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Summary. In this paper a solution of the two-dimensional unsteady
heat transfer problem by using the homotopy analysis method is described.
In presented method the functional series is generated. This paper contains
the sufficient condition for convergence of this series. We also give the esti-
mation of error of the approximate solution obtained by taking the partial
sum of received series.
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Streszczenie. W artykule opisano rozwiązanie dwuwymiarowego nie-
stacjonarnego zagadnienia przewodzenia ciepła przy wykorzystaniu homo-
topijnej metody analizy. W metodzie tej tworzony jest szereg funkcyjny. Po-
dano warunek wystarczający zbieżności tego szeregu, a także oszacowanie
błędu rozwiązania przybliżonego, które uzyskujemy, biorąc sumę częściową
szeregu.
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1. Introduction

The homotopy analysis method was developed in the 90’s of last century by
Shijun Liao [13–16]. It is used for solving various types of the operator equations.
In particular, this method was already applied for solving the integral equations [2,
9, 24], differential-integral equations [4, 7, 27] and differential equations [6, 18, 23],
including the heat conduction problems [1, 5, 10–12, 26], as well as the fractional
differential equations [3, 28].
In the current paper we describe the solution of two-dimensional unsteady

heat transfer problem by application of the homotopy analysis method. In this
method we generate the functional series, elements of which satisfy the differential
equation resulting from the considered problem. The gained equation is easier to
solve in comparison with the starting one. If the generated series is convergent
then its sum is the solution of the starting equation. In this paper we present
the sufficient condition for convergence of this series. This paper contains also the
estimation of error of the approximate solution which we obtain by taking the
partial sum of received series. Additionally we present the examples illustrating
the usefulness of investigated method.

2. Problem and its solution

We will search for the solution of the two-dimensional unsteady heat transfer
problem

∂u(x, y, t)
∂t

= a
(∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2

)
, (x, y, t) ∈ D, (1)

where D = {(x, y, t); x ∈ (b1, b2), y ∈ (d1, d2), t ∈ (0, t∗)} and a is the heat
diffusion coefficient. On boundary of the domain the Dirichlet boundary conditions
are given

u(b1, y, t) = ϕ1(y, t), u(b2, y, t) = ϕ2(y, t), y ∈ [d1, d2], t ∈ (0, t∗), (2)

u(x, d1, t) = θ1(x, t), u(x, d2, t) = θ2(x, t), x ∈ [b1, b2], t ∈ (0, t∗), (3)

where ϕ1, ϕ2, θ1 and θ2 are continuous functions. The initial condition is of the
form

u(x, y, 0) = ψ(x, y), x ∈ [b1, b2], y ∈ [d1, d2]. (4)
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To solve the above problem we intend to use the homotopy analysis method.
Using this method we are able to solve the operator equation

N(u(z)) = 0, z ∈ Ω, (5)

where N is a given operator and u is an unknown function. In the method we are
looking for the solution in form of the series

u(z) =
∞∑

m=0

um(z), (6)

where u0 is a given function and the rest of elements are determined by formula

L
(
um(z)− χm um−1(z)

)
= hRm

(
um−1, z

)
, (7)

where L is the auxiliary linear operator with property L(0) = 0, h 6= 0 denotes
the convergence control parameter, um−1 = {u0(z), u1(z), . . . , um−1(z)},

χm =

{
0 m ¬ 1,
1 m > 1

(8)

and

Rm
(
um−1, z

)
=

1
(m− 1)!

(
∂m−1

∂pm−1
N
( ∞∑

i=0

ui(z) pi
))∣∣∣∣

p=0

. (9)

More detailed description of the method may be found in literature [10, 14, 15].
For the considered equation (1) we have

N
(
u(x, y, t)

)
= a
(∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2

)
−
∂u(x, y, t)

∂t
. (10)

As the linear operator L we may take operator ∂
2

∂x2
or operator ∂

2

∂y2
:

L1(u) =
∂2u

∂x2
, L2(u) =

∂2u

∂y2
. (11)

Then we may use the averaging method, similarly as it is done in the Adomian
decomposition method [8]. By using this approach, in our case, we solve two pro-
blems with different choice of the linear operator, averaged solutions of which will
give the solution of the initial problem.
After simple transformations we get for m > 1:

Rm
(
um−1, x, y, t

)
= N(um−1(x, y, t)). (12)
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In this way, for m = 1 we obtain two partial differential equations (k = 1, 2):

