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HOMOTOPY PERTURBATION METHOD IN
THE HEAT CONDUCTION PROBLEMS

Summary. In this paper an application of the homotopy perturbation
method for solving the steady state and unsteady state heat conduction
problem is presented.

HOMOTOPIJNA METODA PERTURBACYJNA
W ZAGADNIENIACH PRZEWODZENIA CIEPLA

Streszczenie. W artykule przedstawiono zastosowanie homotopijnej
metody perturbacyjnej do rozwiazania zagadnien ustalonego oraz nieusta-
lonego przewodzenia ciepta.

1. Introduction

Homotopy perturbation method arised as the connection of elements of two
other methods, namely, the homotopy analysis method [1,7,10] and the pertur-
bation method [3, 8, 12]. Its inventor was the Chinese mathematician Ji-Huan
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He [5,6,8,9,11, 13, 14]. Homotopy perturbation method enables to seek the so-
lution of the operator equation

Alu) = f(2),  zeq, (1)

where A denotes the operator, f is the known function, and u represents the sought
function. Operator A is presented in form of the following sum

A(u) = L(u) + N(u), (2)

where L is the linear operator, whereas N denotes the non-linear operator. Thus,
equation (1) can be written in the form

L(u) + N(u) = f(=), z €. (3)

Let us define a new operator H, called as the homotopy operator, in the following
way

H(v,p) := (1 - p) (L(v) — L(uo)) +p (A(v) — f(2)), (4)

where p € [0, 1] denotes the, so called, homotopy parameter, v(z,p) : 2x[0,1] — R,
and ug describes the initial approximation of the solution of equation (1). By using
the relation (2) we receive

H(v,p) = L(v) — L(uo) +p L(uo) +p (N (v) = f(2)). (5)

Since H(v,0) = L(v) — L(ug), therefore, for p = 0, solving the operator equation
H(v,0) = 0 is equivalent to solving the trivial problem L(v)— L(ug) = 0. Whereas,
for p = 1, solving the operator equation H(v,1) = 0 is equivalent to solving
the equation (1). Thus, the monotonic change of parameter p, between zero and
one, corresponds with the continuous change between the trivial equation L(v) —
L(up) = 0 and the considered equation (it means, with the continuous change of
the solution v between ug and w).

Solution of the equation H (v, p) = 0 is sought in form of the power series

o0

v:ijvj. (6)

§=0
If the above series is convergent then, by substituting p = 1, we obtain the solution

of equation (1):

p—1

o0
u:limv:Zvj. (7)
=0
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Information about convergence of the series (6) can be found in papers [2,6]. In
many cases the series (6) is rapidly convergent, therefore, reducing the above sum
to the few initial components may assure to receive a very good approximation of
the solution. If we reduce the sum to the first n + 1 components, we receive the,
so called, n-order approximate solution

ﬂn = Z’Uj. (8)

In order to find the function v; we substitute relation (6) into the equation
H(v,p) = 0 and we compare the expressions with the same powers of parameter p.
In this way, we receive the sequence of operator equations enabling to determine
the successive functions v;. By these means, finding the solution of considered
problem can be reduced to solving the sequence of problems, solutions of which
are easy to determine.

2. Steady state heat conduction

Let us introduce an application of the considered method for solving the steady
state heat conduction problem described with the aid of Laplace equation

Pu(z,y) N *u(z,y)
0x? oy?

=0, (x,y) € D, 9)

where region D is the rectangle (b1, b2) x (d1,dz2). On the boundary of the region
the boundary conditions of the first kind are given

u(bi,y) = 1(y), u(bz, y) = #2(y), (10)
u(z,dy) = 61(x), u(z,d2) = 02(x). (11)

In case of the considered Laplace equation, we can apply the averaging method,
similarly as it is done for the Adomian decomposition method [4]. In this method,
in our case, we solve two problems with the various selection of the linear operator
(L= ;—; or L = 88—;2), averaged solutions of which give the solution of considered
problem.
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Thus, we begin by defining two equivalent homotopy operators for equation (9)
having the following form

82’()1 62’U170 62’U170 82’()1
Hy(vy,p) == 2 o T ( 52 T e ) (12)
82’()2 62U2 0 62U2 0 82’()2
H = — ’ ’ . 1
2(vz, p) 0y? Dy? + ( Dy? + 8332) (13)
Solutions of equations (i = 1,2):
Hi(’l)i,p) =0 (14)

will be sought in the form of power series of the variable p:
0 .
= Zp] Ui,j- (15)
j=0

By substituting the relations (15) into the equations (12) and (13), after some
transformations, we get (i = 1,2):

0o i 821)17]' . aQUL() 8 U1,0 j 0? Ul,g 1 16
0z2  Or2 © Ox2 Z (16)
j=0
and .
U2,g _ QPugp (9 u2 0 Pvg i1
Z o Oy? N Z ’ or (17)

