
What do the Engel laws and positive laws
have in common

Olga Macedonska

Institute of Mathematics, Silesian University of Technology,
Gliwice 44-100, Poland

e-mail: o.macedonska@polsl.pl

Аннотация

Статья связана с вопросом Р. Бернса: Что общего имеют Энге-
левые и полугрупповые тождества, заставляя конечно порож-
денные локально ступенчатые группы содержать нильпотент-
ную подгруппу конечного индекса? Мы показываем, что Энгеле-
вые и полугрупповые тождества имеют одинаковую так называе-
мую Энгелевую конструкцию, а каждая конечно порожденная ло-
кально ступенчатая группа удовлетворяющая тождеству с такой
конструкцией должна содержать нильпотентную подгруппу конеч-
ного индекса.

Abstract

The work is inspired by a question of R.Burns: What do the Engel
laws and positive laws have in common that forces finitely generated
locally graded groups satisfying them to be nilpotent-by-finite? The an-
swer is that these laws have the same so called the Engel construction.

Introduction

Let F=〈x, y〉 be a free group of rank 2, u be a word, and S be a subset in F .

Definition 1. We say that a law w ≡ 1 has construction u ∈̃S if it is
equivalent to a law u ≡ s for some s∈S.

1



The laws with the same construction have similar properties. For example,
the laws with construction [x, y] ∈̃F ′′ force the groups satisfying them to
have perfect commutator subgroups.

We denote xyi
=y−ix yi, [x, y]=x−1y−1xy, [x, iy] is an Engel commu-

tator [...[[x, y], y], ..., y] where y is repeated i times, and [x, 0y] = x. By En

we denote the following subgroup generated by the Engel commutators:

En = 〈 [x, iy], 0≤ i≤n〉.

We show that every binary commutator law is equivalent to a law with the
following so called Engel construction

[x, y]k1 [x, 2y]k2... [x, ny]kn ∈̃ E ′
n.

Let w ≡ 1 be a binary law and V be a variety, it defines. We prove that

• Each finitely generated group in V has finitely generated commutator
subgroup if and only if the law w ≡ 1 implies a law with the following
Engel construction

[x, ny] ∈̃En−1. (1)

• Positive laws and the Engel laws have the Engel construction (1). The
law xk ≡ 1 implies a law with the Engel construction (1).

• Each finitely generated locally graded group satisfying a law with the
Engel construction (1) is nilpotent-by-finite.

The Engel construction of laws

We show that every binary commutator law is equivalent to a law w ≡
1, where for some n, the word w is a product of the Engel commutators
[x, iy], 1≤ i≤n.

Theorem 1. Every binary commutator law w ≡ 1 has the following Engel
construction

[x, y]k1 [x, 2y]k2... [x, ny]kn ∈̃ E ′
n, k ≥ 0, ki ∈ Z. (2)
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Proof. Let w ≡ 1 be a commutator law. Note that F ′ belongs to the normal
closure of x in F which is freely generated by all conjugates xyi

, i ∈ Z. So
w is a product of some xyi

with say, −m≤ i≤−m + n. Conjugation by ym

gives us the equivalent law with w ∈ 〈xyi
, 0≤ i≤ n 〉. In this subgroup we

can replace the free generators xyi
by x−1xyi

= [x, yi], then

w ∈ 〈xyi

, 0≤ i≤n 〉 = 〈x, [x, yi], 1≤ i≤n 〉. (3)

We show by induction that 〈x, [x, yi], 1≤ i≤ n 〉 ⊆ En by proving that
for k > 0, [x, yk] ∈ Ek−1[x, ky]. For k = 1 it is clear. Assume now that
[x, yk] ∈ Ek−1[x, ky]. If replace x→ [x, y] then

[[x, y], yk] ∈ Ek[x, k+1y]. (4)

By applying the assumption and its consequence to the commutator identity

[x, yk+1] = [x, yk] [x, y] [[x, y], yk], (5)

we obtain for k ≥ 0,
[x, yk+1] ∈ Ek[x, k+1y]. (6)

So in view of (3),
w ∈ 〈x, [x, yi], 1≤ i≤n 〉 ⊆ En.

