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Abstract. The aim of the paper is to present a modern algebraic system with 
specifically defined addition and multiplication operations. The new numbers 
called multi-scale perturbation numbers are introduced. It’s proved that the system 
of real numbers (R,+,•) is imbedded into the new algebraic system (Rεn,+ε,•ε). 
Some additional properties as subtraction, inversion and division can be analyzed 
too. Elementary formulations of function extensions are introduced. Some basic 
properties of perturbation matrices, inverse matrices and solution properties of 
linear equations and eigenvalue problems in the new algebraic system can be 
defined. Classical multi-scale perturbation problems can be solved in the new 
algebraic system as easy as usual problems of applied mathematics, theoretical 
physics and techniques. Additional analytical transformations are not required.  

 
 
INTRODUCTION 
 

Theory of perturbations is a part of science of the great theoretical and practical meaning. 
It begins in 1926/27 with papers of Rayleigh [10] and Schrödinger [12]. The first papers treat 
about eigenvalues and applications in physics, namely in acoustic. First papers were from 
mathematical point of view formal and incomplete. The first one who consider the 
convergence of expansion series of perturbation theory was Rellich [11]. Papers of Rellich are 
fundamental for perturbation theory. Now perturbation theory has a bibliography which has 
thousands positions and is still in use, cf. monograph by Kato [6].  

Finding the exact solution values for many computational problems is not an easy task. 
Sometimes it is easier to calculate the solutions of a nearby problem and then use the 
knowledge from perturbation theory to locate approximately solutions of the original 
problem. In some problems, the underlying physical system may be subjected to changes 
(perturbations) and we may want to determine the consequent change in solutions. On the 
other occasions, we may know an problem only approximately due to errors of observation, or 
we may have to feed an approximation of it to a computing device. In each case we would 
like to know how much this error or approximation would affect the solutions of the problem 
cf. [1],[5],[7]. 

Classical perturbation methods can be formulated in the following sense. Consider how 
perturbations (small) of nominal parameter values can change solutions of the considered 
problem. Assume that a solution of the considered problem, say x0 corresponds to the matrix 
of coefficients A. The basic problem of perturbation theory is to answer: how much the 
solution changes if matrix A takes new value A+εB, where ε is called a one-scale small 
parameter and B is the perturbation. It is often convenient to seek the solution in the form of a 
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series of homogeneous terms in the coefficients of the perturbation matrix B, that is, solutions 
of the form 

 x:=x0+εx1+ε2x2+ε3x3+……….. (1) 
are sought. If we restrict our considerations to first two terms in (1) we have one-scale 
perturbation method of the 1st-order. In perturbation method applications a serious difficulty 
is a necessity of a large amount of analytical calculations. As a result we obtain a set of 
classical problems which are usually simpler to solve numerically, cf. [1],[3],[6],[7],[10-16]. 
 
1. ALGEBRAIC SYSTEM OF MULTI-SCALE PERTURBATION NUMBERS  
 

DEFINITION 1. Define a new number called further n-scale perturbations numbers (n-
PN’s) as ordered (n+1)-couples of real numbers (x0,x1,x2,...,xn)∈Rn+1. The set of perturbation 
numbers is denoted by Rεn. The first element x0 of the (n+1)-couple is called a main value and 
the following are the perturbation values or simply the perturbations.[13]-[16] 

 
Let ζ,ζ1,ζ2,ζ3∈Rεn denote any perturbation numbers and ζ:=(x0,x1,x2,...,xn), ζ1:= 
(y0,y1,y2,...,yn), ζ2:= (z0,z1,z2,...,zn), ζ3:= (v0,v1,v2,...,vn), xi,yi,zi,vi∈R, i=0,1,2,....,n. It is called 
that two perturbation numbers are equal: ζ1≡ζ2 if and only if yi = zi for any i=0,1,2,...,n. 

In the set Rεn we introduce the addition (+ε) and multiplication (•ε) as follows: 
 ζ1 +ε ζ2= (y0,y1,y2,...,yn) +ε (z0,z1,z2,...,zn) := (y0+z0,y1+z1,y2+z2,...,yn+zn) (2) 

 ζ1 •ε ζ2 = (y0,y1,y2,...,yn) •ε(z0,z1,z2,...,zn) := (y0z0,y0z1+y1z0,y0z2+y2z0,..., y0zn+ynz0) (3) 
 

THEOREM 1. The set Rεn with addition (+ε) and multiplication (•ε) defined by Eqs. (2) 
and (3) with selected neutral addition element 0εn:=(0,0,…,0) and neutral multiplication 
element 1εn:=(1,0,0,…,0) is a field. Defined in such a way field is called a field of n-PN’s. � 

The field Rεn as defined in Def. 1 doesn’t contain the field of real numbers R. We can show 
that real numbers can be considered as some elements of field Rεn with all classical addition 
and multiplication formulas and neutral elements of addition and multiplication, cf. 
[2],[3],[9]. 