Lk
(
uk,1(x, y, t)

)
= h
(
a
∂2uk,0(x, y, t)

∂x2
+ a

∂2uk,0(x, y, t)
∂y2

−
∂uk,0(x, y, t)

∂t

)
, (13)

while for m ­ 2 the equations take the form (k = 1, 2):

Lk
(
uk,m(x, y, t)

)
= Lk
(
uk,m−1(x, y, t)

)
+

+ h
(
a
∂2uk,m−1(x, y, t)

∂x2
+ a

∂2uk,m−1(x, y, t)
∂y2

−
∂uk,m−1(x, y, t)

∂t

)
. (14)

In order to ensure the uniqueness of solution we have to complete the above
equations by some additional conditions. For that purpose we use the boundary
conditions (2)–(3). For m = 1 and the first equation (k = 1) we put the conditions
in the following form

u1,0(b1, y, t) + u1,1(b1, y, t) = ϕ1(y, t), (15)

u1,0(b2, y, t) + u1,1(b2, y, t) = ϕ2(y, t), (16)

whereas for the second equation (k = 2) the conditions take the form

u2,0(x, d1, t) + u2,1(x, d1, t) = θ1(x, t), (17)

u2,0(x, d2, t) + u2,1(x, d2, t) = θ2(x, t). (18)

Next, for m > 1 we impose, respectively, the following conditions

u1,m(b1, y, t) = 0, (19)

u1,m(b2, y, t) = 0, (20)

and

u2,m(x, d1, t) = 0, (21)

u2,m(x, d2, t) = 0. (22)

As the initial approximation we may take the function describing the initial con-
dition (k = 1, 2):

uk,0(x, y, t) = ψ(x, y). (23)

Averaging the results we have

um(x, y, t) =
1
2

(
u1,m(x, y, t) + u2,m(x, y, t)

)
, m = 0, 1, 2, . . . . (24)
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Choosing appropriately the value of convergence control parameter h we may
affect the area of convergence of series (6) and the rate of this convergence [15,17,
19]. One way of choosing this value is the so-called “optimization method” [15,25].
In this method we define the squared residual of governing equation

En(h) =
∫∫∫

D

(
N
[
ûn(x, y, t)

])2
dx dy dt, (25)

where ûn is the approximate solution specified as

ûn(x, y, t) =
n∑

m=0

um(x, y, t). (26)

Optimal value of the convergence control parameter will be obtained by setting
minimum of the squared residual. In this method we define also the so-called
effective region of the convergence control parameter

Rh =
{
h : lim
n→∞

En(h) = 0
}
. (27)

Choosing the value of convergence control parameter different from the optimal
value, but still belonging to the effective region, we still get the convergent series
however with the lower convergence rate.
In this way the problem is reduced to solution of the sequence of differential

equations (13) and (14) with the proper boundary conditions and to determination
of the value of convergence control parameter. Obtained equations are easier to
solve in comparison with the initial partial differential equation (the unknown
functions appear only once in every equation).
Similarly as for the one-dimensional case [10, 11] and for the two-dimensional

steady problem [5], for the discussed case as well we may prove the adequate
theorems concerning the convergence of obtained series and estimation of the error
of approximate solution. Proofs of these theorems run analogically as proofs of the
corresponding theorems in [10, 11, 17, 19–22].

Theorem 1. Let functions um, m ­ 1, be determined in the way described above.
If series

∑
∞

m=0 um is convergent, then its sum satisfies the considered equation.

Theorem 2. Let functions um, m ­ 1, be determined as it was described above.
If parameter h is selected in such a way that there exist the constants βh ∈ (0, 1)
and m0 ∈ N such that for each m > m0 the following inequality

‖um+1‖ 6 βh ‖um‖, (28)

is satisfied, then the series
∑
∞

m=0 um is uniformly convergent.
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Theorem 3. If assumptions of Theorem 2 are satisfied and additionally n ∈ N

and n > m0, then we get the following estimation of error of approximate solution

‖u− ûn‖ 6
βn+1−m0h

1− βh
‖um0‖. (29)

3. Examples

Example 1

In the first example we put b1 = 0, b2 = 1, d1 = 0, d2 = 1, t∗ = 1, a = 1 and

ϕ1(y, t) = y2 + 4 t, ϕ2(y, t) = y2 + y + 4 t+ 1,

θ1(x, t) = x2 + 4 t, θ2(x, t) = x2 + x+ 4 t+ 1,

ψ(x, y) = x2 + x y + y2.

