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Abstract. Let F = 〈x, y〉 be a free group. It is known that the
commutator [x, y−1] cannot be expressed in terms of basic com-
mutators, in particular in terms of Engel commutators. We show
that the laws imposing such an expression define specific varietal
properties. For a property P we consider a subset U(P) ⊆ F such
that every law of the form [x, y−1] ≡ u, u ∈ U(P) provides the
varietal property P. For example, we show that each subnormal
subgroup is normal in every group of a variety V if and only if V
satisfies a law of the form [x, y−1] ≡ u, where u ∈ [F ′, 〈x〉].

1. Introduction

Let F = 〈x, y〉 be a noncyclic free group. We denote xy = y−1xy,
[x, 0y] = x, [x, 1y] = [x, y] = x−1y−1xy, [x, i+1y] = [[x, iy], y]. If
assume x > y then the nontrivial commutators of the form [x, iy, jx]
are so called left-normed basic commutators.

Every group-law implies a 2-variable law, and each variety satisfies
a law of the form [x, y−1] ≡ u, for a word u = u(x, y) in F. The com-
mutator [x, y−1] cannot be expressed in terms of basic commutators
(see e.g. [10], 36.24), so we consider the laws imposing such an expres-
sion. The laws with a similar expression may form the families of laws
providing the same varietal property in the corresponding variety V.
We look for a subset U(P) in F such that the following two conditions
imply each other:

(i) V satisfies a law of the form [x, y−1] ≡ u, u∈ U(P).
(ii) V has the property P .

In this paper we consider the varietal properties, first three of which
are provided by so called restraining laws, Milnor laws and t-laws re-
spectively.

P1 : Each finitely generated group G ∈ V has finitely generated G′.

P2 : Each finitely generated metabelian group inV has finitely gener-
ated G′.

P3 : Subnormal subgroups are normal in every group G ∈ V.
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For each of these properties we describe a family [x, y−1] ≡ u, u∈ U(Pi)
of laws providing the property Pi.

Restraining laws: [x, y−1] ≡ u, u ∈
〈

[x, iy], i ≥ 0
〉
,

Milnor laws: [x, y−1] ≡ u, u ∈
〈

[x, iy], i ≥ 0
〉
· F ′′,

t-laws: [x, y−1] ≡ u, u ∈
〈

[F ′, 〈x〉 ]
〉
,

Abelian and Pseudo-Abelian laws: [x, y−1] ≡ u, u ∈ F ′′.

2. Preliminaries

Following F. Point [13], we say that a group G has the Milnor prop-

erty if for all elements g, h ∈ G, the subgroup 〈ghi
, i∈N〉 is finitely gen-

erated. This property first was considered by J. Milnor ([9], Lemma 3).
Later S. Rosset proved in [16] that a finitely generated group G satis-
fying this property has G′ finitely generated. Groups satisfying the
Milnor property were called by Y. Kim and A. Rhemtulla restrained
groups [4].

A law is called restraining (or an R-law) if every group satisfying
this law is restrained, or equivalently, if each finitely generated group
G satisfying this law has finitely generated G′ [6]. So we have the
following.

Lemma 1 (cf. [6], [7]). Let V be a variety of groups. The following
conditions are equivalent:
1. V satisfies a restraining law.
2. Each group G ∈ V has the Milnor property.
3. Each finitely generated group G ∈ V has G′ finitely generated.

Note that the last of the above conditions is the property P1.

3. [x, y−1] as a product of left-normed basic commutators
and restraining laws

We denote by E a subgroup in F generated by all Engel commutators
[x, iy], i ≥ 0, that is

E := 〈x, [x, y], [x, 2y], [x, 3y], . . .〉.
The subgroup E contains the left-normed basic commutators [x, iy, jx],
i > 0. Since the word [x, y−1] cannot be expressed modulo F ′′ in terms
of basic commutators ([10], 36.24), it is interesting to consider the laws
imposing this expression. We start with laws of the form

(1) [x, y−1] ≡ u, u ∈ E,

and show that it is the family of the restraining laws, defining varieties
with properties listed in Lemma 1. It suffices to prove that U(P1) = E.

