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SERIES OF ITERATED LOGARITHMS

Summary. In this paper certain properties of the series of iterated
logarithms are discussed in more general context.

SZEREGI ITEROWANYCH LOGARYTMÓW

Streszczenie. W artykule pewne własności szeregów iterowanych loga-
rytmów są rozważane w znacznie ogólniejszym kontekście.

1. Basic notions and properties

Let α ∈ (1,+∞). Let us put

a0(α) := 1, an+1(α) := αan(α)

and
log(0)α x := x, log(n+1)α x := logα(log

(n)
α x),

for every n ∈ N0 := N ∪ {0} and x ∈ [an(α),+∞).
First the basic properties of sequence {an(α)}n∈N will be presented.
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Theorem 1. Sequence {an(α)}n∈N is increasing for every α ∈ (1,+∞). Limit
lim
n→+∞

an(α) is finite if and only if α ∈ (1, e
√
e]. Moreover, we have

lim
n→+∞

an( e
√
e) = e.

The following corollary is an important consequence of Theorem 1.

Corollary 2. For every α ∈ (1, e√e] and for every k ∈ N, k  3, we have

sup{n ∈ N0 : an(α) ¬ k} = +∞.

If α > e
√
e then lim

n→+∞
an(α) = +∞. Therefore for every k ∈ N there exists

n(k;α) ∈ N such that an > k for every n ∈ N satisfying n  n(k;α). In consequ-
ence, the integer number

tk(α) := max{n ∈ N0 : an(α) ¬ k}

is well defined.

Remark 3. In papers [1, 5, 8] there are discussed the properties of sequence
{an(α)}n∈N, among others, Theorem 1 is proven there.
Furthermore, it is shown there that if α ∈ (0, 1) then sequence {an(α)}n∈N

is convergent if and only if α ∈ [e−e, 1) (see [1, 8]). Cooper [5] proved that if
e
√
e < α < β and for every u ∈ N the positive integer v = v(u) is defined by
inequalities

av(α) < au(β) ¬ av+1(α),
then the difference v−u is constant for all sufficiently large values u ∈ N. Roughly
speaking, every sequence {an(α)}n∈N with α > e

√
e grows at the same rate.

2. Convergence of the series of iterated logarithms

It is a classical result (see [3, 4, 6, 9, 11]) that for every α ∈ ( e√e,+∞) and for

every l ∈ N the series
∑

k∈N

(

min{l,tk(α)}
∏

n=0
log(n)α k

)−1

is divergent.

We are going to consider the convergence of the series of iterated logarithms
having the most general form with respect to the upper index of multiplication,

i.e. having the form
∑

k∈N

(

tk(α)
∏

n=0
log(n)α k

)−1

, where α ∈ ( e√e,+∞).
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Theorem 4. Let α ∈ ( e√e,+∞). Then the series ∑
k∈N

(

tk(α)
∏

n=0
log(n)α k

)−1

is conver-

gent if and only if α ∈ ( e√e, e).

Proof. Since the sequence {an(α)}n∈N is increasing, we have tk = n for any positive
integer k ∈ Jn(α) := N ∩ [an(α), an+1(α)), n ∈ N. It is easy to show that

∣

∣

∣

∣

∣

∣

In(α) −
∑

k∈Jn(α)

(

n
∏

i=0

log(i)α k

)−1
∣

∣

∣

∣

∣

∣

¬
(

n
∏

i=0

log(i)α (an(α))

)−1

=

=

(

n
∏

i=0

ai(α)

)−1

¬ α−n,

by the inequality ai(α)  α, i ∈ N, where

In(α) :=

an+1(α)
∫

an(α)

(

n
∏

i=0

log(i)α x

)−1

dx =

= [(lnα)n+1 log(n+1)α x]an+1(α)
an(α)

= (lnα)n+1, n ∈ N.

Hence we obtain at once that the series
∑

k∈N

(

tk(α)
∏

n=0
log(n)α k

)−1

is convergent if and

only if α ∈ ( e√e, e), which completes the proof. �

Remark 5. Theorem 4 was discovered independently by many authors: Keung-
Yan-Cheong and Cover [10], Beigel [2], Gurarie, Goldstern, Martin [7], and Wituła
(his formulation, unpublished to date, is presented above).

3. Certain generalization of the problem of

convergence of the series of iterated logarithms

We prove now the theorem which, independently of its internal beauty, will
lead us to consider the problem of convergence of the series of iterated logarithms
from the other point of view by comparing the convergence of series and the
convergence of the proper element of these series.
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Theorem 6. Let an, b
(i)
n ∈ (0,+∞), i, n ∈ N. Assume that lim

n→+∞
an = 0,

∑

n∈N

b(i)n = +∞ and lim
n→+∞

an

b
(i)
n

= 0 for every i ∈ N.

