
1. INTRODUCTION
In the era of computational analysis of reinforced con-
crete structures there is a great number of sophisticat-
ed material models for concrete. On the other hand, in

design practise static calculations are predominantly
carried out with the use of the simplest linear-elastic
model and only some major drawbacks are corrected
at the stage of sizing. Gap between those approaches
is huge.
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A b s t r a c t
Definitions of the failure surface, as well as evolution of yield surface are crucial elements in nonlinear FEM analysis of
reinforced concrete members and structures carried out with use of elasto-plastic material model. Procedure of formation
of these surfaces in MWW3 material model used in author’s computational system Mafem3D has been described.
In MWW3 model, each meridian section of yield section is composed of straight-linear segment in the middle part and two
caps: parabolic from the side of mean tensile stresses and circular from the side of compressive stresses.
Formation of the linear segments of tensile and compressive meridians is a result of approximation of laboratory experi-
ments performed in the complex stress states. Caps definition is based on the meridians course adjustment to the basic
strength properties and assuring basic requirements of the surfaces shape such as: continuity, smoothness and convexity.
Procedure used for equations definition, necessary for their adjustment with laboratory tests results and possibility of their
implementation in numerical algorithm used in computational system has been described.

S t r e s z c z e n i e
W nieliniowej analizie MES elementów i konstrukcji żelbetowych prowadzonej z wykorzystaniem sprężysto-plastycznego
modelu materiałowego betonu bardzo istotną rolę pełni sposób zdefiniowania powierzchni granicznej oraz ewolucja
powierzchni plastyczności. W artykule przedstawiono sposób kształtowania tych powierzchni w modelu MWW3 stosowanym
w autorskim systemie komputerowym Mafem3D.
W opisywanym modelu, dowolny przekrój południkowy przez powierzchnię plastyczności składa się z odcinka prostego
w środkowej części oraz dwóch nasadek: parabolicznej po stronie średnich naprężeń rozciągających oraz kołowej po stron-
ie średnich naprężeń ściskających.
Ukształtowanie prostoliniowych odcinków południków ściskania i rozciągania wynika z przybliżenia wyników badań
doświadczalnych prowadzonych w złożonych stanach naprężenia. Zdefiniowanie nasadek bazuje na dostosowaniu przebiegu
południków do wartości podstawowych cech wytrzymałościowych betonu oraz zapewnienia podstawowych wymagań stawia-
nych powierzchniom, takich jak ciągłość, gładkość oraz wypukłość. W artykule opisano sposób definiowania równań zapew-
niających powierzchniom zgodność z wynikami podstawowych badań wytrzymałościowych oraz możliwość ich dostosowania
do algorytmu numerycznego wykorzystywanego w programie komputerowym.

K e y w o r d s : Concrete; Elasto-plastic material model; Failure and yield surfaces; Nonlinear FEM analysis; Complex stress
state.
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There is a long list of technical problems, where
excessive simplicity of linear-elastic material model
for concrete can not be accepted, while too sophisti-
cated models are not possible to apply, because of
difficulty in the model parameters identification. Use
of developed models is still difficult in all cases where
relatively large problems must be solved. There is still
free space for simple elasto-plastic models for con-
crete. Incorporation of such models into computa-
tional systems leads to refinement of results. Dozens
of real structural problems, including 3D tasks can be
much more realistically analysed in terms of elasto-
plasticity. Relatively simple definition of material
parameters on the basis of the laboratory tests is a
strong advantage of this approach.
For more than last 15 years, authors have worked on
nonlinear FEM computer system called Mafem [1]. It
is focused on problems concerning calculations of
concrete [2,3,4] and masonry [5] structures, including
problems of interaction between structure and sub-
soil [6]. At the beginning it was used for 2D problems,
while later it was extended on 3D tasks. Generally,
program is designed for calculations of macro scale
problems with consideration of 3D stress and strain
states. This paper is dedicated to failure and yield
surfaces creation and their mathematical description,
that are implemented in this software. Compliance
with basic laboratory experiments and solidity of
equations to fulfil requirements of numerical analysis
is necessary. The way in which it is achieved is
described below.

