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ABSTRACT

Purpose: The paper presents the possibilities of using neural networks for the prediction 
of chemical composition of hot metal produced in blast furnace.
Design/methodology/approach: Three blast furnaces in ArcelorMittal, Unit in Dąbrowa 
Górnicza, provided the data for the model construction. The data reflect a number 
of variables, which describe the blast furnace process.
Findings: The results obtained, based on input parameters, show that the construction 
of such neural networks is viable. There is a good correlation between expected and actual 
results.
Practical implications: The model can be used as an auxiliary tool for blast furnace 
operators.
Originality/value: Prediction of a chemical composition of hot metal at the stage 
of adjusting hot metal process parameters.
Keywords: Artificial Neural Networks; Blast furnace; Chemical composition
Reference to this paper should be given in the following way: 
L.A. Dobrzański, M. Gawron, M. Berliński, The use of artificial neural networks for the 
prediction of a chemical composition of hot metal produced in blast furnace, Archives 
of Materials Science and Engineering 67/1 (2014) 32-38.

METHODOLOGY OF RESEARCH, ANALYSIS AND MODELLING

 
1. Introduction 

 
Currently computers are broadly used in materials 

technology. Prediction of materials properties is a source of 
success of many undertakings. Different models, more and 
more often used in industry, give their users information 

they expect. Prediction of the materials properties brings 
significant money and time savings and minimizes time 
required for the research [1-3]. 

Models help engineers at their everyday work. They 
clear the way for predicting the physical and mechanical 
properties of materials or phase transitions, they help in 
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making thermodynamic calculations. Solution of this type 
can also be used for calculations of e.g. factors, which have 
an impact upon aircraft landing or for reduction of a waiting 
time in hospital admission rooms [4-6]. 

Nowadays a demand for steel is higher than ever. Fast 
technological progress stimulates a demand for steel in 
a building and automotive  industries. Continuous increase 
in customer requirements motivates the steel branch to 
follow the line of a constant development and innovation, 
directed at a reduction of production costs and 
improvement of a product quality [7]. 

Blast furnace process includes numerous complicated 
chemical, thermal and mechanical reactions. The process 
complexity, number of variables and continuously 
changing temperature in a blast furnace are the main 
reasons, for which a development of mathematical model  
is extremely complicated [8]. 

Neural networks is a tool, thanks to which modeling  
of processes – whose correlations have not been completely 
examined so far – is possible. A network recognizes and 
learns the interrelations between input data and target 
values. Upon the completion of a training process, the 
network can independently predict the result, based on  
a new set of loaded data. An important advantage  
of networks is their ability of adaptation through training, 
which eliminates a time-consuming re-programming  
[9-10, 13]. 
 
 
2. Tested material  
 

Hot metal is melted in blast furnace and makes an input 
charge for the steel plant. Hot metal is an alloy of iron and 
carbon and other elements, where the carbon content 
amounts to ca. 4%. Hot metal is breakable and not plastic, 
therefore it cannot be subject to mechanical working. Hot 
metal chemistry has been shown in a Table 1 [11]. 

 
 

Table 1. 
Hot metal chemistry 

Range Chemistry, % 
 Si Mn P S C 

min 0.2 0.3 0.1 0.0 4.0 
max 1.2 0.7 0.2 0.1 5.0 
 
 
In a blast furnace process charge materials are 

cyclically loaded through a BF throat, by means of a top 
charging system. Top charging system distributes the 

charge material inside the BF with a charge material 
distribution runner and tightly closes the BF. Top charging 
system currently used in modern BFs consists of two 
receivers into which coke and sinter are loaded. Blast 
furnace is a type of a shaft furnace; each segment of the 
furnace – going from the top to the bottom –  
is characterized with its own geometry (Fig. 1).  
This is connected with processes, which take place inside 
the BF [12]. 

 
 

 
 

Fig. 1. Blast furnace (BF) 
 
 
BF charge is a mix of sinter, iron ore, coke and fluxes. 

Charge materials are distributed inside the BF in such  
a way as to ensure the efficient heat exchange and required 
permeability. Incorrect charge distribution disturbs a BF 
operation and reduces hot metal output. Charge materials 
continuously move down and absorb heat from gases, 
which flow in the opposite direction [14]. 

Hot blast at ca. 1200oC, with the oxygen added, is 
supplied through the tuyeres. Cold blast, at the temperature 
of ca. 100oC, produced by turbo-blowers is forced through 
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hot stoves to be heated. Hot stove construction includes  
a combustion well and a stove checker built of ceramic 
blocks. Hot stove is operated in a heating cycle and blast 
cycle. Heating cycle is finished when the waste gas 
temperature gets at 350oC or when the temperature at the 
hot stove dome is 1350oC. When the hot stove has been 
heated, a cold blast is passed through it, which absorbs heat 
accumulated in the checkers. At the beginning of a blowing 
cycle, before the hot blast is blown to the BF, it is mixed 
with a cold blast, in order to maintain a constant 
temperature throughout the blowing cycle. Then the hot 
blast is blown through a bustle pipe to the tuyere sets and, 
finally, to the blast furnace [14]. 

