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Abstract 
 

Mathematical modeling of thermal processes combined with the reversible phase transitions of type: solid phase – liquid phase leads to 
formulation of the parabolic boundary problems with the moving boundary. Solution of such defined problem requires, most often, to use 

sophisticated numerical techniques and far advanced mathematical tools. Excellent illustration of the complexity of considered problems, 

as well as of the variety of approaches used for finding their solutions, gives the papers [1-4]. In the current paper, the authors present the, 

especially attractive from the engineer point of view, analytic-numerical method for finding the approximate solution of selected class of 

problems which can be reduced to the one-phase solidification problem of a plate with the unknown a priori, varying in time boundary of 
the region in which the solution is sought. Proposed method is based on the known formalism of initial expansion of the sought function 

describing the temperature field into the power series, some coefficients of which are determined with the aid of boundary conditions, and 

on the approximation of the function defining the location of freezing front with the broken line, parameters of which are numerically 

determined. 

 
Keywords: Solidification process, Application of information technology to the foundry industry, One-phase Stefan problem, Moving 

boundary problem 

 

 

 

1. Introduction 
 

Each correctly defined mathematical model, related to the real 
problems, requires, at its formulation level, to determine 

unambiguously the physical determinants of the process 

concerned by the given model. Taking it into account we initially 

assume that:  

a) temperature of the entire system at the initial moment is 
equal to the phase transition temperature T* which gives 

the possibility to assume that the dominant mechanism 

of heat transfer is the heat conduction, 

b) phase transition happens in the strictly determined, 

constant temperature T* which is typical for the 
materials of the ideal dielectric properties, 

c) material parameters, it means:  - mass density,  - 

thermal conductivity and c – specific heat and, from 

this, the thermal diffusivity coefficient a as well, are 

independent of temperature and equal in both phases, 

d) process of the heat transfer is one-dimensional and 
symmetric. 

Taken assumptions eliminate from the consideration the liquid 

phase and enable to focus on the solid phase. Mathematical model 

of the problem, formulated in this way (one-phase Stefan 

problem), is defined by the following system of equations: 
a) the heat conduction equation describing the field of 

temperature T , varying in time and space, in the formed 

solid phase            
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where x denotes the spatial variable, t – time variable, x - half of 

thickness of the plate, t - duration of the process and )(t  is 

a function describing the freezing front location (1) varying in 
time, it means  
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where )(t  denotes a function describing the thickness of 

solidified layer, varying in time, and  
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Fig. 1. Graphic illustration of the modeled process 
 

b) energy balance conditions in the freezing front 
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where  denotes the latent heat;  

c) one of the following boundary conditions on the heat 
transfer surface: 
- boundary condition of the first kind 
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-      or boundary condition of the second kind 
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               -       or boundary condition of the third kind 
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In the last equations, functions )(t , q(t) and )(t  describe, 

respectively, temperature of the plate surface, heat flux and the 

heat transfer coefficient, all varying in time ( *)( Tt  , 

0)( tq , 0)( t ), whereas T  denotes the ambient 

temperature.    
 
 

2. Method of solution 
 

As we have previously mentioned, method of solving the 

problem formulated above is based, in the first step, on the proper 

presentation of the function, representing the expected solution, in 

the form of power series. In the considered case, the series is of 
the following form  
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where )(tAi

 denote the unknown, dependent on time, functional 

coefficients. We determine those coefficients by using equation 

(1) and conditions (4) and (5).  
     From relation (9) it results that  
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By substituting the received formulas into equation (1) we obtain 
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By comparing the terms situated by the expressions 

 
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 , i=0,1,2,3,.., on  the both sides of equation (13), we 

have the following equalities 
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From conditions (4), (5) and (2) it results that  
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Since we have the coefficients )(0 tA  and )(1 tA , we can 

determine the other coefficients )(tAi
, i=2,3,4,.., because, by 

using formula  (14), we have   
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which implies that  
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and so on. 

