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Abstract

In this paper, application of the Picard's itemtiiethod for solving the one-phase Stefan probteprésented. In the proposed method,
an iterative relation is formulated, which allows determine the temperature distribution in thesatgred domain. The unknown
function, describing the position of the movingeiriace, is approximated with the aid of the lineambination of some assumed base
functions. The coefficients of this combination a@etermined by minimizing a properly constructeddlional. Some examples, that

illustrate the precision and speed of convergefitieeoconsidered iterative procedure, are also show
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1. Introduction

In the paper we consider the one-phase Stefariem, which
consists of determining the temperature distribufio the given
domain and the function describing position of tim@ving
interface (the freezing front). The Stefan problem
a mathematical model of thermal processes, durihichwthe
changing of phase is taking place, connected with heat
absorption or emission. The examples of such kihgrocesses
can be solidification of pure metals, melting oé,idreezing of
water, deep freezing of foodstuffs and so on [1,2].

For some simple cases of the Stefan problemetare chances
of finding the analytical solution [3,4,5], but forost of cases the
approximated methods must be applied [1,6-10]. dpep [11],
the authors have applied the Adomian decompositiethod,
combined with some minimization procedure, for fimg the

approximate solution of one-phase Stefan problepplidation of
the variational iteration method [12] for -calcubggi the
approximate solution of the direct and inverse &@tgfroblem is
considered in paper [13]. Besides, in papers [l4stihe new
approach for solving the one-phase Stefan probteprésented.
In this approach, the considered problem is firmhgformed for
the domain of the unit square and after that, swehsformed
problem is solved by using the variational itematimethod.
Another applications of the variational iterationetimod for
solving problems connected with the heat condugtivare
presented in papers [16-18].

In the present paper, we propose to applyPibard's iterative
method for solving the one-phase Stefan problene Fltard's
iterative method [19] consists of formulating theerative
procedure, which enables to determine the formhefunknown
function, describing the temperature distribution the given
domain, on the ground of the heat conduction egnand initial
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condition, which should be satisfied. Another unkndfunction,
describing position of the moving interface, is @mpgmated in
the form of the linear combination of some assuntede
functions. The coefficients of this linear combioat are
calculated by minimizing the properly constructatchdtional.
Some examples, illustrating the accuracy of theaiobkt
approximate solution (compared with the known atizdy
solution of the problem) and speed of convergeti¢hepiterative
procedure, are also shown.

2. One-phase Stefan problem

We deal with the one-phase Stefan problengrided in the domain
={(x,t):tD [0,t"], xO[0, {(t)]} OR?. On the boundary of
domainD three following components are distributed (Fjg. 1

M, ={(x0): xO[0,s], s=£(0)}, 1)
={o.t):t0[o,t7}, @)
r, ={x:t0[o), x= &), 3)

where the initial and boundary conditions are givEnnction
&(t) is here un unknown function.

X
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I
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Fig. 1. Domain of the problem.

In domainD we consider the heat conduction equation:

du(xt) _ a<?2u(><,t) @)
ot ox®

where a is the thermal diffusivity ancu,t, x refer to the

temperature, time and spatial location, respegtiv@h boundary
A the initial condition is given:

u(x,0) = #(x), ®)
on boundanr, the Dirichlet condition is defined:
u(0,t) = 3(t), (6)

and on the moving interfacrg the condition of temperature

continuity and the Stefan condition are given:

u(é(,t) =u’, @)
Z) au(xt) - dé(t) , (8)
X | dt

where A is the thermal conductivity, is the latent heat of fusion
per unit volume u” is the melting-point temperature aé(t) is
the function describing position of the moving ifaee My The

problem consists in finding the temperature distidn u(x,t) and
the position of moving interface, represented bg fhnction
&(t) , which should satisfy equations (4)-(8).

According to the discussed Picard's methodiramsform the
heat conduction equation (4) into the followingeigital form:

9° u(x T)

u(xt)—u(x0)+aj dr, tofotd] xofo,&@)]©

from which we receive the iterative formula:

u (xt) = ¢(x)+ajwdr, (10)

for k=1,2,..., where Uy (X, 1) is the initial approximation of the

sought solution, introduced so, that it satisfles initial condition
(5) and the boundary condition (6):

Uy (%, 1) = & (I(t) = 9(0)) + #(X). (11)

In this way we receive the sequer{u,}*_ , which is convergent

(under the proper assumptions - see [19]) to tlaetesolution of
equation (4). In the paper [19] the sufficient citinds for the
convergence of the Picard's iterative method amndtated.
However, checking whether or not the given equasatisfies
those conditions is difficult in many cases (foample in case of
the problem considered in the present paper). Ehathy the
problem of formulating (and proving) such condispsufficient
and necessary, which would be easy to verify foy given
equation, is still open.

