
 

A R C H I V E S  

o f  

F O U N D R Y  E N G I N E E R I N G  
 
 
 

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences 

ISSN (1897-3310) 
Volume 10 

Special Issue 
4/2010 

 
83 – 88 

 

16/4 
 

A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 0 ,  S p e c i a l  I s s u e  4 / 2 0 1 0 ,  8 3 - 8 8  83 

 
Application of the Picard’s iterative method 

for the solution of one-phase  
Stefan problem 

 
R. Wituła*, E. Hetmaniok, D. Słota, A. Zielonka 

Institute of Mathematics, Silesian University of Technology,  
Kaszubska 23, 44-100 Gliwice, Poland 

*Corresponding author. E-mail address: Roman.Witula@polsl.pl 
 

Received 08.06.2010; accepted in revised form 06.07.2010 
 
 

Abstract 
 
In this paper, application of the Picard's iterative method for solving the one-phase Stefan problem is presented. In the proposed method, 
an iterative relation is formulated, which allows to determine the temperature distribution in the considered domain. The unknown 
function, describing the position of the moving interface, is approximated with the aid of the linear combination of some assumed base 
functions. The coefficients of this combination are determined by minimizing a properly constructed functional. Some examples, that 
illustrate the precision and speed of convergence of the considered iterative procedure, are also shown.    
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1. Introduction 
 
     In the paper we consider the one-phase Stefan problem, which 
consists of determining the temperature distribution in the given 
domain and the function describing position of the moving 
interface (the freezing front). The Stefan problem is 
a mathematical model of thermal processes, during which the 
changing of phase is taking place, connected with the heat 
absorption or emission. The examples of such kind of processes 
can be solidification of pure metals, melting of ice, freezing of 
water, deep freezing of foodstuffs and so on [1,2]. 
     For some simple cases of the Stefan problem there are chances 
of finding the analytical solution [3,4,5], but for most of cases the 
approximated methods must be applied [1,6-10]. In paper [11], 
the authors have applied the Adomian decomposition method, 
combined with some minimization procedure, for finding the 

approximate solution of one-phase Stefan problem. Application of 
the variational iteration method [12] for calculating the 
approximate solution of the direct and inverse Stefan problem is 
considered in paper [13]. Besides, in papers [14,15] some new 
approach for solving the one-phase Stefan problem is presented. 
In this approach, the considered problem is first transformed for 
the domain of the unit square and after that, such transformed 
problem is solved by using the variational iteration method. 
Another applications of the variational iteration method for 
solving problems connected with the heat conductivity are 
presented in papers [16-18]. 
     In the present paper, we propose to apply the Picard's iterative 
method for solving the one-phase Stefan problem. The Picard's 
iterative method [19] consists of formulating the iterative 
procedure, which enables to determine the form of the unknown 
function, describing the temperature distribution in the given 
domain, on the ground of the heat conduction equation and initial 
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condition, which should be satisfied. Another unknown function, 
describing position of the moving interface, is approximated in 
the form of the linear combination of some assumed base 
functions. The coefficients of this linear combination are 
calculated by minimizing the properly constructed functional. 
Some examples, illustrating the accuracy of the obtained 
approximate solution (compared with the known analytical 
solution of the problem) and speed of convergence of the iterative 
procedure, are also shown. 
      
 

2. One-phase Stefan problem 
               
     We deal with the one-phase Stefan problem, described in the domain 

{ } 2)](,0[],,0[:),( RtxtttxD ⊂∈∈= ∗ ξ . On the boundary of 
domain D three following components are distributed (Fig. 1): 
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where the initial and boundary conditions are given. Function 

)(tξ  is here un unknown function. 

 
Fig. 1. Domain of the problem. 

 
In domain D we consider the heat conduction equation: 
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where a  is the thermal diffusivity and xtu ,,  refer to the 

temperature, time and spatial location, respectively. On boundary 

0Γ  the initial condition is given: 

 
),()0,( xxu ϕ=                                                                             (5) 

 
on boundary 

1Γ  the Dirichlet condition is defined: 
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and on the moving interface 

gΓ  the condition of temperature 

continuity and the Stefan condition are given: 
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where λ  is the thermal conductivity, L is the latent heat of fusion 
per unit volume, ∗u  is the melting-point temperature and )(tξ  is 

the function describing position of the moving interface 
gΓ . The 

problem consists in finding the temperature distribution u(x,t) and 
the position of moving interface, represented by the function 

