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Abstract 

The gene selection for classifier is a very 
important problem. Over the past few years many 
algorithms were proposed to resolve this problem. 
However, the optimal selection of informative genes 
for multiclass analysis is still an open problem. In 
this article the random forests method is used for 
gene selection. With help of variable importance 
returned from random forests it is possible to select 
significant genes. Tests on real 3-class colon cancer 
microarrays data show, that this method is promising 
in cancer research. Preliminary study of obtained 
gene list shows, that some of this genes are involved 
in neoplasia of other cancer types. The review of 
KEGG pathways shows, that selected genes are 
recognized as important in tumor grown process.  

Parallel computation performed on computer 
cluster allowed us to work with big DNA microarray 
datasets and reduce the run time. 

1. Introduction 

Recent studies suggest that gene expression 
profiles may represent a promising alternative for 
clinical cancer classification. Molecular-based 
approaches has opened the possibility of 
investigating the activity of thousands of genes 
simultaneously and can be used to find genes 
involved in neoplasia. A big problem in applying 
microarrays in classification problem is dimension of 
this data [1]. Traditional statistical methodology for 
classification does not work well when there are 
more variables than samples. Thus, methods able to 
cope with the high dimensionality of the data are 
needed. In this paper we describe multiclass 
classification and dimension reduction which are 
intrinsically more difficult than binary ones [2].  The 
gene selection for classifier is a very important 
problem. Over the past few years many algorithms 
were proposed to resolve this problem. However, 

most of the studies are designed to binary dimension 
reduction problems and only a few involve multiclass 
cases. The optimal selection of informative genes for 
multiclass analysis is still an open problem. In this 
article the random forests [3]  method is used for 
gene selection. There are two approaches to solve 
dimensionality problem of microarray data. We can 
obtain probably large set of genes to obtain the 
smallest error rate. In this case we choose genes even 
if they are highly correlated and perform similar 
functions. Second objective is identify the smallest 
set of genes that can still achieve good predictive 
performance. Finding small set of genes is very 
important in clinical practice as biomarkers for PCR 
method or to verify the biological function the 
selected genes and the corresponding proteins.     

2. Random forests 

Random forests method is an extension for 
bagging of decision trees. In bagging [4] successive 
trees do not depend on earlier trees, but each is 
independently constructed using a bootstrap sample 
of the data set. In the end, a simple majority vote is 
taken for prediction. Random forests add an 
additional layer of randomness to bagging. In 
standard trees, each node is split using the best split 
among all variables. In a random forest, each node is 
split using the best split among a subset of predictors 
randomly chosen at that node. This approach is 
robust against overfitting [3]. First we draw ntree 
bootsrap samples from our data. For each of the 
bootstrap samples unpruned classification tree is 
build. Predictor in every node is choosing to obtain 
best split, from mtry randomly sample (choose from 
all predictors). Bagging and random variable 
selection results in low correlation of each tree. At 
the end new data are predicted by aggregating the 
predictions of the ntree trees. 
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 Standard way to obtain estimation of the error 
rate is to use data not included in the bootstrap 
sample at each bootstrap iteration. This data (out-of-
bag data, OOB) is predicted using the tree grown 
with the bootstrap sample. The OBB estimate is a 
calculated error rate for the aggregated predictions. 
Random forests method can handle data with many 
more variables than observations. There are many 
advantage, but measurement of variable importance, 
incorporation interactions among predictor variables 
are the most important for extraction small sets of 
genes. Random forests method need to tune only 
three parameters.  The mtry as the number of imput 
variables tried in each split, ntree is the number of trees 
in forest and the minimum size of the terminal 
nodes: nodesize.  

2. Methods 

Random forest returns measures of variable 
importance. One of them is based on the decrease of 
classification accuracy when values of class labels are 
permuted randomly. The variable importance used 
here for discarding the worst genes is based as 
before on the decrease of classification accuracy, but 
in case when values of a variable in a node of tree are 
permuted randomly [5]. We discard those variables, 
that have the smallest difference between OOB error 
before and after randomly permutation variable 
values. Random forests are iteratively fitted, at each 
iteration eliminating the worst fraction fraction.dropped 
of variables. Gene importance ranking is generated 
only in first iteration. After fitting all forests, solution 
with the smallest number of genes and the OOB 
error rate within standard error of the minimum 
obtained error of all forests is chosen.  

3. Prediction error estimation 

To estimate prediction error  the .632+ estimator 
[6] is used. It is shown that bootstrap methodology 
[7] gives better performance than cross-validation 
and resubstitution for relatively small sample 
microarray classification [8].  Suppose we have 
dataset of size l : 1 2( , ,., )lZ z z z=  where 

( , )i i iz x y=  is the observation. 1 2( , ,., )lx x x=X  is 

the inputs matrix and 1 2( , ,., )lY y y y= is the 

response (class labels). For multiclass problem  
{1,., }iy K∈  , where K  is the number of classes. 

To divide our samples into training and test datasets 
bootstrap method is used. Bootstrap sample is a 
random sample with replacement of the observations 
and has the same size as our original dataset. The 
probes that appear in bootstrap sample compose a 
training dataset and the rest of observations are used 

as a test dataset. This is done B  times to produce 
B  bootstrap samples. 

Prediction model ˆ ( )f X  has been estimated 
from a training sample. First we must introduce the 
loss function for measuring errors between Y and 
ˆ ( )f X as ˆ( , ( )).L Y f X  This function returns 0  if 

response Y equals predicted value ˆ ( )f X  and  1 
otherwise. 

