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Abstract  
The study discusses application of computer simulation based on the method of inverse cumulative distribution function. The simulation 
refers to an elementary static case, which can also be solved by physical experiment, consisting mainly in observations of foundry 
production in a selected foundry plant. For the simulation and forecasting of foundry production quality in selected cast iron grade, a 
random number generator of Excel calculation sheet was chosen. Very wide potentials of this type of simulation when applied to the 
evaluation of foundry production quality were demonstrated, using a number generator of even distribution for generation of a variable of 
an arbitrary distribution, especially of a preset empirical distribution, without any need of adjusting to this variable the smooth theoretical 
distributions.  
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1. Introduction  
 

Simulation means using a set of different research techniques, 
based on activation of a model imitating the real behaviour of the 
examined system. Owing to the simulation we are equipped with 
a tool that enables us to observe various phenomena and examine 
them in a way that until now has been possible only in true 
experiment. In this study, an elementary static case has been 
presented, which can also be solved by physical experiment. 
Because of large differentiation in models of the discrete events, 
their theoretical representation requires high level of abstraction, 
and for this reason, to demonstrate operation of such models, a 
specific example based on simulation using the method of inverse 
cumulative distribution function has been chosen. A solution of 

this type is expected to help in determination of the profitability 
of foundry production.  

 

2. Problem description 
 

A foundry plant makes cast iron, which serves as a starting  
material for the manufacture of more complex grades. The cast 
iron satisfies the technical conditions of acceptance, if (among 
others) it has the required chemical composition. To make the 
example simpler, only the three main alloying elements were 
included in the analysis, i.e. carbon, silicon and manganese. Their 
content should amount to: C% from 2,9 to 3,3%, Si% from 1,2 to 
1,4%, Mn% from 0,30 to 0,60%. For this foundry, the production 
will be profitable, if at least one half of the melted iron satisfies 
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the quality imposed by the standard, i.e. if the required chemical 
composition is simultaneously obtained in respect of the C%, Si% 
and Mn% content.  
 

3. Physical experiment – production  
 

Since some time, the foundry plant has been manufacturing 
the examined cast iron, and as a result of physical experiment, the 
following real probability distributions of the content of the 
alloying elements with breakdown into classes (given in Table 1) 
were recorded.  
 
Table 1.  
The distributions and cumulative distribution functions of the 
content of C%, Si% and Mn% with breakdown into classes  
 
 
 
 
 
 
 
 

Since a large batch of the melts has been examined, it can be 
assumed that the results describe with sufficient accuracy the 
chemical composition of the cast iron in general population, 
which means that the empirical frequencies of occurrence of the 
individual classes of the content of alloying elements can be 
regarded as a probability of their occurrence. Additionally, in 
Table 1, the cumulative values of the real probability (the 
cumulative distribution function) were computed.  
 

4. Sampling by the method of inverse 
cumulative distribution function  

 

The main inconvenience in practical solution of the problem 
lies in the fact that it requires physical production of the examined 
cast iron, and if the chemical composition demanded by 
respective standards is not complied with, this solution may prove 
both costly and invalid. From the assumptions adopted in physical 
experiment (related e.g. with the central limit theorem) it follows, 
however, that there is no need to continue the physical experiment 
to know if the production of cast iron can be profitable under 
certain conditions. It is enough to sample at random the variable 
values of C%, Si% and Mn%. It is also important to ensure that 
the probability distributions of the sampled variables are 
consistent with the corresponding distributions in general 
population. If so, then it can be assumed that the C%, Si% and 
Mn% variables are sampled from these distributions. Every next 
repetition of the sampling operation (also known as replication) 
provides the next observation on the variables of C%, Si% and 
Mn%, and consequently on the cumulative cast iron composition. 
And so, e.g., the cast iron containing carbon  (C%) in a range of 
2,9 – 3,1% should appear in the sample 20 times out of hundred, 
while the cast iron alloyed with manganese (Mn%) comprised in a 
range of 0,50 – 0,60% should appear 24 times out of hundred.  
For random sampling of the C%, Si% and Mn% variables from 
the respective distributions, a variable taking with equal chances 
the values from an interval (0,1), i.e. the variable of a uniform 

