26/10

Archives of Foundry, Year 2003, Volume 3, № 10 Archiwum Odlewnictwa, Rok 2003, Rocznik 3, Nr 10 PAN – Katowice PL ISSN 1642-5308

OCENA JAKOŚCI ŻELIWA SFEROIDALNEGO METODĄ ATD

M. STAWARZ¹, J. SZAJNAR² Katedra Odlewnictwa, Wydział Mechaniczny Technologiczny Politechnika Śląska ul. Towarowa 7, 44 – 100 Gliwice

STRESZCZENIE

W pracy przedstawiono równania regresji do oceny jakości żeliwa sferoidalnego gatunku EN GJS-400-15 i ZsCu1. Opracowano je na podstawie charakterystycznych punktów krzywych ATD. Do opisu kształtu wydzieleń grafitu zastosowano współczynnik kształtu C.

Key words: ductile cast iron, thermal derivative analysis, crystallization

1. WSTĘP

Żeliwo sferoidalne jest tworzywem o bardzo dużym zróżnicowaniu właściwości mechanicznych w zależności od liczby i wielkości wydzieleń grafitu, jak również od rodzaju osnowy, dlatego w ostatnim dziesięcioleciu produkcja odlewów z żeliwa sferoidalnego wykazywała tendencje wzrostowe. Jego całkowity wzrost wyniósł ok. 40%, z jednoczesnym spadkiem produkcji odlewów z pozostałych stopów żelaza, dla żeliwa szarego i stopowego spadek ten wyniósł ok. 13%, dla odlewów z żeliwa ciągliwego spadek wynosił ok. 26% i odlewów staliwnych ok. 25% [1].

Wraz ze wzrostem produkcji odlewów z żeliwa sferoidalnego powstał problem skutecznego sposobu oceny jakości tego żeliwa. W pracach [2-4;7] przedstawiono możliwość kontroli jakości żeliwa sferoidalnego z wykorzystaniem metody ATD, jednak przedstawione wyniki oceny sprowadzały się do jednego gatunku żeliwa. W poniższej pracy przedstawiono ocenę i porównanie dwóch gatunków żeliwa

¹ mgr inż., sekrmt3@zeus.polsl.gliwice.pl

² dr hab. inż., sekrmt3@zeus.polsl.gliwice.pl

sferoidalnego EN GJS-400-15 i ZsCu1 z zastosowaniem metody ATD i komputerowej analizy kształtu wydzieleń grafitu.

2. PRZEBIEG I WYNIKI BADAŃ

W badaniach wykorzystano próbki z żeliwa sferoidalnego EN GJS-400-15 i ZsCu1 wytworzonego metodą zalewową. Próbki zostały odlane w warunkach przemysłowych (POWEN S.A. Zabrze). Do rejestracji krzywych ATD zastosowano zestaw aparatury CRYSTALDIGRAPH wraz z oprogramowaniem. Stanowisko badawcze przedstawiono na rysunku 1.

Fig. 1. Schema of measuring – position

2.1. Określenie składu chemicznego i właściwości mechanicznych żeliw

Analiza chemiczna została przeprowadzona na spektrometrze BAIRD SCL – 16, badania wytrzymałościowe zostały przeprowadzone wg normy PN-EN 1563.

Skład chemiczny oraz wyniki badań mechanicznych dla dwóch grup żeliwa przedstawiono w tabeli 1.

	r											
EN GJS-400-15												
	С	Mn %	Si	Р	S	Cr	Cu	Mg	Rm	A5	НB	
	%	IVIII /0	%	%	%	%	%	%	MPa	%	IID	
Max	3,81	0,28	2,6	0,05	0,018	0,02	0,06	0,072	422	25,3	149	
Min	3,45	0,06	2,1	0,036	0,004	0,01	0,01	0,03	403	19,8	137	
Sred.	3,66	0,085	2,37	0,043	0,009	0,013	0,023	0,048	424,6	22,91	142,8	
ZsCu1												
	С	Mn %	Si	Р	S	Cr	Cu	Mg %	Rm	A5	HB	
	%		%	%	%	%	%		MPa	%		
Max	3,75	0,62	2,9	0,06	0,021	0,28	1,26	0,093	799	3,4	341	
Min	3,4	0,06	2,48	0,035	0,005	0,03	0,8	0,026	728	1,8	255	
Sred.	3,58	0,46	2,69	0,048	0,014	0,09	0,98	0,062	752	2,62	286,6	

