
Silesian University of Technology
Faculty of Automatic Control, Electronics and Computer Science

Institute of Informatics

Doctor of Philosophy Dissertation

Sequential covering regression rule induction
and optimization of regression

rule-based data models

Adam Skowron

Supervisor: dr hab. Marek Sikora

Gliwice 2015

Contents

Acknowledgements . 3

1. Introduction . 4

1.1. Goals . 6

1.2. Contributions . 6

1.3. Organization of the thesis . 7

2. Rule-based data models . 9

2.1. Foundations of data representation . 10

2.2. Rule representation . 14

2.3. Rule induction algorithms . 17

2.3.1. Related work . 21

2.4. Rule and rule set quality . 25

2.5. Unordered rule set and resolving conflicts methods . 31

2.6. Experimental evaluation of rule-based regression model 33

2.7. Statistical comparison of rule-based regression models 34

3. Sequential rule induction algorithms . 41

3.1. Top-down strategy . 41

3.2. Bottom-up strategy . 43

3.3. Fixed strategy . 48

3.4. Rule quality with a given confidence level . 50

4. Optimization of rules and rule sets . 54

4.1. Algorithms for rule pruning . 55

4.1.1. Hill climbing pruning . 56

4.1.2. Tabu hill climbing pruning . 57

4.2. Algorithms for rule filtering . 59

4.2.1. Inclusion . 61

4.2.2. Coverage . 62

4.2.3. Disjoint . 62

4.2.4. Forward . 63

4.2.5. Backward . 64

4.2.6. ForwBack . 65

1

5. Experiments . 66

5.1. Test domains . 66

5.2. Default settings in algorithms . 66

5.3. Quality measure for regression . 68

5.4. Confidence intervals for examples covered by a rule 78

5.5. Pre-pruning methods evaluation . 82

5.6. Mixing measures for growing and pruning phase . 85

5.7. Conflict resolution problem . 88

5.8. Post-pruning methods evaluation . 91

5.9. Comparison to existing methods . 101

6. Experiments on real-life data . 104

6.1. Methane concentration prediction . 104

6.1.1. Data set . 105

6.1.2. Experiment and experimental settings . 106

6.1.3. Results . 107

6.1.4. Conclusions . 111

6.2. Seismic hazard prediction . 111

6.2.1. Data set . 112

6.2.2. Experiment and experimental settings . 112

6.2.3. Results . 114

6.2.4. Conclusions . 116

7. Conclusions . 117

7.1. Further work . 120

List of Figures . 122

List of Tables . 124

Bibliography . 127

Acknowledgements

I would like to gratefully and sincerely thank to my supervisor for his guidance,

understanding and patience. I would also like to thank Łukasz Wróbel for his participation

in numerous experiments and long talks on various aspects of rule induction. Finally, and most

importantly, I would like to thank my wife Danuta for all the support she has given me through

all of these years.

This work was supported by the European Union from the European Social Fund (grant

agreement number: UDA-POKL.04.01.01-00-106/09).

3

1. Introduction

For last twenty years the data mining methods have been widely used in many fields of

human activity. This activity and the widespread availability of computers along with their

growing disk storage led to the accumulation of vast amounts of diverse data that previously

probably would have been omitted or discarded. The huge amount of data requires to develop

newer and newer methods of data mining to gain valuable and useful knowledge. A relatively

large computing power enables the development of increasingly sophisticated methods and thus

helps in the knowledge extraction.

Data mining is commonly characterized as a multi-stage and mostly iterative process of

extracting knowledge requiring the user to have not only the skill to use specific analytical

methods, but also knowledge about a particular area of application. In the best case, the

execution of the particular task of data mining is carried out by making a team consisting of

an analyst and a domain expert.

To organize the data mining process and lead to its greater transparency, several

methodologies have been developed. They describe the successive stages and relationships

of the process. The most popular are: CRISP-DM, SEMMA, Six-Sigma and Virtuous Cycle

of Data Mining [9]. In all of these methodologies one can find common phases. These are:

defining the aim of the process, preparation and pre-processing of the data, modelling (that is

the main stage of the process), model quality assessment, the interpretation of the results, and

finally, the deployment phase that allows to use the model in a real-life process.

The most popular methods used in the modelling stage are: clustering, neural networks,

support vector machines, tree induction and rule learning [132]. The consequence of the

choice of the analytical method is different knowledge representation. The most understandable

representation of human knowledge is generally considered to present it in the tree or rule

representation. Due to the clarity of the knowledge representation, the tree and rule induction

methods are commonly used to solve the problems where the readability is one of the most

important factors of the model.

It is worth noting that description ability in rule induction is always important, even if rules

are defined for the other purposes. For example, in classification, the clarity and readability

of the model, rather than the classification accuracy, are a particularly accentuated feature

of rule-based models [19, 80, 91]. Taking into account only the classification ability of the

4

rule-based model, one could conclude that other methods (e.g. support vector machines,

ensembles of classifiers) outperform rule-based models.

Good descriptive and classification performance has led various authors to apply rule

induction in the survival analysis [130] or to solve regression problems [13, 30, 34, 51, 95, 120].

The latter is the main topic of this thesis.

For the first time the term regression was proposed in the 19th century by Francis Galton [38]

who dealt with genetics and eugenics. He observed that although tall parents have tall children

the heights tend to regress down towards normal average. Nowadays the regression term is more

general and describes the process of estimating the relationship between the dependent variable

and the independent variables, also called explanatory.

Although previous studies on the problem of regression concerned a number of different

approaches like linear regression, neural networks [113], support vector machines [49],

transformation of the regression problem into the classification problem [120], learning

regression rules from regression trees [13, 95] or based on ensemble techniques [30], as well

as utilizing the most important for this work the so-called separate-and-conquer strategy [34],

there are still open questions and areas to explore. There are some works on the topic of the

separate-and-conquer strategy [57, 59] still some research areas have not been fully covered.

For example, it is confirmed by numerous empirical research works that the heuristic used to

control the induction process has a substantial impact on the final performance of the algorithm

[4, 15, 16, 58, 102, 103, 110]. While some research on the heuristic in the regression rule

induction has been undertaken [56, 58], there still remain promising heuristics well known in

the classification, but not considered in the regression.

Improving the descriptive and predictive abilities can be also achieved through the use of

techniques that can be generally called rule optimization techniques. In rule induction the rule

optimization is performed in one of two stages: during or after the rule induction. However,

in both cases, the rule optimization is most often associated with the so-called pruning. The

main goal of these algorithms is to simplify or elimine unnecessary rules. The algorithms from

the first group are then called pre-pruning algorithms while the algorithms from the second

group- post-pruning algorithms. Moreover, the second group of optimization algorithms is

independent of the induction algorithm. However, the research in the field of rule optimization

algorithms concerns rather classification systems than their regression counterparts. In addition,

the promising direction of research could be to investigate the use of different heuristics for the

process of induction and the related pre-pruning algorithm.

5

1.1. Goals

The main goal of this work is to investigate and evaluate sequential covering rule induction

and rule optimization algorithms for solving regression problems. The motivation behind this

research is the existence of only few works on this topic [34, 57, 58, 59], which has many still

untouched or insufficiently investigated fields.

Current studies in the field of regression rule induction mainly concern only the sequential

covering rule induction algorithm running in the top-down strategy. The bottom-up strategy that

works in the opposite direction, which in classification is presented as dedicated to imbalanced

data [86], has not been examined yet in regression. It inclined us to develop the sequential

covering rule induction algorithm with the use of the bottom-up strategy for regression. In

addition we decided to investigate both algorithms and to introduce a modification of a fixed

target value contributing to create quasi-covering algorithms. In addition, the above mentioned

works checked only few from over 50 different quality measures [15, 36, 58, 110] that are used

to control the process of decision rule induction. For some of them a tendency to lead to better

results was observed [110]. The confirmation of these results in regression seems therefore

an obvious consequence and is one of the sub-objectives of this work. To our knowledge, in

regression there is also no statistical correction that could be applied to change the numbers

of positive and negative examples change the quality of the rule and thus affecting subsequent

steps of sequential rule induction algorithms and finally modifying the obtained model. From

what we know, there is also a lack of research on rule optimization methods applied during and

after the regression rule induction. Finally, with relation to the unordered set of rules which we

used, different methods of conflict resolution have to be examined.

1.2. Contributions

The presented thesis comprises several contributions to the area of the regression rule

induction. First, we have examined the top-down strategy and developed a new approach to

the bottom-up strategy of sequential rule induction algorithms with appropriate modifications

for regression. For both algorithms we have also applied two modifications of the fixed target

value contributing to create quasi-covering algorithms.

Second, the induction process of the developed algorithms has been adapted, by an

appropriate modification of the method of determining the positive and negative examples,

to be under control of heuristics well-known from the classification rule induction. This

application also enable us to traverse from the induction process control using only one heuristic

6

to the separation of rule refinements and rule selection for regression with the use of separate

heuristics.

The third contribution of this thesis is an application of rule optimization methods for

regression. In the case of pre-pruning methods we have investigated the simplest Hill climbing

pruning method and its modification which we called the Tabu hill climbing method (due to

inspiration of a method already known as Tabu search [41, 42]). To optimize the rule-based

model after induction we adapted for regression and examined six filtration algorithms:

Inclusion, Coverage, Disjoint, Forward, Backward and ForwBack.

The fourth contribution is an examination of three (mean of conclusion, median of covered

and max rule quality) and a proposition of one new method (mean of intersection) of resolving

conflicts methods for the model in the form of an unordered set of regression rules.

The final contribution of this thesis are additional statistical corrections for the number of

positive and negative examples which modifies regression rule quality using a given confidence

level. This approach allows for dynamic modification of the rule towards optimistic or

pessimistic rule evaluation possible due to assessment regarding population instead of the

distribution of the sample.

1.3. Organization of the thesis

This thesis is structured as follows.

Chapter 2 introduces background information about rule-based data models. It gives a

brief overview about an evaluation of a single rule with presentation of heuristics, about

approaches for rule set evaluation as well as about statistical comparison between different

regression models. Moreover, Section 2.5 presents four resolving conflicts methods including

one originally introduced in this work.

Chapter 3 describes the first part of the main goal of this thesis presenting two different

strategies (Top-down and Bottom-up) for regression rule induction and their modifications with

the fixed target value in a rule conclusion. The chapter ends with the introduction to the rule

quality evaluation using confidence intervals.

Chapter 4 presents the second part of the main goal of this thesis. It starts with a brief

overview and general motivation behind rule optimization. Then the pre-pruning algorithms

are presented, each in a separate subsection. The chapter is completed with the presentation of

algorithms for filtration of regression rules.

In Chapter 5 the results of the extensive empirical evaluation on many diverse data sets are

shown. In each section the focus lies in the evaluation of one aforementioned problem. At the

7

end of the chapter the comparison of the best combination of methods to the state-of-the-art

algorithms is given.

Chapter 6 presents the results of experiments on real-life data. The main goal of this chapter

is to demonstrate that the presented algorithms, heuristics, methods and approaches can be used

to solve authentic regression problems and, perhaps, to contribute to their commercial use.

Chapter 7 concludes with a summary of this thesis and provides direction for future work.

2. Rule-based data models

A rule induction is a branch of machine learning. In literature one can find many definitions

of machine learning. One of the most popular and the most frequently quoted definition has been

proposed by Tom Mitchell [84]. In simplified terms, this definition is as follows: a computer

program is learnt, if a performance of the program in solving a given problem, measured by

a some performance measure, increases with the experience.

A less formal, but more understandable, description of machine learning has been proposed

by Ryszard Michalski [81]. According to him, the idea of machine learning concerns the process

of incorporation of well-known capabilities of learning such as: acquisition of declarative data,

development of skills through guidelines or practice, organization of knowledge in a general

way, human-readable representation and discovery of facts or patterns based on observation and

experiment, in computers. Moreover, both definitions boil down to the description of a system,

which is commonly called a learning system. The main feature of such a system is the

possibility to change its internal parameters in order to identify and describe the data.

Generally, machine learning is assigned to the area of artificial intelligence. However, this

classification is not accurate. This is because the branches of science are not defined, but

slowly form during the process of clustering the common objects and purposes of the study

[26]. Much more accurate classification of machine learning is to assign it to the branch

of computer science, which is computational intelligence [26]. Using this classification, one can

say that machine learning examines the problems for which there are no effective computational

algorithms.

Among the algorithms that fit under this definition, one can distinguish the groups

of algorithms that are divided according to the way of learning. It is possible to mention the

following ways of learning: based on examples, by memorizing, by analogy, based on the

queries and with the gain. Learning based on examples is known as induction. However,

the most common is traditional division of algorithms based on the availability of training

information. Here one could specify supervised and unsupervised learning [10, 19, 33, 81, 127].

Supervised learning, using examples, consists of finding one or more hypotheses that

describe certain concepts, classes or categories. The terms concept, class and category shall

be understood as a set of examples that has some common and characteristic properties, which

distinguish this group of examples from groups described by other concepts. Roughly it can be

9

also understood as the result of the learning process, regardless of the type of learning [127].

The division of examples may be compared to the well-know representation of the binary logic.

The elements that are instances of the given concept are called positive examples. The other

examples are referred to as negative [10, 33].

Formulating hypotheses for machine learning systems should be also considered in relation

to the demands presented by Michalski [80, 81]. The author suggested that the representation

of hypotheses must satisfy the principle of intelligibility. This means that the description of

the concepts using the hypotheses should be written in a manner understandable to humans.

It is important to facilitate human understanding not only of the final results, but also the

assumptions, principles and theories behind them [80].

These considerations lead to yet another classification of algorithms based on the method

of knowledge representation. This group contains methods and algorithms which store

information in a symbolic form, often using some strings, words or inscriptions [10, 19]. The

knowledge saved in this way is human readable and hence more understandable. The second

group includes methods which present the knowledge with the use of a numerical or more

complex form, for example, binary strings. Such knowledge is not immediately understandable

to humans and requires additional information or familiarity of assumptions. Generally, such

algorithms are called non-symbolic or subsymbolic learning methods [10, 19].

Using the above classification one cay say that the group of symbolic methods, could

comprise, inter alia, the representation using rules, graphs including decision trees or first-order

logic. On the contrary, in the group of non-symbolic methods the following can be

distinguished: neural networks, fuzzy sets, statistic methods based on probabilities or the

traditional approach of evolutionary and genetic algorithms [19, 55].

Cichosz noted that the representation of knowledge can suggest, but does not clearly state,

how this information will be used. However, the usage is determined on the basis of both the

representation and the purpose for which this knowledge is obtained [19]. Among the most

popular tasks one can mention classification and approximation (including regression). Equal

importance should be assigned to the purpose for which the system simply presents to its user

the readable knowledge which allows him to make use of it [19].

2.1. Foundations of data representation

Many machine learning algorithms are widely applied in the area of data mining, which

mostly refers to the extraction of knowledge and / or interesting patterns. However,

understanding the data representation is often more important than the learning process itself

[127]. To facilitate the understanding of the input a large number of problems of data mining and

10

knowledge discovery are represented by data in a tabular form. This simple and transparent data

structure is also known as attribute-value representation [33, 127, 137] or a matrix of instances

versus attributes [127]. The formal definition of such a tabular form is presented in Definition

1.

Definition 1. Let U be a set and e ∈ U be an instance. The homogeneous finite set of instances

e is called universe and it is denoted as

U = {e1, e2, ..., en} . (2.1)

The instance e ∈ U that alternately takes the name of an object or an example is represented

by the finite number of features, referred to as attributes. Each of attributes a ∈ A is a function

ai : U → V a, assigning to each object from the set U a certain value belonging to the set V a.

The V a is an attribute range for the specified attribute a. Therefore, each instance can takes the

form of

A(e) = {a1(e), a2(e), ..., ak(e)} . (2.2)

Attribute values for a specified instance represent a quantity measurement of a particular

attribute and present information from observation, sensors, etc. Generally, the most common

are two types of attributes: numeric and nominal ones (although one can also find types

such as: ordinal, ratio, interval etc.). Numeric attributes, which mostly reflect measurements,

take real numbersas values. In turn, nominal attributes can have a finite set of values, therefore

sometimes they are called categorical. The nominal attributes have some special features worth

mentioning. The values of such attributes serve as labels or names. Consequently, they cannot

be ordered or measured by distance. Moreover, their values cannot be multiplied or added. They

can be exclusively compared using the test for equality or inequality [127]. Whereas numeric

attributes could be compared using mathematical relations such as =, <, >, 6 or >, which will

be discussed in details in the next section.

In machine learning systems there are also other types of attributes such as ordinal, interval,

ratio, metadata (data about data), etc [127]. However, these attributes are less popular, and

what is perhaps more important, it is sometimes hard to compare their values or differences

between these values [127]. A good example of the difficulty in comparing attribute values

may be the ordinal attribute size with values: big, medium and small. This attribute can be

ordered big > medium > small, however it is not possible to measure the difference between

big and medium with respect to the difference between medium and small. Witten, Frank

11

and Hall emphasize that "distinction between nominal and ordinal quantities is not always

straightforward and obvious" [127].

Apart from the types of attributes, all attributes can be divided into two disjoint subsets:

condition attributes C and decision attributes D [90]. The attributes from the first group

are also known as independent variables while decision attributes are called dependent

variables. By definition, both subsets may contain a certain finite number of attributes.

However, in real systems a decision subset has typically only one attribute. In the case of a

collection of attributes in the decision subset such an array can be reduced to a single-element

array where each decision is represented by a unique pair of replaced elements. The set of

attributes A could be denoted

A = C ∪ D. (2.3)

Introduced symbols U (2.1) and A (2.2) can be used now to present the knowledge

representation system in the form of a decision table [127]. This table input form was originally

proposed in the rough set theory [90], however a general idea may also be used in other machine

learning problems.

Definition 2. The decision table DT is a pair (U,A) where U is a finite set of examples and A

is a finite set of attributes.

In addition, the decision table can be presented with the use of aformentioned condition and

decision disjoints. The form of such a decision table will be denoted then

S = (U,A,C,D) (2.4)

where S is the system, U is the universe, A is the set of attributes and C and D are the sets

of conditional and decision attributes respectively. Foregoing considerations can be easily

transferred to a regression, in which, instead of the symbolic decision attributes or groups of

values, there are numeric decision attributes. Other considerations are the same as above.

As previously stated, the learning process should lead to some kind of knowledge.

Furthermore, this knowledge should be unambiguous. This means that a particular decision

should clearly result from the knowledge (patterns) hidden in the values of conditional

attributes. If data lead to the opposite decision, then the result cannot be unambiguous. This

problem can be illustrated by a simple example. Before turning to the example, it is worth

mentioning that generally in the attribute-value representation the instances are the rows and

the attributes are the columns and this notation will be preserved in this work. Then, assume

that the decision table looks like Table 2.1 where attributes a, b and c are condition attributes

12

Table 2.1: Example of inconsistent regression table

U a b c d

1 1 0 2 3

2 2 1 1 1

3 1 3 1 1.5

4 1 0 2 5

5 1 3 1 1.5

and d is a decision attribute. As it can been seen, two examples 1 and 4 have identical structures

e1 = e4 = (1, 0, 2) but different decisions d: ad(1) = 3 and ad(4) = 5.

Formally, the decision table is inconsistent if two or more instances have all condition

attributes identical but different decisions. Otherwise, the decision table is consistent [90].

To deal with the problem of the inconsistent table Pawlak has proposed to decompose

the inconsistent table into two tables: the first one that is consistent and the second one that

could be inconsistent [90]. In other words, the simplest and issuing a reasonable method is to

remove inconsistent examples from the learning process. Therefore, the learning process should

concern exclusively the consistent examples or involves more sophisticated methods like rough

sets [112].

So far, attention has been paid to the general and formal division of attributes for condition

and decision attributes. However, the issue of the decision attribute is more complex and crucial

from the point of view of this work. The key is that the type of the decision attribute determines

the type of the problem that should be solved. In the classification the algorithms predict the

nominal or ordinal value of the target attribute [33, 45, 127]. In other words, the decision

informs about the assignments of the examples to the specified class and in the particular case

one has to take some action when the decision is one of the two classes: take action or not.

In this work the attention is focused on the problem of regression, where the target value is a

numeric type, like in the example from Table 2.1 and the main goal is to predict this continuous

value (also called as numerical target or regression value) [33, 120, 127]. Nonetheless, the

presented properties for the system, universe, examples and attributes are the same for the

classification and the regression. It is also worth noting that in case of regression the decision

table is often a reference to the regression table [127].

13

2.2. Rule representation

The rule representation is one of the most popular [34, 33, 47, 69, 102, 116, 127, 128] and

the most transparent and understandable forms to humans [19, 30, 51, 94, 110, 127].

Each rule takes the form of:

IF ϕ THEN ψ (2.5)

where ϕ is a body and ψ is a head of the rule. Therefore, a generic form of the rule is sometimes

written as follows:

body→ head (2.6)

and is read: "if body then head". The Rule 2.5 could be also written in the generic form as

ϕ→ ψ.

The condition part of the rule ϕ is a logical expression of some features. Whereas the

conclusion ψ determines the type of the rule. There are many types of rules depending on the

conclusion type. If the conclusion takes a form of logic expression than such a rule is called

logic rule. If the rule contains in the conclusion some kind of a decision, then such rules are

called decision rules [10, 24, 103]. A few authors also proposed to use the term classification

ruleswhen decision rules are used to solve the classification problem [10, 24, 33, 75, 94]. There

are also other types of rules, such as: association rules [2, 10, 33, 87, 75] or inhibitory rules

[23].

The main objective of the association rules, which are very popular mainly in an area of

e-commerce, is to study the impact of purchase of one product to another [2, 100, 122]. In

turn, the inhibitory rules, in contrast to standard form of a rule, (Formula 2.5) have a form

of IF ϕ THEN NOT ψ. In other words, the inhibitory rule implies the exclusion of some

conclusions in the presence of a specific logical expression in the body.

The most interesting from this point of view are the so-called regression rules [13, 24, 58,

59, 95, 120, 125]. In the regression rules the conclusion is a numerical type, so the examples

that meet all the conditions receive a predicted continuous value.

The regression rules are defined for descriptive and predictive purposes. For the descriptive

perspective the most interesting would be the set composed of rules presenting the non-trivial

and useful information to the user. For the prediction perspective, the most desirable would

be the set composed of rules that allows to obtain the most accurate prediction of the value

of dependent variable based on the information from the values of independent variables. It

should be also emphasized that in all rule induction tasks the descriptive ability is important.

14

It is the clarity of the data model, rather than the efficiency of classification or prediction, that

is a particularly accentuated feature of rule-based models [19, 80, 91]. Considering only the

accuracy of rule-based models, one comes to the conclusion that many other methods (e.g.

support vector machines, neuro-fuzzy systems, ensembles of classifiers) outperform rule-based

models.

As it was mentioned above, the condition part of a rule consists of a logical expression. A

more specific definition says that in the case of decision or regression rules the body of a single

rule is a logical conjunction of conditions, where each condition checks the fulfillment of a

given property. A transformation of the general form of rules into conjunction of features can

be written as follows:

IF w1 ∧ w2 ∧ ... ∧ wj THEN ψ (2.7)

where each w is an elementary condition of a given rule. In real systems the number of

elementary conditions is finite and is defined as rule length [33].

In the regression problem, the aforementioned rule could be also written with the use of a

substitution of ψ with a general notation of a function:

IF w1 ∧ w2 ∧ ... ∧ wj THEN f(x) (2.8)

where f(x) in the simplest form is a single value obtained from all examples covered

by the fired rule. Such an approach has, of course, its advantages and disadvantages. The

simplest form of conclusion is primarily the most understandable and transparent way of present

the prediction. This is also the fastest possible way of the prediction. Alternatively, the

implementation of a linear model in the form of w0 + w1a1 + ...+ wkak is based on the values

of many of the attributes (k) multiplied by some weights (w) and usually allows to obtain a

smaller prediction error [51, 56]. However, it is evident that the clarity of rules with linear

models decreases drastically. Due to the simpler form of a single value which also leads to more

understandable interpretation, most of the results in this study will be presented in this form.

However, to confirm the above-mentioned advantages of the linear model in a few experiments,

additional results will be presented, but will be returned to later.

The fulfillment of each condition involves completing a logical expression inside it. In the

standard definition, a rule covers an example if the condition part of the rule is met for this

example. On the contrary, the examples that fulfill all conditions from one rule support this

rule. Thus, there are two terms that describe the relation between the rule and the examples.

The rule can cover examples and the examples may support the rule. The target value for the

15

covered examples is assigned by the supported rule or, in some cases that will be discussed later,

rules.

The single elementary condition can be generally written as a op V a. In this study, it was

assumed that a stands for a specific attribute name, op is one of relation symbol from the set

{=, 6=, <, >, 6, >} and V a is a numerical or nominal value from the range of the attribute a.

The type of value V a depends on the type of the particular attribute a.

A sample rule for the dataset presented in Table 2.1 can be built as below:

IF a 6 1 ∧ c = 1 THEN 1.5

However, it should be noted that the different algorithms can induce a different rule that

covers the same subset of examples and implies the same conclusion. The produced rule can be

bigger or smaller - in terms of rule length - or it can consist of completely different attributes,

e.g.

IF b = 3 THEN 1.5.

In those examples both rules point to the same subset of elements (e3 and e5) but in different

ways.

In most cases one rule is not enough to cover all examples from the dataset. It rather covers

only a smaller subset, in fact, a few or several examples. It can be seen that the rule presented

above covers only 2 of 5 examples from Table 2.1. To cover the whole dataset, where each rule

covers a part of whole dataset, more rules are needed. In literature, such a collection of rules is

called a rule set [20, 33, 48, 127].

The rule set may be unordered or ordered (decision list). The main difference between

ordered and unordered rules lies in assigning the target value. In the case of ordered rules the

rules are checked one by one in a specified established order. Then the target value of the first

rule, that covers the tested example, is assigned. For unordered rules, more than one rule may

cover the tested example. Hence determining the target value is more difficult. The appearance

of more than one covering rule may also occur in the other case.

Depending on the method of rule induction, the rule set may consist of overlapping or

non-overlapping rules. The non-overlapping rules are the result of the application of an

algorithm that can divide the dataset into completely separated subsets, e.g. regression trees,

which can be further transformed to the form of rules. Alternatively, the rule learning algorithms

induce rules that can overlap each other. This more relaxing approach often contributes to

induce smaller rule sets [33].

16

2.3. Rule induction algorithms

The rule induction is one of the most popular methods of learning by examples. The rule

induction algorithms, in a variety of approaches in classification or regression problems, try

to tackle the problem of the rule set production, which can be compared or characterized by

for example: the best classification accuracy, the smallest prediction error in regression, the

best descriptive ability etc. However, the two main strategies of automatic rule induction are

Divide-and-conquer and Separate-and-conquer [12, 34, 68, 93, 94, 118, 127].

In the production process of a rule set the Divide-and-conquer algorithms formulate

hypotheses by splitting the most general rule to the specialized rules. The process starts from the

most general rule. Subsequently, based on the assumptions of an algorithm, one best attribute

is selected, which can divide example set into two subsets. If at least one subset contains

only positive examples, then the process is stopped for this subset. Otherwise, the process is

recursively repeated until all examples belong to disjoint subsets with only positive instances

inside [12, 94, 118].

Equally popular is an explanation of the Divide-and-conquer process with respect to the

branches and nodes. In this definition the initial attribute is denoted as a root node. Then the

algorithm makes a branch for the selected attribute to split the dataset into two subsets. The

splitting process is repeated until examples do not belong to the same class (for classification)

or are outside of the target value range (for regression). Otherwise, the process is repeated

until the division can be performed [118, 127]. Therefore, considering the analogy of the tree

construction, the algorithms from this group are called tree-based.

The Divide-and-conquer strategy has been mostly developed and improved over many years

by J. Ross Quinlan [93, 94, 95, 96, 97, 127]. Although his approach, called ID3, has been

proposed to build decision trees, instead of rules, it can be regarded as one of the most important

works for the development of this scheme [93, 127]. A collection of improvements appeared

later in a practical and reliable system C4.5 that had and still has a huge impact on the creation

of new algorithms in many of machine learning areas [7, 34, 86, 96, 127]. The commercial

successor of C4.5 is C5.0 with few improvements e.g. in speed, memory usage or size of the

produced decision tree [76].

From the regression point of view, the works of Breiman et al. (CART algorithm) [13]

and Quinlan (M5 algorithm) [95] are particularly important. In both cases the authors have

proposed to convert the decision at leaves into the predicted numerical target value (CART) or

a multivariate linear models (M5). Apart from the implementation details of both algorithms,

in which, however, M5 produced smaller model trees, in both cases the general idea of creating

models is similar [95]. It is also worth noting that the first implementation of the M5 algorithm

17

has been described in a very general way and the strategy has been improved by Wang and

Witten in a system called M5′ [51, 125]. In this system, among many changes, one of the most

important is that the heuristics used to split examples into disjoint subsets has been replaced by

a measure to minimise the intra-subset variation [13, 51, 59, 95, 134].

By proceeding sequentially from decision trees through regression trees, a set of regression

rules can be finally obtained. Such an approach has been presented by Holmes et al. in a system

called M5Rules. The tree construction is done with the use of the M5′ algorithm. Then the

rule is generated using the best (according to a certain heuristic rule) leaf. The rule body is built

based on all attributes along the path from the best leaf to the root. In the last step of creating

a single rule all examples covered by that rule are removed from the dataset and the process is

recursively repeated until no instances remain [51].

Age

Water

Age

LM1 (324/74.213%)

LM2 (256/90.84%)

LM4 (156/64.23%)

LM3 (294/69.322%)

<= 21

> 175.55
<= 175.55

<= 42
> 42

> 21

LM1: 26.4411 - 0.0143 * Water + 0.0052 * Age

LM2: 54.5883 - 0.0243 * Water + 0.0062 * Age

LM3: 35.5201 - 0.017 * Water + 0.0067 * Age

LM4: 44.3338 - 0.017 * Water + 0.0083 * Age

Linear models:

Figure 2.1: An output visualization of M5’ algorithm

Figure 2.1 presents a tree produced by the M5′ algorithm for a reduced set of attributes

(Age and Water only) from the real dataset compressive. Each branch shows the values

of the attribute in which the set is split into two disjoint subsets while the leaves display the

linear model, the coverage and the percent root mean squared error respectively. A set of

18

rules generated by the algorithm M5Rules for exactly the same values of the parameters is

as follows:

IF Age 6 21 THEN 26.4411− 0.0143 ·Water + 0.0052 · Age

IF Water > 175.55 and Age 6 42 THEN 34.3821− 0.0105 ·Water + 0.0043 · Age

IF Water 6 189.145 THEN 52.7158− 0.0088 ·Water

OTHERWISE 40.5694

It is noteworthy that only the first rule has its counterpart in the model tree in the linear

model 1. It can be also noted that in the rule set there is a default rule for instances not covered

by any of the generated rules. In M5Rules the value of the default rule is calculated as an

average of the target values of all examples belonging to the training set. It is worth mentioning

that there are more sophisticated methods of determining the default target value such as linear

models or k-means clustering. However, they are also more difficult to interpret.

Conversely, the Separate-and-conquer approach works in a slightly different way. One of

the best and the most frequently quoted presentations of this strategy has been proposed by

Johannes Fürnkranz [34] who noted that this strategy had its origins in Michalski’s work [77].

The general idea is that all algorithms belonging to the separate-and-conquer group operate in

a looped manner. The general outline of the algorithm can be represented by Algorithm 1. The

algorithm is looking for a rule that covers a part of training examples (the conquer part) and

then covered instances are removed from the dataset (the separate part). This step is repeated as

long as the training set has uncovered examples [34]. The algorithms that belong to this group,

due to the rules that cover subset of examples, are also called covering algorithms.

