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Abstract 
 

A procedure based on the Artificial Bee Colony algorithm for solving the two-phase axisymmetric one-dimensional inverse Stefan 

problem with the third kind boundary condition is presented in this paper. Solving of the considered problem consists in reconstruction of 

the function describing the heat transfer coefficient appearing in boundary condition of the third kind in such a way that the reconstructed 

values of temperature would be as closed as possible to the measurements of temperature given in selected points of the solid. A crucial 

part of the solution method consists in minimizing some functional which will be executed with the aid of one of the swarm intelligence 

algorithms - the ABC algorithm.   
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1. Introduction 
 

In this paper we present an algorithm for solving the two-
phase axisymmetric one-dimensional inverse Stefan problem with 

the third kind boundary conditions and the temperature 
measurements taken in selected points of the solid phase as an 

additional information. Solving of the considered problem 
consists in reconstructing the form of heat transfer coefficient 

appearing in boundary condition of the third kind, so that the 
temperature in the given points of solid phase would have the 

closest values as possible to the known control values. 
Swarm Intelligence is a group of algorithms representing a 

part of the artificial intelligence in which a common general 
solution of the problem is constructed on the basis of particular 

solutions determined independently by members of the swarm. 

The expression was formulated by Gerardo Beni and Jing Wang 
in 1989 in the context of cellular robotic systems [1] and it 

denotes the collective behavior of decentralized, self-organized, 

natural or artificial individuals. A group of such individuals can 
be, for example, the swarms of insects, behavior of which became 

an inspiration for inventing such algorithms like the Artificial Bee 
Colony algorithm (ABC) or Ant Colony Optimization 

algorithm (ACO).  
The Artificial Bee Colony algorithm imitates the technique of 

searching for the nectar around the hive by colony of bees. After 

localizing some good source of food, the bee-scout collects 
a sample of the nectar and returns to the hive for informing the 

other bees, with the aid of a special waggle dance, about the 
position of the available source. After the dance, the bees-viewers 

leave the hive and fly in the direction of the discovered source of 
nectar, whereas the bee-scout can stay in the hive or leave it for 

searching a new source of food or for exploring the discovered 
one. More detailed information about the natural inspiration of the 

ABC algorithm can be found in [2,3] and examples of its 
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application for solving the inverse heat conduction problems, 
made by the authors, are presented in [4-6]. In general, 

application of the modern and popular in recent time algorithms 
of artificial intelligence, like the Ant Colony Optimization 

algorithm [7] or the evolutionary algorithm [8], for solving the 
inverse heat conduction problems becomes more and more 

frequent, because these new approaches ensure very good results, 
on a par with more classical methods [9-11]. 

     In the current paper we consider the inverse Stefan problem 
which is a mathematical problem serving for description of 

thermal processes with the phase transitions, like, for example, 

solidification of pure metals, melting of ice, freezing of water, in 
which, however, some of the input information is missing and 

must be reconstructed. The sought element can be, for instance, 
the form of initial condition, boundary conditions or parameters of 

material, whereas the additional information, compensating the 
missing one, can be the measurements of temperature, location of 

the freezing front or its velocity. Inverse Stefan problem belongs 
to the group of ill posed problem which means that its solution 

may not exist or may be neither unique nor stable. Therefore the 
constant efforts are made to propose some efficient procedures of 

determining the approximate solution of inverse Stefan problem. 
For instance, in paper [12] the inverse Stefan problem is solved by 

using the Lie-group shooting method. Authors of paper [13] have 
presented the possibility of application of the optimal control for 

solving the inverse design Stefan problem concerning the 
temperature selection on the boundary. Application of the heat 

balance integral method for solving the inverse design Stefan 
problem is showed in paper [14]. In papers [15,16] the problem of 

determination of the interface location is formulated as 
a geometrical inverse problem. Summary bibliography review for 

the methods of solving the inverse Stefan problem is presented in 

monograph [17]. In spite of all mentioned approaches, the 
literature devoted to the inverse Stefan problem is much more 

poor in comparison with literature concerning the direct problems 
(for example [18-21]). 