Then there exists an increasing sequence {r(n)}n∈N of positive integers such that
∑

n∈N

ar(n) < +∞ and
∑

n∈N

b
(i)
r(n) = +∞, for every i ∈ N.

Proof. Let us consider two increasing sequences {k(n)}n∈N and {s(n)}n∈N of po-
sitive integers such that

(i) k(n) ¬ s(n) < k(n+ 1), n ∈ N,

(ii) 2tan ¬ min{1, b(i)n }, for n, t ∈ N, n  k(t) and i = 1, . . . , t,

(iii)
s(t)
∑

n=k(t)

b
(i)
n  1, for every i, t ∈ N, i ¬ t and

s(t)−1
∑

n=k(t)

b
(i)
n < 1, for some i ¬ t if s(t) > k(t).

Observe that if s(t) = k(t) then

s(t)
∑

n=k(t)

an = ak(t) ¬ 2−t.

On the other hand, if s(t) > k(t) then by (iii) we can choose an index i ¬ t such
that

s(t)−1
∑

n=k(t)

b(i)n < 1.

Hence we obtain the estimation

s(t)
∑

n=k(t)

an =
s(t)−1
∑

n=k(t)

an + as(t) ¬ 2−t
s(t)−1
∑

n=k(t)

b(i)n + 2
−t < 2−t+1.

As a consequence of this fact we get

∑

t∈N

s(t)
∑

n=k(t)

an ¬
∑

t∈N

2−t+1 < +∞.
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Using (iii) we obtain

∑

t∈N

s(t)
∑

n=k(t)

b(i)n = +∞ for every i ∈ N.

Finally, we deduce from the above that the increasing sequence {r(n)}n∈N of all
elements of set {n ∈ N : (∃t ∈ N)(k(t) ¬ n ¬ s(t))} possesses the desired proper-
ties. �

Corollary 7. Let us fix α ∈ ( e√e,+∞) and l ∈ N. Let us also set

an =





min{l,tn(α)}
∏

k=0

log(k)α n





−1

and

b(i)n =





min{l+1,tn(α)}
∏

k=0

log(k)α n





−1

for every i, n ∈ N. Then there exists an increasing sequence {r(n)}n∈N of positive
integers such that

∑

n∈N





min{l,tr(n)(α)}
∏

k=0

log(k)α (r(n))





−1

= +∞

and

∑

n∈N





min{l+1,tr(n)(α)}
∏

k=0

log(k)α (r(n))





−1

< +∞.

Corollary 8. Let us put

an =





tn(α)
∏

k=0

log(k)α n





−1

and

b(i)n =





min{i,tn(α)}
∏

k=0

log(k)α n





−1
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for every i, n ∈ N and α ∈ ( e√e,+∞). Then there exists an increasing sequence
{r(n)}n∈N of positive integers such that

∑

n∈N





tr(n)(α)
∏

k=0

log(k)α (r(n))





−1

< +∞

and

∑

n∈N





min{i,tr(n)(α)}
∏

k=0

log(k)α (r(n))





−1

= +∞ for every i ∈ N.

We note that, if α ∈ ( e√e, e) then we can define r(n) = n, n ∈ N.

4.Generalisations to the bigger class of functions –

obeying logarithms

The next theorems are the generalizations of two previous corollaries. Before
their formulation we need some auxiliary definitions.
We assume that f : (0,+∞) → (0,+∞) is a function satisfying conditions

lim
x→+∞

f(x) = +∞ and lim
x→+∞

f(x)
x
= 0

and then we use the notations

f0(x) := x, fk(x) := f(fk−1(x)) for k ∈ N, x ∈ (0,+∞),

and

t(x) := sup {s ∈ N0 : fw(x)  1 for every w = 0, 1, . . . , s} for x ∈ [1,+∞).

Theorem 9. Let {xn}n∈N be a sequence of positive real numbers such that

xn  1, n ∈ N and lim
n→+∞

xn = +∞

and let u
(i)
n , n ∈ N, i ∈ N and vn, n ∈ N be the sequences of positive integers such

that the following conditions are satisfied

(i) u(i)n < vn ¬ t(xn), i, n ∈ N,
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(ii) lim
n→+∞





vn
∏

w=u
(i)
n +1

fw(xn)





−1

= 0 for every i ∈ N,

(iii)

∞
∑

n=1





u(i)
n
∏

w=0

fw(xn)





−1

= +∞ for every i ∈ N.

Then there exists a subsequence {yn}n∈N of sequence {xn}n∈N such that

∑

n∈N

(

vn
∏

w=0

fw(yn)

)−1

< +∞

and

∑

n∈N





u(i)
n
∏

w=0

fw(yn)





−1

= +∞

for every i ∈ N.

