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Abstract 
 
The solution of the inverse problem involving the designation of the thickness of boundary layer in a broken line model of binary alloy 
solidification for known temperature measurements at a selected point of the cast is presented. In the discussed model the temperature 
distribution is described by means of the Stefan problem with varying in time temperature corresponding to the beginning of solidification, 
depending on the concentration of the alloy component; whereas to describe the concentration, a broken line model was used.. 
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1. Formulation of the problem 
 
In the discussed model temperature distribution is described 

by the Stefan problem [1] with varying in time temperature 
corresponding to the beginning of solidification, depending on the 
concentration of the alloy component; whereas, to describe the 
concentration a broken line model is used [2-5]. The task involves 
the designation of the thickness of the boundary layer, where 
temperature measurements are known at a selected point of the 
cast. 

In domain Ω, occupied by a solidifying material, two sub-
domains changing with time are considered: Ω1 occupied by the 
liquid phase and Ω2 occupied by the solid phase (Fig. 1). These 
domains are separated by the phase change boundary Γg (moving 
boundary), which is determined by varying in time liquidus 
temperature (or, the so called equivalent solidification point [1]). 
Temperature distribution in each of the phases is determined by 
the following heat conduction equation (i=1, 2): 
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for x∈Ωi, t∈(0,t*), where ci, ρi and λi are the specific heat, the 
mass density and the thermal conductivity, in the liquid phase 
(i=1) and solid phase (i=2), and t and x refer to time and spatial 
location, respectively. On the boundary Γ0 the following initial 
condition is given (T0>T*(Z0)): 
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where T0 is the initial temperature, T* is the temperature of 
solidification, Z0 is the initial concentration of alloy component. 
On the boundaries Γ1i (i=1,2) the following homogeneous 
boundary conditions of the second kind are given 
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whereas on the boundaries Γ2i (i=1,2) the boundary conditions of 
the third kind are given 
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where α is the heat transfer coefficient, T∞ is the ambient 
temperature. On the phase change boundary Γg the temperature 
continuity condition and the Stefan condition are given 
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where T* is the temperature of solidification, ZL(t) is the 
concentration of the alloy component on the phase change 
boundary at the liquid side, L is the latent heat of fusion, ξ(t) is a 
function describing the location of the phase change boundary. 
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Fig. 1. Domain of the problem 

 
The process of macrosegregation, occurring in the alloy, is 

described by the diffusion equation (i=1,2): 
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for x∈Ωi, t∈(0,t*), where Zi and Di are the concentration of the 
alloy component and the diffusion coefficient in the liquid phase 
(i=1) and solid phase (i=2), respectively. On the boundary Γ0 the 
following initial condition is given 
 

( ) ,=0, 01 ZxZ  (8) 
 

where Z0 is the initial concentration of the alloy component. On 
the boundaries Γ1i and Γ2i (i=1,2) of the investigated domain 
homogeneous boundary conditions of the second kind are given 
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On the phase change boundary Γg the condition inferred from the 
mass balance is given 
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If the partition coefficient 
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 is introduced, the above 

condition may be expressed in the following form 
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where ZL(t)=Z1(ξ(t),t) and ZS(t)=Z2(ξ(t),t) are concentrations of the 
alloy component on the phase change boundary at the liquid and 
solid phases, respectively. 

ZL�t�
ZL�t�
Z0

kZL�t�

Z

xb��t��

A

 
Fig. 2. Distribution of the concentration of the alloy component in 

broken line model 
 
The broken line model [2-5] assumes that the concentration of 

the alloy component in the liquid phase may be approximated by 
a broken line (Fig. 2). Thus, in the layer (of the thickness of δ) 
close to the phase boundary (boundary layer) the concentration 
distribution is described by an increasing (or decreasing) linear 
function. However, in the remaining part of the liquid phase the 
concentration distribution of the alloy component is steady. For 
the solid phase it is assumed that D2=0 (the diffusion process in 
the solid phase is neglected), meaning that the concentration of 
the alloy component is an outcome of the partition coefficient. 
The concentration distribution of the alloy component in the 
liquid phase is an outcome of the mass balance and of condition 
(11), where D2=0. The equation of straight line A (Fig. 2) at 
moment t may be expressed as 
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Using condition (11) it is possible to determine the slope of 
straight line A: 
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where 
( ) ( )

td

td
tv

ξ=
 is the velocity of the phase change boundary; 

whereas, the values of ZL(t) may be derived from the mass 
balance, leading to the following equation 
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i.e., 
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Because 
( ) ( ) ( )tmtZtZ LL δ−=

, in consequence, we get 
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Now, a time grid ti, i= 0,1,…n, of interval [0,t*] is introduced. 
If the values of the concentrations at moments ti, i= 0,1,…p, are 
known, then, on the grounds on the above equation approximated 
value ZL(tp+1) may be designated 
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where mi=m(ti), ξi=ξ(ti), hi=ξ(ti+1) – ξ(ti), and the values of 
integral in equation (16) is approximated by means of the 
trapezoid  method. 