The unknown functio ¢(t) we derive in the form of a linear

combination:

HORD WY a2

where pOR and the base function;/,//i (t) are linearly
independent. The coefficier p, are selected to obtain a minimal

deviation of functiorun(x, t) from the condition of temperature

continuity (7) and the Stefan condition (8). Thug are looking
for the minimum of the following functional:
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3PP = [0, €00 -0 ot +

+ tj[)l LENCA) . Ld‘((t)j dt.

(13)

0X |y

In the course of minimizing this functional (by ngithe gradient

method), coefficients p, are determined, and thereby, the

approximate distribution of temperatunéx,t) in the domainD
and position of the moving interfa &(t) are obtained.

3. Examples

The theoretical consideration, introduced Ime tprevious
section, will be now illustrated with examples, fahich the
calculated approximate solutions will be comparéith the known
exact solutions. The values of the absolute emdtde calculated
from the formulas:

o {tluf (fe(t)—fr(t))zdt] , (14)

J = [|E1>| ID [ (.0t -y, (x,t))zdxdtJ : (15)

where &) is the exact position aré, (t) is the reconstructed
position of the moving interfac U, (x, 1) is the exact distribution
and U, (%, t) is the approximate distribution of temperatur¢he

domainD, and |p |= J.J'ldxdt- The percentage relative errors
D

will be calculated from:
IJ

Afzagtﬁtlmj

0

-1/2
(c‘e(t))zdtJ 100%, (16)

-1/2
A, =, [EIE1>I I} (ue(x,t))zdxdtJ [100%. 17)

In the presented calculations we will use as trse fanctions of
combination (12) the monomials:

i=1...,m (18)

W)=t

3.1. Example 1

First example concerns the one-phase Stefallepn, in which
A=1, s=0, L=Ala, u’=1l, ¢(x)=explx),
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J(t) = exp(at) . The calculations are made for the thermal difftysiv

a=0.1 anda =1, and for the final imt” = 05 andt" = 1. Thus,
the exact solution of considered problem is givetinb functions:

u(x,t) =expat-x),  (x,t)0OD, (19)

t [0, t1. (20)

$(t) =at,

In course of calculation (foa = 0.1) we receive the sequence
{un}::o of approximate functions describing the distribatiof
temperature, with the general term of the form:

t . n,ot
u (xt) = exg — + x | - 2sinh(x) Y ——, n>2 (21
(%) F(10 j ()k;ld‘k!
converging to the function:
. t
u(x,t) = limu_(x,t) = exg — - x |, (22)
()= im0 = x5 -

which satisfies the boundary conditions (5)-(6).

Function describing the position of the movingerface we
derive as the linear combination (12) of the basetions, which
coefficients are determined by minimizing the fumeal (13). For
example, form=4 andn=4 we get the following approximation
é..(t) of position of the moving interface:

&,(t) =-0.000054%65+0.100027 - 0.00007700 1t* +
+0.0000755891t°,

Table 1. Values of error of the reconstructed pmsibf moving
interface &(t) and temperature distributitu(x,t) .

m=2 m=4 m=2 m=4
n=1 n=2
¢ 0.0384( 0.0307: 0.0056¢  0.0041¢
A{[%] 13.3025: 10.6461. 1.9611: 1.4527¢
J, 0.0413: 0.0408¢ 0.0061! 0.00¢14
A, [%] 3.4470: 3.4108t¢ 0.5129( 0.5120:
n=3 n=4
¢ 0.0005¢ 0.0003t 0.0000¢  0.0000:
AE[%] 0.2059¢ 0.1304: 0.0175: 0.0089
3, 0.C006¢ 0.0006¢ 0.0000¢  0.0000¢
A, [%] 0.0575: 0.0574¢ 0.0052! 0.0052!
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The errors, with which the approximate solusiqcalculated
for a=1, t"= 05, n=1,2,3,4 andn=2,4) reconstruct the exact
solution are compiled in Table 1.

Presented results show, that after alreadyitienations we get
the solution with very small errors of approximatioFor the
longer time interval t“=1) the errors are bigger, but not
significantly, but again, the errors are gettingaller with the
bigger number of iterations. For example, t"=1, n=4 and
m=4 the values of error are equal tcag =0.00210

A, =0.36309%)] . J, =0.00467 A, =0.31499%)] , whereas
for n=5 andm=4 the values of error reduce 15gr =0.00025
A, =0.04244%] . J, =0.00071 A, =0.04814%] -

Similar conclusion, about the approximationroer in
reconstruction of position of the moving interfacen be made
basing on Figures 2 and 3. Those figures displagrerin
reconstructing the functio &(t), corresponding to the case of

n=5m=4, g =1, t” = 05 andt” =1, respectively.

