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ABSTRACT

Purpose: The aim of the work is to employ the artificial neural networks for prediction of magnetic saturation of 
the amorphous alloys with the iron and cobalt matrix.
Design/methodology/approach: It has been assumed that the artificial neural networks can be used to 
assign the relationship between the chemical compositions of amorphous alloys, temperature of heat treatment and 
magnetic saturation. In order to determine the relationship it has been necessary to work out a suitable calculation 
model. It has been proved that employment of genetic algorithm to selection of input neurons can be very useful 
tool to improve artificial neural network calculation results. The attempt to use the artificial neural networks for 
predicting the effect of the chemical composition and temperature of heat treatment on the magnetic saturation BS 
succeeded, as the level of the obtained results was acceptable.
Findings: Artificial neural networks, can be applied for predicting the effect of the chemical composition and 
temperature of heat treatment on the magnetic saturation.
Research limitations/implications: Worked out model should be used for prediction of magnetic saturation 
only in particular groups of amorphous alloys, mostly because of the discontinuous character of input data.
Practical implications: The results of research make it possible to calculate with a certain admissible error the magnetic 
saturation Bs value basing on combinations of concentrations of the particular elements and heat treatment temperature.
Originality/value: In this paper it has been presented an original trial of prediction of the required magnetic 
properties of the iron and cobalt amorphous alloys.
Keywords: Computational material science; Artificial neural networks; Amorphous materials 

METHODOLOGY OF RESEARCH, ANALYSIS AND MODELLING

1. Introduction 
Magnetic materials are classified according to their magnetic 

susceptibility that is capability of a substance to change its 
magnetization under the influence of the external magnetic field, 
as soft magnetic, which are characteristic of a narrow hysteresis 
loop, high magnetic saturation even at the inconsiderable 

magnetic field intensity and high initial permeability, and as hard 
ones, characteristic of a broad hysteresis loop, high residual 
magnetism and coercion, which results in their capability to 
permanent magnetization [1]. 

Discovery of the soft magnetic materials with the amorphous 
structure that turned out to be a foretoken of the even more 
modern nanocrystalline materials was the hope to reduce 
enormous losses connected with magnetostriction effect [2, 3]  
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Amorphous materials called more often the metallic glasses, 
characteristic of the nonexistense of the structural order of further 
range, are fabricated using the “melt spinning” method. This 
method consists in the immediate directing of the stable molten 
metal stream onto the external surface of the spinning metal drum 
with the horizontal axis and a few to several dozen centimetres 
wide. An alloy characteristic of its propensity to vitrification, 
composed most often from the transition metal (Fe, Co, Ni) and 
metalloid (B, C, P, Nb, Si), spills on the drum surface and 
solidifies as a strip at the rate of 105-106 K/s [4, 5]. 

Yoshizawa with associates from the Japan Hitachi Metals 
concern proved in 1988 that the magnetic metallic glasses may be 
used as a parent substance for the nanocrystalline magnetics. They 
were fabricated during the heat treatment to which the FeSiB 
metallic glass strip was subjected with additives of Cu and Ni 
making it easier to obtain the very fine nanocrystalline structure. 
The fine-crystalline particles with the nanometric sizes nucleate in 
the amorphous material at the suitable heat treatment conditions, 
depending mostly on time and temperature. These particles, along 
with the amorphous structure that is not subject to crystallization 
form the structure which is very advantageous from the soft 
magnetic materials point of view [6, 7]. 

The metal amorphous materials and the nanocrystalline 
materials fabricated from them by heat treatment are used mostly 
in the electronic and electrical industries. The amorphous and 
nanocrystalline soft magnetic materials are characteristic of the 
high permeability connected with the high saturation magnetic 
induction beyond the conventional materials limit. Therefore, they 
are used as material for the transformers cores design. In addition, 
the nanocrystalline materials demonstrate low magnetic losses, 
low magnetostriction and provide the possibility to control the 
hysteresis (B-H) loop width; therefore, they are the right material 
for the converter transformers, reactors, noise filters, pulse 
transformers, current transformers, magnetic switching devices, 
high frequency magnetic amplifiers, magnetic measurement 
sensors, recording heads, sensors, flexible screens, etc. [8-11]. 

