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Abstract 
 

The algorithms of optimal sensor location for estimation of solidification parameters are discussed. These algorithms base on the Fisher 

Information Matrix and A-optimality or D-optimality criterion. Numerical examples of planning algorithms are presented and next for 

optimal position of sensors the inverse problems connected with the identification of unknown parameters are solved. The examples 

presented concern the simultaneous estimation of mould thermophysical parameters (volumetric specific heat and thermal conductivity) 

and also the components of volumetric latent heat of cast iron. 
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1. Introduction 
 

A fundamental problem connected with the identification of 

solidification parameters is the selection of sensors location. On 

the one hand, the limited number of measurement points in the 

domain considered should be taken into account, on the other 

hand, the best estimators of solidification parameters are 

expected. Usually, the location of sensors is dictated by physical 

conditions and by intuition. 

The other approach consists in the application of efficient 

numerical algorithms of optimum experimental design. The main 

idea of these algorithms is to define a design criterion basing on 

the Fisher Information Matrix (FIM) [1] in order to maximize the 

expected accuracy of the parameter estimates. In literature 

different optimal criteria exist [1, 2, 3]. The most popular are the  

A-optimality and D-optimality criterions. In this paper both of 

them are applied in numerical algorithms assuring the best 

position of sensors location. The planning algorithms are verified 

by numerical examples concerning a two-dimensional 

solidification problem. The examples of inverse problems solution 

are also shown. 

2. Design plan of sensors location 
 

For simplicity it is assumed that two parameters p1 , p2 

appearing in mathematical model of solidification problem are 

unknown for example the thermal conductivity and volumetric 

specific heat of mould. These parameters can be estimated using 

temperature measurements at the points x i , i = 1, 2, … , N from 

casting or mould sub-domain 

 

, , 1, 2, ,f i f

d i dT T x t f F
 (1) 

 

where t f = f t and t is the time step. 

A fundamental problem is the selection of sensors location. 

The additional problem is connected with determination of 

sufficient sensors number. It should be pointed out that the 

number of sensors should be greater or equal to the number of 

identified parameters (here: N  2). 

Majority of the methods assuring the best localization of 

sensors (thermocouples) bases on the Fisher Information Matrix 
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[1]. To construct this matrix the sensitivity coefficients should be 

determined, this means 
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where p1
0, p2

0 are the a priori estimates of the parameters p1 , p2 

available e.g. from preliminary experiments. 

The following matrix is constructed 
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It is easy to check that the product of transpose of a matrix ZT(x i ) 

and matrix Z (x
 i ) equals to 
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The Fisher Information Matrix is as follows [1, 3] 
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where w1 , w2 , … , wM are the weights connected with the points 

x i, additionally 0  wi  1, i = 1, 2, … , M and 
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1
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i
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After the mathematical manipulations the FIM takes a form 
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Different criteria of optimality can be taken into account [1, 2, 3]. 

One of them is the A-optimality which is connected with the 

minimization of trace of information matrix (6). The other is the  

D-optimality criterion depending on the maximization of the 

determinant of the information matrix (6). 

Using A-optimality criterion the following problem should be 

solved 
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If the D-optimality criterion is applied, then problem has the form 
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So, if we have a set of points X = { x 1 , x 2 , … , x M } at which 

measurements may be taken, the practical design problem consists 

in selecting of corresponding weights w1 , w2 , … , wM which 

define the best experimental conditions. 

It should be pointed out that in the design of optimal sensors 

location an effective procedure for the computation of sensitivity 

coefficients should be used. In this work the direct differentiation 

method has been applied [4, 5, 6, 7] (c.f. chapter 4). 
 
 

3. Model of solidification process 
 

The energy equation describing the casting solidification has 

the following form [8, 9, 10] 
 

2( , )
: ( ) λ ,

T x t
x C T T x t

t
 (11) 

 

where C (T ) is the substitute thermal capacity of alloy, λ is the 

thermal conductivity, T, x, t denote the temperature, geometrical  

co-ordinates and time. 

   The equation (11) is supplemented by the equation concerning  

a mould sub-domain 
 

2( , )
: λ ,m

m m m m

T x t
x c T x t

t
 (12) 

where cm  is the mould volumetric specific heat, λm is the mould 

thermal conductivity. 

