On S-length of groups

O. Macedońska and A. Potyka

Abstract

Let G be a group and S be a subsemigroup in G, generating G as a group. Every element in G is a product of elements from $S \cup S^{-1}$. An equality $G=S^{-1} S \cdots S^{-1} S$ allows to define an S-length $l(G)$ of the group G. The note concerns the problem posed by J. Krempa on possible values of $l(G)$. We show that for collapsing groups, supramenable groups and groups of a subexponential growth $l(G) \leq 2$. The S-length of a relatively free group can be equal to 1 or 2 or infinity, but it can not be equal to 3 . The problem concerning other values is open.

Keywords: relatively free group, cancellative semigroup, S-length.
In the process of algebraic classifications in group theory there are used different parameters of groups defined by so called length or width functions. The notion of S-length of a group was suggested by J. Krempa in 1998 and some conjections were made on its value.

Let S be a subsemigroup in a group G, generating G as a group. If G is a finite group, it is clear that $G=S=S^{-1}$. If G is an abelian group then $G=S^{-1} S=S S^{-1}$, that is G is a group of fractions of S (see e.g. [1]). A natural question arises whether for each $k>2$ there is a group such that $G=S^{-1} S \cdots S^{-1} S$ with no less than k factors. The aim of this note is to describe the groups of S-length equal to 1 and 2 . We also give an example of a group with S-length greater or equal to 3 and show that the S-length of a relatively free group can not be equal to 3 .
If G is a group and A is a subset in G then $\operatorname{sgp}(A)$ will denote the subsemigroup of G generated by A. By $|A|$ we denote the cardinality of A.

1. S-length of a group

Let G be a finitely generated group and n be the smallest number of generators in G. A subsemigroup $S \subseteq G$ generated by any n-element set of generators in G will be called a base semigroup of G.

AMS subject classification: Primary 20E10, 20E34, 20M07

The length of G with respect to a base semigroup S, denoted by $l(S, G)$ is the smallest natural k (if exists) such that

$$
\begin{equation*}
G=\underbrace{S^{-1} S S^{-1} S \cdots S}_{k}{ }^{(-1)^{k}}=\underbrace{S S^{-1} S S^{-1} \cdots S}_{k}{ }^{(-1)^{k-1}} \tag{1}
\end{equation*}
$$

If such a k does not exist we assume $l(S, G)=\infty$.
Definition Let $X(G)$ denote the set of all base semigroups in G. Then the S-length of G is defined as

$$
l(G)=\sup \{l(S, G): S \in X(G)\}
$$

Example 1 Let $G=\langle a\rangle_{2} *\langle b\rangle_{3}$ be the free product of finite cyclic groups of orders 2 and 3. Let $S_{1}=\operatorname{sgp}(a, b)$ and $S_{2}=\operatorname{sgp}\left(a b, a b^{2}\right)$. It is not difficult to see that $l\left(S_{1}, G\right)=1$ (see also Example 4), while $l\left(S_{2}, G\right) \neq 1$, because each element in S_{2} begins with a, so $S_{2} \neq G$. We can see also that a $\notin S_{2} S_{2}^{-1}$ and $a=(a b)\left(a b^{2}\right)^{-1}(a b)=(a b)^{-1}\left(a b^{2}\right)(a b)^{-1} \in S_{2} S_{2}^{-1} S_{2} \cap S_{2}^{-1} S_{2} S_{2}^{-1}$, hence we can conclude that $l(G) \geq 3$.

Example 2 If G is a periodic group (e.g. a finite group) then $l(G)=1$.
Example 3 If F is a free noncyclic group and S is generated by a set $\{a, b, \ldots\}$ of free generators of F then for every $k, l(S, F)>k$, because the word $\left(a b^{-1}\right)^{k}$ is not equal to any other word and needs $2 k$ factors in (1). So we conclude that $l(F)=\infty$.

A word $w\left(x_{1}, \ldots, x_{n}\right)$ is called positive if it is written without inverses of x_{i} 's. We give now necessary and sufficient conditions for a group G and a base semigroup $S \subseteq G$ to have $l(S, G)=1$.

