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Abstract 
 
The paper is focused on a method for solving the heat equation in a cast-mould heterogeneous domain. The discussed method makes use of 
the Adomian decomposition method. The derived calculations prove the effectiveness of the method for solving such types of problems. 
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1. Introduction 
 
The Adomian decomposition method was called after its 

creator: George Adomian [1-4]. The method is useful for solving 
a variety of problems. A review of the application of the Adomian 
decomposition method for solving differential and integral 
equations was discussed in [2, 3]. It was also used for solving the 
linear and non-linear heat transfer equation in [5-9]; whereas its 
use for solving the wave equation was tested in [10-12]. In [13, 
14] the Adomian decomposition method was utilized for solving 
the inverse problems of differential equations. The method may 
also be employed in mathematical models describing different 
technical problems as discussed in [15-17]. 

In [18, 19] the authors combined this method with 
optimization to obtain an approximate solution of the direct and 
inverse Stefan problem; whereas in [20, 21] it was used for 
solving the one-phase Stefan problem. The Stefan problem was 
first approximated by a system of ordinary differential equations, 
and next the system was solved with the use of the Adomian 
decomposition method. Such approach made it possible to obtain 
an approximate solution of the Stefan problem without 
constructing a functional and seeking its minimum. 

The scope of this paper is the presentation of the application 
of the Adomian decomposition method for solving the heat 
transfer equation in the cast-mould heterogeneous domain, 
assuming an ideal contact at the cast-mould contact point. 

 
 

2. Adomian decomposition method 
 
The following operational equation is given: 
 

,=)( fuF  
 

where F  denotes non-linear operator,  - given element, u  - 
sought element. Operator 

f
F  may be noted as:  

 
),()()(=)( uNuRuLuF ++  

 
where L  denotes invertible linear operator, R  - linear operator, 
which was derived by separating operator L  from operator F , 



N  denotes non-linear operator. By the two-sided use of inverse 
operator 1−L  in the above operational equation we obtain: 
  

).()()(=)( 1111 fLuNLuRLuLL −−−− +−−  
 
The left side of this equation has the following form:  
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where  is the function related to the initial and boundary 
conditions (in the case of differential equations). On such grounds 
we obtain:  
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By inserting the following notation:  
 

),(= 1*
0 fLgg −+  

 
the above equation may be written in the following form:  
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 In the next step, function u  is presented as a series:  
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the terms of which must be designated. In practice, it is sufficient 
to find an approximate solution:  
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the accuracy of which is increased with a bigger number of the 
considered terms. Likewise, the nonlinear operator is also 
expanded in a series:  
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where  denote the polynomials introduced by the author of the 
method, referred to as: "Adomian polynomials". These 
polynomials may be derived from the following recurrent 
equations:  

iA

 
),(= 00 gNA  

,1,2,=,
!

1=
0=0=

KngN
d
d

n
A i

i
n

i
n

n

n

λ

λ
λ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑  

where λ  is a parameter. Relations (2) and (3) are substituted to 
equation (1) and, after some transformations, the following 
recurrent formula is derived:  
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 enabling the designation of the successive terms of the solution. 
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Fig. 1. Domain of the problem 
 
 

3. Formulation of the problem 
 

Let the domains  and  are given (Fig. 1): 1D 2D
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and their boundaries: 
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In these domains the sought functions are defined:  in  
and  in . These functions satisfy the heat transfer 
equation inside the domains: 
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whereas, at the boundaries the above functions satisfy the initial 
and boundary conditions: 
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where  is the heat diffusion coefficient and a λ  is the thermal 
conductivity. We also assume that the initial and boundary 
conditions meet the consistency conditions. 
 

 

4. Method of solution 
 

In accordance with the decomposition method, let us replace 
the discussed equations with operational ones. For this purpose 
the following operators of partial derivatives are defined:  
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 As two equivalent operators were derived, equation (6) and 

(7) shall be considered separately with the main operator  
alternating with . Thus, the system of equations (6)-(7), after 
the introduction of additional functions denoted as 

xL

tL
),(~ txu , 

),(~ txv ,  and  to the solutions with the main 
operators:  and  is reduced to the following form:  
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In both sides of the above equations we use the corresponding 
inverse operators:  
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Consequently, the left sides of the equations assume the following 
form:  
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and, accordingly:  
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where:  for  are the unknown functions obtained 
as a result of the integration. After considering the obtained 
results, the system of equations (15) assumes the following form: 
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where ,  are any constants, whereas , 

, are any functions of variable  or 
ic ,61,2,= Ki ik
,61,2,= Ki t x , respectively. 

The right sides of the system of equations (16) generate the 
following form of the terms ug0

~ , , ug0ˆ vg0
~ , :  vg0ˆ
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The unknown products ,  shall be determined 
from conditions (8)-(13), as they must be satisfied also by a single 
term approximation of the solution. The successive terms  of 
each equation from the system (16) shall be derived from 
condition , where c  is the corresponding 
constant for a given equation. Hence, we obtain:  
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It should be remembered that in the previously calculated 
functions  constant  is correspondent only for , so, in 
system (18) constants  shall appear as unknowns, which, as in 
the case of a single-term solution, may be determined in 
consideration of conditions (8)-(13) for a two-term solution. 
Following such procedure, we obtain any -term solution for 
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4. Example 
 

Let us examine the example where: , , 1=1 −x 1=2x

4
1=1a , , 1=2a 1=1λ , 2=2λ , , , 

 and . Following the discussed method we 
obtain (considering the initial and boundary conditions) a system 
of equations containing unknowns :  
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from which we derive:  
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Substituting the derived relations to system (17) we obtain: 
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 Thus, by (18) we designate:  
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Likewise, we obtain :  ),(ˆ txu
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and, on the grounds of the sums of the known power series:  
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which means that:  
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and, once again, on the grounds of the known sums of power 
series:  
 

 (26) ).(cosh)(2)(sinh=),(ˆ 21
6

1
5 xeecxectxv ttt −++ ++

  
Analogically to  we derive:  ),(ˆ txu
 

(
).)(cosh)(2

)(sinh
2
1=),(

21
6

1
54

xeec

xecectxv
tt

ttx

−+

++

++

++  (27) 

  
To find unknown constants ,  we use conditions 
(8)-(13). Accordingly, we obtain the system of equations, which, 
after the solution, renders the values of the sought constants , 
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Thus, we obtain the final solution of the initial differential 
equations system:  
 

⎪⎩

⎪
⎨
⎧

+

+

.=),(
,=),( 2

tx

tx

etxv
etxu  

 
It is easy to check that the solution satisfies all initial and 
boundary conditions, as well as the differential equations as such. 
So, our solution is not only approximate but, more importantly, 
exact. 

 
 

5. Conclusion 
 

The discussed method of an approximated solution of the heat 
transfer equation in the cast-mould heterogeneous domain is 
based on the Adomian decomposition method. The method 
provides a continuous function describing the sought temperature 
distribution  and . A computational example proves 
the usability of the method. The solution of the problem is 
provided with the assumption of an ideal contact between the cast 
and the mould. In further research the discussed method shall be 
employed to solve problems involving the presence of thermal 
resistance at the cast-mould contact. 

),( txu ),( txv
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