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Abstract 
 
Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to 
formulation of the parabolic or elliptic moving boundary problem. Solution of such defined problem requires, most often, to use some 
sophisticated numerical techniques and far advanced mathematical tools. The paper presents an analytic-numerical method, especially 
attractive from the engineer’s point of view, applied for finding the approximate solutions of the selected class of problems which can be 
reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of the region in which the 
solution is sought. Proposed method is based on the known formalism of initial expansion of  a sought function, describing the field of 
temperature, into the power series, some coefficients of which are determined with the aid of boundary conditions, and on the 
approximation of a function defining the freezing front location with the broken line, parameters of which are determined numerically. The 
method represents a combination of the analytical and numerical techniques and seems to be an effective and relatively easy in using tool 
for solving problems of considered kind.   
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1. Introduction 
 

Designing of the technology for producing the ingots in 
course of continuous casting process appears to be a complicated 
and multistage problem. One of the most important factors 
determining the quality of continuous ingot, which can serve as 
a measure of effectiveness of the designed technology, is the field 
of temperature in the solidifying metal volume defined by an 
important parameter for the considered technology which is the 
location of freezing front determining the thickness of solidified 
layer (thickness of the ingot skin). Too fast either too slow 
increase of the solidified layer is unacceptable. If the skin of 
solidified ingot leaving the casting mould will be too thin then it 
can break and the liquid metal can leak which may cause a very 

serious damage of the continuous casting equipment. From the 
other hand, too fast increase of the skin is connected with the 
excessive drop of temperature on its cross-section which may 
cause the high thermal tension leading to the ingot cracking. 

Taking these facts into account we will consider the flat ingot 
of the rectangular cuboid shape, produced in the vertical 
continuous casting equipment with the constant ingot forming 
velocity. Dimensions of its cross-section sides   ̅ and   ̅ (  ̅ – 
thickness of the ingot,   ̅  – width of the ingot) satisfy condition 
  ̅    ̅. This assumption enables to discuss the solidifying ingot as 
an axisymmetrical 2-dimensional object in which the thermal processes 
take place in the surface of thermal symmetry (see Figure 1). 
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Fig. 1. The modeled area 

 
If we assume simultaneously that the ingot is produced from 

the metal solidifying in constant temperature     and in such 
temperature is poured into the casting mould, then in the course of 
non-failure working of the continuous casting equipment the 
pseudo-steady temperature field in the solidified part of the ingot of 
length  ̅ is generated which, in the coordinate system oriented in 
space like in Figure 1, is described by means of the equation  
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where    (   ) denotes the temperature,   refers to the velocity 
vector coordinate in the direction of ingot forming, a is the thermal 
diffusivity coefficient and  ( ) denotes a function describing the 
freezing front location 
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where  ( ) denotes the ingot skin thickness (thickness of the 
solidified layer) variable on the ingot length and 
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In view of taken assumptions equation (1) is complemented by the 
boundary conditions on the freezing front 
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where n denotes the directed outside unitary vector normal to the 
freezing front, and by one of the conditions defined on the ingot 
surface 
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or, relatively 
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In the last equations symbols   ,  ,   and   denote, in turn, the 
ambient temperature, thermal conductivity coefficient, metal 
density and latent heat. Whereas, elements    ( ),    ( ), 
   ( ) and      ( ) define, respectively, temperature of the 
ingot surface, distribution of the heat flux, distribution of the heat 
transfer coefficient and coordinate of the velocity vector of the 
freezing front moving in direction normal to this front.  

Equation (1) can be simplified if the ingot is produced from 
the material with the low value of thermal conductivity 
coefficient. It is because, in this case, the thermal conductivity in 
direction of the ingot forming is usually small, therefore it can be 

neglected [1]. Taking it into account, the term  
   

   
 in equation (1) 

can be ignored. In result, in place of elliptic equation (1) we receive 
the parabolic equation  
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in which the variable z plays the role of time. Whereas, the 
boundary condition (4) on the freezing front takes the form 
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2. Method of solution 
 