0.000055¢
0.00005F
0.000045¢
0.00004F
0.000035¢F
0.00003F
0.000025¢

error

0.0 0.1 0.2 0.3 0.4 0.5

Fig. 2. Error of reconstructed position of the mayinterface & (t) (for
n=5,n=4, a =1 andt” = 05).

0.0004

0.0003F

.0002+

error
o

0.0001+F

0.0000k

Fig. 3. Error of reconstructed position of the mayinterface £(t) (for
n=5,nF4, a =1 andt” =1).

Moreover, in the next figures the errors ofisfging the
condition of temperature continuity (7) (Figuresdd 5) and the
Stefan condition (8) (Figures 6 and 7) by the gekapproximate
solutions are presented. Again, we can find theived errors as
acceptable.

0.000055
0.00005
0.000045
0.00004
0.000035
0.00003
0.000025

error

0.0 0.1 0.2 0.3 0.4 0.5

Fig. 4. Error of satisfying the condition of tematire continuity
(for =5, =4, a =1 andt” = 05).

,,,,,,,,,,,,,,,,,,,,

0.004
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error
o
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0.000L . . I
0.0 0.2 0.4 0.6 0.8 1.0

t

Fig. 5. Error of satisfying the condition of tematire continuity
(for =5, m=4, a =1 andt” =1).
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0.0003F

error
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0.0000k . . .
0.0 0.1 0.2 0.3 0.4 0.5

Fig. 6. Error of satisfying the Stefan conditioor (=5, =4, a =1
andt” = 05).

Fig. 7. Error of satisfying the Stefan conditioor (=5, m=4, a =1
andt® =1).
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3.2. Example 2

In the second considered example of one-pgBagan problem we
take the following values of paramete A =1, a=1, L=1,

u'=0, t7=3/2, s=+2-1, ¢(x) = expll-272(1+x))-1.
3(t) :exd1—2‘1’2+t /2)—1. In such case the exact solution
takes the form:

u(x,t) = exp{l— 2721+ x) + tzj -1 (x,t)0D, 23)

&) =22t +2-+12) t0[0,t7. (24)
By following the Picard’s iterative method weceived the
sequence of approximate functions, describing #mperature

distributionu(x, t) , with the general term of the form:

1 t 1
u(xt)=-1+expl-— (1+x) |[+64exg 1+ —+x—— |+
00 I

1 notk 1\t
+exgl-— 1+ X ———64exp 1+ Xx—— —
F{ Ji( )Jézkk! F{ \Ejézkk!

One can prove, that the above function sequenceescges to the
function (23), representing the exact solution teé tonsidered
problem.

Reconstruction of the functi#(t) , presenting position of the

moving interface, was provided by minimising thedtional (13)
and assuming the form (12) of the sought functibaking the
monomials (18) as the base functions, we obtaifeedexample
for m=4 andn=6, the following approximation:

&,(t) = 0.41588+ 0.70422t + 0.00598t* — 0.00329t°.

Table 2 compiles the values of errors in retaction of the
temperature distribution and position of the movimgerface
received form=4 and n=4,5,6. Obviously, errors are getting
smaller with bigger number of iterations, but eviem small
number of iterations the results are satisfying.

Table 2.
Values of error of the reconstructed position ofving interface
&(t) and temperature distributicu(x,t) (m=4).

n=4 n=5 n=6
o, 0.0275- 0.0063¢ 0.0012¢
Ag[%] 2.7738( 0.6430° 0.1287¢
J, 0.0398t 0.0092¢ 0.0018¢
A, [%] 6.3838:! 1.4865: 0.2971(

Figures 8 and 9 present distribution of errorshwithich the
approximate solution, obtained fon=4 and n=6, reconstructs
position of the moving interfac&(t) (Figure 8) and satisfies the

condition of temperature continuity (7) (Figure 9).

0.0015F

0.0010+

error

0.0005+

0.0000F . L L . . . L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t

Fig. 8. Error of reconstructed position of the mayinterface & (t) (for
n=6, m=4).

e

error

0.000b oo
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

Fig. 9. Error of satisfying the condition of tematire continuity
(for n=6, m=4).

4. Conclusions

The paper presents application of the Picard'atiter method
for finding the approximate solution of one-phasef&h problem.
The proposed approach consists in determining éheerature
distribution with the aid of the proper iterativermulas and
calculating the coefficients of the linear combioatof some base
functions, approximating the position of the movinterface, in
course of minimizing the properly constructed fimmaal.
Presented examples show, that the approximatdmolabtained
even for small number of iterations, in satisfagtoway
reconstructs the sought solution, and the sequehseccessive
approximations, we receive in this method, is cogest to the
exact solution, if it exists. In [19] the sufficieconditions of this
convergence are formulated, however, they arecdiffito check
in most of cases (also in examples considered én dirrent
paper). That is why the problem of formulating gvdving the
convergence conditions of the Picard's method, easgrify for
any equation, is still open
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