   In the case of typical sand moulds on the contact surface 

between casting and mould the continuity condition in the form 
 

λ( ) ( , ) λ ( , )
:

( , ) ( , )

m m
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x
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 (13) 

can be accepted. 
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On the external surface of the system the Robin condition 
 

0 : λ ( , ) α ( , )m m m ax T x t T x t Tn
 (14) 

 

is given (α is the heat transfer coefficient, Ta is the ambient 

temperature). 

For time t = 0 the initial condition 
 

0 00: ( , 0) ( ) , ( , 0) ( )m mt T x T x T x T x
 (15) 

 

is also known. 

In the case of cast iron solidification the following 

approximation of substitute thermal capacity can be taken into 

account [8, 9, 10] 
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where TL, TS are the liquidus and solidus temperatures, 

respectively, TE is the temperature corresponding to the beginning 

of eutectic crystallization, Qaus, Qeu are the latent heats connected 

with the austenite and eutectic phases evolution, cL, cS are 

constant volumetric specific heats of molten metal and solid one, 

respectively. 

   It is assumed that two optional parameters appearing in the 

mathematical model presented above are unknown, for example 

thermal conductivity and volumetric specific heat of mould. 
 
 

4. Sensitivity coefficients 
 

   To determine the sensitivity functions the governing equations 

(11) – (15) are differentiated with respect to parameters p1 and p2 , 

respectively. So the differentiation of equations (11), (12) with 

respect to pe, e = 1, 2 gives the following formulas 

– for casting sub-domain 
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– for mould sub-domain 
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The boundary conditions after differentiation take a form 
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and 
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The initial condition is following 
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Introducing the notation 
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one has 
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5. Algorithm for constructing 

D-optimal design 
 

The 2D problem is considered as shown in Figure 1. Let  

X = {x 1 = (x1
1, x2

1 ), x2 = (x1
2, x2

2 ), ..., x M = (x1
M, x2

M )} is the set 

of points from the casting-mould domain which are taken into 

account as the possible sensors location (Figure 2). 
 

10

30

3
0

5
0

casting

mould

 
Fig. 1. Casting-mould system 

 

The proposed numerical algorithm consists in the selection of 

the best positions of sensors under the assumption that only two 

sensors will be taken into account (it corresponds to the number 

of estimated parameters). These two sensors we denote by x i and 

x j, respectively. 

So, we have 
 

2

M

 (24) 
 

possibilities which should be taken into account (it is the 

combination without repetition, of course). For each pair (x i, x j) 

the following matrix is constructed (c.f. equation (8)) 
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It is the Fisher Information Matrix for two points (c.f. equation 

(7)) but the weights are here omitted. 

D-optimality criterion used in the design of sensors location is the 

following [11, 12] 

 

(  ,   )
det , max det , 

i j

i j i j

x x
x x x xM M
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The points x i *, x j * correspond to the best position of two sensors. 

The algorithm is very simple but time-consuming, because a 

big number of sensitivity problems should be solved (c.f. formula 

(25)).  
 

 
Fig. 2. Possible sensors locations 

 
 

6. Solution of inverse problem 
 

To solve the inverse problem the least squares criterion is 

applied 
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where Td i
f and Ti

f = T (x i, t f ) are the measured and estimated 

temperatures, respectively. The estimated temperatures are 

obtained from the solution of the direct problem (c.f. chapter 3) 

by using the current available estimate of the parameters p1 , p2 

e.g. from preliminary experiments. 

   In the case of typical gradient method application [8, 9, 10, 13, 

14, 15] the criterion (27) is differentiated with respect to the 

unknown parameters pe , e = 1, 2 and next the necessary condition 

of optimum is used. Finally one obtains the following system of 

equations 
 

1 1

2
0 , 1, 2

M F
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S
T T Z e

p M F
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where k is the number of iteration, pe
0 are the arbitrary assumed 

values of pe, while pe
k for k > 0 result from the previous iteration. 

