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APPLICATION OF THE ANALYTIC-

NUMERICAL METHOD IN SOLVING THE

PROBLEM WITH MOVING BOUNDARY

Summary. The paper presents a method of the analytic-numerical na-
ture applied for finding the approximate solutions of the selected class of
problems which can be reduced to the one-phase solidification problem of
a plate with the unknown a priori, varying in time boundary of the region
in which the solution is sought. Presented method is attractive from the
engineer’s point of view since it is relatively easy for using and does not
require either sophisticated numerical techniques or far advanced mathe-
matical tools.

ZASTOSOWANIE ANALITYCZNO–NUMERYCZNEJ
METODY DO ROZWIĄZANIA ZAGADNIENIA
Z RUCHOMYM BRZEGIEM

Streszczenie. W pracy przedstawiono metodę o analityczno–numery-
cznym charakterze zastosowaną do przybliżonego rozwiązywania wybranej
klasy problemów, które można sprowadzić do jednofazowego zagadnienia
krzepnięcia płyty z nieznaną a priori, zmienną w czasie granicą obszaru,
w którym poszukiwane jest rozwiązanie. Prezentowana metoda jest atrak-
cyjna z inżynierskiego punktu widzenia, gdyż jest stosunkowo łatwa w uży-
ciu i nie wymaga stosowania wyszukanych technik numerycznych ani za-
awansowanych narzędzi matematycznych.
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1. Introduction

Planning of the technology for producing the ingots in course of continuous
casting process is a complicated and multistage problem. Effectiveness of designed
technology is valued by means of the quality of continuous ingot. One of the
most important factors influencing this quality is the field of temperature in the
solidifying metal volume, defined by an important parameter for the considered
technology which is the location of freezing front determining the thickness of
solidified layer (thickness of the ingot skin). Too fast either too slow increase
of the solidified layer is unacceptable. If the skin of solidified ingot leaving the
casting mould will be too thin then it can break and the liquid metal can leak
which may cause a very serious damage of the continuous casting equipment. From
the other hand, too fast increase of the skin is connected with the excessive drop of
temperature on its cross-section which may cause the high thermal tension leading
to the ingot cracking.
Considering these facts we will discuss the flat ingot of the rectangular cuboid

shape, produced in the vertical continuous casting equipment with the constant
velocity of the ingot forming. Dimensions of its cross-section sides 2x and 2y (2x
– thickness of the ingot, 2y – width of the ingot) satisfy condition 2x ≪ 2y.
This assumption enables to consider the solidifying ingot as an axisymmetrical
2-dimensional object in which the thermal processes take place in the surface of
thermal symmetry (see Figure 1).
Moreover, if we assume that the ingot is produced from the metal solidifying

in constant temperature T ∗ and in such temperature it is poured into the casting
mould, then the non-failure working of the continuous casting equipment generates
the pseudo-steady field of temperature in the solidified part of the ingot of length
z which, in the coordinate system oriented in space like in Figure 1, is described
with the aid of equation

v
∂T

∂z
= a

(

∂2T

∂x2
+
∂2T

∂z2

)

, ϕ (z) < x < x, 0 < z ¬ z, (1)

where T = T (x, z) denotes the temperature, v – the velocity vector coordinate in
the direction of ingot forming, a a is the thermal diffusivity coefficient and ϕ (z)
defines a function describing the freezing front location

ϕ (z) = x− ξ(z), (2)
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where ξ(z) denotes the ingot skin thickness (thickness of the solidified layer) va-
riable on the ingot length and

ξ (0) = 0. (3)
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Fig. 1. The modelled area
Rys. 1. Modelowany obszar

Because of taken assumptions equation (1) is complemented by the boundary
conditions on the freezing front

λgrad T |x=ϕ(z) · n = γκvn, 0 ¬ z ¬ z, (4)

T |x=ϕ(z) = T
∗, 0 ¬ z ¬ z, (5)

where n denotes the unitary vector directed outside and normal to the freezing
front, as well as by one of the conditions defined on the ingot surface

