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Abstract 

 The paper deals with the segmentation of brain 
tumours in magnetic resonance (MR) images. The 
segmentation method developed is based on the 
analysis of two MR series, namely contrast enhanced 
T1-weighted images with gadolinium contrast 
medium and perfusion maps. The T1-weighted 
images are segmented using the Kernelised Weighted 
C-Means (KWCM) method, yielding a binary mask 
of candidates of the tumour tissue. Next, these 
results are compared with the perfusion intensity of 
the segmented regions and then with corresponding 
areas on the opposite side of the brain. The results 
obtained for subjects with glioblastoma multiforme 
(GBM) and anaplastic astrocytoma (AA) are 
discussed. 

1. Introduction 

Brain tumours remain one of the most difficult 
tumours to be treated as they often attack areas 
where the treatment of choice namely the total 
tumour resection is virtually impossible. Correct 
decisions concerning surgery, radiotherapy and 
chemotherapy planning depend firmly on the 
accurateness of tumour segmentation performed by 
a specialised radiologist. This work done manually by 
the radiologist is a tedious and time-consuming task. 

The aim of this research is to create an automatic  
algorithm that may be an extremely helpful tool for 
radiologists assisting them in brain tumours 
segmentation in MR images.  

1.1 Brain Tumours 

Intracranial brain tumours are divided into two 
groups depending on the origin of cells building 
them: intraaxial and extraaxial tumours.  Most of the 
intraaxial tumours are built from glial cells. These 
tumours called gliomas constitute some 50% of all 
brain tumours. Mostly gliomas are built of astrocytal 
cells. These tumours comprising some 35% of all 
brain tumours are called astrocytomas. The 
glioblastoma multiforme (GBM) is an astrocytoma 
tumour, classified by the World Health Organisation 
as having the highest IVth grade of malignancy 
(WHO IV) and thus being one of the most 

aggressive tumours. The GBM’s constitute one fifth 
of all brain tumours [1]. The anaplastic astrocytoma 
is a WHO III astrocytoma, accounting for about 4% 
of all brain tumours [14]. 

These tumours are histologically very weakly 
delimited from healthy tissue. Necrosis, haemorrhage 
into the lesion and tumour angiogenesis are often to 
be encountered. Extended edema is also frequently 
diagnosed. These characteristics make the proper 
delineation of high-grade astrocytomas boundaries a 
laborious and difficult task [1]. 

 The reoccurring tendency of GBM’s even after 
radical resection and intensive radio- and 
chemotherapy treatment results in very poor survival 
rates, with median survival rate with and without 
treatment of ca. 3 and 8 months respectively and the 
3-year survival rate after GBM diagnosis being as 
small as 2% [1, 19]. The median survival rate for 
subjects with anaplastic astrocytomas ranges from 2 
to 5 years [15]. 

Nevertheless new treatment methods are tested 
and introduced, their efficiency being dependent on 
the correct tumour segmentation and quantification 
of its volume, which makes the assistance in the 
radiologists’ task of the GBM segmentation process 
in MR images extremely vital.  

1.2 The Nature of Magnetic Resonance 

Imaging (MRI) Data 

The MRI data, dealt with in this research, include 
two MRI series of subjects with diagnosed GBM or 
anaplastic astrocytoma, namely T1-weighted images 
after the injection of gadovist contrast medium and 
perfusion maps obtained on the basis of Perfusion-
Weighted Imaging (PWI) series by means of 
manufacturer’s software. The images were made on a 
3.0T Phillips MR appliance and a 1.5T Siemens MR 
appliance. Both imaging series are transverse-type 
and were made with the same angle positioning in 
coronal and saggital planes. All the subjects have 
undergone radical tumour resection as well as radio- 
and chemotherapy treatment. 

