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Abstract

It is known that for any finitely generated group G from the large class
of “locally graded” groups, satisfaction of an Engel or positive law
forces G to be virtually nilpotent. In [2] Sarah Black gives a sufficient
condition for an arbitrary 2-variable law w(z,y) = 1 to imply virtual
nilpotence - though only for finitely generated residually finite groups.
We show how the Dichotomy Theorem from [4] for arbitrary words
w(z1,...,x,), encompasses Black’s condition, extending it to the n-
variable case and a certain large class S (however still falling short
of the class of locally graded groups). We infer in particular that her
condition is also necessary. We also deduce a simplified version of an
algorithm of Qianlu Li [8, 9] for deciding whether or not a given law
w(z,...,x,) = 1 satisfies the extended version of Black’s criterion.
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There are two kinds of group law that have received a great deal of at-
tention from group-theorists over a long period, namely the

n— Engel law [x,y,...,y| =1, n=1,2,...,

n

1

(where, as usual, [z,y] := ™'y~ wy, [z, y,y] := [[z,y],y], etc.), and

positive (or monoidal) laws u(xy,xa,...) = v(x1, 29, .. .),

where u, v are distinct words in the free group F'(xy,xs,...) with free basis
x1, s, ..., involving only nonnegative powers of xq, xs, .. ..
Each of these kinds of law is related to the class-n nilpotent law

[T,y,2,...]=1, n=1,2,....

n

This is obvious in the case of the n-Engel law, which is a specialization of
the n-nilpotent law. On the other hand satisfaction of a positive law may
be considered as a generalization of n-nilpotence, in view of the result of
Mal’cev [11] that the n-nilpotent law is equivalent to a certain positive law.
(This was independently discovered by B. H. Neumann and Tekla Taylor [12]
somewhat later.) Thus in each case the following question naturally arose:

Does each of these two kinds of law imply (at least local) nilpotence?

In the case of the n-Engel law the answer is unknown. (The best result
applying to all groups is that of Havas and Vaughan-Lee [6] that every 4-
Engel group must be locally nilpotent. For general n, on the other hand, the
best result to date is that of Kim and Rhemtulla [7] asserting that a “locally
graded” n-Engel group must be locally nilpotent. A locally graded group
is one in which every nontrivial finitely generated subgroup has a proper
subgroup of finite index. A somewhat stronger version of the result of Kim
and Rhemtulla can be found in [4].)

Turning to positive laws, we observe first that the most we can hope for is
that a finitely generated group satisfying a positive law should be nilpotent-
by-(finite exponent). An example dashing this hope is given in [14]. Here
the best positive result so far - the last of a long line of such results - would
seem to be the following one.

THEOREM [3,4]. For any positive law u = v the locally graded groups
satisfying that law are all (nilpotent of class d)-by-(locally finite of exponent
e) for some d,e depending only on u,v.
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The following question then naturally arises:

What do the Engel laws and positive laws have in common that forces
finitely generated locally graded groups satisfying them to be nilpotent-by-
finite?

The following partial answer, in the 2-variable case, was given by Sarah
Black. We reformulate her result in terms of the restricted wreath product
W = C' 1 C where C is infinite cyclic. We write ¢ for a generator of a
coordinate subgroup, and t for a generator of the top group; thus W is
generated by ¢ and ¢, in terms of which it is defined by the relations

e, =1, k ez, (1)

where we are using the notation a’ := b~ 'ab for any elements a, b of a group.

SARAH BLACK’S THEOREM [2]. Let F' = F(x,y) denote the free group
freely generated by x,y, and let w(x,y) be any word from F' := [F, F], the
commutator subgroup of F', not contained in F" = [F', F'|, with the following
property: the law w(x,y) = 1 has a consequence w(z,y) = 1 (i.e., w(z,y)
is an element of the verbal subgroup of F generated by w(x,y)) such that
w(x,y) & F", and if w(c,t) € W has the canonical form

(le)tkl T (Cmr)t]w) r> Oa my, Mo, ..., My 7é 07 kl < k2 < < k’r:
and w(t,c) the form
(c’“)tl1 ‘--(cns)tls, $>0, ny,...,ng #£0, I} <lp <--- <l

then
d(w) = ged(my, ... ,mung,...,ng) = 1. (2)

Then every residually finite group satisfying the law w(x,y) = 1 is (nilpotent
of class d)-by-(locally finite of exponent e) where d and e depend only on the
word w(x,y).

REMARKS. 1. If w(z,y) € F’, then w(x,y) = 1 has a consequence of the
form 2™ = 1 for some n > 1, so that the conclusion of the theorem holds also
in this case.