Coke is the main source of heat in the blast furnace and 
is burned in the raceways, in a BF hearth. Hot blast blown 
through the tuyeres oxidizes the coke. Combustion or 
decomposition products are: CO2, CO, H2 and N2. In a coke 
burning process a high amount of heat is released and the 
temperature goes up to 2000oC. The burning process in 
raceways effects in a constant descent of burden from the 
BF top downwards. Burning of coke in a hearth modifies 
the character and speed of a burden descent, which also 
depends on a gas flow distribution and heat exchange 
between the burden and gas [16, 17].  

Gases generated in a tuyere breast, in a BF hearth, flow 
upwards through the burden layers to the top within 3-6 
sec. At that time the gas heat should be transferred to the 
burden and iron oxides should be reduced. Most of gas is 
produced in a coke burning process in the raceways, 
therefore a gas flow is directed towards the BF walls. Gas 
distribution pattern depends on a raceway size. A depth and 
size of raceways modify gas penetration towards hearth 
center.  The gas ascend in the boshes area depends on coke 
granularity and slag viscosity, whereas the gas flow in  
a shaft depends on a charge materials size composition and 
a distribution pattern of charge materials in a BF throat. 
The ascending gas flow compensates for 55-60% of burden 
weight and reduces friction between pieces of burden. [15] 

Some amount of fuel can be replaced with coal dust, 
coke-oven gas, natural gas and oil added to the hot blast.  
Simultaneously, hot blast can be enriched with oxygen. All 
these result in an increase and change in a chemical 
composition of gases escaping from the raceways, as well 
as in a reduction of a flame temperature. The temperature 
of fuels blown to the BF is low, whereas the temperature of 
coke in raceways amounts to ca. 1500oC. The only 
exothermic reaction, which proceeds in a combustion zone 
is a combustion of C to produce CO. Other reactions 
absorb heat. The amount of coke which can be saved by 
charging 1 kg of alternative fuel to a BF is defined as  
a replacement factor. This factor is related to a fuel 

chemical composition but does not depend on blast furnace 
operational conditions [14]. 
 
 

3. Artificial neural networks (ANNs) 
 

Neural networks are used in many industrial branches. 
They are an alternative for the analytical approach to the 
problem solving. Neural networks can be used for all 
problem areas connected with prediction, classification or 
control. The idea to construct artificial neural networks 
appeared in the 40s of the previous century. The work 
started from a simplified mathematical description of 
neuron [18].  

While constructing the model, numerical coefficients, 
called the weights, which are equivalent to the amount of 
substance released once at particular synapses, can be 
attributed to the cell inputs. If the weights are real, positive 
numbers, then a cell is activated; if the weights are 
negative, neuron activation is inhibited by other synapses. 
If the activation-inhibition balance is negative, a cell 
returns to the initial state and no change can be observed  
at its output [13]. 

Neurons are most often arranged in layers (Fig. 2). First 
neuron layer is called an input layer and is responsible for 
the data propagation in the network. The number of 
neurons in this layer is equivalent to the number of values 
simultaneously introduced to the network. The last neuron 
layer, called the output layer, helps determine the output 
layers of a network. Also there may be hidden layers 
between the layers mentioned above. In a hidden layer 
there are elements of a network, which cannot be directly 
observed, either from the input, or from the output sides. 
Neurons, which are in the adjacent layers, are 
interconnected. These connections make the links, along 
which information is transferred in a network. [18]. 
 

 
 

Fig. 2. An example of a two-layer ANN 

3.  Artificial Neural Networks (ANNs)
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Artificial neuron can be regarded as a specific signal 
converter (Fig. 3). A number of inputs with weights, an 
output signal, activation and activation function are the 
basic elements of an artificial neuron. There are many types 
of activation functions. The choice of a function mostly 
depends on a type of data in a training set and a type of  
a network selected to solve the problem.  

 
 

 
 

Fig. 3. Artificial neuron model 
 
 

In order to use an artificial neural network for solving  
a given problem it is required to set the weights of inter-
neuronal connections for neurons in the adjacent layers. 
The weights setting consists in a multiple presentation of 
simulated phenomenon set of patterns to the network. 
Setting the weights is called training. A method of training 
depends on a goal, which is equivalent to a formulated 
problem. Training takes place at the level of particular 
neurons [19].  
 
 
4. Methodology of modeling  
 

For the purpose of simulation the data including 7333 
rows have been collected. There are 38 variables, which  
 

describe the blast furnace process, in each row, plus hot 
metal chemistry data. Parameters have been shown in 
Table 2. The data have been selected for the period from 
January 1, 2001 to December 31, 2013 and represent all 
three blast furnaces in ArcelorMittal Poland, Unit in 
Dabrowa Gornicza (former Huta Katowice). The models of 
artificial neural networks have been used to predict the Si 
content in hot metal.   

