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Abstract 
 

Thin metal film subjected to a short-pulse laser heating is considered. The hyperbolic two-temperature model describing the temporal and 

spatial evolution of the lattice and electrons temperatures is discussed. At the stage of numerical computations the finite difference method 

is used. In the final part of the paper the examples of computations are shown. 
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1. Introduction 
 

The rapidly growing usage of femtosecond lasers in practical 

applications requires the description of very complex physical 

phenomena appearing in fast heating solids. The differences 

between the macroscopic model of heat conduction basing on the 

Fourier law and the models describing the ultrafast laser pulse 

interactions with metal films appear because of extremely short 

duration, extreme temperature gradients and geometrical features 

of domain considered.  

Fast and highly nonequilibrium processes induced in the metals 

by the laser excitation can be described, among others, by two-

temperature model (TTM) proposed by Anisimov et al. [1, 2, 3]. 

This model consists of two coupled differential equations 
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where T denotes temperature, q heat flux vector, x ={x1, x2, x3} are 

the spatial co-ordinates, t is the time, C is the heat capacity, λ 

thermal conductivity, G electron-lattice coupling factor, Q laser 

heating source,  is the gradient operator. The quantities with 

superscripts e and l are associated with electrons and lattice, 

respectively. 

In equations (1) the heat fluxes are defined as follows 
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and then the TTM consists of the system of parabolic equations. 

Qiu and Tien [3, 4] derived a more general model in which 

the following dependencies between the heat fluxes and 

temperature gradients are introduced 
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where τe is the relaxation time of free electrons, this means the 

mean time for electrons to change their states in metals and τl is 

the relaxation time in phonon collisions. 

Using the Taylor series expansions the following first-order 

approximation of equations (3) can be taken into account 
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The equations (1), (4) create the hyperbolic two-temperature 

model. 

The following thermophysical properties appear in the two-

temperature models: Ce, Cl, λe, λl, G and additionally in the 

hyperbolic TTM: τe, τl. 

To define the thermal conductivity λe and heat capacity Ce of 

electrons the following relationships are widely used [2, 3] 
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where λ0, Ae are the material constants. The remaining parameters, 

this means λl, Cl, G, τe, τl usually are assumed to be constant ones. 

It should be pointed out that the simple form of equation (5) is 

only suitable for temperatures Te much smaller than Fermi 

temperature TF = EF /kB, where EF, kB are the Fermi energy and 

Boltzmann constant, respectively [3]. 

 

 

2. Formulation of the problem 

 

Let us consider a thin film of thickness L as shown in Figure 

1. A front surface x=0 is irradiated by a laser pulse. Usually, the 

laser spot size is much larger than film thickness and then it is 

possible to treat the interactions as a one-dimensional (1D) heat 

transfer process [3].  

The hyperbolic two-temperature model for 1D problem has the 

following form 
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where 
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Mathematical formula determining the intensity of internal heat 

source Q (x, t) resulting from laser action can be assumed in the 

following form 
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where I0 is the laser intensity, tp is the characteristic time of laser 

pulse, δ is the optical penetration depth, R is the reflectivity of the 

irradiated surface and β  = 4 ln2 [3].  

The local and temporary value of Q (x, t) results from the distance 

x between surface subjected to laser action and the point 

considered. 

 
Fig. 1. Thin film 

 

Taking into account the short period of laser heating, heat losses 

from front and back surfaces of thin film can be neglected [3], this 

means 

(0, ) ( , ) (0, ) ( , ) 0e e l lq t q L t q t q L t
 (9) 

where qe (x, t), ql (x, t) are the heat fluxes for electron and lattice 

systems, respectively. 

The initial conditions are assumed to be constant 

0: ( , 0) ( , 0)e l pt T x T x T
  (10) 

 

 

3. Method of solution 

 

To solve the problem formulated the finite difference method 

[5, 6, 7] is adapted. A staggered grid is introduced [8, 9] (Figure 

2). Let us denote Ti
f=T (ih, fΔt), where h is a  mesh size, Δt is a  

time  step,   i =0, 2, 4, ..., N,    f = 0, 1, 2, ..., F,  and  qj
f=q(jh,  fΔt),  

where j =1, 3, ...., N-1. 

 

 
Fig. 2. Discretization 

 

The finite difference approximation of equations (7) using 

explicit scheme can be written in the form 
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where index j corresponds to the 'heat flux nodes' (Figure 2).  

Equations (11), (12) can be transformed as follows 
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The dependencies (13), (14) allow one to construct the similar 

formulas for nodes i-1, i+1 and then one obtains 
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Now, we discretize equations (6) using the explicit scheme of 

finite difference method 
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where index i corresponds to the 'temperature nodes' as shown in 

Figure 2. 