)(tξ , which should satisfy equations (4)-(8). 
     According to the discussed Picard's method, we transform the 
heat conduction equation (4) into the following integral form: 
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from which we receive the iterative formula: 
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for k=1,2,..., where ),(0 txu  is the initial approximation of the 

sought solution, introduced so, that it satisfies the initial condition 
(5) and the boundary condition (6): 
 

( ) ).()0()(),(0 xtetxu x ϕϑϑ +−=                                             (11) 

 
In this way we receive the sequence { }∞

=0kku , which is convergent 

(under the proper assumptions - see [19]) to the exact solution of 
equation (4). In the paper [19] the sufficient conditions for the 
convergence of the Picard's iterative method are formulated. 
However, checking whether or not the given equation satisfies 
those conditions is difficult in many cases (for example in case of 
the problem considered in the present paper). That is why the 
problem of formulating (and proving) such conditions, sufficient 
and necessary, which would be easy to verify for any given 
equation, is still open. 
     The unknown function )(tξ  we derive in the form of a linear 

combination: 
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where Rpi ∈  and the base functions )(tiψ  are linearly 

independent. The coefficients 
ip  are selected to obtain a minimal 

deviation of function ),( txun
 from the condition of temperature 

continuity (7) and the Stefan condition (8). Thus, we are looking 
for the minimum of the following functional: 
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In the course of minimizing this functional (by using the gradient 
method), coefficients 

ip  are determined, and thereby, the 

approximate distribution of temperature u(x,t) in the domain D 
and position of the moving interface )(tξ  are obtained. 

 
 

3. Examples 
 
     The theoretical consideration, introduced in the previous 
section, will be now illustrated with examples, for which the 
calculated approximate solutions will be compared with the known 
exact solutions. The values of the absolute errors will be calculated 
from the formulas: 
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where )(teξ  is the exact position and )(trξ  is the reconstructed 

position of the moving interface, ),( txue
 is the exact distribution 

and ),( txun
 is the approximate distribution of temperature in the 

domain D, and ∫∫=
D

dxdtD 1|| . The percentage relative errors 

will be calculated from: 
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In the presented calculations we will use as the base functions of 
combination (12) the monomials: 
 

.,,1,)( 1 mitt i
i K== −ψ                                                     (18) 

 
 

3.1.  Example 1 
 
     First example concerns the one-phase Stefan problem, in which 

1=λ , 0=s , aL /λ= , 1=∗u , )exp()( xx −=ϕ , 

)exp()( tat =ϑ . The calculations are made for the thermal diffusivity 

1.0=a  and 1=a , and for the final time 5.0=∗t  and 1=∗t . Thus, 
the exact solution of considered problem is given by the functions: 
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In course of calculation (for 1.0=a ) we receive the sequence 

{ }∞
=0nnu  of approximate functions describing the distribution of 

temperature, with the general term of the form: 
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converging to the function: 
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which satisfies the boundary conditions (5)-(6).  
     Function describing the position of the moving interface we 
derive as the linear combination (12) of the base functions, which 
coefficients are determined by minimizing the functional (13). For 
example, for m=4 and n=4 we get the following approximation 

)(tmξ  of position of the moving interface: 

 

.t010.00007558 
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3

2
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Table 1. Values of error of the reconstructed position of moving 
interface )(tξ   and temperature distribution ),( txu .                         

  
 m=2 m=4 m=2 m=4 
 n=1 n=2 

ξδ  0.03840 0.03073 0.00566 0.00419 

[%]ξ∆  13.30252 10.64611 1.96111 1.45279 

uδ  0.04131 0.04088 0.00615 0.00614 

[%]u∆  3.44703 3.41088 0.51290 0.51202 

 n=3 n=4 

ξδ  0.00059 0.00038 0.00005 0.00003 

[%]ξ∆  0.20598 0.13042 0.01754 0.00897 

uδ  0.00069 0.00069 0.00006 0.00006 

[%]u∆  0.05752 0.05749 0.00525 0.00525 
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     The errors, with which the approximate solutions (calculated 
for 1=a , 5.0=∗t , n=1,2,3,4 and m=2,4) reconstruct the exact 
solution are compiled in Table 1. 
     Presented results show, that after already few iterations we get 
the solution with very small errors of approximation. For the 
longer time interval ( 1=∗t ) the errors are bigger, but not 
significantly, but again, the errors are getting smaller with the 
bigger number of iterations. For example, for 1=∗t , n=4 and 
m=4 the values of error are equal to: 0.00210=ξδ , 

[%]0.36308=∆ξ
, 0.00467=uδ , [%]0.31499=∆u

, whereas 

for n=5 and m=4 the values of error reduce to: 0.00025=ξδ , 

[%]0.04246=∆ξ
, 0.00071=uδ , [%]0.04818=∆u

.   

