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Abstract 
 

In the paper, solution of the inverse problem is presented, which consists in determination of the heat transfer coefficient during the 

process of binary alloy solidification for the known temperature measurements in the selected points of the cast. In the cons idered model 

distribution of temperature is described with the aid of Stefan problem with the varying liquidus temperature depending on the 

concentration of alloy component. Whereas, for description of the concentration the broken line model is used. 
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1. Formulation of the problem 
 

In the considered model distribution of temperature is 
described by using the Stefan problem [4] with the varying 

temperature at the beginning of solidification process, depending 
on the concentration of alloy component. Whereas, for describing 

the concentration will we apply the broken line model [3,7,9,10]. 
Problem under consideration consists in determining the value of 

heat transfer coefficient for the known measurements of 
temperature in the selected points of the cast. 

In the region  , taken by the solidifying material, two varying in 

time subregions are considered: region 1 , taken by the liquid phase, 

and region 2 , taken by the solid phase (Fig. 1). Those two subregions 

are divided by the freezing front g , defined by the liquidus 

temperature varying in time (or by the, so called, substitute 

solidification temperature [3,4]). Distribution of temperature in each 

phase is defined by means of the heat conduction equation ( 2,1i ): 
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for ix  ,  *,0 tt , where ic , i  and i  denote, respectively, the  

specific heat, mass density and thermal conductivity in liquid phase 

( 1i ) and solid phase ( 2i ), while t  and x  refer to the time and 

spatial location. On the boundary 0  the initial condition is given 

(  0
*

0 ZTT  ): 
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Fig. 1. Domain of the problem 

 

where 0T  is the initial temperature, *T  is the temperature of 

beginning of the solidification process, 0Z  is the initial 

concentration of the alloy component. On boundaries i1  ( 2,1i ) 

the homogeneous boundary conditions of the second kind are defined: 
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whereas on boundaries i2  ( 2,1i ) the boundary conditions of 

the third kind are determined: 
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where   is the heat transfer coefficient, T  is the ambient 

temperature. On the freezing front g  the condition of temperature 

continuity and the Stefan condition are given: 
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where *T  is the temperature of beginning of the soldification 

process,  tZL  denotes the concentration of the alloy component 

on the freezing front in the liquid phase side, L  is the latent heat 

of fusion and  t  describes the location of freezing front. 

In the broken line model [3,9,10] (which can be considered as the 
special case of the Burton, Prim and Slichter model [1]) it is assumed 

that the concentration of alloy component in the liquid phase can be 

approximated by the broken line, in such a way that in the layer (of the 

width equal to  ) located close to the freezing front the distribution of 

concentration of the alloy component is described by the increasing (or 
decreasing) linear function. Whereas, in remaining part of the liquid 

phase the distribution of concentration of the alloy component is 

constant. In the solid phase it is assumed that 02 D  (thus, diffusion 

in solid phase is ignored), which means that the concentration of alloy 

component in this phase is a consequence of the partition coefficient. By 

introducing the discretization of the interval   *,0 t  with the nodes it , 

ni ,,1,0  , we can determine the relation defining the approximate 

value of concentration of alloy component on the freezing front in the 
liquid phase side (see [7]):  
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where  ii tmm  ,  ii t  ,    iii tth   1 . 

In the considered inverse problem for the given values of 

temperature:  
 

  ,, ijji UtxT   (8) 

 

for 1,,2,1 Ni  , 2,,2,1 Nj  , where 1N  denotes the number 

of sensors and 2N describes the number of measurements from 

each sensor, determination of the value of heat transfer coefficient 

  is desired. For the given value of heat transfer coefficient the 

above problem turns into the direct problem, solving of which 

enables to find the courses of temperature  jiij txTT , .  By 

using the calculated values of temperature ijT  and the known 

values of temperature ijU we can formulate the functional 

determining the error of approximate solution: 
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2. Method of solution 
 

Direct Stefan problem (equations (1)-(6) for the known value 
of heat transfer coefficient) is solved by using the finite element 

method with the aid of alternating phase truncation method 

[2,5,8]. Approximate position of the freezing front in moment 

1pt  is determined in such a way that there are calculated two 

points: the last point of the liquid phase, that is the point ix  in 

which     pLpi tZTtxT *
1,  , and the first point of the solid 

phase, that is the point jx  in which     pLpj tZTtxT *
1,  . Next, 

the position of freezing front 1p  is determined by interpolating 
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linearly the points   1,, pii txTx  and   1,, pjj txTx , and by 

evaluating value of the argument in which the interpolating 

function takes the value   pL tZT * . Velocity of the freezing 

front is determined by using the Stefan condition (6). Afterwards, 

basing on the formula (7), value  1pL tZ  of the concentration of 

alloy component at moment 1pt  is calculated which determines 

the new value of solidification temperature   1
*

pL tZT . 

For finding minimum of the functional (9) the genetic 
algorithm is applied. In calculations, the floating-point (real) 

coding and the tournament selection is used. Moreover, the elitist 

model is applied in which the best individual of previous 
generation is remembered and, if all individuals in the current 

generation are worse, then the worst of them is replaced by the 

remembered best individual from the previous generation. The 
arithmetical crossover and the nonuniform mutation [5,6,8] are 

also used in the work. Finally, the calculations are made for the 

following values of parameters of the genetic algorithm: size of 

population 100popn , number of generations 100N , crossover 

probability 7.0cp  and mutation probability 1.0mp . 

 
 

3. Numerical example 
 

In the example the alloy Cu-Zn (10% Zn) [3,7] is considered. We 
assume that in the considered region three thermocouples are 

placed ( 31 N ) in the distance of 8, 16 and 24 mm away from 

the external border of region.  Readings of temperature are taken 
at every 0.1, 0.5 and 1 s. In calculations we use the exact values of 

temperature and the values burdened with the random error of 
magnitude 1, 2 and 5%.  

