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Summary. This paper describes an application of the implicit finite
difference method for solving the time fractional heat equation with mixed
boundary conditions. In particular, the differential scheme will be presented
for the non-homogeneous Neumann and Robin boundary conditions. To
illustrate the accuracy of described method some computational examples
will be presented as well.
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Streszczenie. W artykule przedstawiono zastosowanie schematu nie-
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1. Introduction

Recently various types of phenomena in physics, biology, control theory, elec-
trical engineering and mechanics are modeled by using the derivatives of fractional
order [1,4,10,13,17]. Not all of these models can be solved in analytical way, there-
fore it is so important to develop various types of approximate methods for solving
differential equations of fractional order.

Murio in his paper [11] shows the implicit finite difference approximation for
the time fractional diffusion equations with homogeneous Dirichlet boundary con-
ditions. In paper [18] the numerical scheme for the fractional heat equation with
Dirichlet and Neumann boundary conditions is described. By using the finite dif-
ference scheme for spatial variable the authors transform the considered equation
into a system of ordinary fractional differential equations. Next, this system is
expressed in integral form. Further, the integral equation is transformed into a dif-
ference equation by the modified trapezoidal rule. In paper [15] the finite difference
scheme for fractional sub-diffusion equation with homogeneous Neumann bounda-
ry conditions is presented.

In paper [3] the finite difference scheme for the fractional sub-diffusion equ-
ations with non-homogeneous source term and Dirichlet boundary conditions is
presented. First the authors transform the original sub-diffusion problem with the
Riemann-Liouville fractional derivative on the right hand side of the equation to
the form with the Caputo fractional derivative on the left hand side of the equation.
Then they use the L1 approximation to deal with the temporal Caputo fractional
derivative and the compact scheme for spatial directional derivative. The resul-
ting difference scheme is unconditionally stable and convergent in maximum norm
with the convergence order of O((At)?~® + (Ax)*). Zhao and Xu [20] consider the
numerical solutions of the time fractional sub-diffusion equation with the variable
coefficient subject to both Dirichlet boundary conditions and Neumann boundary
conditions. A compact difference scheme is proposed for solving the equation with
Dirichlet boundary conditions. The unconditional stability and the global conver-
gence of the scheme in the maximum norm are proved rigorously with the help of
the newly introduced norms regarding to the variable coefficient. The convergence
order is O((At)2~% + (Az)*). A box-type scheme is derived by introducing new
intermediate variable for the problem with Neumann boundary conditions. Sta-
bility and the global convergence of the box-type scheme in maximum norm are
also investigated.
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In paper [2] the authors present the numerical method for the time fractional
diffusion equations with Dirichlet boundary condition. In the discretization for-
mulation, the finite difference scheme and the Kansa method are respectively used
to discretize the time fractional derivative and the spatial derivative terms. Meer-
schaert with co-authors [6-8,19] deals also with the numerical approximation for
different types of the fractional partial differential equations. In papers concerning
the fractional diffusion equation the authors presuppose the Dirichlet boundary
conditions.

Paper [5] describes the finite volume method for solving the space fractional
diffusion equation with the variable diffusion coefficient and the zero Dirichlet
boundary conditions. Zheng et al. [21] present the finite element method for so-
Iving the space-fractional advection diffusion equation with the non-homogeneous
Dirichlet boundary condition. Computational aspects of the finite element me-
thod approximation of the fractional advective dispersion equation are described
in paper [16].

In paper [12] two numerical methods, namely, the L2 approximation and the
shifted Griinwald scheme for the Riesz fractional diffusion equation with the zero
Dirichlet boundary conditions are compared. Numerical solution of the fractional
diffusion-wave equation is presented in paper [9].

The current paper describes the implicit finite difference method for solving the
time fractional heat equation with mixed boundary conditions. In particular, we
intend to present the differential scheme for the non-homogeneous Neumann and
Robin boundary conditions and the Dirichlet boundary conditions. To illustrate
the accuracy of described method some computational examples will be presented

as well.