T |x=x = f, 0 < z ¬ z, (6)

or

−λ
∂T

∂x

∣

∣

∣

∣

x=x

= q, 0 < z ¬ z (7)

or, relatively

−λ
∂T

∂x

∣

∣

∣

∣

x=x

= α ( T |x=x − T
∞) , 0 < z ¬ z. (8)
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In the above equations symbols T∞, λ, γ and κ denote the ambient temperatu-
re, thermal conductivity coefficient, metal density and latent heat, respectively.
Whereas elements f = f(z), q = q(z), α = α(z) and vn = vn(z) define, in turn,
temperature of the ingot surface, distribution of the heat flux, distribution of the
heat transfer coefficient and coordinate of the velocity vector of the freezing front
moving in direction normal to this front.
One can simplify more equation (1) when the ingot is produced from the

material with the low value of thermal conductivity coefficient. It is because, in
this case, the thermal conductivity in direction of the ingot forming is usually
small, therefore it can be neglected [7]. Taking it into consideration one can ignore
therm ∂2T

∂z2
in equation (1). In result of this, in place of elliptic equation (1) we

receive the parabolic equation

v
∂T

∂z
= a
∂2T

∂x2
, ϕ (z) < x < x, 0 < z ¬ z, (9)

in which the variable z plays the role of time. Whereas, boundary condition (4)
on the freezing front takes the form

−λ
∂T

∂x

∣

∣

∣

∣

x=ϕ(z)

= γκvn, 0 ¬ z ¬ z. (10)

2. Approach to the problem

Mathematical modeling of thermal processes, combined with the reversible
phase transitions of type: liquid phase – solid phase, leads to the moving boun-
dary problems. Solving of such determined problem requires in most cases to use
the appropriate numerical techniques. In the current paper we present the appro-
ximate analytic-numerical method, especially attractive from the engineer’s point
of view because of its respective simplicity. Proposed method is based on two ele-
ments. The first one is the known formalism of initial expansion of the sought
function, describing the field of temperature, into the power series in which some
number of coefficients is determined with the aid of boundary conditions. Second
element consists in approximating the function defining the freezing front location
by means of the broken line, parameters of which are numerically determined.
As we have mentioned above, method of solving the problem formulated in

previous section is based, in the first step, on the proper presentation of the func-
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tion representing the expected solution in the form of power series, similarly as it
was done in papers [1–6,8]. In considered case the series is of the following form

T (x, z) =
∞
∑

i=0

Ai(z)(x− x+ ξ(z))
i

i!
, (11)

where Ai(z) denote the unknown, dependent on variable z , functional coefficients.
In case of the elliptic problem these coefficients will be determined by using equ-
ation (1), condition (5) and transformed condition (4) which can be written in
form

λ

(

∂T

∂x

∣

∣

∣

∣

x=ϕ(z)

− ϕ′(z)
∂T

∂z

∣

∣

∣

∣

x=ϕ(z)

)

= γκvϕ′(z), 0 ¬ z ¬ z. (12)

Whereas, in case of the parabolic problem we use equation (9) and conditions (5)
and (10) on the freezing front.
Assumed form (11) of the sought solution and relation (2) imply that

∂T

∂x
=
∞
∑

i=0

Ai+1(z) (x− x+ ξ(z))
i

i!
, (13)

∂T

∂z
=
∞
∑

i=0

(A′i (z) +Ai+1(z)ξ
′(z))
(x− x+ ξ(z))i

i!
, (14)

∂2T

∂x2
=
∞
∑

i=0

Ai+2(z) (x− x+ ξ(z))
i

i!
, (15)

∂2T

∂z2
=
∞
∑

i=0

(

A′′i (z) + 2A
′

i+1(z)ξ
′(z) +Ai+1(z)ξ′′(z)+

+Ai+2(z)
(

ξ′(z)2
)

)

(x− x+ ξ(z)i)
i!