Hence every commutator law is equivalent to a law w ≡ 1, where for some
n, the word w is a product of the Engel commutators [x, iy], 1≤ i≤n.
By ordering these factors modulo E ′

n, we get the law with construction

[x, y]k1 [x, 2y]k2... [x, ny]kn ∈̃ E ′
n, ki ∈ Z, n ≥ 0.

The Milnor property and R-laws

To consider a special kind of laws, we recall the definition of the Milnor
property of groups, the name of which was suggested by F. Point in [11].

Definition 2. A group G satisfies the Milnor property if for all elements
g, h ∈ G the subgroup 〈h−ig hi, i∈Z〉 is finitely generated.
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Note that the group 〈h−ig hi, i∈Z〉 is invariant for conjugation by h, hence
if it is finitely generated then it is equal to 〈h−ig hi, i∈N〉.
The name of the property was motivated by result of Milnor ([8] Lemma 3)
who proved that if a finitely generated group G has this property and A is
an abelian normal subgroup in G so that G/A is cyclic then A is finitely
generated. In 1976 Rosset noticed that the assumption that A is abelian can
be dropped and proved the following results which we present in the following
Lemma.

Lemma 1. Let G be a finitely generated group satisfying the Milnor property.
(i) Then G′ is finitely generated.
(ii) If G/N is cyclic then N is finitely generated.
(iii) If G/N is polycyclic then N is finitely generated.

Proof. For (i) and (ii) see ([12] Lemmas 2,3), ([7] Lemma 3, Corollary 4).
Note that in [7] the groups satisfying the Milnor property are called re-
strained. For (iii), if G/N is polycyclic then there is a finite subnormal series
with cyclic factors G = N0 ¤ N1 ¤ · · · ¤ Nm = N. Then by means of m
successive applications of (ii) we conclude that N is finitely generated.

We introduce a class of laws which we call the R-laws (restraining laws)
because, as we show, every group satisfying the R-law has the Milnor prop-
erty (is restrained ).

Definition 3. A law is called an R-law if it implies a law with the following
Engel construction where ki ∈ Z, n ≥ 1.

[x, y]k1 [x, 2y]k2... [x, n−1y]kn−1 [x, ny] ∈̃ E ′
n−1. (7)

Example 1. It is clear that an n-Engel law [x, ny] ≡ 1 is the R-law.

Example 2. Each law of the form xk ≡ 1 is the R-law because it implies the
law [x, yk] ≡ 1 which in view of (6) implies a law of the form (7).

Theorem 2. A law is an R-law if and only if every group satisfying this law
has the Milnor property.

Proof. We denote Pk = 〈x, xyi
, 1≤ i≤k 〉 and show that [x, ky] ∈ Pk−1x

yk
.

For k = 1 it is clear. Assume that [x, ky] ∈ Pk−1x
yk

, then

[x, k+1y] ∈ (Pk−1x
yk

)−1(Pk−1x
yk

)y ⊆ Pkx
yk+1

.
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It follows for k ≥ 0 that Ek ⊆ Pk which implies the equality Ek = Pk, because

Ek ⊆ Pk = 〈x, xyi

, 1≤ i≤k 〉 (3)
= 〈x, [x, yi], 1≤ i≤k 〉

(6)

⊆ Ek.

Hence the construction [x, ny] ∈̃ En−1 is equivalent to xyn ∈̃Pn−1, that is

xyn ∈̃ 〈 x, xy, xy2

, ..., xyn−1〉. (8)

We use conjugation by y−n, so each R-law has also construction

x ∈̃ 〈xy−n

, xy−(n−1)

, ..., xy−2

, xy−1〉, (9)

and if change y → y−1 we have

x ∈̃ 〈 xy, xy2

, ..., xy(n−1)

, xyn〉. (10)

Let G be a relatively free group, freely generated by a, b, ... , satisfying an
R-law. Then (10) implies

a ∈ 〈 ab, ab2, ..., ab(n−1)

, abn〉, (11)

We conjugate (11) by b−1, then

ab−1∈ 〈 a, ab, , ..., ab(n−2)