2. Formulation of the problem

We consider the fractional order differential equation

O%u(x,t) | O%u(x,t)
g a2 I o

defined in domain D = {(z,t) : x € [0, L], ¢ € [0,T]}, where ¢ denotes the specific
heat, o is the density and A describes the thermal conductivity coefficient.

co

The above equation is a differential equation with the fractional derivative
with respect to the time variable. It is called the time fractional diffusion equ-
ation. Equations of this type are used to describe the transport processes with
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a long memory. Derivative with respect to the time variable is the fractional deri-
vative of order o € (0, 1). Derivatives of this type are used to describe the problems
associated with the fluid mechanics and subdiffusion process. Fractional derivati-
ve with respect to time, occuring in equation (1), will be the Caputo fractional
derivative which is determined as follows

aao‘u(x,t) _ 1 ¢ 8“u($,8) _ n—a—1
ot - T(n-— oz)/a os™ (t=s) as, @

where n = [a] and T'(+) is the Gamma function [14]. In our case a € (0,1),
therefore n = 1. In addition, we assume that a = 0. Then we get

0%u(x,t) 1 t du(z, 5) B
ote F(1—a)/0 5, (G~ 8)%ds, a€(0,1). (3)

To ensure the uniqueness of solution we pose the initial-boundary conditions

u(z,0) = f(x), x € [0, L], (4)
—/\%(O,t) = q(t), t e 0,7, (5)
—)\%(L,t) = h(t)(u(L,t) — u™), t e 0,7, (6)

where h is the heat transfer coefficient and u°° denotes the ambient temperature.
At the left and right end of the space interval we pose the Neumann and Robin
boundary conditions, respectively. In this paper we also consider the Dirichlet

boundary condition

u(0,t) = ¢(t), te 0,7, (7)
u(L,t) = ¥(t), te0,T]. (8)

3. Numerical solution

We will now describe the approximate solution of equation (1) obtained by
using the finite difference method. Let N, M € N will be the grid sizes in the
space and time intervals, respectively. We define the following steps of the grid
Az = L/N, At =T/M. Points of the grid in interval [0, L] are then the following
numbers z; = i Az, i = 0,1,2,...,N, and in interval [0,7] we have numbers
tr =k At, k=0,1,2,..., M. Values of functions f, q, h, g, u, ¢, 1 in the grid points
will be denoted as follows: f; = f(x;), qx = q(tx), h&, = h(tr), gF = g(xi, tr), or =
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B(tr), Yr = ¥(tr) and u¥ = u(z;,tx). Values of the approximate function in points
(7, t,) will be denoted by UF.
Equation (1) may be written as

O%u(x,t)  0u(x,t)
ot T a2

+ (2, 1), 9)

g(z;t)
co °
Now we derive the formula for approximating the fractional derivative (3) [11]:

where a = 2 is the thermal diffusivity coefficient and g(z, t) =

tr
0%u(wq,ty) 1 ou(z;, s) el
_Fl—a/ g (k= s)ds =

ate
JAtL
u—u —ag.
1_az / oD | (kat — s)=ods =
Jl(] 1At
v v
T T(l-a)l—a
b uwl —u! ! . 1— 1—
x; ——;— T O [(k—j+1) = (k—j)7o] p At > =
C L L S [ - (k)
T —a)T—aldp 0
k
_ _ \l-« 2—«
+F(1—04 a; [(k—j+ 1) = (k= 5)' ] O(A™).

Thus, the approximation of fractional derivative (3) is given by
k .
DIVUE = o k) 3 wlen (UFH = UF), (10)

where

1
I‘(l —a)(1 — a)Ate’
wlea,j)=4"*=(G-D'"

ola, At) =

Using approximations of the Neumann and Robin boundary conditions we

obtain . .
Uy —-UZ%, ek 2Axq
—)\W =qr — U—l = Ul + Iy 5 (11)




78 R. Brociek

AeAr v (1)

Applying these relations and the difference quotient for derivative of the second

