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INTEGRABLE MIKUSIŃSKI OPERATORS AS
ULTRADISTRIBUTIONS

Summary. In this paper we introduce a notion of integrable Mikusiń-
ski operators. The definition of Fourier transform of such operators is given.
We also give a characterization of integrable operators which are ultradi-
stributions.

CAŁKOWALNE OPERATORY MIKUSIŃSKIEGO
JAKO ULTRADYSTRYBUCJE

Streszczenie. W artykule wprowadzamy pojęcie całkowalnych opera-
torów Mikusińskiego, definiujemy ich transformatę Fouriera i podajemy pe-
wien warunek konieczny i wystarczający, aby operator tego typu był ultra-
dystrybucją.

1. Introduction

The Mikusiński operational calculus has various applications and is also inte-
resting from a theoretical point of view. The construction of Mikusiński operators
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is strictly algebraic. The definition of Mikusiński operators given in [7] started
from the ring of continuous function on the half line [0,∞) with the usual addi-
tion and the multiplication defined as the convolution. From the famous theorem
of Titchmarsh , this ring has no zero devisors, so the construction of the field of
quotients is possible. Elements of this field are called Mikusiński operators. Every
continuous function on [0,∞) can be treated in a natural way as a Mikusiński
operator, but the field F of Mikusiński operators contains many other elements
which are not functions. For example, the neutral element of multiplication as well
as any shift operator cannot be identified with any function. Using shift operators
and the integral operator we can identify any locally integrable function which va-
nishes to the left of some point with an operator. The space of all such functions
with the convolution as multiplication is also a ring without zero devisors, so one
can construct the field of quotients of this ring, but such field is isomorphic to the
field of Mikusiński operators. We are using this fact and interpret Mikusiński ope-
rators as convolution quotients f/g where f and g are locally integrable functions
vanishing to the left of some point.
Mikusiński operators are examples of the so-called “generalized functions”.

Among other examples of generalized functions are Schwartz distributions. Distri-
butions which vanish to the left of some point can be identified with Mikusiński
operators, but there are Mikusiński operators which cannot be identify with any
distribution.
Ultradistributions are generalized functions which are more general than di-

stributions. As in the case of distributions, ultradistributions vanishing to the left
of some point are Mikusiński operators.
The definition of a space of ultradistributions depends on a sequence of num-

bers (Mn) which defines a space of test function. The aim of this paper is to give
some conditions for Mikusiński operators which are ultradistributions not depen-
ding on the sequence (Mn). It is done for a class of Mikusiński operators which we
call integrable operators. The main result of the paper is Theorem 10 which gives
a description of integrable operators which are ultradistributions.

2. Preliminaries

In this paper by L and L we denote the space of integrable functions and the
space of locally integrable functions on the real line, respectively. By L0 we denote
the subspaces of L which consists of all integrable functions with bounded support
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and by L+ the subspace of all locally integrable functions vanishing to the left of
some point. Similarly, by L+ we denote the subspace of all integrable functions
vanishing to the left of some point. For functions f, g ∈ L the convolution is defined
by

f ∗ g(t) =
∫
∞

−∞

f(t− s)g(s)ds,

if the integral on the right-hand side is finite for almost all t. For example, the
convolution is well defined if f, g ∈ L. In this case f ∗ g ∈ L and

‖f ∗ g‖ ¬ ‖f‖‖g‖.

The construction of Mikusiński operators is based on the fact that for f, g ∈ L+
the convolution always exists and f ∗ g ∈ L+. This implies that L+ with the usual
addition and the convolution as the product operation is a commutative ring. By
the Titchmarsh theorem, L+ is a ring without zero divisors. The field of Mikusiński
operators is defined as the field of quotients of this ring (see [7]).
Another important case when the convolution exist is when one of function is

locally integrable and other is an integrable function with bounded support. For
example, the construction of Boehmians (see [8]) is based on the existence of such
convolutions.
By D we denote the space of all infinitely differentiable functions on the real

line with compact support. This space is equipped with the natural inductive limit
topology. Functionals on D are called distributions [11]. For each distribution x
and a test function ϕ the convolution x ∗ ϕ can be defined in a natural way such
that x∗ϕ is an infinitely differentiable function. For this reason, every distribution
with the support bounded from the left can be considered a Mikusiński operator,
namely the operator x∗ϕ