Proposition 1 Let $S=\operatorname{sgp}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a base semigroup in a group G. $l(S, G)=1$ if and only if G has a defining relation $r\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, where r is a positive word, containing each generator.

Proof Let F be a free group and \mathcal{F} be a free subsemigroup in F, both generated by the set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. By assumption G has a presentation $F / N=\left\langle x_{1}, x_{2}, \ldots, x_{n} \mid N\right\rangle$ for some $N \triangleleft F$, and the natural homomorphism $F \rightarrow G \cong F / N$ maps $\mathcal{F} \rightarrow S$.

If $l(S, G)=1$, then $G=S=S^{-1}$, and $F=\mathcal{F} N=\mathcal{F}^{-1} N$. Hence $\left(x_{1} x_{2} \cdots x_{n}\right)^{-1} \in F=\mathcal{F} N$. So the word $\left(x_{1} x_{2} \cdots x_{n}\right)^{-1}$ is in a coset $s N$ for some positive word $s=s\left(x_{1}, \ldots x_{n}\right) \in \mathcal{F}$. Thus the required defining relator is $r:=x_{1} x_{2} \cdots x_{n} \cdot s$ and the relation in G is $a_{1} a_{2} \cdots a_{n} \cdot s\left(a_{1}, \ldots, a_{n}\right)=1$.

Conversely, let $G \cong F / N$. If $r \in N$ is a positive word containing each generator then for each fixed x_{i} we can write r as $u x_{i} v$ for some $u, v \in \mathcal{F}$. Conjugation by u gives the defining relator $x_{i} v u \in N$, which implies that $x_{i}^{-1} \in v u N \subseteq \mathcal{F} N$. Hence $\mathcal{F}^{-1} \subseteq \mathcal{F} N, F=\mathcal{F} N$ and $G=S$. Since $G=G^{-1}$, we have $G=S=S^{-1}$ and $l(S, G)=1$.

Example 4 In Example 1, the group $G=\langle a\rangle_{2} *\langle b\rangle_{3}$, with a base semigroup $S_{1}=\operatorname{sgp}(a, b)$ has the defining relation $a^{2} b^{3}=1$. So $l\left(S_{1}, G\right)=1$, however $l(G) \neq 1$.

We recall that a semigroup S satisfies Ore conditions if for every $g, h \in S$ there exist $g^{\prime}, h^{\prime} \in S$ such that $g g^{\prime}=h h^{\prime}$ (right Ore condition) and there exist $g^{\prime \prime}, h^{\prime \prime} \in S$ such that $g^{\prime \prime} g=h^{\prime \prime} h$ (left Ore condition) (for definition in different terminology see [1] §1.10). We give now necessary and sufficient conditions for a group G and a base semigroup $S \subseteq G$ to have $l(S, G) \leq 2$.

Proposition 2 Let G be a group with a base semigroup $S . l(S, G) \leq 2$ if and only if S satisfies Ore conditions.

Proof If $l(S, G)=2$, then $G=S S^{-1}=S^{-1} S$ and for every $g, h \in S$, $h^{-1} g \in G=S S^{-1}$, which implies that there exist $g^{\prime}, h^{\prime} \in S$ such that $h^{-1} g=h^{\prime} g^{\prime-1}$ and the right Ore condition $g g^{\prime}=h h^{\prime}$ follows. The left Ore condition follows similarly from the equality $G=S^{-1} S$.

Conversely, the right Ore condition implies that for every $g, h \in S$ there exist $g^{\prime}, h^{\prime} \in S$ such that $h^{-1} g=h^{\prime} g^{\prime-1}$ which gives $S^{-1} S \subseteq S S^{-1}$. The opposite inclusion follows from the left Ore condition, so $S S^{-1}=S^{-1} S$. Each element of G is in a finite product of the form $S S^{-1} S S^{-1} \cdots S^{(-1)^{k-1}}$ with k, say, factors. If $k=3$ then by the equality $S^{-1} S=S S^{-1}$ we have $S S^{-1} S=S\left(S S^{-1}\right)=S S^{-1}$. Similarly, for any k we can show by induction that $G=S^{-1} S=S S^{-1}$. Hence $l(S, G) \leq 2$.