Now we can define the resubstitution error 
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where *ˆ ( )b
if x  is the predicted value at ix of the 

b -th bootstrap sample. This predictor can make 
overfitted predictions and the estimated error rate 
will be downward biased. That's why we obtain error 
estimator for test data sets 
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The model trained on training set will be tested 
on the other samples, not used to fit the model. This 
provides protection against overfitting. 

As we said before, we compute the error rate for 
B  sets bC containing samples that don't appear in 

b -th bootstrap sample and | |bC is number such 

samples. This estimator will overestimate the true 
prediction error, and when the test set will be small it 
can have high variance [8]. To resolve this problem 
.632+ estimator is used. This is a modified version of 
.632 estimator to avoid downward bias in overfitting 
case of our classifier. Let's define γ  to be the error 
rate of our prediction rule if the inputs and class 

labels are independent. Let �
kp be the observed 

proportion of responses iy  which equal k  and �kq  

be the proportion of predictions ˆ ( )if x  which equal 

k , where k is the class label of classK . Then 
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The relative overfitting rate 
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Now we can define the .632+ estimator by 
� � �

(632 ) ˆ ˆ(1 ) boot testErr w Err wErr+ = − +  (4) 

0.632
ˆ

ˆ1 0.368
w

R
=

−
    (5) 

When there is no overfitting problem the .632+ 
estimator is equal to .632 estimator 
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� � �
(632 ) 0368 0632boot testErr Err Err+ = +  (6) 

The bootstrap resampling is very computationally 
costly. We use the computer cluster (12 processors 
with HT technology) and PVM linux application. 

4. Results 

For test we used 3-class microarray cancer dataset 
with  microarrays (HG-U133 Plus 2.0 
oligonucleotide arrays). This dataset was obtained 
from MSC Cancer Center and Institute of Oncology, 
Warszawa. The specimens included collection of 34 
normal colon tissues (class 1), 61 colon polyps (class 
2), 48 colon cancers (class 3). The data was 
normalized with in Bioconductor and “Ferrari” 
reannotation procedure (environment containing the 
location probe set membership mapping) to remove 
probes matching transcripts from more than one 
gene and probes which do not match any transcribed 
sequence [9]. All computations are make with R and 
Bioconductor. There was only Fraction.drooped 
parameter tested in this article, because this 
parameter is important for gene selection. We 
compute 100 bootstrap iteration. In each iteration 
the numbers of trees used in first forest was 5000 
and 2000 for all additional forests.   

As we can see in Tab.1 the smallest error rate  we 
obtain when, small groups of genes are discarded in 
each bootstrap iteration. The smallest mean genes 
number used in 100 bootstrap samples is obtained 
for fraction.dropped=0.4 (Tab.2).  

Tab.1. 

Classification error rate based on bootstrap 
resampling  for different value of  fraction.dropped 

parameter 

 

Tab.2. 

Number of genes used in bootstrap samples  for 

different value of  fraction.dropped 

Number of genes  
Fr.dropped mean min max 

0.2 59.49 2 1637 
0.3 85.1 2 3198 
0.4 40.97 2 1048 
0.5 95.72 2 7806 
0.6 59.47 2 3198 

 
As we said the OOB error rate is used to 

determine the number of genes used in each 

iteration. On Fig.1 we compare the OOB error for 
bootstrap samples and all samples. As we can see 
small set of genes is enough to obtain very good 
results. For large gene set we can observe that OOB 
error increase.  

Fig.2 shows results of genes ranking for this case. 
There was relatively small number of genes that was 
at least one times chosen in bootstrap iteration. Only 
genes important for the classification were highly 
ranked. These genes we can choose for molecular 
markers to understand the basis of metastasis of 
various cancer. This figure can help decide on the 
number of genes for finding biomarkers.   
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Fig.1. OOB error rate for different number of genes. 

(fr.drooped=0.4) 
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Fig.2. Results of bootstrap-based feature ranking 

(fr.drooped=0.4) 

Very important factor is stability of selected 
genes. Comparing the probabilities value genes 
selected in bootstrap samples that appear in  gen set 

Classification error 
Fr.dropped .0632 loo 

0.2 0.036 0.0557 
0.3 0.04 0.0606 
0.4 0.041 0.0633 
0.5 0.0351 0.05379 
0.6 0035 0,0538 
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selected  from whole samples set is a good measures 
of stability [10]. Fig.3 shows a big number of genes  

 
form 60 genes selected form whole sample set 

that appears in more than 50% bootstrap iterations.   

Fig.3. Selection probability in bootstrap iterations for 
genes selected from whole sample set  (fr.drooped=0.4) 

5. Conclusions 

In this paper random forests method is used to 
find small subset of genes to differentiate different 
colon tissues. Our tests show, that we can obtain 
very good results for small number of selected genes. 
Preliminary review of obtained gene list shows, that 
some of this genes are involved in neoplasia of other 
cancer types. The study of KEGG pathways show, 
that selected genes are from pathways like TGF-beta 
signaling pathway, Cell adhesion molecules, Focal 
adhesion or Wnt signaling pathway. In the 30 mostly 
selected genes in bootstrap iterations are genes 
recognized as important in tumor grown process. 
Some of them are not yet recognized. This methods 
needs several improvements  and is very promising 
in microarrays experiments.  

The biggest problem is the computational cost of 
a random forests method and bootstrap resampling. 
Parallel computation performed on computer cluster 
(12 processors with HT technology)  allowed us to 
work with big DNA microarray datasets. Presented 
approach makes possible to obtain more reliable 
classifier with less classifier error and can help to 
find new genes that take part in neoplasia. 
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