2. GENERAL DESCRIPTION OF MATER-
IAL MODEL FOR CONCRETE
Material model for concrete currently used in
Mafem3D computational system called MWW3 is a
modification of Willam and Warnke concept [7]. This
model could be classified to the group of continuum
models. It is a modification of previous solutions,
after removing some drawbacks and in fact widening
the domain of its use and improving the accuracy of
calculations. Described model belongs to the group
of elasto-plastic material models with isotropic soft-
ening. The model is designed for 3D problems, thus
all formulas are defined in 3D stress and strain states.
To achieve simplicity of concrete description some
assumptions have been made. Until cracking or
crashing occurs, concrete is treated as homogeneous
and isotropic material. These properties are valid till
failure surface is reached by the stress path. In
MWW3 model smeared crack representation is

assumed. In reinforced concrete members steel and
concrete are modelled independently. Reinforcing
steel bars are represented by the linear elements joint
to the nodes of FEM structure. Both simplifications
are acceptable in large scale problems for which this
model is dedicated.
In calculations carried out with the use of Mafem3D
loads are treated as immediate. Behaviour of con-
crete does not include simulation of time-dependent
phenomena such as creeping or shrinkage.
Definition of material model consists of the following
components:
• failure criterion specified in the term of the fail-

ure/boundary surface defined in the stress space,
• hardening and softening rules describing evolution

of the yield surface,
• stress – strain relations in the elastic region,
• flow rule determining deformability control of

material in the post-elastic phase of work.
In this paper, first two components have been widely
described.
Process of model creation requires definition of func-
tions used later in the program code. Numbers speci-
fied as a data set must finally define realistic behaviour
of concrete. In practice, it is quite important to have
possibility of parameters identifications. It is usually
expected to specify shape of the failure surface, soft-
ening rule, behaviour in elastic and post-elastic phase
with the use of basic material parameters.
In computational systems, description of material
behaviour should be sufficiently precise and relative-
ly simple. Simplicity of derived relations helps to
decrease numerical effort needed at the stage of cal-
culations and keep better control on it. It is needed to
incorporate model, which is general and possibly
strict for arbitrary loading paths. Possibility of cre-
ation of complete mathematical description on the
basis of laboratory tests does not exist, so such a
description is always combined as a mixture of exper-
imental data and theoretical prediction.
Relations for the concrete are specified in the stress
space defined by mean normal stress �m octahedral
shear �oct and Lode’s angle �. Uniaxial compressive
strength of concrete fc is treated as a basic parameter.
Many formulas used for model description are writ-
ten with the use of normalised (sometimes called
equivalent) and unitless variables sm and t0, repre-
senting stresses �m and �oct with respect to uniaxial
compressive strength fc:
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Variable t0 describing location of tensile meridian is
denoted with superscript “t”, while compressive
meridian is denoted with a superscript “c”. Variables
expressing basic strength properties of concrete, such
as uniaxial tensile strength ft or biaxial compressive
strength fcc are also substituted by unitless parame-
ters mt and mcc. These parameters, describing ratio of
appropriate strength to the uniaxial compressive
strength fc are defined as follows:

The same notation is used in graphs presented in the
paper, showing failure and yield surfaces usually
drawn in normalised coordinates sm and to.

3. FAILURE SURFACE
Failure surface expressing failure criterion is one of
the crucial elements in material modelling.
Alternatively, failure surface is also named as a
boundary surface. Location of this surface defines
generalised strength of concrete in complex stress
state and splits stress space into two regions of possi-
ble and unreal states. It also determines different
stages of the material’s behaviour before and after
destruction. For concrete it is definitely equivalent to
a loss of isotropy. Behaviour of concrete is compli-
cated, thus the failure criterion cannot be defined just
on the basis of a simple theoretical assumption. A
realistic approach must take into account a wide
range of laboratory tests, including two and three
dimensional states of stress. The reliability of tests
carried out by Balmer [8], Kupfer [9], Richart et al.
[10], Mills & Zimmerman [11] are widely accepted.
These experiments results supplemented with the
results of uniaxial compression and tension tests cre-
ate the base for determination of the failure criterion
for concrete.
There are many concepts of failure surface forma-
tion. In general, its shape is known, but there is long
list of various approximations. They are always based
on the tests made in laboratory conditions. View of
typical failure surface is presented in figure 1.

Definition of boundary surface shape approximated
by Willam and Warnke [7] with the use of second
order polynomial (3) is widely accepted.