As the initial approximations u1,0 and u2,0 we take the function describing the
initial condition

u1,0(x, y, t) = u2,0(x, y, t) = x2 + x y + y2.

In result of proper calculations we obtain successively

u0(x, y, t) = x2 + x y + y2,

u1(x, y, t) = 4 t+ h
(
x2 − x− y + y2

)
,

u2(x, y, t) = h2
(
x2 − x− y + y2

)
,

u3(x, y, t) = h2 (h+ 1)
(
x2 − x− y + y2

)
,

u4(x, y, t) = h2 (h+ 1)2
(
x2 − x− y + y2

)
,

u5(x, y, t) = h2 (h+ 1)3
(
x2 − x− y + y2

)
.

Generally, we have

um(x, y, t) = h2 (h+ 1)m−2
(
x2 − x− y + y2

)
, m > 2.

Thus we get the exact solution of considered equation

u(x, y) =
∞∑

m=0

um(x, y) = x2 + x y + y2 + 4 t+ h
(
x2 − x− y + y2

)
+

+
(
x2 − x− y + y2

)
h2

∞∑

m=2

(h+ 1)m−2 = x2 + x y + y2 + 4 t,
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if only the geometric series, occurring in the above equation, is convergent. It will
be for h ∈ (−2, 0). In this way we get the effective region of the convergence control
parameter Rh = (−2, 0).
Because in this case the squared residual for n > 3 is equal to

En(h) = 16 (h+ 1)2n−2,

therefore the optimal value of convergence control parameter h is equal to −1. In
Figure 1 the plot of logarithm of the squared residual E7 is shown.
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Fig. 1. Logarithm of the squared residual E7
Rys. 1. Logarytm kwadratu reszt E7

Example 2

In the second example we assume b1 = 0, b2 = 1, d1 = 0, d2 = 1, t∗ = 1,
a = 1/2 and

ϕ1(y, t) = ey+t, ϕ2(y, t) = ey+t+1,

θ1(x, t) = ex+t, θ2(x, t) = ex+t+1,

ψ(x, y) = ex+y.

In this case the exact solution is given by function

ue(x, y, t) = ex+y+t.

As the initial approximations u1,0 and u2,0 we take the function describing the
initial condition

u1,0(x, y, t) = u2,0(x, y, t) = ex+y.
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After the first step of calculations we obtain

u1(x, y, t) =
1
2
(et − h− 1)

(
ex + ey + (e− 1) (x ey + y ex)

)
+ h ex+y.

Plot of logarithm of the squared residual E7 is displayed in Figure 2. In this
case the optimal value of convergence control parameter h is equal to −2. Whereas
we could not determine the exact form of the effective region of the convergence
control parameter. However it is known that interval (− 7

2
, 0) is included in this

region.
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Fig. 2. Logarithm of the squared residual E7
Rys. 2. Logarytm kwadratu reszt E7

In this example we are not able to determine sum of the series, therefore we
collected in Table 1 the absolute (∆) and relative errors (δ) of the approximate
solutions ûn estimating the exact solution ue. The errors decrease rapidly and
computation of only four terms provides the error lower than 0.0075%. Figure 3
presents the distribution of absolute errors of the exact solution approximation
obtained for n = 10 and t = 1/2 and t = 1. As indicated by the example, for
properly chosen values of the convergence control parameter h, if it is impossible
to predict the general form of function um or to calculate the sum of series in (6),
it is sufficient to make use of the sum of several first functions um to provide a very
good approximation of the sought solution.
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Table 1
Errors of the exact solution approxima-
tion (∆ûn – absolute error, δûn – per-

centage relative error)

n ∆ûn δûn [%]

1 1.434 14.323

2 6.615 · 10−2 0.720

3 1.444 · 10−2 0.160

4 6.749 · 10−4 7.498 · 10−3

5 1.478 · 10−4 1.642 · 10−3

6 6.732 · 10−6 8.489 · 10−5

7 1.029 · 10−6 2.295 · 10−5

8 2.565 · 10−8 5.708 · 10−7

9 1.056 · 10−8 2.357 · 10−7

10 2.621 · 10−10 5.849 · 10−9

a) b)

Fig. 3. Distribution of error of the exact solution approximation for n = 10 and t =
1/2 (a) or t = 1 (b)

Rys. 3. Rozkład błędów rozwiązania przybliżonego dla n = 10 oraz t = 1/2 (a) lub
t = 1 (b)
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Example 3

In the next example we assume b1 = 0, b2 = 1, d1 = 0, d2 = 1, t∗ = 1, a = 1/4
and

ϕ1(y, t) = 500 +
y − y2 − t

5
, ϕ2(y, t) = 500 +

y − y2 − t

5
,

θ1(x, t) = 500 +
x− x2 − t

5
, θ2(x, t) = 500 +

x− x2 − t

5
,

ψ(x, y) = 500 +
x− x2 + y − y2

5
.