Excluding the coefficient )(A0 t , all the other coefficients 

)(A1 t , i=1,2,3,.., depend on the still unknown function )(t , its 

powers and derivatives. One can try to determine analytically this 
function by using one of the conditions (6)-(8). In particular, for 
the condition of the first kind (6) we receive  
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However, equation (20) is as much complicated that 
determination of the function )(t  with the aid of this equation is 

possible only in case of its certain simplification. Among others, 
in paper [5] it is presented that by taking only two or three first  
terms of the series situated on the left side of equation (20) one 

can find, in some cases, the analytic approximate solution )(t  

which can be used for estimating the thickness of solidified layer.    
Problem of determining the function )(t  becomes more 

complicated if we consider conditions of the second (7) and third 
(8)  kind. For receiving an analytic solution in those cases, some 
further simplifications must be made in comparison with 

simplifications necessary in case of the first kind condition. 
This approach indicates that regardless of the considered 

boundary condition, at the end we always receive the approximate 
solution. The same effect will be achieved if we assume that the 
function )(t , describing position of the freezing front, will be 

approximated with the aid of the broken line (see Figure 2), it 
means   
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,...,2,1,0, jj of this line will be determined numerically . 

       

 
 

Fig. 2. Approximation of the function describing location  
of the freezing front 

 
By using the fact below   
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from formulas (15) and (16) and the relation (17) we obtain 
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which means that function (9), describing the temperature field in 
solid phase, can be presented in the following form  
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Hence, after some simple transformations we receive 
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One can easily verify that the function (26) satisfies conditions (4) 
and (5), and the only unknown elements are the 

parameters ,...2,1,0, jj , for determination of which will we 

use one of the boundary conditions (6)-(8).   



78             A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 1 ,  S p e c i a l  I s s u e  3 / 2 0 1 1 ,  7 5 - 8 0  

     If we demand that in every moment of time ,...,2,1,0,1  jt j
 

the boundary condition (6), (7) or (8) is satisfied, we obtain an 
equation enabling to calculate the sought parameters. In 
particular, by using boundary condition (6) we have 
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By transforming equation  (27) we get 
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from which, after including the fact that ,...,2,1,0,0  jj  we 

finally obtain  
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     By proceeding in the similar way, we can also determine the 
forms of function describing position of the freezing front for  
conditions of the second (7) and third (8) kind. Unfortunately, so 
far as for condition of the first kind  the sought parameters ,j

 

,...,2,1,0j   are described by means of the explicit relation (29), 

for conditions of the second and third kind those parameters are 

defined by equations which cannot be solved analytically. In 
particular we have 
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for condition of the second kind and 
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for condition of the third kind. 
     After some simple transformations equations (30) and (31) can 
be presented, respectively, in the following form 
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and can be solved by applying, for instance, the direct iteration 

method. 
 
 

3. Examples 
 

Let us assume that the material of solidified plate of the 

thickness 2 x =0,2 [m] is specified by the following parameters: 

mass density =7000 [kg/m3], thermal conductivity =25 

[W/mK], specific heat c=800[J/kgK], latent heat  =247 [kJ/kg],  

temperature of solidification T*=1500 [K], ambient temperature 
T =30  and that the transfer of heat with the environment is 

defined by one of the conditions (6)-(8). Additionally, let us 
assume that we consider the solidification process until the 

moment of time t =1000 [s]. 

For the material data, parameters of environment and duration 

of the process, selected above, it is assumed that the temperature 

field in solid phase is defined by the function of form (9), on the 

assumption that .10)( 27 tt   Function ),( txT , constructed in such 

a way, satisfies equation (1) and conditions (4) and (5) in the 

freezing front, position of which is described by means of 

function )(t  of the form 
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t
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By having the function determining the temperature field in solid 

phase, we have generated, by using boundary conditions (6)-(8), 

the following functions: )(t  describing temperature of the plate 

surface, q(t) defining density of the flux of heat transferred 

outside  and )(t  denoting the heat transfer coefficient.   

