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SUMMARY

In the paper the solidification process in the micro-macro scale is analyzed. The
mathematical model of heat transferin the domain considered bases on the Mehl-Johnson-
Avrami-Kolmogorov theory. The capacity ofinternal heat source resulting fromthe latent
heat evolution is,among others, the function of nuclei density. This parameter is estimated
using the methods of inverse problem solution. The additional information necessary in
order to identify the unknown parameter results from the cooling curves at the selected
points from casting domain. On the stage of numerical algorithm construction the least
squares criterion containing the sensitivity coefficients is applied. The solution has been
obtained using the boundary element method.
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1. FORMULATION OF THE PROBLEM

Let us consider the solidification process in domain of pure metal (e.g. aluminium)
which in equilibrium conditions solidifies at constant temperature T (solidification point).
Transient temperature field in the domain considered describes the following equation

XxeQ: c

aT((;'t) VP (x,1)+Q(x.) @

where c is the specific heat per unit of volume, A is the thermal conductivity, Q(x, t)is
the source function, T, x, t denote temperature, spatial co-ordinates and time. Here the
constant values of thermophysical parameters ¢ and A are assumed. It should be pointed
out that the crystallization process proceeds in the rather small interval of temperature and
this assumption does not introduce the essential errors.

The last component in equation (1) is equal to

Q(mt)d% @

where fs (x, t) is the solid state fraction in the region of the point considered, while L is the
latent heat per unit of volume.

A temporary value of solid state fraction of the metal at the point from casting domain
is given by the Mehl-Johnson-Avrami-Kolmogorov type equation [1, 2]

fs(x,t):l—exp[—gnN@u(x,r)drT] ®

where N is a constantnumber of nuclei (more precisely: density [nuclei/m®]), u (x, t) is the
rate of solid phase growth.
The solid phase growth (equiaxial grains) is determined by following formula

u(x,t):aR(X’t)

=pAT?(x,t) 4)

where R is a grain radius,  is the growth coefficient, and AT (x,t)=T —T(x,t) s the

undercooling below a solidification point. Taking into account the formulas (2), (3), (4),
the source function in equation (1) can be written as follows

Q(x.t)=4zN LuATZ(x,t)rzeXp(_gnNraj o
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where

r=r(x,t)=ijT2(x,r)dr (6)

The equation (1) is supplemented by the boundary condition
xel: T(xt)=T, )

where Ty is the known boundary temperature resulting fromthe Schwarz solution [3]. The
initial condition is also given, namely

t=0: T(x0)=T, ®)

where Ty, is the pouring temperature.

For direct problem the boundary and initial conditions as well as the parameters
appearing in the mathematical model are known and we determine the temperature
distribution T (x, t). For the inverse problem analyzed we assume that the nuclei density N
is unknown. In order to identify the parameter N the additional information is necessary.
So, we assume that the values of temperature T, at the selected set of points x; (sensors)

from casting domain for times t" are known, namely
Ti =T, (x.t"), i=12...M, f=12..F )

2. METHOD OF SOLUTION

In order to solve the inverse problem, the least squares criterion is applied [4]

S(N)=> Y (T -T4 ) (10)

where Tif =T (x;, t") is the calculated temperature at the point x; for time t. Differentiating
the criterion (10) with respect to the unknown nuclei density and using the necessary
condition of minimum, one obtains

B _ o pror )| L
N _ZZ;(T T"‘)aN =0 (1)

N=N¥
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where k is the number of iteration, N for k =0 is the arbitrary assumed value of N, while
N ¥ for k >0 results fromthe previous iteration.
Function T," is expanded in a Taylor series about known value of N k this means

-I-ifz(-l-if)k+(uif)k(Nk+l_Nk) (12)
where
L =% 3

are the sensitivity coefficients. Putting (12) into (11), after the simple mathematical
manipulations, one has

k=01..K (14)

This equation allows to find the values of N k1 The iteration process is stopped when the
assumed accuracy is achieved.

In order to determine the sensitivity coefficients (13), the equations (1), (7), (8) are
differentiated with respect to N and then

xeQ: ¢ U(gtx’t)=wzu (xt)+Qy (x.t) (15)
xel': U(xt)=0
=0: U(xt)=0

where U (x,t)=2aT (x,t)/oN, Q, (x,t)=0Q(x,t)/éN and the function Qu (x, t) is
following

Q, (x.t)=4mp Lexp[—%nN r3jr-
(16)
{ATZ(x,t){r—%nN r* +4nN?r’r, —2N ru}—ZNAT (x,t)u (x,t)r}
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where
t

r =rU(x,t):_[pAT(x,r)U(x,t)dr 17

0

For each iteration the basic problemand additional one connected with the sensitivity
function have been solved using the 1st scheme of the boundary element method [2, 3].

3. RESULTS OF COMPUTATIONS

As an example, the 1D problem has been solved. The plate of thickness L =0.03 [m]
made from aluminum has been considered. The following input data are assumed: thermal
conductivity A = 150 [W/(mK)], volumetric specific heat ¢ =2.875-10 ® [J/(m® K)], latent
heat per unit of volume L = 9.75-10° [J/m® ], solidification point T "= 660 °C, growth
coefficient u= 3-10° [m/K?s], initial temperature T, =662 °C, boundary temperature
Tp =650 °C.

In orderto estimate the value of N the courses of cooling curves (c.f. equation (9)) at the
points 1 - 0.0015 [m] (distance between the point and the boundary of plate), 2 - 0.0035
[m] and 3 - 0.0055 [m] have been taken into account - Figure 1. They result from the
direct problem solution under the assumption that N = 10*° [nuclei/m].

Figure 2 illustrates the solution of inverse problem for different initial values of N°. It is
visible that the iteration process is convergent and the solution close to the exact value is
obtained after the several iterations.
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Fig. 1. Cooling curves
Rys. 1. Krzywe sty gniecia
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Fig. 2. Inverse problem solution
Rys. 2. Rozwigzanie zadania odwrotnego
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OSZACOWANIE GESTOSCI ZARODKOW W KRZEPNACYM ODLEWIE
Z WYKORZYSTANIEM TEORII KOEMOGOROW A

STRESZCZENIE

W artykule analizowano proces krzepnigcia w skali mikro-makro. Model
matematyczny przeplywu ciepta w obszarze bazuje na teorii Mehla-Johnsona-Avrami-
Kolmogorowa. Wydajnos¢ wewnetrznych zrédet ciepla zwigzana z wydzielaniem si¢
ciepla krzepnigcia jest zalezna migdzy innymi od gesto$ci zarodkow. Oszacowanie tego
parametru uzyskano rozwigzujac zadanie odwrotne, w ktérym wykorzystano dodatkowa
informacj¢ dotyczaca przebiegu krzywych stygniecia w kilku punktach odlewu.
Algorytm bazuje na kryterium najmniejszych kwadratow, w ktorym wystepuja tzw.
wspolczynniki wrazliwo$ci.
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