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Abstract. The aim of the paper is to present applications of the new algebraic 
system with specifically strictly defined new interval numbers. [8]. We present the 
Fuzzy Boundary Integral Equations where all operations are in the fuzzy 
perturbation sense. From now we assume that values of boundary conditions, 
material properties, internal prescribed fields and the shape of a boundary are 
uncertain and we'll model these uncertainties using the new methodology based 
on interval perturbation numbers. Illustrative examples from the potential theory 
are given to comment different aspects of the presented theory. Interval, triangle 
and trapezoidal - type fuzzy boundary conditions are considered. To complete the 
presentation the potential problem in a fuzzy domain is discussed. Presented 
methods give the complete methodology how to obtain good approximations of 
solutions of uncertain boundary problems with use of modern fuzzy analysis. 

 
 
INTRODUCTION 
 
The boundary problem may not be known exactly and some functions i.e. the shape of a 
structure, material properties, boundary conditions, external or internal excitations, solutions 
etc. may contain unknown parameters. Many different interpretations are possible for 
terminology of uncertain aspects of the Boundary Element Method (BEM) and we’ll refer to 
these approaches as Fuzzy Boundary Element Method (FBEM). Applications of the FBEM 
have been initiated in the 1995 in papers by Skrzypczyk and Burczyński, cf. [4,10]. The 
earliest applications used the fuzzy independent numbers approach. From now we assume that 
values of boundary conditions, material properties, internal prescribed fields and the shape of 
a boundary are uncertain and we'll model these uncertainties using the new methodology 
based on interval perturbation numbers defined by Skrzypczyk, [5-8,11]. The new 
methodology can be applied to very complicated problems with different uncertain 
parameters. To present possibilities of the new method we consider the boundary potential 
problem with 

• fuzzy boundary conditions 00 q~,u~ ; 

• fuzzy internal sources ξ~ ; 
• fuzzy fundamental solution ( )⋅*u~ ; 
• fuzzy boundary Γ~ . 
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Let ξ
~,q~,u~ 00 , ( )⋅*u~  and Ω

~  with the fuzzy boundary Γ~ , be fuzzy functions. Boundary 
problems with such complicated conditions are not nosidered, cf. Witek [12]. 
 
 
1. ε -FUZZY BOUNDARY ELEMENT METHOD  
 
Formally we can write fuzzy boundary equation for the potential problem in the usual form 
and replace a boundary potential u0, flux q0,, internal sources ξ and a boundary Γ by 
corresponding fuzzy values ξ

~,q~,u~ 00 , Γ~ . Thus we obtain fuzzy boundary integral equation in 
the form  
 ΓΩξΓ

ΩΓΓ

~),(d)(~),(u~)(dΓ)(q~),(u~)(d)(u~),(q~)(u~)(c~
~

*

~
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* ∈+=+ ∫∫∫ xyyyxyyyxyyyxxx , (1) 

where ( )⋅*u~  denotes fuzzy fundamental solution for the potential problem and all operations 
are in the fuzzy sense, cf. [4,10]. Eq. (1) is called fuzzy boundary integral equation in the 
fuzzy domain with fuzzy parameters. 
The Method of Fuzzy Boundary Elements with use of ε -numbers is called further ε -FBEM. 
 
1.1 ε -Fundamental solutions  
 
By the fundamental solution ( )⋅*u~  of the fuzzy Laplace equation for isotropic media we call a 
fuzzy solution of the equation 
 ( ) n*2 R,),R(F~,~u~~

∈∈−−=∇ yxyx λδλ , (2) 

where nR),(~
∈xxδ  denotes the fuzzy Dirac δ-distribution. For simplicity n=2 and 

y=(ξ,η)∈R2 is an arbitrary point in the plane.  
In the present we have not uniqe, sufficiently advanced theory of fuzzy partial differential 
equations for generalized function formulation, such as eq. (2). Further we use the theory of 
ε  intervals. 
Transform the Laplace operator to polar coordinates (r,ϕ), then we get 
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The generalized fuzzy ε-δ-Dirac function in polar coordinates takes the form 

 ( ) )r(
r2

1)y,x( εε δ
π

ηξδ =−−  (4) 

where symbol r denotes the distance between point (x,y) and (ξ,η). The Dirac impulse 
excitation is radial symmetric and since we have the problem in infinite domain, we have not 
disturbaces from the boundary. After neglecting terms which are zero due to symmetry of the 
solution, i.e.  
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where ελ  is the fuzzy constant. Futher we get 
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Since r>0 then 
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where C1 i C2 are integration constans. We can prove that C1=0 and C2 is some arbitrary 
potential so we can assume that C2=0. 
 

Tab. 1. ε -Fundamental solutions of 2D and 3D Laplace equation 
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1.2 ε -FBEM in perturbation formulation  
 
The fuzzy solution of Eq. (1) is formulated in the conditional sense, i.e. we assume that the 
fuzzy boundary Γ~ ∈F(M). For arbitrary, nonfuzzy Γ eq. (1) can be formulated as the family 
of λ-cuts of the form 
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We define the conditional solution set as 
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for Γ∈ M. Methodology of fuzzy equations is based on the theory of ε  intervals and methods 
described in [8]. 
 