Algorithm 1 Pseudocode of the covering induction algorithm
Input: examples - training set of examples
Output: ruleSet - set of induced rules
ruleSet← ∅
while examples 6= ∅ do

rule← FindRule(examples)
if rule exists then

covered← Covered(rule, examples)
examples← examples \ covered
ruleSet← ruleSet ∪ {rule}

else
break

end if
end while
return ruleSet

19

Although the main loop (also the so-called top-level loop) of Separate-and-conquer

algorithms is uniform for them, the method of induction may vary significantly for each single

rule. Thus Fürnkranz pointed that each approach can be characterized with biases, which are

used for these purposes. Depending on the source, one may mention three or four points

[34, 35, 89, 127] that are used to differ algorithms. Here, the points are limited to three as

in [34, 35], however the location of the dispute is underlined.

Language Bias
Language bias can be understood as opportunities and constraints arising and strongly

dependent on the adopted form of representation hypotheses. Then the chosen form of

representation affects the search space for a learning algorithm. However, the adopted language

may not be sufficient to demonstrate all the concepts. In a simplified term the existence of one

universal language would describe all possible divisions of examples and all concepts could

be learned [127]. Witten et al. have pointed out that it is a rather theoretical consideration

because in practice the problem is typically too large to show all the concepts using only one

form [127]. The proposed solution is to separate concepts and describe them in a simpler

form. The straightforward representation of hypotheses is also the fulfilment of the principles

of intelligibility introduced by Michalski [80, 81].

Search Bias
The way of searching through the search space is one of the most characteristic features that

differentiate algorithms from each other. After determining the manner of representation of

hypotheses it is necessary to determine the search algorithm (usually hill-climbing, beam search

or best-first, which could guarantee that an optimal solution will be found [34]), its strategy

(top-down, bottom-up or bi-directional), which is also described asa higher-level of search bias

[127], and the search heuristics. Pappa and Freitas have proposed to isolate the heuristics to a

separate point as an evaluation measure of the searching result [89].

Overfitting Avoidance Bias
There are many algorithms that use some kind of safety mechanisms to handle noisy data or

to avoid that the model has become too powerful (overfitting). This mechanism can lead to the

more general model in hope that simpler hypotheses will provide higher accuracy on unseen

examples [32, 34]. It is also worth mentioning that the easiest way to obtain an accurate and

reliable theory is by simplifying the complex one [127]. Generally there are two families of

methods dealing with the overfitting problem. The first approach is popularly called pre-pruning

because the complex concept is pruned during the induction process. In turn, the second group

is known as post-pruning because the theory is examined after the completion of its creation.

20

Although both methods have undoubtedly their pros and cons, the natural consequence shall be

a combination of methods that would complement each other [32].

2.3.1. Related work

The origin of the covering strategy has its place in the classification algorithms. The first of

these algorithms was proposed by Michalski in 1969, the AQ algorithm [77]. In the next years

there were a number of modification of the basic algorithm leading to the creation of the whole

family of AQ algorithms (e.g. AQ15, AQ17, AQ18, AQ19, AQ21) [11, 63, 79, 82, 83, 129].

The induction method for a single rule in all the programs is similar. The AQ family works in

the top-down hill-climbing approach and uses the beam search method. The main idea of the

basic AQ algorithm is to increase the coverage of a training set in each iteration. This coverage

is provided by a set of accurate rules in which the elementary conditions are linked with logical

conjunction, however an internal disjunction within one elementary condition is also allowed.

In the modifications of the original AQ algorithm the inaccurate rules are also admitted.

Other very popular algorithm used for solving the classification problem is CN2 [20, 21],

which is a modification of the AQ algorithm. The main difference between the CN2 and AQ

algorithms is to extend the search space in such a way that rules could also cover negative

examples. The other modifications are the use of an ordered list and a statistical evaluation of

new elementary conditions (called here complexes) to check whether the complex is statistically

significant or not. In the next version of the algorithm modificationshave been proposed to

change the rule evaluation heuristics in order to prevent the occurrence of very specific rules

that cover only few examples [20].

RIPPER is another algorithm worth mentioning due to its popularity. It uses the covering

approach with the hill-climbing strategy. In the rule growth process RIPPER applies an

information gain criterion to repeatedly add conditions until the rule covers no negative

examples. The most differentiating feature of this algorithm from those two mentioned above is

that the rule construction starts from the least prevalent class [22]. The Separate-and-conquer

approach is also employed in such classification algorithms like IREP [37] or PART [28].

In the regression problem there are only few attempts to use the covering technique. All of

them are briefly outlined below. It is interesting that each of the below works come to the topic

of regression in a slightly different way. These approaches will be accentuated in each of the

algorithms.

Karalič and Bratko have defined the FOR (First Order Regression) approach to handle

numerical information in Inductive Logic Programming (ILP), which can be defined as a

subfield of machine learning where the background knowledge is taken into account to create a

hypothesis. This idea has been implemented in the program called FORS [62]. The algorithm

21

starts from the most general rule (empty rule) and then it is specialized by adding clauses.

To find the clause, the beam search is applied that searches the space of all possible clauses.

Each clause candidate is evaluated based on the mean squared error estimator, which will be

discussed later.

The specialization of a single clause is limited to three steps. First, the specialization can be

done using the background knowledge about literals. Second, the clause can be modified using

a variable-value literal. Finally, the specialization can be performed by recursively repeating all

steps for the current clause. At the end, redundant literals are removed from the clause. The

program has a number of criteria that lead to improvements termination e.g. minimal number

of examples that have to be covered by the clause, maximal number of literals in the clause,

minimal improvement of new a clause in relation to its predecessor, etc. The target value for

the regression is predicted based on a regression plane through the class value of the covered

examples [62].

Other algorithm trying to deal with the regression problem is PCR [123, 124], which

combines elements from two learning methods. The first one is unsupervised clustering while

the second is supervised predictive modelling. In such combination the approach is called

predictive clustering. The main idea of the PCR algorithm is to produce rules, which can be

characterized as compact clusters of examples that have high similarity within the cluster, while

they have high distance outside the cluster. Then the prediction of the target value is performed

based on examples that belong to each cluster, e.g. using a simple average or a probability

distribution across the discrete values.

Each cluster is represented in a rule form:

IF cluster description THEN target value

The rule induction process is based on the CN2 algorithm with modifications. The key

difference lies in search heuristics that is used to guide the search for rules. The heuristics for

CN2 is simply accuracy that focuses only on the target attribute. For the PCR algorithm this

heuristics is inappropriate. The requirement of cluster compactness required to take into account

not only the target attribute (which is common in predictive modelling) or conditional attributes

(like in clustering) but all attributes. Therefore, an appropriate heuristics called dispersion is

applied. The name of this heuristics has different meanings depending on the attribute type

[123].

The dispersion for the nominal attributes is simply defined as normalized average Manhattan

distance between the example and the frequencies vector of possible values within the set (called

22

the prototype). At the end, the normalized distance is in the closed interval [0, 1]. For the

numeric attributes the dispersion is presented as the variance:

s2N(E, aj) =
1

N

N∑
i=1

(xji − x̄j)2

where E is an example set of size N , xji is the value of an attribute aj , x̄j is the mean of values

of the attribute aj . The normalization for numerical attributes is also performed but with the use

of the standard deviation of the values of the attribute [123].

The second very important element distinguishing the PCR algorithm from CN2 is the

treatment of examples covered by the rule. In the standard covering procedure such examples

are removed from the training set. In PCR these examples are labelled with a lower weight.

Thus, in the next iteration this example is less likely to be covered. Moreover if one example is

covered a predefined number of times (in PCR this parameter is set to 5), then such an example

is permanently removed.

The most interesting and particularly important are Janssen and Fürnkranz is works [57, 59].

In these works the authors describe the general idea of the Separate-and-conquer strategy for

the regression rule induction and introduce the dynamic method of identification of positive and

negative examples covered by the induced regression rule.

In the SeCoReg algorithm the main loop is identical as the one described in the previous

work of Fürnkranz [34]. Briefly, the algorithm searches a rule that covers a part of examples

yet uncovered by any of the rules. Then the covered examples are removed from the training

set and the process is repeated until no instances remain.

However, the crucial part of the SeCoReg algorithm lies elsewhere.The heuristics used to

control the process of induction is based on a novel approach called dynamic reduction to

classification. In SeCoReg, each rule has a simple numerical value in its head part. This

value is chosen as the median of the covered examples. The goal of the dynamic reduction

to classification approach is to find covered examples that are close to the predicted value. In

regression, however, the situation where the expected value is equal to the target value of all

covered examples is rarely encountered. Thus, the natural consequence is to define the interval

(error) in which examples can be found. For this purpose in SeCoReg the standard deviation is

used. From a formal point of view, the example is labelled as positive if a distance between the

target value and the predicted value is below the assumed threshold, otherwise it is labelled as

negative [59]. It can be written in the form of:

class(e) =

{
positive if |ye − yr| ≤ tr

negative if |ye − yr| > tr
(2.9)

23

where e is the example, ye stands for the target value of the example, yr is the predicted value

for the rule, and tr denotes the threshold.

The total number of positive and negative examples for the rule r are denoted then:

pr =
k∑
i=1

(|yi − yr| ≤ tr); nr = k − pr

where k is the total number of examples covered by this rule.

The aforementioned formula is also used to define the total number of positive and negative

examples for the training set. The main difference is that in that case the example may not

be covered by the rule. The total number of positive and negative examples are denoted with

capital P and N respectively. Then, k is the total number of examples in the training set.

It is worth mentioning that both formulas are marked with the r index. The reason for this

marking is a dynamic change of parameters (p, n, P and N) for each candidate and/or rule in

each refinement step. It means that a modification of a given rule may lead to different values

of these parameters and thus to another quality assessment. Thanks to such a transformation

from regression to classification problem, it is possible to apply classification quality measures

for the assessment of regression rules.

There are also different approaches to deal with the regression problem that have nothing in

common (in direct meaning) with Divide-and-conquer or Separate-and-conquer. The simplest

approach to the induction of regression rules is discretization of the continuous decision attribute

and the use of standard decision rule induction algorithms. Such an approach is presented by

Torgo and Gama [120], who transform the continuous decision attribute into a set of intervals

using three methods: equal-frequency, equal-width and k-means clustering.

In the equal-frequency intervals the algorithm divide instances into intervals with the same

number of elements. In the equal-width method the range of values is divided by the number

of clusters and then examples are assigned to one of new groups. However, in the k-means

clustering method the clusters are created based on a function that minimizes the distance from

the continuous decision attribute to the gravity center of interval [120]. The biggest problem of

all three methods is the assumption that one knows the number of clusters.

By contrast to the simplest approach, the most computationally advanced methods of

regression rule induction are based on ensemble techniques. The main aim of these algorithms

is to increase the prediction performance based on linear combination of models instead of

using simple models. Among others, one could mention RuleFit [30], its successor with some

modifications FIRE [3] or RegENDER [24] that lead the rule induction towards minimization

of the loss function calculated on the training or validation of a set of examples. To supervise

the induction of subsequent rules, these algorithms apply various methods of optimization

24

(e.g. gradient methods). The effects of their application are usually numerous sets of rules

characterized by good quality of prediction.

The prediction is done by combining weighted voting. In the simplest form the main idea

of the ensemble algorithms for prediction of the target value can be written as follows:

ŷ = f(x) = w0 +
M∑
i=1

wiŷi

where w0 is the baseline prediction and the sum part is treated as a correction of base value

using the weighted value obtained from M rules [3]. In some ensemble algorithms there is no

baseline prediction. In such cases the predicted value is calculated only from M models [17].

Although there are algorithms like e.g. FIRE where this equation is expanded by adding another

sum, which implies further correction, the principal idea of using weights in all algorithms is

common.

Nonetheless, all of ensemble techniques suffer from hindered interpretation of the results.

Linear combination of decision trees, rules or other models is in fact much more complex than

the model of a single tree or rule. Thus, clues, guides or additional methods are needed to

improve the readability, transparency and comprehensibility of such models [17].

2.4. Rule and rule set quality

The accurate prediction of the target value is the key aim of all regression algorithms. There

are many methods to create the single rule or the whole model in the form of a set of rules.

Sometimes a new method is merely a modification of an existing one. Another time, the

approach is completely innovative. In all cases, the quality criteria have to be established in

order to assess the rule or the model.

In practice, rules and rule-based data models can be evaluated based on their own criteria

e.g.: the most general model, the most interesting, the most useful for the user, the most unique

etc. The criteria can be also different depending on a task or a problem domain. However, in

order to evaluate in an objective manner which algorithm or method should be adopted to solve

particular problem, one needs a systematic way to evaluate how good specific algorithms are in

relation to the data set and to each other [110, 123, 127].

In the Divide-and-conquer and Separate-and-conquer strategies rules are assessed based on

incomplete available information. In this situation the evaluation function is called heuristic.

The main purposes of such functions is to make the best decision about the next step using

partial information. The decision is, therefore, an approximate solution because it is made

without information about the whole process. Heuristics are interchangeably called quality

25

measures or simply evaluation metrics. As the primary goal of regression is accurate prediction,

the heuristics are known here also as error measures.

The quality measures for regression can be generally divided into two groups. The

measures from the first group operate on the principle of reducing the variance in the target

value. This approach can be found in many works for both the Divide-and-conquer and

Separate-and-conquer strategies, for example [57, 62, 120, 123, 127]. The appearance of these

methods results from the impossibility to use quality metrics that measure simply the error

rate. In regression the error cannot be measured as a correctly predicted value or not, but it is

determined as the distance between the predicted and the real value.

Mean Absolute Error is a metric to obtain the averaged error between the predicted value ŷi
and the real value yi without taking into account their signs.

MAE =
1

N

N∑
i=1

|yi − ŷi| (2.11)

Root Mean Squared Error is the most common measure used to calculate the error (not only

in rule induction but also in other areas where the main aim is the prediction). This measure is

also encountered without the root, however in the form of a square root the error is calculated

on the same scale as the predicted value, which facilitates its interpretation. This measure has a

tendency to emphasize the importance of outliers.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (2.12)

Both above mentioned measures for error prediction suffer from a common problem. These

metrics refer to the absolute value of the error and it is meaningless to compare the averaged

errors of the sets, where one can find the equally important error of 20% e.g. the error value 2 in

a prediction of 10 and the error value 500 in a prediction 2500 in the second one. To avoid the

problem of non-comparability, the normalization of errors should be done. The normalization

is usually performed based on the total mean squared error of the default predicator [127].

MSEdefualt =
1

N

N∑
i=1

(yi − ȳ)2 (2.13)

where ȳ is the mean value over the training data.

The measure that is the principal and comparable across different problem domains is the
relative root squared error that in most cases is also multiplied by 100%:

26

Table 2.2: Contingency table with the established notations

Predicted

Positive Negative

Actual
Positive p (true positives) P - p (false negatives) P

Negative n (false positives) N - n (true negatives) N

covered examples not covered examples P + N

RRSE =
RMSE√
MSEdefualt

· 100% (2.14)

It is worth to note that this model compares the model to the simple predictor that is

the average of the values over the training set. Moreover, it is important to emphasize that

this measure can be used to evaluate the single rule, entire model or different regression rule

learning algorithms. The value of the RRSE measure should be interpreted in relation to this

average value. The smallest value is better while the value > 100% indicates that the model is

a predicate, worst than the simple average.

On the contrary, the measures from the second group use the reduction to the classification

approach which has been first used by Torgo and Gama [120]. The general idea of this method

is to change the problem of regression into the classification problem (via discretization of

the continuous decision attribute) and then use algorithms designed to solve the problem of

classification (including the quality measures for classification). A slightly different idea has

been presented by Janssen and Fürnkranz [59]. They proposed to use dynamic reduction to

the classification approach for learning regression rules. This transformation is closely related

to the induction process and allows to obtain statistics that are necessary to create a confusion

matrix (also known as a contingency table) for each rule or refinement. Then, the matrix is used

to estimate the rule quality.

The contingency table is a visualization of information about actual and predicted

classification by a system. In other words the contingency table presents the classifier

performance. The example of the contingency table is presented in Table 2.2.

Currently, in the literature one can find over 50 different quality measures to control the

process of decision rule induction [15, 36, 58, 110]. The simplest statistics based on the

contingency table determine the number of true positive (p) or false positive (n) examples, true

positive rate (p
P

) or false positive rate (n
N

). However, in the classification approach the process

of rule induction should be simultaneously optimized towards the two criteria: maximize the

number of positive examples covered by the rule (also called coverage or completeness) and

27

Table 2.3: Definition of basic heuristics

name heuristic formula

accuracy p - n

precision p
p+n

coverage p
P

minimize the number of negative examples that are covered by the rule (precision or sensitivity)

[4, 14, 15]. Therefore, these measures are not suitable as they optimize only one of two above

mentioned criteria. The consequence of this is the appearance of quality metrics that take

into account both criteria. Among them, the most common are precision, accuracy (p-n) or

rule specificity and sensitivity p
P

- n
N

. Definitions of the most popular criteria in relation to the

contingency table are presented in Table 2.3.

Moreover, analyzing results obtained by various rule induction algorithms one can safely

state that description and prediction abilities of determined rules depend not only on the

algorithm of searching for rules but also on a measure evaluating the quality of the induced

rules. The quality measures applied in a rule induction algorithm are very important for final

performance of an output rule set. This is confirmed by numerous empirical research works

[4, 15, 16, 58, 102, 103, 110]. Sikora [110] noted that a few of quality measures lead to better

results. These measures are:

C1 and C2 are quality measures proposed by Bruha in 1997 [14]. They are based on

knowledge and observations of the author, who noted that two other quality measures which

use statistics from the contingency table by Coleman and Cohen (also known as Cohen’s Kappa

coefficient) have deficiencies. The Coleman measure does not comprise the coverage while the

Cohen measure leads to results that raise the importance of coverage. The numerical coefficients

in both formulas stand for the normalization purpose [4, 14, 15, 102].

C1 = Coleman ·
(

2 + Cohen

3

)
(2.15)

C2 = Coleman ·
(
P + p

2P

)
(2.16)

where

Coleman =
Np− Pn
N(p+ n)

(2.17)

28

Cohen =
(P +N)

(
p

p+n

)
− P(

P+N
2

) (
p+n+P
p+n

)
− P

(2.18)

Correlation (Corr) computes the correlation coefficient between the predicted and the target

values. The Correlation measure is also used in the rule induction algorithm for subgroup

discovery or association rule mining [58, 133].

Correlation (Corr) =
pN − Pn√

(PN(p+ n)(P − p+N − n)
(2.19)

g-measure (g, g=2) originally was proposed by Fürnkranz and Flach in 2005 [36]. It can be

treated as a simple trade off between recall p
P

and precision (p
p+n

) if g = P . However, a few

authors [58, 110] have noted that the original version of this metric is too optimistic when

the evaluation considers the rule that covers a small number of positive examples (e.g. rule

that covers a positive example is characterized by precision equal 1). With modification the

importance of such rules is decreased (precision of such a rule is equal to 0.33) but for a larger

number of positive examples this correction has less and less influence.

g-measure (g, g=2) =
p

p+ n+ 2
(2.20)

s-Bayesian confirmation (s) has been proposed by Christensen [18] and Joyce [60]. In

general, this measure presents an assessment of a degree in which a premise confirms a

conclusion [16]. The first part of the measures evaluates the precision while the second is

responsible for the reduction of the quality of the rule that covers a small number of examples

[110].

s-Bayesian confirmation (s) =
p

p+ n
− P − p
P − p+N − n

(2.21)

Logical sufficiency is a standard likelihood ratio statistics. The use of the logical sufficiency

measure in the rule induction process leads to emphasize the precision of the rule at the expense

of the number of covered examples [110].

Logical Sufficiency (LS) =
pN

nP
(2.22)

Rule specificity and sensitivity is a measure that is approximately equal to Weighted Relative

Accuracy (WRA) (The proof can be found in Fürnkranz and Flach is work [36]). It has

29

been experimentally proved that the RSS measure leads to smaller rule sets than standard

classification accuracy [119]. However, other research shows that RSS has a tendency to

over-generalize [56].

Rule Specificity and Sensitivity (RSS) =
p

P
− n

N
(2.23)

Weighted Laplace is a modification of a standard Laplace measure. The task of both measures

is very similar and is based on the estimation of the rule accuracy. With modification this

measure takes into account the distribution of the number of positive and negative examples.

Weighted Laplace (wLap) =
(p+ 1)(P +N)

(p+ n+ 2)P
(2.24)

Regardless of the method of evaluation of a single rule or the entire set of rules there are

also ways to assess theories. They are independent of the above heuristics and may be used both

in the process of classification or regression problems. These measures could be also important

and useful to meet their own criteria e.g. the most comprehensible model.

One of the most important measures of this group is the size of theory. It is simply defined

as a number of rules (#rules) contained in the theory. If multiple data sets are considered, this

measure takes the form of an average number of rules:

average # rules =
1

D

D∑
i=1

Ri (2.25)

where D is the number of data sets and Ri is #rules in the data set Di.

Another interesting measure is the number of conditions in the rule set, but the average
number of conditions in one rule seems to be more useful:

average # conds =
1

R

R∑
i=1

conds(Ri) (2.26)

where R is the number of rules in a given data set and conds(Ri) stands for the function that

returns the number of conditions in rule i. For many data sets this value is averaged in the

obvious way and described above.

There is also a measure of the coverage of rules, which presents the average number of

examples from the data set that is covered by one rule.

cov =
1

R

R∑
i=1

ERi

E
(2.27)

30

where R is the number of rules in the rule set, ERi
is the number of examples covered by rule i

and E is the number of examples in the data set. For multiple data sets the average coverage is

calculated in a manner analogous to Equation 2.25.

It is noteworthy that the measures for the assessment of the theory in terms of its size are

as important as the assessment of the accuracy of the model. The examination of the final data

model can even be considered in the context of macro compromise between the size of the

theory and its accuracy. In turn, the term of micro compromise should be understood as the

induction of a single rule using a quality measure that optimizes the criteria of coverage and

consistency simultaneously.

The problem of finding the trade off between the accuracy and size of the model is,

however, still open. From one point of view the size of the theory is related to the principle of

intelligibility proposed by Michalski and it would be best if the size of the theory was as small

as possible, so that it would be easier to understand. Conversely, the accuracy of the model

is usually better for more complex theories. Attempts to solve this problem are part of this

dissertation. Thus, we will return to this discussion during the presentation of the experiments

results.

2.5. Unordered rule set and resolving conflicts methods

The induced rule set, generally, may be either of the form of an unordered or ordered set

of rules. In this work all presented rule induction algorithms rules are returned in the form of

the unordered set. In contrast to the ordered rule set, where each example is covered by exactly

one rule (the algorithm of prediction stops at the first rule that is satisfied), in the unordered

set an example can be covered by several rules at the same time. The situation where two or

more rules cover one example is commonly called the rules conflict and it leads to ambiguous

estimation of the target value or classification in case of such a problem [21, 22, 33]. However,

in real cases, the prediction for an unseen example should be clear and unambiguous, therefore

a method for resolving conflicts is required with respect to the unordered set of rules.

It should be also noted that the problem of conflicts has not received very much attention

in regression tasks. There are only few studies taking up research in this issue. In the case

of classification problems the most popular solution is the so-called voting scheme in which a

numeric value (that can be interpreted as the degree of confidence) is assigned to each rule in

the conflict. Then the confidence degrees are summed up and the class with the maximum value

of the sum is assigned to the unseen example [56, 76, 102, 110].

Interestingly, the algorithms that have been proposed to improve the accuracy of

classification can also be treated as the methods of conflicts resolution. Examples of such

31

algorithms are Double Induction and its next modification Recursive Induction [72, 74]. The

main idea of the Double Induction algorithm is to repeat the rule induction based on the training

examples that are covered by the rules in conflict. In Recursive Induction the process of Double

Induction is just repeated if the new rule obtained with the use of Double Induction is still in

conflict. The process of Recursive Induction continues until some stopping criteria are met.

Regardless of the number of iterations, both the Double Induction and Recursive Induction

algorithms suffer from two limitations. The main limitation is the computational cost that is

of course higher for the Recursive Induction algorithm. On the other hand, the authors have

observed in experiments that the intersection of examples covered by the rules in the conflict is

more important for new rules, which requires the selection of a certain weighting scheme for

these examples. There is also a distance based method to solve the binary classification problem

but the method can be used exclusively for the problem of numerical attributes [73].

In the absence of appropriate, fast and reliable methods that can be used to resolve

conflicts in the regression rule induction algorithms in this work, the author proposed four

complementary methods referred to as mean of conclusions, mean of intersection, median of
covered and max rule quality.

The main advantages of all the presented methods is the speed of conflict resolution and

obtaining the predicted value due to the simplicity of the algorithms. The first two methods

(mean of conclusions and median of covered) are very obvious methods to check, however

we would like to compare the simplest methods to the two original, more sophisticated and

interesting approaches. These new approaches are mean of intersection and max rule quality.

1. Mean of conclusions - In the mean of conclusions method the expected value is predicted

as the average value of all conclusions of conflicting rules. This seemingly obvious

method, however, suffers from a common problem of all methods using mean value, namely

vulnerability to statistical outliers. Another problem is the treatment of all rules equally,

which is not appropriate when there is a large disproportion in the number of examples

covered by the rules. As an example, let us assume that there are 2 rules in conflict. The

first rule with target value x covers 500 examples while the second one with target value y

covers only 5 examples. Thus, it is clear that the greater distance between x and y contributes

to the greater prediction error.

2. Median of covered - The remedy for these problems is the second method, i.e median of

covered. This method predicts the expected value as the median of the union of examples

covered by conflicting rules. In principle, the median of covered method should better deal

with outliers. It should also be more resistant to an uneven number of covered examples

32

by each conflicting rule, because the prediction will be based on the middle value of all

examples without considering information about distribution.

3. Mean of intersection - The other approach to the outliers is presented in the method called

mean of intersection. In the first step, the method takes into account only common examples

for all conflicted rules. This is called the intersection. As a result, the outliers would not be

taken into consideration, unless they are covered by all rules, which may mean that they are

important. Then the method predicts the result as the average value of examples from the

intersection.

4. Max rule quality - The last but not least method to resolve conflicts is the max rule quality

method. In this method the prediction is performed using the heuristic that is also used in

the induction process. The expected value is obtained from the conclusion of rule which

has the highest value of quality measure used in induction. Other rules are then discarded.

The main argument in support of the max rule quality method is a different approach to

the estimation of the target value. Here, the prediction is not based on the target value of

all examples that are covered by rules in conflict but on the most reliable subset of these

examples, which is directly defined with respect to the quality measure and indirectly with

the trade-off between two optimization criteria (consistency and coverage) of the rule.

2.6. Experimental evaluation of rule-based regression model

An appropriate approach to research is no less important than the choice of the algorithm

or heuristic to control the process. In addition, the final model evaluation should be objective,

repeatable and (in the case of writing one’s own algorithm) comparable to existing methods.

It is also worth remembering that it is essential that the results should be independent of the

available data samples that are used to build the model. For example, one might encounter a

situation where a data set is limited or a sample is not representative because of the uneven

distribution of examples. In practice, the latter is ensured by the use of a cross-validation.

The cross-validation is a method for a reliable assessment of the prediction. The main idea

is to split the data set into two subsets. The first one is used to train the model and therefore it is

called a training set. The second one is applied for testing the model hence it is called a testing

set. If learning schemas involve an additional stage to optimize some parameters after training

or to evaluate a few created schemas on fresh data before the final error/accuracy evaluation,

then the third subset, which is called validation set, is needed. If the optimization process is not

required, then this set may be omitted. In this work, the validation set is not used, thus further

considerations concern only the training and test sets.

33

The simplest way is to split the data set once and employ two-thirds of the data for training

and the rest for testing. However, this process is heavily dependent on a single division (you

can call it luck). Therefore, a different approach is utilized.

One of the most popular variations of this method is known as k-fold cross-validation. In

this variant of cross-validation the data set is partitioned into k blocks (folds). Then each fold

is successively used to test the model and the remaining k − 1 folds are applied in the learning

process. Usually, the process of creating folds should be carried out maintaining the distribution

of the entire data set. In that case, the method is additionally described as the stratified k-fold

cross-validation.

The process of separation can be illustrated as follows. The data set D is split into k blocks

(U1, U2, U3, U4, U5, U6, U7, U8, U9 and U10). Then, in the first iteration the subset U1 is taken for

testing the model and the rest of folds (U2,...,U10) are used for training. In the second iteration

U2 is employed to test the model and U1, U3, ..., U10 are employed to build it. This process is

repeated until each of the subsets will be used for testing. K obtained results are then averaged.

In the experimental evaluation of classification algorithms the most common is the 10-fold

stratified cross-validation, however it is not proven that 10-folds is better than 5-folds, 20-folds

or 1000-folds [127]. Due to the lack of defined classes in the regression problems the term

stratification refers to the quantiles. In the case of 10-folds they are also known as deciles.

Apart from the terms, the number of folds has significant meaning when it comes to consider

the performance of algorithms. It seems that ten folds is an appropriate compromise between

performance and independence of prediction.

Lastly, the cross-validation is sometimes repeated q times due to the variance reduction.

Then formally the evaluation is performed based on the q × k-fold cross-validation. The final

performance estimation is made using the results from the k-fold cross-validation repeated q

times. The q values are averaged again to obtain a single value. In the dissertation q takes the

value 1, because of efficiency reasons. Nevertheless, the results are usually given for multiple

data sets.

2.7. Statistical comparison of rule-based regression models

One of the final stages of the data mining analysis is a comparison of obtained results. The

simplest approach is to analyze averaged values from different algorithms and different data

sets. However, an additional element of this comparison is the use of statistical analysis, which

allows you to specify whether there is enough evidence to say that one algorithm is better than

another. In other words, the statistics verify the hypothesis of improved performance using tests

[25].

34

In those tests the null hypothesis is that general performances of examined algorithms are

equal. The hypothesis is then accepted (if there is no statistical significance between algorithms)

or rejected (if one algorithm statistically differs from other algorithms) under a pre-defined

significant level α (mostly 0.1, 0.05 or 0.01).

Statistical evaluation is also often treated as an essential part of the validation of machine

learning algorithms [25]. The crucial work that unified an approach to evaluation of multiple

algorithms on multiple data set is this of Demšar. Before this paper many researches have ended

their work summarizing the results of statistical tests with the use of the matrix in which they

compared all pairs of classifiers. In turn, the main aim of Demšar is work was to study, collect

and systematize the statistical tests that could be used to compare two or more classifiers on

multiple data sets.

To compare two methods or one method to the others, based on multiple data sets, Demšar

has proposed to use the Wilcoxon signed-ranks test in place of the paired t-test, highlighting

the weaknesses of this second one. In short, these are: an assumption of normal distributions

due to the possession of small samples and certainty of commensurability over data sets. On the

other hand, the Wilcoxon test is a non-parametric statistical test that does not assume normal

distribution. Moreover, in the special case of the exponential or mixed-uniform distribution the

Wilcoxon test is also more resistant to the outliers [25, 64]. The Wilcoxon test is only weaker

in the case where assumptions of the paired t-test are met.

In the first step of the Wilcoxon test absolute differences between the performance of two

classifiers are calculated. Then, these differences are ranked using these absolute differences

and finally positive and negative ranks are added based on the formula:

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di); R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di);

where for differences = 0 ranks are split evenly for both sums with the assumption that the

number of these differences is even, if not one of them is ignored.

In the last step, the test statistic T is calculated as a smaller value of the sums R (T =

min(R−, R+)). The T statistic is then compared to the exact critical value for the Wilcoxon

test. If the comparison takes into account about 25 sets [25, 135], methods or algorithms of

the exact critical value can be read from one of many available statistical books. For a greater

number of sets to test, the statistic T has approximately normal distribution (see Proof 2.7 for

T+. For T− the proof can be performed in an analogous manner.) N(µ, σ) where

35

µ =
N(N + 1)

4
σ =

N(N + 1)(2N + 1)

24

and the null-hypothesis can be tested using the Z-test

z =
T − µ√

σ
=

T − 1
4
N(N + 1)√

1
24
N(N + 1)(2N + 1)

(2.28)

The null hypothesis with α = 0.05 can be rejected if z is then smaller than −1.96.

