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BASIC PROPERTIES OF THE FULL
MATRICES

Summary. In this paper the, so called, full matrices are distinguished.
A number of basic properties of such matrices are also presented. Moreover,
few possible directions for further research are indicated.

PODSTAWOWE WELASNOSCI MACIERZY PELNYCH

Streszczenie. W artykule wyrézniono tzw. macierze pelne. Przedsta-
wiono wiele podstawowych wlasnosci tych macierzy. Wskazano tez kilka
mozliwych kierunkéow badan.

Aim of this paper is to determine some basic properties of the full matrices.
Let us begin with definition of the discussed matrices.

Definition 1. Matriz A = [a;;] € Myxm (C) is said to be the full matriz if all its
elements are different from zero (a;; #0).
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One should emphasize the fact that the full matrices (or the ”almost” full ma-
trices, it means, matrices with the small number of zero elements in comparison
with the non-zero elements), together with the sparse matrices, play rather im-
portant role in technics. Among others, they appear in the finite element method,
computer graphics, data compression, filtration and optics [3,4]. Moreover, they
can be used for testing various algorithms and this specific application was the
main cause of our interests in the full matrices.

One can easy give the examples of singular full square matrices, as well as of
non-singular full square matrices, of any order n € N.

Matrix [1],xn is singular and full. Let us consider the matrices

1 0 1 1
ATL: '.. BTL:
1 1 0 1

nxn nxn

Matrices A,, and B,, are obviously invertible, thus their product matrix A,, B, is
also the invertible matrix. But,

1 1 1
2 2 ... 2 2
2 3 3 3
Aan: )
2 3 ... n—1 n—1
2 3 ... n—1 n
L dnXxXn

so, A, B, is the full matrix as well.

Theorem 2. For each n € N there exists a full matrixz A,, with coefficients in N
and determinant equal to one.

Proof. For n = 1 we have Ay = [1], for n = 2 we have, for example
3 2
4 3|

The other matrices As can be obtained by using the known fact from the elemen-

Ay =

tary number theory [1]: if r,s € N, (r,s) = 1, then there exist p,q € N such that
pr—qgs=1.
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In general, let us assume that for some n € N a matrix A,, = [o;j]nxn is given,
such that it satisfies the thesis of theorem. Then we put

2 1 ... 1

We can easily verify (by expanding with respect to the first row) that
det A1 =2-det A, — 1-det A, = 1.

Indeed, it is enough to examine the expanded form of the matrix A, 41:

2 1 1 - 1
11 11 Q12 ... Qip
Apy1 = | @21 Q21 Q22 ... Q2p
(0751 (675 1 Qn2 cee Qpn

0

Let us notice that, in the above proof, in definition of the first row of matrix
An+1 only taking 2 as the first element and 1 as the second element is of great
importance. Other elements in this row can be any numbers. Substituting in this
row number 2 by s € N we receive the matrix A,1(s) possessing determinant
equal to s — 1. Thus, the following conclusion results.

Corollary 3. For any s € N U {0} and any n € N there exists a full matriz
A € My, xn(N) such that det A = s.

Theorem 4. For each n € N there exists a full matriz A, with different coeffi-
cients in N and of determinant equal to one.

Proof. For n =1 we have A; = [1], whereas for n = 2 we have

3 1
5 2|
Now, let us suppose that for some n € N, n > 2, we have determined the full

matrix A, = [aj]nxn with different coefficients in N, such that det A,, = 1. Then,
the matrix A, 41 is defined in the following way

Ay =
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B B2 ... But1

MOéll
An+1 = . )
: A,
M oy
where
M =14+ max{a;; : 1<1,j<n},
Ba =14+ max{M a;; : 1<i<n},
ﬁl = MﬁQ + 17
whereas
63::61+17 64::ﬂ3+1a ey ﬁn+1::ﬂn+1~

O

Remark 5. There exist examples of full matrices with coefficients in N, inverse
matrices of which are the full matrices as well. For example the circulant matri-
ces with Fibonacci and Lucas numbers [2] Circ(Fh,. .., F,) and Circ(Lq,. .., L),
respectively, possesses this property for every n € N. Here

aq az as ... Qp—-1 Qp,

(7% a a2 ... Qap—2 Qp—1
Circ(ay,ag,...,ay) = | Gn-1 Gn @1 ... Gn-3 Gn-2

as as aq ... Qg al

Proofs of these facts are not elementary.
We can easily verify that the inverse matrix of the invertible full 2 x 2 matrix
is the full matrix as well. Indeed the following formula holds

-1
P q _ 1 t —q
s t pt—qs —-s P '

Theorem 6. For everyn € N, n > 1, there exists a full matrix B,, with irrational

coefficients and determinant equal to one.