= hip(Uy—u™) = UNyr = Un_y—

order with respect to space, we get the following difference equations:

k>1,1=0:
2a k 2a k
(O'(Oé,At) + (Ax)Q)UO - WUI =
k
:a(a,At)UéC_l o(a, At) Zw k g+l —Uéc_j)—i—?f-i- Axcqu’ (13)
j=2
k>1,i=12,...,N —1:
a & 2a & a k
__2 yl A =2 Nk = _pyk o —
(Ax)g szl + (O’(O[, t) + (Ax)g)Uz (A$)2 Uerl
k
= o(a, AYUF™! — o(a, At) Zw U Ui gk, (14)
j=2
k>1,1=N:
- Z—aUk + (a(a At) + 2—a hk)U = oo, AU —
(Az)2 N1 ’ (Az)? * Aze N @ N
k
) ) 2
k +1 k— —k 0
o(a, At) ;w T —UNT) 4T +Aa:cghku . (15)

In case of boundary conditions of the first kind, functions ¢ and ¥ on the
boundary are known, hence we get the following relations

Ul =, UN=1r, k>1. (16)

Thus for k> 1, i =1,2,..., N — 1, we obtain the following difference equations

a & 2a k
- U A !
(Ax)g U1—1 + (O’(O[, t) + (Ax)g)Uz (A ) Uz+1
k
=o(o, AYUF ™ — (0, A1) Y w(o, (U7 —UF ) +gF. (17)
j=2

The resulting difference scheme is unconditionally stable and has the conver-
gence order of O(At + (Ax)?).
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4. Examples

Example 1. Let us consider equation (1) with the initial condition
u(z,0) = 0,

and homogeneous boundary conditions of the second kind

ou
—)\%(O,t) =0,

ou
“Ag-(1,1) =0.

We assume that « = 0.5, A=1, ¢=1, p =1 and h(t) = 0, whereas function
g(z,t) is expressed by the following formula

1
glx,t) = 56””752 [—2t%(2 + 2(2® + 62° + = — 8)) + 2%(z — 1)°’T(3 + a)] .
Exact solution of this problem is given by function
u(z,t) = ex?(1 — x)2t 2+,

Plot of the exact solution u(z,t) is shown in Figure 1.

Fig. 1. Exact solution u(z,t)
Rys. 1. Rozwiazanie doktadne u(z,t)

The calculations were made on the grid of discretization intervals equal to
Az = At = Wlo (N = M = 100). Plot of the obtained approximate solution is
presented in Figure 2. Maximal error of this approximate solution in this case is
the following

E(Az,At) = max |[uf — UF| = 0.000372632.
0<i<N
1<k<M
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Fig. 2. Approximate solution for Example 1 (N = M = 100)
Rys. 2. Przyblizone rozwiazanie dla przyktadu 1 (N = M = 100)

Distribution of errors in points of the grid is presented in Figure 3. In Figures 4
and 5 there are presented the exact and approximate solution for the moment of
time ¢ = 0.75, 1.0 together with errors of this approximation.
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Fig. 3. Distribution of errors for Example 1 (N = M = 100)
Rys. 3. Rozklad btedéw dla przyktadu 1 (N = M = 100)

Increasing four times the number of the grid points (N = M = 200) we obtain
the following maximal error E(Az, At) = 0.000088636. In Figure 6 the distribution
of errors is presented in case of the grid size N = M = 200.
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Fig. 4. Distribution of errors (a) and the comparison of approximate (points) and exact
(solid line) solution (b) in moment of time ¢ = 0.75 for Example 1 (N = M = 100)

Rys. 4. Rozklad bledéw (a) oraz poréwnanie przyblizonego (punkty) i doktadnego (linia
ciagla) rozwigzania (b) w chwili ¢ = 0,75 dla przyktadu 1 (N = M = 100)
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Fig. 5. Distribution of errors (a) and the comparison of approximate (points) and exact
(solid line) solution (b) in moment of time ¢t = 1 for Example 1 (N = M = 100)

Rys. 5. Rozklad bledéw (a) oraz poréwnanie przyblizonego (punkty) i doktadnego (linia
ciagta) rozwiagzania (b) w chwili t = 1 dla przyktadu 1 (N = M = 100)

Fig. 6. Distribution of errors for Example 1 (N = M = 200)
Rys. 6. Rozklad btedéw dla przykladu 1 (N = M = 200)
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Example 2. Let us consider again the equation from Example 1. This time, in-
stead of boundary conditions of the second and third kind, we assume boundary
conditions of the first kind

u(0,t) = u(l,t) =0, te[0,T].
Exact solution of this problem is given again by function
u(z,t) = ex?(1 — x)2t3+),

The calculations are made on the grid of discretization intervals equal to N =
M = 100. Maximal error of obtained approximate solution is the following

E(Az,At) = max luf — UF| = 0.0041865.
1<k<M

In Figure 7 distribution of the errors of approximate solution is displayed.