 
 

2. Artificial Bee Colony algorithm 
 

ABC algorithm imitates the technique of communication 

between bees: after discovering the attractive source of nectar the 
bee (called the scout) flies back with the sample of nectar to the 

hive for informing the other bees (called the viewers) about the 
position of sources of nectar, with the aid of a special kind of 

dance called the waggle dance. In details, the ABC algorithm can 
be listed in form of the following steps. 

 
Initialization of the algorithm 

 

1. Initial data: 

SN  - (Swarm Number) number of the bees-scouts 

(= number of the bees-viewers); 

D  - dimension of the explored sources ix , ;,...,1 SNi   

lim - number of the corrective flights around sorce ix ; 

MCN  - maximal number of cycles. 

2. Initial population - random selection of the initial sources 

localizations represented by the D - dimensional vectors ix , 

;,...,1 SNi   

3. Calculation of the values )( ixF , SNi ,...,1 , for the initial 

population, where F  denotes the minimized function. 
 

Main algorithm 
 

1. Modification of the sources localizations by the bees-scouts. 

a) Every bee-scout modifies the position ix  according to the 

formula: 
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b) If )()( ii xFvF  , then position iv  replaces ix . Otherwise, 

position ix  stays unchanged. 

Steps a) and b) are repeated lim  times. We take: .lim DSN   

2. Calculation of the probabilities 
iP  for the positions ix  selected 

in step 1. We use the formula: 
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3. Every bee-viewer chooses one of the sources ix , SNi ,...,1 , 

with probability 
iP . Of course, one source can be chosen by 

a group of bees. 

4. Every bee-viewer explores the chosen source and modifies its 
position according to the procedure described in step 1. 

5. Selection of bestx  for the current cycle - the best source among 

the sources determined by the bees-viewers. If the current bestx  is 

better that the one from the previous cycle, it is accepted as bestx  

for the entire algorithm. 

6. If in step 1, the bee-scout did not improve the position ix  ( ix  

did not change), it leaves source ix  and moves to the new one, 

according to the formula: 

 

,,...,1),( minmaxmin Djxxxx kkijk

i

j    

 

where ].1,0[ij   

Steps 1-6 are repeated MCN  times. 
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3. Formulation of considered problem 
 

Let the boundary of region 2],0[],0[ Rtb    be 

divided into following parts (see Figure 1): 
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where the initial condition and boundary conditions are defined. 

Symbol 
1  denotes the subregion of   taken by the liquid 

phase, whereas  
2  describes the subregion taken by the solid 

phase. The interface is denoted by 
g , location of which is 

described by function )(tx  .   

 

 
Fig. 1. Domain of the problem 

 

In selected points of the solid phase (
2),( ji tx ) the values 

of temperature are known:  

 

,,...,2,1,,...,2,1,),( 212 NjNiUtxT ijji                        (1) 

 

where 
1N  denotes the number of sensors (thermocouples) and 

2N means the number of measurements taken from each sensor. 

The problem consists in determining the function )(t  

defined on boundaries 
k2  (for 2,1k ) such that the  function 

)(t  describing the interface position and the distributions of 

temperature 
kT  in regions 

k  ( 2,1k ), calculated for 

reconstructed )(t , would satisfy the axisymmetric one-

dimensional heat conduction equation inside the regions 
k  (for 

2,1k ): 
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the initial condition on boundary 
0  (  TT0

):  
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the homogeneous boundary conditions of the second kind on 

boundaries 
k1  ( 2,1k ):  
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the boundary conditions of the third kind on boundaries 
k2  

( 2,1k ): 
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as well as the condition of temperature continuity and the Stefan 

condition on interface 
g : 
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where 
kc , 

k  and 
k  are, respectively, the specific heat, mass 

density and thermal conductivity in liquid phase ( 1k ) and solid 

phase ( 2k ), )(t  denotes the heat transfer coefficient, 
0T  - 

the initial temperature,  
T  - the ambient temperature, T  - the 

solidification temperature, L  describes the latent heat of fusion 

and, finally, t  and x  refer to the time and spatial location. 