2. In [2] this theorem is formulated without explicit mention of the wreath
product W, but rather in terms of elements of the free group F(x,y), ex-
pressed modulo the kernels of the two epimorphisms F'(x,y) — W defined
byr—c¢ y—t andax —t, y—c



3. Write W, := C, 1 C, where C), is the cyclic group of prime order p,
and denote by ¢, a generator of any coordinate subgroup of W), and by ¢, as
before, a generator of the top group C'. Then W, is generated by ¢, and ¢
with the defining relations

k
d=1 o ]=1 kel

The assumption (2) concerning w(x,y) in Black’s theorem may then be re-
formulated in terms of the groups W, as follows:

There should exist a consequence w(x,y) =1 of w(x,y) = 1 such that for
all primes p either w(cy,t) # 1 or w(t,c,) # 1 in W,

Motivated by Sarah Black’s theorem we (chiefly Medvedev) were able to
prove the following precise dichotomy for words, significantly extending her
result. We first define the class S of all groups obtainable from the class of
groups that are soluble-by-(locally finite of finite exponent) by closing under
the operators L and R, where LX denotes the class of groups locally in the
group-theoretic class X', and RX the class of groups residually in X. Note
that the class S includes all residually finite and locally finite groups, and is
a proper subclass of the class of locally graded groups.

DicHOTOMY THEOREM [4]. Let w(xy, xa, . ..) be any word in F (1, xa, . . .).
Ezactly one of the following two possibilities occurs:

(1) Every group in the class S satisfying the law w = 1 is (nilpotent of
class d)-by-(locally finite of exponent e), where d and e depend only on the
word w.

(it) There exists a prime p such that w =1 is a law in W,

REMARKS (continued). 4. The proof of this result, like that of Sarah
Black’s theorem, depends heavily on results of Aner Shalev, E. I. Zelmanov,
A. Lubotzky and A. Mann, and, in the last step in establishing the dichotomy,
J. R. J. Groves. (Precise references may be found in [4].)

5. Since W, generates the product variety 2,2 of the variety of all abelian
groups of exponent p by the variety of all abelian groups (see e.g. [13, Corol-
lary 22.44]), it follows from this dichotomy that the question as to whether
a given word w “spells virtual nilpotence” is equivalent to that asking if the
law w = 1 does not follow from a law [z,y|? = 1 and the metabelian law
[[z1, x2], [x3, 24]] = 1.

6. For some laws w(xy,zs,...) = 1—for instance n-Engel laws and pos-
itive laws—the class S in alternative (i) of the Dichotomy Theorem can be
replaced by the significantly larger class of locally graded groups. If the law
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w =1 is such that groups G satisfying it are uniformly restrained, i.e., there
exists a k such that for all a,b € G one has that the subgroup generated
by all conjugates abl, [ € Z, can be generated by < k elements, then this
replacement may be made [3,4]. Groups satisfying an Engel or positive law
are uniformly restrained. However it remains unknown whether in general
the Dichotomy Theorem remains valid if S is replaced by the class of locally
graded groups. (In [10] it is shown that the Dichotomy Theorem holds for lo-
cally graded groups if and only if every locally graded group containing a free
non-abelian semigroup generates a variety containing 2,2 for some prime p.
It is also noted in [10] that the Dichotomy Theorem does not hold for all
groups, this following, for instance, from the construction by Ol'shanskii [15]
of a law w = 1 defining a non-abelian variety all of whose metabelian (and
finite) groups are abelian.)

Sarah Black’s sufficient condition is immediate from this Dichotomy The-
orem (see Remark 3 above.) That her condition is also necessary also follows
readily:

COROLLARY 1. The sufficient condition of Sarah Black’s theorem for a
law w(z,y) = 1 with w € F'\ [F', F'] to entail virtual nilpotence in any
residually finite group (in fact in any group in the class S) satisfying it, is
also mecessary.

PROOF. For suppose the law w(x,y) = 1 is such that none of its
consequences w(zx,y) = 1 satisfies (2), i.e, d(w) > 1 for all consequences
w(z,y) = 1 with w ¢ [F', F']. We first show that there exists a prime p
dividing every §(w). For, otherwise there would exist finitely many w, say

with ged(d(wy), d(wse), ..., d(wx)) = 1. However then for suitably spaced in-
tegers oy, ..., 0, we would have

5(@51(@2)t02 T (wk)t%) =1,

a contradiction. (The integers o9, . .., 0} are chosen so that there is no overlap
in the (finite) supports of any two of w, (w2)!", ..., ()", considered as
functions C' — C.)

Thus there is a prime p dividing §(w) for all consequences w =1 of w = 1
(w & [F', F']). Hence by Remark 3 all such w(x,y) satisfy w(c,,t) =1 (and
w(t, c,) = 1). Let g1, g2 be arbitrary elements of W, and let v (x,y), v2(x, y)
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be words from F(z,y) such that g1 = 71(cp,t) and ga = 7a(cp, t). Write
Wiy (z,y) = w(n(z,y),v2(x,y)). Then w(gi,g2) = Wi(cp,t). However since
w; = 1 is a consequence of w = 1, it follows from what we have already
proved that w;(c,, t) = 1, whence w(gi, g2) = 1, and since gy, go are arbitrary
elements of W, we conclude that w =1 is a law in W,,, so that the second
alternative of the Dichotomy Theorem holds for w, i.e., the word w does not
“spell virtual nilpotence”.

