GROUP LAWS $[x, y^{-1}] \equiv u(x, y)$ AND VARIETAL PROPERTIES

O. MACEDOŃSKA, W. TOMASZEWSKI

ABSTRACT. Let $F = \langle x, y \rangle$ be a free group. It is known that the commutator $[x, y^{-1}]$ cannot be expressed in terms of basic commutators, in particular in terms of Engel commutators. We show that the laws imposing such an expression define specific varietal properties. For a property \mathcal{P} we consider a subset $U(\mathcal{P}) \subseteq F$ such that every law of the form $[x, y^{-1}] \equiv u, u \in U(\mathcal{P})$ provides the varietal property \mathcal{P} . For example, we show that each subnormal subgroup is normal in every group of a variety \mathfrak{V} if and only if \mathfrak{V} satisfies a law of the form $[x, y^{-1}] \equiv u$, where $u \in [F', \langle x \rangle]$.

1. INTRODUCTION

Let $F = \langle x, y \rangle$ be a noncyclic free group. We denote $x^y = y^{-1}xy$, $[x, _0y] = x, [x, _1y] = [x, y] = x^{-1}y^{-1}xy$, $[x, _{i+1}y] = [[x, _iy], y]$. If assume x > y then the nontrivial commutators of the form $[x, _iy, _jx]$ are so called left-normed basic commutators.

Every group-law implies a 2-variable law, and each variety satisfies a law of the form $[x, y^{-1}] \equiv u$, for a word u = u(x, y) in F. The commutator $[x, y^{-1}]$ cannot be expressed in terms of basic commutators (see e.g. [10], 36.24), so we consider the laws imposing such an expression. The laws with a similar expression may form the families of laws providing the same varietal property in the corresponding variety \mathfrak{V} . We look for a subset $U(\mathcal{P})$ in F such that the following two conditions imply each other:

- (i) \mathfrak{V} satisfies a law of the form $[x, y^{-1}] \equiv u, u \in U(\mathcal{P})$.
- (*ii*) \mathfrak{V} has the property \mathcal{P} .

In this paper we consider the varietal properties, first three of which are provided by so called restraining laws, Milnor laws and *t*-laws respectively.

 \mathcal{P}_1 : Each finitely generated group $G \in \mathfrak{V}$ has finitely generated G'.

 \mathcal{P}_2 : Each finitely generated metabelian group in \mathfrak{V} has finitely generated G'.

 \mathcal{P}_3 : Subnormal subgroups are normal in every group $G \in \mathfrak{V}$.

²⁰¹⁰ Mathematics Subject Classification. AMS Subject Classification 20E10. Key words and phrases. varietal properties, group laws, Engel words.

For each of these properties we describe a family $[x, y^{-1}] \equiv u, u \in U(\mathcal{P}_i)$ of laws providing the property \mathcal{P}_i .

Restraining laws:	$[x, y^{-1}] \equiv u, u \in \langle [x, iy], i \ge 0 \rangle,$
Milnor laws:	$[x, y^{-1}] \equiv u, u \in \left\langle [x, iy], i \ge 0 \right\rangle \cdot F'',$
<i>t</i> -laws:	$[x, y^{-1}] \equiv u, u \in \left\langle \left[F', \left\langle x \right\rangle \right] \right\rangle,$
Abelian and Pseudo-Abelian laws	$: [x, y^{-1}] \equiv u, u \in F''.$

2. Preliminaries

Following F. Point [13], we say that a group G has the **Milnor property** if for all elements $g, h \in G$, the subgroup $\langle g^{h^i}, i \in \mathbb{N} \rangle$ is finitely generated. This property first was considered by J. Milnor ([9], Lemma 3). Later S. Rosset proved in [16] that a finitely generated group G satisfying this property has G' finitely generated. Groups satisfying the Milnor property were called by Y. Kim and A. Rhemtulla restrained groups [4].

A law is called *restraining* (or an \Re -law) if every group satisfying this law is restrained, or equivalently, if each finitely generated group G satisfying this law has finitely generated G' [6]. So we have the following.

Lemma 1 (cf. [6], [7]). Let \mathfrak{V} be a variety of groups. The following conditions are equivalent:

- 1. \mathfrak{V} satisfies a restraining law.
- 2. Each group $G \in \mathfrak{V}$ has the Milnor property.
- 3. Each finitely generated group $G \in \mathfrak{V}$ has G' finitely generated.

Note that the last of the above conditions is the property \mathcal{P}_1 .