General concept of Willam and Warnke boundary
surface was adopted in MWW3 model. In 3 parame-
ter Willam-Warnke model, tensile meridian is directly
coming through points representing uniaxial tensile
strength and biaxial compressive strength. It crosses
mean stress axis at the point representing triaxial ten-
sile strength, expressed in normalised coordinates by
(0,mttt) value. Compressive meridian is coming
through the same point on the mean stress axis and
through the point representing uniaxial compressive
strength of concrete. Such a definition assures good
approximation of test results for the mean compres-
sive stresses region not exceeding �m = -1.5fc. For
higher compressive stresses the convergence is much
worse.
In MWW3 model for concrete shape of Willam-
Warnke boundary surface was slightly refined to
obtain better approximation to tests results up to the
stress level equal to �m = -5fc. Both meridians (ten-
sile and compressive) are composed of three parts:
straight-linear in the middle and two caps closing sur-
face from both compressive and tensile sides. Linear
segments of meridians are expressed in the general
form as:
• tensile meridian:
• compressive meridian:
Despite the Willam-Warnke proposition, in MWW3
model straight-linear part of tensile meridian is con-
structed in such a shape to come through the point
representing biaxial compressive strength of con-
crete. Slope of this line (c1t) is determined to achieve
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Figure 1.
3D view of the shape of the failure surface for concrete
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the best approximation of the laboratory tests carried
out in complex stress states (where Lode’s angle�=0�C corresponds to the tensile meridian).
Equation of the straight linear segment of tensile
meridian determined with the use of least square
method is as follows:

Analysis of tests results leads to the conclusion that
straight linear approximation of results in the region
close to the point representing uniaxial tensile
strength is not strict enough. Line in the form (6)
intersects the mean stress axis at point sm = 0.393.
Nonlinear approximation of meridians in zone of
mean tensile stresses is described later on.
Definition of the linear part of compressive meridian
is determined with the use of two boundary condi-
tions. First, it was assumed that compressive meridi-
an should cross mean stress axis at the same point at
which the tensile meridian does. In the same way as
for tensile meridian, slope of the compressive merid-
ian (c1c) is determined with the use of least square
method. In fact, coefficients of both lines have been
determined in the same step after normalisation of
laboratory results for tensile and compressive merid-
ians. Equation of straight linear part of the compres-
sive meridian in the slope intercept form is as follows:

Traces of both meridians related to the experimental
results are shown in figure 2.

The tensile and compressive meridians of the MWW3
failure surface as well as the triaxial and uniaxial test
results [8,9,12,13] together with those carried on at

the Silesian University of Technology are presented
in figure 2. The straight-linear meridians given by (6)
and (7) correspond very well with triaxial compres-
sion test results for -5.0 < sm � -2mcc /3. Outside this
region the closing cap (tension cut-off) must be
determined (fig. 3). Second order polynomial is used
for description of the cap from the side of tension. To
obtain the smooth failure surface, it is required that
both parabolic meridians must be tangentially joint to
the corresponding meridians of the main, conical part
of the surface.
Equations of the tensile and compressive meridians
of the closing cap from the tension side of the failure
surface are assumed in the following general form:

Shape of these parabolic parts of meridians is shown
in figure 3.

To define parabolic parts of meridians, six coeffi-
cients in quadratic equations (8) as well as fictitious
triaxial tensile strength mttt and mean stress coordi-
nate of the contact point st must be determined. They
are obtained on the basis of the stress coordinates of
total number of 6 points lying on the curved parts of
the meridians. Points denoted with symbols T1..T3
are situated on the tensile meridian, while these
denoted with symbols C1..C3 are situated on the
compressive meridians. System of the following eight
equations (9) – (16) is used for finding all eight con-
stants mentioned above:
points on tensile meridian:
point T1: apex of the boundary surface – triaxial ten-
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Figure 2.
Traces of linear approximation of meridians related to exper-
imental results

Figure 3.
Tensile and compressive meridians of the cap from the side
of tension
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sile strength of concrete (sm = mttt; to = 0):

point T2: uniaxial tensile strength of concrete
(sm = mt /3; to = mt ):

point T3: contiguity point between linear and curved
parts of tensile meridian (sm = st; to = c1tst+c0t):

point T3: smoothness of the tensile meridian at the
contiguity point (sm = st; to = c1tst+c0t):

points on the compressive meridian:
point C1: apex of the boundary surface – triaxial ten-
sile strength of concrete (sm = mttt; to = 0):

point C2: uniaxial compressive strength of concrete
(sm = -1/3; to = ):

point C3: contiguity point between linear and curved
parts of compressive meridian (sm = st; to = c1tst+c0t):

point C3: smoothness of the compressive meridian at
the contiguity point (sm = st; to=c1tst+c0t):