.

(16)

By substituting properly the received formulas into equation (1) we obtain

v

∞
∑

i=0

(A′i(z) +Ai+1(z)ξ
′(z))
(x− x+ ξ(z))i

i!
=

= a
∞
∑

i=0

(

Ai+2(z) +A′′i (z) + 2A
′

i+1(z)ξ
′(z)+

+Ai+1(z)ξ′′(z) +Ai+2(z) (ξ′(z))
2 ) (x− x+ ξ(z))

i

i!
.

(17)
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And, by substituting the same formulas into equation (9), we get the relation

v

∞
∑

i=0

(A′i(z) +Ai+1(z)ξ
′(z))
(x− x+ ξ(z))i

i!
=

= a
∞
∑

i=0

Ai+2(z)
(x− x+ ξ(z))i

i!
.

(18)

Comparing the terms situated on the both sides of equations (17) and (18),
preceding expressions (x−x+ξ(z))

i

i! , i = 0, 1, 2, . . . , we receive for the elliptic problem

a

(

A′′i (z) + 2A
′

i+1(z)ξ
′(z) +Ai+1(z)ξ′′(z) +Ai+2(z)

(

1 + (ξ′(z))2
)

)

=

= v(A′i(z) +Ai+1(z)ξ
′(z)), i = 0, 1, 2, . . .

(19)

and for the parabolic problem

v(A′i(z) +Ai+1(z)ξ
′(z)) = aAi+2(z), i = 0, 1, 2, . . . . (20)

In case of the elliptic problem, it follows from conditions (2), (5) and (12) that

A0(z) = T ∗, (21)

A1(z) = −
γκvξ′(z)

λ ((ξ′(z))2 + 1)
. (22)

Since we have coefficients A0(z) and A1(z) we are able, by using formula (19), to
determine the remaining coefficients Ai(z), i = 2, 3, 4, . . . Thus we get

Ai+2(z) =
v (A′i(z) +Ai+1(z)ξ

′(z))

a
(

1 + (ξ′(z))2
) +

−

(

A′′i (z) + 2A
′

i+1(z)ξ
′(z) +Ai+1(z)ξ′′(z)

)

1 + (ξ′(z))2
,

(23)

for i = 0, 1, 2, . . . . From the obtained formulas for coefficients Ai(z), i = 0, 1, 2, . . . ,
we can conclude that all the coefficients Ai(z), i = 1, 2, 3, . . . , except coefficient
A0(z), depend on the still unknown function ξ (z), its derivatives and powers of
those derivatives. One can try to determine analytically this function by using one
of conditions (6), (7) or (8). In particular, for condition (6) we receive

∞
∑

i=0

Ai(z)
(ξ(z))i

i!
= f(z). (24)
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However, equation (24) is so much complicated that determination of function ξ(z)
with the aid of this equation is possible only in case of its certain simplification.
In particular, by taking only two first terms of the series in relation (24) we obtain
differential equation of the form

T ∗ −
γκvξ′(z)ξ(z)
λ ((ξ′(z))2 + 1)

= f(z). (25)

Since function ξ(z) is increasing by assumption, after simple transformations re-
lation (25) implies that

ξ′(z) =
γκvξ(z) +

√

(γκvξ(z))2 − 4λ2(f(z)− T ∗)2

2λ (T ∗ − f(z))
. (26)

Unluckily, an analytic solution of equation (26) is not possible for arbitrarily given
function f(z).
Problem of determining function ξ(z) is even more complicated if we consider

the boundary conditions of the second (7) and third (8) kind. For finding the
analytic solution in these cases, similar necessary simplifications must be made.
For example, considering condition (7) of the second kind we get the equation

−λ

∞
∑

i=0

Ai+1(z)(ξ(z))
i

i!
= q(z). (27)

By taking only one (the first) term of the series in relation (27) we obtain

γκvξ′(z)
(ξ′(z))2 + 1

= q(z). (28)

