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Abstract 
 
The paper presents the approximated solution of the solidification problem, modelled with the aid of the one-phase Stefan problem with 
the boundary condition of the second kind, by using the variational iteration method. For solving this problem one needs to determine the 
distribution of temperature in the given domain and the position of the moving interface. The proposed method of solution consists of 
describing the considered problem with a system of differential equations in a domain with known boundary, and solving the received 
system with the aid of VIM method. The accuracy of the obtained approximated solution is verified by comparing it with the analytical 
solution.  
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1. Introduction 
 

The Stefan problem is a mathematical model, describing the 
process of solidification of pure metals. It represents a group of 
thermal processes, during which the phase changes and the heat is 
absorbed or emitted, such as, for example, solidification of 
metals, melting of  ice, freezing of water and soil, deep freezing 
of foodstuffs and so on [1-3]. Solving the Stefan problem consists 
of  finding the temperature distribution in the given domain and 
the position of the moving interface (the freezing front), under the 
assumption of knowing the initial conditions, boundary conditions 
and thermo-physical properties of the considered materials. 

In this paper, we consider the special case of Stefan problem, 
which is a one-phase problem, where the temperature at one side 
of the moving interface is constant and equal to the temperature of 
the phase change. In nature, such situation happens during the 
melting of ice, if it is under the melting temperature. Solving of 
such kind of problems was discussed for example in paper [4], 

where the analytical solution were found for some simple cases, 
or in paper [5], where the approximated methods must be applied.  

Grzymkowski and Slota in [6] have applied the Adomian 
decomposition method, combined with some minimization 
method, for finding the approximate solution of the one-phase 
Stefan problem, while in [7] the Stefan problem was first 
approximated with the system of nonlinear ordinary differential 
equations, and next, the received system was solved with the aid 
of the Adomian decomposition method. The Adomian method 
and the Runge-Kutty method, applied for solving the nonlinear 
system of the ordinary differential equations, obtained by 
transforming the Stefan problem, are compared in [8].     

In papers [9,10], an approximate solution of one-phase direct 
and inverse Stefan problem with the boundary condition of the 
first kind, by using the variational iteration method, is presented. 
In this procedure, function describing the moving interface is 
assumed in the form of a linear combination of given functions. 
Coefficients of this combination must be designated by 
minimising the proper functional. Different approach for solving 
the Stefan problem by using the variational iteration method is 



proposed in [11], where the considered problem is first 
transformed into the unit square, and next, the transformed task 
was solved with the aid of VIM method. In this procedure, like in 
the one presented in the present study, using any additional 
optimization method is not needed. 

The variational iteration method was introduced by Ji-Huan 
He, and, till now, this method was applied for solving a wide 
range of problems [12-28]. For example, in [15] the VIM method 
is used for finding the solution of the Laplace equation, in [16-19] 
for solving the heat transfer equation and wave equation, in [20]  
for solving the Couchy reaction-diffusion problem, in [21] for 
determining the solution of the hyperbolic differential equations 
and systems of partial differential equations in [22]. The discussed 
method is also applied for solving the inverse problems for the 
parabolic equation [23-25] and for finding the approximate 
solution of the inverse Stefan problem [9-10]. Besides, there are 
available publications describing the applications of the 
considered method for solving mathematical models, appearing in 
biology [26] and astrophysics [27]. Convergence of the VIM 
method is discussed by Tatari and Dehghan in [28]. 

In the present paper, we propose a new approach for using the 
variational iteration method for finding the approximate solution 
of the one-phase Stefan problem, with the boundary condition of 
the second kind.   
 
 

2. Formulation of the problem 
 

As it was said in the previous section, we deal in this paper 
with solving the one-phase Stefan problem, described in the 

domain { })](,0[),,0[:),( txtttxD ξ∈∈= ∗
. Let us denote the 

particular parts of the domain D: 
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where the initial and boundary conditions are given. Considered 
problem is described by the equations: 
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where 0>s , a  is the thermal diffusivity, λ  is the thermal 
conductivity, κ  is the latent heat and fusion per an unit volume, 

∗u  is the temperature of the phase change, u is the temperature, 
and t and x denote the time and spatial location variables, 
respectively. 