The use of gadovist contrast medium allows to 
separate the regions of broken brain blood barrier. 
The enhancement of signal intensity, resulting from 
the shortening of the T1 time and caused by the 
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accumulation of gadolinium compounds, is best to 
be noticed in T1-weighted images. This signal 
intensity enhancement does not however necessarily 
mean by itself that the lesion is malignant [1]. The 
irregular, ring-shaped signal intensity enhancement, 
characteristic for GBM’s [2], is well to be noticed in 
most of the images. 

PWI plays an important role in treating primary 
brain tumours, as it makes it possible to find the 
most cancerous part of the tumour.  It seems that 
the enhancement of the relative cerebral blood 
volume (RCBV), whose amount is represented by 
the image intensity level of the perfusion maps in the 
lesion area is caused by tumour angiogenesis, which 
may indicate the grade of malignancy of the tumour 
[1]. 

The RCBV coefficient is also helpful in telling the 
actual tumour areas from the radionecrosis areas and 
postoperative granulation tissue, all of them being 
hyperintensive in T1-weighted images after contrast 
medium administration. 

The  midline structures are often displaced due to 
an expansive lesion which makes it difficult to 
correctly establish the brain symmetry line in MR 
images. The brain symmetry itself may also often be 
disturbed by the tumour due to the mass efect [1]. 

1.3 Previous Attempts at Brain Tumour 

Segmentation 

Most of the previous attempts at brain tumour 
segmentation are researches on automatic 
segmentation algorithms, although semi-automatic 
methods are also common. However, none of the 
researches has yet succeeded in creating universal 
software able to facilitate the segmentation of all 
kinds of brain tumours, the difficulty of the problem 
lying mainly in the variety of shapes and locations of 
brain tumours. 

As far as semi-automatic brain tumours 
segmentation methods are concerned, the most 
widespread algorithms are defined respectively as 
seeded region growing and active contours and are 
dealt with for T1-weighted contrast images e.g. in [3].   

In that research the seeded region growing 
algorithm is applied based on the extraction of a 
connected set of pixels whose intensities are 
consistent with the pixel statistics of the seed point 
chosen by the user. In the active contours algorithm 
the geodesic deformable model provided by [4] and 
the geometric active contours method based on the 
theory of curve evolution  were implemented [3]. 

Among automatic brain tumour segmentation 
algorithms the most common are the Gaussian 
Mixture Models (GMM), the Support Vector 
Machine (SVM) and the Fuzzy C-Means (FCM) 
methods. 

 One-class SVM was developed to separate 
tumour and non-tumour regions in [5]. Structural 

analysis-based tumour segmentation scheme was 
presented in [6]. Firstly, three kind of features 
including those intensity-based, symmetry-based and 
texture-based were extracted from structural 
elements. Then a classification technique using the 
AdaBoost algorithm was suggested to classify the 
structural elements into normal and abnormal 
tissues. The authors of [7] presented GMM and 
SVM-based methods for brain segmentation.  

2. Segmentation Algorithm 

The Multiple Sclerosis (MS) Computer Aided 
Diagnosis (CAD) software created originally for the 
segmentation of demyelination plaques in brain MR 
images and described in [8] was applied for the 
segmentation of contrast enhanced areas in T1-
weighted images. The basic algorithm, permitting the 
segmentation of white matter, brain matter and 
contrast enhanced areas,  implemented in this 
software, is the Kernelised Weighted C-Means 
(KWCM). This method emerged directly from the 
standard Fuzzy C-Means (FCM) method [9, 10]. 

FCM is a clustering method based on the 
minimisation of an objective function. It divides a 
finite collection of elements into c clusters with 
respect to some given criterion [10, 17]. The data 
clustering methods using kernel functions allow a 
nonlinear transposal of the data into a high-
dimensional space. The KWCM method fully 
transposes the clustering process into that high-
dimensional space [11, 12]. The Radial Basic 
Function (RBF) is used as kernel function for the 
KWCM algorithm in the software. The feature 
incorporated in the clustering process is the signal 
intensity. 