Hence, after simple transformations it results that

ξ′(z) =
γκv +

√

(γκv)2 − 4(q(z))2

2q(z)
. (29)

Equation (29), similarly as equation (26), will have the explicit solution only if
function q(z) will have the appropriate form.
Considering the parabolic equation, similar relations can be received. In this

case, conditions (2), (5) and (10) imply that

A0(z) = T ∗, (30)

A1(z) = −
γκv

λ
ξ′(z). (31)
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Analogically as in the previous case, by having the coefficients A0(z) and A1(z)
we can use formula (20) we can calculate the remaining coefficients Ai(z), i =
2, 3, 4, . . . We obtain

Ai+2(z) =
v

a
(A′i(z) +Ai+1(z)ξ

′(z)) , i = 0, 1, 2, . . . (32)

In here as well, all the coefficients Ai(z), i = 2, 3, 4, . . . , except coefficient A0(z),
depend on the still unknown function ξ(z), its derivatives and powers of those
derivatives.
Whereas the equations connecting function ξ(z) with functions defining the

heat transfer on the ingot surface remain unchanged with accuracy to coefficients
Ai(z), i = 1, 2, 3, . . . . In particular, for boundary condition (6) of the first kind we
get

∞
∑

i=0

Ai(z)
(ξ(z))i

i!
= f(z), (33)

for boundary condition (7) of the second kind we have

−λ

∞
∑

i=0

Ai+1(z)(ξ(z))
i

i!
= q(z) (34)

and finally for boundary condition (8) of the third kind we obtain

−λ

∞
∑

i=0

Ai+1(z)(ξ(z))
i

i!
= α(z)

(

∞
∑

i=0

Ai(z)(ξ(z))
i

i!
− T∞

)

. (35)

Received equations, similarly like in case of the elliptic problem, are so much
complicated that the analytic determination of function ξ(z) with the aid of those
is possible only with some limitations and by applying appropriate simplifications.
In particular, by taking only three first terms in the series from relation (33)

we get

A0(z) +A1(z)ξ(z) +
1
2
A2(z)ξ2(z) = f(z). (36)

From this, by using formulas (30)–(32) we obtain the following differential equation

T ∗ −
γκv

λ
ξ′(z)ξ(z)−

γκv2

2aλ
(ξ′(z)ξ(z))2 = f(z). (37)

In result of solving this equation under the assumption of satisfying condition (3)
we receive finally

ξ(z) =

√

2
γκv

∫ z

0

(

√

(aγκ)2 + 2aλγκ(T ∗ − f(τ))−
a

v

)

dτ . (38)
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Although in some cases, like for example when T = T 0 = constans, 0 ¬ z ¬ z, we
can evaluate from equation (38) very simple formula

ξ(z) =

√

2
γκv

(

√

(aγκ)2 + 2aλγκ(T ∗ − T 0)−
a

v

)

z, (39)

in general case relation (38) is not very suitable since we are not always able to
calculate the integral appearing in this relation.
We can obtain an approximate solution of this problem, as well as of the other

problems, with no difficulties, if we assume that function defining the freezing front
location is approximated by the broken line (see Figure 2), it means

ϕ(z) = x− ξ(z), (40)

where
ξ(z) = xj +mj(z − zj), z ∈ (zj , zj+1 〉 , j = 0, 1, 2, . . . , (41)

and we have
z0 = 0, zj+1 > zj , j = 0, 1, 2, . . . (42)

and
x0 = 0, xj = mj−1 (zj − zj−1) + xj−1, j = 1, 2, 3, . . . , (43)

where parameters mj , j = 0, 1, 2, . . . , will be determined numerically.
Set assumption implies that ξ(z) = ξ(z), thus

ξ′(z) = mj , z ∈ (zj , zj+1 〉 , j = 0, 1, 2, . . . (44)

From formulas (21) and (22) and relation (23) we get

A0(z) = T ∗, z ∈ (zj , zj+1 〉 , j = 0, 1, 2, . . . , (45)