As solving the Stefan problem, formulated with equations (4)-
(9), we understand to determine the temperature distribution u(x,t) 
and function )(tξ , describing the moving interface position. The 

functions )(xϕ , )(tϑ  and the coefficients 
∗ua ,,, κλ  and s are 

given, in the considered problem.  
 
 

3. Basic ideas of the variational 
iteration method 
 

The variational iteration method is used for solving a wide 
range of nonlinear operator equations [12-14] of the form: 
 

),())(())(( tftuNtuL =+                                                         (10) 
 
where L is a linear operator, N is a nonlinear operator, f(t)  is  
some given function and u(t) is an unknown function. 

The VIM method consists of constructing a correctional 
functional, associated with the equation (10): 
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where 1
~

−nu  is a restricted variation [12-14] (it means 0~
1 =∂ −nu ), 

and )(sλ  is a general Lagrange multiplier [12,13,29], optimally 
determined by using the variational theory [12-14,30].  

After determining the value of )(sλ , we obtain the following 
iterational formula:  
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from which the solution (approximate or exact) of equation (10) 
can be calculated. Of course, an initial approximation )(0 tu  has to 
be known.  
 

 
4. Method of solution 
 

In the first step, the considered problem, formulated for the 
curvilinear domain D, is transformed for the domain of 
rectangular geometry. We do that by using the following 
substitution: 
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The above substitution transforms the domain D into the domain 
D  of the form: { },]1,0[),,0[:),( ∈∈= ∗ ytyD ττ  presented in the 

Figure 1, and the boundaries iΓ  for the boundaries iΓ , 
{ gi ,1,0∈ }, where:   
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Fig. 1. Domains D and D  

 
The substitution of the variables causes, that the considered 
system of equations takes the form: 
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with the conditions:  
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In the second step, to the above system of equations we apply 
the VIM method. The correction functionals for equations (14)-
(15) are of the form:  
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where, for simplifying the notation, we introduce the functions:  
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For making the correction functionals stationary, we determine 
the general Lagrange multipliers as follows: 
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In this way, we receive the following iteration formulas for 
functions ),( τyu  and )(τξ , respectively: 

,),;,(),(),(),(
0

11 dssyuN
s

syuyuyu nn
n

nn ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

−=+

τ

ξττ
       (21) 

 

.);,()()()(
0

21 dssuN
s
s

nn
n

nn ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

+=+

τ

ξξτξτξ
                      (22) 

 
In the third step of our procedure, we need do derive the 

initial approximations of the searched functions. For using the 
boundary condition (18) of the second kind, we dispose, we 
integrate the equation (14) for reducing the second derivative of 
the sought function ),( τyu . We obtain the equation: 
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Let us assume, that as the initial approximation )(0 τξ  we take the 
function describing the initial condition (16):  
 

,)(0 s=τξ                                                                                   (24) 
 

while the initial approximation ),(0 τyu  we introduce in the form: 
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A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  9 ,  I s s u e  4 / 2 0 0 9 ,  6 3 - 6 8  65



where the coefficients cba ,,  and function d~  will be determined 
form the equation (23). Functions (24) and (25) should satisfy 
equation (23), therefore let’s substitute both of those functions 
into the equation (23): 
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After some basic calculations we get the relationship: 
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Assuming the exact accuracy of the received approximation at the 
particular points, such that ),0,0(),( =τy  ),0,1(),( =τy  

),,0(),( ∗= ty τ  and including the initial condition (17), we 
obtain the following form of the initial approximation:  
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being the grounds for calculating the successive approximations 

)(τξn  and ),( τyun  of functions )(τξ  and ),( τyu . Those 
approximations are determined for the domain D , but by 
applying the relation reciprocal to (13), we designate the searched 
approximate solution of the problem (4)-(9).  
 