As the initial approximations u1,0 and u2,0, as usually, we take the function de-
scribing the initial condition

u1,0(x, y, t) = u2,0(x, y, t) = 500 +
x− x2 + y − y2

5
.

In result of proper calculations we obtain successively

u0(x, y, t) = 500 +
x− x2 + y − y2

5
,

u1(x, y, t) =
1
20

(
h (x− x2 + y − y2)− 4 t

)
,

u2(x, y, t) =
1
80
h2
(
x− x2 + y − y2

)
,

u3(x, y, t) =
1
320

h2 (h+ 4)
(
x− x2 + y − y2

)
,

u4(x, y, t) =
1
1280

h2 (h+ 4)2
(
x− x2 + y − y2

)
,

u5(x, y, t) =
1
5120

h2 (h+ 4)3
(
x− x2 + y − y2

)
.

Generally, we have

um(x, y, t) =
1
5 · 4m

h2 (h+ 4)m−2
(
x− x2 + y − y2

)
, m > 2.

Thus we get the exact solution of investigated equation

u(x, y) =
∞∑

m=0

um(x, y) = 500 +
x− x2 + y − y2 − t

5
,

if only the appropriate geometric series is convergent, which will happen for h ∈
(−8, 0). In this way we also get the effective region of the convergence control
parameter Rh = (−8, 0). The squared residual for n > 1 is equal to

En(h) =
1
42n+1

h2 (h+ 4)2n−2.
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Fig. 4. Logarithm of the squared residual E7
Rys. 4. Logarytm kwadratu reszt E7

Hence, the optimal value of convergence control parameter h is equal to −4. In
Figure 4 the plot of logarithm of the squared residual E7 is shown.
Let us consider the more general case with the undetermined value of the

thermal diffusivity coefficient a and b1 = 0, b2 = 1, d1 = 0, d2 = 1, t∗ = 1, with
the initial-boundary conditions defined by functions

ϕ1(y, t) = 500 +
y − y2 − 4 a t

5
, ϕ2(y, t) = 500 +

y − y2 − 4 a t
5

,

θ1(x, t) = 500 +
x− x2 − 4 a t

5
, θ2(x, t) = 500 +

x− x2 − 4 a t
5

,

ψ(x, y) = 500 +
x− x2 + y − y2

5
.

In this case we get

u0(x, y, t) = 500 +
x− x2 + y − y2

5
,

u1(x, y, t) =
1
5
a
(
h (x− x2 + y − y2)− 4 t

)
,

u2(x, y, t) =
1
5
a2 h2

(
x− x2 + y − y2

)
,

u3(x, y, t) =
1
5
a2 h2 (a h+ 4)

(
x− x2 + y − y2

)
,

u4(x, y, t) =
1
5
a2 h2 (a h+ 4)2

(
x− x2 + y − y2

)
,

u5(x, y, t) =
1
5
a2 h2 (a h+ 4)3

(
x− x2 + y − y2

)
,
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that is, in general

um(x, y, t) =
1
5
a2 h2 (a h+ 4)m−2

(
x− x2 + y − y2

)
, m > 2.

Hence we get the exact solution of discussed equation

u(x, y) =
∞∑

m=0

um(x, y) = 500 +
x− x2 + y − y2 − 4 a t

5
,

if only h ∈ (−2/a, 0). In this way we also obtain the effective region of the conver-
gence control parameter Rh = (−2/a, 0). The squared residual for n > 1 is equal
to

En(h) = 64 a4 h2 (a h+ 1)2n−2.

Hence, the optimal value of convergence control parameter h is equal to − 1
a
.

The obtained above equality seems to be a more general regularity. In all
calculated examples of the two-dimensional unsteady heat conduction problem, in
these ones presented in this work as well as in some other ones, the optimal value
of convergence control parameter h was always equal to − 1

a
.
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