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Abstract 
 

Generalization of Fourier law, in particular the introduction of two ‘delay times’ (relaxation time q and thermalization time T) leads to the 

new form of energy equation called  the dual-phase-lag model (DPLM). This equation should be applied in a case of microscale heat transfer 

modeling. In particular, DPLM constitutes a good approximation of thermal processes which are characterized by extremely short duration 

(e.g. ultrafast laser pulse), extreme temperature gradients and geometrical features of domain considered (e.g. thin metal film). The aim of 

considerations presented in this paper is the identification of two  above mentioned positive constants q, T. They correspond to the relaxation 

time, which is the mean time for electrons to change their energy states and the thermalization time, which is the mean time required for 

electrons and lattice to reach equilibrium. In this paper the DPLM equation is applied for analysis of thermal processes proceeding in a thin 

metal film subjected to a laser beam. At the stage of computations connected with the identification problem solution the evolutionary 

algorithms are used. To solve the problem the additional information concerning the transient temperature distribution on a metal film surface 

is assumed to be known. 
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1. Governing equations 
 

The following form of generalized Fourier law is considered 

   , ,q Tx t T x t     q   (1) 

where q is the unitary heat flux,  is the thermal conductivity, T is 

the temperature gradient. One can see that for T = 0 one obtains the 

formula leading to the Cattaneo-Vernotte equation, while when  

q=0 and T=0 the equation (1) corresponds to the typical Fourier 

law. 

The DPLM equation can be, among others, educed from the 

considerations concerning the parabolic two-temperature model [1, 

2, 3]. This model involves two energy equations determining the 

heat exchange in the electron gas and the metal lattice. The 

equations creating the model discussed (in a case of metals) are of 

the form 
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  (3) 

where Te = Te(x, t), Tl = Tl(x, t) are the temperatures of  electrons  

and  lattice,  respectively, ce(Te), cl(Tl ) are the volumetric specific 
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heats, λe(Te), λl(Tl) are the thermal conductivities, G is the coupling 

factor [1], which characterizes the energy exchange between 

phonon and electrons [4]. The equations (1), (2) under the 

assumption that volumetric specific heats ce and cl are the constant 

values, using a certain elimination technique can be substituted by a 

single equation containing a higher-order mixed derivative in both 

time and space. From equation (2) results that 

l l
e l

c T
T T

G t
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Putting (3) into (1) one has 
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this means 
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Denoting 
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finally one obtains 
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where T (x, t) = Tl (x, t) is the macroscopic lattice temperature [5],  

c  = cl  + ce  is the effective volumetric specific heat resulting from 

the serial assembly of electrons and phonons and  

λ  = λ e [6]. 

The positive constants τq, τT correspond to relaxation time and 

thermalization time, respectively and they are characteristic for the 

so-called dual-phase-lag model. The relaxation time τq is the mean 

time for electrons to change their energy states, while the 

thermalization time τT is the mean time required for electrons and 

lattice to reach equilibrium. In Figure 1 the numerical solution 

obtained on a basis of two temperature parabolic model is shown 

(equations (2) and (3)). In particular the heating/cooling curves 

refer to the surface of domain (Ti) subjected to a laser pulse. The 

time for which the electrons and lattice temperatures are equalized 

correspond to the thermalization one τT. So it seems that the 

physical interpretation of this parameter is self-evident. Figure 1 

was taken from [11]. 

 
Fig. 1. Surface temperatures 

 

The other approach leading to the DPLM equation results from the 

following considerations.  The well known macroscopic energy 

equation 

( , )
( , )

T x t
c x t

t


 


q   (9) 

can be transformed to the microscale when in the place  of  classical  

Fourier  law q (x, t)  =  – λT (x, t) one introduces the  formula (1).  

Next using the Taylor series expansions the following first-order 

approximation of equation (1) can be taken into account 
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This formula should be introduced to equation (9) and then 
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Substituting –q by c(T /t) one obtains 
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this means the same equation as equation (8).  

In this paper the problem of heat diffusion in the presence of 

volumetric internal heat sources Q(x, t) is considered. The 

introduction of source function results from the thermal interactions 

between the metal film and external heat source (laser pulse) [2] – 

Figure 2. It can be shown that in this case the equation (13) must be 

supplemented by additional components, in particular 
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Fig. 2. Domain considered 

 

As was mentioned, the laser-film interaction is taken into account 

by use of internal volumetric heat source appearing in the 

microscopic heat transfer equation. In this paper the following 

formula [7, 8] determining the capacity of internal heat sources is 

applied (1D problem) 
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 (15) 

where I0 is the laser intensity which is defined as the total energy 

carried by a laser pulse per unit cross-section of the laser beam, tp is 

the characteristic time of laser pulse, δ is the characteristic 

transparent length of irradiated photons called the absorption depth, 

R is the reflectivity of the irradiated surface and β  = 4 ln2 [8]. The 

local and temporary value of Q results from the distance x between 

surface subjected to laser action and the point considered. 