(even) distribution along the line segment (0,1), should be 
applied. Let a variable of this type, called random variable, be 
denoted by the symbol U. In an Excel calculation sheet it can be 
generated using a non-argument function =LOS(). Figure 1 shows  
possibilities of using this function in generation of numbers from 
the selected interval and distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Application of function =LOS() for generation of numbers 

from the selected interval and distribution  

Carbon (C%) Silicon (Si%) Manganes (Mn%)
C% Prob. Distrib. Si% Prob. Distrib. Mn% Prob. Distrib.

2,8 - 2,9 0,06 0,06 1,0 - 1,2 0,09 0,09 0,20 - 0,30 0,08 0,08
2,9 - 3,0 0,20 0,26 1,2 - 1,4 0,85 0,94 0,30 - 0,40 0,22 0,30
3,0 - 3,1 0,33 0,59 1,4 - 1,6 0,06 1,00 0,40 - 0,50 0,39 0,69
3,1 - 3,2 0,26 0,85 0,50 - 0,60 0,24 0,93
3,2 - 3,3 0,10 0,95 0,60 - 0,70 0,07 1,00
3,3 - 3,4 0,05 1,00

 
The following rules have been adopted:  

If the value of the random variable U1 is not larger than 0,06,  
the content of C% is comprised in the class of 2,8 – 2,9%, 
otherwise 
If the value of the random variable U1 is not larger than 0,26 
the content of C% is comprised in the class of 2,9 – 3,%,  
otherwise  
If the value of the random variable U1 is not larger than 0,59 
the content of C% is comprised in the class of 3,0 – 3,1%, 
otherwise  
If the value of the random variable U1 is not larger than 0,85 
the content of C% is comprised in the class of 3,1 – 3,2%, 
otherwise  
If the value of the random variable U1 is not larger than 0,95 
the content of C% is comprised in the class of 3,2 – 3,3%, 
otherwise  
the content of C% is comprised in the class of  3,3 – 3,4%.  

So, it follows that the sampled variable C% has the carbon content 
comprised in a class corresponding to the line where the 
cumulative distribution function for the first time reaches or 
exceeds the value of the random variable. A similar principle has 
been adopted for the remaining two random variables, i.e. Si% 
and Mn%, referring them to proper distributions in general 
population. Figure 1. shows, in an Excel sheet, 1000 replicates 
using the random variables U1 (C%), U2 (Si%) and U3 (Mn%).  
 

5. The statistical analysis  
 

The test shown in Figure 1 is subject to statistical processing. 
In this case, as appropriate, for all the three variables, i.e. C%, 
Si% and Mn%, the main characteristics of descriptive statistics, 
i.e. the mean, standard deviation, median, 25% and 75% quartiles, 
and modal value, were computed.  

For each analysed variable, using table function 

10 ARCHIVES OF FOUNDRY ENGINEERING Vo lume 9 ,  I ssue  1 /2009 ,  9 -12



=(FREQUENCY),  the frequency of occurrence of a given class 
of the alloying element content (column: simulated frequency 
(ni)) was determined, and basing on these data, the cumulative 
frequency and the simulated probability were computed (Fig. 2).  

The correctness of approach used in this method can be 
verified further by evaluation of consistency between the 

empirical distribution and simulated distribution, using for this 
purpose a chi-square test, performed with function =TEST.CHI().  
In each case (C%, Si%, Mn%), a very good consistency between 
the two distributions was obtained.  
 