3. $[\mathbf{x}, \mathbf{y}^{-1}]$ as a product of left-normed basic commutators and restraining laws

We denote by E a subgroup in F generated by all Engel commutators $[x, iy], i \ge 0$, that is

$$E := \langle x, [x, y], [x, _2y], [x, _3y], \ldots \rangle.$$

The subgroup E contains the left-normed basic commutators $[x, {}_{i}y, {}_{j}x]$, i > 0. Since the word $[x, y^{-1}]$ cannot be expressed modulo F'' in terms of basic commutators ([10], 36.24), it is interesting to consider the laws imposing this expression. We start with laws of the form

(1)
$$[x, y^{-1}] \equiv u, \quad u \in E,$$

and show that it is the family of the restraining laws, defining varieties with properties listed in Lemma 1. It suffices to prove that $U(\mathcal{P}_1) = E$.

Theorem 1. The implications $(i) \Leftrightarrow (ii)$ hold for a variety \mathfrak{V} , where

- (i) \mathfrak{V} satisfies a law of the form $[x, y^{-1}] \equiv u, u \in E$.
- (ii) \mathcal{P}_1 : Each finitely generated group $G \in \mathfrak{V}$ has G' finitely generated.

Proof. It is shown in ([7], Corollary 5.4) that the following subgroups coincide for every $n \ (n \ge 0)$: $\langle [x, iy], 0 \le i \le n \rangle = \langle x^{y^i}, 0 \le i \le n \rangle$. So we have

(2)
$$E := \langle [x, iy], i \ge 0 \rangle = \langle x^{y^i}, i \ge 0 \rangle.$$

 $(i) \Rightarrow (ii)$. Assume that \mathfrak{V} satisfies a law $[x, y^{-1}] \equiv u, u \in E$. Let \mathfrak{V} and V denote the corresponding variety and the verbal subgroup in F, respectively. In view of Lemma 1, it suffices to show that each group $G \in \mathfrak{V}$ has the Milnor property, that is the subgroup $\langle x^{y^i}, i \in \mathbb{N} \rangle$ is finitely generated modulo V. The following inclusions are written modulo V.

It follows by (2) that for $u \in E$ there is n, such that: u belongs to $\langle x^{y^i}, 0 \leq i \leq n \rangle$, which implies by (i) that $[x, y^{-1}] \in \langle x^{y^i}, 0 \leq i \leq n \rangle$, and hence

(3)
$$x^{y^{-1}} \in \langle x, x^y, x^{y^2}, ..., x^{y^n} \rangle$$

Conjugate (3) by y^{-1} then

$$x^{y^{-2}} \in \langle x^{y^{-1}}, x, x^y, \dots x^{y^{n-1}} \rangle \stackrel{(3)}{\subseteq} \langle x, x^y, x^{y^2}, \dots x^{y^n} \rangle.$$

By repeating the conjugation we obtain for all k > 0

(4)
$$x^{y^{-k}} \in \langle x, x^y, x^{y^2}, ..., x^{y^n} \rangle.$$

Since V is fully invariant we can substitute $y \to y^{-1}$ to get for all k > 0

(5)
$$x^{y^k} \in \langle x, x^{y^{-1}}, x^{y^{-2}}, \dots, x^{y^{-n}} \rangle \stackrel{(4)}{\subseteq} \langle x, x^y, x^{y^2}, \dots, x^{y^n} \rangle.$$

In view of (4) and (5) it follows that the subgroup $\langle x^{y^i}, i \in \mathbb{N} \rangle$ is finitely generated modulo V. Hence each group $G \in \mathfrak{V}$ has the Milnor property and by Lemma 1, we have (*ii*).

 $(ii) \Rightarrow (i)$. If each finitely generated group $G \in \mathfrak{V}$ has G' finitely generated then by Lemma 1, the subgroup $\langle x^{y^i}, i \in \mathbb{N} \rangle$ is finitely generated (modulo V) by, say, a set $\{x, x^y, x^{y^2}, ..., x^{y^n}\}$. Then $x^{y^{n+1}} \in \langle x, x^y, x^{y^2}, ..., x^{y^n} \rangle$. Conjugation by $y^{-(n+1)}$ gives

$$x \in \langle x^{y^{-(n+1)}}, x^{y^{-n}}, x^{y^{-n+1}}, \dots, x^{y^{-2}}, x^{y^{-1}} \rangle.$$

Substitution $y \to y^{-1}$ implies that $x \in \langle x^y, x^{y^2}, ..., x^{y^{n+1}} \rangle$. Now conjugation by y^{-1} gives $x^{y^{-1}} \in \langle x, x^y, x^{y^2}, ..., x^{y^n} \rangle$, which leads to $[x, y^{-1}] \in E \cdot V$, and allows to conclude that F/V (and hence \mathfrak{V}) satisfies a law of the required form $[x, y^{-1}] \equiv u$, where $u \in E$. \Box

4. $[\mathbf{x}, \mathbf{y}^{-1}]$ as a product of basic commutators modulo \mathbf{F}'' and Milnor laws

Definition 1. We call a law the Milnor law if it is not satisfied in any variety of the form $\mathfrak{A}_p\mathfrak{A}$ for a prime p.