A1(z) = −
γκvmj

λ
(

m2j + 1
) , z ∈ (zj, zj+1 〉 , j = 0, 1, 2, . . . , (46)

Ai+2(z) =
−γκ(vmj)

i+2

λai+1(m2j + 1)
i+2 , z ∈ (zj , zj+1 〉 , (47)

i = 0, 1, 2, . . . , j = 0, 1, 2, . . .

which means that function (11), describing the temperature field in the solid phase,
can be presented in form

T (x, z) = T ∗ −
γκa

λ

(

exp

(

vmj (x− x+ xj +mj (z − zj))
a
(

m2j + 1
)

)

− 1

)

, (48)
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for z ∈ (zj , zj+1 〉 and j = 0, 1, 2, . . . One can be easily verify that function (48)
satisfies conditions (4) and (5) and its unknown elements are only parameters mj ,
j = 0, 1, 2, . . . , for calculation of which one of the boundary conditions (6)–(8) will
be used.

0 x̄ xx̄− xj+1 x̄− xj x̄− xj−1

zj

zj − zj−1

zj − zj+1

z

Fig. 2. Approximation of the function describing the freezing front location
Rys. 2. Aproksymacja funkcji określającej położenie granicy rozdziału faz

If we require that for each zj+1, j = 0, 1, 2, . . . , one of the boundary conditions
(6), (7) or (8) is satisfied, we receive the equation enabling to determine the sought
parameters. In particular, by applying condition (6) we have

f (zj+1) = T ∗ −
γκa

λ

(

exp

(

vmj (xj +mj (zj+1 − zj))
a
(

m2j + 1
)

)

− 1

)

, (49)

j = 0, 1, 2, . . .

By proceeding in similar way we can also determine the forms of function
defining the freezing front location for the conditions of second (7) and third (8)
kind. In particular, for condition (7) of the second kind we have

q (zj+1) =
γκvmj
m2j + 1

exp

(

vmj (xj +mj (zj+1 − zj))
a
(

m2j + 1
)

)

, (50)

j = 0, 1, 2, . . . ,
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whereas, for condition (8) of the third kind we get

γκvmj
m2j + 1

exp

(

vmj(xj +mj (zj+1 − zj))
a
(

m2j + 1
)

)

= α (zj+1)×

×

(

T ∗ − T∞ −
γκa

λ

(

exp

(

vmj (xj +mj (zj+1 − zj))
a
(

m2j + 1
)

)

− 1

))

,

j = 0, 1, 2, . . .

(51)

For each of the conditions (6)–(8) parametersmj , j = 0, 1, 2, . . . , are described
by means of equations which cannot be solved analytically. Equations (49)-(51)
can be solved by applying one of the many known methods of determining the
approximate roots of nonlinear equations, like for example the direct iteration
method.

3. Numerical examples

Example 1

Let us consider the theoretical example in which the function of temperature
T = T (x, z) is expressed by means of equation T (x, z) = 1000−exp(x+ 0, 2z − x)
and function describing the freezing front location is of the form ϕ (z) = x −
ξ (z) in which the reconstructed, variable on the ingot length, thickness of the
ingot skin ξ(z) is defined by relation ξ(z) = 0, 2z. Values of the other parameters
are the following: thickness of material of the solidifying plate x = 2, density
γ = 4, thermal conductivity coefficient λ = 1, latent heat κ = 130, solidification
temperature T ∗ = 999, ambient temperature T∞ = 50 and we assume that the
heat transfer with environment is described by means of one of conditions (6)–
(8). Moreover, let us assume that we consider the solidification process until the
moment of time t∞=100. For the material data, environment parameters and
duration time chosen in such way, the function T (x, z) satisfies equation (1) as
well as condition (4) and (5) on the freezing front.
By having the function describing the field of temperature in solid phase one