THEOREM 2. The map jn:R→Rεn, jn(x):=(x,0,0,…,0) for each x∈R, is called the injection 
of the algebraic system of real numbers R into the algebraic system Rεn. It’s the single-valued 
mapping and preserves corresponding algebraic operations and neutral elements of addition 
and multiplications. 
Further details see [13]-[16]. 

 
2. SIMPLIFIED NOTION FOR PERTURBATION CALCULUS 
 

Notice, that since jn(.) is the injection then each perturbation number of the form 
(a,0,0,0,...,0)∈Rεn, a∈R, we can identify with a real number a. We use this notice to simplify a 
notion for perturbation operations. Denote by ε1 the n-PN (0,1,0,0,...,0), by ε2 n-PN 
(0,0,1,0,0,...,0), ..., and by εn n-PN (0,0,0,...,0,1) respectively. Then for every n-PN 
ζ=(x0,x1,x2,...,xn) ∈Rεn we can write 
 (x0,x1,x2,...,xn) = (x0,0,0,...,0) +ε (0,x1,0,0,...,0) +ε (0,0,x2,0,0,...,0) +ε .... +ε (0,0,...,0,xn) = 
 = (x0,0,0,...,0) +ε (x1,0,0,...,0) •ε (0,1,0,0,...,0) + ε (x2,0,0,...,0) •ε (0,0,1,0,0,...,0) + ε ....  
 + ε (xn,0,0,...,0,) •ε (0,0,...,0,1) =  
 = jn(x0) +ε ε1•ε jn(x1) +ε ε2•ε jn(x2) +ε .... +ε εn•ε jn(xn)= x0 +ε ε1•ε x1 +ε ε2•ε x2 +ε ... +ε εn•ε xn 
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if we assume for simplicity that any n-PN (xk,0,0,...,0) is identical with the real number xk, for 
every xk∈R, k=0,1,2,...,n. 
From multiplicity formulas it follows that  

ε1
2 =ε1 •ε ε1 = (0,1,0,0...,0) •ε (0,1,0,…,0) = (0,0,0,…,0), 

ε2
2 =ε2 •ε ε2 = (0,0,1,...,0) •ε (0,0,1,0...,0) = (0,0,0,...,0), 

................................................................ 
εn

2 =εn •ε εn = (0,0,0,...,0,1) •ε (0,0,0,...,0,1) = (0,0,0,...,0), 
εi •εεj

 = = (0,0,0,...,0), 
in simplified notion εi •εεj=0 for any i,j=1,2,3,...,n and in consequence  

(x0,x1,x2,...,xn) = x0 + ε1x1 + ε2x2 + ... + εnxn’ 
 
3. ORDER RELATION IN THE SET OF PERTURBATION NUMBERS  
 
In the set of n-PN’s, similarly as in the sets: R2, set of complex numbers C1, Rn, n>1 etc it’s 
not possible to introduce the complete order relation. Followig that fact we define the relation 
of partial order in the following matter. 
 
3.1 Partial ordering in the strong form  
 

DEFINITION 2. For ζ1,ζ2 ∈ Rεn, we say that ζ1 ≥ε ζ2 if 

y0 ≥ z0   and   y1 ≥ z1, y2 ≥ z2,......, yn ≥ zn. 

DEFINITION 3. For ζ1,ζ2 ∈ Rεn, we say that ζ1 >ε ζ2 if  
y0 > z0   and   y1 > z1, y2 > z2,......., yn > zn. 

DEFINITION 4. For ζ1,ζ2 ∈ Rεn, we say that ζ1 =ε ζ2 if ζ1 ≥ε ζ2 and ζ2 ≥ε ζ1. 
 

In an analogous way we define relations “≤ε” and “<ε”. 

DEFINITION 5. A perturbation number ζ∈Rεn, is said to be positive (nonnegative) if ζ>ε0ε2 
(ζ ≥ε 0ε2). 

DEFINITION 6. A perturbation number ζ∈Rεn, is said to be negative (nonpositive) if ζ <ε0ε2 
(ζ ≤ε 0ε). 

REMARK 1. In further considerations we notice that, że ζ ≠ε 0εn (strongly), if  

x0 ≠ 0   and   x1 ≠ 0, x2 ≠ 0,….., xn ≠ 0. 

REMARK 2. In further considerations we change the symbol „=ε” with the simplified „=”. 
 
