

247

Real-Time Measurement Systems Based On LabVIEW

Graphical Environment

Arkadiusz Gancarczyk, Silesian University of Technology
(dr hab. inŜ. Lesław Topór-Kamiński, prof. Pol. Śl., Silesian University of Technology)

Abstract

 The subject of the present paper is to discuss the
problems concerning the measurement of systems
fulfilling the requirements of the real time. In the
thesis we deal with the application, the nature and
the architecture of the systems which are important
and can be area of research. In many applications it
may be required that a certain periodic schedule be
executed within a hard-timed loop. These systems
share a common feature in that they interact with
devices or processes that themselves operate based
on real-world time. Such systems are often termed
"hard real-time systems" because their actions must
meet time constraints imposed by the application
space, rather than by the operation of the
measurement or control devices.

LabVIEW graphical programming includes tools
for low-level system debugging and precise
execution timing so that it can increase the flexibility
and functionality of deterministic real-time
application. Design real-time application, based on
NI LabVIEW, benefit from the rapid application
development of graphical programming. This
solutions offers the widest variety of high-
performance distributed real-time execution and
headless operation such as control processing, data
logging, real-time data acquisition or data analysis.

1. Introduction

Examples of such hard real-time systems are more
and more. In the measurement world, complex test
systems composed of many electronic instruments
operating in concert are used to verify the
performance of even more complex electronic or
electromechanical devices. In the field of control,
combinations of computers, controllers, sensors and
actuators collaborate, great importance has regulate
and control processes or communications systems
operate to pass information from source to
destination. A hard real-time system is one that must
meet its performance objectives every time and all
the time. As soon as one of these systems does not
meet one of its performance criteria, it fails. An

example of a hard real-time system is a fly-by-wire
flight control system, where if the system does not
respond to a pilot’s commands within microseconds,
then the system fails with potentially catastrophic
circumstances. Our everyday life seems to be
governed by the clock. Real-time application appear
in the field such us :

- in-vehicle data acquisition, data logging and
control;

- machine condition monitoring and
protection;

- embedded system prototyping;
- remote and distributed monitoring;
- embedded data logging;
- custom multi-axis motion control.

In programming these devices, the time which
something is to happen is entered as well as the time
at which the activity is to cease or in some cases, the
duration of the activity. Never is there a list of
activities executed based on the speed at which the
device operates.

The limitation of existing systems is that their
architecture makes it hard to offer control strategies
that require dynamic adaptation. For example,
deployment of sophisticated control strategies for
high accuracy, such as multiple-input and multiple-
output control, requires a precise identification of
the system under control. In many cases, optimal
implementation lacks flexibility and tends to require
fairly sophisticated hardware design techniques.

2. LabVIEW Real-Time Module

LabVIEW Real-Time extends the LabVIEW
graphical development environment to deliver
deterministic, hard real-time performance. The
LabVIEW RT architecture consists of the following
three components: LabVIEW, the Real-Time
Development System and the Real-Time Engine. In
real-time applications the code-part of the vi
requiring absolute reliability and extended duration
run time. Develop application (fig.1) will be
transfered to the over Ethernet to Real-Time Engine
to run on a variety of dedicated hardware targets

XI International PhD Workshop
OWD 2009, 17–20 October 2009

248

with a real-time operating system (RTOS), whereas
the user-interface will remain on the LabVIEW PC.
When the program has started running, the PC with
the user-interface can be turned off and on again at a
later time. The communication between the real-
time hardware and the originating PC or any other
PC, can be achieved in several ways.

Fig.1. Components of LabVIEW Real-Time Architecture

LabVIEW offers two main differences from

other solutions: signals are always present and
programs are represented as diagrams. Furthermore,
causality violations are easily avoided if proposed
design principles are followed. Additionally
compared to automated and efficient memory
management, which prevent memory leaks and a
dataflow-based environment. The LabVIEW Real-
Time Module provides native tools for debugging
application. The Real-Time System Manager can be
use to monitor system resources such as CPU and
memory usage of your real-time target. With other
debugging tools, keep track of memory buffer
allocation and the amount of memory consumed by
each VI as it downloads to target. Additionally,
LabVIEW Execution Trace Toolkit is used to
advanced debugging to visualize the task execution
of application and control assign the appropriate
execution priority to each real-time task. The
embedded RTOS then uses a combination of round-
robin and preemptive scheduling to ensure
deterministic execution of time-critical tasks.
Additionally, can be implements multirate
applications to include independent tasks running at
unique priorities.