REMARK 7. The referee has pointed out that Qianlu Li [9, Theorem 23]
has shown that if a word “spells virtual nilpotence,” then it has an “efficient
result”, i.e., a consequence in a certain special sense, satisfying Sarah Black’s
criterion (2). The above proof seems rather simpler than Li’s, although on
the face of it not quite so general. We note also the result of G. Endimioni
[5, Lemma 4], somewhat resembling our Corollary 1.

EXAMPLES. Among her examples Sarah Black considers the particular
law w = [22, 32, 2%] = 1, deducing that, although it itself does not satisfy the
condition (2), some consequence does. Now it is easy to check that in fact
no law of the form [z, 4!, 2™ = 1 with k,l,m # 0, holds in any W), so that
by the Dichotomy Theorem any group from S satisfying such a law must be
indeed nilpotent-by-(locally finite of finite exponent). On the other hand any
law w = 1 with w of the form w = v*, where k > 0 and v = v(x1, 2o, ...) is
in the commutator subgroup of F(xy,xs,...), is clearly a law in W, for each
p dividing k, so does not “spell ‘almost nilpotent’.”

There remains the problem of finding an explicit algorithm for deciding,
for any given word w(xy, s, ...), which side of the above dichotomy it falls
on. Such an algorithm has been given by Qianlu Li in [8, 9], which, although
not formulated explicitly in terms of the wreath product W := C'1 (', again
begs to be so formulated, in our opinion.

We now describe such an algorithm, equivalent to Qianlu Li’s in its es-
sentials, but couched in terms of the wreath product W, and somewhat
simplified.

Thus let w = w(xy, z, ..., x,) be any word in the free group F(z1, x9, . ..).
We seek a procedure for deciding whether or not w = 1is alaw in W, := C,iC
for some prime p.

If any generator x; occurs in w with exponent sum k # 0, then, essen-
tially for the reasons given in Remark 1, w satisfies the alternative (i) of the
Dichotomy Theorem.



On the other hand if w belongs to the commutator subgroup of F(x1, s, . .
then w = 1 is a law in W, if and only if, on performing any substitution
x; — bithi, i =1,2,..., where t is, as before, a generator of the top group of
W :=ChC, and b; is an element of the base group, we always obtain a base
element with canonical form

(Cil)tjl (Ci2>tj2 e (Cir>tjrv r2> 07 i17i27 s 7i7’ % 07 jl < j2 << jr; (3>

with p dividing each of 7y, 79, . . ., 4. It is not difficult to see using the relations
(1) and the present assumption that each z; occurs in w with exponent sum
zero, that for any i, if b; = bib! is any factorization of b; as a product of two
elements of the base group of W, then

w(bt* bot*2 B bt =
w(byt* byt*2 VR bt w (tR R bR R,

(This can most easily be seen as follows. The base group of W may be
regarded as a (cyclic) Z[C]-module, in terms of which t*c't=* becomes It*c
for any integers k, [. The above equation then derives from the following one,
where the p, are arbitrary elements of the group ring Z[C] and the s module
elements, i.e., elements of the base group of W written additively:

P18+ p2Ba+ -+ pi(Bi+ B) + o+ B =
(P1B1 + pafa + -+ piBBi 4 -+ pulBy) + pil3;

—a trivial consequence of the defining properties of a module.)
Hence we obtain the following result:

COROLLARY 2. Given any word w(xy,Ta,...,x,) in the commutator
subgroup of the free group F(x1,xs,...), the law w = 1 holds in W, if and
only if for all integers ki, ks, ..., ky, each of the n elements

w(ceth 12 ot w (R ettt (R etf)

of W has canonical form (3) with p dividing each of i1,ia, ..., i,.

EXAMPLE. In [9] the example w = z2x; 'adzqzr: o225 2 is considered.
P 14 43 3 41 A3

Since this is in the commutator subgroup of F(xy,zs,...), we can apply
Corollary 2 to see if it satisfies the alternative (ii) of the Dichotomy Theorem.

D,



Thus we need to consider for each triple of integers ki, ko, k3 the following
three elements of the wreath product W:

(Ctkl)Qt—k2t3k3tk2t—k3 (Ctkl)_Qt_QkB’
t2k1 (Ctk‘2>71t3k3 (Ctkz )t7k3t72k1 t72k3

t2k’1 t—kz (Ctkd )3tk‘2 (Ctkg)—lt—2k’1 (Ctkg)—2 .

The first of these has canonical form

Cct7k1 (C_l)t72k37k1 (C_l)t72k3’
and since for suitable choice of the integers ki, ks, k3, the four exponents
0, —k1, —2ks — k1, —2k3 will be distinct, with associated powers of ¢ equal to
1,1, —1, —1 respectively, it is immediate from Corollary 2 (there is no need
to examine the other two elements of W) that this word does not satisfy the
alternative (ii) of the dichotomy. Hence it must satisfy the alternative (i),
i.e., any group in the class § satisfying the corresponding law w = 1 must
be nilpotent-by-(locally finite of finite exponent).
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