, ab(n−1)〉
(11)

⊆ 〈 ab, ab2, ..., ab(n−1)

, abn〉.
By repeating the conjugation by b−1 we obtain for all i > 0,

ab−i∈ 〈 ab, ab2, ..., ab(n−1)

, abn〉. (12)

Similarly, by (9),

a ∈ 〈 ab−n

, ab−(n−1)

, ..., ab−2

, ab−1〉. (13)

Conjugation by b gives ab ∈ 〈 ab−n+1
, ab−n

, ..., ab−1
, a〉

(13)

⊆ 〈 ab−n
, ab−n+1

, ..., ab−1〉.
By repeating conjugation we obtain for all i > 0, abi∈〈 ab−n

, ab(−n+1)
, ..., ab−1〉,

which, together with (12) finally gives that the subgroup

〈b−ia bi, i∈Z〉=〈 ab−n

, ab−(n−1)

, ... , ab−1

, a, ab, ..., abn−1

, abn〉 (14)

is finitely generated. Since for all elements g, h in any group satisfying the
R-law, the subgroup 〈h−ig hi, i ∈ Z〉 is an image of 〈 b−ia bi, i ∈ Z 〉, we
conclude that the R-law implies the Milnor property.
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Conversely, let G be a relatively free group with free generators a, b. If
the subgroup 〈b−ia bi, i ∈ Z〉 is finitely generated then there exists n such
that the condition (14) holds. Conjugation by bn implies that

〈b−ia bi, i∈Z〉 = 〈 a, ab, ab2, ... , ab2n〉 = 〈b−ia bi, i∈N〉. (15)

So we have
ab2n+1 ∈ 〈 a, ab, ab2, ... , ab2n〉.

Since each relator on free generators is a law (see [9] 13.21), G satisfies a law
with construction of the form (8) which defines the R-laws.

Theorem 3. A law is an R-law if and only if every finitely generated group
satisfying this law has a finitely generated commutator subgroup.

Proof. If G satisfies an R-law then by Theorem 2, G has the Milnor property
an hence by Lemma 1 (i), G′ is finitely generated.

Conversely, let G be a relatively free group defined by a law w ≡ 1, with
free generators a, b and let G′ be finitely generated. Then the normal closure
of a is equal to 〈b−ia bi, i ∈ Z〉 = 〈a〉[〈a〉, 〈b〉] = 〈a〉G′, hence is finitely
generated. Then for some n the condition (14) holds. It follows as above,
that G satisfies the Milnor property and then by Theorem 2, it satisfies an
R-law.

Positive laws are the laws of the form u(xl, x2, .... xn) = v(xl, x2, ... xn),
where u, v are distinct words in the free group 〈xl, x2....〉, written without
negative powers of xl, x2, ... xn .

Example 3. Each positive law is an R-law.

Proof. Each positive law implies a binary positive law if substitute xi → xyi.
It was shown by many authors (e.g. [6], [7], [11], [2] p.520 ) that if a group
G satisfies a binary positive law then G has the Milnor property. Thus by
Theorem 2, positive laws are the R-laws.

Example 4. For all prime p, the variety ApA, where A is the variety of all
abelian groups, and Ap – of all abelian groups of exponent p, does not satisfy
an R-law.

Proof. The variety ApA contains a 2-generator group W := CpwrC, the
wreath product of a cyclic of order p group Cp = 〈a〉 and an infinite cyclic
group C = 〈b〉. The commutator subgroup W ′ of this group contains ele-
ments a−1abi

for all i ∈ Z, hence W ′ has an infinite support and cannot be
finitely generated. So by Theorem 2, ApA does not satisfy an R-law.
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A finitely generated residually finite group satisfying either an Engel law
or a positive law is nilpotent-by-finite. It was proved for the Engel laws in
[14] and for positive laws in [13]. By Examples 2 and 3, the Engel laws and
positive laws are the R-laws. The following lemma extends the statement to
the class of R-laws.

Lemma 2. Every finitely generated residually finite group satisfying an R-
law is nilpotent-by-finite.