Now, by comparing the expressions with the same powers of parameter p we
obtain the following systems of equations

2 2
0 V1,0 0 u1,0

Ox? ox? ’

18
32’02,0 o 32“2,0 ( )
oyz  oy?’
321}1,1 o 32U1,0 321}1,0
o2~ 922 0y?
Qx QI 2y (19)
0 V2,1 _ 73 u2,0 0 V2,0
Oy? 0y? 0x? "’
and for j > 2:
821)1,]- N 821)17]',1
2 2
ox 28y (20)
0 V2,4 0 V2,51
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The above systems of partial differential equations must be completed by the

conditions ensuring the uniqueness of solution of those systems. For the first sys-

tem (18) we define the conditions

v1,0(b1,y) = 1(y),
v1,0(b2,y) = w2(y),
va,0(z,dr) = 01(x),
v2,0(z,d2) = O2(x),

v1,(b1,y) =0,
v1,5(b2,y) =0,
v j(z,d1) =0,
v ;(z,d2) = 0.

Afterwards, the sought solution is given by the averaged function

x,y) + va(z,y) 1 &
v ( )2 752 v1,5(2,y) +v2,(2,y)).
7=0

u(z,y) =

Example 2.1

(23)

Application of the proposed method will be illustrated by the example in

which: by =1, bs =m, d; =0, do = 7 and

¢1(y) = sinh(1) cos(y),
p2(y) = sinh() cos(y),
01(x) = sinh(z),
Oa(x) = — smh(:c)

Exact solution of the above problem is given by the function
u(z,y) = sinh(z) cos(y).
As the initial approximations u; ¢ and uz ¢ we take the zero functions

u1,0(7,y) = uz,0(7,y) = 0.
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By solving the proper systems of equations we obtain, successively

1 - cos(y) ((m — z) sinh(1) + (z — 1) sinh(n)),

’ULQ(I‘, t) =

voo(x,t) = (1 - Q) sinh(z)

and ’
via(z,t) = % cos(y) ((62 ) @r—z—1)+
+2e(z—2+7) sinh(w)),
vaa(z,t) = (%y - y—; + %) sinh(z).

Table 1
Error in the temperature
reconstruction (A, — absolute

error, &, — relative error)

| A [ s
0.47058 12.0836
0.37189 9.5494
0.12477 3.2038
0.06857 1.7607
0.02902 0.7451
0.01417 0.3639
0.00641 0.1646

S|k |w|Nd| | of S

In Table 1, the errors in reconstruction of the function describing distribution
of temperature in considered region are presented. Displayed results show that
the errors rapidly decrease together with the increasing number of components in
sum (8).
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3. Unsteady state heat conduction

Now will we discuss an application of the homotopy perturbation method for
solving the unsteady state heat conduction problem described by means of the

equation
ou 0%u(z,t)
) =g —2"
where a denotes the thermal diffusivity and D = {(z,t); = € (b1, b2), t € (0,t%)}.

The initial condition is also given

(x,t) € D, (24)

U(:L',O) :T/)(fﬂ)a T e [b17b2]7 (25)
as well as the boundary conditions of the first kind

wbit) = or(t), e (0,6, (26)
u(ant) - <P2(t)7 te (Oat*)' (27)

We start by defining the homotopy operator for equation (24):

0%v 0%y 0uy 1 Ov
H = -2 =9, 28
(v.p) 82 oz2 P ( 0x2 a at) (28)
Solution of equation H(v,p) = 0 will be sought in form of the series
e .
v = ij vj. (29)
j=0

Proceeding similarly as in the previous case, we receive vg = ug together with the
following partial differential equations

82’1)1 - 1 81}0 82u0

- == _ - = 30
0z? a Ot 0x?’ (30)
and for j > 2:
82’Uj 1 c%j,l
=] 31
0r2 a Ot (B81)
For the first of the above equations we define the conditions
vo(b1,t) +v1(b1,t) = p1(t),
{ (32)
vo(ba, t) +v1(ba,t) = @a(t),

whereas, for the second equation we define conditions of the form (j > 2):

Uj bl,t :O7
{ ( t;:O (33)
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As the initial approximation uy we can take the function describing the initial
condition

uo(z,t) = ¥(x). (34)

Example 3.1

We will illustrate an application of the proposed method by the example in
which: by =0,b =1, a=1, t* =2 and:

1 4
w(z)*ﬂza
1
801(t):§t2a
1 1 1
)= —+-t+ =t
pat) =g tgtty

As the initial approximation uy we take the function satisfying the initial

condition, thus

L4
5%
By solving equation (30) with the boundary conditions (32) we find

UO(xvt) = UO(Za t) -

4

t2 1t x
nw) =5+ (3%3) 7 5

The successive functions v;(x,t), j > 2, are determined by solving equations (31)
with the conditions (33). We obtain

1 t tax? 23

v =(-5-3)rt 5+
X 1’3 1’4
vs(®t) =51~ 15 T o

and
vz, =0,  j>d.