1.3 ε-Interval Bounday Equations - methodology of calculations  
 
Remember that eq. (1) is analysed in the conditional sense, with the assumption that the fuzzy 
contour Γ~ ∈F(M). For arbitrary Γ eqs. (9) must be solved with sufficient quality. 
Mathematical problems with fuzzy differential equations for generalized functions force us to 
use the new algebraic methodology based on ε-intervals. We use that theory to solve the 
family of equations (9) for Γ∈M, 10 ≤≤ λ  and to obtain upper approximations for (10). 
Assume that we looking for ε-type intervals for λ-ε-cuts in the form 
 ( ) M∈∈+= ΓΓελλλ ,,)(u~rad)(u)(u~ xxxx ( , (11) 
where 10 ≤≤ λ . Let 
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 ( ) 1000 ,)(u~rad)(u)(u~ Γελλλ ∈+= xxxx ( , ( ) 2000 ,)(q~rad)(q)(q~ Γελλλ ∈+= xxxx ( (12) 

 ( ) Ωεξξξ λλλ ∈+= xxxx ,)(~rad)()(~ (
, ( ) Ωελλλ ∈+= xxxx ,)(c~rad)(c)(c~ (  (13) 

and for λ-ε-cuts of ε -fundamental solutions 
 ( ) ,)(u~rad)(u)(u~ *** ελλλ xxx += ( ( ) 2k,R,)(q~rad)(q)(q~ k*** =∈+= xxxx ελλλ

(  (14) 
Since λ-cuts of any fuzzy number are intervals we write eqs. (9) in the ε-interval form 
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where all operations are in the ε-interval sense, cf. [8,12] and integrals are ε -extensions of 
surface integrals. 
 
Consider now how we can discretize eq. (15) to obtain ε-interval algebraic equations for 
boundary values. For simplicity we assume that the domain is 2D, the boundary is divided 
into N elements. Let U

N

1j j=
≅⊃ ΓΓM , where jΓ  is the boundary of j-element. ε-interval 

values λu  and λq  are considered as ε -constant/linear/ quadratic over each element. 
 
2. ALGEBRAIC METHODOLOGY OF ε-CALCULATIONS 
 
If we assume that boundary points are numbered between 1 to N we get from eq. (15) the 
system of N ε-interval algebraic equations in the ε -matrix form 
 λλλλλ VQGUH += , (16) 
where λH  and λG  are two NxN ε -matrices and λλλ VQU ,,  are ε -vectors of lenth N, 
∀ λ∈]0,1]. Notice that some N1 ε -fuzzy values of λu  and N2 ε -values of λq  are known on 
the boundaries Γ1 i Γ2 respectively, so we have only ε -unknowns in the system (16). We 
have to rearrange system (16) to obtain the standard system of ε-interval algebraic equations 
 10, ≤≤∀= λλλλ FXA , (17) 
where λX  is ε-interval vector of unknown λ-cuts λu  and λq .Eqs. (17) are very similar to the 
classic linear equations over the field of real numbers and we can easy obtain unique 
ε-interval solution ( )λλεΣ FA , . That family of ε-interval solutions is called ε-ALGEBRAIC 
INTERVAL SOLUTION - ε-AIS.  
 
REMARK. ε-interval solution is an abstract object for any λ∈]0,1]. To obtain real interval 
solution we have to substitute for ε any real “small” number and make necessary interval 
operations. We get approximate solution which for every λ∈]0,1] is the I-order approximation 
of interval equation, in the same notion ( )λλεΣ FA , . We can prove that accuracy of that 
approximation is of order o(||ε ||2-δ), where δ>0 is some arbitrary small constant. 
 
We say that the family ( )λλεΣ FA ,  of ε-AIS, dla Γ∈M, generates ε-CONDITIONAL 
ALGEBRAIC FUZZY SOLUTION (ε-CAFS)  ( ) M∈∈ΓΓε xxr ,~ ,with the membership 
function 
 ( )( ) ( ) N

]1,0[

R,,,:~; ∈∈∈⋅=
∈

yxFAxry MΓΣλΓµ
λ

λλεε U . (18) 
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Thus ε-FUZZY ALGEBRAIC SOLUTION (ε-FAS) Γε
~~,)~(~ ∈xxr  is defined as follows 

 ( )( ) ( ) ( )( )( ) ΓΓµΓΓµµ εΓε
~~,R,~;~;sup:~~; N ∈∈∧= ∈ xyxryxry M , (19) 

 
 

3. EXAMPLE 
 
In the simple example, details about the contour see Fig. 1. in Skrzypczyk J., Multi-Scale 
Perturbation Methods In Mechanics, (this journal). Uncertainties are introduced into boundary 
conditions and into boundary, see Figs.2 and 3. Uncertainties are of the fuzzy - triangle type 
(290,300,310) and of the fuzzy-trapezoidal type, see Fig.3 for nodes 13-16. Fuzzy results for 
temperature of nodes 1 and 12 are illustrated by α-cuts of their membershipfunctions at Fig.1. 
The deformation of the triange shape of membership function to the trapezoidal one is forced 
by the fuzzy character of the boundary, see Fig. 4. 
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Fig. 1. α-cuts of temperature in 1 and 12 

nodes 
Fig. 2. Uncertainty of the boundary 
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Fig. 3. Membership function of fuzzy 
temperature in 13 - 16 nodes 

Fig. 4. Membership function of fuzzy 
temperature in 4 and 9 nodes 

 
 
4. CONCLUSIONS 
 
With the new ε -Fuzzy Boundary Element Method we get a set of very simple and useful 
mathematical tools which can be easy used in analytical and computational parts of analysis 
of complex technical problems with uncertain parameters.  
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Advantages of the new algebraic system are as follows: 
• we can omit all complex analytical calculations, which are typical for expanding 

approximated values of solutions in infinite series. It works for expanding unknown values 
- solutions as well as for perturbed coefficients of the problem; 

• we get a great simplification of all arithmetic calculations which appear in analytical 
formulation and analysis of the problem; 

• most of known numerical algorithms can be simply adapted for the new algebraic 
system without any serious difficulties. 
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