Mathematical modeling of thermal processes combined with 
the reversible phase transitions of type: liquid phase – solid phase 
leads to the moving boundary problems which takes place in this 
case as well. Solving of such determined problem requires to use 
the appropriate numerical techniques [2-8] or approaches 
applying, very modern in recent times, genetic algorithms [9] or 
algorithms of artificial intelligence [10]. In the current paper we 
present the approximate analytic-numerical method, especially 
attractive from the engineer’s point of view. Proposed method is 
based on the known formalism of initial expansion of  the sought 
function, describing the field of temperature, into the power 
series, some number of coefficients of which is determined with 
the aid of boundary conditions, and on the approximation of 
function defining the freezing front location by means of the 
broken line, parameters of which are numerically determined. 
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 As we have previously mentioned, method of solving such 
formulated problem is based, in the first step, on the proper presentation 
of the function representing the expected solution in the form of power 
series, similarly as it was done in papers [11-16]. In considered case the 
series is of the following form 
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where   ( ) denote the unknown, dependent on variable z, 
functional coefficients. In case of the elliptic problem we 
determine these coefficients by using equation (1), condition (5) 
and the transformed condition (4) which can be written in form 
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Whereas, in case of the parabolic problem we use equation (9) 
and conditions (5) and (10) on the freezing front. 
     From the assumed form (11) of the sought solution and from 
relation (2) it results that 
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By substituting the properly received formulas into equation (1) 
we obtain 
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Whereas, by substituting the same formulas into equation (9) we 
get the relation  
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Comparing the terms situated on the both sides of equations (17) 

and (18) preceding expressions 
(   ̅  ( )) 

  
,          , we have 
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for the elliptic problem and 
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for the parabolic problem. 
 In case of the elliptic problem, conditions (5), (12) and (2) 
imply that   
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Having coefficients   ( ) and   ( ) we can, by using 
formula (19), determine the remaining coefficients   ( ), 
          We get 
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From the obtained formulas for coefficients   ( ),          , 
we can conclude that all the coefficients   ( ),          , 
except coefficient   ( ), depend on the still unknown function 
 ( ), its derivatives and powers of those derivatives. One can try 
to determine analytically this function by using one of conditions 
(6), (7) or (8). In particular, for condition (6) we receive 
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However, equation (24) is so much complicated that 
determination of function  ( ) with the aid of this equation is 
possible only in case of its certain simplification. In particular, by 
taking only two first terms of the series in relation (24) we obtain 
differential equation of the form 
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Since function   ( ) is increasing by assumption, after simple 
transformations it results from relation (25) that 
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Unfortunately, an analytic solution of equation (26) is not possible 
for arbitrarily given function  ( ). 
 Problem of determining function  ( ) is even more 
complicated if we consider the boundary conditions of second and 
third kind ((7) and (8), respectively). For finding analytic solution 
in these cases, similar necessary simplifications must be made. 
 For example, considering condition (7) of the second kind we 
get the equation 
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By taking only one term (the first one) of the series in 
relation (27) we obtain  
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Hence, after simple transformations the following equation results 
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Equation (29), similarly as equation (26), will have the explicit 
solution only if function   ( ) will have the appropriate form. 
 Similar relations can be received while considering the 
parabolic equation. In this case, conditions (5), (10) and (2)  imply 
that         
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Analogically as in previous case, by having the coefficients  
  ( ) and   ( ) we can calculate the remaining coefficients 
  ( ),          , by  using formula (20).  We obtain 
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Also in here, all the coefficients   ( ),          , except 
coefficient   ( ), depend on the still unknown function  ( ), its 
derivatives and powers of those derivatives. 
      Whereas the equations connecting function  ( ) with the 
functions defining the heat transfer on the ingot surface remain 
unchanged with accuracy to coefficients   ( ),           In 
particular we get 
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for boundary condition (6) of the first kind, 
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for boundary condition (7) of the second kind and  
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for boundary condition (8) of the third kind.  
     Similarly as in case of the elliptic problem, the received 
equations are so much complicated that the analytic determination 
of function  ( ) by using these equations is possible only with 
some limitations and by applying appropriate simplifications.  