Theorem 1 A group G without free noncyclic subsemigroup has $l(G) \leq 2$.
Proof Let g, h be elements in G. Since by assumption the semigroup $\operatorname{sgp}(g, h)$ is not free, there are two equal nontrivial words $u(g, h)=v(g, h)$. By using cancellation in G we can assume that $u(g, h)$ has g as the first letter and the first letter in $v(g, h)$ is h, so we obtain $g u_{1}(g, h)=h v_{1}(g, h)$, which implies the right Ore condition in every subsemigroup in G. For the left Ore condition we use the last letters in $u(g, h)$ and $v(g, h)$. Now the statement follows by Proposition 2.

Corollary 1 All collapsing groups [7], supramenable groups [8] and groups of a subexponential growth [4], [3], [2] have $l(G) \leq 2$.

To give an example of a group with S-length greater or equal to 3 we recall that the restricted wreath product (see [6] p.45) $G=A w r\langle b\rangle$ of a group A and an infinite cyclic group $\langle b\rangle$ is a semidirect product of W and $\langle b\rangle$ where $W=\prod^{\times} A^{b^{i}}$ is the direct product of copies of A, numbered by elements of $\langle b\rangle$. Instead of $A^{b^{0}}$ we write A, and $A^{b^{i}}=b^{-i} A b^{i}$. Every element $g \in G$ can be uniquely written as

$$
g=b^{j} w
$$

where w is a product of commuting factors $a^{b^{i}}, \quad a^{b^{i}}=b^{-i} a b^{i}, \quad a^{b^{i}} b^{j}=$ $b^{j} a^{b^{i+j}}$.

Theorem 2 If $G=\langle a\rangle_{2} w r\langle b\rangle$ and $S=\operatorname{sgp}(a, b)$, then $l(S, G)=3$.
Proof Note that $a^{b} a^{b^{2}}=b^{-1} a b^{-1} a b^{2}=b^{-2} a b a b \notin S S^{-1}$, hence $l(S, G)>$ 2. To prove that $l(S, G)=3$ it suffices to show that $G=\langle b\rangle S\langle b\rangle=$ $\langle b\rangle S^{-1}\langle b\rangle$. Since $a=a^{-1}$, we have $a \in S \cap S^{-1}$. Let $w \in W$. Then w can be written as a product of, say k, commuting factors

$$
\begin{equation*}
w=a^{b_{1}^{i_{1}}} a^{b^{i_{2}}} \cdots a^{b^{i_{k}}}=b^{-i_{1}} a b^{i_{1}-i_{2}} a b^{i_{2}-i_{3}} \cdots b^{i_{k-1}-i_{k}} a b^{i_{k}} \tag{2}
\end{equation*}
$$

For example $a^{b^{5}} a^{b^{3}} a^{b^{-1}}=b^{-5} a b^{5-3} a b^{3+1} a b^{-1}=b^{-5} a b^{2} a b^{4} a b^{-1} \in\langle b\rangle S\langle b\rangle$. Since $a^{b^{i}}$ commute, we can assume in (2) $i_{1}>i_{2}>\ldots>i_{k}$, then $w \in$ $b^{-i_{1}} S b^{i_{k}}$.

If write the factors $a^{b^{i}}$ in reverse order then $i_{1}<i_{2}<\ldots<i_{k}$, and $w \in$ $b^{-i_{1}} S^{-1} b^{i_{k}} \subseteq\langle b\rangle S^{-1}\langle b\rangle$. Thus $W \subseteq\langle b\rangle S\langle b\rangle \cap\langle b\rangle S^{-1}\langle b\rangle$ and multiplication by $\langle b\rangle$ implies $G=\langle b\rangle S\langle b\rangle=\langle b\rangle \bar{S}^{-1}\langle b\rangle$. Hence $G=S^{-1} S S^{-1}=S S^{-1} S$ and $l(S, G)=3$.