One feature of LabVIEW is that the real-time
runtime environment and the simulation
environment use the same compiler and scheduler,
which facilitates embedded control systems
development, since usually in this domain extensive
simulations are performed, including hardware in the
loop tests, before a first prototype.

3. Example architecture real-time

control system
One of the most popular in the last time to

design real-time measurement system are
programmable automation controller (PAC).
Examples is CompactRIO which bases on new
reconfigurable I/O (RIO) technology and is
combines the processing power and flexibility of a
field-programmable gate array (FPGA) with the
reliability of a real-time processor. Include three
components:

- processor to execute LabVIEW Real-Time
applications for reliable real-time operating
system;

- reconfigurable embedded chassis with
programmable FPGA core that can be
accessed and configured using LabVIEW
graphical development software;

- hot-swappable industrial I/O modules with
built-in signal conditioning for direct
connection to a variety of sensors and
actuators.

Fig.2. Components of CompactRIO

ComapctRIO is attractive solution to design hard
real-time system which require timely decisions to be
made based on incoming data. For instance, I/O
device samples an input signal and sends it directly
to memory. Then, the processor must analyze the
signal and send the appropriate response to the I/O
device, records data over time and sends results to
PC station to measurement system of operator. In
this application, the software must be involved in
the time-loop. Detailed knowledge of the specific
hardware and topology providing develop
application to direct access to each I/O module for
precise control and flexibility in timing, triggering,
and synchronization. For design hard real-time
control system, very important is choose appropriate
architecture program which depend from
specification control system and possibility elements
of dedicated hardware. Figure 3 showed all
possibility components which can be used for
develop control system. By analyzing controller
operations, can break down the system into smaller
components, each responsible for a specific task in
the overall application. Some of these components
are ready-to-run as part of the machine control
reference architecture, while others must be
developed as part of the design and implementation
of a specific machine control application.

249

Fig.3. Controller Architecture and Components

Knowing an architecture to acquire data and
perform analysis, control and develop applications
by programming is not sufficiently. Invaluable is
effective management all available resources. It will
be able to effectively:

- determine if a real-time solution is
appropriate for a given problem;

- implement a deterministic and reliable
application;

- reduce the jitter in a real-time application;
- choose an appropriate communication

method;
- benchmark application;
- control timing, synchronization and priority

of operations;
- create deterministic control and simulation

solutions on the NI LabVIEW platform.
Building complex systems requires an architecture
that allows code reuse, scalability and execution
management. The time require to take action after
an event is known as responsiveness and different
control applications have different tolerances,
varying from microseconds to minutes. Most
industrial applications have responsiveness
requirements in the milliseconds to seconds range.
An important design criterion for a control
application is the required responsiveness because
this determines the control loop rates and affects
I/O signals, processor and software decisions. Most
controllers use a single processor to handle all

control, monitoring and communication tasks.
Because there is a single resource (processor) with
multiple parallel demands, therefore need a way to
manage the demands that are most important.
LabVIEW make possible setting critical control
loops to a high priority. Due to that compactRIO is
a full-featured controller that still exhibits good
determinism and responsiveness.
For real-time solution, improving software
performance is indispensable. Most performance
bottlenecks are caused by architectural and design
limitations that require significant amounts of
recoding to overcome. The following, however, are
a couple of techniques that have been used
successfully. Improving software is realizing by:

- performance profiling and algorithm
improvements;

- control and management memory;
- timing and scheduling;
- I/O optimization techniques (for example

FPGA programming for compactRIO);
- application architecture and multitasking

design.
Multitasking application is more challenging than
debugging a single-tasking application for the simple
reason that, in a multitasking application, more that
one thing is happening at a time. Tasks interact with
one another reading and writing global memory,
acquiring and releasing synchronization objects and
sometimes in those places where the activity of one
task affects the activity of another, the two tasks can
trip one another up. Add more tasks to the mixture
which has more opportunity for trip-ups.