The choice of the name comes from the paper of F. Point [13] who introduced the laws (called the Milnor identities) by means of characteristic polynomials. By result of G. Endimioni [1], (see [14], Proposition 1.1), these laws are not satisfied in any variety of the form $\mathfrak{A}_p\mathfrak{A}$ for a prime p.

Lemma 2 (cf. [6], [7]). Let F/V be a free group of rank 2 in a variety \mathfrak{V} . The following conditions are equivalent:

1. \mathfrak{V} does not contain a subvariety $\mathfrak{A}_p\mathfrak{A}$ for a prime p.

2. Each finitely generated metabelian group $G \in \mathfrak{V}$ has finitely generated G'.

Proof. $1 \Rightarrow 2$. If \mathfrak{V} does not contain a subvariety $\mathfrak{A}_p\mathfrak{A}$ then $V \not\subseteq F''F'^p$ for any prime p. It follows that $F''V \not\subseteq F''F'^p$. By result of J. R. J. Groves ([2], Theorem C (*ii*)), the group F/F''V is nilpotent-by-(finite exponent). Hence by [8], it satisfies a positive law, which is a restraining law. So by Lemma 1, all groups in var F/F''V have finitely generated commutator subgroups and the condition 2 follows.

 $2 \Rightarrow 1$. Let each finitely generated group $G \in \mathfrak{V}$ have G' finitely generated. If \mathfrak{V} contains a subvariety $\mathfrak{A}_p\mathfrak{A}$, then \mathfrak{V} contains the group $W = \langle a \rangle_p \wr \langle b \rangle$, the restricted wreath product of a cyclic group of order p, and an infinite cyclic group. The commutator subgroup W' contains elements $[a, b^i] = a^{-1}a^{b^i}$ for all $i \in \mathbb{Z}$, so W' has an infinite support and cannot be finitely generated. A contradiction. \Box

Theorem 2. The implications $(i) \Leftrightarrow (ii)$ hold for a variety \mathfrak{V} , where

- (i) \mathfrak{V} satisfies a law of the form $[x, y^{-1}] \equiv u, u \in EF''$.
- (ii) \mathcal{P}_2 : Each finitely generated metabelian group $G \in \mathfrak{V}$ has finitely generated G'.

Proof. $(i) \Rightarrow (ii)$. Assume that \mathfrak{V} satisfies a law of the form $[x, y^{-1}] \equiv u, u \in EF''$. Then metabelian groups in \mathfrak{V} satisfy the law of the form $[x, y^{-1}] \equiv u, u \in E$ and by Theorem 1, each finitely generated metabelian group $G \in \mathfrak{V}$ has a finitely generated G'.

 $(ii) \Rightarrow (i)$. By Theorem 1, the group F/F''V satisfies a law of the form $[x, y^{-1}] \equiv u, \ u \in E$, which implies that F/V (and hence \mathfrak{V}) satisfies a law of the required form $[x, y^{-1}] \equiv u, u \in EF''$.

5. VARIETIES IN WHICH NORMALITY IS A TRANSITIVE RELATION

The groups in which normality is a transitive relation (t-groups) have been considered by many authors (see [15], 13.4), however no non-abelian infinite relatively free t-group was known till 1997 [5].

We consider the transitivity of normality (the *t*-property) as the varietal property and show that the laws providing the *t*-property are of the form $[x, y^{-1}] \equiv u$, where $U = [F', \langle x \rangle]$.

Theorem 3. The implications (i) \Leftrightarrow (ii) hold for a variety \mathfrak{V} , where

4

- (i) \mathfrak{V} satisfies a law of the form $[x, y^{-1}] \equiv u, u \in [F', \langle x \rangle].$
- (ii) \mathcal{P}_3 : Subnormal subgroups are normal in every group $G \in \mathfrak{V}$.