Solving system of 8 equations (9)–(16) determination
of 6 unknown coefficients in parabolas (8), as well as
the coordinates of the theoretical triaxial tensile
strength mttt and contact point st of curvilinear cap
meridians with straight-line meridians of the main
part of the surface is enabled. All these values are
determined as a function of uniaxial tensile strength
(precisely as a function of mt multiplier: mt = ft / fc).
The calculations carried out for 0.05 � mt � 0.15 gave
the following formulas:

In such defined caps of failure surface, uniaxial ten-
sile strength of concrete plays very important role,
because it influences all 8 coefficients. In Mafem3D
system, one of the input parameter is a uniaxial ten-
sile strength of concrete ft. In practical cases, where
tensile strength of concrete can not be measured, it is
suggested to assume its value on the formulas refer-
ring to the uniaxial tensile strength obtained as a
function of uniaxial compressive strength. The most
popular relations used for that purpose are based on
the Feret equation:

Coefficient � modelling relation (18) is not unam-
biguous. Efficiency of this formula is not perfect, but
there are many reasons having influence on it.
Among them, there is big sensitivity of tests for ten-
sile strength to the external conditions (i.e. all inac-
curacies occurring) as well as sample shape and size.
Because of the high dispersion of results, strict corre-
lation between both strengths is not possible to estab-
lished. It is accepted that coefficient � should be
assumed as a value within the range from 0.3 to 0.5
[14] (although other resources indicate even wider
range of � coefficient: 0.4 to 0.8 [15]). In design based
on the Eurocode standards [16], conservative value of
the coefficient � =0.3 is assumed. In design, there is
also a hidden influence of safety factors included,
because it is recommended to estimate mean value of
tensile strength with regard to characteristic value of
compressive strength. In the literature, information
about the influence of the aggregate type on this cor-
relation could be also found. According to the test
results [17] it is recommended to assume values of
coefficient � within the range 0.5�0.6.
Referring to the scatter of tensile strength it is sug-
gested to assume values a little bit smaller (more
often if some safety margin should be involved in cal-
culation). Example of the influence of the uniaxial
compressive strength fc and � coefficient on the para-
meter mt and coefficients of parabolas equations
describing cap of the failure surface is illustrated by
the numbers collected in the table 1.
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Traces of two pairs of boundary surfaces meridians
caps obtained for the concrete differs with uniaxial
tensile strengths are shown in figure 4. Both types of
concrete for which meridians are drawn in figure 4
have the same compressive strength fc = 30 MPa
(both compressive meridians intersect for the
sm= -1/3 in point C2), while � coefficient is equal 0.3
for the surfaces drawn with a red colour and 0.5 for
those drawn with a blue one. To achieve necessary
smoothness of the surfaces, tangential points C3 and

T3 (the same for both meridians) are moved toward
higher compressive stresses. In case of higher tensile
strength, tangential points are situated closer to the
vertical line representing equivalent mean stress
equal to 2mcc/3.

Coefficients in equations of all other meridians of the
failure surface (for all arbitrary Lode’s angles within
the range 0°C <�< 60°C) can be calculated accord-
ing to the assumed shape of the deviatoric section of
the surface. In MWW3 model, Willam-Warnke’s ellip-
tical approximation (fig. 5) is adopted. An unques-
tionable advantage of this three elliptical section is its
smoothness and convexity, though it probably gives a
little bit overestimated value for the shear strength of
concrete. In mathematical description used in the
computer application, relative (non-dimension value)
radius �(
) is used. It expresses radius of the surface
(distance measured to its meridians at any Lode’s
angle) with regard to the radius of the compressive
meridian at the same deviatoric section �(
) = r
 /rc

(fig. 5). The following relation is used for that pur-
pose:

The coefficient � in (19) is equal to the lowest value
of �(
), equal to the ratio of tensile to compressive
radii in the deviatoric section of the failure surface.
In the MWW3 model, which is similar to the Willam-
Warnke 3 parameter model, this � coefficient is a con-
stant (hydrostatic pressure independent value) and
can be easily determined as a ratio of corresponding
coefficients in formulas describing linear segments of
tensile and compressive meridians (6) and (7):

Well known elliptical approximation of deviatoric
section proposed by Willam and Warnke (chosen in
Mafem3D) is shown in figure 5.