4. Multicore programming in real-

time application
Solutions based on LabVIEW Real-Time offer

variety of real-time hardware targets that contain an
embedded processor running a real-time operating
system for maximum reliability and deterministic
performance. PXI industrial platform or desktop
PC, dedicated to RTOS, takes additionally advantage
of multicore performance for create deterministic
applications. LabVIEW Real-Time Module
implement high-performance real-time applications
on multi-core systems and take advantage of high-
performance multi-core processor technology. To
further increase the performance and reliability of a
real-time system, LAbVIEW Real-Time can be by
programming assign to specific processor cores and
dedicate them to execute a time-critical control
thread and isolate it from less important thread that
run on different cores (fig.4). Multithreading extends
the idea of multitasking into applications, so can
subdivide specific operations within a single
application into individual threads. Each of the
threads can run in parallel.

250

Fig.4. Dedicating thread real-time system to a specific

processor

Applications that take advantage of

multithreading have numerous benefits, including
the following:

- more efficient CPU use;
- better system reliability;
- improved performance on multiprocessor

computers.
So, it becomes expedient task to investigate

hardware and software solutions for scheduling of
real-time applications on a multithreaded processor.
Scheduling technique is put on hard real-time
constraints for one or more threads and a virtually
unbounded number of soft real-time threads. The
concept should be extended for use in a multi-core
processor. This includes a balanced assignment of
threads to cores, thread migration between cores
and power saving by switching off cores separately.

The scheduling not only distributes computation
time to threads, the scheduling decision must also
enclose the temporal assignment of resources to
threads.

5. Conclusions

Performance measures for real time systems did
not receive much attention. An assessment of the
few existing benchmarking methods for real time
systems will reveal that they are highly inappropriate.
Taking a closer look into the fundamental issues of
real time systems it will become clear, that for hard
real time systems qualitative characteristics are much
more important than quantitative measures.
Rigorous methods for design and implementation of
safety critical real-time systems are vital to avoid loss
of human lives or severe economic losses.
Unfortunately, many of these systems are designed
and evaluated using ad-hoc techniques. There are,
on the other hand, relatively well developed theories
for modeling and analysis of timing and reliability.
These theories are, however, seldom applied in

industry for system development, mainly because of
the simplifying model assumptions and lack of
appropriate tool support. Typical real-time system
development is a multistep process that includes
code programming, debugging, compiling,
downloading and deploying. LabVIEW Real-Time is
unique because it creates traditional real-time
applications but takes advantage of all the benefits
of LabVIEW for Windows graphical programming
development environment. As real-time software is
developed, performance must be measured at each
step of the way. The execution speed of each
component needs to be measured to ensure that
they meet their performance criteria. During
integration, the performance of the system needs to
be continually measured for the same reason. High
fidelity software performance measurements may be
achieved by using a combination of source code
instrumentation and hardware data collection. In
addition to performance analysis, this technology
may also be used to monitor dynamic memory
usage, multitasking and multithreading behavior.
Good area of research will be search appropriate the
qualitative design methodology to narrow the gap
between research results and industrial practice in
evaluation and design of real-time systems
measurement based on new solutions such us
LabVIEW.

Bibliography

[1] Gancarczyk Arkadiusz: System pomiarowy czasu
rzeczywistego do zdalnej diagnostyki układu
hamulcowego pojazdu szynowego, Mat. Konf.
„Podstawowe Problemy Metrologii”, Sucha
Beskidzka, 2009.

[2] Gancarczyk Arkadiusz: Mobile System on
LabVIEW Environment Based on CompactRIO,
The Seventh International Students' Workshop
Control & Information Technology –
IWCIT’08, Glwice, wrzesień 2008, str 8-13;

[3] National Instruments www.ni.com/crio
[4] National Instruments www.ni.com/rt
[5] National Instruments www.ni.com/multicore

Author:

mgr inŜ. Arkadiusz Gancarczyk
Politechnika Śląska
Instytut Metrologii, Elektroniki
i Automatyki
ul. Akademicka 10
44-100 Gliwice
tel. (032) 232 28 00

email:
arkadiusz.gancarczyk@pols.pl