Proof. Since $[x, y^{-1}] = [x, y]^{-y^{-1}}$ and the subgroup $[F', \langle x \rangle]$ is invariant under the map $y \to y^{-1}$, it suffices to prove the theorem for the laws

(6)
$$[x, y] \equiv u, \ u \in [F', \langle x \rangle].$$

 $(i) \Rightarrow (ii)$. Assume that G is a group satisfying a law of the form (6). Let G have a normal subgroup H which has a normal subgroup K, that is

$$G \vartriangleright H \vartriangleright K.$$

If $g \in G$ and $k \in K$ then, we have by (6):

$$[k, g] \in \left[[\langle k \rangle, \langle g \rangle], \langle k \rangle \right] \subseteq \left[[K, G], K \right] \subseteq [H, K] \subseteq K,$$

which means that K is a normal subgroup of G. Hence each subnormal subgroup is normal in every group satisfying a law of the form (6). (*ii*) \Rightarrow (*i*). Let V be a verbal subgroup in F such that each subnormal subgroup is normal in E/V. Consider $E \triangleright \langle x \rangle^F \triangleright \langle x \rangle^{\langle x \rangle^F}$. Then by

subgroup is normal in F/V. Consider $F \rhd \langle x \rangle^F \rhd \langle x \rangle^{\langle x \rangle^F}$. Then by assumption, the subnormal subgroup $\langle x \rangle^{\langle x \rangle^F}$ is normal in F modulo V. Since it contains x, it must contain $\langle x \rangle^F$. So modulo V we have $\langle x \rangle^F \equiv \langle x \rangle^{\langle x \rangle^F}$. By commutator calculus $\langle x \rangle^F = \langle x \rangle F'$ and $\langle x \rangle^{\langle x \rangle^F} =$ $\langle x \rangle [\langle x \rangle F', \langle x \rangle] = \langle x \rangle [F', \langle x \rangle]$. Thus

$$\langle x \rangle F' \equiv \langle x \rangle \big[F', \langle x \rangle \big],$$

which implies (for some k) a law $[x, y] \equiv x^k u$, where $u \in [F', \langle x \rangle]$. The latter implies $x^k \equiv 1$ and the required law $[x, y] \equiv u$, $u \in [F', \langle x \rangle]$. \Box

The following Proposition shows that each variety with transitivity of normality is either abelian or pseudo-abelian, that is a non-abelian variety without non-abelian metabelian groups. The problem of existence of such a variety was posed in ([10], Problem 5). The first examples of the pseudo-abelian varieties were given by A. Yu. Olshanskii [11], [12].

Proposition 1. A variety with transitivity of normality has no nonabelian metabelian groups.

Proof. In view of Theorem 3, it suffices to show that each law of the form $[x, y] \equiv u, \ u \in [F', \langle x \rangle]$ implies a law of the form $[x, y] \equiv v, \ v \in F''$.

If put [x, y] instead of x in (6), we obtain $[x, y, y] \equiv v \in F''$, which implies that each 2-generator metabelian group satisfying a law (6), is 2-nilpotent. Since the values of the word $u \in [F', \langle x \rangle]$ in the 2-nilpotent group are trivial, each 2-generator metabelian group satisfying (6) is abelian. Hence a law of the form $[x, y] \equiv v, v \in F''$ follows. \Box **Question** The question whether the converse implication holds, that is whether each pseudo-abelian law implies transitivity of normality, is open.

This question was first formulated in [3]. A positive answer is known [5] only for the pseudo-abelian varieties constructed by A. Yu. Ol'shanskii.

6. Varieties of 2-Engel groups with G' of finite exponent.

We show that each law in the family

(7)
$$[x, y^{-1}] \equiv [x, y]^k, \ k \in \mathbb{Z}$$

defines a variety of 2-Engel groups G with G' of finite exponent unless k = -1.

Theorem 4. The implications (i) \Leftrightarrow (ii) hold for a variety \mathfrak{V} , where

- (i) \mathfrak{V} satisfies a law of the form, $[x, y^{-1}] \equiv [x, y]^k$, $k \in \mathbb{Z}$, $k \neq -1$. (ii) \mathfrak{V} consists of 2-Engel groups G with $(G')^{k+1} = \{e\}, k \neq -1$.

Proof. $(ii) \Rightarrow (i)$. Condition (ii) implies that G satisfies the laws $[[x, y], y] \equiv 1$ and $[x, y]^{k+1} \equiv 1$. Since $[[x, y], y] = [x, y^{-1}]^{y} [x, y]^{y}$, the law $[[x, y], y] \equiv 1$ is equivalent to

(8)
$$[x, y^{-1}] \equiv [x, y]^{-1}.$$

The second law can be written as $[x, y]^k \equiv [x, y]^{-1}$. Then in view of (8), $[x, y]_{k}^k \equiv [x, y]^{-1} \equiv [x, y^{-1}]$, which gives the required law $[x, y^{-1}] \equiv$ $[x, y]^k$.