4. YIELD SURFACE
For pressure sensitive materials associated flow rule
is often unrealistic and in developed models it is usu-
ally replaced by the non-associated flow rule.
Nevertheless, it must be considered that non associ-
ated plasticity results in loss of symmetry of the stiff-
ness matrix. It also requires definition of plastic
potential function. Because of the lack of reliable
experimental data, defining the real behaviour at this
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Figure 4.
Shape of caps of tensile and compressive meridians on the
tensile mean stress side

Table 1.
Coefficients used in formulas describing caps of tensile and
compressive meridians with regard to compressive strength
and ββ coefficients

input data

fc [MPa] 30 30 50 50

�β 0.3 0.5 0.3 0.5

ft [MPa] 2.90 4.83 4.07 6.79

mt 0.097 0.161 0.081 0.136

additional parameters

mttt 0.088 0.169 0.071 0.135

st -0.697 -0.912 -0.664 -0.813

cap of tensile meridian

a2t -0.234 -0.086 -0.278 -0.137

a1t -0.796 -0.631 -0.841 -0.691

a0t 0.071 0.110 0.061 0.096

cap of compressive meridian

a2c -0.355 -0.131 -0.421 -0.207

a1c -1.208 -0.958 -1.275 -1.048

a0c 0.108 0.166 0.093 0.145

(19)

(20)
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stage of loading, in MWW3 model associated flow
rule have been assumed. Although, such a descrip-
tion is not fully adequate, but in practical computa-
tional application it considerably simplifies mathe-
matical description and calculation process. 
In MWW3 model linearly parabolic approximation of
the stress-strain relation is assumed. In the initial
stage of the uniaxial loading (for � � elim fc) we deal
with the linear stress-strain relation and non-linearity
appears for higher stress levels. Non-dimensional
coefficient elim indicates the conventional elasticity
limit. Moreover, it is assumed, that for � > elim fc only
plastic deformation occurs, thus the unloaded branch
of stress-strain curve is parallel to the initial, linear
part of this curve at the loading stage. It is quite con-
venient to assume elim, as a parameter determines not
only elasticity limit but also the initial shape of the
yield surface. In MWW3 model, this initial position of
yield surface is determined on the basis of the failure
surface, treating elim. as a scale factor. Elastic domain
is limited by the initial position of the yield surface.
Elasticity limit is expressed in terms of the uniaxial
strength fc using the following formula:

After reaching yield surface concrete exhibits hard-
ening, until load path achieves failure surface. To
enable irreversible strains on stress paths running
below the critical state line to be revealed, the yield
surface must be closed with a cap on the compressive
side (fig. 6). 
Considering the isotropic hardening rule the equa-
tion of the yield surface is derived from the equation
of the failure surface. Its definition, similar to the
failure surface, is split into three regions: straight lin-
ear in the middle closed with caps on both ends.
Shape of a deviatoric section is also retained. 

At the hardening and softening stage, formulas used
for description of yield surface, as a function of
Lode’s angle � are as follows:
in the range of straight linear part of meridian:

in the range of the cap from the tensile side (for sm > st):

In formulas (22) and (23) c1t, c0t, a2t, a1t and a0t stand
for coefficients, which define the tensile meridian
segments of the boundary surface MWW3 (6) and
(17), �
 is given by (19) and � indicates the ratio of
deviatoric section radii (20). 
Evolution of the yield surface due to material hard-
ening or softening are described by non-dimensional
yield functions yv, yi. Yield function yv depends on the
sum of increments of the plastic parts of volumetric
as well as deviatoric strains, while yi function depends
only on the plastic part of the deviatoric strain.
At the stage of hardening, function yi for the complex
stress state is obtained by transposition of the simple
formula defined for the uniaxial stress state. For uni-
axial stress state equation is as follows:

where:pl – plastic strain at the current stress level,�pl – plastic strain at the stress level equal to the uni-
axial material strength.
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Figure 5.
Deviatoric section of the failure surface adopted from the
Willam-Warnke concept [7] Figure 6.

3D view of the developing yield surface inside the boundary
surface
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Obviously, at the stage of hardening yi function argu-
ment varies between 0 �  � �pl and function returns
values, which varies between elim � yi � 1.