 

 

2. Numerical solution of direct problem 

 

On the stage of numerical computations the finite difference method 

has been used. The differential mesh is a Cartesian product of 

spatial Δh and time Δt meshes. Time grid is defined as follows 

0 1 2 1: ... ...f f f F

t t t t t t t           (16) 

while the spatial mesh is shown in Figure 1. 

 
 

Fig. 3. The mesh 

 

It is visible that the 'boundary' nodes are located at the distance 0.5h 

from real boundaries (this type of discretization assures a very 

simple and exact approximation of boundary conditions [9]). 

It can be shown that FDM approximation of spatial differential 

operator can be taken in the form [9] 
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where Ψi +1 =Ψi −1 =1/h, while 
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are the thermal resistances between node i and adjoining nodes i +1, 

i−1. An index f in formula (17) shows that the implicit differential 

scheme will be used here, at the same time, the thermal 

conductivities are taken for time t f −1 to obtain the linear form of 

final FDM equations. The FDM approximation of equation (14) for 

transition t  f −1  t
 f  is of the form 
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and the last formula can be written as follows 
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Finally 
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where 
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The same equations are accepted for the nodes close to boundaries. 

It is enough to assume that the thermal resistances in directions 'to 

boundary' are sufficiently big (e.g. 1010) and then the non-flux 

condition is taken into account. The start point of numerical 

simulation process results from the initial conditions, in particular 

Ti
0  = Ti

1  = T0 , i =1, 2, ..., N. As was mentioned, the system of FDM 

equations (26) has been solved using the Thomas algorithm [9] for 

three-diagonal linear system. 

 

 

3. Formulation of inverse problem 

 

To solve the inverse problem the least squares criterion is 

applied 

   
2

1 1

1
,

M F
f f

q T i d i

i f
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where f

d iT  and  ,f f

i iT T x t  are the measured and estimated 

temperatures, respectively, M is the number of sensors. The 

optimum of functional (27) has been found using the evolutionary 

algorithms. So the direct problems have been solved and the results 

allow ones to determine the time dependent surface temperature 

(x = 0). Because the temperature history resulting from numerical 

solution for the basic input data is very close to experimental ones 

quoted in [10] – Figure 4 therefore this undisturbed numerical 

solution is assumed to be a base of identification problem solution 

(‘measured surface temperature’). So, the laser parameters 

determining capacity of internal source function Q(x, t) and also the 

thermal conductivity and volumetric specific heat of gold are 

known, the parameters q, T should be determined (from the 

practical standpoint the experimental estimation of q, T  is not 

easy). 

 
 

Fig. 4. Comparison with experimental data [10] 

 

In Figures 5 and 6 the example of direct problem solution is shown. 

The layer is subjected to a short-pulse laser irradiation which 

parameters are equal to: R = 0.93 (reflectivity), I0 = 13.7 [J/m2] 

(intensity), tp = 0.1 ps = 10−13 s (time of laser pulse), δ = 15.3 nm 

(absorption depth). The following parameters of gold thin film are 

assumed: thermal conductivity λ = 317 [W/(mK)], volumetric 

specific heat c = 2.4897 [MJ/(m3K)], relaxation time τq = 8.5 ps,  

thermalization time τT  = 90 ps. Initial temperature equals T0 = 20°C. 

Using the  algorithm  presented  in  the  previous chapter  under  the 

assumption that N  = 200  and Δt = 0.005 ps the transient 

temperature field has been found. In Figure 5 the temperature 

profiles are shown, while Figure 6 illustrates the courses of heating 

(cooling) curves at the points selected from the domain considered. 

Figure 7 illustrates the differences between solutions basing on the 

DPLM equation and the Fourier one. 

 
 

Fig. 5. Temperature profiles for different times 

 

 
 

Fig. 6. Cooling (heating) curves 
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Fig. 7. Comparison of dual-phase-lag model (DPLM)  

and Fourier model 

 

The identification of ‘delay’ times has been done using the 

evolutionary algorithms. In Table 1 the algorithm parameters are 

collected. The results obtained are presented in Table 2 and they are 

quite satisfactory. 

 

Table 1.  

Evolutionary algorithm parameters  

Number of generations 50 

Number of chromosomes 20 

Prob. of uniform mutation 20% 

Prob. of non-uniform mutation 30% 

Prob. of arithmetic crossover 50% 

Prob. of cloning 10% 

 

Table 2.  

Result of computations using the EA  

design variable exact value found value error % 

q 8.51012 8.4999991012 0 

T 901012 89.999991012 0 
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