Example. Let xi = 1 if the sign of the compared element is positive and 0 if it is negative.

Considering the null-hypothesis, each of xi has the Bernoulli distribution where µ = 1
2

and

σ = 1
2
· 1
2

= 1
4
. Based on the Central Limit Theorem and using the properties of expected values

we can then proof then

µ = E[T+] = E[
n∑
i=1

ixi] =
n∑
i=1

E[ixi] =
n∑
i=1

iE[xi] =
1

2

n∑
i=1

i =
1

2

n(n+ 1)

2
=
n(n+ 1)

4

σ = var[T+] = var[
n∑
i=1

ixi] =
n∑
i=1

var[ixi] =
n∑
i=1

i2var[xi] =
1

4

n∑
i=1

i2 =

=
1

4

n(n+ 1)(2n+ 1)

6
=
n(n+ 1)(2n+ 1)

24

are exactly the same as µ and σ for normal distribution.

The testing procedure is the best to illustrate with an example. Suppose that Table 2.4 shows

the comparison of average (over few data sets) performance (RRSE) of two algorithms. The

experiment was performed on 8 quality measures and the null-hypothesis is that both algorithms

performed equally well.

In Table 2.4 there is one quality measure which performed equally well in both algorithms

A and B. The last column contains the rank assigned from the lowest to highest absolute

difference. If two differences are equal then, the rank is averaged like for the LS and wLap

measures where the following ranks should be 7 and 8 but both have 7.5. In the next step the

ranks are summed up for positive and negative differences. The result is R+ = 29 and R− = 1.

The critical value for the Wilcoxon test for a confidence level 0.05 and for 8 quality measures

is 4. According to the definition of the test, if the smaller of sums from R+ and R− is equal

or less than the obtained critical value, then the null-hypothesis is rejected. In the illustrated

example the null-hypothesis is therefore rejected. Thus in this example it is credible to say that

regardless of the chosen quality measure the A algorithm is better than the B algorithm.

36

Table 2.4: Performance comparison of two exemplary algorithms for carrying out the statistical
evaluation of the significance using the Wilcoxon test

quality measure algorithm A algorithm B difference rank

C1 73.31 73.45 +0.14 4

C2 74.77 74.78 +0.01 2

Corr 77.65 77.71 +0.06 3

g-measure 88.61 88.61 0.00 1

s-Bayesian 82.15 82.41 +0.26 5

LS 72.53 72.88 +0.35 6.5

RSS 78.50 78.48 0.00 1

wLap 73.77 74.12 +0.35 6.5

For comparing more than two classifiers on multiple data sets Demšar has proposed to use

the non-parametric Friedman test instead of repeated-measures ANOVA. The reasons for this

recommendation are: an assumption of normal distribution in case of ANOVA and, what has

been emphasized as more important, the assumption of sphericity (also known as circularity).

This means that the variances of the differences between data sets are equal (e.g. between A

and B, B and C and also A and C), not only with respect to the given samples but also to the

population.

In contrast to the Wilcoxon test where ranks are determined for a single criterion, the

Friedman test is based on the ranks of algorithms averaged over all tested criteria (e.g. quality

measures as in previous example)

Rj =
1

N

N∑
i=1

ri

where ri is a single rank calculated for i-th of N data sets for j-th of k algorithms. The ranks of

algorithms performance ties of are averaged. Then the Friedman statistic is obtained using the

formula

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
(2.29)

with k-1 degress of freedom.

It should be borne in mind that χ2
F is distributed according to the F distribution for

sufficiently large values of N and k, otherwise exact values have to be taken [25]. It has been

shown [53], however, that the χ2
F statistics is too conservative, which can be understood as a

37

lower ability to detect significant differences, and therefore a remedy has been proposed in the

form of

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

(2.30)

In this test the null hypothesis H0, which is that all classifiers are the same, is rejected under

the predefined significant level, if the value of the FF statistics is smaller than the critical value

of the F distribution with k−1 and (k−1)∗(N−1) degrees of freedom. If theH0 is rejected, the

post-hoc Nemenyi test can be performed to compare algorithms to each other. In this test two

compared classifiers are statistically different on the condition that the corresponding average

ranks differ by at least a critical distance given by a formula

CD = qα

√
k(k + 1)

6N
(2.31)

where qα is a critical value derived from the Studentized range statistics divided by
√

2.

However, in case there are more algorithms in the comparison, the test of each pair of

algorithms might be too time-consuming and require appropriate presentation of results. A

good example of such presentation are critical difference diagrams [25], where statistical

significant differences between multiple algorithms and over many data sets are drawn. The

best presentation of the Friedman and Nemenyi tests, including critical difference diagrams,

would be by an example.

Let us assume that the values of the error of 3 (k = 3) algorithms with respect to 12

(N = 12) data sets were obtained. The results are presented in Table 2.5. The rankings in

parentheses are assigned in the order from the smallest to the largest value of the error for the

given quality measure in each algorithm (by rows). In the last row the average rank of each

algorithm is determined. The null hypothesis H0 in this example is that all of three algorithms

perform equally well.

χ2
F =

12 · 12

3 · 4

[
(1.9172 + 2.7922 + 1.2912)− 3 · 32

4

]
= 13.64

FF =
11 · 13.64

12 · 2− 13.64
= 14.48

The critical value has to be obtained for 3 − 1 = 2 and (3 − 1) · (12 − 1) = 22 degrees

of freedom. At α = 0.05, the critical value for F (2, 22) is 3.44. Therefore the null hypothesis

is rejected. The Nemenyi test can thus be used to find difference between algorithms. For

3 algorithms the corresponding critical value at α = 0.05 is 2.344 and the value of critical

distance CD is 2.344 · sqrt(3·4
6·12) = 0.9569. Two algorithms then differ from each other if

38

Table 2.5: Performance comparison of three exemplary algorithms for carrying out the
statistical evaluation of the significance using the Friedman test

data set algorithm A algorithm B algorithm C

auto93 73.31 (2) 73.45 (3) 72.42 (1)

auto-mpg 74.77 (2) 74.78 (3) 72.99 (1)

auto-price 77.65 (1.5) 77.71 (3) 77.65 (1.5)

baseball 88.61 (2.5) 88.61 (2.5) 85.49 (1)

bodyfat 82.15 (1) 82.41 (3) 82.22 (2)

breasttumor 72.53 (1.5) 72.88 (3) 72.53 (1.5)

cholesterol 78.48 (2) 77.50 (3) 76.87 (1)

cloud 74.12 (2) 74.77 (3) 73.78 (1)

concrete 74.59 (1) 76.44 (3) 75.07 (2)

cpu 81.92 (3) 81.70 (2) 81.66 (1)

dee 73.21 (1.5) 74.22 (3) 73.21 (1.5)

diabates 76.13 (3) 76.09 (2) 75.86 (1)

average rank 1.917 2.792 1.291

the difference in the value of their ranks is greater than 0.9569. In the presented examples the

differences between algorithms are: A to B 0.875, A to C 0.626 and B to C 1.501, but only for

the last pair the C algorithm statistically outperforms the B algorithm.

In case they are more classifiers, the comparison can be performed in the same way,

however, it is much more transparent when critical difference diagrams are used. Such a

diagram, in relation to given average ranks, is presented in Figure 2.2.

CD

3 2 1

C
A

B

Figure 2.2: Comparison of all algorithms against each other with the Nemenyi test at α = 0.05

Finally, it is worth mentioning that such non-parametric tests like the Wilcoxon test and

the Friedman test can be used to compare many types of machine learning results including

classification or prediction accuracies, error ratios, theory sizes, computation times or any other

39

measures that can be compared with the use of ranks. This advantages and the previously

mentioned ones have contributed to the high popularity of these tests [3, 7, 58, 86, 109, 110,

131].

3. Sequential rule induction algorithms

The existence of a number of classification rule induction algorithms is a fact. However,

choosing the best one is not easy. Different algorithms can be characterized by different

classification accuracy, the size of theories or by one’s own subjective or objective criteria.

Considering the problem from the other hand, the final evaluation (in fact the accuracy in

classification) of the constructed model depends on the choice of the algorithm. In the case

of regression rule induction the problem to choose the best or universal algorithm should be the

same.

Please note that although different covering classification rule induction algorithms can be

described by different performance or accuracy, they usually use one of two induction strategies:

top-down or bottom-up. Moreover, these strategies describe the induction process in a general

enough way that checking them both to tackle a regression problem seems to be a natural

consequence. In this chapter, both approaches are presented taking into account the appropriate

approach for regression.

First of all the Top-down strategy is presented. Later on, the precursory and unique approach

to the rule induction using the Bottom-up strategy using centroids and k-d tree algorithm,

is presented. The third part feature’s a novel and innovative Fixed strategy for target value

prediction. Finally, the author presents an unconventional approach to the knowledge discovery

and the evaluation of regression rules with the use of confidence intervals.

3.1. Top-down strategy

The most common strategy for rule induction is a top-down one. The general idea is to

define the most general problem and then divide it into smaller subproblems. This division is

repeated for the subproblems until further division is impossible. In the end, the whole problem

is presented by a set of smaller segments.

The approach is transferable to the regression rule induction algorithms. Let ruleSet be a

set of established rules which is initially an empty set (see the Algorithm 2, line: 2), examples

is a training set of examples and ruleQualityMeasure is the selected heuristic to control the

induction. The process of a single rule induction without any post-processing methods can be

41

presented by only one phase where the rule grows (Algorithm 2, line: 5). In this phase the

elementary conditions are successively added to the rule.

Algorithm 2 Pseudocode of the Top-Down regression rule induction algorithm
1: function TOPDOWNRULEINDUCTION(examples, ruleQualityMeasure)
2: ruleSet← ∅
3: uncoveredExamples← examples
4: while uncoveredExamples 6= ∅ do
5: rule← Grow(examples, uncoveredExamples, ruleQualityMeasure)
6: covered← Covered(rule, examples)
7: uncoveredExamples← uncoveredExamples \ covered
8: ruleSet← ruleSet ∪ {rule}
9: end while

10: return ruleSet
11: end function

The set of candidate elementary conditions is built as follows. For the numerical attribute

the elementary condition takes the form of a < q or a > q where a is the name of the attribute

under consideration and q is the average between two successive and unique values from the

range of the sorted attribute a. For example, if the values 1.0, 3.0 and 6.0 belong to the attribute

a then the conditions under consideration would be a < 2.0, a > 2.0, a < 4.5 and a > 4.5. If

the attribute type is nominal, then the elementary condition takes the form of a = q where q is

a possible nominal value from the range of the attribute a.

The first set of candidate elementary conditions is obtained with the use of an entire set

of training examples (Algorithm 3, line: 5). Further candidate sets are built based on a set of

examples covered by the conjunction of condition which has been already added to the rule.

Each candidate elementary condition is added to the temporary rule (Algorithm 3, line: 9) and

such a rule is evaluated using the selected quality measure (heuristic) (Algorithm 3, line: 10).

The condition for which the rule obtains the highest value of the heuristic is selected as the

final one (Algorithm 3, line: 16). The growth stage ends when the rule does not cover any

negative examples or when the addition of the next elementary condition does not change the

set of examples covered by the rule (Algorithm 3, line: 4). The general outline of the grow

procedure is presented by the Algorithm 3.

Another assumption that has been taken into account is that the missing attributes cannot

be covered by any elementary condition. If the example has a missing or unknown value of

any attribute, then the rule can cover this example only if the rule does not contain attributes

whose values are unknown for this example. For example, if the rule contains two elementary

conditions w1 and w2 for attributes named a and c and there would be an example with the

42

Algorithm 3 Pseudocode of the Grow procedure of the Top-Down algorithm
1: function GROW(examples, ruleQualityMeasure)
2: rule← ∅
3: coveredExamples← examples
4: while stop criterion do
5: conditions← PossibleElementaryConditions(coveredExamples, rule)
6: bestQuality ← −∞
7: bestCondition← ∅
8: foreach c in conditions do
9: temporaryRule← addConditionToRule(rule, c)

10: quality ← Evaluate(temporaryRule, examples, ruleQualityMeasure)
11: if quality ≥ bestQuality then
12: bestQuality ← quality
13: bestCondition← c
14: end if
15: end foreach
16: rule← addConditionToRule(rule, bestCondition)
17: coveredExamples← Covered(rule, examples)
18: end while
19: return rule
20: end function

missing attribute b, then the rule can cover that example. But if the missing attribute would be

a or c then the rule does not cover this example.

After that, the examples covered by the built rule (Algorithm 2, line: 6) are removed from

the training set (Algorithm 2, line: 7) and the rule is added to the final set of rules (Algorithm

2, line: 8). The process is then repeated for remaining training examples (Algorithm 2, line: 4).

The general outline of the algorithm can be represented by Algorithm 2.

3.2. Bottom-up strategy

The bottom-up strategy works in contrast to the top-down strategy direction. The main idea

is to convert the problem presented in great detail to the problem described in a general fashion.

The generalization process is repeated until the expected abstraction level is obtained. It is

worth noting that in classification tasks it is a much less frequently used approach and mostly

to the imbalanced data [86]. Moreover, in the regression tasks it is still an unexplored area of

science.

With regard to the regression rule induction in this work, the bottom-up strategy is proposed

as follows. Let ruleSet is a set of established rules, examples be a training set of examples and

ruleQualityMeasure is the selected heuristic to control the induction. The process of a single

43

rule induction without post-processing can be divided into two phases: initialization (Algorithm

4, lines: 5− 6) and generalization (Algorithm 4, line: 7).

Algorithm 4 Pseudocode of the bottom-up regression rule induction algorithm
1: function BOTTOMUPRULEINDUCTION(examples, ruleQualityMeasure)
2: ruleSet← ∅
3: uncoveredExamples← examples
4: while uncoveredExamples 6= ∅ do
5: centroid← DetermineCentroid(uncoveredExamples)
6: rule← CreateRuleForNearestExample(centroid)
7: rule← Generalize(rule, uncoveredExamples, examples, ruleQualityMeasure)
8: covered← Covered(rule, examples)
9: uncoveredExamples← uncoveredExamples \ covered

10: ruleSet← ruleSet ∪ {rule}
11: end while
12: return ruleSet
13: end function

In the initialization phase a certain rule must be specified. In order to choose this rule,

the centroid method is proposed (Algorithm 4, line: 5). First, the centroid of all attributes

is determined based on the training set. Then each example is taken under consideration

to calculate the Euclidean distance from the centroid to the given example. The distance is

measured by the formula

d =

√√√√ k∑
i=1

(ci − ei)2

where i stands for the index of the attribute, c denotes the centroid and e stands for the example

under consideration. In the case of symbolic attributes, the distance is fixed and takes the value

of 0 if both values are equal, or 1 in other cases.

The example for which the value of the Euclidean distance is the smallest is selected. Then

the most specific rule is built in such a way that the rule corresponds and finally covers the

chosen example from the training set (this example can be called a seed) (Algorithm 4, line: 6).

The body of the rule consists of conditions derived from the example. In the case of nominal

attributes the elementary conditions take a form of (a = q) where q is a nominal value of

attribute a from the example. On the other hand, for the numerical attributes the elementary

conditions take a form of (a < q) and/or (a > q) where q is the arithmetic mean between two

successive and unique values from the range of attribute a. At the end of this phase the rule has

one or two elementary conditions for each numerical attribute, depending on the position of the

considered value in the sorted set of all values of attribute a.

44

Table 3.1: Example of a data set used to induce regression rules using the bottom-up strategy

U a b d

1 1.5 low 4

2 2 medium 3.5

3 3 medium 3

4 4 high 2

Two conditions (< and >) are added to the rule in order to ensure that the built rule will

cover only the seed. Therefore, one condition is added to the rule only for the minimum and

maximum values from the range of numerical attribute a. Such a seed has only one neighbour,

with a greater or lesser value depending on the used symbol comparison. Such a construction

of rules can be illustrated by the examples from Table 3.1.

Let us assume that there is a data set U with four examples e1, e2, e3 and e4. Each example

has only two conditional attributes. The first one holds numeric values and the second one

nominal values. In order not to obscure the process, the numeric attribute a has already been

sorted. The ordinal number is not involved in the induction process, however, has been retained

to refer to specific examples.

The centroid in the first iteration for a given data set would be a = 2.625 which stands for

the average value over attribute a and b = medium that is a mode from an attribute b. The

Euclidean distances are then d1 = 2.125, d2 = 0.625, d3 = 0.375 and d4 = 2.375 respectively

for the corresponding examples. Thus, the initial rule comes from the example e3. Then the

initial rule would be as follows:

rinit : IF b = medium AND a > 2.5 AND a < 3.5 THEN 3

where values for attribute a are calculated as the arithmetic mean between two successive values

from the range a - i.e. 2.5 and 3.5.

In the generalization phase (see Algorithm 5), the rule built from the seed is iteratively

subjected to generalization until an empty rule is obtained or a stop condition is reached.

The process of rule generalization is done for each of k nearest examples determined by the

k-dimensional tree algorithm (k-d tree) [29, 85], which can be understood as an extension of

the nearest neighbour algorithm for binary space partitioning for k dimensions (Algorithm 5,

line: 4).

Each iteration of generalization (Algorithm 6) boils down to the different examination of

attributes depending on their type. In the case of nominal attributes, the condition is dropped

if the rule and example have different values on it (Algorithm 6, lines: 5 − 6). For numerical

45

Algorithm 5 Pseudocode of the Generalization procedure of the Bottom-Up algorithm
1: function GENERALIZE(rule, uncoveredExamples, examples, ruleQualityMeasure)
2: possibleGeneralizations← ∅
3: while stop criterion do
4: neighbours← GetNearestNeighbours(rule, uncoveredExamples)
5: bestQuality ← Evaluate(rule, examples, ruleQualityMeasure)
6: bestRuleGeneralization← ∅
7: foreach n in neighbours do
8: ruleGeneralization←MostSpecificGeneralization(rule, n)
9: quality ← Evaluate(ruleGeneralization, examples, ruleQualityMeasure)

10: if quality ≥ bestQuality then
11: bestQuality ← quality
12: bestRuleGeneralization← ruleGeneralization
13: end if
14: end foreach
15: rule← bestRuleGeneralization
16: allGeneralizations← allGeneralizations ∪ rule
17: uncoveredExamples← examples\Covered(bestRuleGeneralization, examples)
18: end while
19: bestGeneralizedRule← FindBestGeneralization(allGeneralizations)
20: return bestGeneralizedRule
21: end function

attributes (Algorithm 6, lines: 7 − 19), the boundaries of intervals are extended to cover the

example. The new boundary value is the arithmetic mean between the value of the example for

attribute a and the successive value from the range of this attribute. These procedure is called

Most Specific Generalization and its general outline is presented in Algorithm 6.

From all generalizations derived from the k nearest neighbours, the rule with the best value

of the given heuristic is selected as the final one and the generalization process is repeated for

this rule. When a stop condition is reached, the generalization phase ends and the rule with

the highest value of the quality measure is picked (Algorithm 5, line: 19). The stop condition

in the bottom-up strategy is the same as in the top-down approach where the rule has to cover

at least a fixed number of examples. This also prevents from the generalization of an empty

rule that would cover en entire data set of examples. To preserve the possibility of comparing

algorithms, the value of a fixed number of examples has also been preserved.

Finally, the rule is added to the final set (Algorithm 4, line: 10). Then the examples covered

by the built rule (Algorithm 4, line: 8) are removed from the training set (Algorithm 4, line:

9) and the process starting from determining the centroid is repeated for remaining training

examples. In case the built rule covers an insufficient number of examples with regard to the

assumed fixed number of examples, the seed example is removed from the training examples

46

Algorithm 6 Pseudocode of the Most Specific Generalization procedure
1: function MOSTSPECIFICGENERALIZATION(Rule, Neighbour)
2: foreach Attribute Xi do
3: if condition on Xi is missing in Rule then
4: Do nothing
5: else if Xi is nominal and Neighbouri 6= Rulei then
6: Remove condition on Xi from Rule
7: else if Xi is numeric and Neighbouri > Rulei,upper then
8: if Rulei,upper is boundary value then
9: Remove condition on Xi from Rule

10: else
11: Rulei,upper = (Neighbouri +Neighbouri+1)/2
12: end if
13: else if Xi is numeric and Neighbouri < Rulei,lower then
14: if Rulei,lower is boundary value then
15: Remove condition on Xi from Rule
16: else
17: Rulei,lower = (Neighbouri +Neighbouri−1)/2
18: end if
19: end if
20: end foreach
21: return rule
22: end function

47

and it is treated as uncovered. The process is then repeated for remaining examples. The general

outline of the bottom-up algorithm can be represented by Algorithm 4.

3.3. Fixed strategy

The simple term of the numerical target value, in the context of regression, conceals a more

complex issue. It was mentioned that in this work the rules are mostly induced with a single

numerical value (the median of target values of examples covered by the rule) as a prediction

but studies concern two different approaches. Taking into account the possibility of occurrence

of outliers, we reject the averaged value of conclusion and in its place we study the median

value of examples covered by the rule. In the second method the prediction of the target value

is slightly different and its principle is derived from classification rule induction algorithms.

Algorithm 7 Fixed value modification (lines 3 − 4) in the Grow procedure of Top-Down
algorithm

1: function GROW(examples, ruleQualityMeasure)
2: rule← ∅
3: centroid← DetermineCentroid(examples)
4: rule← AssignFixedTargetV alueForNearestExample(rule, centroid)
5: coveredExamples← examples
6: while stop criterion do
7: conditions← PossibleElementaryConditions(coveredExamples, rule)
8: bestQuality ← −∞
9: bestCondition← ∅

10: foreach c in conditions do
11: quality ← Evaluate(rule ∪ c, examples, ruleQualityMeasure)
12: if quality ≥ bestQuality then
13: bestQuality ← quality
14: bestCondition← c
15: end if
16: end foreach
17: rule← rule ∪ c
18: coveredExamples← Covered(rule, examples)
19: end while
20: return rule
21: end function

In the classification rule induction algorithms, the rule induction is performed for each

decision class separately. Examples belonging to one of decision classes form a positive class

while the remaining examples are included in the negative class. Then the rules are successively

built until all examples from the positive class are covered by at least one rule. Then the

next class is considered as positive and the process of single rule induction is repeated. The

48

induction ends when all classes have been examined. Such an approach can be found in many

classification rule induction algorithms [20, 110].

The key transferred idea that has been used in the proposed algorithm is the consideration of

the classes in turn. The interpretation in regression rule induction algorithms puts each example

and its target value down to the independent class. It means that the target value of a certain

example (let us call it seed for both top-down and bottom-up strategy) is permanently assigned

to the rule at the beginning and it does not change during the process of induction. It only

remains to determine how this seed is chosen.

Algorithm 8 Fixed value modification (line 7) in the Bottom-Up algorithm
1: function BOTTOMUPRULEINDUCTION(examples, ruleQualityMeasure)
2: ruleSet← ∅
3: uncoveredExamples← examples
4: while uncoveredExamples 6= ∅ do
5: centroid← DetermineCentroid(uncoveredExamples)
6: rule← CreateRuleForNearestExample(centroid)
7: rule← AssignFixedTargetV alueForNearestExample(rule, centroid)
8: rule← Generalize(rule, uncoveredExamples, examples, ruleQualityMeasure)
9: covered← Covered(rule, examples)

10: uncoveredExamples← uncoveredExamples \ covered
11: ruleSet← ruleSet ∪ {rule}
12: end while
13: return ruleSet
14: end function

To permanently assign the target value to the rule we propose the method based on a centroid

(Algorithm 7, line: 3 and Algorithm 8, line: 5). In the first step a middle point, which is called

the centroid, of the uncovered examples is calculated. For attributes with numerical values we

assume that the midpoint is the mean of all values of the given attribute, while for the nominal

attributes the central point is a mode. After this assignment, the k-dimensional tree algorithm

is used on the uncovered set of examples to find the example which has the smallest euclidean

distance (the nearest example) to this centroid. Finally, the found example is marked as the

seed and its target value is assigned to the empty rule (Algorithm 7, line: 4 and Algorithm 8,

line: 7). The modifications for the Top-Down algorithm are outlined in Algorithm 7 while for

the Bottom-Up algorithm in Algorithm 8. The process can be also illustrated by the example,

however, it is very similar to the process of constructing the rule in the Bottom-Up algorithm

as it was presented before for Table 3.1. In the Fixed value approach the assigned target value

does not change during the process of induction.

Such an approach has no extra effects on the algorithm that uses the bottom-up approach.

However, in the case of the top-down rule induction algorithm, the rule that is being built has

49

to cover the seed too. Such an assumption is necessary because otherwise, the rule could cover

examples completely unrelated to the estimated target value. And thus, this would have a huge

impact on the prediction error. In the bottom-up approach this requirement is satisfied by the

definition because the seed is always covered by the induced rule due to the specific induction

process.

The effect of aforementioned assumptions is the study of four methods of prediction of the

target value. These are:

1. The top-down algorithm with the median value as the prediction, which further in this work

will be cited simply as Top-Down algorithm (TD).
2. The top-down algorithm with the fixed value as the prediction, which further will be cited

as Top-Down Fixed algorithm (TDF)
3. The bottom-up algorithm with the median value as the prediction, which further will be

cited simply as Bottom-Up algorithm (BU)
4. The bottom-up algorithm with the fixed value as the prediction, which further will be cited

as Bottom-Up Fixed algorithm (BUF)

3.4. Rule quality with a given confidence level

The quality of the rule, which is induced based on the data sample, is subjected to a

distribution of this sample. In the perfect case the algorithm therefore should consider theentire

population to prevent this problem. Considering the rule quality obtained on the basis of the

sample (usually just the available set of data), the problem should be kept in mind. Alternatively,

the rule can be evaluated in terms of statistics.

One of such approaches, where the generation of association and decision rules using, inter

alia, confidence intervals, has been proposed by Wieczorek and Słowiński [126]. Due to the

possibility of partial adaptation of the method in the induction of regression rules, the key used

part of this approach is presented below.

Consider any rule in a form of ϕ→ ψ. In the method of dynamic reduction to classification,

indirectly, one of the most important optimization parameters is p, which stands for the number

of examples satisfying the premise ϕ and the conclusion ψ and n which presents the number

of examples satisfying the premise but not the conclusion. Assume further that the data set of

examples (U,A) is a set of |U | realizations of independent and uniformly distributed random

variables. Moreover, each examples from U belongs to one of two aforementioned groups (p or

n) or to the reminder group (not p and not n). The probabilities of such an event can be written as

(p1, p2, 1-p1-p2), where p1 and p2 stand for the probability of belonging to p or n respectively and

50

1-p1-p2 corresponds to a probability of another event. Events are also exhaustive and exclusive,

which means that the occurrence of one event precludes the occurrence of another. Taking

into consideration all the objects from the data set, one can therefore say that this data set is an

example of multinomial random variables realization with unknown parameters (p1, p2, 1-p1-p2)

and known parameters |U |. Thereby, the values p1 and p2 are true values of p, which is often

called support, and n, which in turn is called anti-support of the considered rule obtained from

a data set of a given multinomial distribution [126]. The estimation of these parameters can

be performed using the total number of examples marked as positive and negative, respectively

(see SeCoReg algorithm) divided by the size of the data set |U |

p̂ =
p

|U |
n̂ =

n

|U |
(3.1)

The estimators of true values of parameters, calculated in this way, then can be used

to determine confidence intervals. Typically, the confidence intervals are calculated for the

confidence level α with one of the values: 1% or 5%. These confidence intervals for true values

of p and n consist of pairs of values (plow,phigh) and (nlow,nhigh) which are simultaneously a

lower and upper border of a given interval. Then the formal presentation of each interval is as

follows

plow ≤ p ≤ phigh

nlow ≤ n ≤ nhigh

where the probability of the occurrence of true value within this interval is equal to 1−α [126].

The last step of definition of confidence intervals for p and n is the determination of values

plow, phigh and nlow, nhigh. The authors [126] noted that the problem of the definition of the

confidence interval had been taken into consideration by several researchers and allowed the

development of a few types of methods, e.g. exact method, method based on bootstrap, method

for small samples or method which uses approximation approach. The choice of defining the

confidence intervals is not a part of this work, therefore we decided to use the method proposed

by Gold [44]. The confidence intervals for p (but analogously for n) proposed by Gold have the

form:

plow = p̂− χ

√
p̂(1− p̂)
|U |

(3.2)

phigh = p̂+ χ

√
p̂(1− p̂)
|U |

(3.3)

51

where χ is a square root of the critical value from chi-square distribution for one degree of

freedom and two estimated parameters. In this work we assumed the confidence level α = 5%

to emphasize the proposed approach and to allow for a more visible presentation of the results.

Then the resulting square root of the critical value is χ =
√

5.02 for α = 0.05 [126].

The defined confidence intervals lead to believe that the true value of the probability p and

n lies somewhere within these intervals. From the rule quality point of view it is credible to

say that the observations based on a data sample are then equally likely (with the probability

1-α) to the lower (plow) and upper (phigh) solutions. In the best case the true values of p̂

and n̂ from Equation 3.1 can be then phigh and nlow. The quality of the rule with such

values would be the highest possible one due to the biggest number of examples satisfying the

premise and conclusion p and the lowest number of examples which satisfy only the premise

n. Alternatively, the worst case and hence the worst rule quality would be with the opposite

values. It means that p would be the lowest and n would be the highest. These approaches are

called optimistic and pessimistic respectively.

In our algorithm we introduced the parameter for choosing the rule evaluation approach

(pessimistic, standard or optimistic). The standard one is formulated as in the SeCoReg

algorithm. The optimistic version is as follows. The estimation of parameters p̂1 and p̂2 is

calculated based on the observed parameters p and n and the size of the data sample |U |. If

p1 high is denoted as phighest and p2 low as nlowest with respect to parameters p and n then

phighest = p̂+
√

5.02

√
p̂(1− p̂)
|U |

nlowest = n̂−
√

5.02

√
n̂(1− n̂)

|U |

Finally, the new values of p and n are assigned with values rounded to the nearest integer with

the round half up tie-breaking rule

pnew =

⌊
phighest · |U |+

1

2

⌋
nnew =

⌊
nlowest · |U |+

1

2

⌋
It is noteworthy that in extreme cases the values of left and right endpoints are 0 and |U |
respectively. Considering the left case, the function that returns the number of covered examples

cannot return the value less than 0. In the second case the rule quality is given with respect to

the data sample, so in the best case the rule could cover at most all of the included examples.

52

The pessimistic version of the assessment of the rule quality is performed in a similar way

with the assumption that the plowest and nhighest values are determined. Apart from the chosen

variant, the evaluation ends when all necessary statistics are obtained and the rule quality is

calculated using one of the quality measures. This approach can also be understood as a change

of value of the selected quality measure to get more pessimistic or more optimistic evaluation

of the given rule.

4. Optimization of rules and rule sets

As it was mentioned before, the redundant rules can lead to the overfitting problem. This

problem usually occurs when the model is defined too accurately, e.g. a solution is described

with too many parameters thus it is more similar to the training examples rather than shows

general trends or patterns occurring in them. As a result, the constructed model may perform

well on the training data set but poorly on the unseen objects in the future [34, 69].

In order to avoid a situation in which the model becomes overtrained, the safety mechanisms

are involved. Generally these mechanisms can be divided into two groups. In the first group,

called pre-pruning, the optimization is performed during the induction process of each rule,

therefore the algorithms which belong to this group are directly related to the specific rule

induction algorithm. The main goal of these algorithms is to prevent overfitting of the rule to

the training set of examples. This process can be also understood as a pruning phase of a single

rule, because it follows right after the growth phase for each rule in the sequential covering rule

induction process.