 $(i) \Rightarrow (ii)$. The inverse of the right-hand part of (7) can be obtained by interchanging $x \rightleftharpoons y$, hence the same holds for the left-hand part, that is $[x, y^{-1}]^{-1} \equiv [y, x^{-1}]$. By the commutator identity $[x, y^{-1}] = [x, y]^{-y^{-1}}$, this implies $[x, y]^{y^{-1}} \equiv [y, x]^{-x^{-1}}$. Conjugation by y implies $[[y, x], x^{-1}y] \equiv 1$, which, by mapping $y \to xy$ gives $[[y, x], y] \equiv 1$, and hence $[[x, y], y] \equiv 1$.

By combining the law in (i) and (8) we obtain $[x, y]^{k+1} \equiv 1$. To get $(G')^{k+1} = \{e\}$, it suffices to show that the 2-engel group is metabelian. Indeed, by ([10], 34.31) it satisfies $[[[x, y], z], t] \equiv 1$. By (8), we have $[[x, y], z^{-1}] \equiv [[x, y], z]^{-1}$. And now by the commutator identity [a, bc] = [a, c][a, b][[a, b], c] we have the metabelian law

$$[[x, y], [z, t]] = [[x, y], z^{-1}t^{-1}zt] \equiv 1.$$

References

- [1] G. Endimioni, On the locally finite p-groups in certain varieties of groups. Quart. J. Math. Oxford Ser. 48(2), (1997), 169-178.
- [2] J.R.J.Groves, Varieties of soluble groups and a dichotomy of P.Hall, Bull. Austral. Math. Soc., 5, (1971), 391-410.

 $\mathbf{6}$

- [3] L.G. Kovács and M.F. Newman, Hanna Neumann's problems on varieties of groups, in *Proc. Second Internat. Conf. Theory of Groups*, Lecture Notes in Math. **372**, Springer-Verlag, Berlin-Heidelberg-New York, 1974, 417–431.
- [4] Y. Kim and A. H. Rhemtulla, On locally graded groups, Proceedings of the Third International Conference on Group Theory, Pusan, Korea 1994, Springer-Verlag, Berlin-Heidelberg-New York (1995), 189–197.
- [5] O. Macedońska, A. Storozhev, Varieties of t-groups, Communications in Algebra 25(5), (1997), 1589–1593.
- [6] O. Macedońska, What do the Engel laws and positive laws have in common, Fundamental and Applied Mathematics, 14(7), (2008), 175–183 (in Russian). English transl. J. of Math. Sciences, 164(2), (2010), 272–280, http://www.springerlink.com/content/2u1h4hukl573532v/fulltext.pdf
- [7] O. Macedońska, W. Tomaszewski, On Engel and positive laws, London Math. Soc. Lecture Notes (2011).
- [8] A. I. Mal'tsev, Nilpotent semigroups, Ivanov. Gos. Ped. Inst. Uc. Zap. 4, (1953), 107–111 (in Russian).
- [9] J. Milnor, Growth of finitely generated solvable groups, J. Diff. Geom. 2, (1968), 447–449.
- [10] H. Neumann, VARIETIES OF GROUPS, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [11] A.Yu.Ol'shanskii, Varieties in which all finite groups are abelian, Mat. Sbornik, 126, (168), (1), (1985), 59–82 (in Russian).
- [12] Ol'shanskii, A.Yu. Geometry of defining relations in groups; Mathematics and its applications (Soviet Series), 70; Kluwer Academic Publishers: Dordrecht, 1991.
- [13] F. Point, Milnor identities, Comm. Algebra 24(12), (1996), 3725–3744.
- [14] F. Point, Milnor Property in Finitely Generated Soluble Groups, Comm. Algebra 31(3), (2003), 1475–1484.
- [15] D.J.S. Robinson, A COURSE IN THE THEORY OF GROUPS, Springer-Verlag Berlin, Heidelberg, New York, 1982.
- [16] S. Rosset, A property of groups of non-exponential growth, Proc. Amer. Math. Soc. 54, (1976), 24–26.

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY OF TECHNOLOGY, KASZUB-SKA 23, 44-100 GLIWICE, POLAND

E-mail address: Olga.Macedonska@polsl.pl

 $E\text{-}mail\ address:$ Witold.Tomaszewski@polsl.pl