Direct Stefan problem described by equations (2)-(7) for the 

fixed form of heat transfer coefficient is solved by using the 

alternating phase truncation method [22], in result of which, 

among others,  the course of temperature in solid phase can be 

determined. Values of temperature 
ijU , calculated in this way, are 

considered as the exact values and are treated as the benchmark 

for comparing the results of solving the inverse problem. For 

examining the influence of input data errors into the exactness of 
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results and stability of the algorithm, the numerical experiment is 

executed. In this experiment the exact values of temperatures 
ijU  

are burdened by the random errors which simulate the 

measurements values and represent the input data.  

     Method of solving the inverse Stefan problem consists exactly 

in finding the solution of direct Stefan problem, defined by 

equations (2)-(7), for the fixed form of heat transfer 

coefficient  , which enables to find the values of temperature 

),(2 jiij txTT   associated with the respective  . By using the 

calculated temperatures 
ijT  and given temperatures 

ijU  the 

following functional is constructed:  
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j

ijij UTJ                                                         (8) 

 
representing the error of approximate solution, by minimizing of 

which the values of parameter   assuring the best approximation 

of temperature will be found. For minimizing functional (8) the 
ABC algorithm is used. 

 
 

4. Numerical example 
 

Proposed approach will be tested by executing the experiment 

in which the solved problem is modelled by means of the two-

phase axisymmetric one-dimensional Stefan problem described by 

equations (2)-(7) for the following values of parameters: 

08.0b [m], 1041  [W/(m·K)], 2402   [W/(m·K)], 

12901 c  [J/(kg·K)], 10002 c [J/(kg·K)], 23801  [kg/m3], 

26792   [kg/m3], 390000L [J/kg], solidification 

temperature 930T  [K], ambient temperature 298T  [K] 

and initial temperature 10130 T  [K].  The exact form of the 

sought heat transfer coefficient   [W/(m2·K)] for the considered 

process is known and is equal to: 
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Such assumption about the heat transfer coefficient changing at 

two predetermined times is often used in modeling the boundary 

conditions for the continuous casting processes.  

For solving the direct Stefan problem associated with the 

investigated inverse problem we use the finite difference method 

for the mesh of steps equal to 1.0 t  and 500/bx   with 

applying the alternating phase truncation method. Whereas, for 

constructing functional (8) we use the exact values of temperature 

and values noised by the random error of 1%, 2% and 5%. The 

thermocouple is located in point ][07.0 mx  .   

The ABC algorithm is executed for 8 bees ( 8SN ), 

maximal number of cycles equal to 10 ( 10MCN ) and the 

initial population of individuals is randomly selected from the 

range ]500,0[ . Because of the heuristic nature of ABC algorithm, 

which means that every running of this algorithm can give slightly 

different results, the calculations are evaluated for 30 times and 

the approximate values of reconstructed parameter are received by 

averaging the obtained results. 

In Figures 2 and 3 the relative errors of reconstructed values of 

coefficients 
i  ( 3,2,1i ) are presented, in dependence on the 

number of cycles, calculated for the measurements perturbated by 

the error of 2% and 5%, respectively.  

 

 
Fig. 2. Relative error of coefficients 

i  ( 3,2,1i ) reconstruction 

for the successive iterations (  for 
1 , ▲ for  

2 , ♦ for 
3 ) for 

input data burdened by 2% error 

 

 
Fig. 3. Relative error of coefficients 

i  ( 3,2,1i ) reconstruction 

for the successive iterations (  for 
1 , ▲ for  

2 , ♦ for 
3 ) for 

input data burdened by 5% error 

 
The figures show that in both cases the reconstruction error is 

smaller than the input data and satysfying results are obtained for 

only 3 cycles. Further increase of the cycles number does not 

improve the results any longer. Comparisons of the temperature 

values given and reconstructed in control point 07.0x , 

calculated for measurements error of 2% and 5%, are showed in 

Figures 4 and 5. It can be seen that in both cases the exact and 

approximate courses of temperature cover. 
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Fig. 4. Comparison of the given (solid line) and reconstructed 

(dashed line) values of temperature in control point 07.0x   for 

input data burdened by 2% error 

 

 
Fig. 5. Comparison of the given (solid line) and reconstructed 

(dashed line) values of temperature in control point 07.0x   for 

input data burdened by 5% error 

 