can generate, by using boundary conditions (6)–(8), the functions defining: tempe-
rature of the ingot surface f(z), heat flux density q(z) of the heat derived outside
and heat transfer coefficient α(z).
Another important parameter is the discretization density of variable z. In this

paper we take that the considered interval 〈0, z̄〉 is evenly divided into m sections
of length ∆z = z̄/m which means that zj = j∆z, for j = 0, 1, 2, . . . ,m.
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The main object, investigated in testing calculations, is the precision of recon-
struction of function ξ(z) describing the thickness of solidified layer variable in
time.
Since in considered example the reconstructed function is linear and is ap-

proximated by linear function, we will present briefly the efficiency of discussed
method by confining ourselves to the boundary condition of the third kind only.
By using formula (51) for given parameters characterizing the discussed problem
and by taking m = 30 nodes of partition of the time interval we received the result
presented graphically in Figure 3.

20 40 60 80 100

5

10

15

20
ξ(z) [m]

z [m]

Fig. 3. Plot of function describing the thickness of solidified layer ξ(z) varying in
time (solid line) and its approximation ξ(z) (points) obtained for m = 30
(for boundary condition of the third kind)

Rys. 3. Wykres funkcji określającej zmienną w czasie grubość warstwy zakrzepłej
ξ(z) (linia ciągła) i jej przybliżenia ξ(z) (punkty) dla m = 30 (dla warunku
brzegowego III rodzaju)

In Figure 4 the absolute errors of obtained approximate solution are displayed.
The errors are determined according formula

∆ (zj) =
∣

∣ξ (zj)− ξ(zj)
∣

∣ , j = 1, 2, ...,m, (52)

where ∆ (zj) denotes the absolute error, ξ (zj) is the exact value, ξ(zj) is the
approximate value of function describing the thickness of solidified layer varying
in time and zj represents the j-th node of discretization of variable z for j =
1, 2, ...,m.
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0.0004
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∆(z) [m]

z [m]

Fig. 4. Distribution of absolute errors for m = 30 (for boundary condition of the
third kind)

Rys. 4. Rozkład błędów bezwzględnych dla m = 30 (dla warunku brzegowego III
rodzaju)

Example 2

To confirm effectiveness of investigated method we present now the results of
further research in which we assume that the plate of thickness 2x = 0, 2 [m]
is casted, material of which is specified by the following parameters: density
γ = 7000 [kg/m3], thermal conductivity coefficient λ = 25 [W/mK], specific
heat c = 800 [J/kgK], latent heat κ = 247 [kJ/kg], solidification temperature
T ∗ = 1500 [K], ambient temperature T∞ = 320 [K], velocity vector coordinate in
the direction of ingot forming v = 0, 8 [m/min] and the heat transfer with envi-
ronment is defined by means of one of boundary conditions (6)–(8). Additionally,
let us assume that we consider the process of ingot solidification until the moment
of time in which the ingot reaches the length z̄ = vt∗. Now, similarly like in [1], we
set that the field of temperature in solid phase is described with the aid of function
of form (11), under the assumption that the reconstructed thickness of the ingot
skin ξ(z), varying along the ingot length, is expressed by one of the formulas:

ξ(z) = ξ1(z) = 0.001z2, (53)

ξ(z) = ξ2(z) = 0.00001z2, (54)

ξ(z) = ξ3(z) = 0.1 sin
(πz

20

)

, (55)

in which z̄ = 10 [m].
Let us discuss the case of the first kind condition (6). By using formula (49) for

the given parameters characterizing the considered problem and by taking m = 30
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nodes of interval 〈0, z̄〉 discretization, we receive the result displayed graphically
in Figure 5, where the solid line denotes the exact solution ξ1(z), whereas the
approximate solution ξ1(z) is designated by points. In Figure 6 the absolute errors
(52) of this approximation are showed.