ϕ
, where ϕ is an arbitrary nonzero test function. Using the

closed graph theorem it is easy to prove that an operator x is a distribution if and
only if x ∗ ϕ is a continuous function for every test function ϕ whose support is
contained in some interval P .
The notion of support cannot be defined for all operators. It can be done for

the so-called regular operators introduced by T. K. Boehme in [2] (see also [3]).
Next we sketch the construction of ultradistributions. For more details see for

example [1, 9] or [4].
Let M = (Mn) be a sequence of positive numbers such that

M0 = 1, M2n ¬Mn−1Mn+1 (n = 1, 2, ...). (1)

Define
D(M) := {ϕ ∈ D : ∀λ > 0 pM,λ(ϕ) <∞},
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where
pM,λ(ϕ) := sup{λ−kM−1k ‖ϕ

(k)‖ : k ∈ N0}

and N0 = {0, 1, 2, . . .}. It is known (see for example [10, p. 376]) that D(M)
contains a non-zero function if and only if

∞∑

k=1

Mk−1

Mk

<∞ (2)

and in this case D(M) is a dense subspace of D.
Let us denote byM the family of all sequences M satisfying (1) and (2). For

any M ∈ M and any positive number r, by Dr(M) we denote the subspace of
D(M) consisting of functions whose support is a subset of the interval [−r, r].
The space Dr(M) can be considered as a locally convex metric space with the
topology generated by the pseudonorms pM,λ (λ ∈ N). Next we can equip the
space D(M) with the inductive limit topology of the spaces Dn(M). Linear and
continuous functionals on this space are calledM-ultradistributions. The notions
of support of ultradistributions can be defined in the same way as for distributions.
Also the convolution of an ultradistribution with a test function can be defined
and the result is a continuous function. By D(M)′+ we denote the space of all
M-ultradistributions whose support is bounded from the left.
If x is an ultradistribution and ϕ, ψ ∈ D(M) then

(x ∗ ϕ) ∗ ψ = (x ∗ ψ) ∗ φ.

From this reason, if x ∈ D(M)′+, then for any ϕ, ψ ∈ D(M) we have

x ∗ ϕ

ϕ
=
x ∗ ψ

ψ

in the sens of Mikusiński operators. Thus any ultradistribution x ∈ D(M)′+ can
be identified with the Mikusiński operator x∗ϕ

ϕ
.

For any function ϕ on the real line and any positive number λ let

ϕλ(t) = λϕ(λt).

In all cases considered in this paper, when the convolution exists, we have

(ϕ ∗ ψ)λ = ϕλ ∗ ψλ. (3)

This equality allows us to define xλ in the case when x is a Mikusiński operator.
Namely, for x = ϕ/ψ we define xλ = ϕλ/ψλ. Clearly, xλ can be defined in a natural
way for all distributions and ultradistributions.
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For a function ϕ ∈ L by ϕ̂ we denote the Fourier transform of ϕ, that is

ϕ̂(t) =
∫
∞

−∞

eistϕ(s)ds.

If f is a measurable function on [0,∞), by f̃ we denote the function on [0,∞)
defined by formula

f̃(t) = ess sup{|f(s)| : s ∈ [0, t]}.

In the case of a measurable function on R we define

f̃(t) = ess sup{|f(s)| : s ∈ [−t, t]},

for all t ­ 0.

3. Ultradistributions as Mikusiński operators

The following theorem plays an important role in the proof of Theorem 10. It
can be easily obtained from [9] (Lemma 2, page 67).

Theorem 1. Suppose that f ∈ L and

∫
∞

0

log f̃(t)
1 + t2

dt <∞.

Then there exists a sequence M ∈M such that

f · ϕ̂ ∈ L for each ϕ ∈ D(M).

As a consequence of the above theorem and Theorem 1 in [3] we obtain the
following result.

Theorem 2. A Mikusiński operator x is an ultradistribution with bounded support

if and only if it admits a representation

x =
ϕ

ψ

such that f(z) = ϕ̂(z)

ψ̂(z)
is an entire function satisfying

∫
∞

0

log |f̃(t)|
1 + t2

dx <∞.
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Definition 3. We say that a Mikusiński operator x is integrable if there exists

a dense subset A of L+ such that x ∗ ψ ∈ L for all ψ ∈ A.

Definition 4. For an integrable operator x we define the Fourier transform of x

as a function x̂ on the real line such that for every t ∈ R:

x̂(t) =
ϕ̂(t)

ψ̂(t)
, (4)

where ϕ/ψ is an arbitrary representation of x such that ψ̂(t) 6= 0.