2. S-length of relatively free groups

A group G satisfies a law $u\left(x_{1}, \ldots, x_{m}\right) \equiv v\left(x_{1}, \ldots, x_{m}\right)$ if for every elements g_{1}, \ldots, g_{m} in G the equality $u\left(g_{1}, \ldots, g_{m}\right)=v\left(g_{1}, \ldots, g_{m}\right)$ holds. A law $u\left(x_{1}, \ldots, x_{m}\right) \equiv v\left(x_{1}, \ldots, x_{m}\right)$ is called an m-variable positive law if the words u, v are positive words. The positive law is called balanced if for each variable x_{i} its exponent sum is the same in u and in v. The simplest example of the balanced positive law is the abelian law. Note that a non-balanced law implies a law $x^{m} \equiv 1$ for some $m \in \mathbb{N}$ and implies the balanced law $x^{m} y^{m} \equiv y^{m} x^{m}$.

A group G is called relatively free of rank n if it is free in some variety of groups, and has a set of free generators of cardinality n. We formulate the statements $13.11,13.52,13.53,13.25$ from [6] in the following

Lemma 1 Let $\left\{a_{i}\right\}$ be a set of free generators in a relatively free group G.
(i) If $\left\{b_{j}\right\}$ is another set of free generators in G, then $\left|\left\{a_{i}\right\}\right|=\left|\left\{b_{j}\right\}\right|$.
(ii) $\left|\left\{a_{i}\right\}\right|$ is the smallest number of generators in G.
(iii) Every relator on the generators in $\left\{a_{i}\right\}$ is a law in the group G.
(iv) Every mapping $\left\{a_{i}\right\} \rightarrow G$ can be extended to an endomorphism of G.

We can show that for a relatively free group G with a base semigroup S the number $l(S, G)$ is an invariant of G, not depending on the choice of S.

Lemma 2 The S-length $l(G)$ of a relatively free group G is equal to $l(S, G)$ for any base semigroup S on a set of free generators.

Proof Let G be a relatively free group. Let S_{1} and S_{2} be two base semigroups in G generated by the sets of free generators $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ respectively. We show that the equality $l\left(S_{1}, G\right)=l\left(S_{2}, G\right)$ holds. By (i) of Lemma 1 , the sets $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ have the same cardinality and the map $a_{i} \rightarrow b_{i}$ defines by $(i v)$ of Lemma 1 , an automorphism α in G, such that $S_{1}^{\alpha}=S_{2}$. Thus α, applied to the expression (1) written with respect to S_{1}, changes S_{1} to S_{2} and hence $l\left(S_{1}, G\right) \geq l\left(S_{2}, G\right)$. Similarly, by applying the automorphism α^{-1} to (1) for S_{2}, we get $l\left(S_{2}, G\right) \geq l\left(S_{1}, G\right)$, which gives the equality $l\left(S_{1}, G\right)=l\left(S_{2}, G\right)$.

If a relatively free group G of rank n is a non-Hopf group [5] then there exists a set $\left\{b_{i}\right\}$ of n generators, which generate G not freely. Let S_{2} be the base semigroups on the set $\left\{b_{i}\right\}$ and S_{1} be the base semigroups on the set of free generators $\left\{a_{i}\right\}$. The map $a_{i} \rightarrow b_{i}$ defines by $(i v)$ of Lemma 1 , an epi-endomorphism in G which implies that $l\left(S_{1}, G\right) \geq l\left(S_{2}, G\right)$. Hence we conclude that $l(G)=\left(S_{1}, G\right)$.

Theorem 3 The S-length $l(G)$ of a relatively free group G is less or equal to 2 if and only if G satisfies a positive law.

Proof Let $l(G) \leq 2$ and let S be a base semigroup generated by a set of free generators $\left\{a_{i}\right\}$ in G. In view of Lemma $2, l(S, G) \leq 2$ and by Proposition 2 , S satisfies Ore conditions. So for generators a_{1}, a_{2} there exist $s_{1}, s_{2} \in S$ such that $a_{1} s_{1}=a_{2} s_{2}$, then by (iii) of Lemma $1, G$ satisfies a positive law.

Conversely, let G satisfies a positive law $u^{\prime}\left(x_{1}, \ldots, x_{n}\right)=v^{\prime}\left(x_{1}, \ldots, x_{n}\right)$. Then G satisfies a binary positive law $u(x, y)=v(x, y)$, obtained by substitution $x_{i} \rightarrow x y^{i}$. It follows that G does not contain a free subsemigroup and the statement follows by Theorem 1.