2 4 6 8 10

0.02

0.04

0.06

0.08

0.10 ξ(z) [m]

z [m]

Fig. 5. Graph of function describing the thickness of solidified layer ξ1(z), varying in
time (solid line) and its approximation ξ1(z) (points) calculated for m = 30
(for boundary condition of the first kind)

Rys. 5. Wykres funkcji określającej zmienną w czasie grubość warstwy zakrzepłej
ξ1(z) (linia ciągła) i jej przybliżenia ξ1(z) (punkty) dla m = 30 (dla warunku
brzegowego I rodzaju)
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Fig. 6. Distribution of absolute errors for m = 30 (for boundary condition of the
first kind)

Rys. 6. Rozkład błędów bezwzględnych dla m = 30 (dla warunku brzegowego I ro-
dzaju)
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Example 3

Let us consider now the case of boundary condition (7) of the second kind for
the problem specified in Example 2. By applying formula (50) for the assumed
parameters characterizing the discussed problem and by taking m = 30 nodes of
discretization, we get the result presented in Figure 7, with the absolute errors
displayed in Figure 8.
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Fig. 7. Graph of function describing the thickness of solidified layer ξ2(z), varying in
time (solid line) and its approximation ξ2(z) (points) calculated for m = 30
(for boundary condition of the second kind)

Rys. 7. Wykres funkcji określającej zmienną w czasie grubość warstwy zakrzepłej
ξ2(z) (linia ciągła) i jej przybliżenia ξ2(z) (punkty) dla m = 30 (dla warunku
brzegowego II rodzaju)
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Fig. 8. Distribution of absolute errors for m = 30 (for boundary condition of the
second kind)

Rys. 8. Rozkład błędów bezwzględnych dla m = 30 (dla warunku brzegowego II
rodzaju)



72 E. Hetmaniok, M. Pleszczyński

Example 4

Finally, we take into consideration the case of boundary condition (8) of the
third kind for the problem characterized in Example 2. Similarly like in previous
cases, but by using formula (51), for the given parameters specifying the discussed
problem any by taking m = 30 nodes of the time interval discretization we receive
the result presented in Figure 9, with the absolute errors showed in Figure 10.
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Fig. 9. Graph of function describing the thickness of solidified layer ξ3(z), varying in
time (solid line) and its approximation ξ3(z) (points) calculated for m = 30
(for boundary condition of the third kind)

Rys. 9. Wykres funkcji określającej zmienną w czasie grubość warstwy zakrzepłej
ξ3(z) (linia ciągła) i jej przybliżenia ξ3(z) (punkty) dla m = 30 (dla warunku
brzegowego III rodzaju)
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Fig. 10. Distribution of absolute errors for m = 30 (for boundary condition of the
third kind)

Rys. 10.Rozkład błędów bezwzględnych dla m = 30 (dla warunku brzegowego III
rodzaju)
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4. Conclusions

The paper presents the method of analytic-numerical nature used for deter-
mining the approximate solution of the selected kind of problems reducible to the
one-phase solidification problem of a plate with the unknown a priori, varying in
time boundary of the region in which the solution is sought. Proposed method is
based on two elements: on the expansion of the sought function, describing the
temperature field, into the power series, some coefficients of which are determined
by using the boundary conditions and on the approximation of the function, defi-
ning the location of freezing front, with the broken line, parameters of which are
determined numerically. Effectiveness and usefulness of the approach have been
illustrated with examples.
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Omówienie

W artykule przedstawiono atrakcyjną z inżynierskiego punktu widzenia me-
todę rozwiązywania wybranej klasy problemów, które można sprowadzić do jed-
nofazowego zagadnienia krzepnięcia płyty z nieznaną a priori, zmienną w czasie
granicą obszaru, w którym poszukiwane jest rozwiązanie. Metoda ta stanowi połą-
czenie technik analitycznych oraz numerycznych i bazuje na znanym formalizmie
wstępnego rozwinięcia poszukiwanej funkcji, opisującej pole temperatury, w szereg
potęgowy, którego pewne współczynniki wyznaczane są z warunków brzegowych.
Zaprezentowane rozwiązania zilustrowane zostały przykładami.