Transposition to the complex stress-state requires
replacing linear strains pl and �pl with more general
parameters appropriate in complex stress state. For
deviatoric hardening/softening the plastic part of the
shear octahedral strain is adopted as a parameter: 

In the complex stress state, �pl should represent plas-
tic part of the shear octahedral stress at failure. Its
value is not known for every possible stress-path. For
the complex stress state we define parameter sl

(called stress level), corresponding to the stress-ratio
level. It refers to the ratio of current octahedral shear
stress with regard to the octahedral shear at the fail-
ure (for the same mean normal stress level):

Approximating curved branches of ascending and
descending parts of uniaxial stress-strain diagram
with ellipse and finding some similarities with the
complex stress state following equation could be for-
mulated:

Deriving �2/�pl from the equation (27) following solu-
tion is obtained: 

After substituting (28) to equation (24), following
formula for the deviatoric hardening function yi is
achieved:

For the range of the octahedral stress level elim � sl � 1,
for which function is used, following simplification is
achieved:

yi = sl , (30)

Although the hardening process depends on sl instead
of hardening parameter �2, the last variable must be
also determined because its value corresponding with
the violation of the failure surface becomes further-
more a material parameter, which is necessary during

the deviatoric softening process. The plastic part of
strain vector �2 can be easily calculated as: 

[pl]=[] [De]-1[�], (31)

As soon as the yield function reaches its upper limit
yi = 1, the loading surface (except for the cap on the
compression side) coincides with the failure surface.
A further increase of plastic strain results in softening
and shrinking of the loading surface due to a
decrease of the yield function yi to zero.

Following the same procedure, which was applied for
hardening, deviatoric softening yield function yi could
be determined with the use of exponential approxi-
mation:

Function (29) is valid for �2 � �pl and returns values
starting from yi = 1 (for �2=�pl) to yi = 0. In the com-
plex stress state, for �pl the real value of plastic strain�2, corresponding with the extreme expansion of the
yield surface (yi = 1) is substituted. It can be conve-
nient to express the distance cu -c on the descending
part of the stress-strain diagram in terms of �pl as cu -c =��pl=�pl2,pl. In this case, increment dyi of the
softening function yi is negative, what represents
shrinkage of the yield surface. 
Both, deviatoric hardening and softening influences
the inclination angle of the straight-linear meridians
of the yield surface and indirectly affects the shape of
both caps (fig. 7). 
The hardening or softening occurring in the region of
caps depends on the plastic increment of the volu-
metric strain. 

The cap in tension region is subjected only to soften-
ing due to positive increments of volumetric strains,
which generate negative increments of the non-
dimensional yield function yv. Its value varies in the
range 1 � yv � 0. The character of these changes
should be determined on the basis of laboratory tests
in tension. Considering the brittle character of failure
in tension, the realistic determination of this branch
seems to be impossible. Therefore for descending
branch of �- diagram the same function as in com-
pression was adopted. Additionally it was assumed�pl=0 and the distance between extreme and inflex-
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ion point on the descending branch of stress-strain
diagram expressed in terms of volumetric strain was
indicated as �2,pl. Considering the brittle character of
failure at tension this value should be rather assumed
then determined in laboratory tests. Following these
assumptions volumetric softening function has been
written in the form:

The cap on the compressive side can undergo hard-
ening at compression due to volumetric compression.
We deal with hardening if the stress-path intersects
the yield surface at sm � cn (cn is the coordinate of the
centre of circular cap meridian). This corresponds
with paths running below the critical line state. 
Evolution of the yield surface due to various forms of
hardening and softening is presented in figure 7.

Initially yv = 1. Positive volumetric strain (dilatation)
results in softening in the region of the cap in the ten-

sile zone. The yield coefficient changes in the range 
0 � yv � 1. In the incremental algorithm value of yv is
calculated not only when dilatation occurs, but also in
case of concrete damage both due to deviatoric fail-
ure and crushing under hydrostatic compression.
During unloading as well as in case of a negative
increment of plastic volumetric strain, the yield coef-
ficient remains invariable. On the tensile side the
softening results in moving the yield surface apex
towards zero.
The second yield coefficient yi depends on the incre-
ment of the plastic part of the deviatoric strain, which
is calculated as a square root from the second devia-
toric strain invariant. This invariant is always positive,
though its value can increase or decrease. The new
value of the yield coefficient yi is determined only in
case of increasing deviatoric plastic strain. Initially 
yi = elim. In the hardening phase, when yield surface
expands yi increases from yi = elim to yi = 1.0. If both
yield functions values reach yv = yi = 1.0 the yield sur-
face osculates with the boundary surface. From this
state it can only shrink in the softening process as yi