    Putting (15) into (17) and (16) into (18) one has 
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From equation (19) results that 
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From equation (20) results that 
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In numerical computations the following approximation of 

thermal conductivities has been used (c.f. equations (22), (24)) 
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and (c.f. equations (12), (13)) 
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Summing up, for transition t f–1  t f at first the equations 

(13), (14) should be solved and next using the equations (21), (23) 

the temperatures Te and Tl are determined.  

It should be pointed out that adequate stability criteria for explicit 

scheme must be fulfilled, this means (equations (13), (14)) 
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and (c.f. equations (21), (23)) 
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4. Examples of computations  
 

The values of thermophysical parameters of selected metals 

are collected in the Table 1. At the stage of numerical 

computations it is assumed that  the  lattice  thermal  conductivity  

equals  to λl =λ0, electron thermal conductivity is proportional  to 

Te /Tl,  this  means λe=λ0Te /Tl and electrons volumetric specific 

heat is proportional to the electrons temperature Ce =AeTe (c.f. 

equation (5)). The remaining parameters are assumed to be 

constant. Additionally, in the table 1 the melting temperature Tm 

for each metal is placed.  
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The film of thickness L=100 nm (1nm =10-9 m) is  considered. 

Initial temperature equals Tp =300 . The layer is subjected to a 

short-pulse laser irradiation (R =0.93, I0 =10 J/m2, tp =0.1 ps, 

δ=15.3 nm).   

The problem is solved using finite difference method under 

the assumption that Δt =0.001 ps and h =1 nm. 

   In Figures 3, 4, 5 and 6 the calculated electrons and lattice 

temperature profiles in Au and Cu thin films are shown. Figure 7 

illustrates the heating (cooling) curves  Te, Tl  at  the  front  surface 

(x =0) for Au and Cu, respectively 

 

 
Fig. 3. Electron temperature profiles for Au 

 

 
Fig. 4. Lattice temperature profiles for Au 

 
Fig. 5. Electron temperature profiles for Cu 

 

 
Fig. 6. Lattice temperature profiles for Cu 

 
Fig. 7. Time history of the electrons temperatures at the front 

surface (x = 0) for Au and Cu 

 

 

 

 

 

 

  



A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  1 0 ,  I s s u e  4 / 2 0 1 0 ,  1 2 3 - 1 2 8  127 

Table 1.  

Thermophysical parameters for selected metals [2, 10]  

 Ag Cu Au W Ti 
λ0 [W/(mK)] 429 409 315 173 21.9 

Ae [J/(m3 K2)] 62.8 71.0 62.9 137.3 328.9 

Cl [J/(m 3 K)] 2.62 10 6 3.39 10 6 2.5 10 6 3 10 6 2.34 10 6 

G [W/(m 3 K)] 3.5 10 16 10 17 2.6 10 16 5 10 17 1.3 10 18 

τe [ps] 0.04 0.03 0.04 0.01 0.01 

τl [ps] 0.6 0.6 0.8 0.2 0.5 

Tm [K] 1235 1358 1337 3695 1941 

 

    It is visible, that the results are different for these materials. 

Although the Cu thermal conductivity λ0 is greater than Au 

thermal conductivity, both the electrons and the lattice 

temperatures in Cu film are lower in comparison with Au film. 

This results from the differences in values of coupling factor 

between these materials - the coupling factor for Cu is essentially 

greater  than for Au. 

It should be pointed out that for Au thin film the temperatures 

obtained agree very well with experimental results presented in 

[3]. 

   Similar computations have been done for others materials. As 

an example, Figures 8-10 illustrate the temperature distributions 

for Ti and W.  

    It should be pointed out that the results presented here allow, 

among others, to determine the thermalization time corresponding 

to the equalization of electrons and lattice temperatures (c.f 

Figures 10 and 13).  After the thermal equilibrium between 

electrons and the lattice occurs, the calculations can be done using 

one macroscopic hyperbolic equation [3]. 

 

 
Fig. 8. Electron temperature profiles for Ti 

 
Fig. 9. Lattice temperature profiles for Ti 

 

 
Fig. 10. Time history of the electron and lattice temperatures at 

the front surface (x = 0) for Ti 

 

 
Fig. 11. Electron temperature profiles for W 
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Fig. 12. Lattice temperature profiles for W 

 

 
Fig. 13. Time history of the electron and lattice temperatures at 

the front surface (x = 0) for W 

 

 

5. Conclusions 
 

The problems discussed in this paper concern only the heating 

process proceeding in metal films subjected to the strong external 

heat flux, the phase changes (e.g. melting or ablation) are not 

taken into account. From the mathematical and numerical points 

of view the generalization of the task discussed here on the more 

complex thermal problems is not very complicated. The main 

difficulty is the proper choice of thermophysical parameters of 

material for the high temperatures and the formulation of the 

model determining the phase changes in domain for which the 

heat transfer processes proceed according to the hyperbolic two-

temperature model. The investigations in  this range are at present 

realized. 
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