In Table 1 the results of reconstruction of the saught 

parameters are compiled. Presented results are received for the 
exact input data and for various numbers of measurement points. 

Table 1 shows the mean values of reconstructed parameters i  

(calculated for 15 runs of the algorithm for different settings of 

the pseudo-random number generator), the relative percentage 

errors and standard deviation of this of reconstruction. It can be 
seen that in each case the boundary conditions are very well 

reconstructed. I case of the exact input data the maximal error of 

the sought parameters reconstruction does not exceed the value of 

0.009%. Successive runs of the algorithm gave similar results 
which are confirmed by the small value of standard deviation. 

In Figures 2 and 3 the errors of the sought parameters 

reconstruction, in case of the perturbed input data, are compiled. 
Figure 2 present the results obtained for temperature 

measurements taken at every 1 s and for various values of input 

data perturbation. Whereas, Figure 3 display the results received 
for the input data perturbation of the values 5% and for the 

various numbers of control points (measurements of temperature 

taken at every 0.1, 0.5 and 1 s). It can be noticed that in each case 
the errors of boundary condition reconstruction (calculated for the 

burdened input data) are smaller than the errors of input data. In 

case of the smallest number of measurement points and the 
perturbation value of 1% the errors do not exceed 0.11%, for the 

perturbation value of 2% the errors do not exceed 0.84%, while 

for the perturbation value of 5% the errors do not exceed 0.52%. 

In case of the temperature measurements at every 0.5 s the errors 

are not greater than the values of 0.31, 0.32 and 0.56%, 
respectively. Finally, for the biggest number of measurement 

points the errors do not exceed the values 0.07, 0.19 and 0.62%, 

respectively. 

 
Table 1.  

Results of the sought parameters reconstruction for the exact input 

data and for the various number of measurement points (  - 

standard deviation) 

i  Error [%]   

0.1 s 

1199.98 0.0014 0.0971 

800.03 0.0039 0.1330 

249.99 0.0049 0.0320 

0.5 s 

1199.97 0.0027 0.2108 

800.01 0.0018 0.0950 

250.00 0.0000 0.0179 

1.0 s 

1199.93 0.0059 0.2076 

800.07 0.0085 0.1630 

249.99 0.0049 0.0322 

 

 

 
 

Fig. 2. Relative errors of the reconstructed heat transfer 

coefficient calculated for the various values of input data 

disturbances and temperature measurements taken at every 1 s 

 

Standard deviation of received results is small in general, but 
the biggest value is taken for the biggest perturbation of input data 

(5%). In case of the 5% perturbation and measurements of 

temperature taken at every 0.1 s the standard deviation of 

reconstructed values of parameters i , 3,2,1i  is equal to 

0.6431, 0.4047 and 0.0409, respectively. For temperature 

measurements read at every 0.5 s the standard deviation is at the 

level of 9.3825, 4.3958 and 0.2144, respectively. And finally for 

readings of temperature made at every 1 s the standard deviation 

is equal to 3.9638, 1.7035 and 0.1142, respectively. In the rest of 
cases the values of standard deviation are smaller. 
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Fig. 3. Relative errors of the reconstructed heat transfer 

coefficient obtained for the various number of temperature 

measurements (calculations are made for the input data burdened 

by the 5% error) 

 
 

Table 2.  

Errors of reconstruction of temperature in the control points 

( mean  - mean value of the absolute error, max - maximal value 

of the absolute error, mean  - mean value of the relative error, 

max  - maximal value of the relative error)  

Perturbation 0% 1% 2% 5% 

0.1 s 

mean  [K] 0.0027 0.0272 0.1127 0.1252 

max  [K] 0.0135 1.2192 1.4168 2.9192 

mean  [%] 0.0002 0.0022 0.0093 0.0102 

max  [%] 0.0010 0.0936 0.1091 0.2243 

0.5 s 

mean  [K] 0.0007 0.0621 0.1428 0.3591 

max  [K] 0.0287 0.4484 5.0798 8.1755 

mean  [%] 0.0001 0.0051 0.0116 0.0293 

max  [%] 0.0022 0.0368 0.3902 0.6252 

1.0 s 

mean  [K] 0.0032 0.0287 0.1434 0.1973 

max  [K] 0.0652 1.3116 5.0808 5.0798 

mean  [%] 0.0003 0.0023 0.0118 0.0162 

max  [%] 0.0050 0.1010 0.3903 0.3903 

 

 
In Table 2 the errors of temperature reconstruction in the 

control points are compiled. It can be seen that the distribution of 

temperature is reconstructed very well in each case. For the exact 
input data the maximal absolute error of the temperature 

reconstruction does not exceed 0.07 K, whereas the mean absolute 

error is not greater than 0.0032 K (the relative errors are equal to: 

0.005% - the maximal and 0.0003% - the mean one). The biggest 

errors of temperature reconstruction are noticed for temperature 
measurements taken at every 0.5 s and input data perturbed by the 

error of 5%. In this case the maximal absolute error does not 

exceed 8.18 K and the mean absolute error is not bigger than 

0.36 K, whereas the relative errors are at the level of: 0.6252% - 
the maximal and 0.0293% - the mean one. 

 

 

4. Conclusions 
 

Presented algorithm enables to determine the missing boundary 
condition in the problem of binary alloy solidification. Executed 

calculations show that the unknown heat transfer coefficient is very 

well reconstructed. Algorithm is stable with regard to the errors of 
input data. Moreover, received results indicate that increase of the 

number of control points or decrease of the value of input data 

errors cause more precise reconstruction of the sought parameters 
and, in this way, better reconstruction of the exact temperature 

distribution.  
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