Relationships between the chemical composition and heat 
treatment parameters, and magnetic properties, feature the key 
information in optimisation of the manufacturing process and 
chemical composition in a strive to obtain the desired properties 
for any commercial applications. 

Partial analysis carried out using approximation made it 
possible to evaluate approximately the effect of the annealing 
temperature on the magnetic properties of the amorphous strips. 
Regrettably, due to the not that representative nature of the analyzed 
data, only alloys with the same or very close chemical composition 
may be subjected to an attempt to evaluate the sought values [12]. 

Employment of the artificial neural networks for prediction of 
the effect of the chemical composition and also heat treatment 
conditions on the magnetic properties of the amorphous strips 
features the alternative for the classical investigation methods and 
makes it possible to predict the magnetic properties. The goal of this 
work was an attempt to develop the artificial neural network model 
for predicting the properties of the magnetic amorphous alloys in 
the form of thin strips, based on their chemical composition and 
heat treatment parameters. It has been proved in many papers that 
artificial neural networks have great potential in prediction and 
modeling properties of different kinds of materials [13-15]. 

2. Material and experimental 
methodology

The data set was developed basing on literature data including 
chemical compositions, heat treatment parameters and magnetic 
properties of the amorphous alloys of the relevant set of the 
representative experimental data.  

The MLP 25-6-1 network type was proposed characteristic on 
the average absolute error at the level of 0.093, average quotient 
deviation of 0.377, and the average correlation coefficient of 0.931, 
one should state that employing the artificial neural networks makes 
it possible – based on the data set encompassing the chemical 
composition and heat treatment parameters – to calculate with a 
certain admissible error the magnetic saturation Bs value [16]. 
Correctness of the obtained results is dependant to a great extent on 
the correct preparation of the representative experimental data set, 
on applying some simplifications, and even neglecting some data.  

Limiting of the input data to alloys subjected to heat treatment for 
60 minutes was proposed to improve the neural network quality, 
moreover, the number of input neurons was reduced also using the 
genetic algorithm. The genetic algorithm used in this case is the 
optimisation strategy which can carry out effective search in binary 
strings. These binary strings represent the so called masks in case of 
optimisation of the input data set for the neural network. Genetic 
algorithm generates randomly a population of such strings and carries 
out next the process analogous to the natural selection taking place in 
nature during evolution. The goal of this modelling is selection of the 
better strings (masks culling the input data) which correspond to the 
networks performing best. Each mask determines, based on the 
specified parameters, which input variables should be used in the 
neural network design, and which should be omitted. 

Parameters of the genetic algorithm (presented in Table 1) used, like 
sampling, population size, unit penalty, mutation coefficient, number of 
generations, smoothing coefficient, and the cross-breeding coefficient 
were selected taking the effect of these quantities into account on the 
designed network quality assessment coefficients’ values.  

3. Calculation of magnetic saturation 
The artificial neural networks implemented in StatSoft 

Statistica Neural Network PL 4.0 F were used to determine the 
relationship between the chemical compositions of alloys and heat 
treatment parameters. Initially in the structure of the analyzed 
networks 25 input neurons were established, 23 out of which 
referred to the alloying elements occurring in the investigated 
alloys, like: Fe, Co, Al, Au, B, C, Cr, Cu, Ga, Ge, Hf, Mn, Mo, 
Nb, Ni, P, Pd, Pt, Si, Ta, Ti, V, Zr, and two referring to the heat 
treatment parameters: annealing temperature and time. As a result 
of using genetic algorithm, data set was limited to 15 input 
neurons referring to selected elements and annealing temperature. 
The ranges of atomic concentrations of elements and heat 
treatment parameters consisted in the isothermal annealing in the 
argon atmosphere are presented in Table 2. 