In the discussed inverse problem for given temperature 
values:  
 

( ) ,, ijji UtxT =
 (18) 

for i=1,2,…,N1, j=1,2,…,N2, where N1 denotes the number of 
sensors, and N2 the  number of measurements taken from each 
sensor, the task is to designate the thickness δ of the boundary 

layer (Fig. 2). For known values of the thickness of the boundary 
layer the discussed problem becomes a direct problem, the 
solution of which will make it possible to derive temperatures  
Tij=T(xi,tj). Using the calculated temperatures Tij and given 
temperatures Uij, a functional determining the error of the 
approximate solution may be constructed 
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2. Method of solution  
 

The direct Stefan problem (equations (1)-(6) for given 
thickness of the boundary layer) was solved by means of the 
alternating phase truncation method [6,7]. The approximate 
location of the phase change boundary at moment tp+1 was 
designated in such a manner that, at first, the last point of the 
liquid phase was determined, i.e. such point xi at which 
T(xi,tp+1)>T*(ZL(tp)), and the first point of the solid phase, i.e. such 
point xj at which T(xj,tp+1)≤T*(ZL(tp)). In the next step, the location 
of the phase change boundary ξp+1 was designated by linear 
interpolation of points (xi,T(xi,tp+1)) and (xj,T(xj,tp+1)) and by 
designating the value of the argument for which the interpolation 
function takes the value: T*(ZL(tp)). The velocity of the phase 
change boundary was determined on the grounds of the Stefan 
condition (6). Next, on the basis of equation (17) the value of the 
concentration of the alloy component ZL(tp+1) was calculated for 
moment tp+1, designating a new value of solidification 
temperature T*(ZL(tp+1)).  

To find the minimum of the functional (19) a genetic 
algorithm was used. The calculations involved the use of real 
number representations of the chromosome and tournament 
selection. The algorithm also included an elitist model in which 
the best specimen of the previous population is remembered and, 
if in the current population all specimens are worse, the worst 
specimen of the current population is replaced by the remembered 
best specimen of the previous population. The study also used 
arithmetical crossover operator and non-uniform mutation 
operator [7,8]. The calculation were based on the following values 
of the genetic algorithm: population size npop=100, number of 
generations N=100, crossover probability pc=0,7 and mutation 
probability pm=0,1. 
 
 

3. Example of computations 
 

In the example the considered alloy was Cu-Zn (10% Zn) [6]: 
b=0,08 [m], λ1=λ2=120 [W/(m K)], c1=c2=390 [J/(kg K)], 
ρ1=ρ2=8600 [kg/m3], L=190000 [J/kg], δ=0,0015 [m],  
D1=3,5⋅10-8 [m2/s], k=0,855, Z0=0,1, temperature of solidification 
T*(ZL)=1356–473,68 ZL [K], the ambient temperature T∞ =298 [K] 
and initial temperature T0=1323 [K]. 

It was assumed that in the tested domain there is one 
thermocouple placed at the distance of 40 mm from the domain 
boundary (in the middle of the investigated domain). From 
thermocouple 100 temperature measurements were used (taken at 



A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 0 ,  S p e c i a l  I s s u e  4 / 2 0 1 0 ,  7 9 - 8 2  82

the time intervals of  1 s). The calculations were based on the 
exact values of temperature and on the values disturbed by 
random error with normal distribution and values 1%, 2% as well 
as  5%. The designated thickness of the boundary layer were: 
0.00149917, 0.00150817, 0.00151699 and 0.00154380, 
respectively for the exact data and for 1%, 2% and 5% errors. The 
reconstruction errors were: 0.055%, 0.545%, 1.132% and 2.920%. 

 
Table 1. 
Errors in the reconstruction of temperature at measurement point 
(∆sre - mean value of the absolute error, ∆max - maximum value of 
the absolute error, δsre - mean value of the relative error, δmax - 
maximum value of the relative error) 

Per. 0% 1% 
∆sre  [K] 1.388 10-4 1.517 10-4 
∆max  [K] 4.857 10-3 5.470 10-3 
δsre  [%] 1.068 10-5 1.167 10-5 
δmax  [%] 3.727 10-4 4.200 10-4 

Zab. 2% 5% 
∆sre  [K] 1.758 10-4 1.702 10-4 
∆max  [K] 6.932 10-3 4.054 10-3 
δsre  [%] 1.354 10-5 1.310 10-5 
δmax  [%] 5.322 10-4 3.111 10-4 

 
In Fig. 3 the exact and reconstructed temperature distribution 

at the measurement point is shown for the disturbance of 5%. 
However in Table 1 the reconstruction errors of temperature 
values at the measurement point were compiled for the exact input 
data and for the input data burdened with errors 1%, 2% and 5%. 
It may be inferred from the presented results that in each case the 
reconstruction of the temperature distribution is very good, and 
the maximum absolute error does not exceed 0.007 K. 
Accordingly, the differences in the thickness of the boundary 
layer do not exert a big impact on the temperature distribution at 
the measurement point. 
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Fig. 3. Exact (solid line) and reconstructed (dots) distributions of 
the temperature at measurement point for perturbation equals 5% 

4. Conclusions 
 

The discussed algorithm makes it possible to designate the 
thickness of the boundary layer rendering very good 
reconstruction of temperature distribution. The results indicate, 
that small differences in the thickness of the boundary layer do 
not have a significant impact on the temperature distribution. The 
results are a follow up of [5], where on the grounds of a direct 
problem with the constant value of solidification rate it was 
concluded, that small differences in the thickness of the boundary 
layer do not significantly influence the concentration distribution 
in the cast. 
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