Proof. Let Ay, = [@ijlnxn, n € N, be the matrices from Theorem 2 We assume

3T 2w
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2T 9w e e
i1
T
Bpy1 = . 1 , n=23,....
s
Qan1
L i .

O

If o, 3 are the irrational numbers linearly independent over Q and o?, 32, o2 3,
(% and a3 are also irrational (in fact, we can formulate weaker assumptions
about the numbers a and 3, which results from the appropriate analysis of the
matrix given below), then one can obtain the full matrix of dimensions 3 x 3 with
different irrational coefficients and determinant equal to one, in the following way

8
) =
aaﬂg

33 1

I5) a o«

T2

L 8 o a ]

For example, we can select a = e and 3 = e2. There exists the following generali-
zation of this example.

Theorem 7. For each n € N, n > 1, there exists a full matriz A,, with different
irrational coefficients and determinant equal to one.

Proof. First, we determine the sequence {«,} of the irrational numbers, of the
properties

t
Hajfjg@, wherestZ,1<j<t,Z|5j|>0’
Jj=1

for example o, = e". Next, we set

70&1 40(2

Ay

(&%) o
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In general, by having the matrix A,, we can define the matrix A, in the following

manner
2 3 n+1
Qpt1 Ont1l Qpig o0 Qpgg
Qp41 Q11
AnJrl ==
Ap
an+1 Anl

Theorem 8. For every n € N, there exists a full matriz A, € M, xn({1,2}), such
that det A,, = 1.

Proof. If n > 2, then it is sufficient to take

O

Let P, C M, xn(N), where n € N, n > 1, be the family of all full matrices
of determinant equal to one. One can easily notice that the families P, are the
semigroups with respect to the multiplication of matrices. Element A of family
Py, is called to be prime if it is not a product of any two elements from P,. The
following theorem holds.

Theorem 9. The set of generators of family Py, is infinite.

Proof. Tt is enough to show that for every n € N, n > 1, the set of prime elements
of family P, is infinite. For example, for P, each matrix of the form

mn—+1 m
n 1

1, m,n € N,

is prime. This is the consequence of the simple observation that if one of elements
of the matrix A € P, is equal to one, then the matrix A is prime.
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In Ps, for example the matrices of the form given below are prime

2 1 1
mn+1 mn+1 m |, m,n € N,
n n 1

whereas, in P, the following matrices are prime

2 1 1 1
2 2 1 1

m,n €N, etc.
mn+1 mn+1 mn+1 m |’ ’ ’

n n n 1

O

Problem 1. With every matriv A = [0jlnxn € Pn we will associate the number
n
s(A) = Z Q.
ij=1

Is it true that the matrices from the proof of Theorem 9 realize min{s(A) :
AeP,} ?

Now, we will discuss the next, important for numerical applications, problem.
Is it true that each matrix A € M, x,(R) is a product of two full matrices?

Theorem 10. Fach full matriz A = [a;5] € Mypxn(R) can be presented as a pro-
duct of two full matrices both with real coefficients.

Proof. Let us denote

M 1
M := :

1 M

We seek the full matrix B = [3;;] € M, x»(R) such that
MB = A,
or, equivalently
B1j o
M Pai = i , j=12...,n,

ﬁnj Qnj
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which, on the basis of the Cramer’s rules, for sufficiently large M is equivalent to
the following equalities

M 1 1 Qqj 1 1
1 M ... 1 a; 1 ... 1
Bij = ——— det : : o : o : 1<,j<n.
det M
¢ 1 .. .1 ap 1 ... M
~~

i-th column

Both determinants in this formula are non-zero, since det M = M™ + ... and

M 1 | 15 1 ... 1
1 M ... 1 ay 1 ... 1

det | . . . mag M
1 ... ... 1 apy 1 ... M

Theorem 11. For each full matriz B € M, x,(R) of the order smaller than n and
for each k € {1,2,...,n — 1} there exists a full matriz A € M, xn(R) of order k
such that

AB =0,

where @ denotes the zero matriz.

Proof of this theorem (of technical nature) will be omitted in this paper (mostly
because of its capacity).

Theorem 12. A matriz A € Mayx2(R) can be presented as a product of two full
matrices if and only if it is not of the form

0 0
) « 07
with the accuracy of its elements permutations.