Since the equality
ϕ1
ψ1
=
ϕ2
ψ2

in the sens of Mikusiński operators means that ϕ1 ∗ ψ2 = ϕ2 ∗ ψ1, properties of
the Fourier transform imply

ϕ̂1(t)ψ̂2(t) = ϕ̂2(t)ψ̂1(t),

so the Fourier transform of integrable operators is well-defined. Moreover, since the
Fourier transform of an integrable function is a continuous function, the Fourier
transform of any integrable operator is a continuous function.
From elementary properties of the Fourier transform in L we easily obtain the

following important result.

Theorem 5. If Mikusiński operators x and y are transformable then the operator

x ∗ y is transformable and

x̂ ∗ y = x̂ · ŷ.

Here are some examples of integrable operators:

(a) An arbitrary function ϕ ∈ L+ is an integrable Mikusiński operator.

(b) A Mikusiński operator with bounded support is an integrable operator.

(c) If M = (Mn) ∈M, then the distribution

∞∑

n=1

1
Mn

δ(n)(t− n)

is an example of distribution of infinite order which is an integrable operator.
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(d) From the Wiener theorem about shifting of integrable functions it follows
that, if ψ ∈ L+ and ψ̂(t) 6= 0 for all t ∈ R, then the operator 1/ϕ is
integrable. Consequently, any operator ϕ/ψ with ϕ, ψ ∈ L+ and ψ̂(t) 6= 0
for all t ∈ R is an integral operator.

Before we proceed to prove the main theorem we need to recall some definitions
and some known facts and formulate some technical lemmas.
In the field of Mikusiński operators three types of convergence are considered.

For the purpose of this paper it will be convenient to consider the so-called type
II convergence (see [7]). We say that a sequence (xn) of Mikusiński operators is
convergent to an operator x if there exists sequences (ϕn) and (ψn) in L+ and
functions ϕ, ψ ∈ L+ such that x = ϕ/ψ, all functions ψn have the supports
bounded from the left by some common point, and

xn =
ϕn
ψn

,

where ϕn → ϕ and ψn → ψ in L.
The following lemma is obvious.

Lemma 6. For each Mikusiński operators x, y the function

λ ∋ (0,∞) 7→ x ∗ yλ ∈ F

is continuous.

A function f ∈ L can be considered in a natural way as a linear and continuous
functional on the Banach space C0 of continuous functions on the real line vanishing
at infinity. The usual norm of a function f ∈ L is the same as the norm of f as
a functional on C0. Because the space C0 is separable, each bounded sequence (fn)
in L contains a subsequence convergent in the space C′0 to some measure µ. It
is clear that, if the measure µ is determined be an integrable function f , than
‖f‖ ¬ lim inf

n→∞
‖fn‖.

In the next part of the paper by week convergence in L we mean the conver-
gence in the space C′0 (note, that the defined week convergence in L implies week
convergence in C′0, but they are not equivalent). All functionals on C0 are distri-
butions and convergence in C0 implies convergence in the distributional sense and
hence also in the field of Mikusiński opertators.
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Lemma 7. Let x be a Mikusiński operator. If ϕ ∈ L+ is such that x ∗ ϕλ ∈ L for

all numbers λ in some interval P ⊂ (0,∞), then there exists an interval Q ⊂ P

such that the map

Q ∋ λ 7→ x ∗ ϕλ ∈ L (5)

is weekly continuous and bounded.

Proof. Consider the set

Am = {λ ∈ P : ‖x ∗ ϕλ‖ ¬ m}.

Suppose that (λn) is a sequence of elements of Am and λn → λ for some λ ∈ P .
Denote fn = x ∗ϕλn . Since the sequence (fn) is bounded in L, it has subsequence
convergent in C′0 to some measure µ. From Lemma 6 and the remarks following
that lemma, we have µ = x ∗ ϕλ. This shows that (fn) has a subsequence weakly
convergent to x∗ϕλ. The same can done for each subsequence of (fn), from which
we conclude that x∗ϕλn → x∗ϕλ. Therefore, Am is a closed subset of P . From the
assumptions of the lemma, we have

⋃
∞

n=1 Am = P . Consequently, Am contains an
interval Q, by the Baire category theorem. �

Corollary 8. Under the assumptions of Lemma 6 we can conclude that there

exists a nonzero function ψ ∈ L+ vanishing to the left of 0 and some real number
b ∈ [1,∞) such that for each λ ∈ [1, b] and some M :

x ∗ ψλ ∈ L and ‖x ∗ ψλ‖ ¬M.