Conversely, the second group is known as post-pruning because the rule-based model is

examined after the completion of its creation. The algorithms then involve the removal or

transformation of one or more rules in such a way that the final rule set meets the selected

optimization criteria, e.g. the error of prediction or the accuracy of classification are at least

at the same level but the size of the theory is smaller. The post-pruning stage, which is also

independent of the induction algorithms, is called filtration. Due to such independence, the

focus will be put on rule filtering algorithms used in the stage of post-pruning, because these

algorithms can be used to prune any unordered set of rules.

The research in the field of pruning algorithms mostly concerns classification systems but

it has proven [32] that both approaches, pre- and post-pruning, have coped well with noise

reduction independently. However, the post-pruning algorithms are inefficient, because they

process a large amount of rules and their elementary conditions which are then pruned. As a

remedy for the problem of wasting time, the combination of both phases has been proposed,

e.g. in the TDP algorithm.

The numerous empirical studies show that in classification the number of rules after pruning

and their classification abilities may vary depending on the pre- and post-pruning method [1,

32, 102, 103, 110, 131]. However, the regression rules are not as popular as their classification

54

counterparts and the research in the area of regression relates rather to the new rule induction

algorithms than to the filtration methods [24, 30, 59]. On the contrary, some classification rule

filtering methods, like these based on genetic algorithms [1, 54], can be also applied to the

regression rule sets. Nevertheless, the considerable group of filtration algorithms cannot be

applied directly to the regression rule sets without any prior modifications.

The good optimization results obtained in the classification task, however, require

verification in the regression problem. It is not clear whether the good results obtained

in the classification guarantee similar results in the regression. Thus, this chapter presents

two pre-pruning algorithms which are linked to rule induction algorithms presented earlier.

Both pre-pruning algorithms are based on the hill-climbing approach. However, one of them

proposes to use a more sophisticated approach using the Tabu list. In the following section 6

post-pruning algorithms are proposed. They could be used independently in any regression rule

induction algorithms, because they do not interfere in the process of rule construction.

4.1. Algorithms for rule pruning

Pre-pruning algorithms are associated with already mentioned rule induction algorithms.

Their main purpose is to prevent the occurrence of excessive overfitting rules to training data.

For this purpose, the most frequently used mechanism is the one for the modification of the rule.

In this work two such mechanisms are proposed. The first one uses a quality measure which

has been selected for rule induction. In turn, the second one involves an additional mechanism

to keep the best elementary conditions in the rule. An inspiration for this mechanism was a

metaheuristic search method called Tabu that has been created by Fred W. Glover [41, 42].

It is also worth mentioning that the group of pre-pruning algorithm also includes heuristics,

like the stopping criteria that are used to relax constraints of a perfectly fitted model. In

classification, the most popular relaxation method is to allow the rule to cover some of negative

examples while some of positive examples could be still unexplained [21, 31, 32, 92]. In the

case of the regression problem, this approach can be utilized as well, together with the approach

of dynamic reduction to classification [59]. Therefore, in our implementation we are using

such a method too. A bigger number of positive examples and smaller number of negative are

obviously better but we also accept a partial coverage and negative examples.

In addition, in order to prevent the induction of too specific rules, the candidate condition

in the Top-Down strategy is considered only if the rule with such a condition covers at least a

fixed number of examples which are not covered by rules generated so far. On the contrary, in

the Bottom-Up induction strategy the rule after generalization also has to cover at least a fixed

number of examples.

55

Apart from the induction strategy, a similar overfitting mechanism is often incorporated

in various implementations of a decision tree and rule learners in the form of the parameter

specifying the minimum number of examples per leaf/rule [127]. Naturally, the value of

this parameter often requires to adjust to a particular dataset, however in this work, where

experiments are performed for few algorithms and multiple datasets, the value of this parameter

is set to 3, which seems to be a reasonable minimum for the calculation of the median and the

standard deviation of the rule conclusion.

In addition to stopping criteria, we propose pruning mechanisms called Heuristic pruning

and Tabu pruning. Both algorithms try to produce a shorter version of the rule without

sacrificing its quality. In both algorithms the main evaluation criterion is the selected quality

measure which allows to assess the rule before and after the application of pre-pruning

algorithm. In the proposed implementation we assumed that the rule quality after pruning

cannot decrease below the value before. Thus, pruning is continued until the removal of the

elementary condition improves the rule quality or at least keeps it at the level before deletion.

A slightly modified assumption has been applied in the paper [111], where the authors have

proposed a hierarchical strategy to improve classification accuracy with the combination of the

original rule and shortened rules whose quality may be 5 to 40% worse than the original rule.

Since the proposed algorithms modify the original rule, we assume that the quality of this rule

cannot be lower.

4.1.1. Hill climbing pruning

The simplest method to prune a rule from redundant elementary conditions involves the

sequential removal of these conditions, which most improves or at least does not decrease the

quality of the rule with respect to the chosen quality measure. In the beginning all conditions

have to be checked (Algorithm 9, line 4). For this purposes, each condition is temporarily

removed from the rule and the quality of such rule is evaluated (Algorithm 9, lines: 5 − 6). If

the quality of the rule without the condition is better than the previously achieved best value,

then the new value is stored and it is treated as a new reference value (Algorithm 9, line:

11). Regardless of the result the condition returns to the rule and the process is repeated for

remaining conditions (Algorithm 9, line: 7). Finally, the the elementary conditions for which

the rule has obtained the greatest improvement in the quality are deleted (Algorithm 9, line:

17). The removal process is then repeated as long as the quality of the rule is not degraded and

the number of conditions is bigger than 1. The outline of this hill climbing pruning algorithm is

depicted in Algorithm 9.

56

Algorithm 9 Hill climbing pruning algorithm
1: function PRUNERULE(rule, examples, ruleQualityMeasure)
2: bestQuality ← Evaluate(rule, examples, ruleQualityMeasure)
3: worstCondition← ∅
4: conditions← getConditions(rule)
5: repeat
6: quality ← ∅
7: foreach condition in conditions do
8: removeCondition(rule, condition)
9: quality ← Evaluate(rule, examples, ruleQualityMeasure)

10: if quality ≥ bestQuality then
11: bestQuality ← quality
12: worstCondition← condition
13: end if
14: restoreCondition(rule, condition)
15: end foreach
16: if worstCondition then
17: removeCondition(rule, worstCondition)
18: end if
19: until worstCondition 6= ∅
20: return rule
21: end function

4.1.2. Tabu hill climbing pruning

To treat all elementary conditions equally is the simplest approach. This strategy, on

the other hand, does not protect elementary conditions which have a huge impact on the

exacerbation of the rule quality at the beginning of the pruning process. In subsequent iterations

of the algorithm, these elementary conditions are treated in the same way again without

consideration of the reverse memory. As a result, such an assumption can cause some side

effects. Firstly, this is a perfect example of local search methods which generally have a

tendency to stack in a suboptimal solution. Secondly, it may cause the removal of the condition

that reduces a descriptive ability, because it takes into account only the prediction ability of the

rule.

In a view of the above problems we propose to modify the Hill climbing pruning algorithm,

which uses a memory structure to remember the essential conditions and protect them from

re-examining and removal in the future. Our inspiration here is a method already known as

tabu search. It has been proposed by Fred W. Glover [41, 42] as an algorithm for solving

combinatorial optimization problems and in the current implementation it is used to solve many

problems in the fields of planning resources, financial analysis, scheduling, energy distribution,

biomedical analysis, pattern classification and many more [43, 114].

57

The main idea of the algorithm, which we called Tabu hill climbing pruning, is to remember

one elementary condition (in each iteration) carrying the most information, which is understood

here as the biggest influence on the deterioration of the rule quality. For this purpose, we used

the mentioned memory structure.

Algorithm 10 Tabu hill climbing pruning algorithm
1: function PRUNERULE(rule, examples, ruleQualityMeasure)
2: bestQuality ← tabuQuality ← Evaluate(rule, examples, ruleQualityMeasure)
3: tabuList← ∅
4: repeat
5: quality ← worstCondition← ∅
6: foreach condition Ci do
7: if tabuList does not contain Ci then
8: quality ← Evaluate(rule\Ci, examples, ruleQualityMeasure)
9: if quality < tabuQuality then % this is

10: tabuQuality ← quality % unique part
11: bestCondition← Ci % of Tabu algorithm
12: end if
13: if quality ≥ bestQuality then
14: Remember new best quality and the worst Ci
15: end if
16: restoreCondition(rule, Ci)
17: end if
18: end foreach
19: if bestCondition then % only for
20: addCondition(tabuList, bestCondition) % Tabu algorithm
21: end if
22: if worstCondition then
23: removeCondition(rule, worstCondition)
24: end if
25: until worstCondition 6= ∅
26: return rule
27: end function

In each iteration one elementary condition is checked twice (Algorithm 9, lines: 9 − 12

and 13 − 15). One assessment is performed in the same way as in the previous algorithm

(to check whether the removal of the elementary condition has a positive impact on the rule

quality or not). Conversely, there is additional if statement checking if the removal of the

same condition has negative influence on the rule. It is worth mentioning that expressions are

separated. This is because the quality of tabuQuality refers to the quality of the worst condition

while bestQuality stands for the value of the best condition and both elementary conditions are

not linked. Moreover, the value of the elementary condition, which is not better than the value

of bestQuality, is not clearly worse than tabuQuality. After all the conditions are checked, the

58

best one is added to tabuList (Algorithm 9, line: 20) and the worst one is permanently removed

from the rule (Algorithm 9, line: 23). The process is then repeated for remaining conditions.

The sketch of the Tabu hill climbing pruning algorithm is presented in Algorithm 10.

4.2. Algorithms for rule filtering

The readability of a rule-based model can be decreased by the occurrence of rules which are

redundant within the meaning of redundancy as a certain criterion, chosen by the user of the

system, of the uselessness of rules. In this work one can distinguish two such criteria. On one

hand the rule is redundant if it covers examples that are also covered by other rules in the rule

set. This is because the sequential covering induction strategy does not prevent the occurrence

of such rules [110]. Thus, if there are rules that cover a subset of examples already covered

by other rules, then those rules theoretically contribute nothing and only blur the structure and

readability of the model.

From the other point of view, the redundancy of rules can be examined in the context of

predictive abilities. In such context the rule is redundant if it does not have a positive impact

on the predictive ability of the whole rule set. In this case the rules may have low coverage, but

what is the most important, their conclusion is far from the true value and the mere presence of

such a rule in the rule set only spoils the quality of the classifier.

The simplest idea to cope with the aforementioned redundant rules is to remove them.

However, the problem of finding a minimal subset of the set of rules, which satisfies the

established criteria (e.g. overall classification accuracy, balanced accuracy, relative mean

squared error), is NP-complete and computationally expensive [1, 5], and hence it is not likely

to be efficient to find out the solution in a direct way. Consequently, to deal with this problem

the heuristic search algorithms are used during the filtration.

One of such heuristic methods for searching a quasi-minimal subset of the set of rules has

been proposed by Ågotnes et al. In this work the authors, proposed a genetic algorithm. In this

genetic algorithm an individual is specified as a classifier and the occurrence of the rule in the

classifiers is expressed by the value of 1 on an appropriate position of the encoded individual.

The optimization is then performed toward maximization of a function that is a weighted sum

of the overall classification accuracy and the inverse of the model complexity (e.g. the number

of rules). For the filtration of fuzzy rule sets, the method of the genetic algorithms family has

been also presented by Ishibuchi et al [54].

With respect to the presented work, the most important are the Inclusion, Coverage,

Backward and Forward algorithms proposed by Sikora [102, 103] and Wróbel [110] for

filtration of classification rules. However, it seems that the application of all these algorithms

59

to solve the regression problem is also feasible and, what is more important, can bring

a satisfactory outcome. Thus, an important contribution of this work was to adapt the

aforementioned algorithms for regression. It means that the algorithms were designed to

evaluate the regression rules using any of the presented quality measures and to evaluate the

rule set using RRSE. The results of this research have been already published in our two papers

[109, 131].

Studies on the quality-based filtration have been also conducted by Øhrn et al [88] and

Ågotnes et al [1]. The main objective of their research was to obtain a certain number of

the best rules according to the selected quality measures and then evaluate again the reduced

rule-based model. By plotting the number of the top rules versus the performance of the model

it is possible to select an appropriate number of rules according to the specific problem.

Research on the filtering algorithm that eliminates the rules whicg cover a similar set of

examples was conducted by Gamberger and Lavrač [39]. The characteristic idea of their work

was the assumption that rule does not necessarily have to come from one induction algorithm.

Moreover, rules can be even defined by the expert and then joined with the rules obtained by

automatic induction algorithms. Thus a prepared set of rules is then subjected to the filtration

algorithms, which eliminates redundant rules, starting from the rules that cover the smallest

number of positive examples.

In systems where the classification ability is not a crucial criterion, for example in the case of

the rules for descriptive purposes, the filtration can be performed based on the minimum quality

requirements. Generally, such a requirement is defined as a measure of the rule attractiveness,

e.g. a statistical significance [50, 121]. There are also a number of complex measures that

allow to combine multiple quality requirements and obtain a set of rules with respect to the

value of these measures [105]. As an example of such a complex measure one can give the

sum or the weighted multiplication of all quality requirements or the specific lexicographical

order (e.g. more important rules are checked first and then the less important ones). For certain

rule interestingness measures Bayardo and Agrawal have proved that the best rules according

to these measures reside on the Pareto-optimal border with respect to support and confidence

[8]. Brzezińska, Greco and Słowiński attempted to continue these studies and proposed a new

evaluation space formed by the rule support and anti-support. The authors have also proved

that this space is the upper set of the support-confidence set and contains all rules optimal with

respect to some attractiveness measures [16].

In this work we propose six algorithms: Inclusion, Coverage, Disjoint, Forward, Backward

and ForwBack for filtration of regression rules. Bearing in mind the criteria, which have

been mentioned in the first paragraph of this section, one can divide these algorithms into

two groups. The first group consists of the algorithms that focus on the optimization towards

60

the best prediction accuracy. This group may include algorithms: Forward, Backward and

ForwBack. On the contrary, the second group consists of algorithms with the task of filtering

the rules, which cover a similar subset of examples. To this groupthe following algorithms

belong: Inclusion, Coverage and Disjoint.

All presented algorithms have very similar input parameters. For each algorithm there

should be a pass: the set of rules, the verification set of examples and the selected quality

measure. Another parameters are directly related to some algorithms and they will be discussed

later. The output of the algorithms is a reduced rule-based model.

4.2.1. Inclusion

The general outline of the Inclusion algorithm is presented in Algorithm 11. The main

idea of the Inclusion algorithm is to remove rules if the rule set contains another rule, which is

supported by the same examples and the quality of the other rule is higher than the quality of the

tested rule (Algorithm 11, line: 11). The example supports the rule if it satisfies the premise and

if its target value is in the range of v ± sd, where v is the median value of examples covered by

the rule and sd is the standard deviation from the target value of these examples. The examples

supporting the rule are returned by the function called Supported (Algorithm 11, line: 10). In

this algorithm, there is also one auxiliary function WorstRule (Algorithm 11, line: 8). The main

task of this function is to return the rule characterized by the worst quality with respect to the

chosen measure and a given dataset.

Algorithm 11 Inclusion rule filtering algorithm
1: Input:
2: rules: a set of rules
3: dataset: a training set of examples
4: q: rule quality measure
5: Output: a filtered set of rules
6: outputRules← ∅
7: while (rules 6= ∅) do
8: rule←WorstRule(rules, dataset, q)
9: rules← rules\{rule}

10: supp← Supported(rule, dataset)
11: if (foreach r in rules supp\Supported(r, dataset) 6= ∅) then
12: outputRules← outputRules ∪ {rule}
13: end if
14: end while
15: return outputRules

61

4.2.2. Coverage

The general outline of the second post-pruning method called Coverage algorithm is

presented in Algorithm 12. The Coverage algorithm is very similar to the Inclusion one. The

main idea in both algorithms is almost identical, except that the Coverage algorithm removes

the rules that support examples that have been already supported by the previously examined

rules (Algorithm 12, line: 12). It means that if the considered rule covers at least one, uncovered

so far, example from the training data set, then the rule carries important and unique information

and has to be added to the final set.

In addition, this rule also meets the assumption that the previously examined rules have a

higher quality due to the inverse effect of additional function (BestRule - Algorithm 12 line: 9),

which in this case returns the best rule according to the selected quality measure and to the used

dataset of examples.

Algorithm 12 Coverage rule filtering algorithm
1: Input:
2: rules: a set of rules
3: dataset: a training set of examples
4: q: rule quality measure
5: Output: a filtered set of rules
6: outputRules← ∅
7: suppSum← ∅
8: while (rules 6= ∅) do
9: rule← BestRule(rules, dataset, q)

10: rules← rules\{rule}
11: supp← Supported(rule, dataset)
12: if (supp\suppSum 6= ∅) then
13: outputRules← outputRules ∪ {rule}
14: suppSum← suppSum ∪ supp
15: end if
16: end while
17: return outputRules

4.2.3. Disjoint

The Disjoint algorithm is the third algorithm from the group of algorithms based on the

coverage criteria. However, its aim and principle of operation are quite different than of the two

previous algorithms. The Disjoint algorithm tries to find rules that describe the set of examples

by the most disjoint groups and, at the same time, it should produce the smallest possible set of

rules.

62

The Disjoint algorithm has one extra parameter (with respect to Inclusion and Coverage

algorithms)minCov, which is the minimum satisfied coverage of the set of rules after filtration.

This parameter takes continuous values in the range 0-1, where 0 stands for the lack of coverage

and 1 denotes the full coverage of training examples. The value of minCov is taken into

account inside an outer loop of the algorithm (Algorithm 13, line: 10) which allows to obtain

the established coverage by the set of filtered rules (in the extreme case this coverage is gained

by the first best rule). In contrast, the inner loop of the algorithm (Algorithm 13, lines: 12− 18)

allows to obtain a rule that gives the highest coverage. Such a best rule is finally added to the

rule set (Algorithm 13, line: 19) and the process is repeated for the rest of the rules until the

minimum satisfied coverage is not met. The algorithm uses one auxiliary function called Card

which returns the cardinality of the given set of examples. The sketch of the Disjoint algorithm

is presented in Algorithm 13.

Algorithm 13 Disjoint rule filtering algorithm
1: Input:
2: rules: a set of rules
3: dataset: a training set of examples
4: minCov: minimum required coverage of dataset
5: q: rule quality measure
6: Output: a filtered set of rules
7: bestRule← BestRule(rules, dataset, q)
8: outputRules← {bestRule}
9: suppSum← Supported(bestRule, dataset)

10: while (Card(suppSum)
Card(dataset)

< minCov) do
11: n← 0
12: foreach (r in rules) do
13: supp← Supported(r, dataset)
14: if (Card(supp\suppSum) > n) then
15: n← Card(supp\suppSum)
16: bestRule← r
17: end if
18: end foreach
19: outputRules← outputRules ∪ {bestRule}
20: rules← rules\{bestRule}
21: suppSum← suppSum ∪ Supported(bestRule, dataset)
22: end while
23: return outputRules

4.2.4. Forward

The Forward algorithm is the first algorithm from the group of algorithms that are not based

on the information about rules coverage. The key idea of the Forward algorithm is to optimize

63

the given set of rules towards certain evaluation criterion, which is also given as an additional

parameter of this algorithm. In our implementation the evaluation criterion of the rule set

is the same at each stage and it is a RRSE, but it could be any other objective or subjective

criterion to assess the set of regression rules (e.g. correlation coefficient, relative-absolute error,

mean-absolute error, mean-squared error etc.).

The Forward algorithm starts from the best rule obtained by the BestRule method

(Algorithm 14, line: 10), which returns the rule with the highest value of the specified quality

measure. In the next step the best rule is added to the new empty rule set (Algorithm 14, line:

12). In the following iterations the algorithms check if the addition of the next rule reduces the

RRSE of the rule-based model (Algorithm 14, lines: 12 − 14). If so, then this rule is added to

the final rule set, otherwise the rule is removed. The process continues until the rules remain in

the input rule set (Algorithm 14, line: 9). In the end, the filtered rule set is returned.

Algorithm 14 Forward rule filtering algorithm
1: Input:
2: rules: a set of rules
3: dataset: a training set of examples
4: criterion: evaluation criterion
5: q: rule quality measure
6: Output: a filtered set of rules
7: outputRules← ∅
8: e← Evaluate(outputRules, dataset, criterion)
9: while (rules 6= ∅) do

10: rule← BestRule(rules, dataset, q)
11: rules← rules\{rule}
12: outputRules← outputRules ∪ {rule}
13: e’← Evaluate(outputRules, dataset, criterion)
14: if (e’ is better than e) then
15: e← e’
16: else
17: outputRules← outputRules\{rule}
18: end if
19: end while
20: return outputRules

4.2.5. Backward

The Backward algorithm works in contrast to the Forward algorithm but with the same

number and types of parameters. The rule filtering process starts from invocation of the

WorstRule method, which returns the worst rule according to the chosen rule quality measure.

Then the rule is temporarily removed from the entered rule set (Algorithm 15, line: 12) and the

64

evaluation of the smaller set is performed (Algorithm 15, line: 13). Then the quality values of

the smaller and bigger rule sets are compared and if the smaller rule set has better quality, the

rule is permanently removed (Algorithm 15, line: 14). Otherwise, the rule returns to the rule

set (Algorithm 15, line: 17). The process is maintained until all rules are checked. The pseudo

code of the Backward algorithm is shown in Algorithm 15.

Algorithm 15 Backward rule filtering algorithm
1: Input:
2: rules: a set of rules
3: dataset: a training set of examples
4: criterion: evaluation criterion
5: q: rule quality measure
6: Output: a filtered set of rules
7: outputRules← rules
8: e← Evaluate(outputRules, dataset, criterion)
9: while (rules 6= ∅) do

10: rule←WorstRule(rules, dataset, q)
11: rules← rules\{rule}
12: outputRules← outputRules\{rule}
13: e’← Evaluate(outputRules, dataset, criterion)
14: if (e’ is better than e) then
15: e← e’
16: else
17: outputRules← outputRules ∪ {rule}
18: end if
19: end while
20: return outputRules

4.2.6. ForwBack

The last algorithm from the group of algorithms which focus on optimization of the rule

set towards the lowest prediction error is the ForwBack algorithm. It works like a combination

of the two above mentioned Forward and Backward algorithms. First, the given rule set is

entered as a parameter to the Forward algorithm and then the result of this algorithm is passed

as a parameter (a set of rules) to the Backward algorithm. The main objective of this approach

is to identify the rules whose quality is not the worst or the best (so the rule quality is located

somewhere in the middle of the ranking list), but their removal has a positive impact on reducing

the prediction error.

5. Experiments

In this chapter the experimental evaluation of all theses, which have been previously

discussed, is performed. First, the test domains and evaluation methodology are presented.

Then each experiment is introduced via a common schema. The experiment begins with a

short resembling introduction to the problem. Then the key and studied part of experiment are

defined. Finally the results are shown and discussed.

It is worth noting that the presented experiments could be divided into two groups. The first

group presents the results of experiments for each component separately. This means that a

comparison of several of the proposed approaches will be conducted with respect to each other.

In turn, the second group of experiments relates to the comparison of the algorithms constructed

from the best components in relation to the results from some existing learning algorithms. At

the end of this chapter the summary of the both groups of experiments is presented.

5.1. Test domains

Experimental evaluation of the proposed approaches was carried out on 30 publicly available

(e.g. in UCI Machine Learning Repository [6]) benchmark data sets listed in Table 5.1. The

data sets were selected to cover a wide and different range of various data. Thus, the data sets

differ in the number of examples and attributes, as well as in the number of distinct values of

the target attribute or in the scale of these values.

5.2. Default settings in algorithms

The list of default parameters of the program is presented in Table 5.2. We have made

every effort to ensure that the number of parameters of the algorithms was as small as possible.

Some assumptions, however, are necessary. One of such assumptions is the minimal number

of covered examples to deal with over the fitting problem. To read more about this parameter

see Section 4.1. The second fixed parameter is the maximal number of neighbours that are

taken into consideration for generalization of the rule in the case of bottom-up algorithms.

Other parameters that can be also treated as variables of algorithms are covered by at least one

experiment.

66

Table 5.1: Regression data sets and their characteristics: number of examples, number of all
attributes, number of nominal attributes, number of numeric attributes, and number of distinct
values of the target attribute.

data set #examples #attributes #nominal attr #numeric attr #distinct values
auto93 93 22 6 16 81
auto-mpg 398 7 3 4 129
auto-price 159 15 1 14 145
baseball 337 16 0 16 208
bodyfat 252 14 0 14 176
breasttumor 286 9 8 1 23
cholesterol 303 13 7 6 152
cloud 108 6 2 4 94
concrete 103 9 0 9 83
cpu 209 7 1 6 104
dee 365 6 0 6 365
diabetes 43 2 0 2 20
echomonths 130 9 3 6 47
ele-1 495 2 0 2 453
ele-2 1056 4 0 4 1011
elusage 55 2 1 1 52
fishcatch 158 7 2 5 97
fruitfly 125 4 2 2 47
kidney 76 5 2 3 20
laser 993 4 0 4 191
lowbwt 189 9 7 2 133
machine 209 6 0 6 116
mbagrade 61 2 1 1 57
pbc 418 18 8 10 399
pharynx 195 11 10 1 177
pollution 60 15 0 15 60
pyrim 74 27 0 27 63
sensory 576 11 11 0 11
strike 625 6 1 5 358
veteran 137 7 4 3 101

67

For all experiments, unless otherwise stated in the description of the experiment, the

result is obtained as an averaged value of the relative root squared error RRSE over 10-fold

cross-validation (see Section 2.6 for more information).

Table 5.2: Default values of the algorithms that are used for the the induction of regression
rules.

parameter default value comment
minCov 3 minimal number of covered examples, fixed

value
maxNeighbours 1 number of neighbours, bottom-up only, fixed

value
qualityMeasure - tested parameter
evaluationStrategy normal tested parameter
pruningStrategy heuristic tested parameter
filtrationStrategy none tested parameter
conflictResolutionStrategy mean tested parameter

5.3. Quality measure for regression

Selecting the best quality measure to control the process of regression rule induction with

the use of any algorithm is not a trivial problem. Tables 5.3, 5.4, 5.5 and 5.6 list the results

of eight quality measures for 30 data sets with corresponding ranks in the superscripts (lower

values are better) for Top-Down, Top-Down Fixed, Bottom-Up and Bottom-Up fixed algorithms

respectively. In the last two rows of each table the averaged value of RRSE over all data sets

and averaged ranks are presented for each quality measure.

In each of the presented approaches the Friedman test indicates (see Table 5.7) significant

differences between the compared quality measures and shows that the selection of the quality

measure in the case of regression rule induction has a huge impact on the prediction error.

Looking at the values of RRSE for each algorithm and quality measure (see Table 5.8) it can be

noted that the highest (worst) prediction error was observed for the BUF algorithm. In contrast,

the lowest (best) prediction error was observed for the TDF algorithm. Further analysis is based

on the detection of the quality measure or groups of measures that achieve the smallest error

value. All tests were performed at p = 0.05 where the critical value for k = 8 and N = 30 is

3.031 and the corresponding CD is once again 1.917.

In the case of the TD algorithm one can distinguish 4 groups. These groups are presented

in Figure 5.1. It can be seen that the he first group consists of 4 measures, but only the LS

measure is significantly better than all 4 measures on the left side. The first group is however

68

Table 5.3: Averaged RRSE for 8 selected quality measures on the Top-Down rule induction
algorithm and 35 benchmark data sets. Values in superscripts correspond to the Friedman test
rank value for each quality measure on one tested data set.

data set C1 C2 RSS Corr LS G wLap sBay
auto93 75.842 82.464 91.596 94.147 76.063 95.308 65.491 89.645

auto-mpg 61.123 66.904 68.815 70.026 52.121 74.347 53.632 80.958

auto-price 53.382 59.214 55.863 71.996 46.821 93.787 62.095 100.418

baseball 89.883 95.754 115.908 115.827 82.342 106.756 81.031 105.915

bodyfat 46.734 47.065 44.891 48.517 47.276 52.418 46.473 45.892

breasttumor 103.107 102.316 96.921 99.874 103.178 99.173 101.285 99.012

cholesterol 103.637 101.194 100.291 102.305 102.796 100.982 106.468 101.083

cloud 64.941 65.052 80.386 79.225 66.013 87.577 67.934 99.528

concrete 84.514 84.042 98.386 98.957 82.961 101.428 84.123 94.805

cpu 66.593 80.444 102.557 98.996 62.631 95.345 63.622 105.238

dee 58.892 60.155 64.246 59.523 55.731 66.637 59.954 96.328

diabetes 86.002 83.171 92.647 92.084 92.285 89.053 101.338 92.296

echomonths 79.555 77.994 73.911 74.582 81.336 83.198 81.587 77.553

ele-1 68.053 72.634 95.047 92.755 63.561 94.116 66.362 100.008

ele-2 45.123 49.235 47.974 56.706 41.101 90.447 42.352 106.808

elusage 57.283 69.325 69.506 68.204 54.732 85.727 53.131 86.548

fishcatch 52.692 60.185 57.374 66.316 53.103 105.008 50.521 91.007

fruitfly 106.128 105.937 105.105 104.132 105.074 102.751 105.876 104.293

kidney 107.476 105.405 109.447 112.388 105.174 101.823 98.751 100.112

laser 67.953 78.094 95.606 90.315 58.712 101.867 56.341 102.408

lowbwt 65.806 61.411 62.742 62.783 67.387 77.278 65.145 63.934

machine 65.622 70.284 103.267 96.275 61.331 97.706 65.963 106.128

mbagrade 91.773 91.272 96.518 93.416 91.794 93.185 94.607 89.701

pbc 90.381 93.175 93.646 92.574 91.493 98.478 91.252 98.327

pharynx 80.407 77.321 77.542 78.454 78.625 97.538 77.623 79.566

pollution 74.232 79.684 94.966 89.495 72.511 95.887 77.213 102.238

pyrim 74.112 75.493 91.676 91.115 73.361 91.857 83.294 99.238

sensory 91.892 90.231 96.507 92.826 91.933 98.368 92.435 92.024

strike 96.414 99.205 106.468 99.786 94.793 105.427 92.591 94.452

veteran 94.063 95.604 98.488 96.375 92.601 97.406 92.812 98.477

avg. RRSE 76.78 79.34 86.27 86.33 74.96 92.69 76.04 93.46
avg. rank 3.50 3.80 5.23 5.13 3.0 6.27 3.40 5.67

69

Table 5.4: Averaged RRSE for 8 selected quality measures on the Top-Down Fixed rule
induction algorithm and 35 benchmark data sets. Values in superscripts correspond to the
Friedman test rank value for each quality measure on one tested data set.