Corollary 2 Let G be a relatively free group.

1. $l(G)=1$ if and only if G satisfies a law $x^{n}=1$ for some $n \in \mathbb{N}$.
2. $l(G)=2$ if and only if G satisfies only balanced non-trivial positive laws.

There is a conjecture that for a relatively free group G the S-length $l(G)$ can be only 1,2 or infinity. We prove that it can not be equal to 3 .

Theorem 4 If G is a relatively free group, then $l(G) \neq 3$.
Proof If G is a relatively free group and $l(G)=3$ then the equality $G=$ $S S^{-1} S=S^{-1} S S^{-1}$ implies by (iii) of Lemma 1, that G must satisfy a law

$$
\begin{equation*}
x y^{-1} z \equiv a^{-1} b c^{-1}, \tag{3}
\end{equation*}
$$

where a, b, c are positive words in a free group F generated by x, y, z, \ldots. The law (3) can be written as

$$
\begin{equation*}
b \equiv a\left(x y^{-1} z\right) c \tag{4}
\end{equation*}
$$

We introduce three maps in the free group, defined by

$$
\alpha: y \rightarrow 1, \quad \beta: y \rightarrow x, \quad \gamma: y \rightarrow z,
$$

and each leaves other generators fixed. Each of these maps changes (4) into a positive law. If $l(G)=3$ then by Theorem 3, each of these positive laws must be trivial. We show that it is not possible.

If apply α to (4), we obtain a positive law $b^{\alpha} \equiv a^{\alpha} x z c^{\alpha}$ which must be trivial that is we have the equality

$$
b^{\alpha} \doteq a^{\alpha} x z c^{\alpha}
$$

where the symbol " \equiv " denotes the equality of words in a free group.
Since b is a positive word and is a pre-image of the word $a^{\alpha} x z c^{\alpha}$, it must have a form

$$
b \doteq b_{1}\left(x y^{k} z\right) b_{2}
$$

where b_{1}, b_{2} are positive words, $k \geq 0, b_{1}^{\alpha} \doteq a^{\alpha}, b_{2}^{\alpha} \doteq c^{\alpha}$. We use this form of b to rewrite the law (3) as

$$
\begin{equation*}
x y^{-1} z \equiv\left(a^{-1} b_{1}\right) x y^{k} z\left(b_{2} c^{-1}\right) \tag{5}
\end{equation*}
$$

Since $b_{1}^{\alpha} \doteq a^{\alpha}$, the word $a^{-1} b_{1}$ becomes trivial under α replacing $y \rightarrow 1$, therefore it has the exponent sums of x and of z equal to zero, and similarly for $b_{2} c^{-1}$, which we denote as

$$
\begin{equation*}
\sigma_{x}\left(a^{-1} b_{1}\right)=0, \quad \sigma_{z}\left(a^{-1} b_{1}\right)=0, \quad \sigma_{x}\left(b_{2} c^{-1}\right)=0, \quad \sigma_{z}\left(b_{2} c^{-1}\right)=0 \tag{6}
\end{equation*}
$$

If apply β to (5), we get the law

$$
z \equiv\left(a^{-1} b_{1}\right)^{\beta}\left(x x^{k} z\right)\left(b_{2} c^{-1}\right)^{\beta}
$$

which must be trivial because otherwise it gives a nontrivial positive law. So we have the equality

$$
z \doteq(\underbrace{\left.a^{-1} b_{1}\right)^{\beta} x x}{ }^{k} \cdot \underline{z} \cdot(\underbrace{b_{2} c^{-1}})^{\beta}
$$