Lemma 9. Suppose that ϕ is a measurable nonnegative function on the interval

[0,∞) such that ∫
∞

0

ϕ(t)
1 + t2

dt <∞.

Let ε ∈ (0, 1) and define

ψ(t) = ess inf{ϕ(s) : s ∈ [εt, t]}.

Then ∫
∞

0

ψ̃(t)
1 + t2

dt <∞.

Proof. It is sufficient to prove that the integral
∫
∞

1

ψ̃(t)t−2dt is convergent. Since

for each positive numbers t we have

ψ̃(t) ¬ ϕ(t) + ψ̃(εt),
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for any T > 0 we have

∫ εT

1

ψ̃(t)t−2dt ¬
∫ T

1

ψ̃(t)t−2dt ¬
∫ εT

1

ϕ(t)t−2dt+
∫ T

1

ψ̃(εt)t−2dt

¬

∫
∞

1

ϕ(t)t−2dt+ ε
∫ εT

ε

ψ̃(t)t−2dt.

From this we obtain
∫ εT

1

ψ̃(t)t−2dt ¬
1
1− ε

∫
∞

1

ϕ(t)t−2dt,

which implies convergence of the considered integral. �

Now we are ready to prove the main result of the paper.

Theorem 10. Let x be an integrable Mikusiński operator. Then x is an ultradi-

stribution if and only if there exists a nonzero function ϕ ∈ L+ and some interval

P such that x ∗ ϕλ ∈ L for each λ ∈ P.

Proof. By Corollary 8 we can assume that P = [1, b] for some b > 1 and that there
exists M > 0 such that ‖x∗ϕλ‖ ¬M for each λ ∈ P. In particular, x̂ ∗ ϕλ(t) ¬M
for all t ∈ R.

Denote by Φ the Fourier transform of x. Because x̂ ∗ ϕλ = Φ · ϕ̂λ, we have

|Φ(t)| ¬
M

|ϕ̂λ(t)|
. (6)

for each λ ∈ P and t ∈ R.

It is well known that the Fourier transform of an integrable function vanishing
to the left of 0 can be extended to the closed upper half of the complex plane.
The extension is a continuous bounded function F (z) that is analytic on the open
upper half plane and such that

∫
∞

−∞

| log |F (t)||
1 + t2

dt <∞.

Hence, for each λ ∈ [1, b] the function fλ defined on the interval [0,∞) by the
formula

fλ(t) =
M

|ϕ̂λ(t)|
+

M

|ϕ̂λ(−t)|

satisfies the inequality ∫
∞

0

| log |fλ(t)||
1 + t2

<∞. (7)
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Let f be a function defined on [0,∞) by the formula

f(t) = inf{fλ(t) : λ ∈ [1, b]}. (8)

Since ϕ̂λ(t) = ϕ̂(λ−1t) for each λ > 0, we have ϕ̂λ(t) = ϕ̂(λ−1t). Thus, for any
s ∈ [1/b, 1] we have

f1(st) =
M

|ϕ̂(st)|
+

M

|ϕ̂(−st)|
= f 1

s

(t). (9)

By (8) and (9) we can write

f(t) = inf{f1(st) : s ∈ [1/b, 1]}.

By Lemma 9 we have ∫
∞

0

f̃(t)
1 + t2

dt <∞. (10)

From (6) and the definitions of f and fλ we conclude that

Φ(t) ¬ f̃(|t|)

for all t ∈ R. This completes the proof in view of Theorem 1. �

Remark 11. A condition similar to that in the above theorem appears in the
definition of strong Boehmians (see [5]). An extension of the method used in this
paper to Boehmians will be considered in a forthcoming paper by the author.
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Omówienie

W artykule omawia się związki pomiędzy operatorami Mikusińskiego i inne-
go rodzaju funkcjami uogólnionymi. Wprowadzono pojęcie całkowalnego opera-
tora Mikusińskiego, zdefiniowano transformatę Fouriera operatorów całkowalnych
i omówiono jej podstawowe własności. Główny wynik artykułu dotyczy pewnego
warunku wystarczającego na to, aby operator całkowalny był ultradystrybucją.