 In particular, by taking only three first terms in the series from 
relation (33) we get     
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Hence, by using formulas (30)-(32) we obtain the following 
differential equation 
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By solving this equation, on the assumption of satisfying 
condition (3), finally we receive  
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In spite of the fact that in some cases, like for example when 
             ,      ̅, we can receive  from equation 
(38) very simple formula      
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in general case relation (38) is not very suitable since we are not 
always able to calculate the integral appearing in this relation. 
 Approximate solution of this problem, as well as of the other 
problems, can be obtained with no difficulties if we assume that 
function defining the freezing front location is approximated by 
the broken line (Figure 2), it means 
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and we have 
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where parameters   ,          , will be determined 

numerically. 
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Fig. 2. Approximation of the function describing the freezing 
front location 

 

Taken assumption implies that   ( )   ( ), thus 
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From formulas (21), (22) and relation (23) we get 
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which means that function (11) describing the temperature field in 
the solid state can be presented in form  
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It can be easily verified that function (48) satisfies conditions (4) 
and (5) and its unknown elements are only parameters   ,  

         , for calculation of which one of the boundary 
conditions (6)-(8) will be used. 
 If we demand that for each                  , one of the 

boundary conditions (6), (7) or (8) is satisfied, we receive the 
equation enabling to determine the sought parameters. In 
particular, by applying condition (6) we have 
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By proceeding in similar way we can also determine the forms of 
function defining the freezing front location for the conditions of  
second (7) and third (8) kind. In particular, for condition (7) of the 
second kind we have 
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whereas, for condition (8) of the third kind we get 
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For each of the conditions (6)-(8) parameters   ,           , 

are described by means of equations which cannot be solved 
analytically. Equations (49)-(51) can be solved by applying one of 
the many methods for approximate determination of the roots of 
nonlinear equations.  
 
 

3. Example 
 

In paper [16] the usefulness of described method is showed on 
theoretical examples in which the reconstructed, variable on the 
ingot length, thickness of the ingot skin  ( ) was defined by 
linear or nonlinear relation. Now let us present the real example. 

Let us assume that in the vertical continuous casting 
equipment a plate of thickness   ̅          is casted. Material of 
the plate is characterized by the following parameters: density 

=7000 [kg/m3], thermal conductivity coefficient =25 [W/mK], 
latent heat       [kJ/kg], solidification temperature T*=1500 
[K], ambient temperature           , velocity vector 
coordinate in the direction of ingot forming       [m/min] and 
the heat transfer with environment is defined by means of 
boundary condition of the third kind  (8), where 
 

 ( )  

{
 
 

 
 

                      
                       
                       
                       
                      

          (52) 

 

Moreover, let us assume that we consider the process of ingot 

solidification until the moment in which the ingot reaches the 

length              .  
Another important parameter is the discretization density of 

variable z. In this paper we take that considered interval 〈    〉 is 

evenly divided into m sections of length         which means 

                     

The main object examined in testing calculations is the 

precision of reconstruction of function  ( ) describing the 

thickness of solidified layer variable in time. In considered 
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example we investigate the elliptic and parabolic problem, as well 

as, in order to compare the results, the method presented in 

paper [15]. Reconstruction of function  ( ) obtained by applying 

the elliptic and parabolic problem, as well as the method 

presented in [15], is displayed in Figure 3. One can observe that 

all the reconstructions almost cover.   
 

 

 
Fig. 3. Reconstruction of function  ( ), describing the thickness of 
solidified layer for the third kind boundary condition obtained in 
the elliptic problem (◊), parabolic problem (*) and method from 

paper [15] (●) 
 
 

4. Conclusions 

 
The paper presents the approximate analytic-numerical 

method of solving the selected kind of problems which can be 
reduced to the one-phase solidification problem of a plate with the 
unknown a priori, varying in time boundary of the region in which 
the solution is sought. Proposed method is based on the expansion 
of the sought function, describing the temperature field, into the 
power series, some coefficients of which are determined by using 
the boundary conditions, and on the approximation of function 
defining the freezing front location with the broken line, 
parameters of which are determined numerically. Numerical 
verification of elaborated method confirms its efficiency in 
solving the elliptic as well as the parabolic problem. 
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