Functions, determined in such a way, define unambiguously 
solution of the problem; however, they are given in form of the 

proper, quickly convergent series. In the testing calculations those 

series were reduced, from obvious reasons, to the finite number n 

of terms. Another important parameter of the procedure indicates 

the density of discretization of the time variable t. In the paper we 

assume that the considered time interval *,0 t  is divided into m 

equal sections of the length mtt /*  which means that 

.,...,1,0, mjtjt j            

In the testing calculation the main attention was paid on the 

precision of reconstruction of the function )(t  describing the 

thickness of solidified layer, varying in time.   

 

 

3.1. Example 1 
 

Let us consider the case of condition (6) of the first kind. By 
using formula (29) for the given parameters specifying the 

discussed problem, for n=6 terms in the proper series and for 

m=100 nodes of the time interval discretization, we receive the 
result presented in Figure 3, where the solid line denotes the exact 

solution )(t , whereas the dashed line designates the approximate 

solution )(t .  



A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 1 ,  S p e c i a l  I s s u e  3 / 2 0 1 1 ,  7 5 - 8 0              79 

 
Fig. 3. Graph of the function )(t  describing the thickness of 

solidified layer, varying in time (solid line) and its approximation 

)(t  (dashed line) calculated for n=6 and m=100 (in case of the 

boundary condition of the first kind) 
 

In Figure 4 the absolute error of this approximation is 
displayed. The error is calculated according to the formula 
 

)()()( jjj ttt   ,     j=1,2,…,m,          (35) 

 

where )( jt  denotes the absolute error, )( jt  is the exact value 

of function describing the thickness of solidified layer, varying in 

time, whereas )( jt  is its approximate value and tj designates the 

j-th node of the discretized time variable, j=1,2,…,m. 

 

 
Fig. 4. Distribution of error   for n=6 and m=100 (in case of the 

boundary condition of the first kind) 
 

      

3.2. Example 2 
 

Now, let us consider the case of boundary condition (7) of the 
second kind. By applying formula (32) for the assumed 

parameters characterizing the discussed problem, for n=5 terms in 
the proper series and for m=100 nodes of the time interval 

discretization, we get the result presented in Figure 5. 
  

 
Fig. 5. Graph of the function )(t  describing the thickness of 

solidified layer, varying in time (solid line) and its approximation 

)(t  (dashed line) calculated for n=5 and m=100 (in case of the 

boundary condition of the second kind 
 

Absolute error of the above approximation is presented in 
Figure 6.   
   

 
Fig. 6. Distribution of error   for n=5 and m=100 (in case of the 

boundary condition of the second kind) 
 
 

3.3. Example 3 
 

Finally, let us consider the case of boundary condition (8) of 
the third kind. Similarly, but by using formula (33), for the given 

parameters specifying the discussed problem, for n=4 terms in the 
proper series and for m=100 nodes of the time interval 

discretization we receive the result presented in Figure 7.    
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Fig. 7. Graph of the function )(t  describing the thickness of 

solidified layer, varying in time (solid line) and its approximation 

)(t  (dashed line) calculated for n=4 and m=100 (in case of the 

boundary condition of the third kind) 

 
In Figure 8 the absolute error of this approximation is showed. 
 

 
Fig. 8. Distribution of error   for n=4 and m=100 (in case of the 

boundary condition of the third kind) 

 

4. Conclusions 
 

The paper presents the analytic-numerical method of 
approximate solving the selected kind of problems which can be 

reduced to the one-phase solidification problem of a plate with the 

unknown a priori, varying in time boundary of the region in which 

the solution is sought. Proposed method is based on the expansion 

of the sought function, describing the temperature field, into the 
power series, some coefficients of which are determined by using 

the boundary conditions and on the approximation of the function 

defining the location of freezing front with the broken line, 

parameters of which are determined numerically. The presented 

examples show that for each kind of the boundary conditions the 
methods gives good results of reconstruction of the function 

defining position of the freezing front.  
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