Proof. Let us set

a f3
[ v ] € Max2(R).
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On can easily notice that if

I

then

moreover, the matrix [ v ] is full matrix if the following conditions hold
Yy ow
a5y, a#3y, B#3010#30.
We assume that in the matrix
Tz
Yy ow
exactly one element is equal to zero.

Let us suppose that, for example, a = g'y and a8y # 0. Then we select the
sufficiently large prime numbers p, ¢ and the numbers n, m € N, such that

pn—qm=1.

x
One can easily verify that there exists then the full matrix l

MM |

which results from the following fact

z
] , such that
w

det[a 1 1 #0@047&2')/@2(17&571,
v on n

detla P 1 750(:)047&27(:)57717&2]),
Yy m m

similarly

n

det[ﬂ ¢ ] 40ep4Ls,
1) n
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and
m

detlﬁ b ] 0o+ L5
) m

In case, in which the given matrix is of the form

0 «
0], ansa

el

The last thing, we need to prove, is that each matrix of the form

0 0
[50] ano

cannot be written as a product of two full matrices.

we have

NI RN Y e}
INTREN Y e}

Let as assume the opposite fact. Let

IR

Then we have

T_ T aa oS
z p < q
which implies
r_s
p q
Moreover, we have
y__I
w p
Hence
S s s
o mma (34D o
w q qa g
which is impossible. O

Remark 13. Matrices of the form

0 0
[50] ano
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can be presented as a product of three full matrices

2] ][

Trials for generalizing Theorem 12 for matrices of higher order are in progress.

\
—_
oL =

1
o
2

| R
N~ N~

o= N

We will present in this paper only the sample of our results.

Theorem 14. Let A € M343(R) be the full matriz. If the two first rows of the
matriz A are linearly independent and if for the given row W = [a, 3,7] € R3
there exists a full matric B € M3x3(R) such that

0
AB=| 0 |, (1)
W

then either a B~y #0 ora=0=+v=0.

Proof. Let W1, Wy, W3 be the successive rows of the matrix B and let A = [a;;]3x3.
Then, the equality (1) can be written in in the following way

ayy Wi+ aig Wa + a3 Wz = Q,
az1 Wi + aga Wa + ags W3 = Q, (2)
as1 Wi+ age Wo + azs Wy =W,

from where we get
ail ai2 az1 a22
Wy=——W—F-Wy = ——"—W,—= Wy, (3)
a3 a3 a23 a23
which implies the equality

bW, = cWa, (4)

for some b,c € R. If b = 0, then ¢ = 0 as well, and vice versa, since the rows Wj
and W5 are full. However, the equality b = ¢ = 0 means that

an _ 4 _ o

a1 B a23 B azs’
that is the linear dependence of the two first rows of matrix A should take place
which is contrary to the assumption.

Therefore, bc # 0 and from (4), (3) and the last equation of the system (2) it

results that d W, = W, for some d € R, which is possible only if W = O or W is

full. U

The above theorem can be generalized in the following manner.



80 R. Wituta, N. Gawronska, D. Stota

Theorem 15. Let A € M, x,(R), n > 3, be the full matriz. If n—1 first rows of the
matriz A are linearly independent and if for the given row W = [w,wa, ..., wy,] €
R™ there exists a full matriz B € M, xn(R) such that

0
AB=1| " |, (5)
0
1074

then either wyws ... wy 0 orwy =we = ... =w, =0.
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Omoéwienie

W artykule wyrdzniono tzw. macierze pelne. Przedstawiono wiele podstawo-
wych wlasnosci tych macierzy. Podano takze rekurencyjne metody generowania
macierzy kwadratowych pelnych o elementach wymiernych oraz niewymiernych
i wyznaczniku réwnym jeden. Omawiany jest problem rozkladu dowolnej ma-
cierzy kwadratowej na iloczyn dwdéch macierzy pelnych. Dla macierzy o wymia-
rze 2 X 2 problem ten zostal calkowicie rozstrzygniety. Wyrdzniono tez rodzine
Prn C My, (N) macierzy pelnych o wyznaczniku réwnym jeden. Oczywiscie Py,
jest dla kazdego n € N pélgrupa nieprzemienna bez jedynki ze wzgledu na mnoze-
nie macierzy. Udowodniono, ze P,, posiada nieskonczony zbiér elementéw pierw-
szych. Wskazano tez kilka mozliwych kierunkéw badan.