Since $\sigma_{z}\left(\left(a^{-1} b_{1}\right)^{\beta}\right)=\sigma_{z}\left(a^{-1} b_{1}\right) \stackrel{(6)}{=} 0$, the underlined z can not be cancelled from the left and similarly not from the right. Then the underbraced words must be trivial. In particular, $\left(a^{-1} b_{1}\right)^{\beta} x x^{k} \doteq 1$. It follows that $\sigma_{x}\left(\left(a^{-1} b_{1}\right)^{\beta}\right)=-k-1$. Since for any word $w, \sigma_{x}\left(w^{\beta}\right)=\sigma_{x}(w)+\sigma_{y}(w)$, we have

$$
-k-1=\sigma_{x}\left(\left(a^{-1} b_{1}\right)^{\beta}\right)=\sigma_{x}\left(a^{-1} b_{1}\right)+\sigma_{y}\left(a^{-1} b_{1}\right) \stackrel{(6)}{=} 0+\sigma_{y}\left(a^{-1} b_{1}\right)
$$

that is

$$
\sigma_{y}\left(a^{-1} b_{1}\right)=-k-1<0
$$

Now we apply γ to (5), and the law we get must again be trivial

$$
x \doteq\left(a^{-1} b_{1}\right)^{\gamma} \cdot \underline{x} \cdot z^{k} z\left(b_{2} c^{-1}\right)^{\gamma} .
$$

Since $\sigma_{x}\left(a^{-1} b_{1}\right)^{\gamma}=\sigma_{x}\left(a^{-1} b_{1}\right) \stackrel{(6)}{=} 0$, the underlined x can not be cancelled from the left and similarly not from the right. Hence $\left(a^{-1} b_{1}\right)^{\gamma} \doteq 1$. Then the exponent sum of z in $\left(a^{-1} b_{1}\right)^{\gamma}$ must be also zero and we have

$$
0=\sigma_{z}\left(\left(a^{-1} b_{1}\right)^{\gamma}\right)=\sigma_{z}\left(a^{-1} b_{1}\right)+\sigma_{y}\left(a^{-1} b_{1}\right)=0-k-1<0
$$

a contradiction.
The following Example illustrates the above reasoning for the specific law of the form $x y^{-1} z \equiv a^{-1} b c^{-1}$. We show how it implies a positive law.

Example 5 Let $a=z y^{3} x y, b=z y x y x y z y x, c=x y$ then the law (3) is

$$
\begin{equation*}
x y^{-1} z \equiv\left(z y^{3} x y\right)^{-1} z y x y x y z y x(x y)^{-1} \tag{7}
\end{equation*}
$$

If apply α to (7) we get $x z \equiv(z x)^{-1} b^{\alpha}(x)^{-1}$, which is trivial because

$$
b^{\alpha} \doteq(z y x y x y z y x)^{\alpha} \doteq(z x) x z(x)
$$

By applying β to (7) we get the law which again is trivial

$$
z \doteq \underbrace{\left(z x^{5}\right)^{-1}\left(z x^{3}\right) x^{2}} \cdot z \cdot \underbrace{\left(x^{2}\right)\left(x^{2}\right)^{-1}}
$$

By applying γ to (7) we get a nontrivial law

$$
x \equiv\left(z^{4} x z\right)^{-1} z^{2} x z x z^{2} z x(x z)^{-1}
$$

which implies a positive law $\left(z^{4} x z\right) x(x z) \equiv z^{2} x z x z^{3} x$, or shorter

$$
z^{2} x z x^{2} z \equiv x z x z^{3} x
$$

References

[1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, American Mathematical Society, R.I. 1964, Vol. I.
[2] A. Erschler, Not residually finite groups of intermediate growth, commensurability and non-geometricity. J. Algebra 272 (2004), 154-172.
[3] R. I. Grigorchuk, On the Milnor problem of group growth (Russian). Dokl. Akad. Nauk SSSR 271 (1) (1983), 30-33. English translation: Soviet Math. Dokl. 28 (1) (1983), 23-26.
[4] M. Gromov, Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-78.
[5] S. V. Ivanov, A. M. Storozhev, Non-Hopfian relatively free groups. Geom. Dedicata 114 (2005), 209-228.
[6] H. Neumann, Varieties of Groups, Springer-Verlag Berlin-Heidelberg-New York 1967.
[7] J. F. Semple, A. Shalev, Combinatorial conditions in residually finite groups, I, J. Algebra 157 (1993), 43-50.
[8] S. Wagon, The Banach-Tarski Paradox, Cambridge University Press, 1985.

Institute of Mathematics,
Silesian University of Technology
Kaszubska 23,
44-100 Gliwice, Poland
e-mail: O.Macedonska@polsl.pl, A.Potyka@polsl.pl