data set C1 C2 RSS Corr LS G wLap sBay
auto93 68.993 70.044 72.965 63.691 66.692 76.307 80.598 74.036

auto-mpg 54.814 54.253 55.115 56.697 53.812 55.466 49.551 59.778

auto-price 58.742 65.888 59.634 60.136 59.705 63.297 59.113 57.171

baseball 73.233 69.151 73.284 69.922 74.715 77.186 77.617 78.668

bodyfat 41.025 39.524 41.296 36.103 35.392 57.968 32.741 45.377

breasttumor 117.555 119.316 102.911 113.044 122.187 103.032 122.488 109.583

cholesterol 115.944 123.157 114.012 115.083 122.306 107.408 123.421 116.314

cloud 73.347 68.795 63.912 65.613 68.876 76.618 56.821 67.694

concrete 91.168 73.722 78.865 90.067 70.241 87.426 73.964 73.793

cpu 66.055 69.146 62.492 64.263 64.814 70.697 48.541 89.678

dee 49.511 51.474 50.412 53.335 50.633 61.798 54.616 57.427

diabetes 91.191 100.065 94.602 102.647 100.656 97.603 118.468 99.754

echomonths 81.823 84.645 77.701 87.218 85.917 83.164 85.796 81.392

ele-1 69.604 67.613 70.125 70.286 64.602 91.468 62.481 85.947

ele-2 45.806 39.454 38.963 53.647 34.992 61.718 23.011 41.815

elusage 60.462 62.405 55.251 65.307 70.718 64.266 62.224 60.543

fishcatch 62.236 54.994 45.041 53.773 57.725 76.778 46.192 66.097

fruitfly 146.127 143.766 126.253 118.302 142.905 116.211 151.968 134.364

kidney 108.736 111.777 97.291 103.543 108.515 103.312 119.038 105.714

laser 59.344 61.937 53.793 59.955 46.382 81.678 41.211 61.756

lowbwt 70.033 69.372 70.254 66.271 73.965 83.988 76.497 75.256

machine 67.635 70.856 65.114 61.343 60.312 73.108 56.061 71.217

mbagrade 109.557 109.146 98.122 95.361 107.205 113.448 100.244 98.783

pbc 91.064 89.162 91.955 86.271 95.476 89.703 102.957 104.048

pharynx 83.031 83.912 88.095 84.064 98.177 83.983 100.258 90.706

pollution 80.722 77.341 95.016 91.234 95.347 104.218 93.425 86.963

pyrim 72.733 63.921 77.004 82.466 71.132 86.388 81.395 82.627

sensory 103.311 108.315 110.906 113.737 107.043 104.122 107.544 114.488

strike 88.583 89.994 105.638 95.047 85.711 92.575 86.262 92.796

veteran 106.824 106.423 106.132 116.568 99.351 108.385 115.787 108.866

avg. RRSE 80.30 79.98 78.07 79.83 79.85 85.10 80.34 83.08
avg. rank 3.97 4.27 3.47 4.47 4.13 5.73 4.57 5.40

70

Table 5.5: Averaged RRSE for 8 selected quality measures on the Bottom-Up rule induction
algorithm and 35 benchmark data sets. Values in superscripts correspond to the Friedman test
rank value for each quality measure on one tested data set.

data set C1 C2 RSS Corr LS G wLap sBay
auto93 74.814 75.195 77.436 74.793 70.061 84.638 72.632 81.517

auto-mpg 56.622 58.805 64.866 66.367 55.841 57.443 57.553 75.738

auto-price 57.272 61.435 57.743 62.346 61.164 66.848 55.061 66.447

baseball 80.302 86.234 100.106 100.127 76.151 102.718 82.683 99.135

bodyfat 37.191 37.712 45.576 43.724 42.773 46.657 44.675 54.368

breasttumor 99.548 99.517 98.753 97.941 98.732 98.844 99.256 99.175

cholesterol 108.005 111.008 101.622 103.913 108.506 99.921 109.667 107.714

cloud 69.671 73.514 80.555 83.676 70.552 99.857 72.793 100.768

concrete 74.603 72.202 76.875 79.446 76.064 85.427 69.951 102.028

cpu 57.664 56.533 61.435 62.636 54.012 101.518 52.011 88.787

dee 55.422 55.391 58.876 61.507 57.894 56.833 57.955 69.488

diabetes 97.916 95.563 100.218 98.567 96.495 95.894 90.741 94.172

echomonths 102.317 103.108 88.822 94.733 101.766 87.751 98.114 99.085

ele-1 64.963 71.744 83.505 89.066 60.451 97.907 60.612 100.558

ele-2 37.313 44.454 47.495 51.976 22.392 98.887 14.481 104.448

elusage 56.982 60.406 60.897 57.684 55.891 94.498 57.643 58.015

fishcatch 85.493 87.045 77.901 84.162 88.706 85.504 89.297 91.318

fruitfly 107.868 105.756 103.364 102.223 107.417 101.632 103.575 100.631

kidney 97.794 96.342 98.596 97.413 99.137 98.345 94.031 101.008

laser 41.461 52.034 69.626 68.315 42.032 103.708 42.273 103.077

lowbwt 71.414 66.471 66.653 66.622 73.295 77.567 75.116 86.408

machine 55.964 53.212 60.786 57.265 49.571 95.688 55.673 88.017

mbagrade 100.053 101.597 100.796 97.982 106.818 97.631 100.134 100.565

pbc 93.534 94.095 90.121 91.773 96.628 91.012 95.267 94.356

pharynx 88.186 82.853 91.097 81.342 81.091 99.208 88.145 88.014

pollution 88.844 90.425 80.952 79.811 88.773 97.078 95.947 92.796

pyrim 86.404 90.505 84.262 97.116 79.061 97.907 84.753 101.408

sensory 96.415 98.177 94.042 93.451 96.063 99.868 96.234 97.486

strike 94.572 97.614 107.657 102.855 95.343 107.998 93.001 106.106

veteran 97.784 98.235 100.898 99.027 97.141 97.763 97.172 98.906

avg. RRSE 77.88 79.23 81.05 81.59 76.99 90.88 76.88 91.71
avg. rank 3.70 4.40 4.70 4.30 3.37 5.67 3.57 6.30

71

Table 5.6: Averaged RRSE for 8 selected quality measures on the Bottom-Up Fixed rule
induction algorithm and 35 benchmark data sets. Values in superscripts correspond to the
Friedman test rank value for each quality measure on one tested data set.

data set C1 C2 RSS Corr LS G wLap sBay
auto93 75.793 75.974 73.351 77.298 76.365 74.842 76.507 76.396

auto-mpg 61.464 59.521 60.943 61.635 126.607 60.602 138.648 98.586

auto-price 65.454 59.693 58.082 54.371 157.317 69.555 171.428 91.436

baseball 88.484 86.683 89.955 84.721 142.757 85.492 149.098 97.066

bodyfat 45.282 44.171 54.055 51.923 58.818 57.897 52.624 54.166

breasttumor 134.635 112.663 104.031 106.942 139.676 114.344 145.237 162.638

cholesterol 122.952 124.163 134.944 136.966 137.597 106.801 135.025 153.608

cloud 67.943 65.812 68.074 69.875 74.508 64.251 72.777 71.596

concrete 85.294 79.042 97.487 95.526 80.123 88.365 68.521 98.198

cpu 69.473 67.052 71.965 66.651 170.097 84.986 327.328 71.884

dee 51.461 51.632 55.094 57.306 55.215 54.713 68.137 101.848

diabetes 122.368 114.597 113.016 103.582 107.434 105.553 99.091 107.645

echomonths 104.074 110.855 92.482 85.471 151.037 102.033 152.528 136.606

ele-1 67.483 73.414 66.862 75.245 66.721 79.237 75.396 85.828

ele-2 31.672 36.364 28.281 34.193 49.027 36.385 90.208 43.136

elusage 78.467 54.632 50.851 58.733 75.826 60.464 97.218 62.265

fishcatch 85.554 86.465 77.131 79.482 87.016 87.737 87.848 85.193

fruitfly 133.576 124.764 123.733 124.915 226.278 109.882 176.487 106.891

kidney 90.352 89.611 92.483.5 92.483.5 161.297 99.275 190.058 99.406

laser 51.232 47.541 58.963 64.964 153.257 87.395 185.148 87.746

lowbwt 76.554 70.751 76.153 72.872 83.496 80.505 83.977 113.758

machine 53.781 70.406 67.964 67.063 69.415 78.097 181.648 62.752

mbagrade 105.162 96.791 115.834 120.236 138.568 105.903 133.437 118.445

pbc 95.814 98.325 89.061 89.832 100.606 91.413 102.008 100.947

pharynx 106.405 86.681 93.282 96.603 180.177 97.984 185.818 157.336

pollution 77.151 81.474 78.182 79.823 93.188 86.777 86.346 85.895

pyrim 86.833 87.054 80.121 82.662 172.338 96.145 168.937 103.926

sensory 129.274 115.133 135.195 112.402 153.648 104.511 143.006 146.327

strike 90.382 91.143 108.558 101.286 89.871 95.945 93.604 107.667

veteran 101.771 107.976 102.823 102.022 104.244 106.675 113.357 114.278

avg. RRSE 85.20 82.34 83.96 83.57 116.08 85.79 128.38 100.11
avg. rank 3.33 3.10 3.22 3.45 6.13 4.13 6.67 5.97

72

Table 5.7: Comparative table of the results of statistical tests of 8 quality measures over 30 data
sets for each of the algorithms. The critical value for the Friedman test is 2.2662. The plus
sign next to the value of the Friedman test indicates a significant difference between quality
measures.

algorithm Friedman test p-value
TD 9.51+ 6.2340 · 10−8

TDF 2.95+ 7.0525 · 10−3

BU 6.29+ 3.8823 · 10−6

BUF 17.33+ 2.7089 · 10−14

Table 5.8: Average value of RRSE for all algorithms and selected quality measures on 30
benchmark data sets.

TD TDF BU BUF
C1 76.78 80.30 77.88 85.20
C2 79.34 79.98 79.23 82.34
Correlation 86.33 79.83 81.59 83.57
RSS 86.27 78.07 81.05 83.96
G (g=2) 92.69 85.10 90.88 85.79
wLap 76.04 80.34 76.88 128.38
LS 74.96 79.85 76.99 116.08
sBay 93.46 83.08 91.71 100.11
average 83.23 80.82 82.03 95.68

73

more uniform than in the previous experiment because all quality measures which belong to

this group (LS, wLap, C1 and C2) induce a greater number of rules (see Table 5.9) at the cost

of lower average coverage (Table 5.10).

In the TDF algorithm the Nemenyi test indicates only 2 groups of quality measures (Figure

5.2), but only the RSS measure allows to obtain the significantly lower prediction error than

g−measure or sBayesian confirmation measure. Among other measures it is not possible

to indicate the statistically significant difference. Thus, the choice of a quality measure with the

given default settings for the remaining parameters has no statistical impact on the prediction

error.

The Nemenyi test for the BU algorithm allowed to identify 3 groups of quality measures

(Figure 5.3) with the lack of a statistically significant difference between measures. The

sBayesian and g measures again are worse than the three quality measures that obtained the

lowest prediction error (LS, wLap and C1). However these 3 measures are indistinguishable

with Correlation, C2 and RSS.

A comparative analysis between TD and BU algorithm indicates that 3 best measures for

both algorithms are in exactly the same order and the order of the remaining measures is also

very similar (only the exchange of positions between neighbouring measures can be seen).

This observation may seem somewhat surprising because of the very different nature of the

algorithms for rule induction. However, it should be noted that the distance between the two

middle measures in the TD algorithm is 1.33 while in theBU algorithm this gap does not really

exist (0.1), as evidenced by a smaller impact on the choice of the measurement prediction error

in the latter case.

The most interesting experiments are for the last algorithm (BUF). At p = 0.05 there are

3 indistinguishable, in terms of the value of the resulting errors, groups of quality measures.

The first group of measures (with C2, RSS, C1, Correlation and G measures) outperforms

the wLap and LS measures whereas the sBayesian measure does not differ only from the G

measure. The second group contains only two measures: sBayesian and G. The last group

consists of the three worst measures: wLap, LS and sBayesian. However, this CD diagram

is different when the level of confidence is decreased to p = 0.10 with the corresponding

value of CD = 1.7582. It may be noted that the diagram has only two completely separated

groups of quality measures. This implies that quality measures from this group allow to obtain

a statistically significant lower error value of the prediction.

Table 5.9 presents the average number of rules and average number of elementary conditions

for each rule obtained for the tested algorithms in relation to various quality measures. The table

shows that the number of rules depends on both the selected rule induction algorithm and the

chosen quality measure. Referring to the result of the prediction error of each measurement,

74

CD

8 7 6 5 4 3 2 1

LS

wLap

C1

C2Correlation

RSS

sBayesian

G

Figure 5.1: Comparison of quality measures against each other with the Nemenyi test at
α = 0.05 for the TD algorithm only.

CD

8 7 6 5 4 3 2 1

RSS

C1

LS

C2Correlation

wLap

sBayesian

G

Figure 5.2: Comparison of quality measures against each other with the Nemenyi test at
α = 0.05 for the TDF algorithm only.

75

CD

8 7 6 5 4 3 2 1

LS

wLap

C1

CorrelationC2

RSS

G

sBayesian

Figure 5.3: Comparison of quality measures against each other with the Nemenyi test at
α = 0.05 for the BU algorithm only.

CD

8 7 6 5 4 3 2 1

C2

RSS

C1

CorrelationG

sBayesian

LS

wLap

Figure 5.4: Comparison of quality measures against each other with the Nemenyi test at
α = 0.05 for the BUF algorithm only.

76

CD

8 7 6 5 4 3 2 1

C2

RSS

C1

CorrelationG

sBayesian

LS

wLap

Figure 5.5: Comparison of quality measures against each other with the Nemenyi test at α = 0.1
for the BUF algorithm only.

Table 5.9: Average number of rules and elementary conditions (in parentheses) for all
algorithms and selected quality measures on 30 benchmark data sets.

TD TDF BU BUF
C1 97.18 (2.48) 40.87 (3.53) 28.94 (5.03) 23.25 (5.09)
C2 74.71 (2.55) 31.08 (3.73) 19.85 (5.04) 18.03 (5.12)
Correlation 46.34 (2.50) 15.97 (4.16) 11.05 (4.82) 7.43 (4.94)
RSS 50.40 (2.16) 13.22 (3.49) 10.16 (4.38) 6.99 (4.47)
G (g=2) 42.82 (2.32) 23.53 (3.47) 10.43 (5.19) 10.16 (5.04)
wLap 176.06 (2.23) 82.06 (3.33) 45.22 (4.82) 37.33 (4.87)
LS 144.58 (2.32) 60.42 (3.38) 48.01 (4.78) 35.31 (4.89)
sBay 36.29 (2.81) 29.90 (4.05) 10.97 (5.07) 9.41 (4.98)

one can say that the most accurate (the smallest error) prediction is performed for the quality

measures which tend to return bigger number of rules (C1, C2). However, taking into account

the prediction error and the number of rules at the same time, the Correlation and RSS

measures seem to be the best choice. This was also proved by our another experiment, which has

been published in 2012 [109]. The additional information is presented by the average number of

conditions in one rule. It can be noted that the average number of conditions depends more on

different rule the induction algorithms than on quality measures. The most general rules were

induced for the TD algorithm, while more specific rules were generated for both the BU and

BUF algorithms. Referring to the quality measures it can be seen that the C1 and C2 measures

not only return a bigger number of rules but those rules are also more complex with respect to

other quality measures. In turn, the Correlation measure allows to obtain rules with similar

number of conditions like in the case ofC1 andC2 measures, but the number of rules is smaller.

77

Table 5.10: Average coverage of rules for all algorithms and selected quality measures on 30
benchmark data sets.

TD TDF BU BUF
C1 0.185 0.147 0.147 0.169
C2 0.248 0.190 0.217 0.217
Correlation 0.354 0.278 0.364 0.364
RSS 0.392 0.332 0.400 0.387
G (g=2) 0.363 0.266 0.513 0.371
wLap 0.115 0.085 0.117 0.154
LS 0.124 0.103 0.108 0.150
sBay 0.364 0.175 0.501 0.399
average 0.268 0.197 0.296 0.276

Table 5.10 shows the average coverage of rules that is defined as a ratio of the number of

training examples covered by the rule to the number of all training examples. It can be observed

that the coverage of rules differs depending on the rule induction algorithm and the quality

measures used to control the process of the induction. The highest coverage was provided by

Correlation, RSS, g −measure and sBayesian. In turn, the lowest coverage was observed

for WeightedLaplace, LogicalSufficiency and C1. Referring to the algorithm of induction,

the highest coverage was observed for the BU algorithm, however the values obtained for TD

and BUF are very similar. The lowest coverage was observed for the TDF algorithm. It can be

also noted that for both fixed versions of the algorithm the observed values are lower than in

their standard counterparts.

The results lead us to conclusions that the two measures may provide interesting results:

C2 and Correlation. First of all, the choice of C2 was dictated by the overall results of the

comparison measurement experiment (one of the lowest RRSE and a smaller number of rules or

better average coverage than for the C1 measure). In contrast, the Correlation measure will be

used as a compromise between the prediction error, the number of rules and one of the highest

coverages. Both quality measures allow to return more specific rules, which can be observed

in the number of elementary conditions. Accordingly, these two measures were selected for

further experiments.

5.4. Confidence intervals for examples covered by a rule

As we mentioned before, the quality of the rule, which is induced on the basis of the

data sample, is subjected to the distribution of this sample. Therefore, in the perfect case the

algorithm should consider entire population to prevent this problem. Otherwise, the statistical

significance of the results should be assessed. In some cases, e.g. in knowledge discovery

78

experiments, the best rules with respect to precision and coverage should be chosen as the

most interesting. Therefore, the minimal precision and minimal coverage threshold can be set

to choose the best rules. When the pessimistic approach is utilized fewer rules will meet the

threshold and the analyzed rule set will be smaller and, therefore, more easily interpretable.

While in the case of a resulting rule set being too small, the optimistic approach can be utilized,

which will result in a larger number of rules meeting the threshold.

In this section we would like to present an approach to assess rules, which can be used

to build a decision support system to assist the users of monitoring systems. The evaluation of

statistical significance of rules may also be carried out by an expert in various types of supervise

or knowledge discovery applications.

The data used in this experiment are derived from the TD algorithm on the bodyfat data

set. The rules were induced with the use of C2 heuristic. The statistical analysis is performed

based on pessimistic, optimistic or standard quality of the rules as it was discussed in Section

3.4. In this experiment we decided to present ways to draw conclusions based on the values of

precision, coverage and accuracy quality. However, it should be noted that any quality measure

can be calculated this way, e.g., the C2 measure.

Rule R1
IF Density ≥ 1.064

THEN class = 10.15 (3.843)

Table 5.11: Exemplary rule generated by means of the TDF method.

Rule quality
pessimistic standard optimistic

R1
Precision 0.493 0.654 0.802
Coverage 0.725 1.000 1.000

Table 5.12: Quality of the rule from Table 5.11.

Table 5.11 presents the example of a rule generated by means of the TDF algorithm and

Table 5.12 shows the statistics obtained for this rule. The standard coverage of the rule is

perfect, but the precision tells that only 65.4% of examples covered by this rule are within the

range of conclusion ± the standard deviation. In the optimistic case, the precision of this rule

increases, but in the pessimistic case, the rule covers more negative than positive examples

(pessimistic precision is < 0.5). Therefore one may conclude that this rule is not very reliable.

Tables 5.13 and 5.14 present the second exemplary case of generated rules involving the

TDF algorithm and their corresponding statistics. It should be noted that all rules are very

79

Rule R2 Rule R3 Rule R4
IF Density < 1.049

Wrist < 19.05
IF Density < 1.057

Wrist < 18.9
IF Density < 1.042

Wrist < 19.95

THEN 26.35 (4.312) THEN 24.4 (5.109) THEN 29 (3.952)

Table 5.13: Exemplary rules generated by means of the TDF method - case 2.

Rule quality
pessimistic standard optimistic

R2
Precision 0.679 0.833 0.955
Coverage 0.5625 0.781 1.000

R3
Precision 0.631 0.767 0.885
Coverage 0.602 0.784 0.966

R4
Precision 0.783 0.909 1.000
Coverage 0.692 0.962 1.000

Table 5.14: Quality of the rules from Table 5.13.

similar in the bodies (the same attributes were selected and the same operator, while the value

of attributes differs by thousandths or decimal parts), but different in the heads. This result

may lead to the first conclusion, which is that the small difference in the values of the Density

and Wrist attributes seems to be crucial in the selection of examples covered by the rule and

conclusions assigned to them. Table 5.14 allows to draw the further conclusions. It can be

noticed that all rules are characterized by different precisions. The highest standard precision

was observed for the rule R4 and the lowest for the rule R3, but looking at the ranges derived

by pessimistic and optimistic values we can also notice that the range for the rule R2 is much

broader than for the rules R3 and R4, thus the rule R3 seems to be more stable than R2 but less

stable than R4. The standard coverage shows that the rules R2 and R3 are very similar but, once

again, the ranges derived by pessimistic and optimistic values show that the rule R3 covers more

examples from the range of conclusion ± standard deviation. In general, the highest standard,

pessimistic and optimistic values of coverage were obtained for the rule R4, which outperforms

other rules in precision and coverage at the same time. The last measure (accuracy) holds a

small amount of information but allows to say more about the number of covered examples.

The highest standard and optimistic accuracy was observed for the rule R3 before R4 and R2.

However, this rule is also characterized by a broader range of optimistic and pessimistic values.

The narrowest range is showed in the rows assigned to the rule R4 and thus it proves that this

rule has the best quality (values of precision, coverage and accuracy). The rule R4 seems to be

the most accurate, stable and reliable.

80

Rule R5 Rule R6
IF Density < 1.056

Knee < 40.1
IF Density < 1.058

Biceps < 32.05
Knee < 38.95

THEN 23.2 (5.098) THEN 22.55 (4.640)

Table 5.15: Exemplary rules generated by means of the TDF method - case 3.

Rule quality
pessimistic standard optimistic

R5
Precision 0.662 0.806 0.924
Coverage 0.478 0.644 0.811
Accuracy 21 44 67

R6
Precision 0.704 0.882 1.000
Coverage 0.221 0.349 0.477
Accuracy 11 26 41

Table 5.16: Quality of the rules from Table 5.15.

Table 5.15 shows a different case of the rule analysis. The rule R5 consists of two attributes,

while the rule R6 consists of three attributes, but two of them are identical to the attributes from

the rule R5. The conclusions in the heads of the rules are different, therefore it seems that the

rule R6 could be more specific, because of this additional elementary condition. To compare

the rules, the confidence interval approach can be used. Table 5.16 presents the result of this

comparison. The standard value of precision for the rule R6 is a bit better than for the rule

R5. Looking at the ranges derived by pessimistic and optimistic values we can notice that the

range of rule R6 precision is broader than of the rule R5 precision, while all values are higher in

the rule R6 than their counterparts in the rule R5. The rule R6 is then more precise. However,

looking at the values of coverage one can notice a significant difference between the rules. The

values of coverage for the rule R5 are significantly higher than for the rule R6 and it is worth

noticing that the pessimistic value of coverage for the rule R5 is higher than the optimistic

value of coverage for the rule R6. It means that in relation to the coverage measure the rule

R5 outperforms the rule R6. This reflection and the value of accuracy confirm that the rule

R5 is more general. This investigation leads us to the conclusions that the rule R5 has better

quality (in the meaning of a compromise between values of precision, coverage and accuracy)

and seems to be a better choice.

The presented examples of the pessimistic and optimistic rule quality analysis show that

it can bring additional knowledge about the generated rules. It could be useful both to

extract information about a single rule or to compare two rules that are similar or in the

81

parent-child schema. This approach can be then used to build a support system to assist in

any decision-making process.

5.5. Pre-pruning methods evaluation

The choice of the right pre-pruning method to prevent the overfitting problem during

the process of regression rules induction is as important as the induction algorithm. In our

experiment we would like to compare two approaches: the simplest Hill climbing method and

the more sophisticated Tabu hill climbing method.

However, before the results are presented it is worth recalling (see Section 4.1) that

pre-pruning algorithms are strongly related to the separate-and-conquer implementation, thus,

in most cases the heuristic for the rule evaluation is defined in the same way as in the growing

phase. The state of the art approach for the classification problem, however, proposes a phase

separation of rule refinements and rule selection [115], undermining the uniform heuristic

approach. This thesis was supported by an erroneous approach to the topic, where the

optimization process focuses on selecting the currently best rule instead of selecting the best

rule for further refinement.

These assumptions motivate us to check two theses. Firstly, various pre-pruning methods

may produce different rules and therefore can lead to a different rule-based model. Secondly,

apart from the heuristic which is used to control the process of growing the rule, the rule can

be pruned using the same or another quality measure. In this second case, the characteristics

of both measures could be completely different, e.g. one heuristic tends to return the more

accurate (prediction abilities) while the other focuses on the more transparent model (descriptive

abilities). Anticipating the next chapter, here one such pair of quality measures is used.

However, the motivation to choose this pair will be presented in the next chapter. In addition, it

is worth considering this section (Section 5.5) and the next one (see Section 5.6) as a unit and

the continuation of the experiments presented here.

The efficiency of two pre-pruning methods was verified by three pairs of quality measures,

which were used for the induction and pre-pruning respectively: (C2, C2), (Correlation,

Correlation) and (C2, Correlation) as the choice of a more accurate pair of two previously

tested mixtures.

The Friedman test indicates (see Table 5.17) significant differences between pre-pruning

methods and quality measures only in both variants of the Top-Down algorithm. In the case

of Bottom-Up and Bottom-Up Fixed algorithms there are no statistical significant differences,

thus the further analysis would concern only the significant results. These results are presented

in Figure 5.6 and Figure 5.7.

82

Table 5.17: Comparative table of the results of statistical tests against the difference between 2
pre-pruning methods and 3 pairs of quality measures over 30 data sets for each algorithm. The
critical value for the Friedman test is 2.4205. The plus sign near the value of the Friedman test
indicates the significant difference between quality measures.

algorithm Friedman test p-value
TD 9.16+ 9.4523 · 10−7

TDF 2.90+ 0.0181
BU 1.90 0.1007
BUF 1.86 0.1081

CD

6 5 4 3 2 1

Tabu C2

Hill climbing C2

Tabu C2/CorrHill climbing C2/Corr

Tabu Corr

Hill climbing Corr

Figure 5.6: Comparison of 2 pre-pruning methods for 3 pairs of quality measures, which
were used to induce (the first measure) and to prune (the second measure) rule using the
Top-Down algorithm. Groups of combination that are not significantly different (at p = 0.05)
are connected.

In the TD algorithm the post-hoc Nemenyi test at 0.05 indicates 2 separated groups.

The first group consists of results obtained for the heuristic and tabu algorithm using the

Correlation measure while the second group is built of results for both pre-pruning methods

using combinations of the C2/Correlation and C2/C2 measures. However, there are no

significant differences between presented pre-pruning methods. In the case of the TDF

algorithm the results are similar. The other experiment can check the hypothesis whether

the Tabu hill climbing algorithms on average perform statistically better than the simplest Hill

climbing algorithm or not in the TD or TDF algorithm. The easiest way to verify this hypothesis

is to group the results obtained in the previous experiments and then to check the hypothesis

using the Wilcoxon test. However, for the presented result the Wilcoxon signed ranks test

at α = 0.05 shows that the null-hypothesis cannot be rejected (with p-value=0.0679 for the

TD algorithm and with p-value 0.7150 for the TDF algorithm), which means that pre-pruning

methods cannot be statistically distinguished in any of 4 rule induction algorithms.

83

CD

6 5 4 3 2 1

Tabu Corr

Hill climbing Corr

Tabu C2Hill climbing C2

Hill climbing C2/Corr

Tabu C2/Corr

Figure 5.7: Comparison of 2 pre-pruning methods for 3 pairs of quality measures, which were
used to induce (the first measure) and to prune (the second measure) rule using the Top-Down
Fixed algorithm. Groups of combination that are not significantly different (at p = 0.05) are
connected.

Pruning methods may also be assessed on the basis of the average number of rules in the

final model. However, it is important to mention that the number of rules in the case of the Tabu

hill climbing method may depend on the number of steps (tabu elements) that the algorithm

needs to remember. Let us consider an example. Assume that the Tabu hill climbing algorithm

remembers only one best elementary condition in each iteration. In this case it is possible to

remove all but one elementary conditions, whereas such a rule would be probably the most

general and would cover more examples than if the rule would be specific. This implies a

smaller number of rules needed to cover the whole set. The examination of the optimal number

of steps, however, goes beyond the scope of this work.

In our implementation we do not define this parameter, which means that the algorithm can

crop the rule up to a half of all elementary conditions (under the condition that the quality of the

rule improves with each removal). Thus, this approach should provide an optimal construction

of the rules and an appropriate coverage.

Figures 5.8 and 5.9 present an average number of rules for the Tabu hill climbing and Hill

climbing methods of pruning for the TD and TDF algorithms respectively. All values are an

average over three selected pairs of heuristic: (C2, C2), (Correlation, Correlation) and

(C2, Correlation). The Wilcoxon test (at 0.05 level) shows that the null-hypothesis should be

rejected (with p-value = 0.5059 for TD and p-value=0.1373 for TDF) thus the methods cannot

be distinguished according to the number of rules. However, it should be noted that for all

data sets except two (auto93 for the TD algorithm and lowbwt for the TDF algorithm) the Hill

climbing algorithm returns a smaller number of rules.

84

0

20

40

60

80

100

120

140

160

180

200
au

to
93

au
to

−
m

pg
au

to
−

pr
ic

e
ba

se
ba

ll
bo

dy
fa

t
br

ea
st

tu
m

or
ch

ol
es

te
ro

l
cl

ou
d

co
nc

re
te

cp
u

de
e

di
ab

et
es

ec
ho

m
on

th
s

el
e−

1
el

e−
2

el
us

ag
e

fis
hc

at
ch

fr
ui

tfl
y

ki
dn

ey
la

se
r

lo
w

bw
t

m
ac

hi
ne

m
ba

gr
ad

e
pb

c
ph

ar
yn

x
po

llu
tio

n
py

rim
se

ns
or

y
st

rik
e

ve
te

ra
n

Tabu
Hill climbing

Figure 5.8: Comparison of an average number of rules after the use of the Tabu hill climbing
and Hill climbing pre-pruning methods respectively in the case of the Top-Down algorithm.

The results lead to the conclusion that, generally, the Hill climbing approach seems to be a

better choice. Although, due to the prediction error there is no reason to exclude the Tabu hill

climbing method but taking the number of rules into account, the Hill climbing method seems to

be the better choice, because of the simpler form of the model. One can also conclude that the

extension of the simplest approach did not decrease the prediction error and did not reduce the

size of the model. Therefore, it is recommended to use the Hill climbing pre-pruning algorithm

as a quick and simple method.

5.6. Mixing measures for growing and pruning phase

Mixing measures for the growing and pruning process is a consequence of research on the

pre-pruning methods. The motivation for such an approach had been presented in the previous

section (see Section 5.5). To recall it at a glance, the separation was proposed to ensure that

both phases may have completely different objectives. Thus, it seems natural to examine this

direction in relation to the regression rules.

85

0

10

20

30

40

50

60
au

to
93

au
to

−
m

pg
au

to
−

pr
ic

e
ba

se
ba

ll
bo

dy
fa

t
br

ea
st

tu
m

or
ch

ol
es

te
ro

l
cl

ou
d

co
nc

re
te

cp
u

de
e

di
ab

et
es

ec
ho

m
on

th
s

el
e−

1
el

e−
2

el
us

ag
e

fis
hc

at
ch

fr
ui

tfl
y

ki
dn

ey
la

se
r

lo
w

bw
t

m
ac

hi
ne

m
ba

gr
ad

e
pb

c
ph

ar
yn

x
po

llu
tio

n
py

rim
se

ns
or

y
st

rik
e

ve
te

ra
n

Tabu
Hill climbing

Figure 5.9: Comparison of an average number of rules after the use of the Tabu hill climbing and
Hill climbing pre-pruning methods respectively in the case of the Top-Down Fixed algorithm.

Table 5.18: Average RRSE for all algorithms and selected quality measures on 30 benchmark
data sets.

TD TDF BU BUF Wilcox
C2 78.50 75.26 76.35 78.91 -
C2\Correlation 78.68 76.05 76.03 78.01 0.9234
Correlation 83.89 72.50 77.44 77.57 -
Correlation\C2 84.41 73.69 78.57 82.75 0.7845

Table 5.18 shows average RRSE of algorithms for chosen heuristics. The Friedman test

indicates significant differences (FF = 3.756 with respect to the critical value F(4,30) = 2.6896,

p-value = 0.016) between the compared heuristics and shows that the selection of the heuristic

has a impact on the prediction error. The comparison of the pairs of measurement due to the

measure, which was used in the growing phase of rules induction, revealed that they are no

significant differences between the pairs C2-C2\Correlation and Correlation-Correlation\C2

(p-values are presented in the last column of Table 5.18). The visualization of comparisons

is shown in Figure 5.10. The heuristics that are not significantly different according to the

86

Nemenyi test (at 0.05 level) are connected. The visualization shows that there is a statistically

significant difference only between heuristics with different quality measures for the growing

and pruning phase. This diagram also shows, despite the lack of differences, that the pair

C2\Correlation has the highest average ranks, while the pair Correlation\C2 is characterized

with the lowest ones. However, both pairs do not, differ from the standard quality measures.