Statistical elaboration of results obtained in 30 executions of 

the procedure, for 5 and 10 cycles and for various noises of input 

data error, are compiled in Tables 1 and 2. It can be observed that 

in each case the reconstruction errors, for the identified heat 

transfer coefficient as well as for the approximate temperature, are 

much smaller than input data errors. One can even notice that 

results for 2% input data error in 
1  reconstruction are better than 

the results for 1% error, but one should undestand that it has 

happend only for this specific selection of initial values of the 

sought parameters. Important is that statistical data show the 

repeatability of obtained results and small values of standard 

deviations and coefficients of variation confirm stability of the 

procedure. 

 

 

 

 

 

 

 

 

Table 1.  

Mean values (
i ), absolute (

i
 ) and relative (

i
 ) errors of the 

reconstructed heat transfer coefficients together with the absolute 

(
T ) and relative (

T ) errors of temperature reconstruction 

obtained for various noises of input data in 5 and 10 cycles of the 

procedure 

          [%]    [%]   

1%  

5   

1  1205.699  5.699  0.475  

4.757 0.570   2  798.849  1.151  0.144  

3  250.508  0.508  0.203  

10 

1  1205.681  5.681  0.473  

4.755 0.570   2  798.856  1.144  0.143  

3  250.488  0.488  0.195  

2%  

5  

1  1200.643  0.643  0.054  

1.466 0.176   2  802.505  2.505  0.313  

3  251.713  1.713  0.685  

10  

1  1200.626  0.626  0.052  

1.443 0.173   2  802.582  2.582  0.323  

3  251.672  1.672  0.669  

5%  

5  

1  1180.067  19.933  1.661  

9.996 1.199   2  809.777  9.777  1.222  

3  258.815  8.815  3.526  

10  

1  1180.168  19.832  1.653  

9.996 1.199   2  809.763  9.763  1.220  

3  258.418  8.418  3.367  

 

Table 2.  

Standard deviations (
iS ), coefficients of variation (

iV ) and 

maximal relative errors (
ir ) of the reconstructed heat transfer 

coefficients obtained for various noises of input data in 5 and 10 

cycles of the procedure   

       [%]  [%]   

1%  

5  

1  2.030  0.168  1.138   

2  1.283  0.161  0.783   

3  1.029  0.411  1.065   

10 

1  2.032  0.169  1.138   

2  1.295  0.162  0.783   

3  1.021  0.408  1.065   

2%  

5  

1  1.401  0.117  0.341   

2  1.246  0.155  0.595   

3  1.873  0.744  1.832   

10  

1  1.404  0.117  0.341   

2  1.174  0.146  0.595   

3  1.853  0.736  1.832   

5% 

5   

1  9.626  0.816  5.062   

2  5.301  0.655  4.019  

3  1.385  0.535  5.043   

10  

1  9.643  0.817  5.062   

2  5.271  0.651  4.005   

3  0.994  0.384  5.037   
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4. Conclusions 
 

The paper contains a proposal of the method for solving the 

two-phase axisymmetric one-dimensional inverse Stefan problem 

with boundary condition of the third kind. Important part of this 

procedure is the minimization of appropriate functional realized 

with the aid of ABC algorithm. Presented results  indicate that the 

proposed approach ensures the approximate solution rapidly 

convergent to exact solution and perturbated by the error much 

smaller than the error of input data for relatively small number of 

cycles. That confirms the usefulness of bees algorithm in 

investigating the thermodynamic processes. Moreover, satisfying 

approximations were determined very quickly and the successive 

cycles did not improve significantly the results. That is why the 

proposed procedure can be used for determining the starting point 

for the more traditional numerical method of solving such kind of 

problems, which requires a good starting point and maybe will 

give the possibility to improve the final results. 
The advantages of using approach with the ABC algorithm 

are at least two - the time needed for finding the global solution is 
respectively short and the only assumption needed by the 

algorithm is the existence of solution. If the solution of optimized 
problem exists, it will be found with some given precision of 

course and the time of its receiving depends only on the time of 
solving the associated direct problem.  
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