Tabela 1. Skład chemiczny i właściwości mechaniczne Table 1. Chemical composition and mechanical properties of ductile cast iron

2.2. Analiza termiczno - derywacyjna

Krzywa termiczna T = f(t) i krzywa derywacyjna T' = dT/dt = f'(t) zarejestrowane podczas krzepnięcia metalu w próbniku zostały poddane analizie wg schematu przedstawionego na rysunku 2. Analiza ta polegała na określeniu punktów charakterystycznych znajdujących się na krzywych.

Punkty charakterystyczne znajdujące się na krzywej derywacyjnej:

Z - temperatura zalewania próbnika,

A - maksymalny efekt cieplny krystalizacji austenitu,

B – koniec krystalizacji austenitu,

D – temperatura krystalizacji metastabilnej eutektyki (Fe₃C),

E – maksymalna szybkość podgrzewania metalu (rekalescecja) wskutek oddziaływania ciepła krystalizacji,

F – temperatura krystalizacji stabilnej eutektyki,

H – temperatura końca krystalizacji próbnika,

I - charakterystyczna temperatura w stanie stałym (1050 °C)

 $\mathbf{K} - \mathbf{S}_{\mathrm{H}} + 60$ s czas stygnięcia próbnika,

 $M - S_H + 90$ s czas stygnięcia próbnika.

2.3. Badania metalograficzne – analiza stereologiczna wydzieleń grafitu

W celu opisu przestrzennej budowy żeliwa sferoidalnego posłużono się analizatorem obrazu MAGISCAN wraz z oprogramowaniem. Ponadto do opisu kształtu wydzieleń grafitu zastosowano współczynnik kształtu C [5, 6, 8], który można zdefiniować jako:

$$C = O_K / O_w$$
 dla warunku $F_K = F_w$;

gdzie: OK - obwód koła,

Ow – obwód wydzielenia,

F_K – pole koła,

F_w – pole wydzielenia.

Dokonano pomiarów następujących charakterystycznych parametrów (przedstawione oznaczenia poszczególnych parametrów są zgodne z oznaczeniami używanymi w analizatorze obrazu MAGISCAN): pole powierzchni wydzielenia grafitu BD, obwód wydzielenia BP, procentowego udziału powierzchni grafitu G. Powyższe wielkości zostały wykorzystane przy sporządzaniu histogramów: (ilość wydzieleń grafitu "N_a" w funkcji współczynnika kształtu "C" oraz objętość wydzieleń grafitu "V_V" w funkcji współczynnika kształtu "C")

Pomiary podstawowych parametrów wydzieleń grafitu były realizowane w jednej płaszczyźnie pomiarowej, na której przeprowadzono 10 analiz.

Przyjęto, że bardzo dobre żeliwo sferoidalne będzie charakteryzowało się współczynnikiem kształtu 0,9<C<1, natomiast żeliwo wermikularne powinno posiadać współczynnik kształtu 0,66<C<0,9. Na podstawie wykonanych badań opracowano histogramy, których przykłady przedstawiono na rysunkach 4 i 5.

Rys. 4. Ilość wydzieleń grafitu "Na" w funkcji współczynnika kształtu "C" Fig.4. Numbers of graphite separations "Na" in function of "C" coefficient

Rys. 5. Objętość wydzieleń grafitu " V_V " w funkcji współczynnika kształtu "C" Fig. 5. Volume of graphite separations " V_V " in function of "C" coefficient

3. ANALIZA STATYSTYCZNA UZYSKANYCH WYNIKÓW

W oparciu o uzyskane dane stosując metodę regresji krokowej opracowano zależności statystyczne.

3.1. Własności mechaniczne w funkcji charakterystycznych punktów ATD

Dla żeliwa gatunku ZsCu1:

$$Rm = 40784,4 - 36,71 \cdot TI - 1,46 \cdot TK - 11,9 \cdot t_Z - 0,99 \cdot t_F$$
(1)

Gdzie: TI - temperatura w punkcie I,

TK – temperatura w punkcie K,

tz-czas zalewania próbnika,

t_F - czas krystalizacji stabilnej eutektyki.