The FCM objective function for partitioning a 
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is calculated using fuzzy membership values in the 

partition matrix 
)(tU . In the first iteration 

)1(U as 
well as the cluster centres are set to random values. 
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In the next steps 
)1( +tU  values are recomputed 

following  the equation [17] 
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 The Kernelised Fuzzy C-Means (KFCM) 
algorithm adopts a kernel-induced distance metric,  
the objective function being [18] 

2

1 1

)()(),( ∑∑
= =

−=
c

k

N

i
kiki vxuUJ φφφ β , (4) 

with φ  denoting a nonlinear mapping function into 
a higher dimensional feature space.  

Substituting the Gaussian RBF 
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Taking the first derivative of ),( φUJ  with 

respect to kiu  and comparing it to zero yields the 

following equation for the fuzzy partition matrix 
values [18] 

∑
=

−
−

−
−

+

−

−=
c

j
jiG

kiGt
ki

vx

vx
u

1

1

1

1

1

)1(

)),(1(

)),(1(

β

β

φ

φ
  (7) 

The KWCM algorithm is a generalised version of 
the KFCM method, if the condition 
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is imposed [8]. 
On the basis of the analysis of clusters brain 

matter, background, cerebrospinal fluid and  
potential tumour or fat areas are segmented, bearing 
in mind the fact that fat, as well as melanin and 
haemoglobin, are hyperintensive even in T1-
weighted images without the administration of 
contrast medium. The masks achieved in that way 
are processed with mathematic morphology 
operations, yielding the white and grey matter areas 
and thus narrowing down the region of interest. At 

this stage the location of lateral ventricles and 
eyeballs is also detected. After further automatic 
corrections, including the Quick Hull [13] algorithm, 
allowing the rejection of hypodermic fat areas, the 
final potential tumour areas mask is computed [8].  

The local inhomogeneities of the signal intensities 
in the T1-weighted contrast images are responsible 
for uncontinuousness of the boundaries of 
segmented areas, which caused the need of 
improvement of the segmentation quality in the MS 
CAD by the implementation of a second 
segmentation step based on fuzzy connectedness. 
However, for the high-grade astrocytomas 
segmentation task, there is no such need due to the 
inherent presence of uncontinuousness of tumour 
areas caused by the necrotic tissue inside the tumour. 
The necrotic tissue seems to be correctly qualified by 
the KWCM algorithm as non-tumourous. 

As already mentioned, both imaging series have 
the same angle positioning in coronal and saggital 
planes and identical location of the brain in the field 
of view of the images, so the perfusion maps, 
originnally having a 128×128 pixels resolution, may 
first be pre-processed with the bicubic iterpolation 
algorithm [16], embedded in MATLAB, to achieve 
the same pixel dimensions as the contrast enhanced 
T1-weighted images. Then they are analysed on the 
basis of their signal intensity. 

The binary mask of hyperperfusive areas contains 
voxels, whose signal intensity value is more than 
twice the value of signal intensity of the voxels lying 
on the opposite side of the brain. The rough 
symmetry line established for this analysis is the 
symmetry line of the image. Finding an algorithm 
allowing to establish a more precise brain symmetry 
line will be the subject of further research. 

The final tumour areas mask is calculated as the 
logic product of the potential tumour areas mask 
obtained with the KWCM algorithm and the mask of 
hyperperfusive regions obtained from the analysis of 
perfusion maps. 

In the tumour areas finally obtained the number 
of pixels is calculated and multiplied by the MRI  
slice thickness plus the interslice gap, which for the 
contrast enhanced T1-weighted spin-echo series 
equal 5mm and 1.5mm respectively, yielding the final 
tumour volume. 

3. Results 

The tests have been performed on MRI data of 
subjects with diagnosed high-grade astrocytomas, 
namely one subject with GBM (subject no. 1) and 
two subjects with anaplastic astrocytoma (subjects 
no. 2 and no. 3). For one subject three consecutive 
MR studies  were available. For each of the other 
subjects there was just one MR study available. 
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Fig. 1 Original contrast enhanced T1-weighted image 

selected from study no. 1 of subject no. 1. 