Theorem 1. The implications (i)⇔ (ii) hold for a variety V, where

(i) V satisfies a law of the form [x, y−1] ≡ u, u∈ E.
(ii) P1 : Each finitely generated group G ∈ V has G′ finitely gene-

rated.
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Proof. It is shown in ( [7], Corollary 5.4) that the following subgroups

coincide for every n (n ≥ 0): 〈 [x, iy], 0≤ i≤n 〉 = 〈xyi, 0≤ i≤n 〉. So
we have

(2) E := 〈 [x, iy], i≥0 〉=〈xyi, i≥0 〉.

(i) ⇒ (ii). Assume that V satisfies a law [x, y−1] ≡ u, u∈ E. Let V
and V denote the corresponding variety and the verbal subgroup in F ,
respectively. In view of Lemma 1, it suffices to show that each group
G ∈ V has the Milnor property, that is the subgroup 〈xyi , i ∈ N〉
is finitely generated modulo V . The following inclusions are written
modulo V.

It follows by (2) that for u ∈ E there is n, such that: u belongs to

〈xyi , 0 ≤ i ≤ n〉, which implies by (i) that [x, y−1] ∈ 〈 xyi, 0≤ i≤n 〉,
and hence

(3) xy−1 ∈ 〈x, xy, xy2, ..., xyn 〉.

Conjugate (3) by y−1 then

xy−2∈ 〈xy−1

, x, xy, . . . xyn−1〉
(3)

⊆ 〈x, xy, xy2 , . . . xyn 〉.

By repeating the conjugation we obtain for all k > 0

(4) xy−k ∈ 〈x, xy, xy2, ..., xyn 〉.

Since V is fully invariant we can substitute y → y−1 to get for all k > 0

(5) xyk ∈ 〈x, xy−1

, xy−2

, . . . , xy−n 〉
(4)

⊆ 〈x, xy, xy2, ..., xyn 〉.

In view of (4) and (5) it follows that the subgroup 〈xyi , i ∈ N〉 is finitely
generated modulo V . Hence each group G ∈ V has the Milnor property
and by Lemma 1, we have (ii).
(ii) ⇒ (i). If each finitely generated group G ∈ V has G′ finitely

generated then by Lemma 1, the subgroup 〈xyi, i ∈ N〉 is finitely gen-

erated (modulo V ) by, say, a set {x, xy, xy2, ..., xyn}. Then xyn+1 ∈
〈x, xy, xy2, ..., xyn〉. Conjugation by y−(n+1) gives

x ∈ 〈xy−(n+1)

, xy−n

, xy−n+1

, . . . , xy−2

, xy−1〉.

Substitution y → y−1 implies that x ∈ 〈xy, xy2, ..., xyn+1〉. Now

conjugation by y−1 gives xy−1 ∈ 〈x, xy, xy2, ..., xyn〉, which leads to
[x, y−1] ∈ E · V, and allows to conclude that F/V (and hence V) sat-
isfies a law of the required form [x, y−1] ≡ u, where u ∈ E. �

4. [x,y−1] as a product of basic commutators modulo F′′

and Milnor laws

Definition 1. We call a law the Milnor law if it is not satisfied in any
variety of the form ApA for a prime p.
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The choice of the name comes from the paper of F. Point [13] who
introduced the laws (called the Milnor identities) by means of charac-
teristic polynomials. By result of G. Endimioni [1], (see [14], Proposi-
tion 1.1 ), these laws are not satisfied in any variety of the form ApA
for a prime p.

Lemma 2 (cf. [6], [7]). Let F/V be a free group of rank 2 in a variety
V. The following conditions are equivalent:
1. V does not contain a subvariety ApA for a prime p.