The input data was divided into three sets: training  
(62 cases), validation (31 cases), testing (31 cases). The training 
set was used for development of the neural network model, the 
validating set was used for checking the model during

3.  Calculation of magnetic saturation

2.  Material and experimental  
methodology
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Table 1. 
Parameters of genetic algorithm used to selection of attributes  

Sampling Population size Unitary penalty Mutation
coefficient  

Number of 
generations 

Smoothing
coefficient 

Cross-breeding
coefficient 

1 100 0 1 1000 0.5 1 

Table2.
Ranges of atomic concentrations of elements of the analysed amorphous alloys 

Range Mass fractions of elements, % Annealing 
temperature [ºC] Fe Co Al B Cu Hf Mo Nb Ni P Si Ta Ti Zr 

Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 
Max 92 80 8 22 1 9.8 4 8 40 16 17 8 7 10 730 

Table 3.  
Quality assessment coefficients of the MLP 15-5-1 neural network 
Assessment coefficient Training Validating Testing 
Average absolute error [T] 0.032 0.041 0.033 
Quotient of standard deviations 0.134 0.153 0.146 
Pearson correlation coefficient 0.991 0.988 0.989 

establishing the values of weights, and the testing set was used for 
verifying the model when the network training was completed. 
Allocation of data to the particular subsets was done randomly. 
The following quantities determined for the testing set were used 
as the basic coefficients for evaluation of the neural network 
model performance: average network prediction error, standard 
deviation of the network prediction error, quotient of the standard 
deviations of the prediction errors and of the standard deviation of 
the resulting variable, Pearson correlation coefficient. For data 
analysis four neural networks models were used: multilayer 
perceptron MLP, linear neural networks, radial basis functions 
neural network RBF, generalized regression neural networks 
GRNN, also the following learning methods: back propagation 
method, conjugate gradient, quasi-Newton, fast propagation. 

Selection of the number of hidden layers, number of nodes in 
these layers, values of weights, threshold values, training method 
and parameters, that is parameters of the architecture of the 
designed network was made taking into account effect of these 
quantities on values of the quality assessment coefficients of the 
designed network.  

The analysis of the quality coefficients in the magnetic 
saturation calculated for training, validating, test and verifying 
sets has proven that smallest error occurs in the network with five 
neurons in the hidden layer. Figure 1 presents part of the analysis 
on example of average absolute error for different number of 
neurons in hidden layer. The approximate values of the mentioned 
coefficients for particular data sets indicate the ability of the 
network to generalize the knowledge acquired in the training 
process. The mean error value, ratio of standard deviations and 
the correlation coefficient for the magnetic saturation have been 
compared in Table 3 and Figure 2 presents analysis of the unit 
errors structure. 

Selection of the optimum MLP 15-5-1 network was made 
based on this analysis; the network was trained with the error 
back propagation method for 446 epochs and using the conjugate 

gradients for 503 epochs, and again back propagation method for 
300 epochs. The selected network is characteristic of the 
relatively lowest average absolute error and of the highest 
correlation coefficient, at the simultaneously low amplitude 
between the sets: training, validation, and the test one.  

Fig. 1. Analysis of average absolute error for different number of 
neurons in hidden layer  

Fig. 2. Analysis of the unit errors of MLP 15-5-1 network 

The developed model of the artificial neural network was subjected 
to verification consisting in comparing the consistence of the magnetic 
saturation with the experimental results (Figure 3). Wrong mapping of 
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Fig. 3. Comparison of the experimental and calculated Bs values 
for MLP 15-5-1 network sets: training, validating, testing 

the diagram for the calculated data compared with the experimental 
values will be the consequence of the incorrect determining of the 
sought magnetic saturation Bs.

4. Summary 
The neural networks model developed from experimental data 

can be used to predict a value of magnetic saturation. The overall 
prediction error is about 3.5% for a predicted value of magnetic 
saturation as compared with the measured value of the thin films. 
A mathematical relationship between inputs and output of the proposed 
network model has been determined by neural network and sensitivity 
analysis. An analytical equation for the magnetic properties as depending 

on input parameters has been obtained and it is also comparable with 
the experimental data. However, worked out model should be used for 
prediction of magnetic saturation only in particular groups of 
amorphous alloys, mostly because of the discontinuous character of 
input data. It is necessary to considerable increase the training set for the 
further investigations. 
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