decreases from one to zero. 
Softening of concrete is exhibited by the shrinkage of
yield surface. Even for high values of mean stresses�m, deviation from hydrostatic pressure leads to the
material softening. It causes that closure of the yield
surface with the cap from the side of the high com-
pressive stresses is also required. In MWW3 model
this cap is constructed with the use of circular merid-
ians. All these meridians are tangentially joint with
appropriate straight-linear segments and have one
common apex. This apex is situated at the intersec-
tion of circles with the mean stress axis at the point,
whose coordinate in normalised system of octahedral
stresses is expressed with the symbol mccc. In MWW3
material model for concrete value of mccc has a status
of dimensionless material parameter. It represents
such a hydrostatic pressure mcccfc, which is a limit of
elastic volumetric strain. Always, when hydrostatic
pressure exceeds this value (is more negative) plastic
volumetric strain appears. 
The construction of the closing circular cap on the
compressive side of the yield surface is presented in
figure 8. For simplification, mccc was assumed at such
a level that the closing cap from the compressive side
would always contact with meridians of the yield sur-
face along the straight-linear segment of its meridi-
ans (not with the parabolic cap from the tensile side).
To fulfil this requirement, for each meridian we
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(34)

Figure 7.
Yield surface: A. deviatoric hardening, B. volumetric harden-
ing, C. deviatoric and volumetric softening YS – yield surface,
LS – loading surface, FS – failure/boundary surface
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should get sc < st. To assure this assumption limit mccc

value could be calculated from equation:

where: 
c1t and c0t are coefficients of equation describing lin-
ear segment of the tensile meridian of failure surface,
Substituting appropriate data for the equation of
MWW3 failure surface mccc < -3.725 is obtained, what
seems to be a realistic value. 

The equation of any circular meridian of the cap of
the yield surface in the general form looks as follows: 

where:
rn and cn are respectively radius and centre of arbi-
trary circle.
Circles closing yield surfaces from the compressive
side must appropriately suit to linear segments. So,
radius and centre must be determined with respect to
Lode’s angle to achieve expectable smoothness.
Obviously, to follow change of the yield surface shape
during hardening or softening, radius rn, centre cn and
abscissa sc of tangential point are also dependent on
yield functions values. Considering constraints, that
for one yield surface all circles creating its cap must
intersect in one point on the mean stress axis, all of
them must be tangentially joint with linear parts of
meridians, and abscissa sc should fulfil condition 
sc < st, following formulas have been obtained for:

radius:

abscissa of the centre point:

abscissa of the tangential point:

In the above mentioned formulas another yield func-
tion yvc is used. This function guides the evolution of
the compressive cap. Values of this function depends
on the plastic volumetric strains. Negative volumetric
strain results in material hardening and in conse-
quence leads to expansion of the cap towards hydro-
static compression, while the dilatation results in
softening and causes shrinking of the cap towards
beginning of the coordinate system. This cap never
shrinks in the softening process as the stress-paths
influencing here never generate the dilatation. 
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Figure 8.
Construction of the closing cap on the compressive side
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5. CONCLUSIONS
There are many examples of reinforced concrete
members, that thanks to introducing elasto-plastic
material model for concrete can be analysed more
precisely. Although, much more sophisticated models
exist, such a simple description of concrete can suit in
macro scale analysis. Description of material behav-
iour is always composition of results obtained in lab-
oratory conditions and theoretical prediction.
Because, material model cannot be fully formed on
experiments, so there is also a space for logical
assumptions. Equations presented above was derived
to approximate results of multi-axial tests and to
achieve relatively simple definition of concrete
response on the external actions. Computational sys-
tem Mafem3D, where this model is applied was used
in several analysis, including: punching shear in RC
slabs [18], analysis of spot footings behaviour [19],
RC perforated walls analysis [20], as well as simula-
tion of behaviour of samples, used for testing con-
crete strength properties [21]. Some of these tests
results are also presented in [12].
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