Proof. It follows from ([3] Theorem A) that if a law w ≡ 1 forces every finitely
generated metabelian group satisfying this law to have a nilpotent (of class c,
say) subgroup of finite index (e, say), then the same holds for every group in
the class containing in particular all residually finite groups. Moreover, the
parameters c, e depend on the law only.

So it suffices to show that every finitely generated metabelian group satis-
fying an R-law is nilpotent-by-finite. Let G be a finitely generated soluble (in
particular metabelian) group satisfying an R-law. By Groves ([5] Theorem
C), G is either nilpotent-by-finite or var G contains a subvariety ApA. Since
the latter is not possible in view of Example 4, the proof is complete.

The next property of R-laws concerns a finite residual R in a group G,
that is the intersection of all subgroups of finite index in G.

Theorem 4. Every finitely generated group G satisfying an R-law has its
finite residual R finitely generated.

Proof. By assumption the group G/R satisfies an R-law, hence by Theorem 2
it has the Milnor property. Then by Lemma 2, G/R is nilpotent-by-finite.

So G/R contains a nilpotent subgroup H/R of finite index. Now, since
|G : H| = |(G/R) : (H/R)| < ∞ and G is finitely generated, both H and
H/R are finitely generated. Being a finitely generated nilpotent group, H/R
is polycyclic (see [9] 31.12). Since H/R also has the Milnor property, we
conclude by Lemma 1 (iii) that R is finitely generated.

R-laws and locally graded groups

The common property of the Engel laws and positive laws of being the
R-laws is necessary and sufficient to answer why they force finitely generated
locally graded groups satisfying them to be nilpotent-by-finite.
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We recall that a group G is called locally graded if every nontrivial, finitely
generated subgroup of G has a proper normal subgroup of finite index. The
class of locally graded groups is closed under taking subgroups, extensions
and groups which are locally-or-residually ’locally graded’. The class of lo-
cally graded groups was introduced in 1970 by S.N.Černikov [4] to avoid
groups such as infinite Burnside groups or Ol’shanskii-Tarski monsters.

We can prove now the following

Theorem 5. Every finitely generated locally graded group satisfying an R-
law is nilpotent-by-finite.

Proof. Let G be a finitely generated locally graded group. By Theorem 4,
its finite residual R is finitely generated. Then, since G is locally graded, if
R 6= 1, it must contain a proper subgroup (hence a proper normal subgroup)
of finite index T ( R, say. Then by ([9], 41.43), T contains a subgroup
K of finite index in R and fully invariant in R, K ⊆ T ( R. Thus K is
normal in G. Now, since R/K is finite and G/R is nilpotent-by-finite, the
isomorphism (G/K)/(R/K) ∼= G/R implies that G/K is finite-by-(nilpotent-
by-finite). Since finite-by-nilpotent group is nilpotent-by-finite, whence G/K
is nilpotent-by-finite and then residually finite. It implies R ⊆ K, which
contradicts to K⊆ T ( R. Hence R = 1.

So G is residually finite and by Lemma 2 is nilpotent-by-finite as required.

Moreover, let Nc denote the variety of all nilpotent groups of class ≤ c and
Be – the variety consisting of all locally finite groups of exponent dividing e.
(Note that the fact that the class Be is actually a variety, is a consequence
of Zelmanov’s solution of the restricted Burnside problem.) Then by result
in [3] (see the proof of Lemma 2) we obtain

Corollary 1. For every R-law there exist positive integers c and e depending
only on the law, such that every locally graded group satisfying this law lies
in the product variety NcBe

Note Outside of the class of locally graded groups there are finitely gene-
rated groups satisfying R-laws (in particular, positive laws), which are not
nilpotent-by-finite. For example a free Burnside group B(r, n), r > 1 satisfies
the R-law xn ≡ 1. If n is sufficiently large the group is infinite by results
of Novikov and Adian (see [1]), hence it is not nilpotent-by-finite. Note also
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that a free finitely generated group satisfying the R-law xyn = ynx is not
nilpotent-by-finite for n sufficiently large.

Another example was given by Ol’shanskii and Storozhev in [10].

Problem Is there an R-law that implies neither positive nor Engel law?
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