2. Each finitely generated metabelian group G ∈ V has finitely genera-
ted G′.

Proof. 1 ⇒ 2. If V does not contain a subvariety ApA then V *
F ′′F ′p for any prime p. It follows that F ′′V * F ′′F ′p. By result of
J. R. J. Groves ([2], Theorem C (ii)), the group F/F ′′V is nilpotent-by-
(finite exponent). Hence by [8], it satisfies a positive law, which is a
restraining law. So by Lemma 1, all groups in var F/F ′′V have finitely
generated commutator subgroups and the condition 2 follows.
2 ⇒ 1. Let each finitely generated group G ∈ V have G′ finitely ge-
nerated. If V contains a subvariety ApA, then V contains the group
W = 〈a〉p o 〈b〉, the restricted wreath product of a cyclic group of order
p, and an infinite cyclic group. The commutator subgroup W ′ contains
elements [a, bi] = a−1ab

i
for all i ∈ Z, so W ′ has an infinite support and

cannot be finitely generated. A contradiction. �

Theorem 2. The implications (i)⇔ (ii) hold for a variety V, where

(i) V satisfies a law of the form [x, y−1] ≡ u, u∈ EF ′′.
(ii) P2 : Each finitely generated metabelian group G ∈ V has

finitely generated G′.

Proof. (i)⇒ (ii). Assume that V satisfies a law of the form [x, y−1] ≡
u, u ∈ EF ′′. Then metabelian groups in V satisfy the law of the
form [x, y−1] ≡ u, u ∈ E and by Theorem 1, each finitely generated
metabelian group G ∈ V has a finitely generated G′.
(ii)⇒ (i). By Theorem 1, the group F/F ′′V satisfies a law of the form
[x, y−1] ≡ u, u∈ E, which implies that F/V (and hence V) satisfies a
law of the required form [x, y−1] ≡ u, u∈ EF ′′. �

5. Varieties in which normality is a transitive relation

The groups in which normality is a transitive relation (t-groups)
have been considered by many authors (see [15], 13.4), however no
non-abelian infinite relatively free t-group was known till 1997 [5].

We consider the transitivity of normality (the t-property) as the
varietal property and show that the laws providing the t-property are
of the form [x, y−1] ≡ u, where U =

[
F ′, 〈x〉

]
.

Theorem 3. The implications (i)⇔ (ii) hold for a variety V, where
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(i) V satisfies a law of the form [x, y−1] ≡ u, u∈
[
F ′, 〈x〉

]
.

(ii) P3 : Subnormal subgroups are normal in every group G ∈ V.

Proof. Since [x, y−1] = [x, y]−y
−1

and the subgroup
[
F ′, 〈x〉

]
is invari-

ant under the map y → y−1, it suffices to prove the theorem for the
laws

(6) [x, y] ≡ u, u∈
[
F ′, 〈x〉

]
.

(i)⇒ (ii). Assume that G is a group satisfying a law of the form (6).
Let G have a normal subgroup H which has a normal subgroup K,
that is

G B H B K.

If g ∈ G and k ∈ K then, we have by (6):

[k, g] ∈
[
[〈k〉, 〈g〉], 〈k〉

]
⊆

[
[K,G], K

]
⊆ [H,K] ⊆ K,

which means that K is a normal subgroup of G. Hence each subnormal
subgroup is normal in every group satisfying a law of the form (6).
(ii)⇒ (i). Let V be a verbal subgroup in F such that each subnormal

subgroup is normal in F/V . Consider F B 〈x〉F B 〈x〉〈x〉F . Then by

assumption, the subnormal subgroup 〈x〉〈x〉F is normal in F modulo
V . Since it contains x, it must contain 〈x〉F . So modulo V we have