In this way, we find the exact distribution of temperature in the entire considered

region

- 1 1 1
u(z,t) = E Uj(ac,t):ﬂx4+§tac2+§t2.
Jj=0



Homotopy perturbation method in the heat conduction problems

117

Example 3.2

In the next example we assume by =0, by =1, a = g, t* =1 and

w(x) _ 6(372x)/10

01 (t) (t+5 /1()

oo () = e(t+1/10,

Exact solution of the above formulated problem is of the form [14]:

u(x, t) _ e(t72x+3)/10.

As the initial approximation ug we take the function satisfying the initial condition,

it means
vo(,t) = ug(x,t) = eB322)/10,

Table 2
Error in the temperature reconstruction (A, —
absolute error, §,, — relative error)

N A, %]
4.69735- 1073 0.36431
1.90225 - 10~° 1.47532 - 1073
7.70944 - 1078 5.97918 - 106

3.12452- 1010 2.42327-1078
1.26633 - 10~ 12 9.82126- 10~ 11
5.11722 - 10715 3.96874- 10713
9.14762 - 1017 7.09458 - 10~ 1°

EN B N> I B IS U I NG IS |

By solving the appropriate equations we receive

i (1) = —eB=2/10 L ((+43)/10 (1 _ gy | o(+1)/10 5
2 3 3
£ =ttt/ L T (t+p/o (L T
va(z,t) = e ( 75 1 50 150) te ( 150 150
3 4 5
Bty (T oz
vs(@,t) = e (28125 11250 15000 75000)‘L
Tx 3 2’
(t+1)/10 _
te (225000 92500 75000)'

).
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In Table 2 the errors in reconstruction of the function describing distribution
of temperature in considered region are displayed. Presented results indicate that
the errors rapidly decrease together with the increasing number of components.
Error of satisfying the initial condition for the 2— and 5—order approximations are
showed in Figures 1 and 2, respectively. For the 7—order approximation the error
of satisfying the initial condition does not exceed the value 2.5 - 10716, Whereas,
the boundary conditions for x = b; and x = by are fulfilled precisely which is
the consequence of the proper selection of boundary conditions for equations (30)
and (31).

0.000025 |

0.00002|

- 0.000015]
4 : !
0.00001 ]
5.x10°%+ ]

o/ N
00 02 04 06 08 10

T

Fig. 1. Error in reconstruction of the initial condition for 2-order approximate solution
Rys. 1. Blad spelnienia warunku poczatkowego dla przyblizenia drugiego rzedu

4. Conclusions

By applying the homotopy perturbation method we receive the function series
convergent to the solution of considered problem (under the proper assumptions).
In many cases it is possible to determine the sum of the obtained series, which
means, to calculate the exact solution of the problem. In those cases in which
determining the sum of series is impossible, we can use the initial components of
the series and form the approximate solution. With regard to the rapid conver-
gent of considered series, just few initial components assure vary small error of
approximate solution.

The great advantage of applied method is that it does not require discretization
of the region, like in the case of classical methods based on the finite-difference
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Fig. 2. Error in reconstruction of the initial condition for 5-order approximate solution
Rys. 2. Blad spelnienia warunku poczatkowego dla przyblizenia piatego rzedu

method or the finite-element method. The proposed method produces a wholly
satisfactory result already in a small number of iterations, whereas the classical
methods require a suitably dense mesh in order to achieve similar accuracy.
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Omoéwienie

W artykule przedstawiono zastosowanie homotopijnej metody perturbacyjnej
do rozwiazania ustalonego zagadnienia przewodzenia ciepla, opisanego réwnaniem
Laplace’a. Przedstawiono takze sposéb wykorzystania omawianej metody do roz-
wiazania zagadnienia nieustalonego przewodzenia ciepla. Zaprezentowane zasto-
sowania zilustrowane zostaly przyktadami.

Stosujac homotopijna metode perturbacyjna otrzymujemy szereg funkcyjny,
ktory jest zbiezny do rozwiazania rozwazanego zagadnienia (przy odpowiednich
zalozeniach). W wielu przypadkach mozna wyznaczyé sume uzyskanego szeregu,
a tym samym otrzymaé¢ dokladne rozwiazanie rozwazanego zagadnienia. W przy-
padkach gdy nie jesteSmy w stanie wyznaczy¢ analitycznie sumy szeregu do bu-
dowy rozwiazania przyblizonego mozemy wykorzystaé jego poczatkowe sktadniki.
Ze wzgledu na szybka zbiezno$¢ otrzymanego szeregu, juz kilka poczatkowych wy-
razéw zapewnia bardzo maly blad odtworzenia rozwiazania doktadnego.