Table 5.19: Average number of rules for all algorithms and selected quality measures on 30
benchmark data sets.

TD TDF BU BUF
C2 72.30 30.08 19.21 17.45
C2\Correlation 36.56 13.36 13.94 13.35

−49.42% -55.59% −27.47% −23.50%
Correlation 44.85 15.45 10.70 7.19
Correlation\C2 63.55 27.43 12.37 7.93

+41.71% +77.49% +15.65% +10.25%

Table 5.19 presents an average number of rules induced for each algorithm and the

percentage change in the number of rules on the use of a pair of quality measures in relation

to the number of rules generated using the same measure in the growing and pruning phase

(calculated as 100% · (1 − n1/n2), where n1 is the number of rules for the heuristic with

the same measure for both phases and n2 is the number of rules with mixtures of quality

measures). It can be noticed that for each algorithm the pair C2\Correlation allows to reduce a

rule set by 23%-56% without affecting much its predictive abilities. On the other hand, the pair

Correlation\C2 contributes to increase the number of rules by 10%-78%. It can also be observed

that the reduction/increase is greater for the TD and TDF algorithms, which generally return

more rules, than for the BU and BUF algorithms.

The results showed that the use of different quality measures for the growing and pruning

phase in the regression rule induction process may lead to different result in both RRSE and the

number of rules. The application of the Correlation quality measure (which, as shown also in

Section 5.3, has a tendency to return a smaller number of rules) in the pruning phase allowed to

maintain a similar prediction error like the one obtained by the C2 quality measure. Moreover,

this experiment proved that the application of the Correlation measure in the pruning phase, in

combination with the C2 quality measure in the growing phase C2, allows to reduce the number

of rules by 23%-56%, which significantly improves the readability of the model. This impels us

to examine this pair of quality measures in further experiments.

By contrast, this experiment also suggests that the application of the quality measure, that

tends to return a larger rule-based model, does not improve the prediction error, but considering

the bigger number of rules could be a good choice for descriptive purposes.

87

CD

4 3 2 1

C2/Correlation

C2Correlation

Correlation/C2

Figure 5.10: Comparison of quality measures against each other with the Nemenyi test at
α = 0.05 in the mixing measures experiment.

5.7. Conflict resolution problem

The evaluation of conflicts resolution approaches has been performed based on the results

of all four rule induction algorithms (TD, TDF , BU , BUF) and three heuristics (C2, C2),

(Correlation, Correlation) and (C2, Correlation) on 30 data sets. The results were averaged

for each algorithm. These results were then compared.

Table 5.20: Comparative table of the results of statistical tests against the differences between 4
methods for solving conflicts and 3 pairs of quality measures over 30 data sets for each method.
The critical value for the Friedman test is 2.6896. The plus sign next to the value of the Friedman
test indicates the significant difference between methods in the given algorithm.

algorithm Friedman test p-value
TD 15.24+ 8.5005 · 10−7

TDF 101.24+ 4.3299 · 10−15

BU 28.74+ 1.0207 · 10−9

BUF 61.78+ 3.1808 · 10−13

The Friedman tests show statistical significant difference between conflicts resolution

approaches in each of the proposed algorithms 5.20. It means that the choice of the appropriate

method of conflict resolution has a huge impact on the prediction error of the obtained

rule-based data model. The differences in each algorithm were visualized by the Nemenyi

post-hoc test at 0.05 significance level.

Figure 5.11 for the Top-Down rule induction algorithm indicates 3 groups of conflict

resolution methods between which it has not been possible to notice the statistically significant

differences. The best result was obtained for the mean of coverage method but it is not possible

to say that this method is statistically better than the intersection of coverage method. The

intersection of coverage method is, however, also indistinguishable to the median of coverage

88

method. The worst method is max rule quality and there is statistical evidence that this method

gives results inferior to the methods mean of coverage and intersection of coverage. However,

referring to the ranks it is clearly visible that the mean of coverage and intersection of coverage

methods are much better than the other two.

CD

4 3 2 1

mean of coverage

intersection of coveragemedian of coverage

max rule quality

Figure 5.11: Comparison of all 4 conflict resolution methods against each other with the
Nemenyi test for the TD algorithm. Groups of methods that are not significantly different (at
p = 0.05) are connected.

CD

4 3 2 1

intersection of coverage

mean of coveragemedian of coverage

max rule quality

Figure 5.12: Comparison of all 4 conflict resolution methods against each other with the
Nemenyi test for the TDF algorithm. Groups of methods that are not significantly different
(at p = 0.05) are connected.

Figure 5.12 presents the result for the Top-Down Fixed algorithm which is the most

interesting result with respect to all the four algorithms. The Nemenyi test for the Top-Down

Fixed algorithm allowed to identify only 1 pair of methods with the lack of statistically

significant difference. These are methods: mean of coverage and median of coverage.

The intersection of coverage method, however, outperforms other methods, which is heavily

accented by the position (ranking) of this method in Diagram 5.12. In turn, the worst method is

max rule quality and statistically this is not the preferred method for Top-Down Fixed algorithm.

Figure 5.13 shows the results obtained for the Bottom-Up algorithm. The order of methods

for conflict resolution is the same as for the Top-Down algorithm, but this time there is only

89

CD

4 3 2 1

mean of coverage

intersection of coveragemedian of coverage

max rule quality

Figure 5.13: Comparison of all 4 conflict resolution methods against each other with the
Nemenyi test for the BU algorithm. Groups of methods that are not significantly different
(at p = 0.05) are connected.

one group of of indistinguishable methods. The only method that stands out from the rest is the

worst max rule quality method. It is also worth noting that the methods mean of coverage and

intersection of coverage allow to obtain very similar results (they are close to each other on the

CD diagram).

CD

4 3 2 1

intersection of coverage

mean of coveragemedian of coverage

max rule quality

Figure 5.14: Comparison of all 4 conflict resolution methods against each other with the
Nemenyi test for the BUF algorithm. Groups of methods that are not significantly different
(at p = 0.05) are connected.

The Nemenyi test for the Bottom-Up Fixed algorithm allowed to identify 2 groups of

indistinguishable methods (see Figure 5.14). The first group consists of the intersection of

coverage and mean of coverage method while the second one consists of the mean of coverage

and median of coverage method. Based on the obtained ranks the order of methods is similar to

the Top-Down Fixed algorithm. The best method proved to be intersection of coverage and the

worst max rule quality.

While analyzing the results, a few patterns can be seen. Firstly, in all cases the worst

method proved to be max rule quality. In the case of standard approaches of the Top-Down

and Bottom-up algorithms the best method was mean of coverage, even if this method was not

90

statistically better than the second one, intersection of coverage. Moreover, for the Fixed version

of both algorithms it is highly visible that the order is reversed and for the Top-Down algorithm

the intersection of coverage method outperforms other methods. Although in the case of the

Bottom-Up Fixed algorithm the Nemenyi test did not confirm the superiority of the intersection

of coverage method over the mean of coverage one, the distance between the methods is very

close to critical and thus there is strong evidence for the intersection of coverage method.

It is an interesting fact that the max rule quality method, which predicts the target value

for test examples based on the rule with the highest quality on training data set, leads to the

worst results. The possible hypothesis of such a result could be that one rule is insufficient

for determining accurate prediction due to other attributes, invisible to this rule, that can be

included in other rules and thus may affect the accuracy of prediction. The different rules then

combine predictive abilities to more accurate estimation of the target value.

It seems that for the standard approaches of both rule induction algorithms, mean of

conclusion is a preferable method to resolve conflicts. It is the simplest and the fastest

method to predict the target value, and, as shown in the experiments, it leads to the lowest

prediction error. Therefore, this is the recommended method of conflict resolution for this

type of approach. In the case of Fixed version it was proven that the intersection of coverage

method allows for more accurate prediction, and in the case of the Top-Down Fixed algorithm

it also statistically outperforms other methods. Then it seems reasonable to recommend the

intersection of coverage method to resolve conflicts.

5.8. Post-pruning methods evaluation

The research on the algorithms for filtration of unordered sets of regression rules has been

performed for six post-pruning algorithms Inclusion, Coverage, Disjoint, Forward, Backward,

and Forward-Backward. The results are presented separately for each rule induction algorithm

(TD, TDF , BU and BUF), for three selected pairs of quality measures for the growing

and pruning phase respectively (C2, C2), (Correlation, Correlation) and (C2, Correlation).

This approach allows to draw conclusions independently of the applied quality measure or the

used induction algorithm and it should help to choose one universal post-pruning algorithm that

could be used in any experiment or the induction algorithm.

Tables 5.21, 5.22 and 5.23 present average results of filtering algorithms for the chosen

heuristic. All values from those tables (except the p-values in the fourth column) are averages

over 30 data sets. The successive columns (starting from the left) are: the name of the algorithm

with the chosen heuristic used for the rule induction for both growing and pruning phase; the

name of the rule filtering algorithm (the rows marked as None correspond to the rule set without

91

filtration); RRSE, the p-value of the Wilcoxon signed-rank test (rounded to six significant

digits); the number of rules in the final set; the percentage of the reduction in the number of

rules (calculated as 100% · (1 − n1/n2), where n1 and n2 are the number of rules after and

before filtration respectively); percentage of test examples which were covered by the default

rule. For the Wilcoxon test and in the calculation of the reduction, the rule sets before filtration

were treated as the reference. Additionally, the p-values smaller than 0.05 are marked with the

sign + and − which show a statistically significant (at 0.05 level) improvement / degradation of

the prediction error over the prediction error of rule sets without filtration.

Table 5.21: Average result of the rule induction and filtering algorithms for the C2 measure.

algorithm filtration rrse wilcox #rules reduction (%) default (%)

TD C2

None 79.34 − 74.71 − 1.78
Inclusion 79.58 0.135908 65.65 12.12 1.80
Coverage 79.42 0.991795 51.55 31.00 2.16

Disjoint-0.9 80.27 0.120445 40.41 45.91 9.98
Backward 74.53 0.000771(+) 32.83 56.06 9.61
Forward 74.18 0.001197(+) 29.40 60.65 20.15

ForwBack 74.41 0.004682(+) 23.19 68.96 23.01

TDF C2

None 79.98 − 31.08 − 1.54
Inclusion 80.73 0.025637(−) 27.82 10.51 1.59
Coverage 80.46 0.130592 23.87 23.21 1.94

Disjoint-0.9 81.10 0.289477 17.54 43.57 7.79
Backward 76.12 0.000148(+) 21.96 29.35 6.12
Forward 76.59 0.005320(+) 19.69 36.64 13.71

ForwBack 76.70 0.010444(+) 17.82 42.67 15.82

BU C2

None 79.23 − 19.85 − 8.71
Inclusion 79.33 0.025641(−) 18.30 7.84 8.74
Coverage 79.24 0.648801 16.44 17.19 9.05

Disjoint-0.9 80.01 0.055664 13.95 29.75 12.91
Backward 78.87 0.228880 13.84 30.29 20.60
Forward 78.32 0.075213 14.08 29.10 22.25

ForwBack 78.42 0.147040 12.74 35.81 23.64

BUF C2

None 82.34 − 18.03 − 8.37
Inclusion 82.52 0.045082(−) 16.60 7.95 8.38
Coverage 82.90 0.005834(−) 15.13 16.10 8.57

Disjoint-0.9 85.10 0.001137(−) 12.54 30.48 12.82
Backward 80.86 0.016878(+) 14.44 19.93 13.92
Forward 80.02 0.183575 12.68 29.69 22.72

ForwBack 80.09 0.183575 11.99 33.49 23.88

As it can been seen in all three tables, the application of filtering algorithms always

returns a smaller number of rules. The reduction, however, varies according to the filtering

92

Table 5.22: Average result of the rule induction and filtering algorithms for the Correlation
measure.

algorithm filtration rrse wilcox #rules reduction (%) default (%)

TD Corr

None 86.33 − 46.34 − 0.89
Inclusion 86.31 0.428430 38.59 16.74 0.89
Coverage 86.11 0.360039 33.28 28.20 0.94

Disjoint-0.9 86.52 0.585712 24.61 46.90 7.86
Backward 81.25 0.000189(+) 20.31 56.18 10.89
Forward 79.90 0.001036(+) 15.79 65.92 24.16

ForwBack 79.57 0.000490(+) 12.95 72.06 26.60

TDF Corr

None 79.83 − 15.97 − 1.00
Inclusion 80.77 0.000174(−) 12.25 23.28 1.08
Coverage 81.95 0.000529(−) 10.61 33.57 1.31

Disjoint-0.9 84.50 0.002765(−) 7.11 55.45 6.63
Backward 76.18 0.002585(+) 12.79 19.92 3.98
Forward 75.10 0.000963(+) 11.12 30.38 12.26

ForwBack 75.13 0.002105(+) 10.50 34.22 13.43

BU Corr

None 81.59 − 11.05 − 5.31
Inclusion 81.74 0.057533 9.68 12.39 5.37
Coverage 81.58 0.584713 8.85 19.96 5.53

Disjoint-0.9 81.04 0.289477 7.27 34.26 8.54
Backward 79.53 0.004114(+) 7.50 32.15 21.39
Forward 79.42 0.009271(+) 7.67 30.61 20.26

ForwBack 79.40 0.007271(+) 7.06 36.10 23.22

BUF Corr

None 83.57 − 7.43 − 6.15
Inclusion 84.14 0.022541(−) 6.54 12.02 6.16
Coverage 84.36 0.004940(−) 6.03 18.89 6.24

Disjoint-0.9 87.03 0.002649(−) 5.09 31.49 8.67
Backward 80.00 0.015909(+) 6.33 14.76 14.78
Forward 81.71 0.399484 5.59 24.81 22.62

ForwBack 81.32 0.346905 5.38 27.59 25.89

93

Table 5.23: Average result of the rule induction and filtering algorithms for the C2 measure
used in the growing phase and Correlation used in pruning phase.

algorithm filtration rrse wilcox #rules reduction (%) default (%)

TD C2/Corr

None 79.75 − 37.78 − 0.89
Inclusion 79.96 0.673280 27.60 26.94 0.90
Coverage 79.85 0.530440 22.78 39.70 1.07

Disjoint-0.9 81.68 0.065641 17.59 53.45 6.42
Backward 74.64 0.000205(+) 17.25 54.34 12.61
Forward 74.98 0.003379(+) 14.81 60.80 21.67

ForwBack 74.55 0.000894(+) 12.51 66.90 24.39

TDF C2/Corr

None 81.37 − 13.80 − 1.10
Inclusion 81.67 0.205888 11.05 19.95 1.11
Coverage 83.24 0.008217(−) 9.29 32.72 1.34

Disjoint-0.9 86.20 0.001709(−) 6.48 53.03 5.54
Backward 77.58 0.000136(+) 10.84 21.49 5.93
Forward 77.45 0.006035(+) 9.30 32.60 15.42

ForwBack 77.50 0.007271(+) 8.76 36.56 17.04

BU C2/Corr

None 78.97 − 14.4 − 6.03
Inclusion 79.48 0.001285(−) 12.27 14.81 6.08
Coverage 79.72 0.007271(−) 10.84 24.72 6.31

Disjoint-0.9 81.04 0.001114(−) 8.73 39.35 9.57
Backward 78.51 0.236936 10.64 26.09 18.72
Forward 79.11 0.845080 10.65 26.06 18.93

ForwBack 79.09 0.942611 9.90 31.25 21.08

BUF C2/Corr

None 80.01 − 13.35 − 6.75
Inclusion 80.77 0.000247(−) 10.62 20.42 6.80
Coverage 81.40 0.000016(−) 9.52 28.71 6.90

Disjoint-0.9 84.45 0.000021(−) 7.64 42.75 9.88
Backward 78.50 0.369525 11.21 16.00 12.69
Forward 79.13 0.045484(+) 10.29 22.95 17.09

ForwBack 79.13 0.381172 9.78 26.72 19.68

94

algorithm. The lowest reduction was observed for the Inclusion algorithm (except one case

for the BUF algorithm and (C2, Correlation) heuristic), and the highest for Disjoint and

ForwBack. However, irrespective of the used heuristics, the best reduction and the lowest

prediction error were achieved at the cost of the higher value of percentage of test examples

that were covered by the default rule.

According to the results of the Wilcoxon test, in all cases the first three filtering algorithms

(Inclusion, Coverage and Disjoint) are statistically indistinguishable compared to None, or

cause a statistically significant increase in the value of the prediction error, while for the group

of the last three algorithms the value of the prediction error is statistically indistinguishable or

significantly improves the prediction.

Comparing algorithms with each other, the Inclusion algorithm behaves similarly to

Coverage. However, the Coverage algorithm is characterized by a higher reduction rate, and

therefore it is a better choice. Moreover, for the Inclusion algorithm the Wilcoxon signed-rank

test at 0.05 level shows significant increase in the value of RRSE in 7 out of 12 experiments

while the Coverage algorithm shows differences in one experiment less. The number of

unrecognized examples is also at the similar level in each algorithm. These results incline to

recommend of the Coverage algorithm when we want to reduce a rule set by 10%-40% without

affecting much its predictive and descriptive abilities.

The most noticeable improvement in the value of RRSE was observed for the Forward,

Backward and Forward-Backward algorithms. Especially good results were obtain by the

Backward algorithm which in few cases improves significantly RRSE without a large increase

in the number of examples covered by the default rule. While comparing these algorithms to the

Inclusion and Coverage algorithms it can be seen that these three algorithms are characterized

by a higher reduction rate, but the number of unrecognized test examples is also higher. Such

an increase in the number of unrecognized test examples is probably caused by the fact that

these filtering algorithms eliminate rules which do not improve prediction accuracy in relation

to the accuracy achieved by the default rule. Generally, if the increase in the number of

uncovered test examples does not play a major role in the specified task, this group of algorithms

outperforms other algorithms and it is recommended. According to the Nemenyi test, there

are no significant differences in RRSE at 0.05 level between the Forward, Backward and

Forward-Backward algorithms. Therefore the choice between these three algorithms can be

based on the compromise between the reduction rate and the number of unrecognized test

examples.

The last Disjoint algorithm is characterized by a very high reduction rate (in 6 of 12 cases

the highest one) however at the expense of a higher prediction error. However, the Wilcoxon

test indicates that for half of experiments there is no difference between the Disjoint algorithm

95

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

model built during filtration
model without filtration

(a) autoprice
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

100

110

model built during filtration
model without filtration

(b) bodyfat

0 5 10 15 20 25 30 35 40 45 50 55
0

20

40

60

80

100

model built during filtration
model without filtration

(c) cpu
0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

110

model built during filtration
model without filtration

(d) concrete

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

20

40

60

80

100

120

model built during filtration
model without filtration

(e) cholesterol
0 5 10 15 20 25 30 35 40

0

20

40

60

80

100

120

model built during filtration
model without filtration

(f) pharynx

Figure 5.15: Graph of the value of prediction error (RRSE) in subsequent steps of filtration for
the ruleset obtained using TD algorithm. All diagrams have been obtained for the Coverage
filtering method and every first fold of the 10-fold stratified cross-validation for listed data sets:
autoprice, bodyfat, cpu, concrete, cholesterol and pharynx. The dashed line represents the
prediction error of the models without filtration.

96

and None. Moreover, despite high reduction in the number of rules, the Disjoint algorithm still

generalizes well to an independent test set. Although it has a higher percentage of unrecognized

test examples (i.e. asigned to the default rule) than Inclusion or Coverage, it has a much lower

percentage than Backward, Forward and ForwBack. In view of the reduction and generalization

rate, the Disjoint algorithm seems to be a good choice to optimize the number of rules for

descriptive purposes.

Further analysis was performed to examine the process of building the filtered rule-based

model. The first experiment was conducted on the six chosen data sets (autoprice, bodyfat, cpu,

concrete, cholesterol and pharynx which enable to obtain the most different results) and the

Coverage filtering algorithm. The main aim of this experiment was to investigate the prediction

error of the rule-based model in subsequent iterations of one filtering algorithm, but on different

data sets. The results of this research are presented in Figure 5.15. The solid line represents the

measured accuracy while the dashed line stands for the model without filtration. As it can been

seen, the value of RRSE for the rule-based model with one rule is around 100% in all cases. It

means that an empty model is insufficient to accurately predict the target value of the entire test

set. However, interesting results can be seen on the subgraphs a and c where the addition of the

first rule to the filtered model allows to obtain a lower prediction error than a simple mean of the

target value of all training examples. Further iterations always cause a change in the value of

the prediction error. For the presented data sets the error of prediction in subsequent iterations

mostly improves, as it is represented by the subgraphs a, b, d and f. However, the error increases

at some point. The subgraph of the cpu data set (c) presents the case in which the prediction

error does not decrease for a long time and even temporarily increases at some point. At the final

phase of filtration the value of the prediction error of the filtered model approaches the value

of the prediction error of the model without filtration. It is also worth to note that in the case

b, d or f the error of the model in the middle of the filtration process reaches its minimum and

then increases. However, this is a consequence of the assumptions of the algorithm, wherein the

filtering algorithm does not interrupt its activity at the local minimum but performs the filtering

process based on the uniqueness of coverage of the remaining rules. The highest frequency of

a monotonicity change was observed for the concrete and bodyfat data sets thus these sets were

chosen to check the characteristics of others filtering algorithms.

Figures 5.16 and 5.17 present the characteristics of 6 filtering algorithms for the same one

fold of the 10-fold stratified cross-validation for the bodyfat and concrete data set respectively.

One can observe that three algorithms (Coverage, Disjoint and Forward) are characterized by

similar diagrams for both data sets. By analyzing the construction of these algorithms it can

be concluded that one common feature for all of them is a starting point. In all algorithms the

filtration process begins from the best rule which leads to the most noticeable improvement

97

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

model built during filtration
model without filtration

(a) Inclusion
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

100

110

model built during filtration
model without filtration

(b) Coverage

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

110

model built during filtration
model without filtration

(c) Disjoint-0.9
0 5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

70

80

90

100

model built during filtration
model without filtration

(d) Backward

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

110

model built during filtration
model without filtration

(e) Forward
0 5 10 15 20 25 30 35 40 45 50 55

0

10

20

30

40

50

60

70

80

90

100

model built during filtration
model without filtration

(f) ForwBack

Figure 5.16: Graph of the value of the prediction error (RRSE) in subsequent steps of 6 filtering
algorithms for the rule set obtained using the TD algorithm. All diagrams have been obtained
for a first fold (of the 10-fold stratified cross-validation) of the bodyfat data set. The dashed line
represents the prediction error of the models without filtration.

98

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

model built during filtration
model without filtration

(a) Inclusion
0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

110

model built during filtration
model without filtration

(b) Coverage

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

model built during filtration
model without filtration

(c) Disjoint-0.9
0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

model built during filtration
model without filtration

(d) Backward

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

110

model built during filtration
model without filtration

(e) Forward
0 5 10 15 20 25

0

10

20

30

40

50

60

70

80

90

100

model built during filtration
model without filtration

(f) ForwBack

Figure 5.17: Graph of the value of the prediction error (RRSE) in subsequent steps of 6 filtering
algorithms for the rule set obtained using the TD algorithm. All diagrams have been obtained
for a first fold (of the 10-fold stratified cross-validation) of the concrete data set. The dashed
line represents the prediction error of the models without filtration.

99

in the initial stage of filtration. The differences in the assumptions of the algorithms are

reflected only in later iterations. The similar diagrams were also obtained for the Backward

and ForwBack algorithms. However, in this case similar graphs show the use of the Backward

algorithm in the unchanged form inside the implementation of the ForwBack algorithm.

The obtained results allow to conclude about the behaviour of each of the algorithms. The

Inclusion algorithm focuses on the systematic improvement of the rule-based model quality

which is reflected in the improvement of the model accuracy. The Coverage, Disjoint and

Forward algorithms allow for faster and more powerful decline in the error value in the

subsequent iterations. One can also notice a smaller number of iterations for the Disjoint

algorithm with respect to other two algorithms. This is illustrated by the shift of the presented

curve. The Backward algorithm removes unnecessary elements of the model when removing

them has a positive impact on the rule set quality. In the case of the concrete data set, an impact

on the accuracy of the model is almost invisible but for the bodyfat data set the accuracy is

continuously but slowly improved. The last diagram for the ForwBack algorithm is the most

static. This is due to the execution order of algorithms. The measurement of the model accuracy

is performed at the end of each algorithm. In the case of ForwBack algorithm it is at the end of

Backward algorithm. An input of this algorithm is, however, a model previously filtered with the

use of the Forward algorithm, therefore, the following algorithm does not result in large changes

(especially when the only difference between algorithms is an order of rules examination).

The experimental results lead to the conclusion that the application of filtering algorithms

always allows to obtain a smaller number of rules and in most cases does not cause degradation

in the values of RRSE, thus, they seem to be safe to use for the size reduction of regression

rule sets. The performed statistical tests do not prove the existence of one universal filtering

algorithm. However, the six rule filtering algorithms can be characterized by different properties

which are reflected by the value of the prediction error, the reduction in the number of rules and

the percentage of unrecognized test examples.

In view of all these considerations, the Coverage method seems to be the best choice and it

is a recommended rule for filtering the algorithm for regression. An application of this method

allows to reduce a regression rule set by 16%-40% without affecting much its predictive and

generalization abilities. However, if the increase in the number of unrecognized test examples

does not play a major role in the specified data mining task, then the Backward, Forward and

ForwBack algorithms are preferable.

100

5.9. Comparison to existing methods

In this section the selected combination of proposed approaches was compared to several

methods available in Weka 3.6.11 [127], in R 3.1.2 environment [98] or from other external

sources. The attention has been paid to the methods that, similarly to rule-based ones, are able

to express the data model in a comprehensible form. In addition, the comparison was enriched

by the results of the RegENDER algorithm [24] as representative of the most computationally

advanced methods of the regression rule induction. The results are also compared to the

SeCoReg algorithm [34, 57, 59].

Table 5.24: Average performance of selected algorithms with respect to existing solutions.

algorithm rrse #rules
TD C2 Coverage 79.42 51.55
TD C2 Backward 74.53 32.83

RegENDER-50 80.92 50
RegENDER-150 76.62 150

M5Rules-R 78.55 59.03
SeCoReg M-Estimate 80.27 −

CART 77.37 −

The M5Rules algorithm was run with the -R parameter which causes that generated rules

have a constant, instead of a linear model, in conclusion (as in the presented implementation).

For RegENDER, the parameter of the number of output rules was set to 50 and 150. The first

value corresponds to the average number of rules induced by the Top-Down algorithm with the

Coverage filtration method while the second value is an arbitrary value to check the prediction

error of a more complex model. For the SeCoReg algorithm the mEstimate heuristic was used

as a recommended one. The rest of the parameters of algorithms were set to their default values.

The results presented in Table 5.24 show that regression rules or trees built with the use

of a variety of methods with a single value in the conclusion can lead to different prediction

abilities. The lowest prediction error was observed for one of the proposed combination of

the Top-Down algorithm with the C2 quality measure to control the induction process and

with the Backward rule filtering method. Surprisingly, the worst result was observed for the

RegENDER-50 algorithm. Although, the Friedman test does not show statistically significant

difference in the values of RRSE for the group of all 7 algorithms from Table 5.24, it should be

noted that the TD C2 Backward algorithm leads to a much smaller number of rules than other

algorithms and, at the same time, allows to obtain the lowest prediction error.

Furthermore, we decided to check whether the use of linear models allows to decrease the

prediction error. For this purpose, the linear models for algorithms that have obtained the best

101

Table 5.25: Average performance of selected algorithms with linear models with respect to
existing solutions.

algorithm rrse #rules
TD C2 Coverage Linear 63.82 51.55
TD C2 Backward Linear 67.36 32.83

M5P 73.27 −
Cubist 68.08 −

results for a single value in the conclusions have been applied. Then, the results were compared

with two other algorithms that allow to produce linear models. The results of this experiment

are presented in Table 5.25. One can notice that, in fact, the linear models help to reduce

the prediction error. The lowest RRSE was obtained for the TD C2 Coverage method with

linear models. It can be seen that in the case of linear models the value of the prediction error

decreased from 7 to 13% (or 10− 20% if calculated as a ratio) in relation to the same methods

but with a single value in the conclusion.

The Friedman statistic gave 10.68 (p-value 0.0136) which exceeded the critical value 2.6896

for confidence level 0.05. Thus, the null hypothesis that all algorithms performed equally well

can be rejected. The post-hoc Nemenyi test allowed to identify 2 groups of indistinguishable

methods (see Figure 5.18). The first group consists of all methods except M5P while the second

one does not contain TD C2 Coverage Linear algorithm. This is equivalent to the fact that

these methods differ from each other. Although the p-value is near 0.01 what means that the

difference between methods is not strong enough, but it can be clearly seen that the distance

between methods on the Figure 5.18 is considerable, thus the TD C2 Coverage Linear method is

recommended to solve regression problem using methods with linear models in the conclusion.

CD

4 3 2 1

TD C2 Coverage Linear
CubistTD C2 Backward Linear

M5P

Figure 5.18: Comparison of 4 algorithms with linear models in the conclusion against each other
with the Nemenyi test. Groups of methods that are not significantly different (at p = 0.05) are
connected.

102

This experiment allowed to compare the proposed methods to other existing algorithms. The

obtained results lead to the conclusion that the proposed methods are comparatively accurate

or in some respect even better. The best results were obtained for the Top-Down algorithm

with the C2 quality measure to control the induction process. The most accurate prediction

was obtained for the simple mean of conclusion method to tackle with conflicts. Moreover,

the filtration method leads to a lower number of rules preserving the predictive ability of the

models. Finally, the linear model in the conclusion always leads to a lower prediction error but

one must be aware that this happens at the cost of the readability of the model.

6. Experiments on real-life data

In this chapter the best combination of previously presented algorithms and methods is

applied to real-world data. In fact, there were two real problems which had been attempted to

solve by our rule algorithms. The first problem concerns methane concentration prediction in

coal mines while the second problem resides in the seismic hazard prediction domain. Both

tasks are of great scientific and commercial importance.

In the first part, the focus is put on the prediction of methane concentration in a coal

mine. This problem, due to the huge impact on the health and lives of miners, is extremely

important in today’s mining industry. The main goal of this research was to predict the gas

concentration that will be registered by a sensor in the consecutive time intervals (e.g. in the

case of temporary unavailability of the sensor). The addition goals were to analyze data to find

possible dependencies and to predict methane concentration with missing indications of a few

sensors. The results of the work have already been published in the paper Regression Rule

Learning for Methane Forecasting in Coal Mines [67].

In the second part, the focus is put on the seismic hazard, which is another threat in the

mining industry. The goal of this work was to predict the sum of seismic energy of recorded

tremors and energy recorded by the geophone in the consecutive time interval. The main

challenge of this work was to translate the problem, mainly undertaken in the literature in the

context of the classification, to the problem of regression, which allows to predict not only the

state, like in the case of classification, but also the value of the tremors energy.

Both sections are organized in a similar way: they begin with a short introduction to the

problem domain, then the data set is described and the goals are defined. In the third part

the experimental settings are presented including the presentation of all compared algorithms.

Finally, the results are presented and the conclusions are drawn.

6.1. Methane concentration prediction

The natural hazard monitoring systems have become a typical solution in the modern

industry. Coal mining is a branch of industry where safety monitoring systems play a key

role. The miners working underground in coal mines are exposed to injury or loss of life due

to various environmental factors such as methane explosion or rock-bursts. Accordingly, the

104

possibility to predict gas concentrations (methane in particular) that will be registered by sensors

in the consecutive time intervals is desirable and can be even more important then monitoring

the current state of the process parameters to ensure the safety of miners.