Proof. Let us define

an =

(

vn
∏

w=0

fw(xn)

)−1

and

b(i)n =





u(i)
n
∏

w=0

fw(xn)





−1

for every i, n ∈ N. Observe that an and b
(i)
n satisfy the assumptions of Theorem 6.

Therefore Theorem 9 follows from Theorem 6. �

The following result is an existential version of Theorem 9.

Theorem 10.

1. Let k ∈ N0. Then there exists an increasing sequence {xn}n∈N of positive
reals such that

lim sup(xn+1 − xn) = +∞,

∑

n∈N

(

k
∏

w=0

fw(xn)

)−1

= +∞
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and
∑

n∈N

(

k+1
∏

w=0

fw(xn)

)−1

< +∞.

2. Suppose that r : N → R satisfies condition lim
n→+∞

r(n) = +∞. Then there
exists an increasing sequence {xn}n∈N of positive reals such that

lim sup(xn+1 − xn) = +∞,

∑

n∈N

(

k
∏

w=0

fw(xn)

)−1

= +∞

for every positive integer k ∈ N, and

∑

n∈N





r(n)
∏

w=0

fw(xn)





−1

< +∞.

Proof.

1. Let k ∈ N0. Then we can find an increasing sequence {yn}n∈N of positive reals
such that

y1  1, y2n+1 − y2n  n, n ∈ N,

t(x)  k + 1 for every x  y1,

fk(x)  fk+1(x)  2n+1, x  yn, n ∈ N.

For every n ∈ N we shall choose a finite and increasing sequence z(n)u , u =
1, . . . , v(n), v(n) ∈ N, of elements belonging to interval (y2n−1, y2n) and satis-
fying the inequality

1 ¬
v(n)
∑

u=1

(

k
∏

w=0

fw(z(n)u )

)−1

< 2.

The increasing sequence {xn}n∈N of all elements z(n)u , n, u ∈ N, 1 ¬ u ¬ v(n),
possesses the desired properties.

2. Let {r(n)}n∈N denote a sequence of positive integers such that lim
n→+∞

r(n) =

+∞. Then there exists an increasing sequence {yn}n∈N of positive reals such that

y1  1, y2n+1 − y2n  n, n ∈ N,

t(x)  r(n) and fk(x)  2n, x  yn, n ∈ N, k = 0, 1, . . . , n+ 1.
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Let z(n)u , u = 1, . . . , v(n), be chosen from interval (y2n−1, y2n), n ∈ N, in such
a way that

1 ¬
v(n)
∑

u=1





r(n)−1
∏

w=0

fw(z(n)u )





−1

< 2.

It is clear that the increasing sequence {xn}n∈N of all elements z(n)u , where n, u ∈
N, 1 ¬ u ¬ v(n), possesses the desired properties and therefore the proof is com-
pleted. �

Final remark. It is worth to note that Ukrainian mathematician Sljusarczuk
has presented in works [12,13] the new logarithmic type (and many others) criteria
for convergence of real series. Definitely, they generalize the classical criteria and
are associated with the refinement of a logarithmic scale. For example the following
one holds.

Theorem 11. Let an > 0, n ∈ N and fix p ∈ N. Let us put

Lk(n) := log(n)e n, for every k = 0, 1, 2, . . .

If lim sup
n→∞

L−1p+1(n) log
[

an

p−1
∏

k=0

Lk(n)
]−1

> 1 then the series
∑

an is convergent.

On the other hand, if there exists n0 ∈ N such that

L−1p+1(n) log

[

an

p−1
∏

k=0

Lk(n)

]−1

¬ −1

for every n  n0 then the series
∑

an is divergent.

For example, from this theorem we can deduce that the series

∞
∑

n=100

L3(n)−1−L
−1
5 (n)

nL1(n)L2(n)

is convergent but the series

∞
∑

n=100

L3(n)−1−L
−1
4 (n)

nL1(n)L2(n)

is divergent. For these series Theorem 6 could be also applied. Moreover we can
formulate the theorems – substitutes of Theorems 9 and 10.
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Omówienie

Pewne własności szeregów iterowanych logarytmów podsunęły nam na myśl
dyskusję podobnych relacji w ogólniejszym kontekście dowolnych ciągów liczb do-
datnich. Otrzymano kilka interesujących twierdzeń. W artykule wspomniano też
o wynikach ukraińskiego matematyka W.E. Sljusarczuka dotyczących nowych kry-
teriów zbieżności, zwłaszcza szeregów iterowanych logarytmów. Na tej podstawie
zauważono, ze wyniki te pozwalają stosować otrzymane przez nas twierdzenia dla
znacznie obszerniejszej klasy szeregów iterowanych logarytmów.