     
5. Example 
 

The proposed method of solution, presented in previous 
section, will be illustrated with the theoretical example, for which 
the exact solution is known. Let us take the data: 
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Under those assumptions, the exact solutions of the problem (4)-
(9) are the functions: 
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Figure 2 presents the comparison between the exact function 

)(tξ , describing the position of the moving interface (solid line) 

and its second approximation )(2 tξ  (dots). 

 
Fig. 2. Comparison between the position of the moving interface 

)(tξ  (solid line) and its approximation )(2 tξ  (dots) 
 

The absolute error of this approximation, calculated in 

particular points from range ),0[ ∗t , is displayed in the Figure 3. 
 

 
Fig. 3. Error distribution in the second approximation of the 

position of the moving interface 
 

The absolute (δ ) and relative percentage errors (Δ ) of the 
successive approximations of functions )(tξ and ),( txu , received 
with the presented procedure, are compiled in the Table 1. The 
absolute errors are calculated according the following formulas: 
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where: 
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while the relative percentage errors are derived by using the 
formulas: 
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Except checking the quality of the received approximations, 
by comparing them with the exact solutions, it is also important to 
verify, whether the approximate solutions are compatible with the 
assumed initial (5)-(6) and boundary conditions (7)-(8).  

 
Table 1. 
Values of the errors in the reconstruction of the position of the 
moving interface and the temperature distribution. 

n 
ξδ  ξΔ  uδ  uΔ  

0 0.0288675 0.0281606 0.0513521 0.0282556
1 0.0015582 0.0015200 0.0234418 0.0128984
2 0.0000212 0.0000207 0.0025637 0.0014106

 
The initial conditions (5)-(6) in each calculated iteration of the 

procedure are satisfied without errors. 
In the case of the boundary condition (7) of the second kind, 

the comparison between the exact values of the function )(tϑ  

(solid line) and its second approximation x
tu

∂
∂ ),0(2

 (dots)  is 
plotted in the Figure 4. The absolute error of this approximation is 
shown in Figure 5 and it does not exceed the value of 0.00454.  
 
 

 
Fig. 4. Comparison between the exact values of the boundary 

condition 1Γ  (solid line) and its second approximation (dots) 
 

The temperature of solidification 
∗u  at the moving interface 

(condition (8)) is reconstructed with the error, systematically 
decreasing for the successive iterations. The compilation of the 
exact value of  

∗u  (solid line) and its approximate value, obtained 
from the second iteration (dots), is presented in the Figure 6. 
However, figure 7 shows the absolute error of this approximation, 
which is not bigger than 0.00474. 

 
Fig. 5. Error distribution in the second approximation of the 

boundary condition on boundary 1Γ  
 

 
Fig. 6. Comparison between the phase change temperature 

∗u  
(solid line) and its second approximation (dots) 

 

 
Fig. 7. Error distribution in the second approximation of the 

phase change temperature 
 
 

6. Conclusions 
 

This paper presents the application of the variational iteration 
method for finding the approximate solution for the one-phase 
one-dimensional Stefan problem, with the boundary condition of 
the second kind. The proposed approach consist of describing the 

A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  9 ,  I s s u e  4 / 2 0 0 9 ,  6 3 - 6 8  67



considered problem with the aid of the system of two differential 
equations in the domain of the known boundary, and solving the 
received system by using the variational iteration method. In 
constructing the initial approximation, the assumed initial and 
boundary conditions of the problem are included.  

The advantage of such approach is, that it does not need the 
discretization of the considered domain, which is required in the 
classical methods, based for example on the finite-difference 
method or finite-element method. As a result of the proposed 
method we receive the sequence of the successive 
approximations, convergent to the exact solution, if it exists. 
Another advantage of the current approach is, that using any 
additional optimization algorithms is not required, like it was in 
the previous procedures, described in [9].     
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