Function Ti
f  is expanded in a Taylor series about known values of 

pl
k, this means 
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Introducing (29) into (28) one obtains (e = 1, 2) 
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The system of equations (30) can be written in the matrix form 

 
T T1k k k k k k

dZ Z p p Z T T
 (31) 

 

This system of equations allows to find the values of pe
k+1  

for e = 1, 2. The iteration process is stopped when the assumed 

number of iterations K is achieved. 

 

 

7. Examples of computations 
 

To solve the system of equations (11)-(15) and additional 

problems (23) connected with the sensitivity functions the explicit 

scheme of the finite difference method (FDM) for non-linear 

parabolic equations [16] is applied. 

For direct problem in which all solidification parameters are 

known the following input data have been introduced: λ = 30 

[W/(mK)],  

cL = 5.88 [MJ/(m3 K)], cS = 5.4 [MJ/(m3 K)], Qaus= 923 [MJ/m3 ],  

Qeu = 994 [MJ/m3 ], λm =1 [W/(mK)], cm =1.75 [MJ/(m3 K)], 

pouring temperature T0 = 1300 o C, liquidus temperature TL = 

1250 o C, border temperature TE =1160 o C, solidus  temperature TS 

= 1110 o C, initial mould temperature Tm0 = 20 o C. 

The regular mesh created by 25 15 nodes with constant step  

h = 0.002 [m] (Figure 2) has been introduced, time step Δt = 0.1 

[s]. It is assumed that the possible co-ordinates of sensors 

correspond to the co-ordinates of FDM nodes, because the values 

of sensitivities for this set of points are directly known. 

The proposed algorithm  of optimal sensors location (c.f. Chapter 

6) can be used under the assumption that number of sensors 

equals 2. Using this algorithm two identification problems are 

solved. 

The first problem concerns the simultaneous identification of 

austenite latent heat p1 = Qaus and eutectic latent heat p2 = Qeu 

[11]. 

The problem of optimal sensors location has been solved under 

the assumption that Qaus
0 = 900 [MJ/m3 ], Qeu 

0 = 1000 [MJ/m3 ] 

and the possible sensors are located in the casting sub-domain. 

The application of optimization procedure shows that the best 

sensors position corresponds to the nodes from casting domain 

marked by A and B in Figure 2. 

In Figure 3 the cooling curves at the points A and B are 

shown. The results of identification are presented in Figure 4. It is 

visible, that the iteration process is convergent and the number of 

iterations is very small. 

The second inverse problem is connected with the 

simultaneous identification of mould parameters, this means 

thermal conductivity λm and volumetric specific heat cm. 

The problem of optimal sensors location has been solved 

under the assumption that λm
0 = 0.5 [W/(mK)], cm

0 = 1 [MJ/(m3 

K)] and possible sensors are from the mould sub-domain. The 

best sensors position corresponds to the nodes marked by C and D 

in Figure 2. 

In Figure 5 the heating curves at the points C and D are shown. 

The results of identification are presented in Figure 5. As 

previously, it is visible, that the iteration process is convergent 

and the number of iterations is very small.  
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Fig. 3. Cooling curves 

 

900

920

940

960

980

1000

1020

0 1 2 3 4 5 6 7 k

Q eu

Q aus

Q
[  M

J
 /  

m
3

 ]

 
Fig. 4. Inverse problem solution (Qaus, Qeu) 
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Fig. 5. Heating curves 
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Fig. 6. Inverse problem solution (cm, λm) 

 

 

8. Conclusions 
 

The problem of optimum location of sensors for simultaneous 

estimation of two solidification parameters has been discussed. 

Known from the literature the A-optimality and D-optimality 

criterions have been extended on the non-steady state problems. 

The algorithm of D-optimal design basing on the modified for 

non-steady problems Fisher Information Matrix has been 

proposed. Using this algorithm two examples have been solved. 

For the optimal sensors location the inverse problems solutions 

have been found by means of the gradient method. The 

effectiveness of this method is connected with the proper choice 

of starting point and the convergence of iteration process. One can 

see the good properties of inverse problem solution in the case of 

„the best” position of sensors (Figures 4 and 6). Additionally, the 

number of iterations necessary in order to obtain the final results 

is very small. 
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