 

 

 
 

Fig.1. Sheet with the results of simulation done by the method of inverse cumulative distribution for 1000 replications  
 

a)         b)     c) 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Estimated fundamental characteristics of the descriptive statistics for a) carbon; b) silicon; c) manganese  
 

As a first step, for each of the examined variables (C%, Si%, 
Mn%), presented in the form of a stemplot, the arithmetic mean 
was estimated according to the following formula:  
 

1

1 k .

i i
i

x x n
n            (1) 

where: 
.

ix  – the middle of a class interval  
 k – the number of classes 

 n –the total size  
Having computed the difference between the middle of class 
intervals and the arithmetic mean, and raising it to the second 
power, the value of the standard deviation s was computed 
according to the following formula:  
 

2

1

1 k .
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i

s x x n
n           (2) 
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The values of the mean and of a standard deviation s obtained for 
the individual variables enabled the determination of a typical 
variability interval, which should comprise 68% of all melts.  
As a next step, the median, i.e. the middle value, was estimated 
using the following formula:  

1

1
0

Me

Me i
i

Me Me
Me

N n
Me x h

n         (3) 

where:  
1

1

Me

i
i

n - the cumulative size of an interval preceding the median,  

2Men n / - the position of the median,  

0 Mex  - the lower limit of an interval where the modal value,  
Men - the size of an interval where the median is present, 
Meh  - the range of a class interval where the median is present.  

 
The values of the quartiles: lower Q1 (25%) and upper Q3 (75%) 
were determined from the following formulae:  

1 1
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where:  

1 4Q
nN ,  whereas 3

3
4Q
nN  

1 3Q Qn ;n  - the size of an interval where the examined quartile,  
 

1 1 3 1

1 1

Q Q

i i
i i

n ; n - the cumulative size of an interval preceding the 

examined quartile,  

1 3Q Qh ;h - the range of an interval where the examined quartile.  
 
As regards the examined variables, a half of the melts (50%) is 
comprised within the interquartile range. Additionally, the 
computed values of the quartiles enable us to compute the quartile 
deviation Q, first:  

3 1

2
Q QQ         (6) 

and the typical variable range, next:  

t ypMe Q x Me Q        (7) 
As a last step, the modal value Mo is computed:  
 

1
0

1 1
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where:  

0mx  - the lower limit of an interval where the modal value  

mn - the size of the modal interval,  

1 1m mn ;n  - the size of classes preceding and following the 
modal interval,  

mh  - the range of a class interval where the modal value.  
 

6. Summing up and conclusions  
 

Commonly, the cumulation is done with standard measures 
based on sample moments of the variables. In the case under 
discussion, the mean values (after 1000 replications) obtained for 
all the examined variables (C%, Si%, Mn%) fully corresponded to 
the preset values. With the distribution of these variables close to 
normal, one might expect that about 68% of all melts would be 
comprised in the intervals determined by a variability interval 
typical of the mean value and standard deviation. Yet, this is not a 
satisfactory information, because the set of events defining a 
correct melt is composed of the sets of events operating in an 
independent mode for each of the examined alloying elements.  

More precise information on the profitability of production is 
provided by the measures of position, like the median and 
quartiles. A rough estimation of these characteristics has proved 
that all the examined variables were characterised by the values 
comprised in an interquartile range, which means that, for the 
examined variables (C%, Si%, Mn%), at least 50% of the melts 
should satisfy the preset conditions.  

To adapt the technique used for processing of the simulation 
results to the key question posed by every foundry plant: “how 
much”, one might disregard  the previously estimated parameters 
of descriptive statistics and reduce the analysis to the count of 
melts corresponding to standards adopted previously. An answer 
to the question (column L – Fig. 1) shows that as many as 63,7% 
of all melts satisfy these conditions. Even if these results are 
burdened with some sampling variability, an adequately large 
margin of safety is still left. Some attention deserves the fact that 
the above measures were determined basing on the same measure 
that was used in replications. Their usefulness to the foundry plant 
is determined by the question that the cast iron manufacturer 
should ask himself. The answer most useful is obtained when the 
procedure used for processing of the simulation results (counting 
of melts that raise the profitability of production) is well adapted 
to a problem the decision-maker is currently facing.  
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