O parametrach statystycznych:

- wartość średnia $Rm_s = 751,33$ MPa,
- odchylenie standardowe dRm = 10,3 MPa,
- współczynnik korelacji R = 0,97,
- test F = 16,53

Na poprawę wartości R_m wpływa skrócenie czasu zalewania próbnika t_Z. Wraz z wydłużeniem czasu zmniejsza się szybkość chłodzenia co w efekcie powoduje krystalizację grafitu sferoidalnego w zdegenerowanej postaci i w konsekwencji

203

obniżenie wytrzymałości na rozciąganie [9]. Podobny wpływ na wartość R_m wywiera czas w punkcie F. Na wartość R_m mają wpływ również temperatury w punktach I i K jednak wyjaśnienie sensu fizycznego jest skomplikowane i będzie możliwe po szczegółowym przebadaniu osnowy.

Dla żeliwa gatunku EN GJS-400-15:

$$Rm = 346,7 - 0,42 \cdot t_D + 0,11 \cdot T_K - 1,87 \cdot t_Z$$
(2)

Gdzie: TD - temperatura w punkcie D,

 $t_{\rm K}$ – czas ($t_{\rm H}$ +60 s) czas stygnięcia próbnika, $t_{\rm Z}$ – czas zalewania próbnika.

O parametrach statystycznych:

- wartość średnia $Rm_s = 423.9$ MPa,
- odchylenie standardowe dRm = 4,82 MPa,
- współczynnik korelacji R = 0,81, test F = 4,69.

W powyższym równaniu można zauważyć, że zwiększenie wartości czasu w punkcie $D(t_D)$ pogarsza wytrzymałość na rozciąganie.

Drugim czynnikiem mającym wpływ na wartość R_m jest temperatura w punkcie K (T_K) wraz ze wzrostem wartości temperatury w punkcie K zwiększa się wartość R_m . Wzrost wartości tej temperatury związany jest z występowaniem w żeliwie grafitu sferoidalnego, który charakteryzuje się mniejszym współczynnikiem przewodności cieplnej w porównaniu z grafitem płatkowym w żeliwie szarym. Różnice w przewodności cieplnej związane są z występowaniem odizolowanych wydzieleń grafitu sferoidalnego co wpływa na zmniejszenie przewodności cieplnej badanego żeliwa.

Podobny wpływ jak w równaniu (1) na wartość R_m wywiera czas zalewania próbnika ATD.

3.2. Analiza wydzieleń grafitu w funkcji charakterystycznych punktów ATD

Dla żeliwa gatunku ZsCu1:

$$N_{a (0,9)} \% = -1237,5 + 11,61 \cdot TI + 0,26 \cdot T_M$$

(3)

Gdzie: TI – temperatura w punkcie I, TM – temperatura w punkcie M,

O parametrach statystycznych:

- wartość średnia $Na_s = 47,28$ %,

- odchylenie standardowe d Na = 5,16 %,
- współczynnik korelacji R = 0,89, test F = 12,49.

Na podstawie uzyskanego równania (3) można zauważyć, że ilość wydzieleń grafitu o najbardziej pożądanym kształcie (współczynnik kształtu $C = 0,9 \div 1$) opisana jest przez charakterystyczne temperatury stanu stałego żeliwa. Podobnie jak w przypadku poprzednim decydujące znaczenie odgrywa tu zmniejszenie współczynnika przewodności cieplnej żeliwa sferoidalnego.

Dla żeliwa gatunku EN GJS-400-15:

$$N_{a(0,9)}\% = 7039.6 - 4.38 \cdot TD + 4.67 \cdot TF - 7 \cdot TI$$
(4)

Gdzie: TD – temperatura w punkcie D,

TF - temperatura w punkcie F,

TI – temperatura w punkcie I.

O parametrach statystycznych:

- wartość średnia $Na_s = 39,7 \%$,
- odchylenie standardowe d Na = 6,18 %,
- współczynnik korelacji R = 0,85,
- test F = 8,04.