The prognostic models of that type are scarce and further research and development in

this area is still needed. Some research on the prediction of the methane concentrations was

conducted in the recent years [107, 108]. However, these approaches utilized the readings of

the sensor being the subject of forecasting. In such a case the past indications of the sensor have

obviously the strongest impact on the predicted future indications of this sensor, which makes

it the most important attribute of the created prediction model.

The motivation of this work is fourfold. Firstly, it would be interesting to verify the

possibility of methane concentration prediction in the place where the sensor is located only for

a limited time (e.g. a portable sensor). Secondly, our approach will enable the prediction even

if the indications of the existing sensor are missing for some reasons (the previous approaches

utilizing the prior measurements of the sensor being a subject of prediction are not able to

perform this task). Therefore, the results of this work can be utilized in such tasks as automatic

filling of long lasting missing sensor measurements or automatic identification of the sensor

measurements manipulations. Thirdly, it would be interesting to find out the dependencies in the

analyzed data. Fourthly, the undertaken investigations are the component of a more extensive

work, which is a decision support system to assist dispatchers and users of monitoring systems.

6.1.1. Data set

This study features an analysis of measurements collected in a coal mine. The

methane concentration which is predicted can depend on a current mining activity, methane

concentration in other locations and ventilation measured in several ways.

The data set containing information about gases concentrations was registered on a longwall

outlet (with the highest risk of methane hazard). The topology of the coal mine part where the

measurements were performed is presented in Fig. 6.1. The sensors indicated in Fig. 6.1 are

explained in Table 6.1.

The measurement frequency of each sensor was 1 second. The data set contains

measurements of 1 week aggregated at each 30 seconds. The aggregation functions applied

to each sensor data are presented in Table 6.1. The task was to predict the maximal value of

MM116 for next 3 minutes. The other sensors described in Table 6.1 collected the values of

the attributes utilized in a prediction model. Additional attribute (PD) of the model identifies

if the combine works at a given time (dominant was applied as an aggregation function). The

characteristics of the collected data are presented in Table 6.2.

105

Figure 6.1: Coal mine topology and sensors.

Sensor Sensor type Description Aggregation function Variable type
MM116 methanometer methane concentration [%] max dependent
MM31 methanometer methane concentration [%] max independent
AS038 anemometer air velocity [m/s] min independent
PG072 airflow airflow [m3/s] min independent
BA13 barometer pressure [hPa] mean independent
PD - combain activity dominant independent

Table 6.1: Description of the sensors marked in Fig. 6.1.

Sensor Min Max Median Mean Standard deviation
MM31 0.17 0.82 0.36 0.36 0.117
MM116 0.20 2.20 0.80 0.80 0.286
AS038 1.40 2.70 2.30 2.29 0.142
PG072 1.10 2.60 1.80 1.84 0.107
BA13 1067 1078 1075 1073 3.138

Table 6.2: Data characteristics.

The entire data set was divided into two disjoint parts. The first 70% of examples consisted

of a training set for model building, and the last 30% of data created a test set for model

evaluation.

6.1.2. Experiment and experimental settings

The Top-Down algorithm and Top-Down Fixed modification were compared with several

methods available in Weka 3.6.11 [127] and in the R 3.1.2 environment [98]. The attention

has been paid to the methods that, similarly to the rule-based ones, are able to express the data

model in a comprehensible form. The methods that were applied are listed in Table 6.3. All

106

algorithms were run in their default configuration, except the Cforest algorithm for which the

number of trees was set to 1000.

The most important change in this experiment in relation to the other experiments of this

work is the use of the Root Mean Squared Error (RMSE) measure in place of Root Relative

Squared Error (RRSE). This change was made due to the fact that the experiment was only a

part of a large project in which a number of methods were compared with the RMSE measure.

This project was partly supported by the Polish National Centre for Research and Development

(NCBiR) grant PBS2/B9/20/2013 within of Applied Research Programmes. The aim of this

project was to develop a decision support system for monitoring the processes and risks in coal

mines.

Id Description Tool
Training mean Mean of a target attribute on a training set R
Ctree Regression tree with statistical cut evaluation [52] R
Cforest Random forest utilizing Ctree method [117] R
Cubist Rule-based predictive models [76] R
M5P M5 trees [95] Weka
M5RULES M5 rules [51] Weka

Table 6.3: Reference methods utilized in the analysis.

6.1.3. Results

The results of the analysis are presented in Tables 6.4 and 6.5. The performance of each

algorithm is described by the root mean squared error (RMSE), maximal error on a test set, the

percentage of a number of errors above the 0.3 threshold and size. The size is calculated as the

number of rules for rule-based models, the number of leaves for trees and the number of trees

for random forest.

The results are divided into two tables due to the different form of the obtained model.

Table 6.4 presents methods that predict a single target value while Table 6.5 presents algorithms

allowing prediction with the use of the linear models. In the case of linear models, we would

like to verify whether the linear models are able to reduce the prediction error. However, due

to the complex structure of linear models, such models are much more difficult to interpret and

thus further analysis of the descriptive ability of rules will concern only models with the simpler

form of the target value.

Among the methods presented in Table 6.4 the best results were achieved by the TDF C2

filtered method. Similarly, the results before filtration (TDF C2) are characterized by a very

low RMSE value, however the postprocessing reduces the number of rules significantly, which

107

RMSE Max error % Max error over 0.3 Size
TD C2 0.265 0.773 27.09 934
TDF C2 0.181 0.611 10.82 100
TD C2 filtered 0.249 0.757 23.88 510
TDF C2 filtered 0.177 0.614 8.59 18
Training mean 0.298 0.802 47.64 -
Ctree 0.216 0.600 16.88 137
Cforest 0.206 0.566 16.27 1000
M5RULES 0.220 0.700 18.80 53

Table 6.4: Results of the analyzed methods with the single target value.

makes them intelligible and reduces the RMSE even more. Among the methods that return

linear models, once again the best result were obtained by the TDF C2 filtered method but the

method without filtration returned very similar results. However, it can be seen that the simple

model allows to obtain a lower prediction error than the linear model. These good predictive

abilities of a single value were also confirmed by a lower value of the maximum error and a

lower value of the percentage of a number of errors above the 0.3 threshold.

RMSE Max error % Max error over 0.3 Size
TD C2 linear 0.275 1.120 25.47 934
TDF C2 linear 0.202 0.625 16.44 100
TD C2 filtered linear 0.270 1.055 26.08 510
TDF C2 filtered linear 0.201 0.625 16.30 18
Cubist 0.216 0.944 17.91 100
M5P 0.205 0.761 15.81 195

Table 6.5: Results of the analysed methods with linear model.

The histograms presenting error distributions (difference between the real value and the

predicted methane concentration) for the TD and TDF methods with the single target value are

presented in Fig. 6.2. It can be noticed that a larger number of the predictions performed by

means of the TD method were underestimated and the maximal value of underestimation is

higher. In the case of the TDF method the overall number of under- and overestimations as well

as the maximal values seem to be similar. One can conclude that the histograms show that the

results of the TDF method are more balanced.

The rules generated by means of the TDF method, such as the two examples with a higher

value of methane concentration presented in Table 6.6 and the two examples with a lower value

of methane concentration presented in Table 6.8, can be further statistically analyzed by the

calculation of confidence intervals and the pessimistic, optimistic or standard quality of the

rules, as it was discussed in section 3.4. Any quality measure can be calculated this way, e.g.

108

Figure 6.2: The error distributions of the Top-Down rule-based method.

C2 measure (2.16), precision or coverage. Tables 6.7 and 6.9 present the pessimistic, standard

and optimistic values of precision and coverage quality of the rules presented in Tables 6.6 and

6.8.

Rule R1 Rule R2
IF PD = 1.0

BA13 ∈ [1072.867;
1076.287)
PG072 ≥ 1.75
MM31 ∈ [0.405, 0.625)

IF PD = 1.0
MM31 ≥ 0.37
BA13 ≥ 1068.088

THEN MM116 = 1.3 (0.200) THEN MM116 = 1.1 (0.201)

Table 6.6: Exemplary rules generated by means of the TDF method with higher values of
methane concentration.

It can be noticed that the rule R2 is more general which results in much higher standard

coverage. However, the standard precision of the rules is very similar. Looking at the ranges

derived by pessimistic and optimistic values we can notice that the range of the rule R1 precision

is broader than the rule R2 precision and the pessimistic precision of the rule R1 is significantly

109

R1 R2
Precision Coverage Precision Coverage

Rule quality
pessimistic 0.757 0.073 0.819 0.411
standard 0.831 0.087 0.839 0.428
optimistic 0.895 0.100 0.858 0.445

Table 6.7: Quality of the rules from Table 5.11.

lower then the one of the rule R2. Summarizing, the pessimistic quality (values of precision and

coverage) of the rule R2 is significantly higher then the one of the rule R1.

According to the rules with lower prediction of methane concentration it can be seen that

the rule R3 is characterized by higher precision and much higher coverage which results in the

value of coverage. Looking at the ranges derived by pessimistic and optimistic values one can

also notice that the precision range of the rule R1 is narrower than the precision range of the

rule R2. The ranges for coverage are, however, very similar.

An additional knowledge about the process can be drawn out from the analysis of the

structure of the rules for lower and higher prediction of methane concentration. It is evident

that lower predictions were obtained where the body of the rules included such conditions like

e.g.: MM31 < 0.365 for the rules R3 and R4 comparing to MM31 ≥ 0.37 for the rules R1 and

R2, PD = 0 for the rule R4 and PD = 1 for the rules R1 and R2 or PG072, but in this case with

intersection between ranges 1.75 and 2.05. However, looking at the minimum and maximum

values for the attribute PG072 (1.10 and 2.60 respectively) it can be noticed that such left- or

right-unbound intervals may still bring additional knowledge about the prediction value.

Rule R3 Rule R4
IF AS038 ≥ 2.05

BA13 ∈ [1070.228;
1077.683)
PG072 < 2.05
MM31 ∈ [0.185, 0.355)

IF MM31 < 0.365
PD = 0
BA13 < 1073.033

THEN MM116 = 0.6 (0.200) THEN MM116 = 0.6 (0.134)

Table 6.8: Exemplary rules generated by means of the TDF method with lower values of
methane concentration.

The presented example of the pessimistic and optimistic rule quality analysis shows that it

can bring additional knowledge about the generated rules and allows to compare the rules more

deeply. Moreover, the descriptive abilities of rule-based models allow to conclude about the

process directly based on the rules body.

110

R3 R4
Precision Coverage Precision Coverage

Rule quality
pessimistic 0.893 0.740 0.714 0.195
standard 0.903 0.758 0.755 0.211
optimistic 0.913 0.775 0.794 0.228

Table 6.9: Quality of the rules from Table 6.8.

6.1.4. Conclusions

An approach to methane concentration prediction was presented, in which the readings of

the sensor being the subject of forecasting are not included into the model. Several prediction

methods were analyzed in this task. The analysis was performed on real life data consisting of

weekly measurements containing methane concentration collected at the coal mine.

The results showed that the best prediction quality was delivered by the TDF method with a

single target value which was introduced in this work. Some interesting characteristics of this

method were also presented by means of the error distribution analysis.

The TDF method generates regression rules with a single value in the conclusion (calculated

differently than in the works [59, 109]). Such rules deliver easily interpretable knowledge about

the analyzed phenomenon, which is an additional advantage of this method. A new approach to

pessimistic and optimistic evaluation of such rules was also presented in the work and evaluated

on two exemplary rules generated for the given task.

The results of algorithms with the linear model in the conclusions show that the application

of a linear function does not always lead to a more accurate prediction. However, the TDF

method with the linear model still allows to obtain a lower prediction error than other methods

with the same model type.

6.2. Seismic hazard prediction

In the previous chapter, the attention was focused on the research on the methane

concentration prediction that may lead to a methane explosion and can jeopardize the safety

of the miners working underground. However, this is not the only threat to which the miners are

exposed. Another threat is a seismic hazard. In mines the seismic hazard is mainly understood

as a high energy destructive tremor which can cause rockburst, which, in turn, can threaten the

lives of the miners, and lead to the destruction of the equipment and longwalls. Due to such

risks it is crucial to anticipate threats and warn of their possible occurrence early enough. The

problem is that the seismic hazard is one of the hardest natural hazards to detect and predict.

111

The problem of predicting the seismic hazard is undertaken in the literature mainly in

the context of classification tasks where the response is usually defined as a "hazardous" or

"non-hazardous" state. It is worth mentioning such approaches as: prediction tremors using

artificial neural networks [61, 71, 99], prediction data clustering techniques [66], probabilistic

analysis [70] that predict the energy of future seismic tremors emitted in a given time horizon,

or the linear prediction method [65] that predicts the total value of seismoacoustic and seismic

energy.

The aim of this work is to adapt the presented regression rule induction algorithms to predict

the total of energy of tremors. The verification of prediction abilities will be carried out in

relation to a number of publicly available methods in Weka [127], in the R environment [98],

or methods from other sources.

6.2.1. Data set

This study concerns the analysis of the measurements collected by the geophysical station

supporting system called Hestia [101]. This main task of this system is to gather and visualize

data from seismic activity monitoring systems located in a coal mine. An important objective

of the system is to assess possible rockburst hazards for each longwall separately on the basis

of seismic and seismoacoustic methods.

The data set used in this study was collected with the use of two time horizons: shift (eight

hour) one and one-hour horizon. However, taking into account the schedule of the mining work,

the shift horizon is more important. The data set is derived from the Mysłowice-Wesoła coal

mine from the longwall Sc503, which is threatened with rockbursts because of its geological

structure. The task was to predict the total seismic energy of the recorded tremors and energy

recorded by the GMax (geophone which records maximum energy during the process of data

aggregation) which will be released in the next hour or in the next eight hours (shift) depending

on the time horizon of the data set. The description of attributes is presented in Table 6.10.

Each data set was divided into two disjoint subsets. The first 70% of examples consisted of

a training set for the model building, and the last 30% of a data created test set for the model

evaluation.

6.2.2. Experiment and experimental settings

The Top-Down algorithm and Top-Down Fixed modification (the best results from the

group of TD, TDF, BU and BUF algorithms were obtained for TD and TDF algorithms) were

compared with several methods available in Weka 3.6.11 [127] and in the R 3.1.2 environment

[98]. The attention has been paid to the methods that, similarly to rule-based ones, are able

112

Attribute name Attribute type Description Variable type
tremor energy numerical prediction of total seismic energy in next

hour/shift (depends on the time horizon of
data set)

dependent

seismic nominal hazard assessment made by seismic
methods

independent

seismoacoustic nominal hazard assessment made by
seismoacoustic methods

independent

comprehensive nominal comprehensive hazard assessment independent
shift nominal information about type of a shift

(coal-mining or preparation shift)
independent

genergy numerical seismic energy recorded within the
previous shift by the most active
geophone (GMax) out of geophones
monitoring the longwall

independent

gpuls numerical number of pulses recorded within the
previous shift by GMax

independent

gdenergy numerical deviation of energy recorded within the
previous shift by GMax from average
energy recorded during the eight previous
shifts

independent

gdpuls numerical deviation of a number of pulses recorded
within the previous shift by GMax from
average number of pulses recorded during
the eight previous shifts

independent

ghazard nominal result of shift seismic hazard assessment
in the mine working obtained by
the seismoacoustic method based on
registration coming form GMax only

independent

nbumps numeric the number of seismic bumps recorded
within the previous shift

independent

nbumps2 numeric the number of seismic bumps (in energy
range [102,103)) registered within the
previous shift

independent

nbumps3 numeric the number of seismic bumps (in energy
range [103,104)) registered within
theprevious shift

independent

energy numeric total energy of seismic bumps registered
within the previous shift

independent

maxenergy numeric the maximum energy of the seismic
bumps registered within previous shift

independent

Table 6.10: Description of the attributes in the seismic data set.

113

to express the data model in a comprehensible form and, because of the assumption of the

experiment, allow us to get the same type of conclusion (a single target value or a linear model).

The methods that were applied and the information about the type of prediction are listed in

Table 6.11. All algorithms were run in their default configuration, except RegENDER for which

the number of rules was set to 50 (the algorithm was run with different values of rules, but the

results do not differ).

Id Conclusion type Description Tool
CART single value Classification and regression trees

(rpart) [13]
R

Cubist linear model Rule-based predictive models [76] R
M5P linear model M5 trees [95] Weka
M5RULES single value M5 rules [51] Weka
SeCoReg single value Separate and conquer rule induction

algorithm [34]
External source

RegEnder single value Rules constructed using boosting
technique [24]

External source

Table 6.11: Reference methods utilized in the analysis.

6.2.3. Results

The results of the analysis are presented in Table 6.12 for comparison of methods with a

single target value in the conclusion and in Table 6.13 for methods with linear models. The

performance of each algorithm is described by the root relative-squared error (RRSE).

Prediction task Algorithm RRSE Correlation

Hourly predicting

TD C2 Coverage 87.70 0.568
TDF C2 Coverage 86.15 0.550

CART 79.37 0.610
SeCoReg M-Estimate 83.34 0.569

M5Rules 82.68 0.564
RegENDER-50 82.78 0.572

Shift predicting

TD C2 Coverage 70.53 0.732
TDF C2 Coverage 57.35 0.818

CART 56.72 0.824
SeCoReg M-Estimate 60.05 0.798

M5Rules 54.49 0.840
RegENDER-50 56.42 0.832

Table 6.12: sc503

114

It can be seen that the error and the correlation coefficient between the predicted and actual

values of the sum of energy of tremors and energy of emission seismoacoustic are lower for

the shift horizon than for the hourly prediction. The best results for the single target value

prediction were achieved by the CART algorithm for both time ranges. However, the result

obtained for the shift prediction by the TDF algorithm does not differ too much from the best

value. In addition, it is worth noting that the values of the correlation coefficient for the best

four algorithms (including TDF) are higher than 0.8 and lower than 0.84. In the case of the

hourly predicting task, the t-test refused the null hypothesis, which is that both algorithms

perform equally well, between the best result for the TDF C2 Coverage method and the CART

method (at the 5% significance level and with the p-value 0.026). However, in the case of shift

predicting the null hypothesis cannot be rejected (for the TDF C2 Coverage method and the

M5Rules method at the 5% significance level the p-value is 0.114). Therefore, this experiment

shows that although the proposed method does not give the best results, it is still competitive

with other commonly used methods. Moreover, the proposed algorithms have an additional

advantage. The output of these algorithms is the rule set with the single target value in each

rule. Thus such a form is simple and easy to interpret.

Prediction task Algorithm RRSE Correlation

Hourly predicting

TD C2 Coverage 77.73 0.629
TDF C2 Coverage 78.00 0.627

Cubist 79.96 0.617
M5P 82.13 0.571

Shift predicting

TD C2 Coverage 49.72 0.867
TDF C2 Coverage 55.07 0.834

Cubist 52.93 0.849
M5P 55.45 0.834

Table 6.13: sc503 linear model

The results of experiments with the application of linear models were presented in Table

6.13. The comparison was carried out for the algorithms that allow the use of linear models. It

is clearly seen that the use of a more complex model allows to obtain a lower prediction error

and a higher value of correlation coefficient than for a simple model. For both prediction tasks

the t-test refused the null hypothesis between the best result for the TD C2 Coverage and Cubist

method (at the 5% significance level and with the p-value 0.019 for hourly predicting and 0.009

for shift predicting). Moreover, in both prediction tasks the best results were obtained for the

TD and TDF algorithms. It is also worth to underline that the use of linear models does not

always allow for improvement of the prediction error. The examples can be the algorithms M5P

and CART where a single target value used in CART outperforms linear models in M5P.

115

6.2.4. Conclusions

The work presents an approach to seismic hazard prediction with the use of regression rules.

Several prediction methods were analyzed in this task. The analysis was performed on real life

data consisting of measurements containing the total seismic energy of tremors and energy

recorded by a geophone obtained from the geophysical station supporting system in the coal

mine.

The results showed that the lowest prediction error was delivered by the methods with the

linear conclusion. Although the results of algorithms with the linear model in the conclusion

show that the application of a linear function does not always lead to a more accurate prediction

(see M5P), the best results (from all presented results) were obtained exactly for the two

algorithms TD and TDF with linear models.

The experiments also showed that the methods with a single value in a conclusion are

competitive with other commonly used methods. The prediction error and the value of the

correlation coefficient obtained for the proposed methods are similar to other values and, in

addition, the outputs of the algorithms are simple and interpretable.

7. Conclusions

Solving regression problems with the use of rule-based models is not a trivial problem.

Throughout the thesis, we have explored sequential covering rule induction and rule

optimization algorithms for solving this issue. The results showed that suitable modifications

not only allow the use of these algorithms but also that the algorithms perform similarly to other

different state-of-the-art algorithms.

The main goals of this work related to the regression rule induction are: the investigation and

the evaluation of covering rule induction algorithms acting on the basis of two entirely different

strategies: Top-down and Bottom-up, the introduction of quasi-covering algorithms with the

fixed target value in a conclusion of the rule, the transfer of quality measures from classification

to regression, and the research on rule optimization algorithms applied during and after the rule

induction. The aim of empirical research was to propose the most efficient combination of the

rule induction algorithm, the heuristic and methods used at different stages of the induction

for solving regression problems. This objective sought to be solved by the choice of the best

solutions for each test stage.

Examples of practical applications illustrate the possibility of transferring acquired results

to the real regression problems. These examples also show that solving practical tasks requires

to define specific field-oriented modifications of sequential covering rule induction and rule

optimization algorithms.

This thesis examined many aspects of the rule induction and optimization algorithms.

Following, there is a summary of the most important results and findings from each experiment.

1. An application of modifications in the method of determining positive and negative

examples covered by the rule for regression allows to apply well-known heuristics from

classification to control the process of regression rule induction. The experiment with

quality measures for regression allows to identify two most promising (according to the

prediction error, the number of rules and the average coverage) quality measures for

regression: C2 and Correlation. These experiments also confirmed that regardless of the

nature of the algorithm the quality measures retain their characteristics (e.g. tendency to

return more general rules). On the other hand, the rule size depends more on the choice of

the rule induction algorithm than the choice of the heuristic.

117

2. Quasi-covering regression rule induction algorithms, acting on the basis of the fixed target

value in the conclusion of the rule, allow to obtain good prediction accuracy, especially in

the Top-down strategy. Regardless of the rule induction algorithm we have observed that the

use of the fixed target value reduces a number of rules in the rule set. The results obtained

from experiments on real-life data may also be interpreted as evidence for the prediction of

the target value without significant deviation from the actual value. The error distribution

is, in turn, more balanced.

3. Research on the separation of rule refinements and rule selection with the use of different

quality measures to control both stages shows that the prediction error changes but these

changes are not statistically significant. Conversely, studies revealed a significant impact on

the number of induced rules from +10% and −23% to +77% and −55%. The experiment

proved that the separation of stages may have an impact on the outcome of the regression

rule induction algorithm.

4. The main conclusion that we draw from the experiment with pre-pruning methods is that

the application of the Hill climbing approach is a better choice mostly because the Tabu hill

climbing algorithm leads to the induction of more rules. It is still an open question whether

the introduction of the parametrized method would have improved the results.

5. Rule filtering algorithms, after applying appropriate modifications, can be successfully used

to reduce a number of redundant regression rules in the rule set without significant increase

in the value of the prediction error. The redundancy of the rule was examined in two aspects.

We can observe that the group of algorithms that focus on the optimization towards the best

prediction accuracy in some cases significantly decrease the prediction error but at the cost

of higher value of percentage of test examples that were covered by the default rule. The

lowest level of reduction in the number of rules was observed for the Inclusion algorithm

while the highest reduction was observed for two algorithms: Disjoint-0.9 and ForwBack.

Research on various aspects of filtering algorithms allowed us to identify the most universal

Coverage algorithm, which reduces a regression rule set by 16%-40%.

6. The visualization of the filtration process allows to conclude about the behaviour of rule

filtering algorithms. We have observed similarity of performance curves for algorithms

working with a different definition of criterion of uselessness of rules. It can be noted

that the rule filtering carried out with respect to the training set at a certain point does

not improve and even leads to deterioration of the rule set quality with respect to the test

set. Interesting results were also observed for the combination of filtration methods. The

successive filtration with the use of two methods: Forward and Backward (labelled as

ForwBack) hardly ever changes the value of the prediction error throughout the filtration

process, while it still improves the reduction ratio.

118

7. Research on the conflict resolution methods has shown that the algorithms based on

measures like mean, median or heuristic, and not on voting schemes like in classification,

may be applied for the problem of solving conflicts in regression. We noticed that the

conflict resolution methods lead to a statistically significant different prediction error of

the rule set. We can clearly observe that two methods (mean of coverage and intersection

of coverage) perform better than others. In both quasi-covering rule induction algorithms

the newly proposed algorithm of intersection of coverage even outperforms other methods.

Furthermore, we observed that the max rule quality method always provides the worst

results of the rule set. Thus, we can conclude that one rule in the case of unordered

regression rule set does not allow to obtain accurate prediction. An interesting observation

is that it is likely due to the overlapping of different rules between which the true target

value lies. The principle of the intersection of the coverage algorithm seems to prove this

thesis.

8. The introduction of the confidence interval for the analysis of regression rules gives a

broader view for the rule evaluation. The evaluation of the rules can be viewed in two

ways. First, the confidence intervals help to determine the strength of a description ability,

e.g. giving the information about the range of the rule coverage. Second, the pessimistic,

standard and optimistic values of the quality measure imply the role of the rule in the

predictive regression model. The experiment showed that the analysis of the confidence

intervals can be used in an additional, possible to be performed by a domain expert,

assessment of a single rule, many rules, in particular similar rules, or to evaluate rules in

the parent-child scheme when one of the rules extends another.

9. It was shown that the proposed algorithms for regression rule induction are comparable to

other state-of-the-art algorithms. Moreover, an application of rule filtering algorithms is

justified as it retains a good predictive ability of the rule set as well as significantly reduces

the number of rules which improve the readability of the model.

10. The use of linear models (although the subject has not been widely addressed in this thesis)

led to a reduction in the prediction error by 10% to 20% with respect to the single target

value. This experiment confirmed that the predictive ability of the set of regression rules

can be easily improved but at the cost of the readability of the model.

11. Examples of practical applications of regression rule induction algorithms show that the

presented algorithms, methods and heuristics can be successfully adapted to solve real-life

regression problems. Research on the prediction of methane concentration showed that the

single target value may lead to better results than linear models. An interesting observation

is that the best results were obtained for the quasi-covering algorithm with filtration, which

contributed to the reduction of the model to as much as 82%. On the contrary, the seismic

119

hazard prediction experiment confirmed the accuracy of linear models. In both cases, the

regression rules not only contribute to obtain accurate prediction, but above all the use of

rule induction algorithms allows to obtain a clear and readable rule-based model, which can

be used by a domain expert to extract additional knowledge.

7.1. Further work

Future research on the sequential covering rule induction and rule optimization algorithms

may be carried out in several directions.

Research on the quality measures to control the induction process may be conducted towards

the verification of the use of the approach of data-driven adaptive selection of rule quality

measure as it was presented for the problem of classification [110]. The same data-driven

approach may be also applied for the modification of a number of positive and negative

examples with the use of confidence intervals. We believe that both solutions may lead to

the induction of more accurate and specific rules at the same time.

The separation of rule selection and rule refinement stages seems to be a promising path

to a deeper analysis. Although our first experiment does not prove statistically significant

differences in the target value, the change in the rule-based model size was unexpected even

for us. The possible research directions in the refinement stage could be the development of the

method that not only takes into account the current value of the rule quality but also would try

to predict the final contribution of the rule in the prediction accuracy of the rule-based model,

e.g. based on the information about the importance of elementary conditions. This information

could be also used in combination with the Tabu approach to prevent the removal of conditions

relevant to the accuracy of the model and not the rule as such.

A huge field of possibilities is in the research on the area of rules and rule sets optimization.

First, we noticed that although the lowest prediction error was obtained for methods that focus

on the optimization towards the best prediction accuracy but the methods suffer from the

production of a large number of unrecognized examples. It seems to us that this problem can

be easily solved by re-induction of rules for all uncovered examples. A completely different

but equally promising direction of research is the development of a method for the redefinition

of rules. The results obtained for classification problems [104] give reason to believe that this

approach can work in the case of regression too.

Finally, we think that it is not worth abandoning the Bottom-up strategy. Although the

results are not satisfactory, it is worth to look for the cause. The evaluation of descriptive

abilities of generated rules may be the first step to undertake. It seems that the generalization

phase is also very important for the final form of the rule. Taking into account only one nearest

120

example, might finish the generalization phase too quickly. Thus, our future efforts will focus on

developing an algorithm to generalize the rule using more examples from the neighbourhood

and all elementary conditions (based on the information about their importance) at the same

time.

List of Figures

2.1 An output visualization of M5’ algorithm . 18

2.2 Comparison of all algorithms against each other with the Nemenyi test at α = 0.05 39

5.1 Comparison of quality measures against each other with the Nemenyi test at α = 0.05 for

the TD algorithm only. 75

5.2 Comparison of quality measures against each other with the Nemenyi test at α = 0.05 for

the TDF algorithm only. 75

5.3 Comparison of quality measures against each other with the Nemenyi test at α = 0.05 for

the BU algorithm only. 76

5.4 Comparison of quality measures against each other with the Nemenyi test at α = 0.05 for

the BUF algorithm only. 76

5.5 Comparison of quality measures against each other with the Nemenyi test at α = 0.1 for

the BUF algorithm only. 77

5.6 Comparison of 2 pre-pruning methods for 3 pairs of quality measures, which were used

to induce (the first measure) and to prune (the second measure) rule using the Top-Down

algorithm. Groups of combination that are not significantly different (at p = 0.05) are

connected. 83

5.7 Comparison of 2 pre-pruning methods for 3 pairs of quality measures, which were used

to induce (the first measure) and to prune (the second measure) rule using the Top-Down

Fixed algorithm. Groups of combination that are not significantly different (at p = 0.05)

are connected. 84

5.8 Comparison of an average number of rules after the use of the Tabu hill climbing and Hill

climbing pre-pruning methods respectively in the case of the Top-Down algorithm. 85

5.9 Comparison of an average number of rules after the use of the Tabu hill climbing and Hill

climbing pre-pruning methods respectively in the case of the Top-Down Fixed algorithm. . . 86

5.10 Comparison of quality measures against each other with the Nemenyi test at α = 0.05 in

the mixing measures experiment. 88

5.11 Comparison of all 4 conflict resolution methods against each other with the Nemenyi test

for the TD algorithm. Groups of methods that are not significantly different (at p = 0.05)

are connected. 89

122

5.12 Comparison of all 4 conflict resolution methods against each other with the Nemenyi test

for the TDF algorithm. Groups of methods that are not significantly different (at p = 0.05)

are connected. 89

5.13 Comparison of all 4 conflict resolution methods against each other with the Nemenyi test

for the BU algorithm. Groups of methods that are not significantly different (at p = 0.05)

are connected. 90

5.14 Comparison of all 4 conflict resolution methods against each other with the Nemenyi test

for the BUF algorithm. Groups of methods that are not significantly different (at p = 0.05)

are connected. 90

5.15 Graph of the value of prediction error (RRSE) in subsequent steps of filtration for the

ruleset obtained using TD algorithm. All diagrams have been obtained for the Coverage

filtering method and every first fold of the 10-fold stratified cross-validation for listed data

sets: autoprice, bodyfat, cpu, concrete, cholesterol and pharynx. The dashed line represents

the prediction error of the models without filtration. 96

5.16 Graph of the value of the prediction error (RRSE) in subsequent steps of 6 filtering

algorithms for the rule set obtained using the TD algorithm. All diagrams have been

obtained for a first fold (of the 10-fold stratified cross-validation) of the bodyfat data set.

The dashed line represents the prediction error of the models without filtration. 98

5.17 Graph of the value of the prediction error (RRSE) in subsequent steps of 6 filtering

algorithms for the rule set obtained using the TD algorithm. All diagrams have been

obtained for a first fold (of the 10-fold stratified cross-validation) of the concrete data set.