     Similar conclusion, about the approximation error in 
reconstruction of position of the moving interface, can be made 
basing on Figures 2 and 3. Those figures display errors in 
reconstructing the function )(tξ , corresponding to the case of 

n=5, m=4, 1=α , 5.0=∗t  and 1=∗t , respectively. 
 

 
 
Fig. 2. Error of reconstructed position of the moving interface )(tξ  (for 

n=5, m=4, 1=a  and 5.0=∗t ). 
 

 
 

Fig. 3. Error of reconstructed position of the moving interface )(tξ  (for 

n=5, m=4, 1=a  and 1=∗t ). 
 
     Moreover, in the next figures the errors of satisfying the 
condition of temperature continuity (7) (Figures 4 and 5) and the 
Stefan condition (8) (Figures 6 and 7) by the selected approximate 
solutions are presented. Again, we can find the received errors as 
acceptable. 

 

 
 

Fig. 4. Error of satisfying the condition of temperature continuity 
(for n=5, m=4, 1=a  and 5.0=∗t ). 

 

 
 

Fig. 5. Error of satisfying the condition of temperature continuity 
(for n=5, m=4, 1=a  and 1=∗t ). 

 

 
 
Fig. 6. Error of satisfying the Stefan condition (for n=5, m=4, 1=a  

and 5.0=∗t ). 
 

 
 
Fig. 7. Error of satisfying the Stefan condition (for n=5, m=4, 1=a  

and 1=∗t ). 



A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 0 ,  S p e c i a l  I s s u e  4 / 2 0 1 0 ,  8 3 - 8 8  87 

3.2.  Example 2 
 
     In the second considered example of one-phase Stefan problem we 
take the following values of parameters: 1=λ , 1=a , 1=L , 

0=∗u , 2/3=∗t , 12 −=s , ( ) 1)1(21exp)( 2/1 −+−= − xxϕ , 

( ) 12/21exp)( 2/1 −+−= − ttϑ . In such case the exact solution 

takes the form:   
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     By following the Picard’s iterative method we received the 
sequence of approximate functions, describing the temperature 
distribution ),( txu , with the general term of the form: 
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One can prove, that the above function sequence converges to the 
function (23), representing the exact solution of the considered 
problem. 
     Reconstruction of the function )(tξ , presenting position of the 

moving interface, was provided by minimising the functional (13) 
and assuming the form (12) of the sought function. Taking the 
monomials (18) as the base functions, we obtained, for example 
for m=4 and n=6, the following approximation: 
 

.00329.000598.070422.041588.0)( 32
4 tttt −++=ξ    

 
     Table 2 compiles the values of errors in reconstruction of the 
temperature distribution and position of the moving interface 
received for m=4 and n=4,5,6. Obviously, errors are getting 
smaller with bigger number of iterations, but even for small 
number of iterations the results are satisfying. 
 
Table 2.  
Values of error of the reconstructed position of moving interface 

)(tξ   and temperature distribution ),( txu  (m=4). 

 n=4 n=5 n=6 

ξδ  0.02754 0.00639 0.00128 

[%]ξ∆  2.77380 0.64307 0.12879 

uδ  0.03986 0.00928 0.00186 

[%]u∆  6.38383 1.48653 0.29710 

 
   

Figures 8 and 9 present distribution of errors, with which the 
approximate solution, obtained for m=4 and n=6, reconstructs 
position of the moving interface )(tξ  (Figure 8) and satisfies the 

condition of temperature continuity (7) (Figure 9).   
 

 
 
Fig. 8. Error of reconstructed position of the moving interface )(tξ  (for 

n=6, m=4). 
 

 
 

Fig. 9. Error of satisfying the condition of temperature continuity 
(for n=6, m=4). 

 
 

4. Conclusions 
 
     The paper presents application of the Picard's iterative method 
for finding the approximate solution of one-phase Stefan problem. 
The proposed approach consists in determining the temperature 
distribution with the aid of the proper iterative formulas and 
calculating the coefficients of the linear combination of some base 
functions, approximating the position of the moving interface, in 
course of minimizing the properly constructed functional. 
Presented examples show, that the approximate solution, obtained 
even for small number of iterations, in satisfactory way 
reconstructs the sought solution, and the sequence of successive 
approximations, we receive in this method, is convergent to the 
exact solution, if it exists. In [19] the sufficient conditions of this 
convergence are formulated, however, they are difficult to check 
in most of cases (also in examples considered in the current 
paper). That is why the problem of formulating and proving the 
convergence conditions of the Picard's method, easy to verify for 
any equation, is still open. 
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