Analizując równanie (4) można stwierdzić, że ilość wydzieleń grafitu o prawidłowym kształcie (C = $0,9 \div 1$) zależy głównie od temperatury TD. Wraz z obniżeniem temperatury TD (wzrostem przechłodzenia) zwiększa się ilość wydzieleń grafitu klasy C = $0,9 \div 1$. Przeciwny wpływ na ilość wydzieleń grafitu ma maksymalna temperatura krystalizacji eutektyki (TF) wraz ze wzrostem wartości temperatury TF zwiększa się ilość kulistych wydzieleń grafitu.

4. PODSUMOWANIE

- Dla żeliw gatunku ZsCu1 i EN GJS-400-15 poprawę wartości R_m uzyskujemy przez zwiększenie szybkości zalewania i również wzrost szybkości chłodzenia.
- W równaniu (2) dla żeliwa gatunku EN GJS-400-15 występuje korzystny efekt oddziaływania temperatury w punkcie K na wartość R_{m} natomiast w równaniu (1) dla żeliwa gatunku ZsCu1 obserwujemy przeciwny efekt wpływu temperatury w stanie stałym na wartość R_m . Wyjaśnienie sensu fizycznego wpływu temperatur stanu stałego na wartość R_m dla żeliwa gatunku ZsCu1 będzie możliwe po szczegółowym przebadaniu osnowy.
- Na ilość wydzieleń grafitu o pożądanym kształcie (C = 0,9 ÷ 1) w równaniu (3) dla żeliwa gatunku ZsCu1 wpływają parametry stanu stałego – decydujące znaczenie

205

odgrywa tu zmniejszenie współczynnika przewodności cieplnej żeliwa sferoidalnego. Natomiast w równaniu (4) (żeliwo gatunku EN GJS-400-15) obserwujemy korzystny wpływ przechłodzenia na ilość wydzieleń grafitu.

LITERATURA

- [1] J. Tybulczuk, K. Martynowicz Lis "*Stan aktualny i prognozy rozwoju żeliwa sferoidalnego*" Seminarium pt. "Wiodące gatunki i technologie żeliwa sferoidalnego dziś i jutro" Instytut Odlewnictwa, Kraków 2002 s 21.
- [2] S. Jura i inni " Zastosowanie metody ATD do oceny jakości żeliwa sferoidalnego" Archiwum Odlewnictwa nr 1 (1/2) 2001, str. 93-102.
- [3] S. Pietrowski, G. Gumienny " Metodyka przygotowania oceny jakościowej żeliwa sferoidalnego z zastosowaniem metody ATD" Archiwum Odlewnictwa nr 6 (2/6) 2002, s. 249-256.
- [4] S. Pietrowski, G. Gumienny "Ocena jakości żeliwa sferoidalnego EN-GJS-400-15 metodą ATD" Archiwum Odlewnictwa nr 6 (2/6) 2002, s. 257-268.
- [5] Jura S., Jura Z.: Wpływ składu chemicznego i stopnia sferoidyzacji grafitu na właściwości mechaniczne żeliwa. Archiwum Odlewnictwa nr 1 (2/2) 2001, str. 167-174.
- [6] S. Jura, M. Stawarz, Wpływ składu chemicznego i parametrów stereologicznych wydzieleń grafitu na właściwości mechaniczne żeliwa sferoidalnego" Polska Metalurgia w latach 1998 – 2002 tom 2 Wydawnictwo Naukowe "Akapit" Kraków 2002, s.46 – 51.
- [7] S. Pietrowski, G. Gumienny "Ocena jakości żeliwa sferoidalnego ferrytycznego" Archiwum Odlewnictwa (3/8) 2003, s. 253-266.
- [8] M. Stawarz, S. Jura " Parametry stereologiczne grafitu i skład chemiczny określający właściwości mechaniczne żeliwa sferoidalnego" Archiwum Odlewnictwa, nr 4, rocznik 2, rok 2002 s. 447.
- C. Podrzucki "Żeliwo struktura właściwości zastosowanie" tom 1 STOP Kraków 1991, s.207.

EVALUATION OF QUALITY OF DUCTILE CAST IRON WITH TDA METHOD

SUMMARY

The paper presented equation of regression for evaluation of quality of ductile cast iron of sort EN GJS-400-15 and ZsCu1. They were prepared with the use of characteristic points of TDA curves. The factor shape C was used to describe the nodular cast iron.

Recenzował: prof. Józef Gawroński