Fig. 7. Distribution of errors for Example 2 (N = M = 100)
Rys. 7. Rozklad btedéw dla przykladu 2 (N = M = 100)

For the grid size N = M = 200 the maximal error is equal to E(Ax, At) =
0.00229827. In Figures 9 and 10 there are displayed the distribution of errors and
the exact and approximate solutions in moment of time ¢ = 1 for the grid of size
N = M = 200.
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Fig. 8. Distribution of errors (a) and the comparison of approximate (points) and exact
(solid line) solution (b) in moment of time ¢t = 1 for Example 2 (N = M = 100)

Rys. 8. Rozklad bledéw (a) oraz poréwnanie przyblizonego (punkty) i doktadnego (linia
ciagta) rozwiagzania (b) w chwili t = 1 dla przyktadu 2 (N = M = 100)

lo

Fig. 9. Distribution of errors for Example 2 (N = M = 200)
Rys. 9. Rozklad btedéw dla przyktadu 2 (N = M = 200)
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Fig. 10. Distribution of errors (a) and the comparison of approximate (points) and exact
(solid line) solution (b) in moment of time ¢ = 1 for Example 2 (N = M = 200)

Rys. 10. Rozklad btedéw (a) oraz poréwnanie przyblizonego (punkty) i doktadnego (linia
ciagta) rozwigzania (b) w chwili t = 1 dla przyktadu 2 (N = M = 200)
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Example 3. We consider equation (1) in domain D = {(z,t) : z,¢t € [0,1]}. We
also include the initial condition

u(z,0) =0,
and boundary conditions of the second and third kind
Ju
—2A=—(0,t) = q(t),
20,0 = a(t)
—)\@(1 t) = h(t)(u(L,t) — u™)
ax b - ) )

where q(t) = —t'7* and h(t) = —1, u™ = 0. We assume that « = 0.5, A =1, c =
1, o = 1. Function g(z,t) is in the form
VIT[2 4 0]
1) = mt”“(—t 7)
glmi)=e T TE v

Exact solution of this problem is represented by function
u(z,t) = e“ttte,

For the grid size N = M = 100 the maximal error is equal to E(Az,At) =
0.0108085. Distribution of errors of the approximate solution in domain D is pre-
sented in Figure 11.

0.01n

Fig. 11. Distribution of errors for Example 3 (N
Rys. 11. Rozklad btedéw dla przyktadu 3 (N =

By increasing density of the grid in the time domain we can observe the de-
crease of the maximal error. In Table 1 there are collected the maximal errors for
different sizes of the grid.
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Fig. 12. Distribution of errors (a) and the comparison of approximate (points) and exact
(solid line) solution (b) in moment of time ¢ = 1 for Example 3 (N = M = 100)

Rys. 12. Rozklad btedéw (a) oraz poréwnanie przyblizonego (punkty) i doktadnego (linia
ciagla) rozwigzania (b) w chwili ¢ = 0,75 dla przyktadu 3 (N = M = 100)

Table 1
Maximal errors FE(Axz,At) for
different sizes of the grid

| Grid (Az x At) | E(Az,At) ||
1/100 x 1/100 | 0.01080850
1/100 x 1/200 | 0.00384188
1/100 x 1/300 | 0.00205081

5. Conclusions

In the paper the implicit finite difference method used for solving the time
fractional diffusion equation with mixed boundary conditions has been presented.
The resulting difference scheme is unconditionally stable and has the convergence
order of O(At+ (Az)?). To illustrate the accuracy of described method some com-
putational examples have been presented. Results received in calculations confirm
usefulness of the proposed approach.
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