The dashed line represents the prediction error of the models without filtration. 99

5.18 Comparison of 4 algorithms with linear models in the conclusion against each other with

the Nemenyi test. Groups of methods that are not significantly different (at p = 0.05) are

connected. 102

6.1 Coal mine topology and sensors. 106

6.2 The error distributions of the Top-Down rule-based method. 109

List of Tables

2.1 Example of inconsistent regression table . 13

2.2 Contingency table with the established notations . 27

2.3 Definition of basic heuristics . 28

2.4 Performance comparison of two exemplary algorithms for carrying out the statistical

evaluation of the significance using the Wilcoxon test . 37

2.5 Performance comparison of three exemplary algorithms for carrying out the statistical

evaluation of the significance using the Friedman test . 39

3.1 Example of a data set used to induce regression rules using the bottom-up strategy 45

5.1 Regression data sets and their characteristics: number of examples, number of all attributes,

number of nominal attributes, number of numeric attributes, and number of distinct values

of the target attribute. 67

5.2 Default values of the algorithms that are used for the the induction of regression rules. . . . 68

5.3 Averaged RRSE for 8 selected quality measures on the Top-Down rule induction algorithm

and 35 benchmark data sets. Values in superscripts correspond to the Friedman test rank

value for each quality measure on one tested data set. 69

5.4 Averaged RRSE for 8 selected quality measures on the Top-Down Fixed rule induction

algorithm and 35 benchmark data sets. Values in superscripts correspond to the Friedman

test rank value for each quality measure on one tested data set. 70

5.5 Averaged RRSE for 8 selected quality measures on the Bottom-Up rule induction algorithm

and 35 benchmark data sets. Values in superscripts correspond to the Friedman test rank

value for each quality measure on one tested data set. 71

5.6 Averaged RRSE for 8 selected quality measures on the Bottom-Up Fixed rule induction

algorithm and 35 benchmark data sets. Values in superscripts correspond to the Friedman

test rank value for each quality measure on one tested data set. 72

5.7 Comparative table of the results of statistical tests of 8 quality measures over 30 data sets

for each of the algorithms. The critical value for the Friedman test is 2.2662. The plus sign

next to the value of the Friedman test indicates a significant difference between quality

measures. 73

5.8 Average value of RRSE for all algorithms and selected quality measures on 30 benchmark

data sets. 73

124

5.9 Average number of rules and elementary conditions (in parentheses) for all algorithms and

selected quality measures on 30 benchmark data sets. 77

5.10 Average coverage of rules for all algorithms and selected quality measures on 30 benchmark

data sets. 78

5.11 Exemplary rule generated by means of the TDF method. 79

5.12 Quality of the rule from Table 5.11. 79

5.13 Exemplary rules generated by means of the TDF method - case 2. 80

5.14 Quality of the rules from Table 5.13. 80

5.15 Exemplary rules generated by means of the TDF method - case 3. 81

5.16 Quality of the rules from Table 5.15. 81

5.17 Comparative table of the results of statistical tests against the difference between 2

pre-pruning methods and 3 pairs of quality measures over 30 data sets for each algorithm.

The critical value for the Friedman test is 2.4205. The plus sign near the value of the

Friedman test indicates the significant difference between quality measures. 83

5.18 Average RRSE for all algorithms and selected quality measures on 30 benchmark data sets. 86

5.19 Average number of rules for all algorithms and selected quality measures on 30 benchmark

data sets. 87

5.20 Comparative table of the results of statistical tests against the differences between 4

methods for solving conflicts and 3 pairs of quality measures over 30 data sets for each

method. The critical value for the Friedman test is 2.6896. The plus sign next to the value

of the Friedman test indicates the significant difference between methods in the given

algorithm. 88

5.21 Average result of the rule induction and filtering algorithms for the C2 measure. 92

5.22 Average result of the rule induction and filtering algorithms for the Correlation measure. . . 93

5.23 Average result of the rule induction and filtering algorithms for the C2 measure used in the

growing phase and Correlation used in pruning phase. 94

5.24 Average performance of selected algorithms with respect to existing solutions. 101

5.25 Average performance of selected algorithms with linear models with respect to existing

solutions. 102

6.1 Description of the sensors marked in Fig. 6.1. 106

6.2 Data characteristics. 106

6.3 Reference methods utilized in the analysis. 107

6.4 Results of the analyzed methods with the single target value. 108

6.5 Results of the analysed methods with linear model. 108

6.6 Exemplary rules generated by means of the TDF method with higher values of methane

concentration. 109

6.7 Quality of the rules from Table 5.11. 110

125

6.8 Exemplary rules generated by means of the TDF method with lower values of methane

concentration. 110

6.9 Quality of the rules from Table 6.8. 111

6.10 Description of the attributes in the seismic data set. 113

6.11 Reference methods utilized in the analysis. 114

6.12 sc503 . 114

6.13 sc503 linear model . 115

Bibliography

[1] Thomas Ågotnes, Jan Komorowski, and Terje Løken. Taming large rule models in rough set

approaches. In JanM. Żytkow and Jan Rauch, editors, Principles of Data Mining and Knowledge

Discovery, volume 1704 of Lecture Notes in Computer Science, pages 193–203. Springer Berlin

Heidelberg, 1999.

[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association rules. In

Proc. 20th Int. Conf. Very Large Data Bases, VLDB, volume 1215, pages 487–499, 1994.

[3] Timo Aho, Bernard Ženko, Saşo Džeroski, and Tapio Elomaa. Multi-target regression with rule

ensembles. J. Mach. Learn. Res., 13(1):2367–2407, August 2012.

[4] Aijun An and Nick Cercone. Rule quality measures for rule induction systems: Description and

evaluation. Computational Intelligence, 17(3):409–424, 2001.

[5] Tim L. Andersen and Tony R. Martinez. Np-completeness of minimum rule sets. In Proceedings

of the 10th International Symposium on Computer and Information Sciences, pages 411–418,

1995.

[6] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[7] Jerzy Błaszczyński, Roman Słowiński, and Marcin Szeląg. Sequential covering rule induction

algorithm for variable consistency rough set approaches. Information Sciences, 181(5):987 –

1002, 2011.

[8] Roberto J. Bayardo, Jr. and Rakesh Agrawal. Mining the most interesting rules. In Proceedings

of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’99, pages 145–154, New York, NY, USA, 1999. ACM.

[9] Michael J. A. Berry and Gordon S. Linoff. Mastering Data Mining: The Art and Science of

Customer Relationship Management. Wiley, 1999.

[10] M.R. Berthold and D.J. Hand. Intelligent Data Analysis: An Introduction. Springer, 2003.

[11] Eric Bloedorn and Ryszard S. Michalski. Data driven constructive induction in AQ17-PRE: A

method and experiments. In Proceedings of the Third International Conference on Tools for AI,

pages 30–37, 1991.

[12] Henrik Boström and Lars Asker. Combining divide-and-conquer and separate-and-conquer for

efficient and effective rule induction. In Sašo Džeroski and Peter Flach, editors, Inductive Logic

Programming, volume 1634 of Lecture Notes in Computer Science, pages 33–43. Springer Berlin

Heidelberg, 1999.

[13] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.

Wadsworth, 1984.

127

[14] Ivan Bruha. Machine Learning and Statistics, The Interface, chapter Quality of Decision Rules:

Definitions and Classification Schemes for Multiple Rules, pages 107–131. John Wiley and Sons,

1997.

[15] Ivan Bruha and Josef Tkadlec. Rule quality for multiple-rule classifier: Empirical expertise and

theoretical methodology. Intell. Data Anal., 7(2):99–124, April 2003.

[16] Izabela Brzezinska, Salvatore Greco, and Roman Slowinski. Mining pareto-optimal rules with

respect to support and confirmation or support and anti-support. Eng. Appl. Artif. Intell.,

20(5):587–600, August 2007.

[17] Peter Bühlmann. Bagging, boosting and ensemble methods. In Handbook of Computational

Statistics, pages 985–1022. Springer, 2012.

[18] David Christensen. Measuring confirmation. Journal of Philosophy, 96(9):437–461, 1999.

[19] Paweł Cichosz. Systemy uczące się. Wydawnictwa Naukowo-Techniczne, Warszawa, 2000.

[20] Peter Clark and Robin Boswell. Rule induction with CN2: Some recent improvements. In

Machine learning—EWSL-91, pages 151–163. Springer, 1991.

[21] Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine learning, 3(4):261–283,

1989.

[22] William W. Cohen. Fast effective rule induction. In In Proceedings of the Twelfth International

Conference on Machine Learning, pages 115–123. Morgan Kaufmann, 1995.

[23] Pawel Delimata, Mikhail Ju. Moshkov. Ju., Andrzej Skowron, and Zbigniew Suraj. Inhibitory

Rules in Data Analysis: A Rough Set Approach, volume 163 of Studies in Computational

Intelligence. Springer Berlin Heidelberg, 2009.

[24] Krzysztof Dembczyński, Wojciech Kotłowski, and Roman Słowiński. Solving regression by

learning an ensemble of decision rules. In International Conference on Artificial Intelligence and

Soft Computing, 2008, volume 5097 of Lecture Notes in Artificial Intelligence, pages 533–544.

Springer-Verlag, 2008.

[25] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.,

7:1–30, December 2006.

[26] Włodzisław Duch. What is computational intelligence and where is it going? In Challenges for

computational intelligence, pages 1–13. Springer, 2007.

[27] Tom Fawcett. PRIE: a system for generating rulelists to maximize ROC performance. Data

Mining and Knowledge Discovery, 17(2):207–224, 2008.

[28] Eibe Frank and Ian H. Witten. Generating accurate rule sets without global optimization. In

Proceedings of the Fifteenth International Conference on Machine Learning, ICML ’98, pages

144–151, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[29] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding best

matches in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS),

3(3):209–226, 1977.

128

[30] Jerome H Friedman and Bogdan E Popescu. Predictive learning via rule ensembles. The Annals

of Applied Statistics, pages 916–954, 2008.

[31] Johannes Fürnkranz. FOSSIL: A robust relational learner. In Francesco Bergadano and Luc

De Raedt, editors, Machine Learning: ECML-94, volume 784 of Lecture Notes in Computer

Science, pages 122–137. Springer Berlin Heidelberg, 1994.

[32] Johannes Fürnkranz. Pruning algorithms for rule learning. Machine Learning, 27(2):139–172,

1997.

[33] J. Fürnkranz, D. Gamberger, and N. Lavrač. Foundations of Rule Learning. Cognitive

Technologies. Springer, 2012.

[34] Johannes Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review, 13:3–54,

1999.

[35] Johannes Fürnkranz. Workshop on Advances in Inductive Rule Learning. 15th European

Conference on Machine Learning, 2004.

[36] Johannes Fürnkranz and Peter A. Flach. Roc ‘n’ rule learning – towards a better understanding

of covering algorithms. Mach. Learn., 58(1):39–77, January 2005.

[37] Johannes Furnkranz and Gerhard Widmer. Incremental reduced error pruning. In International

Conference on Machine Learning, pages 70–77, 1994.

[38] Francis Galton. Regression Towards Mediocrity in Hereditary Stature. The Journal of the

Anthropological Institute of Great Britain and Ireland, 15:246–263, 1886.

[39] Dragan Gamberger and Nada Lavrač. Confirmation rule sets. In DjamelA. Zighed, Jan

Komorowski, and Jan Żytkow, editors, Principles of Data Mining and Knowledge Discovery,

volume 1910 of Lecture Notes in Computer Science, pages 34–43. Springer Berlin Heidelberg,

2000.

[40] Alan Genz and Koon-Shlng Kwong. Numerical evaluation of singular multivariate normal

distributions. Journal of Statistical Computation and Simulation, 68(1):1–21, 2000.

[41] Fred Glover. Tabu search—part i. ORSA Journal on Computing, 1(3):190–206, 1989.

[42] Fred Glover. Tabu search—part ii. ORSA Journal on Computing, 2(1):4–32, 1990.

[43] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA,

USA, 1997.

[44] Ruth Z. Gold. Tests auxiliary to χ2 tests in a markov chain. The Annals of Mathematical Statistics,

34(1):56–74, 03 1963.

[45] Salvatore Greco, Benedetto Matarazzo, and Roman Slowinski. Multicriteria classification by

dominance-based rough set approach. Handbook of data mining and knowledge discovery. Oxford

University Press, New York, 2002.

[46] Jerzy W Grzymala-Busse. Rule induction. In Data Mining and Knowledge Discovery Handbook,

pages 277–294. Springer, 2005.

[47] Jerzy W. Grzymala-Busse and Wojciech Ziarko. Data mining based on rough sets. In Data

Mining: Opportunities and Challenges, pages 142–173. IGI Global, 2003.

129

[48] JerzyW. Grzymala-Busse. Rule induction, missing attribute values and discretization. In

Robert A. Meyers, editor, Encyclopedia of Complexity and Systems Science, pages 7797–7804.

Springer New York, 2009.

[49] Steve R Gunn et al. Support vector machines for classification and regression. ISIS technical

report, 14, 1998.

[50] Gunjan Gupta, Alexander Strehl, and Joydeep Ghosh. Distance based clustering of association

rules. In In Intelligent Engineering Systems Through Artificial Neural Networks (Proceedings of

ANNIE 1999, pages 759–764. ASME Press, 1999.

[51] Geoffrey Holmes, Mark Hall, and Eibe Frank. Generating rule sets from model trees. In

Australian Joint Conference on Artificial Intelligence, pages 1–12, 1999.

[52] Torsten Hothorn, Kurt Hornik, and Achim Zeileis. Unbiased recursive partitioning: A conditional

inference framework. Journal of Computational and Graphical statistics, 15(3):651–674, 2006.

[53] Ronald L. Iman and James M. Davenport. Approximations of the critical region of the friedman

statistic. Communications in Statistics - Theory and Methods, 9(6):571–595, 1980.

[54] Hisao Ishibuchi and Takashi Yamamoto. Effects of three-objective genetic rule selection on the

generalization ability of fuzzy rule-based systems. In CarlosM. Fonseca, PeterJ. Fleming, Eckart

Zitzler, Lothar Thiele, and Kalyanmoy Deb, editors, Evolutionary Multi-Criterion Optimization,

volume 2632 of Lecture Notes in Computer Science, pages 608–622. Springer Berlin Heidelberg,

2003.

[55] Cezary Z. Janikow. A knowledge-intensive genetic algorithm for supervised learning. Machine

Learning, 13:189–228, 1993.

[56] Frederik Janssen. Heuristic Rule Learning. PhD thesis, Technische Universität Darmstadt, 2012.

[57] Frederik Janssen and Johannes Fürnkranz. Separate-and-conquer regression. In Martin

Atzmüller, Dominik Benz, Andreas Hotho, and Gerd Stumme, editors, Proceedings of LWA2010

- Workshop-Woche: Lernen, Wissen & Adaptivitaet, Kassel, Germany, 2010.

[58] Frederik Janssen and Johannes Fürnkranz. On the quest for optimal rule learning heuristics.

Mach. Learn., 78(3):343–379, March 2010.

[59] Frederik Janssen and Johannes Fürnkranz. Heuristic rule-based regression via dynamic reduction

to classification. In Toby Walsh, editor, Proceedings of the 22nd International Joint Conference

on Artificial Intelligence (IJCAI-11), pages 1330–1335, 2011.

[60] J.M. Joyce. The Foundations of Causal Decision Theory. Cambridge Studies in Probability,

Induction and Decision Theory. Cambridge University Press, 1999.

[61] Józef Kabiesz. Effect of the form of data on the quality of mine tremors hazard forecasting using

neural networks. Geotechnical & Geological Engineering, 24(5):1131–1147, 2006.

[62] Aram Karalič and Ivan Bratko. First order regression. Machine Learning, 26(2-3):147–176, 1997.

[63] Kenneth A. Kaufman and Ryszard S. Michalski. Learning in an inconsistent world: Rule selection

in star/aq18, 1999.

130

[64] G. Keren and C. Lewis. A Handbook for Data Analysis in the Behaviorial Sciences: Volume 1:

Methodological Issues Volume 2: Statistical Issues. Taylor & Francis, 2014.

[65] J Kornowski. Linear prediction of aggregated seismic and seismoacoustic energy emitted from a

mining longwall. ACTA MONTANA, 129:5–14, 2003.

[66] Stanisław Kowalik. Prognosis of strong tremors in a mine with the application of fuzzy numbers.

In European Symposium on Intelligent Techniques, pages Chania, Greece, 3–4 June, 47–49, 1999.

[67] M. Kozielski, A. Skowron, Ł. Wróbel, and M. Sikora. Regression rule learning for methane

forecasting in coal mines. Beyond Databases, Architectures, and Structures, CCIS, Vol. 521,

Springer International Publishing:495–504, 2015.

[68] Stefan Kramer and Gerhard Widmer. Inducing classification and regression trees in first order

logic. In Sašo Džeroski and Nada Lavrač, editors, Relational Data Mining, pages 140–159.

Springer Berlin Heidelberg, 2001.

[69] Marzena Kryszkiewicz. Fast discovery of representative association rules. In Rough Sets and

Current Trends in Computing, pages 214–221, 1998.

[70] S Lasocki. Probabilistic analysis of seismic hazard posed by mining induced events. In Proc. 6th

Int. Symp. on Rockburst in Mines “Controlling Seismic Risk”. ACG, Perth, pages 151–156, 2005.

[71] Andrzej Leśniak and Zbigniew Isakow. Space–time clustering of seismic events and hazard

assessment in the zabrze-bielszowice coal mine, poland. International Journal of Rock Mechanics

and Mining Sciences, 46(5):918–928, 2009.

[72] Tony Lindgren. Methods for rule conflict resolution. In Machine Learning: ECML 2004, pages

262–273. Springer, 2004.

[73] Tony Lindgren. On handling conflicts between rules with numerical features. In Proceedings of

the 2006 ACM symposium on Applied computing, pages 37–41. ACM, 2006.

[74] Tony Lindgren and Henrik Boström. Resolving rule conflicts with double induction. Intelligent

Data Analysis, 8(5):457–468, 2004.

[75] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In Proceedings

of the 4th international conference on Knowledge Discovery and Data mining (KDD’98), pages

80–86. AAAI Press, August 1998.

[76] RuleQuest Research Ltd. C5.0. Online documentation http://www.rulequest.com, 2010.

[77] R. Michalski. On the quasi-minimal solution of the general covering problem. In Proceedings

of the 5th International Symposium on Information Processing (FCIP-69), volume A3, pages

125–128, 1969.

[78] R. S. Michalski. Discovering classification rules using variable-valued logic system vl. In

Proceedings of the 3rd International Joint Conference on Artificial Intelligence, IJCAI’73, pages

162–172, San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[79] R.S. Michalski. The AQ15 Inductive Learning System: An Overview and Experiments. ISG

report. Department of Computer Science, University of Illinois at Urbana-Champaign, 1986.

131

[80] R.S. Michalski. O naturze uczenia się – problemy i kierunki badawcze. In Informatyka, number 2.

1988.

[81] R.S. Michalski, J.G. Carbonell, and T.M. Mitchell. Machine Learning: An Artificial Intelligence

Approach. Springer, Berlin, Heidelberg, 1984.

[82] Ryszard S. Michalski and Kenneth A. Kaufman. The aq19 system for machine learning and

pattern discovery: A general description and user’s guide, 2001.

[83] Ryszard S Michalski, Igor Mozetic, Jiarong Hong, and Nada Lavrac. The multi-purpose

incremental learning system AQ15 and its testing application to three medical domains. Proc.

AAAI 1986, pages 1–041, 1986.

[84] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,

1997.

[85] Andrew Moore. A tutorial on kd-trees. Extract from PhD Thesis, 1991. Available from

http://www.cs.cmu.edu/simawm/papers.html.

[86] Krystyna Napierala and Jerzy Stefanowski. BRACID: a comprehensive approach to learning rules

from imbalanced data. Journal of Intelligent Information Systems, 39(2):335–373, 2012.

[87] HungSon Nguyen and Dominik Ślęzak. Approximate reducts and association rules. In Ning

Zhong, Andrzej Skowron, and Setsuo Ohsuga, editors, New Directions in Rough Sets, Data

Mining, and Granular-Soft Computing, volume 1711 of Lecture Notes in Computer Science,

pages 137–145. Springer Berlin Heidelberg, 1999.

[88] A Øhrn, Lucila Ohno-Machado, and Todd Rowland. Building manageable rough set classifiers.

In Proceedings of the AMIA Symposium, page 543. American Medical Informatics Association,

1998.

[89] Gisele L Pappa and Alex A Freitas. Automatically evolving rule induction algorithms. In Machine

Learning: ECML 2006, pages 341–352. Springer, 2006.

[90] Zdzislaw Pawlak. Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic

Publishers, Norwell, MA, USA, 1992.

[91] G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules. In

G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages

229–248. AAAI Press, 1991.

[92] J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239–266, 1990.

[93] Ross J. Quinlan. Induction of decision trees. Machine Learning, 1:81 – 106, 1986.

[94] Ross J. Quinlan. Generating production rules from decision trees. In Proceedings of the 10th

International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’87, pages 304–307,

San Francisco, CA, USA, 1987. Morgan Kaufmann Publishers Inc.

[95] Ross J. Quinlan. Learning with continuous classes. In 5th Australian Joint Conference on

Artificial Intelligence, pages 343–348, Singapore, 1992. World Scientific.

[96] Ross J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

132

[97] Ross J. Quinlan and Ronald L. Rivest. Inferring decision trees using the minimum description

length principle. Information and Computation, 80(3):227–248, 1989.

[98] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2014.

[99] V. Rudajev and R. Číž. Estimation of mining tremor occurrence by using neural networks. pure

and applied geophysics, 154(1):57–72, 1999.

[100] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis of recommendation

algorithms for e-commerce. In Proceedings of the 2Nd ACM Conference on Electronic

Commerce, EC ’00, pages 158–167, New York, NY, USA, 2000. ACM.

[101] M. Sikora and P. Mazik. A trend towards the better assessment of a seismic hazard - the hestia

and hestia mapa systems. Mechanization and Automation of Mining, 3:5–12, 2009.

[102] Marek Sikora. Rule quality measures in creation and reduction of data rule models. In

Proceedings of the 5th international conference on Rough Sets and Current Trends in Computing,

RSCTC’06, pages 716–725, Berlin, Heidelberg, 2006. Springer-Verlag.

[103] Marek Sikora. Decision rule-based data models using TRS and NetTRS – methods and

algorithms. In James Peters and Andrzej Skowron, editors, Transactions on Rough Sets XI,

volume 5946 of Lecture Notes in Computer Science, pages 130–160. Springer Berlin / Heidelberg,

2010.

[104] Marek Sikora. Redefinition of decision rules based on the importance of elementary conditions

evaluation. Fundam. Inf., 123(2):171–197, April 2013.

[105] Marek Sikora and Aleksandra Gruca. Induction and selection of the most interesting gene

ontology based multiattribute rules for descriptions of gene groups. Pattern Recogn. Lett.,

32(2):258–269, January 2011.

[106] Marek Sikora and Pawel Proksa. Induction of decision and association rules for knowledge

discovery in industrial databases. In International Conference on Data Mining, Alternative

Techniques for Data Mining Workshop, Brighton, UK, 2004.

[107] Marek Sikora and Beata Sikora. Improving prediction models applied in systems monitoring

natural hazards and machinery. International Journal of Applied Mathematics and Computer

Science, 22(2):477–491, 2012.

[108] Marek Sikora and Beata Sikora. Rough natural hazards monitoring. In Rough Sets: Selected

Methods and Applications in Management and Engineering, pages 163–179. Springer, 2012.

[109] Marek Sikora, Adam Skowron, and Łukasz Wróbel. Rule quality measure-based induction of

unordered sets of regression rules. In Allan Ramsay and Gennady Agre, editors, Artificial

Intelligence: Methodology, Systems, and Applications, volume 7557 of Lecture Notes in

Computer Science, pages 162–171. Springer Berlin Heidelberg, 2012.

[110] Marek Sikora and Łukasz Wróbel. Data-driven adaptive selection of rule quality measures for

improving rule induction and filtration algorithms. International Journal of General Systems,

42(6):594–613, 2013.

133

[111] Andrzej Skowron, Hui Wang, Arkadiusz Wojna, and Jan Bazan. Multimodal classification: Case

studies. In JamesF. Peters and Andrzej Skowron, editors, Transactions on Rough Sets V, volume

4100 of Lecture Notes in Computer Science, pages 224–239. Springer Berlin Heidelberg, 2006.

[112] Dominik Ślęzak. Searching for frequential reducts in decision tables with uncertain objects. In

Lech Polkowski and Andrzej Skowron, editors, Rough Sets and Current Trends in Computing,

volume 1424 of Lecture Notes in Computer Science, pages 52–59. Springer Berlin Heidelberg,

1998.

[113] Donald F Specht. A general regression neural network. Neural Networks, IEEE Transactions on,

2(6):568–576, 1991.

[114] Katarzyna Stąpor. Using tabu search for feature selection in discriminant analysis. Studia

Informatica, 35(4):45–58, 2014.

[115] Julius Stecher, Frederik Janssen, and Johannes Fürnkranz. Separating rule refinement and

rule selection heuristics in inductive rule learning. In Toon Calders, Floriana Esposito, Eyke

Hüllermeier, and Rosa Meo, editors, Machine Learning and Knowledge Discovery in Databases,

volume 8726 of Lecture Notes in Computer Science, pages 114–129. Springer Berlin Heidelberg,

2014.

[116] Jerzy Stefanowski and Daniel Vanderpooten. Induction of decision rules in classification and

discovery-oriented perspectives. Int. J. Intell. Syst., 16(1):13–27, 2001.

[117] Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. Bias in random

forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics,

8(25), 2007.

[118] F. Thabtah, P. Cowling, and Y. Peng. MCAR: multi-class classification based on association rule.

In Computer Systems and Applications, 2005. The 3rd ACS/IEEE International Conference on,

pages 33–, 2005.

[119] Ljupčo Todorovski, Peter Flach, and Nada Lavrač. Predictive performance of weighted relative

accuracy. In DjamelA. Zighed, Jan Komorowski, and Jan Żytkow, editors, Principles of Data

Mining and Knowledge Discovery, volume 1910 of Lecture Notes in Computer Science, pages

255–264. Springer Berlin Heidelberg, 2000.

[120] L. Torgo and J. Gama. Regression by classification. In Advances in Artificial Intelligence, volume

1159 of Lecture Notes in Computer Science, pages 51–60. Springer Berlin Heidelberg, 1996.

[121] Shusaku Tsumoto and Shoji Hirano. Visualization of rule’s similarity using multidimensional

scaling. In Proceedings of the Third IEEE International Conference on Data Mining, ICDM ’03,

pages 339–, Washington, DC, USA, 2003. IEEE Computer Society.

[122] S. Venkateswari and R. M Suresh. Association rule mining in e-commerce: A survey.

International Journal of Engineering Science & Technology, 3, 2011.

[123] Bernard Ženko. Learning predictive clustering rules : phd thesis. PhD thesis, Jožef Stefan

Institute, Ljubljana, XII 2007.

134

[124] Bernard Ženko, Sašo Džeroski, and Jan Struyf. Learning predictive clustering rules. In Francesco

Bonchi and Jean-François Boulicaut, editors, Knowledge Discovery in Inductive Databases,

volume 3933 of Lecture Notes in Computer Science, pages 234–250. Springer Berlin Heidelberg,

2006.

[125] Y. Wang and I. H. Witten. Induction of model trees for predicting continuous classes. In Poster

papers of the 9th European Conference on Machine Learning. Springer, 1997.

[126] Aleksander Wieczorek and Roman Słowiński. Generating a set of association and decision rules

with statistically representative support and anti-support. Information Sciences, 277:56–70, 2014.

[127] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning Tools

and Techniques. Morgan Kaufmann, Amsterdam, 3 edition, 2011.

[128] J. Wojtusiak, R. S. Michalski, K. A. Kaufman, and J. Pietrzykowski. The AQ21 natural induction

program for pattern discovery: Initial version and its novel features. In Proceedings of The 18th

IEEE International Conference on Tools with Artificial Intelligence, pages 13–15, 2006.

[129] Janusz Wojtusiak, Ryszard S Michalski, Kenneth A Kaufman, and Jaroslaw Pietrzykowski. The

AQ21 natural induction program for pattern discovery: initial version and its novel features. In

Tools with Artificial Intelligence, 2006. ICTAI’06. 18th IEEE International Conference on, pages

523–526. IEEE, 2006.

[130] Łukasz Wróbel and Marek. Sikora. Censoring weighted separate-and-conquer rule induction

from survival data. Methods of Information in Medicine, 53(2):137–148, 2014.

[131] Łukasz Wróbel, Marek Sikora, and Adam Skowron. Algorithms for filtration of unordered sets of

regression rules. In Chattrakul Sombattheera, NguyenKim Loi, Rajeev Wankar, and Tho Quan,

editors, Multi-disciplinary Trends in Artificial Intelligence, volume 7694 of Lecture Notes in

Computer Science, pages 284–295. Springer Berlin Heidelberg, 2012.

[132] Xindong Wu, Vipin Kumar, J. Ross, Quinlan Joydeep, Ghosh Qiang Yang, Hiroshi Motoda,

Geoffrey J. Mclachlan, Angus Ng, Bing Liu, Philip S. Yu, Dan Steinberg, X. Wu (b, V. Kumar,

J. Ross Quinlan, J. Ghosh, Q. Yang, and H. Motoda. Top 10 algorithms in data mining, 2007.

[133] Hui Xiong, Shashi Shekhar, Pang-Ning Tan, and Vipin Kumar. Exploiting a support-based upper

bound of pearson’s correlation coefficient for efficiently identifying strongly correlated pairs. In

Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’04, pages 334–343, New York, NY, USA, 2004. ACM.

[134] Y. Yohannes and P. Webb. Classification and Regression Trees, CART: A User Manual for

Identifying Indicators of Vulnerability to Famine and Chronic Food Insecurity. Microcomputers

in policy research. International Food Policy Research Institute, 1999.

[135] Charles Zaiontz. Wilcoxon signed-ranks test. Available online

http://www.real-statistics.com/non-parametric-tests/wilcoxon-signed-ranks-test, 09 2014.

[136] Bernard Zenko and Saso Dzeroski. Learning classification rules for multiple target attributes. In

PAKDD, pages 454–465, 2008.

135

[137] Wojciech Ziarko and Ning Shan. A method for computing all maximally general rules in

attribute-value systems. Computational Intelligence, 12:223–234, 1996.

136

	Acknowledgements
	Introduction
	Goals
	Contributions
	Organization of the thesis

	Rule-based data models
	Foundations of data representation
	Rule representation
	Rule induction algorithms
	Related work

	Rule and rule set quality
	Unordered rule set and resolving conflicts methods
	Experimental evaluation of rule-based regression model
	Statistical comparison of rule-based regression models

	Sequential rule induction algorithms
	Top-down strategy
	Bottom-up strategy
	Fixed strategy
	Rule quality with a given confidence level

	Optimization of rules and rule sets
	Algorithms for rule pruning
	Hill climbing pruning
	Tabu hill climbing pruning

	Algorithms for rule filtering
	Inclusion
	Coverage
	Disjoint
	Forward
	Backward
	ForwBack

	Experiments
	Test domains
	Default settings in algorithms
	Quality measure for regression
	Confidence intervals for examples covered by a rule
	Pre-pruning methods evaluation
	Mixing measures for growing and pruning phase
	Conflict resolution problem
	Post-pruning methods evaluation
	Comparison to existing methods

	Experiments on real-life data
	Methane concentration prediction
	Data set
	Experiment and experimental settings
	Results
	Conclusions

	Seismic hazard prediction
	Data set
	Experiment and experimental settings
	Results
	Conclusions

	Conclusions
	Further work

	List of Figures
	List of Tables
	Bibliography

