrełaxation times for rełaxation function given by the formula (I) have 

been plotted for (l = 0.7 and for the three approximations of Alfrey , Ter Haar and Gross . 



164 

0.4 

0.3 

0.2 

0.1 

, , , , 

K 

, , , 
" ' '·1 

''\o. 

l;.: ..................... , 

Soczkiewicz E. 

",~=---"'--,--
0 .0 .l-,....,.-,-r-r.-r-r~:~:-~-~-~-~-~-~-:::-~;-;-~-;-;-~-~-~ 't/~ 

1 2 3 4 5 6 7 

Fig. 1. Distribution ofrelaxation times K = <I>(O)N«)~ for relaxation function given by 

formula (1) and CL = 0.7 . The heavy line - AJfrey' . approximation, the dashed line
approximation ofTer Haar , the pointed line - approximation ofGros •. 
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Fig. 2. Distribution ofrelaxation times K = <I>(O)N«)~ for relaxation function given by 
formula (2) and CL = 0.7 . The beavy line - AJfrey's approximation, tbe dasbed line
approximation ofTer Haar , tbe pointed line - approximation ofGros •. 
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4. RELA TIONS BETWEEN COMPLEX MODULUS FUNCTION, RELAXATION 

FUNCTION AND RELAXATION SPECTRUM 

165 

The' compłex modułus function is defined as a stress devełoped under a sinusoidaIły 

varying strain, appłied for a very łong time so that the transient has di.appeared (4): 

00 

E* (im); im j <I>«)exp( -iOl<)dt + Eo 
O 

(ł5) 

where Ol denotes the cycłic !Tequency ofthe varying strain, i 2 = -I ,and Eo is the static 

ełastic modułus. After introducing the formuła (5) for the rełaxation function, and integrating 

over < , eq. (ł5) take. the form: 

00 

E* (im); im jM(s)/(s + iOl)ds + Eo 

O 
(16) 

The following formułae for the real and imaginary componenls of the dynamical ełastic 

modułus resułt !Tom eq. (16) : 

00 

Eł(oo); j M(s)oo 2 /(00 2 +s2)ds 
O 

00 

E
2

(oo); j M(s)ros/(oo 2 +s2)ds 
O 

(17) 

(18) 

Using eq.(16) Gross (4) has derived the following formuła coonecting the compłex modułus 

function and distribution function of relaxation frequencies: 

M(oo) = ±-I-ImE* (ooexp(±i7t» 
1(roEf1O 

(19) 

where Im denotes the imaginary part of the compłex modułu •. II may be demonstrated (4) 

that the frequency function M(oo) may ał.o be calcułated from the reał and imaginary 

components ofthe dynamical ełastic modułu., by means ofthe folIowing formuła. : 

M(oo) = ±_2_ImE,(oo exp(±i7t/2» 
1troEoo 

M(oo) = _2-ReE,(OlexP(±ilt / 2» 
1tClE. 

(20) 

(21) 

5. DISTRIBUTION OF RELAXATION FREQUENCIES IN GENERALIZED 

FRACTIONAL MODELS OF VISCOELASTICITY 

We have calcułated Ihe compłex ełastic modułus, using the generalized Maxwell mode~ 
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wmch in fractional derivatives [5, 6] is described by the foUowing formula: 

(22) 

where O" is the stress. & is the strain, t = com! is the relaxation time oC the simpic Maxwell 

model, Eo - instantaneous modulus of elasticity, and D"a, D"E denote the Riemann

Liouville derivatives of order <1 , where 0 < <1'; I [6-10]. Applying the Fourier 

transformation to eq. (22), we have obtained the following expression for the complex 

modulus: 

wmch real and imaginary parts are: 

E'(im)~E t" (im)" 
o l + t" (ico)" 

EI(co)~E. cos(<11t/2) + (mt)" 
(mt)~ + (COt)" +2cos(<11t/2) 

E,(co) ~ E sin(<11t/2) 
• (COt) " + (COt)" + 2cos(<11t/2) 

(23) 

(24) 

(25) 

Introducing co ..... co exp(i1t/2) in the formula (25), according to the Gross formula (21), we 

have obtained the following expression: 

E, (co exp(i1t / 2» ~ E. [(COt)" + (mtt" + 2]sin(<11t/2)cos(<11t/2) -'Hmt)" - (mtt"]sin' (<11t/2) 
[(Olt)" + (mt)~ + 2]' cos ' (<11t /2) + [(COt)" - (COt)~ ]' sin' (<11t/2) 

from wmch it follows according to eq. (21): 

M(Ol) ~ l{(CDt)" + (COtt" + 2]sin(mt) (26) 
1t(COt )([(Olt)" + (COtr" + 2]' COS' (<11t/2) + [(Olt)" - (CDt raj' sin' (<11t /2)) 

As one can see, fractional derivatives in Maxwell model generate distribution of relaution 

frequencies. We have proved that the widlh of tms spectrum depends on Ihe value of Ihe 

fractional parameter <1, describing order of the fractional derivalives. Graphs of the 

distribution function M(co) have becn presented in Fig. 3 for various values ofthe parameter 

<1 . lf <1 ..... 1 , Ihe distribution ofrelaxalion frequencies changes to a single component. 

6. CONCLUSIONS 

lf Ihe relaxation function is given in the form of Laplace inlegral, the relaxalion 

spectrum may be simply eslimated using the approximale methods of Alfrey, Ter Haar and 

Gross. 11 has becn stated that the Alfrey and Ter Haar methods gave relaxation spectta very 

close one to anolher iflhe relaxalion function is given by the formula (I). In Ihe case ofthe 

relaxalion function given by the expression (2) approximations of Ter Haar and of Gross give 
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c10se results. 

It has been stated that application of fractional derivatives in models of viscoelastic 

materiais generates continuous spectrum of reluatiooal frequencies. A1J one can see from the 

Fig. 3 ,the distribution ofthis spectrum depends on the fractiooal parameter a; describing the 

order of derivatives . 
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Fig. 3. Distribution ofrelaxation frequencies M(ro)/t for generalized fractiooal derivatives 

Maxwell model for various values ofthe fractional derivative order a; . TIte heavy 
line a; = 0.85 ,the dashed line a; = 0.90 , the pointed line a; = 0.95 . , denotes the 
relaxation time of a simply Maxwell model. 
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