〈x〉F ≡ 〈x〉〈x〉F . By commutator calculus 〈x〉F = 〈x〉F ′ and 〈x〉〈x〉F =
〈x〉

[
〈x〉F ′, 〈x〉

]
=〈x〉

[
F ′, 〈x〉

]
. Thus

〈x〉F ′ ≡ 〈x〉
[
F ′, 〈x〉

]
,

which implies (for some k) a law [x, y] ≡ xku, where u∈
[
F ′, 〈x〉

]
. The

latter implies xk ≡ 1 and the required law [x, y] ≡ u, u∈
[
F ′, 〈x〉

]
. �

The following Proposition shows that each variety with transitivity of
normality is either abelian or pseudo-abelian, that is a non-abelian va-
riety without non-abelian metabelian groups. The problem of existence
of such a variety was posed in ( [10], Problem 5). The first examples of
the pseudo-abelian varieties were given by A. Yu. Olshanskii [11], [12].

Proposition 1. A variety with transitivity of normality has no non-
abelian metabelian groups.

Proof. In view of Theorem 3, it suffices to show that each law of the
form [x, y] ≡ u, u∈

[
F ′, 〈x〉

]
implies a law of the form [x, y] ≡ v, v ∈

F ′′.
If put [x, y] instead of x in (6), we obtain [x, y, y] ≡ v ∈ F ′′, which

implies that each 2-generator metabelian group satisfying a law (6), is
2-nilpotent. Since the values of the word u∈

[
F ′, 〈x〉

]
in the 2-nilpotent

group are trivial, each 2-generator metabelian group satisfying (6) is
abelian. Hence a law of the form [x, y] ≡ v, v ∈ F ′′ follows. �
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Question The question whether the converse implication holds, that
is whether each pseudo-abelian law implies transitivity of normality, is
open.

This question was first formulated in [3]. A positive answer is known [5]
only for the pseudo-abelian varieties constructed by A. Yu. Ol’shanskii.

6. Varieties of 2-Engel groups with G′ of finite exponent.

We show that each law in the family

(7) [x, y−1] ≡ [x, y]k, k ∈ Z

defines a variety of 2-Engel groups G with G′ of finite exponent unless
k = −1.

Theorem 4. The implications (i)⇔ (ii) hold for a variety V, where

(i) V satisfies a law of the form, [x, y−1] ≡ [x, y]k, k ∈ Z, k 6= −1.
(ii) V consists of 2-Engel groups G with (G′)k+1 = {e}, k 6= −1.

Proof. (ii) ⇒ (i). Condition (ii) implies that G satisfies the laws
[[x, y], y] ≡ 1 and [x, y]k+1 ≡ 1. Since [[x, y], y] = [x, y−1]y[x, y]y, the
law [[x, y], y] ≡ 1 is equivalent to

(8) [x, y−1] ≡ [x, y]−1.

The second law can be written as [x, y]k ≡ [x, y]−1. Then in view of (8),
[x, y]k ≡ [x, y]−1 ≡ [x, y−1], which gives the required law [x, y−1] ≡
[x, y]k.
(i)⇒ (ii). The inverse of the right-hand part of (7) can be obtained

by interchanging x � y, hence the same holds for the left-hand part,
that is [x, y−1]−1 ≡ [y, x−1]. By the commutator identity [x, y−1] =

[x, y]−y
−1

, this implies [x, y]y
−1 ≡ [y, x]−x

−1
. Conjugation by y implies

[[y, x], x−1y] ≡ 1, which, by mapping y → xy gives [[y, x], y] ≡ 1, and
hence [[x, y], y] ≡ 1.

By combining the law in (i) and (8) we obtain [x, y]k+1 ≡ 1. To get
(G′)k+1 = {e}, it suffices to show that the 2-engel group is metabelian.
Indeed, by ([10], 34.31 ) it satisfies [[[x, y], z], t] ≡ 1. By (8), we
have [[x, y], z−1] ≡ [[x, y], z]−1. And now by the commutator iden-
tity [a, bc] = [a, c][a, b][[a, b], c] we have the metabelian law

[[x, y], [z, t]] = [[x, y], z−1t−1z t] ≡ 1.

�
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