The detailed results obtained at the subsequent 
steps of the segmentation algorithm are presented in 
Fig. 1-8. The selected images, shown in Fig. 1-4, 
come from the study performed after partial 
resection of the tumour, before radiotherapy 
treatment. The exclusion of the postoperative 
granulation tissue, indicated by an arrow on Fig. 1, 
from the final tumour areas mask due to the analysis 
of the perfusion map is well to be noted. 

 
Fig. 2 Potential tumour areas mask obtained from the 

segmentation of the T1-weighted contrast image 
shown in Fig. 1 

Radiotherapy produced a decrease in the tumour 
volume, although a hyperintensive area of 
radionecrotic tissue appears instead in the T1-
weighted contrast image in Fig. 5 coming from study 
no. 3 of the same subject. The analysis of the 
corresponding perfusion map resulted in partial 

exclusion of the radionecrotic tissue area, indicated 
by an arrow on Fig. 5, from the final tumour areas 
mask overlying the original T1-weighted contrast 
image in Fig. 8. The pixels corresponding to the 
radionecrotic tissue area are the only false positives 
(FP) in the final tumour areas masks of tumour 
containing slices. An improvement of the algorithm 
of perfusion maps analysis should allow to fully 
exclude the radionecrotic tissue areas from the final 
tumour areas masks. 

 
Fig. 3 Original perfusion map corresponding to the T1-

weigthed contrast image in Fig. 1. 

The other false positives belong to the final 
tumour areas masks of slices not containing the 
tumourous tissue. This problem might easily be 
overcome, if the user would interactively point out 
the tumour-bearing slices. 

The results of automatic segmenation of brain 
tumours and quantification of their volume, obtained 
with the segmentation algorithm described in the 
previous section, are gathered in table 1 for all the 
available MR studies. Apart from the case of subject 
no. 2 the results achieved coincide well with the 
volumes as calculated by a specialised radiologist. 
The visual assessment of the automatically delineated 
brain tumours areas, performed by the radiologist, 
confirmed positively the coincidence of final volume 
results. 

The tests showed that the segmentation 
algorithm described in the previous section does not 
permit to correctly classify the tumourous tissue 
lying close to the hypodermic fat tissue, which is the 
case in the T1-weighted contrast images of subject 
no. 2 containing the anaplastic astrocytoma. The 
hypodermic fat tissue rejection algorithm incorrectly 
classifies this lesion as fat and eliminates the region 
of the lesion from the final potential tumour areas 
mask. The development of a fat elimination 
algorithm enabling the correct classification of 
tumourous areas located closely to the fat tissue will 
be dealt with in further research work. 
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Fig. 4 Final tumour areas mask superimposed on the 
original contrast enhanced T1-weighted image 

presented in Fig. 1 

 

Fig. 5 Original contrast enhanced T1-weighted image 

selected from a follow-up study of subject no. 1 

 

Tab.1. 

Automatic Segmentation Results 

Subject 
no. 

Study 
no. 

Brain tumour 
diagnosed 

Tumour volume 
(in cm3) 

1 1 GBM 9.92 
1 2 GBM 7.86 
1 3 GBM 1.90 
2 4 AA - 
3 5 AA 1.61 

 

Fig. 6 Potential tumour areas mask obtained from the 
segmentation of the T1-weighted contrast image 

shown in Fig. 5 

 

Fig.7 Original perfusion map corresponding to the T1-
weigthed contrast image shown in Fig. 5 

4. Conclusions 

The brain tumours segmentation results achieved 
by using the segmentation algorithm desribed above 
seem to be very promising. Future work will include 
further improving the segmentation method and 
performing tests on a larger amount of imaging data 
of subjects with diagnosed high-grade gliomas as 
well as on MR images of subjects with other types of 
brain tumours. 
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Fig. 8 Final tumour areas mask superimposed on the 

original T1-weighted contrast image in Fig. 5 
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