3.2 Partial ordering in the weak form  
 
In further considerations we often use the partial order relation in the simpler (weaker) form. 
DEFINITION 4.7. For ζ1,ζ2∈Rεn, we say that ζ1 ε≥& ζ2 if y0 ≥ z0 and y1,y2,…,yn, z1,z2,….,zn are 
arbitrary. 

DEFINITION 4.8. For ζ1,ζ2∈Rεn, we say that ζ1 ε>& ζ2 if y0 > z0 and y1,y2,…,yn, z1,z2,….,zn are 
arbitrary. 



430 J. SKRZYPCZYK  

 

DEFINITION 4.9. For ζ1,ζ2∈Rεn, we say that ζ1 ε=& ζ2 if ζ1 ε≥& ζ2 and ζ2 ε≥& ζ1 (or equivalently 
y0  = z0. 

In the analogous way we define the relation “ ε≤& ” and “ ε<& ”. 

DEFINITION 4.10. A perturbation number ζ∈Rεn, is said to be weakly positive (nonnegative) 
if ζ ε>& 0εn (ζ ε≥& 0εn) (notice that perturbation parts x1,x2,...,xn can be arbitrary). 

DEFINITION 4.11. A perturbation number ζ∈Rεn, is said to be weakly negative (nonpositive) 
if ζ ε<& 0εn (ζ ε≤& 0εn) (notice that perturbation parts x1,x2,...,xn can be arbitrary). 

Notice that relations between perturbation numbers of the „strong” type as „≤ε, ≥ε, =ε, >ε, <ε” 
implies the “weak” relations: “ ε≤& , ε≥& , ε=& , ε>& , ε<& ”, respectively. 
REMARK 3. In further considerations in place of the symbol „=ε” the simplified notion is 
used „=”, since it is not going to misunderstanding. 
REMARK .4. In further considerations we say that ζ ε≠& 0ε (weakly), if  

x0 ≠ 0       and        x1,x2,…,xn are arbitrary. 
 

4. EXTENDED εn-FUNCTIONS  
 
n-PN value functions are defined for n-PN arguments as extensions of classical elementary 
and trigonometric functions. Properties of εn-functions are analyzed in details, cf. [13]-[16]. 

Let D⊂Rεn be an arbitrary subset. Suppose that we have a rule fεn which assigns to each 
element ζ∈D exactly one element w of Rεn. Then we say that fεn is an extended function 
defined on D with values in Rεn. We will denote that function as fεn :D→Rεn or w = fεn(ζ) or 
simplified w = εn-f(ζ). 

To illustrate how we can construct generalizations of usual real functions we use a simple 
function. We discuss now an extension of a simple exponential function exp(x), x∈R. With 
polynomials and rational functions it is one of the simplest elementary functions. How can we 
understand the notion exp(ζ), where ζ=(x0,x1,x2,...,xn)∈Rεn?  

Notice that we can expand exp(x) , x∈R into a classical series  
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Following equations (4) and (5) we write 
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We can prove the generalized convergence of the Seq. (6) for every ζ∈Rεn. We have 
additionally that  

jn(exp(x)) =(exp(x),0,0,…,0)=expεn(x), 

which proves that the new function expε(.) is the extension of the real function exp(x). 
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5. EXAMPLE 
 
In the simple example, see Fig. 1. multiscale perturbations (two-scale) are introduced into 
boundary conditions and into boundary, see Fig.3. Perturbations of the boundary are of the 
first kind (ε1), details about the contour see Fig.1. The boundary temperature is perturbed in 
nodes 13-16 (ε2). The results the temperature and the flux on the boundary with corresponding 
perturbations are calculated for all nodes, see Figs. 2 and 3. 
 

 
Fig. 1. Scheme of the boundary, boundary elements and boundary conditions 
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Fig.2. Temperature and its perturbations, 
perturbation on the boundary 
Maximal error: 1.861275+ε1 3.352861 +  
+ε2 1.187952 
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Fig.3. Derivative of temperature (flux) 
Maximal error: 2.785511+ε1 0.6593236 + 
+ε21.759512 
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6. CONCLUSIONS 
 
Calculations with use of new multi-scale perturbation numbers lead to applications which are 
mathematically equivalent with I-order approximations in classical perturbation methods. 
Advantages of the new algebraic system are as follows: 
• we can omit all complex analytical calculations which are typical for expanding 

approximated values of solutions in infinite series. It works for expanding unknown values 
- solutions as well as for perturbed coefficients of the problem; 

• we get a great simplification of all arithmetic calculations which appear in analytical 
formulation and analysis of the problem; 

• most of known numerical algorithms can be simply adapted for the new algebraic 
system without any serious difficulties. 

With the new algebraic system we get a set of very simple and useful mathematical tools 
which can be easy used in analytical and computational parts of analysis of complex multi-
scale perturbation problems.  
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