All rows have been randomly divided into three groups. 
The first group, making 70% of the whole, has been used 
for a network training. The remaining two groups, 15% 
each, have been used fir the network validation and testing. 
While designing the network, a multi-layer network has 
been selected. This type of a network can better and more 
correctly predict the results, for which the input data were 
not included in the training set.  

A network quality has been validated by means of:  
• Absolute error between real values and values predicted 

by the model.  
• Standard deviation, which shows the distribution of  

a tested value against a mean value.   
• Pearson’s correlation between the real value and values 

calculated with the use of the model. The closer to 1 the 
value is, the better the model reflects a tested process. 
Pearson linear correlation coefficient is a measure of 
the strength and direction of correlation. Correlation 
coefficient is calculated based on the formula:  

 𝑟 = ௖௢௩(௫,௬)ௌௗೣௌௗ೤   (1) 

 𝑐𝑜𝑣(𝑥, 𝑦) = ∑(௫೔ష௫̅)(௬೔ష௬ത)௡   (2) 

 
Table 2.   
Input parameters 

Parameters 
Skip sinter Sinter screenings Sinter 2 Pellets Pellet screenings 
Manganese ore Lump ore Fe concentrate BOF slag Fe-Si-Mn slag 
Limestone Quartzite Dolomite Coke 1 Coke 2 
Coke 3 Coke 4 PCI Pea coke Coke 5 
Coke breeze Anthracite  IO/Coke load Number of charges  Hot blast volume 
Gas for intensification Hot blast pressure Hot blast temperature Oxygen amount  Oxygen % 
Top pressure Top temperature CO2 CO H2 

Gas calorific value  Hot metal 
temperature Fe content in sinter    
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5. Results of modeling  
 

MLP networks have been used for the model 
development. In the process of programming the results, 
which significantly deviated from the mean and made only 
a few percent of the total, have been rejected. In the next 
stage an optimum number of input neurons and hidden 
neurons have been selected. Many network architectures 
with different numbers of hidden neurons and input 
variables have been tested. Table 3 presents the architecture 
of six sample neural networks. The best of them consisted 
of 38 input neurons and 18 neurons in a hidden layer with  
a hyperbolic tangent activation function and an identity 
function for an output neuron. For the identity function an 
activation level is transmitted directly to the output, 
whereas tangent hyperbolic function presents better results 
than other networks, owing to its symmetric character. 
 

 
 
Fig. 4. Comparison between a real value and predicted 
value for the network MLP 38-18-1 

The best Pearson correlation coefficients have been 
satisfactory for training, testing and validation sets and they 
oscillate at a level of 0.7. The above shows that the 
phenomenon has been well described by means of a black 
box model. 

Figures 4 and 5 present a comparison between  
a predicted and real values for the best network. The graphs 
show that the prediction of the results by the models is 
problematic, if the Si level is high. This may be caused by 
the irregular BF operation and comparatively few results of 
this type in a whole data set.  

 
 

 
 

Fig. 5. Comparison between a real value and a value 
predicted for the network MLP 38-18-1 

 
 

Figures 6 to 8 present an output datum dependence 
upon two chosen input parameters. 

 
Table 3. 
Output parameters 

Network 
architecture 

Training set Testing set Validation set 
Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correlation 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correlation 

Average 
absolute 

error 

Standard 
deviation 

ratio 

Pearson 
correlation 

MLP 38-11-1 0.0951 0.0086 0.6873 0.1021 0.0094 0.6370 0.1064 0.0109 0.6144 
MLP 38-6-1 0.0997 0.0094 0.6512 0.1046 0.0100 0.6087 0.1058 0.0105 0.6282 
MLP 38-18-1 0.0926 0.0081 0.7100 0.1034 0.0096 0.6333 0.1080 0.0109 0.6154 
MLP 38-16-1 0.0936 0.0083 0.7021 0.1024 0.0095 0.6369 0.1043 0.0104 0.6359 
MLP 38-19-1 0.0935 0.0083 0.7012 0.1006 0.0092 0.6459 0.1047 0.0105 0.6306 
MLP 38-25-1 0.0972 0.0090 0.6690 0.1008 0.0091 0.6516 0.1049 0.0103 0.6376 
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Fig. 6. Impact of IO/ Coke load and number of charges  
on the Si content 

 
 
 

 
 
 

Fig. 7. Impact of hot metal temperature and top 
temperature on the Si content 

 
 
Fig. 8. Impact of  hot blast pressure and top pressure on the 
SI content 
 
 
6. Conclusions 
 

Artificial neural networks are a very good tool for the 
modeling of various dependences. The paper presents the 
properties of artificial neural networks used for the blast 
furnace process modeling. The output parameter for the 
network was the Si content in hot metal and the input 
parameters were the variables, which describe the BF 
process. The results of the BF process modeling have been 
satisfactory and more network improvements are still 
possible. During the process modeling operation a correct 
selection of input data is of a primary importance.  

Neural networks can be used as a tool for modeling 
many different complicated processes.  
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