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Abstract

The hyperbolic two-temperature model is used in order to describe the heat propagation in metal film subjected to an ultrashort-pulse laser
heating. An axisymmetric heat source with Gaussian temporal and spatial distributions has been taken into account. At the stage of numerical
computations the finite difference method is used. In the final part of the paper the examples of computations are shown.
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1. Introduction

Nowadays in literature the different microscale heat transfer
models, among others the microscale two-temperature models (two-
step models, phonon-electron interaction models [1, 2, 3, 4]) are
formulated. In this paper the hyperbolic two-temperature model is
considered. In particular, the thermal processes in axisymmetic
metal domain subjected to laser beam are analyzed — Figure 1.

1

Fig. 1. Axisymmetric domain

2. Mathematical model

The hyperbolic two-temperature model is used to describe the
heat propagation in domain subjected to the ultrafast laser heating
[1.2]

o, )M__divqe(r,z,t)—
1)
G(T)[Te(r, 2,0) =Ty (r, 2,0)]+ Q(r, 2,1)
and
a2 diva, (2.0 + 6 [T(r 2D -Ti(r,20] @

where Te, T, are the electron gas temperature and lattice
temperature, respectively, C, (T ), C, (T)) [J/(m* K)] are the thermal
capacities, ge, ¢ are the heat fluxes vectors, G (T, ) [W/(m®K)] is
the electron-phonon coupling factor, {r, z} are the spatial co-
ordinates (axisymmetric co-ordinate system is introduced), t is the
time, Q (r, z, t) is the laser heating source.

In equations (1), (2) the heat fluxes are defined as follows
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where A (Te, Ty), A (T;) are the thermal conductivities of electrons
and phonons, respectively, T is the relaxation time of free electrons,
this means the mean time for electrons to change their states in
metals and 1) is the relaxation time in phonon collisions.

M athematical formula determining the intensity of internal heat
source Q (r, z, t) resulting from laser action can be assumed in the
following form

2
a2ty = A2 R)exp{—r—z—4l np = 2) 1 5)
ot rD 5 tp
where |y [J/mz] is the laser intensity, t, [s] is the characteristic time
of laser pulse, 8 [m] is the optical penetration depth, R is the
reflectivity of theirradiated surface, rp [m] is the laser beam radius.
The above presented mathematical model is supplemented by
boundary conditions

(r,z)el: q.(r,z,t)=q(r, z,t)=0 ©)
and initial ones
t=0: T(r,z, ) =Ty(r, 2, 1) =T, ®

where T, is the initial temperature of electrons and lattice.

To solve the problem formulated, the certain mathematical
manipulations will be done [5]. At first, introducing dependence (3)
into equation (1) one obtains

oT. . o
C(T) 5 = dlv{xe(Te,T,) gradT, +1, 8‘19 } -

®)
G(T)(T,-T)+Q
or using the Schwarz theorem
aT, .
Ce(Te)aite:dlv[}‘e(Tele)gradTe]+
9
0 9)
Tea(dlvqe)—G(Te)(Te—-ﬂ)+Q
From equation (1) results
. aT,
dIqu zfce(re)aitefe(-re)(-re 7T)+Q (10)
Introducing (10) into (9) one has
aT
Co(Te)—2 {C (T, } div[A(T,,T)) gradT, |-
6t
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then the equation (11) can be written in the form

2 ZT
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In similar way the equation describing lattice temperature can be
derived and then

21
C |)(6TI T th div[(T)) gradT, |+

{G(re)ﬂ.e Tl }(T ~Ty)+ (16)
0 0 0
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Using the approach above presented, only two equations (15), (16)
instead of equations (1), (2), (3), (4) should be solved. These
equations are supplemented by boundary conditions (6) and the
initial ones

t=0: Te(r,z,'[):T,(r,z,'[):Tp

T (r.zt)| AT (r,zY)| o 17)
ot t=0 ot =0
It should be pointed out that in cylindrical co-ordinate system:

. 10 oT,
dlv[ke(Te,T| )gradTe] = ra'[rke(Te,ﬂ )are} +

0 oT,
—| A (T, T))—2
5Z|: e(Te |)62j|

and

d'V[ |(T|)gradT|]—f {r |(T|) } Z|:7"I(TI)C‘;-|;I:| (19)

(18)

3. Finite difference method

The problem formulated has been solved using finite difference
method [7]. The regular mesh created by nxn nodes with constant
step h has been introduced. In Figure 2 the central node i,j and
adjacent nodesi-1,j , i+1,j,1,j-1, i,j+1 are shown. These nodes form
so-called 5-points star.

Forinternal nodei j the following ap proximation of equation (15) is
proposed
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where At is the time step and [6, 7]
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Fig. 2. 5-points star

The following formulas concerning the calculations of thermal
conductivities are introduced [7]

f-1y f-1 f-1,y f-1
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and then the dependence (22) can be written in the form
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Onthe basis of equation (20) the temperature Teijf is calculated, this
means
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In similar way the difference equation for internal node i, j and
lattice temperature (c.f. equation (21) can be derived and then

f_ (A

i = A~ f-1/,.  _\
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Summing up, for each transition t X — t'the electrons temperatures
T, and lattice temperatures T, can be determined using the equations
(29) and (30).

4. Examples of computations

In hyperbolic two-temperature model the thermophysical
parameters appear: Ce, Cy, Xe, My, G, e and 1. T0 define the thermal
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conductivity A, and heat capacity C, of electrons the following
relationships are widely used [1, 2, 3]

7‘E(Te’-l—l) :XOTE /TI (31)
and
C.(T.)=AT, (32)

where &g, A are the material constants. The remaining parameters,
this means A, C), G, 1, 7, usually are assumed to be constant ones
The domain of dimensions 200 nm x 200 nm made of gold is
considered. The radius of laser beam is equal to rp =50 nm. The
following thermal parameters of gold have been taken into account
[1, 2, 8,9, 10]: lattice thermal conductivity A; = Ao = 315 W/(mK),
electron thermal conductivity Ae = AoTe /T), electrons volumetric
specific heat C, = 70T, J/(m® K), lattice volumetric specific heat
C= 2.5 MJ/(m® K), electron-phonon coupling factor G =2.6-10%
W/(m® K), relaxation time of electrons . = 0.04 ps, relaxation time
of phonons 1) = 0.8 ps.

Initial temperature is equal to T,=300 K. The domain is subjected
to a ultrashort-pulse laser irradiation (R =0.93, I, =13.4 J/m?,
t,=0.1 ps, 6=15.3 nm).

The problem has been solved using finite difference method under
the assumption that At=0.0001ps and h=4 nm.

In Figure 3 the calculated electrons temperature history at the
point A marked in Figure 1 is shown. In Figure 4 the lattice
temperature distributionfor time 0.6 ps is presented. It is visible that
the lattice temperature is very close to the initial temperature.
Figures 5 and 6 illustrate temperature distribution of electrons for
selected moments of times.
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Fig. 4. Lattice temperature distribution for time 0.6 ps

Fig. 5. Electrons temperature distribution
for times 0.1, 0.2 and 0.3 ps
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5. Conclusions

Heat transfer proceeding in metal film subjected to an
ultrashort-pulse laser heating is discussed. To describe the process
the two-temperature model is applied. The problem has been solved
using the explicit scheme of finite difference method. The approach
presented here can be used for analysis of heat transfer proceedingin
the multi-layered domains being a composition of optional number
of thin films with different parameters. The FDM algorithm
proposed here allows one to treat such a domain as a conventionally
homogeneous one.

The problems discussed in this paper concern only the heating
process proceeding in metal film subjected to the laser pulse. The
phase changes (e.g. melting or ablation) are not taken into account.
The investigations in this range are at present realized.
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